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Abstract

An (n, r, s)-design, or (n, r, s)-partial Steiner system, is an r-uniform hypergraph over n
vertices with pairwise hyperedge intersections of size < s. An independent set in a hypergraph
G is a subset of vertices covering no hyperedge, and its independence number α(G) is the size
of its largest independent set. For all constants r ≥ s ∈ N with r even, we explicitly construct

(n, r, s)-designs (Gn)n∈N with independence number α(Gn) ≤ O(n
2(r−s)

r ). This gives the first
derandomization of a result by Rödl and Šinajová (Random Structures & Algorithms, 1994).

By combining our designs with a recent explicit construction of a leakage-resilient extrac-
tor that works for low-entropy (Chattopadhyay et al., FOCS 2020), we obtain simple and
significantly improved low-error explicit extractors for adversarial and small-space sources. In
particular, for any constant δ > 0, we extract from (N,K, n, k)-adversarial sources of locality
0, where K ≥ Nδ and k ≥ polylog n. The previous best result (Chattopadhyay et al., STOC
2020) required K ≥ N1/2+o(1). As a result, we get extractors for small-space sources over n bits
with entropy requirement k ≥ n1/2+δ, whereas the previous best result (Chattopadhyay et al.,
STOC 2020) required k ≥ n2/3+δ.
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1 Introduction

Let G = (V,E) be an r-uniform hypergraph over n vertices. G is called an (n, r, s)-design, or
(n, r, s)-partial Steiner system, if |e1 ∩ e2| < s, for all distinct e1, e2 ∈ E. In this paper, we study
(n, r, s)-designs that are extremal in the sense that they have small independence number.1 In
1994, Rödl and Šinajová proved the first general theorem about the existence of such objects:

Theorem 1.1 ([RŠ94]). Given any n ≥ r ≥ s ∈ N with r ≥ 2, there exists an (n, r, s)-design G
with independence number

α(G) ≤ Cr,s · n
r−s
r−1 (log n)

1
r−1 ,

where Cr,s = C(r, s) depends only on r, s.

In fact, they also showed this result is tight up to the term Cr,s that depends only on r, s.
In order to prove Theorem 1.1, Rödl and Šinajová used the Lovász Local Lemma [Spe77] to

show that a random r-uniform hypergraph, where each hyperedge is included independently with
some probability p, is an (n, r, s)-design with small independence number. Thus, while their result
proves the existence of these extremal designs, it does not provide an explicit way to construct them.
Furthermore, later work has focused on improving the term Cr,s [EV13, Eus13] or extending the
result to more general types of designs [GPR95,KMV14,TL18], while still relying on probabilistic
constructions.

To the best of our knowledge, there are no known explicit constructions of (n, r, s)-designs
with a nontrivial upper bound on their independence number. However, such constructions are
important in both extremal combinatorics and theoretical computer science: not only do they
offer insight into the structure of these objects, but they also have recently found applications in
the construction of randomness extractors [CGGL20]. Furthermore, explicit designs of a different
extremal flavor have been used to construct pseudorandom generators in the seminal work of Nisan
and Wigderson [NW94].2

Thus, the primary goal - and first main contribution - of this paper is a derandomization of
Theorem 1.1. Second (and third), we show that our explicit designs are strong enough to be used,
along with a very recent object from [CGG+20], to establish an explicit framework for randomness
extraction that greatly improves the results in [CGGL20]. Before we formally state our main
theorems, we provide a brief refresher on randomness extractors.

Randomness extractors A randomness extractor is an object that can purify defective sources
(distributions) of randomness found in nature. It is motivated by the fact that most applications of
randomness in computing require access to uniformly random bits, yet the random bits harvested
from natural phenomena rarely look so pure. An extractor is formally defined as follows.

Definition 1.2. Let X be a family of sources over {0, 1}n. A function Ext : {0, 1}n → {0, 1}m is
an extractor for X with error ε if for every X ∈ X ,

|Ext(X)−Um| ≤ ε,

where Um is the uniform distribution over {0, 1}m, and | · | denotes total variational distance.

1Recall that an independent set in a hypergraph is a subset of vertices that contains no edge, and the independence
number of a hypergraph is the size of its largest independent set.

2 [NW94] uses (n, r, s)-designs that are extremal in the sense that they have a large number of hyperedges. It is
known how to explicitly construct this type of extremal design; see, e.g., the survey [Vad12].
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Beyond purifying natural sources of randomness, extractors have found important applications
in complexity theory, cryptography, coding theory, and combinatorics (see, e.g., [Sha11, Vad12]).
Constructing these objects have thus produced a fruitful line of research over the past 30 years,
where various source families X and errors ε have been considered depending on the motivating
application. Our designs will give much improved extractors for two important classes X of sources.

First, we will give improved extractors for the class X of adversarial sources. Motivated by
applications in generating a (cryptographic) common random string, and in harvesting randomness
from unreliable sources, Chattopadhyay, Goodman, Goyal and Li [CGGL20] introduced this new
class of sources:

Definition 1.3. A source X over ({0, 1}n)N is an (N,K, n, k)-adversarial source of locality 0 if it
has the form X = (X1, . . . ,XN ), where each Xi is an independent source over {0, 1}n, and there
exists some (unknown) subset of K good sources; i.e., there is some S ⊆ [N ], |S| ≥ K such that
each Xj , j ∈ S has min-entropy3 H∞(X) ≥ k.

The class X of adversarial sources generalizes several well-studied models, which will allow us
to obtain improved extractors of another type, discussed next.

Second, we will give improved extractors for the class X of small space sources. Introduced
by Kamp, Rao, Vadhan and Zuckerman [KRVZ06], each distribution in this class is defined to be
samplable from some algorithm with limited memory. To define this class of sources formally, one
first defines a branching program of width w and length n to be a directed acyclic graph with n+ 1
layers, where the first layer (layer 0 ) has 1 node, the remaining layers have w nodes each, and such
that an edge starting in layer i must terminate in layer i + 1. Then, one formally defines a small
space source as follows.

Definition 1.4. A distribution X over {0, 1}n is a space s source if it is generated by a random
walk starting on the first layer of a branching program of width 2s and length n, where each edge is
labeled with an output bit and some transition probability.

These sources were defined following a line of work introduced by Trevisan and Vadhan [TV00]
on extracting uniform bits from distributions that can be sampled by algorithms with some limited
computational resource. The motivation behind sources of this type is the idea that since the
universe has limited resources, it may be reasonable to assume that imperfect sources of randomness
found in nature are generated in this way.

Given these definitions, we are now ready to state our main contributions.

1.1 Summary of results

In our first main result, we explicitly construct (n, r, s)-designs with small independence number.
In particular, we prove the following theorem.

Theorem 1. There exists an Algorithm A such that given any n ≥ r ≥ s ∈ N as input with r
an even number, A runs in time poly

((
n
r

))
and outputs an (n, r, s)-design G with independence

number
α(G) ≤ Cr,s · n

2(r−s)
r ,

where Cr,s = C(r, s) depends only on r, s.

