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Abstract

The purpose of this note is to state and prove a lower bound on the capacity of a real stable polynomial
p(x) which is based only on its value and gradient at x = 1. This can be seen as a quantitative
generalization of the fact that the capacity of p is maximized when the normalized gradient of p at
1 is equal to 1. This result implies a sharp improvement to a similar inequality proved by Linial-
Samorodnitsky-Wigderson in 2000 [6]. Such inequalities have played an important role in the recent
work on operator scaling and its generalizations and applications [3]. Our bound is also similar to one
used very recently by Karlin-Klein-Oveis Gharan to give an improved approximation factor for metric
TSP [5]. While our bound does not immediately improve upon theirs, we believe our techniques will help
to achieve such an improvement when applied more directly to their situation.

1 Introduction

The purpose of this note is to state and prove a lower bound on the capacity of a real stable polynomial p(x)
which is based only on its value and gradient at x = 1. This can be seen as a quantitative generalization
of the fact that the capacity of p is maximized when the normalized gradient of p at 1 is equal to 1 (see
Proposition 4.4). We state this result now.

Theorem 1.1. Let p(x) be a homogeneous real stable polynomial of degree n in n variables. If p(1) = 1 and
‖1−∇p(1)‖1 < 2, then

inf
x1,...,xn>0

p(x)

x1 · · ·xn
≥
(

1− ‖1−∇p(1)‖1
2

)n
.

This result implies a sharp improvement (see Corollary 5.6) of a similar inequality proved in [6] in the case
that ‖1−∇p(1)‖2 < 1√

n
. Such inequalities have also played an important role in the recent work on operator

scaling and its generalizations and applications [3]. This result also gives a bound similar to one used very
recently in [5] to give an improved approximation factor for metric TSP (see Corollary 2.1). Our bound does
not immediately imply an improvement over theirs, but we believe our techniques will help to make such an
improvement when applied more directly to their situation. We discuss this further in Section 2.

We now give a high-level overview of the proof of the main inequality, which is split into two parts. First,
we prove the result for a more restricted class of polynomials, those of the form

f(x) =

n∏
i=1

(Ax)i

for a given matrix A with non-negative entries and row sums equal to 1 (see Theorem 5.5). Proving the
capacity bound in this case relies heavily on combinatorics related to bounding the permanent of A. Second,
we then show that the bound can be generalized to real stable polynomials by demonstrating a certain
“productization” result for real stable polynomials (see Theorem 6.2). In particular we show that for any
real stable p and any x in the positive orthant, we can find a matrix A with non-negative entries such that

p(x) =

n∏
i=1

(Ax)i and ∇p(1) = ∇

[
n∏
i=1

(Ax)i

]∣∣∣∣∣
x=1

.
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2 Application to Metric TSP

In a recent paper [5], Karlin, Klein and Oveis Gharan give an improved approximation factor for metric
TSP. Their proof relies on bounds of a similar spirit to that of Theorem 1.1. In this section, we discuss how
our bound relates to their bounds.

First we need to set up a bit of their notation. Let µ be a probability distribution on {0, 1}m, and let
the corresponding probability generating function be given by

pµ(z) :=
∑
S⊆[m]

P(1S)zS .

Such a distribution µ is called strongly Rayleigh (SR) when the polynomial p is real stable. Let X be a
random variable distributed according to µ. We then want to investigate random variables A1, . . . , An which
are defined via sets S1 t · · · t Sn = [m] by

Ai :=
∑
s∈Si

Xs.

That is, Ai is the random variable given by summing the entries of X corresponding to Si. Our main result
then implies the following bound.

Corollary 2.1. Let µ be a strongly Rayleigh distribution on {0, 1}m, and let A1, . . . , An be random variables
corresponding to sets S1, . . . , Sn as described above. Define βi := E[Ai], and let d be the size of the largest
set that µ assigns a non-zero probability. If ‖β − 1‖1 < 1− ε, then

P[∀i : Ai = 1] > e−nεd.

Proof. To prove this, we translate the above discussion into the language of polynomials. Given µ and
S = (S1, . . . , Sn), define

pµ,S(x1, . . . , xn) := pµ(z)|zi=xj for i∈Sj .

So pµ,S is a polynomial in n variables of degree at most m, and the coefficient of xκ is the probability that
(A1, . . . , An) = κ. In particular, we want to bound the coefficient of x1 in pµ,S . Further, we also define
Pµ,S(x1, . . . , xn, xn+1) as the homogenization of pµ,S , and d ≤ m is its degree. Since setting variables equal
and homogenization are operations which preserve real stability when the coefficients are non-negative, we
have that Pµ,S is real stable when µ is SR. We finally define

Qµ,S(x1, . . . , xd) := Pµ,S

(
x1, . . . , xn,

xn+1 + · · ·+ xd
d− n

)
which is then also a real stable homogeneous polynomial, of degree d in d variables.

