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1 Introduction

The purpose of this note is to state and prove a lower bound on the capacity of a real stable polynomial p(x)
which is based only on its value and gradient at x = 1. This can be seen as a quantitative generalization
of the fact that the capacity of p is maximized when the normalized gradient of p at 1 is equal to 1 (see
Proposition 3.3). We state this result now.

Theorem 1.1. Let p(x) be a homogeneous real stable polynomial of degree n in n variables. If p(1) = 1 and
‖1−∇p(1)‖1 < 2, then

inf
x1,...,xn>0

p(x)

x1 · · ·xn
≥
(

1− ‖1−∇p(1)‖1
2

)n
.

This result implies a sharp improvement (see Corollary 4.3) to a similar inequality proved in [5] in the case
that ‖1−∇p(1)‖2 < 1√

n
. Such inequalities have also played an important role in the recent work on operator

scaling and its generalizations and applications [3].
We now give a high-level overview of the proof of the main inequality, which is split into two parts. First,

we prove the result for a more restricted class of polynomials, those of the form

f(x) =

n∏
i=1

(Ax)i

for a given matrix A with non-negative entries and row sums equal to 1 (see Theorem 4.2). Proving the
capacity bound in this case relies heavily on combinatorics related to bounding the permanent of A. Second,
we then show that the bound can be generalized to real stable polynomials by demonstrating a certain
“productization” result for real stable polynomials (see Theorem 5.2). In particular we show that for any
real stable p and any x in the positive orthant, we can find a matrix A with non-negative entries such that

p(x) =

n∏
i=1

(Ax)i and ∇p(1) = ∇

[
n∏
i=1

(Ax)i

]∣∣∣∣∣
x=1

.

In what follows, we present the proof of these results and leave further discussion and explication to later
work.

2 Notation

We let R,R+,Z,Z+,N,C denote the reals, non-negative reals, integers, non-negative integers, positive inte-
gers, and complex numbers respectively. We further let Kd[x] = Kd[x1, . . . , xn] denote the set of homogeneous
polynomials of degree d in n variables with coefficients in K. For a polynomial p in n variables, the support
of p, denoted supp(p), is the set of all µ ∈ Zn+ such that xµ has non-zero coefficient in p. Further, the Newton
polytope of p, denoted Newt(p), is the convex hull of supp(p). We also denote ‖α‖1 :=

∑n
i=1 |αi| for α ∈ Rn+

as usual. We now define all of the various classes of matrices and polynomials we will consider.
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Definition 2.1. Given an α ∈ Rn+ with ‖α‖1 = n, we define Matn(α) to be the set of n×n matrices A with
non-negative entries such that the row sums of A are all 1 and the column sums of A are given by α.

Definition 2.2. Given p ∈ Rd+[x1, . . . , xn], we say that p is real stable if p(x) = p(x1, . . . , xn) 6= 0 whenever
x1, . . . , xn are all in the complex upper half-plane.

Definition 2.3. Given p ∈ Rd+[x1, . . . , xn], we say that p is strongly log-concave if ∇v1 · · · ∇vkp is either
identically zero or log-concave in the positive orthant for all k ≥ 0 and all choices of v1, . . . , vk ∈ Rn+. (These
polynomials also go by the names completely log-concave and Lorentzian; see [1] and [2].)

Definition 2.4. For n ∈ N and α ∈ Rn+, we define the following classes of polynomials:

1. Prodn(α) is the set of all polynomials of the form p(x) =
∏n
i=1(Ax)i, where A ∈ Matn(α). Note that

p(1) = 1 and ∇p(1) = α for all such polynomials.

2. HStabn(α) is the set of all real stable polynomials in Rn+[x1, . . . , xn] for which p(1) = 1 and ∇p(1) = α.

3. SLCn(α) is the set of all strongly log-concave polynomials in Rn+[x1, . . . , xn] for which p(1) = 1 and
∇p(1) = α.

We also give a special name to such matrices and polynomials whenever α = 1.