3The min-entropy of a source X over {0, 1}n is defined as H∞(X) := minx∈support(X) log(1/Pr[X = x]).
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For all constants r ≥ s ∈ N where r is even, Theorem 1 gives an explicit family of (n, r, s)-
designs (Gn)n∈N with small independence number. The independence number of our explicit designs
differs from Theorem 1.1 (known to be optimal, up to constants) by just a quadratic factor. Like
the non-explicit designs of [RŠ94], our derandomization focuses on the case where r, s are constant.
However, we also give meaningful results when r, s are not constant: we show that we may take
Cr,s = Cr4 for some universal constant C > 0, and we argue that for almost all interesting settings
of super-constant r, s, our algorithm still runs efficiently. We refer the reader to Remark 3.2 in
Section 3, and the discussion thereafter, for more detail.

Our second main theorem gives much improved explicit extractors for (N,K, n, k)-adversarial
sources of locality 0:

Theorem 2. There is a universal constant C > 0 such that for any fixed δ > 0 and all sufficiently
large N,K, n, k ∈ N satisfying k ≥ logC n and K ≥ N δ, there exists an explicit extractor Ext :
({0, 1}n)N → {0, 1}m for (N,K, n, k)-adversarial sources of locality 0, with output length m = kΩ(1)

and error ε = 2−k
Ω(1)

.

Previously, the best extractor for this setting [CGGL20] required K ≥ N0.5+o(1) good sources,
and was quite involved. We believe our extractor to be much simpler, and furthermore our con-
struction gives a new application of leakage-resilient extractors (LREs). The variant of LREs that
we use here were studied in a recent line of work [KMS19, CGG+20] and are known as extractors
for cylinder intersections. Most relevant to us is the work of Chattopadhyay et al. [CGG+20] where
they gave the first constructions of such objects for entropy k = o(n), and in fact their LREs work
for entropy k ≥ polylog n. Theorem 2 relies heavily on these low-entropy LREs.

Finally, our third main theorem gives new low-error explicit extractors for space s sources. Until
recently, the best extractors for such sources [KRVZ06] required entropy k ≥ Cn1−γsγ , where γ > 0
is some tiny constant and C is a large one. In [CGGL20], the entropy requirement was improved
to k ≥ Cn2/3+δs1/3−δ. We reduce this entropy requirement even further, and prove the following.

Theorem 3. For any fixed δ ∈ (0, 1/2] there is a constant C > 0 such that for all n, k, s ∈ N
satisfying k ≥ Cn1/2+δs1/2−δ, there exists an explicit extractor Ext : {0, 1}n → {0, 1}m for space s

sources of min-entropy k, with output length m = nΩ(1) and error ε = 2−n
Ω(1)

.

The line of improvements described above (from [KRVZ06] to [CGGL20] to Theorem 3) is strict,
in terms of both entropy and space: we refer the reader to Remark 5.2 in Section 5 for more detail.
Furthermore, the entropy requirement in Theorem 3 virtually reaches the known limit of current
techniques in low-error extraction from small-space sources, and any further improvements (i.e.,
beyond k ≥ n1/2) will require significantly new ideas (see Remark 5.7 in Section 5). Finally, we
note that, along the way, we provide improved randomness extractors for a class of sources known
as total entropy sources (see Theorem 5.6).

1.2 Overview

We briefly sketch an overview of our techniques. We refer the reader to Section 2 for some basic
preliminaries on notation and probability.

Explicit designs with small independence number In Section 3, we give our explicit con-
struction of designs with small independence number, proving Theorem 1. In order to construct
our (n, r, s)-designs G = (V,E), we start with a linear code Q ⊆ Fn2 of distance d > 2(r − s), and
then restrict it to the set Qr ⊆ Q of elements in Q that have Hamming weight r. Our design
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G = (V,E) is constructed by identifying V with [n], and by creating a hyperedge for each x ∈ Qr
in the natural way. The distance of the code and the definition of Qr immediately guarantees that
G is an (n, r, s)-design.

In order to upper bound the independence number α(G) of our design, we observe that any
independent set in G corresponds to a subcube S ⊆ Fn2 that contains no vector in Q of weight r;
in other words, since Q is a linear code, this means that the subspace T ∗ := S ∩ Q has no vector
of Hamming weight r. If our linear code Q had very high dimension, then even if the subcube
S was relatively small, we would have found a relatively large subspace T ∗ containing no vector
of Hamming weight r. But intuitively, it seems like as the dimension of a subspace grows large
enough, at some point it must be guaranteed to have such a vector. It turns out this is true,
and it follows immediately from Sidorenko’s recent bounds [Sid18, Sid20] on the size of sets in Fn2
containing no r elements that sum to zero. Thus if Q has large enough dimension, S cannot be too
large, and thus neither can α(G). All that remains is to explicitly construct (the weight-r vectors
of) a high-dimensional linear code Q ⊆ Fn2 with distance d > 2(r − s), which can easily be done
using BCH codes [BRC60,Hoc59].

Improved extractor for adversarial sources In Section 4, we show how to combine our designs
with leakage-resilient extractors (LREs) in order to obtain better extractors for adversarial sources,
proving Theorem 2. Informally, an LRE for r sources offers the guarantee that its output looks
uniform even conditioned on the output of many leakage functions, each called on up to r − 2 of
the same inputs fed to the original LRE. We now sketch our extractor construction for adversarial
sources. Recall that an (N,K, n, k)-adversarial source of locality 0 consists of N independent
sources, where only K of them are guaranteed to be “good” (i.e., contain some entropy). Given such
a source, we use Theorem 1 to explicitly construct an (N, r, r−1)-design G with small independence
number α(G) < K, and we identify the vertices of our design with theN independent sources. Then,
for each hyperedge in our design, we call a leakage-resilient extractor on the r sources it contains,
and finish by taking the bitwise XOR over the outputs of the LRE calls.

This construction successfully outputs uniform bits for the following reasons. Because α(G) <
K, we are guaranteed that some LRE call is given only good sources. By the extractor property
of the LRE, this call will output uniform bits. Meanwhile, the bounded intersection property of
the (N, r, r − 1)-design, paired with the leakage-resilience property of the LRE, guarantees that
these uniform bits still look uniform even after taking their bitwise XOR with the outputs of all
other LRE calls. Using these ideas, we actually provide a slightly more general framework to
combine (N, r, s)-designs with LREs of various strength. Our framework leverages the “activation
vs. fragile correlation” paradigm introduced in [CGGL20], yet it is able to do so in a much more
simple, general, and effective way, by combining two very recent explicit pseudorandom objects:
LREs from [CGG+20], and explicit designs from the current paper.

Improved extractor for small-space sources In Section 5, we show how our adversarial source
extractors give better extractors for total-entropy sources and small-space sources, and thereby
prove Theorem 3. To do so, we simply import standard reductions from small-space sources to total-
entropy sources [KRVZ06] to adversarial sources [CGGL20]. The results then follow immediately.
This application of adversarial source extractors was first provided in [CGGL20], but we include
the (slightly optimized) techniques here for completeness, i.e., to demonstrate how the parameters
of our improved adversarial source extractors carry over to total-entropy and small-space sources.