We now apply our bound to the polynomial Qµ,S . Since β := ∇pµ,S(1), we have

α := ∇Qµ,S(1) =

(
β1, . . . , βn,

d− ‖β‖1
d− n

)
.

Note further that Qµ,S(1) = 1. Now, ‖β − 1‖1 < 1− ε then implies

‖α− 1‖1 = ‖β − 1‖1 + (d− n)

∣∣∣∣d− ‖β‖1d− n
− 1

∣∣∣∣
= ‖β − 1‖1 +

∣∣∣∣∣
n∑
i=1

1− βi

∣∣∣∣∣
< 2(1− ε).
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Applying our theorem then gives

inf
x1,...,xd>0

Qµ,S
x1 · · ·xd

≥
(

1− ‖1− α‖1
2

)d
> εd.

Additionally, it is easy to see that the x1 coefficients of Qµ,S and pµ,S are related via

〈x1〉pµ,S =
(d− n)d−n

(d− n)!
· 〈x1〉Qµ,S .

We finally apply Gurvits’ original coefficient bound (see Theorem 1.4 of [5]) to get

〈x1〉Qµ,S ≥
d!

dd
· inf
x1,...,xd>0

Qµ,S
x1 · · ·xd

>
d!

dd
· εd.

Combining everything then gives

P[∀i : Ai = 1] = 〈x1〉pµ,S >
(d− n)d−n

(d− n)!
· d!

dd
· εd ≥ e−nεd,

as desired.

Our bound compares favorably to that of [5] when d is of order at most 2n. However, the main problem
with our bound is its dependence on d, which could be as large as m. In [5], the authors were able to achieve
a bound that was independent of m (and d), and this was important to their applications. While we have
not quite achieved this, we believe our techniques should yield an improvement to their doubly exponential
bound. In particular since the bound of Theorem 1.1 is tight, we believe applying our techniques to non-
homogeneous polynomials directly should yield a singly exponential bound. (Note that it is already suggested
in [5] that singly exponential dependence should be possible.) We leave this to future work.

3 Notation

We let R,R+,Z,Z+,N,C denote the reals, non-negative reals, integers, non-negative integers, positive inte-
gers, and complex numbers respectively. We further let Kd[x] = Kd[x1, . . . , xn] denote the set of homogeneous
polynomials of degree d in n variables with coefficients in K. For a polynomial p in n variables, the support
of p, denoted supp(p), is the set of all µ ∈ Zn+ such that xµ has non-zero coefficient in p. Further, the Newton
polytope of p, denoted Newt(p), is the convex hull of supp(p). We also denote ‖α‖1 :=

∑n
i=1 |αi| for α ∈ Rn+

as usual. We now define all of the various classes of matrices and polynomials we will consider.

Definition 3.1. Given an α ∈ Rn+ with ‖α‖1 = n, we define Matn(α) to be the set of n×n matrices A with
non-negative entries such that the row sums of A are all 1 and the column sums of A are given by α.

Definition 3.2. Given p ∈ Rd+[x1, . . . , xn], we say that p is real stable if p(x) = p(x1, . . . , xn) 6= 0 whenever
x1, . . . , xn are all in the complex upper half-plane.

Definition 3.3. Given p ∈ Rd+[x1, . . . , xn], we say that p is strongly log-concave if ∇v1 · · · ∇vkp is either
identically zero or log-concave in the positive orthant for all k ≥ 0 and all choices of v1, . . . , vk ∈ Rn+. (These
polynomials also go by the names completely log-concave and Lorentzian; see [1] and [2].)

Definition 3.4. For n ∈ N and α ∈ Rn+, we define the following classes of polynomials, ordered by inclusion:

1. Prodn(α) is the set of all polynomials of the form p(x) =
∏n
i=1(Ax)i, where A ∈ Matn(α). Note that

p(1) = 1 and ∇p(1) = α for all such polynomials.

2. HStabn(α) is the set of all real stable polynomials in Rn+[x1, . . . , xn] for which p(1) = 1 and ∇p(1) = α.
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3. SLCn(α) is the set of all strongly log-concave polynomials in Rn+[x1, . . . , xn] for which p(1) = 1 and
∇p(1) = α.

4. LCn(α) is the set of all polynomials in Rn+[x1, . . . , xn] which are log-concave in the open positive orthant
and for which p(1) = 1 and ∇p(1) = α.

We also give a special name to such matrices and polynomials whenever α = 1.

Definition 3.5. We refer to matrices in Matn(1) as doubly stochastic. Similarly, if p ∈ Rn+[x1, . . . , xn] such
that p(1) = 1 and ∇p(1) = 1, then we say p is doubly stochastic.

Finally, we define the key quantity we study in this note.

Definition 3.6. Given a polynomial p ∈ Rn+[x1, . . . , xn], we define the capacity of p as

Cap1(p) := inf
x>0

p(x)

x1
= inf
x1,...,xn>0

p(x)

x1 · · ·xn
.

4 Basic Results

We state here a few standard basic results concerning polynomials, matrices, and capacity.

