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Abstract

We show that testing Hamiltonicity in the bounded-degree graph model requires a linear
number of queries. This refers to both the path and the cycle versions of the problem, and
similar results hold also for the directed analogues. In addition, we present an alternative proof
for the known fact that testing Independent Set Size (in this model) requires a linear number
of queries.
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1 Introduction

Property testing refers to probabilistic algorithms of sub-linear complexity for deciding whether a
given object has a predetermined property or is far from any object having this property. Such
algorithms, called testers, obtain local views of the object by performing queries and their perfor-
mance guarantees are stated with respect to a distance measure that (combined with a distance
parameter) determines which objects are considered far from the property.

In the last couple of decades, the area of property testing has attracted significant attention (see,
e.g., [G17]). Much of this attention was devoted to testing graph properties in a variety of models
including the dense graph model [GGR], and the bounded-degree graph model [GR02] (surveyed
in [G17, Chap. 8] and [G17, Chap. 9], resp.). The current work refers to the bounded-degree model,
in which graphs are represented by their incidence function and distances are measured as the ratio
of the number of differing incidences over the maximal number of edges.

Specifically, for a degree bound d ∈ N, we represent a graph G = ([n], E) of maximum degree
d by the incidence function g : [n] × [d] → [n] ∪ {0} such that g(v, i) indicates the ith neighbor of
v (where g(v, i) = 0 indicates that v has less than i neighbors). The distance between the graphs
G = ([n], E) and G′ = ([n], E′) is defined as the symmetric difference between E and E′ over dn/2,
and oracle access to a graph means oracle access to its incidence function.
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Definition 1 (testing graph properties in the bounded-degree graph model): For a fixed degree
bound d, a tester for a graph property Π is a probabilistic oracle machine that, on input parameters
n and ε, and oracle access to an n-vertex graph G = ([n], E) of maximum degree d, outputs a binary
verdict that satisfies the following two conditions.

1. If G ∈ Π, then the tester accepts with probability at least 2/3.

2. If G is ε-far from Π, then the tester accepts with probability at most 1/3, where G is ε-far
from Π if for every n-vertex graph G′ = ([n], E′) ∈ Π of maximum degree d it holds that the
symmetric difference between E and E′ has cardinality that is greater than ε · dn/2.

(Throughout this work, we consider undirected simple graphs (i.e., no self-loops and parallel edges).)
The query complexity of a tester for Π is a function (of the parameters d, n and ε) that represents

the number of queries made by the tester on the worst-case n-vertex graph of maximum degree d,
when given the proximity parameter ε. Fixing d, we typically ignore its effect on the complexity
(equiv., treat d as a hidden constant). Also, when stating that the query complexity is Ω(n), we
mean that this bound holds for all sufficiently small ε > 0; that is, there exists a constant ε0 > 0
such that distinguishing between n-vertex graphs in Π and n-vertex graphs that are ε0-far from Π
requires Ω(n) queries.

For many natural graph properties, the query complexity of testing them in the bounded-degree
model is known (see [G17, Sec. 9.6]). In particular, the complexity of testing Connectivity, Eulerian,
Degree-Regularity, Subgraph-Freeness, and Minor-Freeness is poly(1/ε), the complexity of testing
Bipartiteness and Expansion is Θ(

√
n) ·poly(1/ε), and the complexity of testing 3-Colorability and

Independent Set Size is Θ(n). One property that is conspicuously missing from the foregoing list
is Hamiltonicity.

Contents of this work. The main result presented in this work is that the query complexity
of testing Hamiltonicity in the bounded-degree graph model is Θ(n). This refers both to the path
and to the cycle versions, and analogous results hold also for the directed analogues. In addition,
we present a full proof of the same lower bound for testing Independent Set Size (ISS), which was
sketched in [BOT]. (Indeed, since our focus is on these lower bounds, we are using the more liberal
definition of testing with two-sided error probability.)

The technique. Both our proofs (i.e., for Hamiltonian and ISS) use (local and gap-preserving)
reductions from testing problems that are known to require linear query complexity. The reductions
we use are the standard (polynomial-time) reductions that are employed in demonstrating the NP-
completeness of these sets. The same holds for the lower bound for 3-Colorability presented by
Bogdanov, Obata, and Trevisan [BOT]. In all cases, one needs to verify the following facts:

1. The reduction generates graphs of bounded maximum degree.

This feature is often verified explicitly in the context of proving NP-completeness results,
when the aim is establishing that hardness also holds for graphs of bounded degree.