We conclude with some remarks and present some open problems in Section 6.
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2 Preliminaries

General notation Given two strings x, y ∈ {0, 1}m, we let x⊕ y denote their bitwise XOR. For
a number n ∈ N, [n] denotes the interval [1, n] ⊆ N. We let ◦ denote string concatenation, and
for a collection {xi : i ∈ I} indexed by some finite set I, we let (xi)i∈I denote the concatenation
of all strings xi, i ∈ I. If I is already equipped with some total order, this is used to determine
the concatenation order; otherwise, I is arbitrarily identified with [|I|] to induce a total ordering.
Given a domain D, and some string x ∈ DN , we let xi ∈ D denote the value at the ith coordinate
of x. Given a subset S ⊆ [N ], we let xS := (xi)i∈S . Even if D = Rn for some other domain R and
number n ∈ N, the definition of xS ∈ D|S| does not change.

Basic coding theory and extractor definitions We let F2 denote the finite field of size two,
and we let Fn2 denote a vector space over this field. The Hamming weight of a vector x ∈ Fn2 is
defined as ∆(x) := #{i ∈ [n] : xi = 1}, and the Hamming distance between two vectors x, y ∈ Fn2 is
defined as ∆(x, y) := ∆(x− y), where the subtraction is over F2. The standard basis vectors in Fn2
is the collection E∗ := {ei}i∈[n], where ei ∈ Fn2 holds a 1 at coordinate i and 0 everywhere else, and
a subcube is a subspace spanned by some subset of E∗. An (n, k, d)-code is a subset Q ⊆ Fn2 of size
2k with the guarantee that any two distinct points x, y ∈ Q have Hamming distance ∆(x, y) ≥ d.
A linear [n, k, d]-code is simply an (n, k, d) code that is a subspace. Finally, we say that a source X
over {0, 1}n is an (n, k) source if it has min-entropy at least k, and we say that an extractor Ext an
N -source extractor for entropy k if it is an extractor for a family of sources X , where each X ∈ X
consists of N independent (n, k) sources.

Discrete probability In general, for a random variable X : Ω→ V , we are only concerned with
the distribution over V induced by X. We will therefore typically not define the outcome space Ω,
and can assume it has any form we like (so long as the distribution induced by X does not change).
Given random variables X,Y and any y ∈ support(Y), we let (X | Y = y) denote a random
variable that takes value x with probability Pr[X = x | Y = y]. Given a random variable X and a
family of random variables Y, we say that X is a convex combination of random variables from Y if
there exists a random variable Z such that for each z ∈ support(Z), it holds that (X | Z = z) ∈ Y.
We define the statistical distance between two random variables X,Y over V as

|X−Y| := max
S⊆V
|Pr[X ∈ V ]− Pr[Y ∈ V ]| = 1

2

∑
v∈V
|Pr[X = v]− Pr[Y = v]|,

and we say that X,Y are ε-close if |X−Y| ≤ ε. Given these definitions, the following two standard
facts are easy to show, and are extremely useful.

Fact 2.1. For any random variable X ∼ {0, 1}m and any constant c ∈ {0, 1}m, it holds that

|X−Um| = |(X⊕ c)−Um|.

Fact 2.2. For any random variables X,Y, where X ∼ {0, 1}m, it holds that

|X−Um| ≤ Ey∼Y[|(X | Y = y)−Um|].

Finally, we will need the following standard lemma about conditional min-entropy.

Lemma 2.3 ([MW97]). Let X,Y be random variables such that Y can take at most ` values. Then
for any ε > 0, it holds that

Pr
y∼Y

[H∞(X | Y = y) ≥ H∞(X)− log `− log(1/ε)] ≥ 1− ε.
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3 Explicit extremal designs via slicing codes and zero-sum sets

In this section, we efficiently construct designs with small independence number, and obtain our
main theorem about explicit designs:

Theorem 3.1 (Theorem 1, restated). There exists an Algorithm A such that given any n ≥ r ≥
s ∈ N as input with r an even number, A runs in time poly

((
n
r

))
and outputs an (n, r, s)-design G

with independence number

α(G) ≤ Cr,s · n
2(r−s)
r , (1)

where Cr,s = C · r4 for some universal constant C ≥ 1.

For all constants r ≥ s ∈ N with r even, Theorem 3.1 constructs an explicit family of (n, r, s)-
designs (Gn)n∈N with small independence number. Like the non-explicit designs of Theorem 1.1
from [RŠ94], our derandomization focuses on the case where r, s are constant. However, it turns out
that even for most super-constant r, s, our algorithm is still efficient. In particular, before proving
Theorem 3.1, we make (and quickly prove) the following remark.

Remark 3.2. Let A be the algorithm from Theorem 3.1, and let m = m(n, r, s) be the number of
hyperedges in the design produced by A on input (n, r, s). Then for any functions r = r(n), s = s(n),
Algorithm A is guaranteed to run in time poly(n,m) over the collection I = {(n, r(n), s(n))}n∈N
as long as at least one of the following holds:

• The functions r, s are constant: r(n) = O(1) and s(n) = O(1); or

• There is a constant ε > 0 such that inequality (1) is bounded above by O(n1−ε),∀(n, r, s) ∈ I.

The first bullet in Remark 3.2 reiterates the fact that the algorithm in Theorem 3.1 is efficient
when r, s are constant. The second bullet gives a more general remark on the performance of
Algorithm A on super-constant r, s: it says that as long as Theorem 3.1 gave a “non-trivial”
bound on the independence number in the first place, then the algorithm will run efficiently. This
effectively covers all “interesting” regimes of r, s: indeed, the main application of selecting non-
constant r, s would be to achieve independence bounds that are stronger than those achieved by
constant r, s (and any constant r, s that achieve α(G) < n in Theorem 3.1 in fact achieve the second
bullet).

To prove that Algorithm A is efficient given the condition in the second bullet, we use standard
bounds on Turán numbers. The Turán number T (n, β, r) is defined as the fewest number of edges in
an r-uniform hypergraph with no independent set of size β, and it is known [Sid95] that T (n, β, r) ≥(
n
r

)
/
(
β
r

)
. Thus, the second bullet implies the number of edges, m = m(n, r, s), in the design is at

least

T (n,Cn1−ε + 1, r) ≥ T (n, n1−ε/2, r) ≥
(
n

r

)
/

(
n1−ε/2

r

)
≥
(
n

r

)
/

(
n

r

)1−ε/4
≥
(
n

r

)ε/4
,

where we use the observation that the Turán number is non-increasing in its second argument, the
fact that we can assume n, r are sufficiently large (since otherwise the efficiency claim is trivial),
and a simple application of Stirling’s formula. Thus, Algorithm A runs in time

(
n
r

)
= poly(n,m).

In fact, since we gave a lower bound on m based on the independence number, it trivially holds
that any algorithm that achieves independence numbers as small as A must output m edges,
meaning that the runtime of A is optimal up to constant powers. This completes our discussion on
Remark 3.2.

6



We now turn to proving Theorem 3.1. We start with the simple observation that hypergraphs
over n vertices can be identified with subsets of Fn2 . In particular, any subset T ⊆ Fn2 induces
a hypergraph GT = (V,E) in the following way: identify V with [n], and for each x ∈ T add a
hyperedge e ⊆ [n] to E that contains exactly the coordinates that take the value 1 in x. Using this
correspondence, we can instead focus on constructing special subsets of Fn2 , and thereby leverage
the tools of linear algebra and coding theory.