Proposition 4.1. Polynomials of the form
∏n
i=1(Ax)i for a given matrix A with non-negative coefficients

are homogeneous real stable, and homogeneous real stable polynomials are strongly log-concave.

Proposition 4.2 (see e.g. [2]). For any strongly log-concave p ∈ Rd+[x1, . . . , xn] and any µ ∈ Zn+, we have
that µ ∈ supp(p) if and only if µ ∈ Newt(p).

Proposition 4.3 (Symmetric exchange; see e.g. [2], Section 3.3). Let p ∈ Rd+[x1, . . . , xn] be strongly log-
concave, and let µ, ν ∈ supp(p) such that µi > νi for some i ∈ [n]. Then there exists j ∈ [n] such that
µj < νj and (µ− δi + δj), (ν + δi − δj) ∈ supp(p).

Proposition 4.4 ([4]). If p is doubly stochastic then Cap1(p) = 1. In particular, if A is doubly stochastic
then Cap1(

∑n
i=1(Ax)i) = 1. More generally, if p(1) = 1 and ∇p(1) = α, then Capα(p) = 1.

Proposition 4.5. Given a polynomial p ∈ Rn+[x1, . . . , xn], we have that Cap1(p) > 0 if and only if 1 ∈
Newt(p).

Corollary 4.6. Given an n× n matrix A with non-negative entries, the following are equivalent:

1. per(A) = 0.

2. Cap1(
∏n
i=1(Ax)i) = 0.

3. Up to permutation, the bottom-left i× j block of A is 0 for some i+ j > n.

Proof. (1) ⇐⇒ (2). Let us denote p(x) :=
∏n
i=1(Ax)i. Recall that

per(A) = ∂x1
· · · ∂xnp.

From this expression, it is clear to see that per(A) > 0 iff 1 ∈ supp(p). Further, since p is a real stable
polynomial, we know that 1 ∈ supp(p) iff 1 ∈ Newt(p) by Proposition 4.2. Finally, Cap1(p) > 0 iff
1 ∈ Newt(p) by Proposition 4.5.

(1) ⇐⇒ (3). Follows from Hall’s marriage theorem.

Lemma 4.7. For any c ∈ Rn+, we have

Cap1((c · x)n) = nn
n∏
i=1

ci.
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5 Capacity Bound for Product Polynomials

In this section we prove the main result (Theorem 1.1) for polynomials in Prodn(α). To simplify notation,
we define the following for n ∈ N and α ∈ Rn+:

Ln(α) ≡ LProd
n (α) := min

p∈Prodn(α)
Cap1(p) and LSLC

n (α) := min
p∈SLCn(α)

Cap1(p).

Before proving the result, we need Proposition 5.4, which has some resemblance to Corollary 4.6. In particular
note that both results give equivalent conditions for capacity bounds and Hall-like properties. First though,
we need a few lemmas.

Definition 5.1. Given a polynomial p ∈ Rn+[x1, . . . , xn], we say that p is a Hall polynomial if for all S ⊆ [n]
we have degS(p) ≥ |S| where degS(p) is the total degree of p involving variables with index in S.

Lemma 5.2. For any p ∈ Rn+[x1, . . . , xn], if Cap1(p) > 0 then p is a Hall polynomial. If p is strongly
log-concave, then these conditions are equivalent.

Proof. We prove the contrapositive of the first statement. Let S ⊆ [n] be such that degS(p) < |S|. So for
every degree vector v which shows up in p we have∑

i∈S
vi < |S|,

and therefore the same inequality holds for every v ∈ Newt(p). In particular, 1 6∈ Newt(p) and so Cap1(p) = 0
by Proposition 4.5.

Now suppose that p is strongly log-concave and that p is a Hall polynomial. We set out to show that
q := ∂xnp|xn=0 is a Hall polynomial. Fix S ⊆ [n− 1], and let µ ∈ supp(p) be such that degS(xµ) ≥ |S|. We
have three cases.

Case 1: degn(xµ) ≥ 1. Let ν ∈ supp(p) be such that deg[n−1](x
ν) ≥ n − 1, so that degn(xν) ≤ 1. By

applying symmetric exchange (Proposition 4.3) from µ to ν, there exists µ′ ∈ supp(p) such that degS(xµ
′
) ≥

|S| and degn(xµ
′
) = 1. This implies degS(q) ≥ |S|.

Case 2: degn(xµ) = 0 and degS(xµ) > |S|. Let ν ∈ supp(p) be such that degn(xν) ≥ 1. By applying
symmetric exchange from ν to µ, there exists µ′ ∈ supp(p) such that degS(xµ

′
) ≥ |S| and degn(xµ

′
) = 1.