2. The reduction is local in the sense that each incidence query to the generated graph can be
answered by making few queries to the original instance (e.g., few incidence queries in the
case that the original instance is also a graph).
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This feature is an expected consequence of the fact that the original reductions use simple
gadgets that are connected in simple ways. Still this feature must be verified, since things
that look simple are not necessarily local.

3. The reduction is gap-preserving; that is, object that are far from the original set are mapped
to graphs that are far from the property.

This issue also arises in the context of demonstrating the NP-hardness of approximation prob-
lems, but the gaps being preserved may be different (see [PY88] versus [GGR, Sec. 1.2.4.3]). In
some cases, the standard reductions are gap-preserving, but in other cases some modifications
are required (see, e.g., [PY88, P94]).

Specifically, we establish the query complexity lower bound for testing Hamiltonicity by reducing
from a bounded version of Max-3SAT, for which a linear query complexity lower bound was es-
tablished in [BOT]. The analogous result for ISS is obtained by reducing from 3-Colorability. (In
contrast, the lower bound for testing ISS is claimed in [BOT] by referring to a reduction from a
bounded version of Max-3LIN (going via Max-3SAT).)

Computational complexity versus property testing. The foregoing results and the way in
which the lower bounds are proved beg the conjecture that any NP-complete problem regarding
bounded-degree graphs is hard to test in the bounded-degree graph model. This is obviously wrong.

Consider, for example, the artificial problem of testing whether an n-vertex graph has a simple
path of length

√
n. Although this set of bounded-degree graphs is NP-complete, it is almost

trivial to test it in the bounded-degree graph model: Specifically, if ε ≥ 2/
√
n, then we accept

(without making any query), and otherwise (i.e., ε < 2/
√
n) we recover the entire graph (by

making O(n) = O(1/ε2) queries) and decide accordingly. The point is that any n-vertex graph is√
n

dn/2 -close to having a path of length
√
n, where d ≥ 1 is the degree bound.

Alternatively, consider the set consisting of all bounded-degree graphs that are either Hamil-
tonian or contain an isolated vertex. Although this set is NP-complete, via a standard reduction
that has an image that contains only connected graphs, it is almost trivial to test this set in the
bounded-degree graph model (since any n-vertex graph is d

dn/2 -close to this set).
In contrast, we observe that there exists sets of bounded-degree graphs that are recognizable in

polynomial-time and yet are extremely hard to test in the bounded-degree graph model. This follows
from the fact that the local reduction from testing 3LIN (mod 2) to testing 3-Colorability used by
Bogdanov, Obata, and Trevisan [BOT] is invertible in polynomial-time (which is a common feature
of reductions used in the context of NP-completeness proofs).1 Indeed, their reduction actually
demonstrates that the set of (3-colorable) graphs that are obtained by applying this reduction to
satisfiable 3LIN (mod 2) instances is hard to test (i.e., requires linear query complexity in the
bounded-degree graph model).2

We seize this opportunity to call attention to a celebrated computational problem whose test-
ing complexity (in the bounded-degree graph model) is not fully understood: We refer to Graph

1Of course, 3LIN (i.e., the satisfiability of linear equations (with three varaiables each) over GF(2)) is easily
solvable in polynomial-time. Nevertheless, Bogdanov et al. [BOT] use a reduction of 3LIN to 3-Colorability (via
3SAT) that originates in the theory of NP-completeness in order to reduce between the testing problems.

2Like almost all reductions of this type, the analysis of the reduction actually refers to the promise problem
induced by the image of the reduction (i.e., the image of both the yes- and no-instances).
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Isomorphism, which is polynomial-time solvable for graphs of bounded-degree [L82]. As for testing
Graph Isomorphism in the bounded-degree graph model, the following is known [G19].

1. The query complexity of testing isomorphism to a fixed n-vertex graph is Ω̃(n1/2).

2. The query complexity of testing isomorphism between two n-vertex graphs is Ω̃(n2/3).

The lower bounds are shown by using graphs that have connected components of size poly(log n),
and in this case the lower bounds are tight [G19].