To obtain our designs, we will need to explicitly construct a subset T ⊆ Fn2 such that (1) GT is
an (n, r, s)-design; and (2) GT has small independence number. We can make sure this happens via
the following two simple facts, which describe how these hypergraph properties can be identified
with properties of subsets in Fn2 .

Fact 3.3. For any subset T ⊆ Fn2 , the hypergraph GT is an (n, r, s)-design if and only if (i) every
x ∈ T has ∆(x) = r; and (ii) any two distinct x, y ∈ T have ∆(x, y) > 2(r − s).

Proof. The two conditions are sufficient because the first one guarantees that GT will be r-uniform,
and the second one guarantees that any two edges in GT intersect at < s points. They are both
necessary because if the first does not hold, GT will not be r-uniform, and if the first holds but the
second does not, then two edges will end up sharing ≥ s points.

Fact 3.4. For any subset T ⊆ Fn2 , the hypergraph GT has independence number α(GT ) < ` if and
only if every subcube A ⊆ Fn2 of dimension at least ` has at least one point in T .

Proof. If α(GT ) ≥ `, there is an independent set S ⊆ V = [n] of size at least `, and thus the
subcube A := span({ei}i∈S) of dimension ` has no points in T . If there is a subcube A ⊆ Fn2 of
dimension ` with no points in T , the set S ⊆ [n] indexing the standard basis vectors that span A
must have size ` and constitute an independent set in GT .

By Fact 3.3 and Fact 3.4, we see that the task of constructing an (n, r, s)-design G with small
independence number is equivalent to the task of constructing a subset T ⊆ Fn2 with the following
three properties:

1. T lies in the Hamming slice ∆r := {x ∈ Fn2 : ∆(x) = r},

2. Points in T have pairwise Hamming distance > 2(r − s), and

3. Any subcube of relatively small dimension intersects T .

In order to construct a set T ⊆ Fn2 with these three properties, we use connections to coding
theory and zero-sum problems. In particular, recall that an (n, k, d)-code is a subset Q ⊆ Fn2 of size
2k with the guarantee that any two distinct points x, y ∈ Q have Hamming distance ∆(x, y) ≥ d.
Thus, if we take any (n, k, d)-code Q ⊆ Fn2 with d > 2(r − s) and intersect it with the Hamming
slice ∆r, we obtain a set T = Q ∩∆r that enjoys properties (1) and (2). In order to endow it with
property (3), we will need to start with some code Q such that for any relatively large subcube S,
the set S ∩ T = S ∩ (Q ∩∆r) = (S ∩Q) ∩∆r is non-empty.

The trick here is to start with a linear code Q. A linear [n, k, d]-code Q ⊆ Fn2 is simply an
(n, k, d) code that is also a subspace. The condition (S∩Q)∩∆r 6= ∅ required for property (3) now
becomes more concrete: since Q is a subspace, S ∩Q is also a subspace, and thus we can make sure
it contains some vector of Hamming weight r as long as we can show that every large subspace
contains such a vector. In particular, defining Λr(n) to be the dimension of the largest subspace
R ⊆ Fn2 containing no vector of Hamming weight r, we prove the following lemma.
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Lemma 3.5. If Q ⊆ Fn2 is a linear [n, k, d]-code with d > 2(r − s), then the hypergraph GQ∩∆r is
an (n, r, s)-design with independence number α = α(GQ∩∆r) that obeys the following inequality:

α− Λr(α) ≤ n− k

Proof. It follows immediately from Fact 3.3 that GQ∩∆r is an (n, r, s)-design. By Fact 3.4, there
is a subcube A = span(ei1 , . . . , eiα) ⊆ Fn2 of dimension α that doesn’t intersect Q ∩ ∆r. Thus, if
we define A′ := A ∩ Q, then A′ contains no vector of Hamming weight r, and furthermore it has
dimension dim(A′) = dim(A∩Q) ≥ dim(A)+dim(Q)−n = α+k−n. Notice now that if we define
the projection π : Fn2 → Fα2 as the map (x1, . . . , xn) 7→ (xi1 , . . . , xiα), then the subset π(A′) is still a
subspace (albeit now of Fα2 ) of dimension dim(π(A′)) ≥ α+k−n containing no vector of Hamming
weight r. Thus, by definition of Λr, it must hold that α+ k − n ≤ dim(π(A′)) ≤ Λr(α).

In order to construct an (n, r, s)-design from Lemma 3.5 with the smallest possible independence
number α, we will want an explicit [n, k, d > 2(r−s)]-linear code with the largest possible dimension
k, along with a strong upper bound on Λr(n). We start with the latter.

Getting a good upper bound on Λr(n) is closely related to the theory of zero-sum problems. In
this field, one parameter of great interest is the (generalized) Erdős-Ginzburg-Ziv constant(s) of a
finite abelian group. Given n ≥ r ∈ N where r is even, this parameter is defined for Fn2 as the
smallest integer sr(n) such that any sequence of sr(n) values in Fn2 contains a subsequence of length
r that sums to zero. For our application, it will be more convenient to use an almost identical
parameter βr(n), defined as the size of the largest subset of Fn2 containing no r elements that sum
to zero. Using slightly different terminology, the relationship between βr(n) and Λr(n) was shown
in [Sid20]. We include it here, in our language, for completeness.

Lemma 3.6 ([Sid20]). For every n ≥ r ∈ N where r is even,

βr(n− Λr(n)) ≥ n.

Proof. Let R ⊆ Fn2 be a subspace of dimension k := Λr(n), and define d := n− k. Let v1, . . . , vd be
a basis for the orthogonal complement of R, and define the matrix M ∈ Fd×n2 so that its ith row is
vi. Notice that R contains exactly the solutions to Mx = 0, and thus R has a vector of Hamming
weight r if and only if there are r columns in M that sum to zero. By definition of Λr(n), we know
R has no such vector, and thus n ≤ βr(d) = βr(n− Λr(n)).

To get a good upper bound on Λr(n), we need a good upper bound on βr(n). In 2018, Sidorenko
provided a very strong bound of this type:

Theorem 3.7 ([Sid18], Theorem 4.4). There is a universal constant C > 0 such that for every
n, r ∈ N where r is even,

βr(n) ≤ C · r3 · 22n/r.

By plugging this bound into Lemma 3.6, we get the following corollary.

Corollary 3.8 ([Sid20]). There is a universal constant C > 0 such that for any n ≥ r ∈ N where
r is even, the largest subspace S ⊆ Fn2 with no vector of Hamming weight r has dimension

Λr(n) ≤ n− (r log n− 3r log r − r logC)/2.

We are finally ready to prove our main design lemma, which reduces the problem of constructing
(n, r, s)-designs with small independence number to constructing high-dimensional linear codes.
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Lemma 3.9 (Main design lemma). There is a universal constant C > 0 such that for every
n ≥ r ≥ s with r even, if Q ⊆ Fn2 is a linear [n, k, d]-code with d > 2(r − s), then GQ∩∆r is an
(n, r, s)-design with independence number

α(GQ∩∆r) ≤ C · r3 · 22(n−k)/r.