This implies degS(q) ≥ |S|.
Case 3: degn(xµ) = 0 and degS(xµ) = |S|. Let ν ∈ supp(p) be such that degS∪{n}(x

ν) ≥ |S|+1. Letting
T := [n − 1] \ S, we have that degT (xµ) = |T | + 1 and degT (ν) ≤ |T |. Apply symmetric exchange from µ
to ν, choosing indices from T to remove from µ, until we have µ′ ∈ supp(p) such that degj(x

µ′) ≤ degj(x
ν)

for all j ∈ T . This implies degT (xµ
′
) ≤ degT (xν) ≤ |T | = n− 1− |S| and degS(xµ

′
) ≥ |S|. Therefore either

degn(xµ
′
) ≥ 1 or degS(xµ

′
) > |S|, and so one of the previous two cases can be applied to xµ

′
.

In any case we have degS(q) ≥ |S|, and therefore q is a Hall polynomial. Since q is also strongly
log-concave, we inductively have Cap1(q) > 0. By Euler’s identity, this implies

Cap1(p) ≥ 1

n

n∑
i=1

Cap1(xi · ∂xip|xi=0) > 0.

Lemma 5.3. Let p ∈ R+[x1, . . . , xn] be such that p(1) = 1, and let ∇p(1) = α. For all S ⊆ [n], we have∑
i∈S

αi ≤ degS(p).
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Proof. By plugging in xi = 1 for all i 6∈ S, we may assume that S = [n]. (Note that we are not assuming
p is homogeneous.) Letting P be the homogenization of p, we have that ∇P (1) = (α1, . . . , αn, β) and
deg(P ) = deg(p). Therefore

β +

n∑
i=1

αi = deg(P ) =⇒
n∑
i=1

αi ≤ deg(p).

This completes the proof.

Proposition 5.4. Given α ∈ Rn+ such that
∑
i αi = n, the following are equivalent:

1. ‖1− α‖1 < 2.

2. LSLC
n (α) > 0.

3. Ln(α) ≡ LProd
n (α) > 0.

4.
∑
i∈F αi > |F | − 1 for all F ⊆ [n].

5. Every p ∈ SLCn(α) is a Hall polynomial.

Proof. Let δ := 1− α, so that
∑
i δi = 0. For any F ⊆ [n], let F = F+ t F− such that δi ≥ 0 for i ∈ F+ and

δi < 0 for i ∈ F−.
(1) =⇒ (4). For any F , we have∑

i∈F
αi = |F | −

∑
i∈F

δi = |F |+
∑
i∈F−

δi −
∑
i∈F+

δi.

Since
∑
i δi = 0 and

∑
i |δi| < 2, we have that

∑
i∈F+

δi < 1. This implies∑
i∈F

αi = |F |+
∑
i∈F−

δi −
∑
i∈F+

δi > |F | − 1.

(4) =⇒ (1). Letting F = [n] with F+, F− defined as above, we have

|F+| −
∑
i∈F+

δi =
∑
i∈F+

αi > |F+| − 1 =⇒
∑
δi≥0

δi < 1.

Since
∑
i δi = 0, this implies

‖1− α‖1 =
∑
i

|δi| =
∑
δi≥0

δi −
∑
δi<0

δi < 2.

(2) =⇒ (3). Trivial.
(3) =⇒ (4). So as to get a contradiction, suppose there is some k ∈ [n] such that α1 + · · ·+αk ≤ k− 1.

We now construct a matrix A ∈ Matn(α) such that Cap1(
∏
i(Ax)i) = 0. Let A1 be a (k − 1) × k matrix

with column sums α1, . . . , αk and row sums all equal to β := α1+···+αk
k−1 . Since β ≤ 1, we can define

A :=

[
A1 ∗
0 ∗

]
∈ Matn(α),

where the bottom-left (n − k + 1) × k block of A is 0. Since (n − k + 1) + k > 0, Corollary 4.6 implies
Cap1(

∏
i(Ax)i) = 0. Therefore Ln(α) = 0.

(4) =⇒ (5). Follows from Lemma 5.3.
(5) =⇒ (2). Follows from Lemma 5.2.

We now state the main result of this section: a lower bound on the capacity of polynomials in Prodn(α).
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Theorem 5.5. Fix n ∈ N, α ∈ Rn+, and p ∈ Prodn(α). If ‖1− α‖1 < 2, then

Cap1(p) ≥
(

1− ‖1− α‖1
2

)n
.

Proof. Define δ := 1− α. We just need to prove

Ln(α) ≥
(

1− ‖δ‖1
2

)n
.

Define
S := {(γ,D) ∈ R+ ×Matn(1) : A− γD ≥ 0 entrywise},

and further define (γ0, D0) ∈ S to be such that γ0 is maximized. (This maximum exists by compactness of
Matn(1), the Birkhoff polytope.) Now consider the matrix

M =
A− γ0D0

1− γ0
,

which is an element of Matn(α̃) for α̃ = α−γ0
1−γ0 . We now show that per(M) = 0. If not, then there is some

permutation matrix P and some ε > 0 such that

A− (γ0 + ε) · γ0D0 + εP

γ0 + ε

is entrywise non-negative. Since γ0D0+εP
γ0+ε

∈ Matn(1), this contradicts the maximality of γ0. So in fact

per(M) = 0, and therefore Ln(α̃) = 0 by Corollary 4.6. By Lemma 5.4, this implies∥∥∥∥ δ

1− γ0

∥∥∥∥
1

= ‖1− α̃‖1 ≥ 2 =⇒ γ0 ≥ 1− ‖δ‖1
2

.