2 Testing Hamiltonicity

We first show that the directed version of the problem is extremely hard to test, where we refer to a
bounded-degree model for directed graphs in which one can query both for outgoing and incoming
edges (see [BR02] or [G17, Sec. 9.7.2]). Specifically, a directed graph G = ([n], E) of degree bound
d is represented by the incidence functions gout, gin : [n] × [d] → [n] ∪ {0} such that gout(v, i)
(resp., gin(v, i)) indicates the vertex incident at the ith outgoing (resp., incoming) edge of v (where
gout(v, i) = 0 (resp., gin(v, i) = 0) indicates that v has less than i outgoing (resp., incoming) edges).

Theorem 2 (testing directed Hamiltonicity is extremely hard): Let DH be the set of directed
graphs having a directed Hamiltonian path. For every constant d ≥ 3, testing DH in the foregoing
bounded-degree model (with degree bound d) requires a linear number of queries.

Proof: We use a (local gap-preserving) reduction from the problem of distinguishing between
satisfiable 3CNF formulae and 3CNF formulae that are far from being satisfied in the sense that
any assignment to their variables violates many of their clauses. Specifically, our starting point is
the following result of Bogdanov, Obata, and Trevisan [BOT].

Claim 2.1 (implicit in [BOT, Sec. 6]): Suppose that 3CNF formulae with n variables and m
clauses are represented by functions L : [m]× [3]→ [n]× {±1} such that L(i, j) = (k, σ) if the jth

literal in the ith clause is an occurrence of the variable xk and the sign of this literal is σ. Then,
for some universal constant c, distinguishing between the following two types of 3CNF formulae
requires Ω(n) = Ω(m) queries to the corresponding function.

1. Satisfiable 3CNF formulae in which every variable appears in at most c clauses.

2. 3CNF formulae in which every variable appears in at most c clauses and every assignment
satisfies less than 90% of the clauses.

The claim holds even when the potential distinguisher is also given oracle access to a function
C : [n]× [c]→ [m]∪{0} such that C(i, j) is the index of the clause that contains the jth occurrence
of the variable xi, where C(i, j) = 0 indicates that variable xi appears in less than j clauses (i.e.,
C(i, j) = k iff L(k, `) = (i, σ) for some ` ∈ [3] and σ ∈ {±1}).

(Actually, as indicated in [GR20, Clm. 3.2], the foregoing claim holds even when the “structure”
of the formula is fixed (i.e., C is universal) and the actual input consists merely of the signs of the
various variable occurrences (i.e., the σ’s).)
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We observe that the standard polynomial-time reduction of 3SAT to Hamiltonicity is suitable
for our purposes; specifically, it is local and preserves gaps (in the sense detailed below). But first,
let us recall the specific reduction that we have in mind. Given L : [m] × [3] → [n] × {±1} and
C : [n] × [c] → [m] ∪ {0} as above, we consider a directed (bounded-degree) graph G = (V,E)
consisting of two designated vertices (denoted s and t), m clause-vertices (denoted c1, ..., cm), and
n variable-gadgets (described next), that are connected as follows.

• Each variable-gadget consists of 3c+ 3 vertices that form a path of edges in both directions;
specifically, we denote the vertices of the ith gadget by vi,1, ..., vi,3c+3, and connected vi,j and
vi,j+1 by a pair of anti-parallel edges.

• The first and last vertices of each variable-gadget are connected by directed edges to the first
and last vertices of the next gadget; that is, we have edges going from both vi,1 and vi,3c+3

to both vi+1,1 and vi+1,3c+3.

• For every i ∈ [n] and j ∈ [c], if C(i, j) = k, then vi,3j and vi,3j+1 are connected to ck
by edges that are directed as follows. If the ith variable occurs positively in the kth clause
(i.e., L(k, `) = (i,+1) for some ` ∈ [3]), then the first edge is directed from vi,3j to ck and
the second edge is directed from ck to vi,3j+1; otherwise (i.e., L(k, `) = (i,−1) (indicating a
negative occurrence)), the first edge is directed from ck to vi,3j and the second edge is directed
from vi,3j+1 to ck.

Vertices vi,3j and vi,3j+1 are called the ports of the C(i, j)th clause (equiv., of the corresponding
vertex cC(i,j)) in the ith gadget. The vertex vi,3j−1 is not connected to any clause-vertex; it
is only connected to vi,3j−2 and vi,3j .