Definition 2.5. We refer to matrices in Matn(1) as doubly stochastic. Similarly, if p ∈ Rn+[x1, . . . , xn] such
that p(1) = 1 and ∇p(1) = 1, then we say p is doubly stochastic.

Finally, we define the key quantity we study in this note.

Definition 2.6. Given a polynomial p ∈ Rn+[x1, . . . , xn], we define the capacity of p as

Cap1(p) := inf
x>0

p(x)

x1
= inf
x1,...,xn>0

p(x)

x1 · · ·xn
.

3 Basic Results

We state here a few standard basic results concerning polynomials, matrices, and capacity.

Proposition 3.1. Polynomials of the form
∏n
i=1(Ax)i for a given matrix A with non-negative coefficients

are homogeneous real stable, and homogeneous real stable polynomials are strongly log-concave.

Proposition 3.2 ([2]). For any strongly log-concave p ∈ Rd+[x1, . . . , xn] and any µ ∈ Zn+, we have that
µ ∈ supp(p) if and only if µ ∈ Newt(p).

Proposition 3.3 ([4]). If p is doubly stochastic then Cap1(p) = 1. In particular, if A is doubly stochastic
then Cap1(

∑n
i=1(Ax)i) = 1.

Proposition 3.4. Given a polynomial p ∈ Rn+[x1, . . . , xn], we have that Cap1(p) > 0 if and only if 1 ∈
Newt(p).

Corollary 3.5. Given an n× n matrix A with non-negative entries, the following are equivalent:

1. per(A) = 0.

2. Cap1(
∏n
i=1(Ax)i) = 0.

3. Up to permutation, the bottom-left i× j block of A is 0 for some i+ j > n.

Proof. (1) ⇐⇒ (2). Let us denote p(x) :=
∏n
i=1(Ax)i. Recall that

per(A) = ∂x1
· · · ∂xnp.

From this expression, it is clear to see that per(A) > 0 iff 1 ∈ supp(p). Further, since p is a real stable
polynomial, we know that 1 ∈ supp(p) iff 1 ∈ Newt(p) by Proposition 3.2. Finally, Cap1(p) > 0 iff
1 ∈ Newt(p) by Proposition 3.4.

(1) ⇐⇒ (3). Follows from Hall’s marriage theorem.
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4 Capacity Bound for Product Polynomials

In this section we prove the main result (Theorem 1.1) for polynomials in Prodn(α). To simplify notation,
we define the following for n ∈ N and α ∈ Rn+:

Ln(α) := min
p∈Prodn(α)

Cap1(p).

Before proving the result, we need a lemma which has some vague resemblance to Corollary 3.5. In particular
note that in both results, (2) is a condition on the capacity and (3) is a Hall-like condition.

Lemma 4.1. Given α ∈ Rn+ such that
∑
i αi = n, the following are equivalent:

1. ‖1− α‖1 < 2.

2. Ln(α) > 0.

3.
∑
i∈F αi > |F | − 1 for all F ⊆ [n].

Proof. Let δ := 1− α, so that
∑
i δi = 0. For any F ⊆ [n], let F = F+ t F− such that δi ≥ 0 for i ∈ F+ and

δi < 0 for i ∈ F−.
(1) =⇒ (3). For any F , we have∑

i∈F
αi = |F | −

∑
i∈F

δi = |F |+
∑
i∈F−

δi −
∑
i∈F+

δi.

Since
∑
i δi = 0 and

∑
i |δi| < 2, we have that

∑
i∈F+

δi < 1. This implies∑
i∈F

αi = |F |+
∑
i∈F−

δi −
∑
i∈F+

δi > |F | − 1.

(3) =⇒ (1). Letting F = [n] with F+, F− defined as above, we have

|F+| −
∑
i∈F+

δi =
∑
i∈F+

αi > |F+| − 1 =⇒
∑
δi≥0

δi < 1.

Since
∑
i δi = 0, this implies

‖1− α‖1 =
∑
i

|δi| =
∑
δi≥0

δi −
∑
δi<0

δi < 2.