Since D0 ∈ Matn(1), we have that Cap1(
∏
i(D0x)i) = 1 by Proposition 4.4. The fact that A ≥ γ0D0

entrywise then implies

Cap1

[
n∏
i=1

(Ax)i

]
≥ Cap1

[
n∏
i=1

(γ0D0x)i

]
≥ γn0 ≥

(
1− ‖δ‖1

2

)n
.

We finally state the following corollary of Lemma 5.4 and Theorem 5.5, which gives a similar result for the
2-norm instead of the 1-norm.

Corollary 5.6. Fix n ∈ N, α ∈ Rn+, and p ∈ Prodn(α). If ‖1− α‖2 < 2√
n

, then

Cap1(p) ≥
(

1−
√
n · ‖1− α‖2

2

)n
.

Proof. Follows from ‖x‖1 ≤
√
n‖x‖2 for x ∈ Rn.

The corollary is a sharp improvement of the following similar inequality proved in [6] in the case that
‖1− α‖2 < 1√

n
:

Ln(α) ≥
(
1−
√
n · ‖1− α‖2

)n
.

This last inequality also plays a key role in the recent work on the operator scaling and its generalizations
and applications, see [3].
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6 Productization of Real Stable Polynomials

In this section we prove the productization result for polynomials in HStabn(α). This result immediately
implies the main result (Theorem 1.1) for polynomials in HStabn(α) as a corollary (see Corollary 6.3).

To actually prove the productization result, we need a way to associate matrices in Matn(α) to poly-
nomials in HStabn(α). For the case of α = 1, this statement was conjectured by Gurvits in the slightly
different form given below. The conjecture was motivated by the case of determinantal polynomials, where
the desired element of Matn(1) can be constructed from the matrices in the determinant. We now state this
result, the proof of which was told to us by Petter Brändén in personal correspondence.

Theorem 6.1 (Brändén). Fix p ∈ HStabn(1), and let λ(x) denote the roots of f(t) = p(1t − x) for any
x ∈ Rn. Then for any x ∈ Rn, there exists some D ∈ Matn(1) such that Dx = λ(x).

We now utilize this result to prove the productization result for polynomials in HStabn(α).

Theorem 6.2. Fix n ∈ N, x, α ∈ Rn+, and p ∈ HStabn(α). There exists f ∈ Prodn(α) such that p(x) = f(x).

Proof. We first prove the result in the case that α is rational. Denote α =
(
k1
N , . . . ,

kn
N

)
for some k1, . . . , kn ∈

Z+ and N ∈ N. Considering variables y1,1, . . . , y1,k1 , y2,1, . . . , yn,kn , we define

q(y) := p

(
y1,1 + · · ·+ y1,k1

k1
, . . . ,

yn,1 + · · ·+ yn,kn
kn

)N
,

so that q ∈ RnN+ [y1,1, . . . , yn,kn ]. Since q(1) = 1 and

∂yi,jq(1) =

[
N

ki
(∂xip)p

N−1
]

(1) = 1,

we in fact have q ∈ HStabnN (1). Letting y ∈ RnN+ be such that yi,j = xi for all i, j, note that the roots of
q(1t− y) will consist of N copies of the n roots of p(1t−x). So by Theorem 6.1, there exists D ∈ MatnN (1)
such that

Dy = (λ1(x), . . . , λ1(x), λ2(x), . . . , λ2(x), . . . , λn(x), . . . , λn(x))

where the roots are all repeated N times. Let D′ be the n× n matrix formed by summing the elements of
each N × ki block of D and dividing by N . We then have

n∏
i=1

(D′x)i =

n∏
i=1

λi(x) = (−1)np(1 · 0− x) = p(x).

Since the row sums of D′ are all 1 and the column sums are given by ki
N , we have that D′ ∈ Matn(α) which

proves the result for p.
We now handle the case of irrational α. First if αk = 0 for some k, then p does not depend on xk and the

result follows by induction. So we may assume that αk > 0 for all k ∈ [n]. By [7], the set of homogeneous
real stable polynomials of degree n in n variables is the closure of its interior with respect to the Euclidean
topology on coefficients. Define the map M(q) := ∇q(1) on the space of q ∈ Rn[x1, . . . , xn] for which
q(1) = 1, and note that this map is linear and surjects onto the affine subspace of Rn consisting of vectors
whose entries sum to n. Choosing a small neighborhood U about p, surjectivity and linearity imply M(U)
contains a small open ball about α in the range of M . We can therefore choose a sequence pj ∈ HStabn(αj)
such that αj → α, pj → p, and αj is rational for all j. The previous arguments then imply there exists
Aj ∈ Matn(αj) such that pj(x) =