• Directed edges go from the (source) vertex s to the first and last vertices of the first gadget
(i.e., to v1,1 and v1,3c+3), and directed edges go from the first and last vertices of the last
gadget (i.e., from vn,1 and vn,3c+3) to the (terminal) vertex t.

Note that |V | = 2+(3c+3)·n+m, and that each vertex has at most three incoming (resp., outgoing)
edges. Hence, we may use any constant d ≥ 3. Recalling that n ≤ 3m, we have |V | < 10(c+ 1)m.

We note that the foregoing reduction constitutes a local reduction from the problem considered
in Claim 2.1 to testing DH, where the locality condition is due to the fact that we can determine
incidences in the resulting graph G by making O(1) queries to L and C. In particular, vi,3j and
vi,3j+1 are always incident to cC(i,j), and the direction of these edge is determined by the value of
σ such that L(C(i, j), `) = (i, σ), where ` ∈ [3]. Hence, answering an incidence query regarding vi,j
amounts to a single query to C and three queries to L. Likewise, ck is always incident to vertices in
the gadgets of the variables indicated in L(k, 1), L(k, 2) and L(k, 3), whereas the incident vertices
(in these gadgets) can be determined by querying all the vertices of these gadgets (where, actually,
c queries per gadget suffice).

The standard proof of the validity of the foregoing reduction asserts that G has an Hamiltonian
path if and only if the original formula is satisfiable, but we need to strengthen the negative direction
and show that G is far from Hamiltonian if each assignment violates more than 10% of the clauses.

As a warm-up, we recall the argument for the positive direction: Assuming that τ : [n]→ {0, 1}
is a truth assignment that satisfies the original formula, we present the following Hamiltonian path
in G. Essentially, the path traverses all gadgets one after the other, where the ith gadget is traversed
in the direction determined by the value of τ(i), and while possibly taking detours to visit some
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of the clause-vertices. Specifically, the ith gadget is traversed from vi,1 to vi,3c+3 if τ(i) = 1, and
in the opposite direction otherwise. If xi is the first variable that satisfies the kth clause, then we
avoid traversing the edge that connects the ports of ck in the ith variable-gadget (i.e., the edge
connecting vi,3j and vi,3j+1 such that C(i, j) = k), and take a detour via ck instead. (Note that
if xi appears positively in the kth clause, then τ(i) = 1 must hold, and we traverse the ith gadget
from vi,1 to vi,3c+3, which means that the detour has the form vi,3j → ck → vi,3j+1; otherwise, we
traverse the ith gadget from vi,3c+3 to vi,1, and the detour has the form vi,3j+1 → ck → vi,3j .)

We now establish the opposite direction, or rather its contrapositive; that is, assuming that
the graph G is close to being Hamiltonian, we show the existence of an assignment to the original
formula that satisfies more than 90% of its clauses. Suppose that G is δ-close to a graph G′ that is
Hamiltonian, and consider a Hamiltonian path P ′ in G′. Omitting from G′ all edges that are not
in G = (V,E), we obtain a collection P of at most δ · d|V | vertex-disjoint paths that use only edges
of G and cover all vertices of G′ (equiv., all vertices of G). We shall see that these paths can be
used very much as a single path is used in the original proof of validity, except that here we only
obtain an assignment that satisfies a 1−O(δ) fraction of the clauses (rather than all clauses), but
this suffices.

Fixing P, we say that a gadget is good (in P) if there exists a path P ∈ P that passes through all
vertices of the gadget such that if the path uses one of the edges that connect the gadget to a clause-
vertex, then it uses both these edges. (Specifically, suppose that vi,3j and vi,3j+1 are connected to ck
in G (via one edge directed to ck and one edge that is directed from ck), then the edge connecting
vi,3j and ck is on the path if and only if the edge connecting vi,3j+1 and ck is on the path.) The
key observation, proved next, is that the number of gadgets that are not good (i.e., bad gadgets)
can be upper-bounded in terms of |P|.

Claim 2.2 (bad gadgets): If a vertex-gadget is bad (i.e., not good), then it contains a vertex that
is an endpoint of some path in P.

Proof: Suppose that the ith gadget is bad. The easy case is that the path P ∈ P that covers vi,1
does not cover all vertices of the gadget but does satisfy the condition regarding the use of edges
that connect the gadget to clause-vertices. In this case we take the minimum j such that vi,j+1 is
not on P , and observe that if j > 1 then vi,j is an endpoint of P , and otherwise (i.e., j = 1) vertex
vi,2 is an endpoint of some other path in P.