Proof. Simply plug the bound on Λr(α) from Corollary 3.8 into Lemma 3.5.

To complete the proof of Theorem 3.1, we now just need to explicitly construct a linear code
with very high dimension. In 1959-1960, Bose, Ray-Chaudhuri [BRC60], and Hocquenghem [Hoc59]
explicitly constructed codes of exactly this type (see [GB10] for a great exposition of these codes,
which are known as BCH codes). In particular, they proved the following theorem.

Theorem 3.10 ([BRC60, Hoc59]). For every m, t ∈ N, there exists an [n, k, d]-linear code
BCHm,t ⊆ Fn2 with block length n = 2m − 1, dimension k ≥ n − mt, and distance d > 2t.
Furthermore, there exists an Algorithm B that given any m, t ∈ N and x ∈ Fn2 as input, checks if
x ∈ BCHm,t in poly(n) time.

By instantiating Lemma 3.9 with Theorem 3.10, we can finally prove Theorem 3.1.

Proof of Theorem 3.1. We start by assuming that n = 2m − 1 for some m ∈ N. Then, we let
t = r − s, and use Theorem 3.10 to define the [n, k, d]-linear code Q := BCHm,t ⊆ Fn2 , where
k ≥ n −mt = n −m(r − s) and d > 2t = 2(r − s). By Lemma 3.9, we know that GQ∩∆r is an
(n, r, s)-design with independence number

α(GQ∩∆r) ≤ C · r3 · 22(n−k)/r ≤ C · r3 · 22mt/r = C · r3 · (2m)2(r−s)/r ≤ 2C · r3 · n2(r−s)/r.

Note that GQ∩∆r can be constructed in poly(
(
n
r

)
) time if Q ∩∆r can be constructed in poly(

(
n
r

)
)

time, and this can be done by simply checking (and appropriately including) whether each of the(
n
r

)
elements in ∆r belong to Q, using Algorithm B from Theorem 3.10.
If n is of the form 2m, we can follow the previous procedure to draw hyperedges around the

first n − 1 vertices, and then add one more isolated vertex (contained in no edges) at the end to
finish the hypergraph. Clearly we will still have α(GQ∩∆r) ≤ 3C · r3 · n2(r−s)/r.

If n is not of the form 2m− 1 nor 2m, then it can be written as a sum x020 + · · ·+ xd2
d over N,

where d = dlog ne and each xi ∈ {0, 1}. We can then follow the most recent procedure to construct
a graph Gi over 2i vertices separately for each nonzero xi. The final graph G =

⋃
iGi is clearly

still an (n, r, s)-design, and it has independence number

α(G) =
∑
i:xi=1

α(Gi) ≤
∑

0≤i≤dlogne

3C · r3 · (2i)2(r−s)/r = 3C · r3
∑

0≤i≤dlogne

(2i)2(r−s)/r

= 3C · r3 · (2dlogne+1)2(r−s)/r − 1

22(r−s)/r − 1
.

It is straightforward to verify that for a large enough universal constant C ′, the above fraction is
bounded above by C ′ · r · n2(r−s)/r, which completes the proof.

4 Extractors for adversarial sources via designs and LREs

In this section, we will show how to combine our designs from Section 3 with a very recent object,
known as a leakage-resilient extractor (LRE), in order to obtain improved extractors for 0-local
adversarial sources (as defined by Definition 1.3). We will prove our second main theorem:
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Theorem 4.1 (Theorem 2, restated). There is a universal constant C > 0 such that for any fixed
δ > 0 and all sufficiently large N,K, n, k ∈ N satisfying k ≥ logC n and K ≥ N δ, there exists an
explicit extractor Ext : ({0, 1}n)N → {0, 1}m for (N,K, n, k)-adversarial sources of locality 0, with

output length m = kΩ(1) and error ε = 2−k
Ω(1)

.

Previously, the best explicit extractor for this setting was constructed by Chattopadhyay et
al. [CGGL20], and required K ≥ N0.5+o(1) good sources. On the other hand, it is easy to give a
non-explicit extractor that requires justK ≥ 2 good sources.4 Thus, while our explicit constructions
greatly improve the state-of-art (and most notably break the “

√
N barrier”), there is still a lot of

room for improvement. Further improvement, however, will require significantly new techniques.
Our construction leverages the “activation vs. fragile correlation” paradigm introduced in

[CGGL20] for extracting from adversarial sources. This paradigm was first introduced in an at-
tempt to construct a low-error extractor for (N,K, n, k)-adversarial sources of locality 0, given just
k ≥ polylog n entropy and as a few good sources, K, as possible. Since there exists a three-source
extractor Ext0 for k0 ≥ polylog n entropy and exponentially small error [Li15], a natural idea is to
somehow employ this object as a subroutine. Using this idea, [CGGL20] proposed an extractor for
adversarial sources that works as follows. Given as input an adversarial source X = (X1, . . . ,XN ),
the extractor carefully selecting triples of sources, calls Ext0 over each triple, and XORs the re-
sults. [CGGL20] argued that this procedure outputs uniform bits as long as the following two
properties hold:

1. Activation: some Ext0 call is activated, i.e., only given good sources as input.

2. Fragile correlation: fixing the (XOR of the) output of all other Ext0 calls does not affect
the output of the activated Ext0 call (with high probability).

It is not hard to see why these conditions suffice: activation guarantees that some Ext0 call
outputs uniform bits, while fragile correlation guarantees that these uniform bits will be propa-
gated through to the overall output of the extractor (by Fact 2.1 and Fact 2.2). Thus, the main
challenge considered in [CGGL20] is determining how to select triples such that activation and
fragile correlation are guaranteed.

The key idea in [CGGL20] is to select triples using the hyperedges of a 3-uniform hypergraph,
G = (V,E). Then, we know that activation is guaranteed as long as the good sources cover some
hyperedge e ∈ E, which is guaranteed to happen whenever K > α(G). In order to ensure fragile
correlation, [CGGL20] observed that it suffices to require that G = (V,E) is a partial Steiner triple
system, also known as an (N, 3, 2)-design. Such a hypergraph guarantees that each Ext0 call shares
at most one source with the activated Ext0 call. Thus, if we start by fixing all sources that are not
inputs to the activated Ext0 call, it is then easy to fix the outputs of all other Ext0 calls without
introducing correlation between the inputs to the activated call. Furthermore, by Lemma 2.3, we
can show that this process barely decreases the entropy of the inputs to the activated call, and thus
its output remains uniform.

We have shown that the construction above provides a low-error extractor for (N,K, n, k)-
adversarial sources of locality 0, where k ≥ polylog n and K > α(G). Thus, the goal becomes to
explicitly construct an (N, 3, 2)-design G = (V,E) with small independence number. Chattopad-
hyay et al. [CGGL20] construct such an object with α(G) < N0.923, and thus gave an explicit
extractor when there are K ≥ N0.923 good sources. In order to improve this requirement on K, it

4This extractor calls an optimal two-source extractor over every pair of sources in the adversarial source, and takes
the XOR of the results [CL16]. To see why this works, we refer the reader to a similar proof sketch for a slightly
more involved construction, provided in the following paragraphs.
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is natural to try to construct an (N, 3, 2)-design with smaller independence number. However, this
seems difficult, and furthermore the tightness of Theorem 1.1 implies that this technique cannot
possibly give an extractor that requires fewer than K ≥ N0.5+o(1) good sources.