∏n
i=1(Ajx)i for all j. By compactness of the set of all n×n matrices with

non-negative entries and row sums all equal to 1, we can assume that Aj is a convergent subsequence with
limit A. Therefore A ∈ Matn(α) and p(x) =

∏n
i=1(Ax)i, and this completes the proof.
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The perturbation argument at the end of the above proof can also be replaced by a different argument which
uses the fact that r 7→ ∇p(r · x)|x=1 maps the strict positive orthant to the relative interior of the Newton
polytope of p. With this, we can choose pj ∈ HStabn(αj) for αj rational by choosing particular values of rj

which limit to 1. As a note, both arguments work for both log-concave and strongly log-concave polynomials
(topological properties of the set of strongly log-concave polynomials follow from results of [2]).

We now prove the capacity bound for real stable polynomials. Recall the definition of Ln(α) given in
Section 5.

Corollary 6.3. For p ∈ HStabn(α), we have

Cap1(p) ≥ Ln(α) ≥
(

1− ‖1− α‖1
2

)n
.

Proof. The second inequality is given by Theorem 5.5, so we just need to prove the first inequality. For any
x ∈ Rn+, let f ∈ Prodn(α) be such that p(x) = f(x) according to Theorem 6.2. With this, we have

Cap1(p) = inf
x>0

p(x)

x1
≥ inf
x>0

min
f∈Prodn(α)

f(x)

x1
= Ln(α).

Note that to get this lower bound on capacity, we actually only needed a lower bound for the productization.
That is, we only used the fact that for any p ∈ HStabn(α) and any x ∈ Rn+, there is some f ∈ Prodn(α)
such that p(x) ≥ f(x). Of course, having equality in the productization is a nice fact on its own.

7 An Algorithm for Computing Ln(α)

In this section, we give an algorithm for computing the minimum capacity value Ln(α) for any fixed α > 0.
Recall

Ln(α) = min
p∈Prodn(α)

Cap1(p) = min
p∈HStabn(α)

Cap1(p),

where the second equality follows from the results of the previous section. To compute this minimum, first
note that

f(M) := log Cap1

(
n∏
i=1

(Mx)i

)
= inf
x>0

(
n∑
i=1

log(Mx)i − αi log xi

)
is concave as a function of M ∈ Matn(α). This follows from the fact that

∑n
i=1 log(Mx)i − αi log xi is a

concave function in M for all x, and concavity is preserved under taking inf. Therefore to compute

Ln(α) = min
p∈Prodn(α)

Cap1(p) = min
M∈Matn(α)

ef(M),

we just need to minimize f(M) over the extreme points of Matn(α). The support (non-zero entries) of the
extreme points of Matn(α) then correspond to bipartite forests on 2n vertices. (To see this, note that if the
support of M contains a cycle, then one can perturb the corresponding entries by ±ε with alternating sign
to show that M is not extreme.) Now let M be an extreme point of Matn(α) with support F which is a
bipartite forest on 2n vertices. Then there is some row or column of M which contains exactly one non-zero
element, corresponding to an edge connected to a leaf of F . The appropriate row or column sum then forces
a specific value for this entry of M . Remove that edge from F , and remove the corresponding row or column
from M . Since F is still a forest after this, we can recursively apply the above argument. This implies the
entries of M are actually determined by F . So for every bipartite forest F on 2n vertices, there is at most
one M with support F . The above argument also describes the algorithm for constructing the matrix M
from F . (If at any point a row or column sum is violated, it means there is no such M with support F .)
These observations then yield an algorithm for computing Ln(α), given as follows.
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1. Iterate over all bipartite forests F on 2n vertices.

2. Construct the matrix M ∈ Matn(α) associated to F , or skip this F if no such M exists.

3. Compute f(M), keeping track of the minimum value.

This algorithm has running time on the order the number of spanning forests of the complete bipartite graph
on 2n vertices, which is at least n2(n−1).

8 Bounds for Other Classes of Polynomials

We have not yet been able to prove the same capacity bound for log-concave or strongly log-concave poly-
nomials. In this section, we discuss a number of results and observations which suggest that such a bound
should be possible. The main thing we are missing is a productization result for strongly log-concave poly-
nomials. For real stable polynomials, we were able to explicitly construct the matrices which gave rise to
the productization. The first lemma here shows that a productization result already follows from a bound
by the min and max product polynomials.

Lemma 8.1. Fix n ∈ N, x, α ∈ Rn+, and p ∈ Rn+[x1, . . . , xn] such that p(1) = 1 and ∇p(1) = α. Suppose
further that

max
f∈Prodn(α)

f(x) ≥ p(x) ≥ min
f∈Prodn(α)

f(x).

Then there exists f ∈ Prodn(α) such that p(x) = f(x).

Proof. Define the map P : Matn(α)→ R+ via

P (A) :=

n∏
i=1

(Ax)i.

Since Matn(α) is a closed convex polytope, its image under P is a closed interval. The result follows.