The other case is that P does not satisfy the condition regarding the use of edges that connect
the gadget to clause-vertices. Suppose, without loss of generality, that the edge connecting vi,3j
and ck is on P , but the edge connecting vi,3j+1 and ck is not on P . Still vi,3j+1 must be covered by
some path P ′ ∈ P (possibly P ′ = P ), and in this case we show that either vi,3j+1 is an endpoint
of P ′ or vi,3j−1 is an endpoint of some path in P. We first note that vi,3j+1 is connected (in G)
only to the vertices vi,3j , vi,3j+2 and ck, whereas P uses the edge connecting vi,3j and ck but not
the edge connecting vi,3j+1 and ck. Now, we consider two cases.

1. If P ′ 6= P , then P ′ can use only one edge incident to vi,3j+1, since P covers the other neighbors
(i.e., vi,3j and ck) whereas the paths are vertex-disjoint. Hence, vi,3j+1 is an endpoint of P ′.

2. Otherwise (i.e., P ′ = P ) either vi,3j+1 is an endpoint of P ′ or vi,3j+1 is connected by P ′ to
both vi,3j and vi,3j+2. Recalling that vi,3j is connected by P to ck, it follows that vi,3j−1
cannot be connected to vi,3j by a path in P, which implies that vi,3j−1 must be an endpoint
of some path in P (since vi,3j−1 is connected in G only to vi,3j−2 and vi,3j).
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Hence, in all cases we showed that the ith gadget contains an endpoiunt of some path in P.

We conclude that at most B ≤ 2 · |P| ≤ 2 · δ · d|V | of the gadgets are bad. Actually, the sum of
the number of bad gadgets (i.e., B) and the number B′ of clause-vertices that are isolated in P (i.e.,
constitute trivial paths in P) is at most 2dδ|V |. Defining an assignment to the variables according
to the direction in which paths traverse good gadgets, we obtain a partial assignment that satisfies
all clauses whose clause-vertices are covered by paths that are incident at good gadgets. Since there
are at most c ·B clauses that are incident at bad gadgets, we infer that at most cB+B′ ≤ c ·2dδ|V |
of the clauses are not satisfied. Recalling that |V | < 10(c+1)m, it follows that the original formula
has an assignment that satisfies more than a 1−c′ ·δ fraction of the clauses, where c′ = 2cd·10(c+1).
Using δ = 0.1/c′, the theorem follows (for any constant d ≥ 3).

Remark 3 (directed Hamiltonicity in the sense of directed cycle): The proof of Theorem 2 can be
easily adapted in order to establish the same result for the set of directed graphs having Hamiltonian
cycles. All that is needed is to augment the construction by an edge leading from the terminal vertex
t to the source vertex s.

We now turn to establish the claim for the undirected case.

Theorem 4 (testing Hamiltonicity is extremely hard): Let H be the set of Hamiltonian graphs
either in the sense of having a Hamiltonian path or in the sense of having a Hamiltonian cycle.
For every constant d ≥ 4, testing H in the standard bounded-degree model (with degree bound d)
requires a linear number of queries.

Proof: We use a (local gap-preserving) reduction from DH and invoke either Theorem 2 or
Remark 3. Again, the standard polynomial-time reduction will do. Recall that this reduction
replaces each vertex v in the directed graph by a three-vertex path, denoted (vin, vmid, vout), while
replacing directed edges going into v (resp., out of v) by edges incident at vin (resp., at vout); that
is, the directed edge from v to u is replaced by an (undirected) edge connecting vout and uin. Hence,
given oracle access to the incidence functions of a directed graph ~G = (~V , ~E) of maximum in-degree
and out-degree d, we locally construct an undirected graph G = (V,E) of maximum degree d + 1
(e.g., the (i+ 1)st neighbor of vout is uin if the ith outgoing edge of v goes to u).