Chattopadhyay et al. [CGGL20] take a different approach. They observed that the above extrac-
tor, based on (N, 3, 2)-designs, worked for the following primary reason: if a three-source extractor
outputs uniform bits on input X1,X2,X3, then the output still looks uniform even conditioned on
the output of several functions, each acting on just one of X1,X2,X3. They suggested that if one
could construct a three-source extractor with stronger conditioning properties, then perhaps they
could start with a 3-uniform hypergraph from a more general class H than (N, 3, 2)-designs. The
advantage behind such an approach is that it could be easier to explicitly construct a hypergraph
from H with small independence number, and thereby improve the requirement on K.

By applying a strong two-source condenser from [BACDTS19], Chattopadhyay et al. [CGGL20]
explicitly construct more robust three-source (and multi-source) extractors with stronger condi-
tioning properties. By combining these objects with various types of explicit hypergraphs, they
successfully reduce the requirement on good sources from K ≥ N0.923 to K ≥ N0.5+o(1). Unfor-
tunately, however, the conditioning properties of their robust subroutine extractors are extremely
specific, and as a result they can only be combined with very specialized types of hypergraphs.
These hypergraphs offer no clean generalization of (N, 3, 2)-designs, and furthermore they appear
to be too specialized to offer any further improvement on K (and, in particular, break the “

√
N

barrier”).
If one hopes to significantly improve K, it appears that one would need a multi-source extractor

with even stronger conditioning properties to use as a subroutine. Recently, exactly such an object
was defined in [CGG+20], and is known as a leakage-resilient extractor (LRE). LREs are very
general objects with extremely strong conditioning properties. The exact variant that will be
useful here is actually a specialization known as extractors for cylinder intersections, first introduced
in [KMS19]. Informally, we define an (r, s)-leakage-resilient extractor to be an r-source extractor
LRE that outputs bits that look uniform, even conditioned on the output of several functions that
each act on fewer than s of the inputs to LRE. Formally, it is defined as follows.

Definition 4.2 ([KMS19, CGG+20]). A function LRE : ({0, 1}n)r → {0, 1}m is an (r, s)-leakage-
resilient extractor for entropy k and error ε if the following holds. Let X := (X1, . . . ,Xr) be any
r independent (n, k) sources, let T :=

(
[N ]
s−1

)
, and let L := {LeakT : ({0, 1}n)s−1 → {0, 1}m}T∈T be

any collection of functions. Then:

|LRE(X) ◦ (LeakS(XS))S∈S −Um ◦ (LeakS(XS))S∈S | ≤ ε.

Given such a robust extractor, it is now easy to generalize the original extractor of [CGGL20] in
a clean, natural way: instead of calling a three-source extractor over the hyperedges of an (N, 3, 2)-
design and XORing the results, we call an (r, s)-leakage-resilient extractor over the hyperedges
of an (N, r, s)-design and XOR the results. Once again, we can ensure activation as long as the
number of good sources, K, exceeds the independence number of the design. On the other hand,
instead of using Lemma 2.3 to ensure fragile correlation, we simply use the leakage-resilience of our
leakage-resilient extractor: to see why this works, simply observe that an (N, r, s)-design guarantees
that the intersection of two hyperedges has size < s, while a leakage-resilient extractor guarantees
to output uniform bits even conditioned on several leaks that each act on < s of its inputs.

Formally, we prove the following lemma, which provides a framework for combining leakage-
resilient extractors with general designs in order to extract from adversarial sources.
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Lemma 4.3. Let G = ([N ], E) be an (N, r, s)-design with independence number α, and let Ext0 :
({0, 1}n)r → {0, 1}m be an (r, s)-leakage resilient extractor for entropy k0 with error ε0. Then for
any K > α and k ≥ k0, the function ExtG : ({0, 1}n)N → {0, 1}m defined as

ExtG(X) :=
⊕

e∈E(G)

Ext0(Xe)

is an extractor for (N,K, n, k) adversarial sources of locality 0 with error ε = ε0.

Proof. Let X be an (N,K, n, k) adversarial source. We must show that |ExtG(X) − Um| ≤ ε.
Because K > α, there is some e∗ ∈ E containing only good sources, i.e., Xi has entropy at least
k for each i ∈ e∗. Without loss of generality, we assume e∗ = [r]. We now fix all other sources
Z1 = (Xj)j /∈e∗ , using Fact 2.2:

|ExtG(X)−Um| ≤ Ez1∼Z1 [|(ExtG(X) | Z1 = z1)−Um|].

Consider any z1 = (xj)j /∈e∗ . For each e ∈ E(G), we define the restriction Exte0 : ({0, 1}n)|e∩e
∗| →

{0, 1}m as Exte0(Y1, . . . , Y|e∩e∗|) = Ext0(Y1, . . . , Y|e∩e∗|, (xj)j∈e\e∗), so that we may write

(ExtG(X) | Z = z1) =
⊕

e∈E(G)

Exte0(Xe∩e∗) = Ext0(Xe∗)⊕
⊕

e∈E(G)\{e∗}

Exte0(Xe∩e∗).

Because G is an (N, r, s)-design, any two edges share at most s − 1 vertices. Thus, we may
partition E(G) \ {e∗} into

(
r
s−1

)
sets, depending on the intersection behavior of each edge with e∗.

In particular, for each S ∈
(
e∗

s−1

)
, we define:

WS := {e ∈ E : e ∩ e∗ ⊆ S}.

If any e ∈ E ends up in more than oneWS , we simply remove it from all but one of these sets. Now,
for each S ∈

(
e∗

s−1

)
, we define LeakS : ({0, 1}n)s−1 → {0, 1}m such that for any X ∈ ({0, 1}n)N ,

LeakS(XS) =
⊕

e∈WS
Exte0(Xe∩e∗), which is a valid definition because e ∩ e∗ is always in S, by

definition of WS . We may now write

(ExtG(X) | Z1 = z1) = Ext0(Xe∗)⊕
⊕

S∈( e
∗

s−1)

LeakS(XS). (2)

To bound the distance of this random variable from uniform, we now define the second random
variable we will fix, Z2 := (LeakS(XS))

S∈( e
∗

s−1)
. Fixing this random variable, we have:

|(ExtG(X) | Z1 = z1)−Um| ≤ Ez2∼Z2 [|(ExtG(X) | Z1 = z1,Z2 = z2)−Um|]
= Ez2∼Z2 [|(Ext0(Xe∗) | Z2 = z2)−Um|]
= |Ext0(Xe∗) ◦ Z2 −Um ◦ Z2|,

where the first and last (in)equalities follow easily from the definition of statistical distance, and
the second (in)equality follows from Equation (2) and the fact that adding a constant to a random
variable doesn’t change its distance from uniform. But notice that by definition of Z2 and the
leakage-resilience of Ext0, this quantity is bounded above by ε0, which completes the proof.
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In order to highlight the generality of this framework, we observe that by Lemma 2.3, a standard
three-source extractor is, in fact, a (3, 2)-leakage-resilient extractor (up to some negligible loss in
parameters). Thus, by instantiating Lemma 4.3 with r = 3, s = 2, we recover the original extractor
and analysis of [CGGL20]. Even better, since Theorem 1.1 tells us that the independence number
α of an (N, r, s)-design decreases quickly as r, s grow large together, we see that Lemma 4.3 offers
a concrete way to construct extractors for adversarial sources with much fewer good sources, K.