Further, we actually only need the productization lower bound to obtain capacity lower bounds. That is, to
prove a capacity bound for (strongly) log-concave polynomials, we just need to prove for any x and α that

min
p∈LCn(α)

p(x) ≥ min
f∈Prodn(α)

f(x).

That said, we now state various relations between these upper and lower bounds for the various classes of
polynomials.

Proposition 8.2. Fix n ∈ N and y ∈ Rn+. Given p ∈ Rn+[x1, . . . , xm], define γ = ∇p(y·x)
p(y)

∣∣∣
x=1

. For any

x ∈ Rm+ , we have

1.
p(x)

p(y)
≤ 1

n

m∑
i=1

γi

(
xi
yi

)n
for all p ∈ Rn+[x1, . . . , xm].

2.
p(x)

p(y)
≤

(
1

n

m∑
i=1

γi ·
xi
yi

)n
for all p ∈ Rn+[x1, . . . , xm] which is log-concave in Rm+ .

3.
p(x)

p(y)
≥
(
x1
y1

)γ1
· · ·
(
xm
ym

)γm
for all p ∈ Rn+[x1, . . . , xm].
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Proof. Since p(x)
p(y) = p(y·x)

p(y) and variable scaling preserves the various classes of polynomials, we only need to

prove the bounds for y = 1 and p(1) = 1.
(1). By AM-GM, we have xµ ≤

∑m
i=1

µi
n x

n
i for any µ ∈ Zn+ and any x ∈ Rn+. Therefore

p(x) =
∑
µ

pµx
µ ≤

∑
µ

pµ

m∑
i=1

µix
n
i

n
=

m∑
i=1

xni
n

∑
µ

µipµ =

m∑
i=1

xni
n
· γi.

(2). By log-concavity, p
1
n is concave in the positive orthant. Further, we have

p
1
n (1) =

∑m
i=1 γi · 1
n

and ∇|x=1(p
1
n ) =

(γ1
n
, . . . ,

γm
n

)
= ∇|x=1

(∑n
i=1 γixi
n

)
.

Since 1
n

∑n
i=1 γixi is linear and p

1
n is concave, this immediately implies p(x) ≤

(
1
n

∑n
i=1 γixi

)n
.

(3). Proposition 4.4 implies p(x)
xγ ≥ 1, which gives the bound.

An immediate corollary of (2) in the above proposition is that the maximizing polynomial for log-concave
polynomials is a product polynomial, stated formally as follows.

Corollary 8.3. For n ∈ N and x, α ∈ Rn+, we have

max
p∈Prodn(α)

p(x) =

(∑n
i=1 αixi
n

)n
= max
p∈LCn(α)

p(x).

Note also that (1) in the above proposition implies there is no such relationship between product polynomials
and polynomials p ∈ Rn+[x1, . . . , xn] in general.

Of course what we really care about here is the lower bound, which in general is more difficult. In
particular, it seems unlikely that the minimums will have explicit formulas like the maximums did in Corollary
8.3. One thing we can say in the direction of a lower bound follows from (3) in the above proposition, stated
as follows.

Corollary 8.4. For n ∈ N, x ∈ Rn+, and non-negative integer vector α ∈ Zn+, we have

min
p∈Prodn(α)

p(x) =

n∏
i=1

xαii = min
p∈Rn+[x1,...,xn]

p(x).

Proof. Follows from the fact that
∏n
i=1 x

αi
i is a product polynomial when α ∈ Zn+.

9 The General Minimization Problem

In general, the minimization problem for general polynomials p ∈ Rn+[x1, . . . , xm] for which p(1) = 1 and
∇p(1) = α can be written as the linear program

min
pµ≥0∑
µ µ·pµ=α

∑
µ

pµt
µ

where t > 0 is fixed. (Note that homogeneity makes the p(1) = 1 condition equivalent to
∑
i αi = n.) One

thing we can do is characterize the support of the minimizers of the above linear program.

Proposition 9.1. For t, α ∈ Rm+ , a support set S is the support of a polynomial p ∈ Rn+[x1, . . . , xm] which
minimizes the above linear program if and only if the following hold.

1. α is in the convex hull of S.
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2. There exists β ∈ Rm such that

(t1x1 + · · ·+ tmxm)n − (β1x1 + · · ·+ βmxm)(x1 + · · ·+ xm)n−1

is supported outside of S and has non-negative coefficients.

Proof. ( =⇒ ). Property (1) is immediate. For property (2), consider the standard dual linear program,
along with an equivalent formulation with slack variables:

min
y∈Rm∑m

i=1 µiyi≤t
µ

m∑
i=1

αiyi ⇐⇒ min
y∈Rm∑m

i=1 µiyi+sµ=t
µ

sµ≥0

m∑
i=1

αiyi.

Now suppose p? is an optimum for the primal program with support S, and let y?, s? be an optimum for the
dual program with slack variables. Strong duality then implies

α · y? =
∑
µ

p?µt
µ =

∑
µ

p?µ
[
µ · y? + s?µ

]
= α · y? +

∑
µ

p?µs
?
µ =⇒

∑
µ

p?µs
?
µ = 0.