(2) =⇒ (3). So as to get a contradiction, suppose there is some k ∈ [n] such that α1 + · · ·+αk ≤ k− 1.
We now construct a matrix A ∈ Matn(α) such that Cap1(

∏
i(Ax)i) = 0. Let A1 be a (k − 1) × k matrix

with column sums α1, . . . , αk and row sums all equal to β := α1+···+αk
k−1 . Since β ≤ 1, we can define

A :=

[
A1 ∗
0 ∗

]
∈ Matn(α),

where the bottom-left (n − k + 1) × k block of A is 0. Since (n − k + 1) + k > 0, Corollary 3.5 implies
Cap1(

∏
i(Ax)i) = 0. Therefore Ln(α) = 0.

(3) =⇒ (2). So as to get a contradiction, suppose Ln(α) = 0 By Corollary 3.5, this implies there is
some A ∈ Matn(α) for which the bottom-left i× j block of A is 0 for some i+ j > n (up to permutation of
the entries of α). Now, the total sum of all entries in the first j columns of A is equal to α1 + · · ·+ αj (by
the column sums and the block of zeros), and also is at most n− i ≤ j − 1 (by the row sums and the block
of zeros). That is, α1 + · · ·+ αj ≤ j − 1, which contradicts (3).

We now state the main result of this section: a lower bound on the capacity of polynomials in Prodn(α).
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Theorem 4.2. Fix n ∈ N, α ∈ Rn+, and p ∈ Prodn(α). If ‖1− α‖1 < 2, then

Cap1(p) ≥
(

1− ‖1− α‖1
2

)n
.

Proof. Define δ := 1− α. We just need to prove

Ln(α) ≥
(

1− ‖1− α‖1
2

)n
.

Define
S := {(γ,D) ∈ R+ ×Matn(1) : A− γD ≥ 0 entrywise},

and further define (γ0, D0) ∈ S to be such that γ0 is maximized. (This maximum exists by compactness of
Matn(1), the Birkhoff polytope.) Now consider the matrix

M =
A− γ0D0

1− γ0
,

which is an element of Matn(α̃) for α̃ = α−γ0
1−γ0 . We now show that per(M) = 0. If not, then there is some

permutation matrix P and some ε > 0 such that

A− (γ0 + ε) · γ0D0 + εP

γ0 + ε

is entrywise non-negative. Since γ0D0+εP
γ0+ε ∈ Matn(1), this contradicts the maximality of γ0. So in fact

per(M) = 0, and therefore Ln(α̃) = 0 by Corollary 3.5. By Lemma 4.1, this implies∥∥∥∥ δ

1− γ0

∥∥∥∥
1

= ‖1− α̃‖1 ≥ 2 =⇒ γ0 ≥ 1− ‖δ‖1
2

.

Since D0 ∈ Matn(1), we have that Cap1(
∏
i(D0x)i) = 1 by Proposition 3.3. The fact that A ≥ γ0D0

entrywise then implies

Cap1

[
n∏
i=1

(Ax)i

]
≥ Cap1

[
n∏
i=1

(γ0D0x)i

]
≥ γn0 ≥

(
1− ‖δ‖1

2

)n
.

We finally state the following corollary of Lemma 4.1 and Theorem 4.2, which gives a similar result for the
2-norm instead of the 1-norm.

Corollary 4.3. Fix n ∈ N, α ∈ Rn+, and p ∈ Prodn(α). If ‖1− α‖2 < 2√
n

, then

Cap1(p) ≥
(

1−
√
n · ‖1− α‖2

2

)n
.

Proof. Follows from ‖x‖1 ≤
√
n‖x‖2 for x ∈ Rn.

The corollary is a sharp improvement of the following similar inequality proved in [5] in the case that
‖1− α‖2 < 1√

n
:

Ln(α) ≥
(
1−
√
n · ‖1− α‖2

)n
.