If we want to realize the above plan, we need two explicit objects. First, we need explicit
(N, r, s)-designs with independence numbers that decrease quickly as r, s grow together. Theorem 1
of the current paper gives exactly this, and in fact the independence numbers of our designs decrease
with r, s almost as quickly as possible, as shown by the tightness of Theorem 1.1.

Second, we need explicit leakage-resilient extractors for polylogarithmic entropy that have ex-
ponentially small error. Very recently, these exact objects were constructed:

Theorem 4.4 ([CGG+20]). There is a universal constant C > 0 such that for any sufficiently
large constant r ∈ N and all n, k ∈ N satisfying k ≥ logC n, there exists an explicit (r, r−1)-leakage
resilient extractor Ext : ({0, 1}n)r → {0, 1}m for min-entropy k with output length m = kΩ(1) and

error ε = 2−k
Ω(1)

.

By combining these explicit LREs with our explicit designs, we can finally prove Theorem 4.1,
which significantly improves the adversarial source extractors of [CGGL20].

Proof of Theorem 4.1. Let C be the same universal constant from Theorem 4.4, and let r ∈ N
be a sufficiently large (even) constant such that 2/r < δ, and such that Theorem 4.4 guarantees
the existence of an explicit (r, r − 1)-leakage resilient extractor Ext0 : ({0, 1}n)r → {0, 1}m for

min-entropy k ≥ logC n with output length m = kΩ(1) and error ε = 2−k
Ω(1)

. For sufficiently large
N ∈ N, Theorem 1 guarantees the existence of an (N, r, r− 1)-design G with independence number
α < N δ that is computable in poly(

(
N
r

)
) = poly(N) time. The result now follows by instantiating

Lemma 4.3 with Ext0 and G.

5 Extractors for small-space sources via adversarial sources

In this section, we will show how to use our extractors from Section 4 to obtain better extractors
for small-space sources (as defined by Definition 1.4). We will prove our third main theorem:

Theorem 5.1 (Theorem 3, restated). For any fixed δ ∈ (0, 1/2] there is a constant C > 0 such that
for all n, k, s ∈ N satisfying k ≥ Cn1/2+δs1/2−δ, there exists an explicit extractor Ext : {0, 1}n →
{0, 1}m for space s sources of min-entropy k, with output length m = nΩ(1) and error ε = 2−n

Ω(1)
.

Until very recently, the best explicit extractor for this setting [KRVZ06] required entropy k ≥
Cn1−γsγ , where γ > 0 is a tiny constant and C is a large one. In [CGGL20], this requirement
was significantly improved to k ≥ Cn2/3+δs1/3−δ, for an arbitrarily small constant δ > 0, and the
current paper (Theorem 5.1) further improves this to k ≥ Cn1/2+δs1/2−δ. We note that this line of
improvements is strict in terms of both entropy and space, via the following remark.

Remark 5.2. For all s = s(n), the requirement k ≥ Cn1−εsε strictly decreases as ε grows. This is
because the requirement is trivial whenever s ≥ n; we may therefore assume s < n, and so shifting
the weight of the cumulative power from n to s strictly improves the requirement.

Non-constructively, it is known [KRVZ06] that there exist extractors for space s sources of
min-entropy k ≥ O(s + log n) that have error ε = 2−Ω(k). Furthermore, in the large-error setting,
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Chattopadhyay and Li [CL16] constructed an extractor for small-space sources that requires just
k ≥ no(1) entropy, but has error ε = n−Ω(1). Thus, while Theorem 5.1 significantly improves
the state-of-art in low-error extraction, there is still a lot of room for improvement. However, we
note (in Remark 5.7) that any substantial improvements to our low-error extractors will require
significantly new techniques.

We now proceed to prove Theorem 5.1. The techniques that follow, which will reduce the task
of extracting from small space sources to the task of extracting from adversarial sources, are just
slightly optimized versions of the exact arguments that appear in [CGGL20]. However, we include
them here for completeness.

The first step is to reduce small-space sources to a class of sources known as total entropy
sources, defined as follows.

Definition 5.3. A random variable X over ({0, 1}`)r is an (r, `, k)-total entropy source if X =
(X1,X2, . . . ,Xr), where each Xi is an independent source over {0, 1}`, and

∑
i∈[r]H∞(Xi) ≥ k.

In [KRVZ06], Kamp et al. showed that upon fixing a few positions in the random walk that
generates a small space source X, it is straightforward to use Lemma 2.3 to show that X becomes
a total-entropy source, with high probability. We include the proof for completeness.

Lemma 5.4 ([KRVZ06]). Let X be a space s source over {0, 1}n with min-entropy k. Then for any
α ∈ (0, 1/4] such that r = αk/s and ` = ns/(αk) are positive integers, it holds that X is 2−k/4-close
to a convex combination of (r, `, k/2)-total entropy sources.

Proof. For each i ∈ [n], let Wi ∼ {0, 1}s be the random variable denoting the state reached in layer i
of the branching program in the random walk that generates X. Observe that fixing any Wi breaks
X into two independent sources. More generally, observe that if we define W∗ := (Wi`+1)i∈[0,r−1],
then if we condition X on any fixing of W∗, it must hold that X becomes an (r, `,Γ)-total entropy
source, for some Γ. Furthermore, by Lemma 2.3, we know

Pr
w∼W∗

[H∞(X |W∗ = w) ≥ k − rs− k/4 = k − αk − k/4 ≥ k/2] ≥ 1− 2−k/4. (3)

Thus, the random variable (X |W∗ = w) is an (r, `, k/2)-total entropy source with probability at
least 1− 2−k/4 over w ∼W∗, which completes the proof.

The next step is to show that a total-entropy source looks like an adversarial source of locality
0, using a standard Markov-type argument:

Lemma 5.5. Let X be an (r, `,Γ)-total entropy source. Then for any N,K, n, k ∈ N with Nn =
r` and n a multiple of `, X is also an (N,K, n, k)-adversarial source of locality 0, as long as
Kn+Nk ≤ Γ.

Proof. By definition of total-entropy source, X = (X1, . . . ,Xr), where each Xi is an independent
source over {0, 1}`. By collecting the sources Xi into N buckets containing n/` sources each, we see
that X is also an (N,n,Γ)-total entropy source, and may be rewritten as X = (X1, . . . ,XN ), where
each Xi is an independent source over {0, 1}n. If X were not an (N,K, n, k)-adversarial source
of locality 0, then the K − 1 highest entropy sources in X each have entropy at most n, and the
remaining each have entropy < k. This yields H∞(X) = Γ < (K−1)n+(N−(K−1))k < Kn+Nk,
contradicting the given lower bound on Γ.