To see that this standard reduction is actually gap-preserving we need to show that if ~G = (~V , ~E)
is far from being Hamiltonian (in the directed sense) then so is G = (V,E) (in the undirected sense).
We prove the contrapositive. Suppose that G is δ-close to G′ that is Hamiltonian. Then, G′ has at
most N = δ · (d+1)|V |/2 = δ · (d+1) ·3|~V |/2 edges that are not in G. This means that the vertices
of G are covered by a collection of at most N vertex-disjoint paths. Using the correspondence
between the directed edges of ~G and the edges connecting three-vertex paths in G, which implies
a correspondence between simple paths in G and simple directed paths in ~G, we infer that the
vertices of ~G are covered by a collection of at most N vertex-disjoint directed paths. Hence, it
suffices to add at most N directed edges to ~G in order to obtain a Hamiltonian graph, whereas at
most 2N edges may need to be removed in order to maintain the degree bound. Thus, ~G is δ′-close
to being Hamiltonian, where δ′ = 3N

d|~V |
= 9(d+1)·δ

d/2 = 18(d+1)
d · δ.

3 Testing Independent Set Size

As mentioned in the introduction, the following result is implicit in [BOT].
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Theorem 5 (testing independent set size is extremely hard): Let IS be the set of graphs having an
independent set that contains at least one third of the vertices. For all sufficiently large constant d,
testing IS in the bounded-degree model (with degree bound d) requires a linear number of queries.

Specifically, by [BOT, Thm. 22] approximating Minimum Vertex Cover to within a factor of 7/6
requires a linear number of queries, where the (sketched) proof uses a reduction from a bounded
version of Max-3LIN. Even a superficial look at the reduction reveals the fact that the hard instances
have vertex cover (and independent sets) of constant density. Hence, Theorem 5 follows by padding.
We believe that the following proof is more appealing.

Proof: We use the fact that, in this very model, for sufficientrly large constant d, testing 3-
Colorability requires a linear number of queries [BOT], and (locally) reduce testing 3-Colorability
to testing IS. The reduction is quite straightforward: Given a graph G = ([n], E), we construct
a graph G′ = (V ′, E′) that consists of three copies of the graph G as well as edges connected the
corresponding vertices in these copies. Specifically, V ′ = {1, 2, 3} × [n] and

E′
def
=

⋃
i∈{1,2,3}

{{(i, u), (i, v)} : {u, v}∈E}

∪
⋃
v∈[n]

{{(i, v), (j, v)} : i 6= j∈ {1, 2, 3}} .

(Hence, if G has maximum degree d, then G′ has maximum degree d+ 2.)
Given a tester for IS, we obtain a tester for 3-Colorability by invoking the former tester and

emulating the graph G′ in a straightforward manner; that is, queries regarding the incidences of a
vertex (i, v) ∈ V ′ are answered by querying G on the incidences of vertex v ∈ [n].

Evidently, if G is 3-colorable, then G′ ∈ IS; specifically, if χ : [n] → {1, 2, 3} is a legal 3-
coloring of G, then {(i, v) : v∈ [n]∧χ(v)= i} is an n-vertex independent set in G′. Hence, we focus
on showing that if G is ε-far from being 3-colorable, then G′ is Ω(ε)-far from IS. We prove the
contrapositive. That is, assuming that G′ is δ-close to IS, we shall prove that G is O(δ)-close to
being 3-colorable.

Let G′′ be a graph that is δ-close to G′ and has an independent set of size n, denoted S′′. Then,
the number of edges in the subgraph of G′ induced by S′′ is at most δ ·(d+2) · |V ′|/2 = 3δ(d+2)n/2,
and twice this number upper-bounds the number of vertices in S′′ that are incident to an edge of
E′. Letting S′ denote the set of vertices in S′′ that are not incident to an edge in E′, we infer
that S′ is an independent set in G′, whereas |S′| ≥ (1 − δ · 3(d + 2)) · n. Observing that every
vertex of G contains at most one copy in S′ (i.e., |S′ ∩ {(v, i) : i∈{1, 2, 3}}| ≤ 1 for every v ∈ [n]),
we obtain a 3-coloring χ of the subgraph of G that is induced by S = {v : ∃i s.t. (i, v) ∈ S′};
specifically, χ(v) = i if and only if (i, v) ∈ S′. (Indeed, each χ−1(i) is an independent set.)
Omitting all edges that are incident at [n] \ S, we infer that G is δ′-close to 3-coloring, where

δ′ = d·(n−|S|)
d/2 = 2 · (n− |S′|) ≤ 2 · δ · 3(d+ 2) = 6(d+ 2)δ. The claim follows.
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