This last inequality also plays a key role in the recent work on the operator scaling and its generalizations
and applications, see [3].
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5 Productization of Real Stable Polynomials

In this section we prove the productization result for polynomials in HStabn(α). This result immediately
implies the main result (Theorem 1.1) for polynomials in HStabn(α) as a corollary (see Corollary 5.3).

To actually prove the productization result, we need a way to associate matrices in Matn(α) to poly-
nomials in HStabn(α). For the case of α = 1, this statement was conjectured by Gurvits in the slightly
different form given below. The conjecture was motivated by the case of determinantal polynomials, where
the desired element of Matn(1) can be constructed from the matrices in the determinant. We now state this
result, the proof of which was told to us by Petter Brändén in personal correspondence.

Theorem 5.1 (Brändén). Fix p ∈ HStabn(1), and let λ(x) denote the roots of f(t) = p(1t − x) for any
x ∈ Rn. Then for any x ∈ Rn, there exists some D ∈ Matn(1) such that Dx = λ(x).

We now utilize this result to prove the productization result for polynomials in HStabn(α).

Theorem 5.2. Fix n ∈ N, x, α ∈ Rn+, and p ∈ HStabn(α). There exists f ∈ Prodn(α) such that p(x) = f(x).

Proof. We first prove the result in the case that α is rational. Denote α =
(
k1
N , . . . ,

kn
N

)
for some k1, . . . , kn ∈

Z+ and N ∈ N. Considering variables y1,1, . . . , y1,k1 , y2,1, . . . , yn,kn , we define

q(y) := p

(
y1,1 + · · ·+ y1,k1

k1
, . . . ,

yn,1 + · · ·+ yn,kn
kn

)N
,

so that q ∈ RnN+ [y1,1, . . . , yn,kn ]. Since q(1) = 1 and

∂yi,jq(1) =

[
N

ki
(∂xip)p

N−1

]
(1) = 1,

we in fact have q ∈ HStabnN (1). Letting y ∈ RnN+ be such that yi,j = xi for all i, j, note that the roots of
q(1t− y) will consist of N copies of the n roots of p(1t−x). So by Theorem 5.1, there exists D ∈ MatnN (1)
such that

Dy = (λ1(x), . . . , λ1(x), λ2(x), . . . , λ2(x), . . . , λn(x), . . . , λn(x))

where the roots are all repeated N times. Let D′ be the n× n matrix formed by summing the elements of
each N × ki block of D and dividing by N . We then have

n∏
i=1

(D′x)i =

n∏
i=1

λi(x) = (−1)np(1 · 0− x) = p(x).

Since the row sums of D′ are all 1 and the column sums are given by ki
N , we have that D′ ∈ Matn(α) which

proves the result for p.
We now handle the case of irrational α. First if αk = 0 for some k, then p does not depend on xk

and the result follows by induction. So we may assume that αk > 0 for all k ∈ [n]. By [6], the set of
homogeneous real stable polynomials of degree n in n variables is the closure of its interior with respect to
the Euclidean topology on coefficients. Define the map M(q) := ∇q(1) on the space of q ∈ Rn[x1, . . . , xn]
for which q(1) = 1, and note that this map is linear and surjects onto the subspace of Rn consisting of
vectors whose entries sum to n. So for small enough ε > 0, we have that M−1(Bε(α)) is an open subset
of the set of homogeneous real stable polynomials q such that q(1) = 1. Choosing any small neighborhood
U ⊆ M−1(Bε(α)) about p, surjectivity implies that M(U) is full-dimensional in the range of M . We can
therefore choose a sequence pj ∈ HStabn(αj) such that αj → α, pj → p, and αj is rational for all j. With
this, the previous arguments imply the following for all j:

min
q∈Prodn(αj)

q(x) ≤ pj(x) ≤ max
q∈Prodn(αj)

q(x).
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Now let Yj ∈ Matn(αj) and Zj ∈ Matn(αj) be such that

n∏
i=1

(Yjx)i = min
q∈Prodn(αj)

q(x) and

n∏
i=1

(Zjx)i = max
q∈Prodn(αj)

q(x).