Given the above reduction, we can now use our improved adversarial source extractors (from
Theorem 2) to give improved extractors for total-entropy sources.
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Theorem 5.6. For any fixed δ > 0 and all sufficiently large r, `,Γ ∈ N with Γ ≥
max

{
(r`)1/2+δ, rδ`

}
, there exists an explicit extractor Ext : ({0, 1}`)r → {0, 1}m for (r, `,Γ)-total

entropy sources, with output length m = (r`)Ω(1) and error ε = 2−(r`)Ω(1)
.

Proof. Fix any N,n ∈ N such that Nn = r` and n is a multiple of `. By Lemma 5.5, every (r, `,Γ)-
total entropy source is also an (N,K, n, k)-adversarial source of locality 0, provided Kn+Nk ≤ Γ.
Thus, by Theorem 2, for any fixed δ0 > 0 there exists an explicit extractor Ext0 : ({0, 1}r)` →
{0, 1}m for (r, `,Γ)-total entropy sources with output length m = nΩ(1) and error ε = 2−n

Ω(1)
,

provided N δ0n + Nnδ0 ≤ Γ and N,n are sufficiently large. To achieve the parameters claimed in
the theorem statement, pick δ0 = δ/2 and set N,n as follows: (i) if r ≥ `, set N = n =

√
r`; (ii)

if r < `, set N = r and n = `. We conclude by remarking that this casework was motivated by
trying to minimize the requirement on Γ by setting N = n. This is not possible in case (ii), but is
possible in case (i) by assuming, without loss of generality, that r = x2` for some x ∈ N.

Previously, the best low-error explicit extractors for total-entropy sources [CGGL20] required
entropy Γ ≥ max{(r`)2/3+δ, r1/2+δ`}. Non-constructively, we know it is possible [KRVZ06] to
achieve an entropy requirement of Γ ≥ O(` + log r) and error of 2−Ω(Γ). Thus, while there is still
a lot of room to give improved explicit extractors for total-entropy sources, we remark that the
entropy requirement in Theorem 5.6 is, in fact, not far from optimal when `� r.

Finally, we show how to combine our improved explicit extractors for total-entropy sources
(Theorem 5.6) with the standard reduction from small-space sources to total-entropy sources
(Lemma 5.4) to complete the proof of Theorem 5.1:

Proof of Theorem 5.1. Fix any δ ∈ (0, 1/2], and let α ∈ (0, 1/4] be a sufficiently small constant
and C > 0 a sufficiently large constant. Given a space s source X over {0, 1}n with entropy
k ≥ Cn1/2+δs1/2−δ, we know by Lemma 5.4 that X is ε0 = 2−k/4-close to a convex combination
of (r, `, k/2)-total entropy sources, where r = αk/s and ` = ns/(αk). (Here we assume r, ` ∈ N,
but it is easy to extend the argument when this is not the case.) In particular, this means there is
some random variable Y such that with probability at least 1− ε0 over y ∼ Y, the random variable
(X | Y = y) is an (r, `, k/2)-total entropy source.

Let Ext0 : ({0, 1}`)r → {0, 1}m be the extractor from Theorem 5.6 for such total-entropy sources.
We will argue that it also an extractor for the small-space source X. Notice we have |Ext0(X) −
Um| ≤ Ey∼Y[|Ext0(X | Y = y) −Um|] ≤ ε0 + |Ext0(X′) −Um|, where X′ is some (r, `, k/2)-total
entropy source. If we can argue that r, `, k/2 are sufficiently large and k/2 ≥ max{(r`)1/2+δ, rδ`},
then Theorem 5.6 tells us that |Ext0(X)−Um| ≤ ε0 + |Ext0(X′)−Um| ≤ 2−k/4 +2−(r`)Ω(1)

= 2−n
Ω(1)

and m = (r`)Ω(1) = nΩ(1), which would prove the current theorem. We know that r, `, k/2 are
sufficiently large because r = αk/s ≥ αC(n/s)1/2+δ ≥ αC, and ` = ns/(αk) ≥ 1/α, and k ≥ C,
where α is sufficiently small and C is sufficiently large. Next, we know k/2 ≥ (r`)1/2+δ = n1/2+δ

by the provided lower bound on k. Finally, to show k/2 ≥ rδ` = (αk/s)δns/(αk), rearrange
the inequality to obtain k2−δ ≥ 2αδ−1s1−δn, plug in the provided lower bound on k to obtain
(Cn1/2+δs1/2−δ)2−δ ≥ 2αδ−1s1−δn, and observe that it therefore suffices to show (0.5C2−δα1−δ) ·
n(1/2+δ)(2−δ)−1 ≥ s1−δ−(2−δ)(1/2−δ), or rather

(0.5C2−δα1−δ) · n2δ−δ/2−δ2 ≥ s2δ−δ/2−δ2
.

This holds because n ≥ s (otherwise the provided lower bound on k gives k > n), because 2δ −
δ/2− δ2 ≥ 0 over δ ∈ (0, 1/2], and because C is sufficiently large.

We conclude this section with a remark about the
√
n “barrier” in small-space extraction.
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Remark 5.7. Any significant improvement to our extractors for small-space sources, presented in
Theorem 5.1, would require significantly new techniques. In particular, if one wishes to construct
extractors that can handle min-entropy k ≥

√
n, it is not possible to use the standard reduction from

small-space sources to total-entropy sources appearing in the proof to Lemma 5.5. This is because
if k =

√
n, then either ` >

√
n, or not. If ` >

√
n, then all the entropy could lie in one chunk of

length ` > k, and it is impossible to extract from one source. If ` ≤
√
n, then r ≥

√
n, and the

application of Lemma 2.3 in Equation (3) always leaves the source (X |W∗ = w) with 0 entropy,
from which extraction is impossible.

6 Future directions

In this paper, we give the first derandomization of Rödl and Šinajová’s probabilistic designs [RŠ94],
and show how they can be used to get better extractors for adversarial sources, total-entropy
sources, and small-space sources. The three most natural open problems are as follows, which ask
for improvements on each of our three main theorems Theorems 1 to 3, respectively.

Problem 1. Better explicit designs: improve the constant in the power of n of Theorem 1 from 2
to 1.99. Alternatively, extend Theorem 1 to also work when r is odd.

Problem 2. Better extractors for adversarial sources: improve the requirement on good sources in
Theorem 2 from K ≥ N δ to K ≥ No(1), or even K ≥ polylogN .

Problem 3. Better extractors for small-space sources: improve the requirement on min-entropy in
Theorem 3 from k ≥ n1/2+δ to k ≥ n0.499.

An answer to Problem 1 would provide explicit designs for regimes in which we currently only
have trivial bounds (i.e., when r is odd or r ≥ 2s), while an answer to Problem 2 would likely require
extractors that have stronger conditioning properties than even our best leakage-resilient extractors.
Finally, an answer to Problem 3 might require an idea that bypasses a reduction to total-entropy
sources, as explained in Remark 5.7. In general, any significant progress on these problems should
require significantly new techniques, which would be interesting in their own right.
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