Therefore s?µ = 0 for µ ∈ S, which implies
∑m
i=1 µiy

?
i = tµ for µ ∈ S. With this, define

q(x) :=
∑
µ

(
n

µ

)
xµ

[
tµ −

m∑
i=1

µiy
?
i

]
= (t1x1 + · · · tmxm)n − n

m∑
i=1

y?i xi
∑
µ

(
n− 1

µ− δi

)
xµ−δi

= (t1x1 + · · · tmxm)n − n(y?1x1 + · · · y?mxm) · (x1 + · · ·xm)n−1.

Letting β := ny? completes this direction of the proof.
(⇐= ). Now let p be a polynomial with support S for which ∇p(1) = α, and let

q(x) = (t1x1 + · · ·+ tmxm)n − (β1x1 + · · ·+ βmxm)(x1 + · · ·+ xm)n−1.

Using the Bombieri (Fischer-Fock, etc.) inner product, we have

0 = 〈p, q〉 = p(t)− β

n
· ∇p(1) = p(t)− α · β

n
=⇒ p(t) =

α · β
n

.

Further, for any polynomial p with non-negative coefficients and ∇p(1) = α we have

0 ≤ 〈p, q〉 = p(t)− α · β
n

=⇒ p(t) ≥ α · β
n

.

Therefore p minimizes the primal linear program, and this completes this direction of the proof.

For rational gradient, a completely general lower bound in terms of product polynomials is unlikely to hold.
To see this, note the following support condition implied by the above results.

Lemma 9.2. Fix n ∈ N and α ∈ Rn+, and let p ∈ Rn+[x1, . . . , xn] be such that p(1) = 1 and ∇p(1) = α. If
Cap1(p) ≥ Ln(α), then either 1 ∈ Newt(p) or ‖1− α‖1 ≥ 2.

Proof. If Cap1(p) > 0, then 1 ∈ Newt(p) by Proposition 4.5. Otherwise, 0 = Cap1(p) ≥ Ln(α) which implies
‖1− α‖1 ≥ 2 by Lemma 5.4.

That is, a general lower bound by product polynomials is contradicted by the existence of a polynomial with
non-negative coefficients for which ∇p(1) is close to 1 but 1 6∈ Newt(p). Such a polynomial likely exists.
On the other hand, the well-known matroidal support conditions of strongly log-concave polynomials imply
that this polynomial cannot be in SLCn(α), and so a lower bound by product polynomials is still possible
in the strongly log-concave case.

12



10 Capacity Upper Bounds

Although we are mainly interested in lower bounds on capacity in this paper, upper bounds can also be
achieved using similar methods. In this section we use the results of Section 8 to prove upper bounds on the
capacity of various classes of polynomials. We present these observations for the interested reader, but say
nothing further about them. The first is a tight bound for p ∈ LCn(α) which is also tight for Prodn(α).

Proposition 10.1. For n ∈ N, α ∈ Rn+, and p ∈ LCn(α), we have

Cap1(p) ≤
n∏
i=1

αi.

This bound is tight over all p ∈ Prodn(α), and hence tightness also holds for p ∈ LCn(α), p ∈ SLCn(α), and
p ∈ HStabn(α).

Proof. By (2) of Proposition 8.2 and Lemma 4.7, we have

Cap1(p) = Cap1

((
1

n

n∑
i=1

αixi

)n)
=

n∏
i=1

αi.

Tightness follows from the fact that
(
1
n

∑n
i=1 αixi

)n ∈ Prodn(α).

Interestingly this bound does not hold for polynomials in general, for which we obtain a different tight bound.

Proposition 10.2. For n ∈ N, α ∈ Rn+, and p ∈ Rn+[x1, . . . , xn] such that p(1) = 1 and ∇p(1) = α, we have

Cap1(p) ≤

(
n∏
i=1

αi

) 1
n

,

and this bound is tight.

Proof. By (1) of Proposition 8.2, we have

Cap1(p) ≤ Cap1

(
1

n

n∑
i=1

αix
n
i

)
.

We then compute

0 = ∇ log

( 1
n

∑n
i=1 αie

nxi

e1·x

)
= ∇

[
log

(
1

n

n∑
i=1

αie
nxi

)
− 1 · x

]
⇐⇒ αie

nxi

1
n

∑n
i=1 αie

nxi
= 1 ∀i.

This is equivalent to saying that αie
nxi = αje

nxj for all i, j, which occurs when xi = − logαi
n for all i.

Plugging this in to the objective function gives

log Cap1(p) ≤ log

(
1
n

∑n
i=1 αi · α

−1
i

(α1 · · ·αn)−
1
n

)
= log

(
(α1 · · ·αn)

1
n

)
.

Exponentiating gives the bound. Tightness is immediate.

Again, since this paper is predominantly about lower bounds on polynomial capacity, we say nothing further
about these upper bounds.
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