By compactness of the set of all n × n matrices with non-negative entries and row sums all equal to 1, we
can assume that Yj and Zj are convergent subsequences with respective limits Y and Z. Since the maps

A 7→ (column sums of A) and A 7→
n∏
i=1

(Ax)i

are continuous, we have that Y, Z ∈ Matn(α) and

n∏
i=1

(Y x)i = lim
j→∞

min
q∈Prodn(αj)

q(x) ≤ lim
j→∞

pj(x) ≤ lim
j→∞

max
q∈Prodn(αj)

q(x) =

n∏
i=1

(Zx)i.

Since p(x) = limj→∞ pj(x), Lemma 6.1 implies the result.

From this follows the capacity bound for real stable polynomials. Recall the definition of Ln(α) given in
Section 4.

Corollary 5.3. For p ∈ HStabn(α), we have

Cap1(p) ≥ Ln(α) ≥
(

1− ‖1− α‖1
2

)n
.

Proof. The second inequality is given by Theorem 4.2, so we just need to prove the first inequality. For any
x ∈ Rn+, let f ∈ Prodn(α) be such that p(x) = f(x) according to Theorem 5.2. With this, we have

Cap1(p) = inf
x>0

p(x)

x1
≥ inf
x>0

min
f∈Prodn(α)

f(x)

x1
= Ln(α).

6 Productization of Strongly Log-Concave Polynomials

We do not currently have a productization theorem for strongly log-concave polynomials. However, there
are a few results which seem promising in the direction of obtaining such a result. That said, the arguments
of this section deviate from those of Section 5 in the fact that we do not attempt to “construct” the matrix
which gives rise to the productization. Instead we try to show that evaluations of polynomials in SLCn(α)
are bounded by those of polynomials in Prodn(α) and use convexity. In particular, the first lemma will give
a sense of this idea.

Lemma 6.1. Fix n ∈ N, x, α ∈ Rn+, and p ∈ Rn+[x1, . . . , xn] such that p(1) = 1 and ∇p(1) = α. Suppose
further that there exist f, g ∈ Prodn(α) such that f(x) ≤ p(x) ≤ g(x), then there exists h ∈ Prodn(α) such
that p(x) = h(x).

Proof. Define the map P : Matn(α)→ R+ via

P (A) :=

n∏
i=1

(Ax)i.

Since Matn(α) is a closed convex polytope, its image under P is a closed interval. The result follows.
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We now go about trying to obtain such upper and lower bounds for any p ∈ SLCn(α). First, we prove the
upper bound.

Proposition 6.2. Fix n ∈ N and x, α ∈ Rn+. We have

max
p∈Prodn(α)

p(x) =

(∑n
i=1 αixi
n

)n
= max
p∈SLCn(α)

p(x).

Proof. The first equality follows from the AM-GM inequality. For any A ∈ Matn(α), we have

n∏
i=1

(Ax)i ≤
(∑n

i=1(Ax)i
n

)n
=

(∑n
i=1 αixi
n

)n
.

For the second equality, by homogeneity we can rewrite the optimization problem as

max
∆α

max
p∈SLCn(α)

p(x) = 1 ⇐⇒ max
p∈SLCn(α)

max
∆α

p(x) = 1,

where ∆α := {x ≥ 0 :
∑
i αixi = n}. That is, for any p ∈ SLCn(α) we want to show that

max
∆α

p(x) = 1.

The fact that ∇p(1) = α means that the gradient of p at x = 1 projected onto ∆α is 0. By log-concavity of
p in Rn+, this implies p is maximized on ∆α at x = 1. The fact that p(1) = 1 then completes the proof.

This only leaves the lower bound. Unfortunately, in this case the problem is much more difficult. In partic-
ular, it seems unlikely that the minimums will have explicit formulas like the maximums did in Proposition
6.2. We leave further exploration of the potential lower bounds to future work.
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