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Abstract

We give a sharp lower bound on the capacity of a homogeneous real stable polynomial, depending
only on the value of its gradient at x = 1. This result implies a sharp improvement to a similar
inequality proved by Linial-Samorodnitsky-Wigderson in 2000 [21], which was crucial to the analysis of
their permanent approximation algorithm. Such inequalities have played an important role in the recent
work on operator scaling and its generalizations and applications [13], and in fact we use our bound to
construct a new scaling algorithm for real stable polynomials.

In addition, we give a strong improvement on previous lower bounds of the capacity of a non-
homogeneous real stable polynomial, depending only on the value of its gradient at x = 1. Crucially,
this new bound is independent of the degree of the polynomial, and has singly exponential dependence
on the number of variables. This compares favorably to the bounds used recently in the fantastic work
of Karlin-Klein-Oveis Gharan to give an improved approximation factor for metric TSP [20], where this
dependence is doubly exponential. Such bounds were conjectured to exist by the authors of [20], and
thus our new bound should imply further improvement to the approximation factor for metric TSP.

The new technique we develop to prove this bound is productization, which says that any real stable
polynomial can be approximated at any point in the positive orthant by a product of linear forms. Beyond
the results of this paper, our main hope is that this new technique will allow us to avoid “frightening
technicalities”, in the words of Laurent and Schrijver, that often accompany combinatorial lower bounds.
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1 Introduction

In [21], Linial, Samorodnitsky, and Wigderson gave the first deterministic algorithm for approximating
the permanent of a matrix with non-negative entries within an exponential factor. Their work has been
wildly influential within TCS, spawning a line of work which has even recently continued to prove fruitful,
for example approximating the mixed discriminant and mixed volume [19], non-commutative polynomial
identity testing [14, 12, 1], computing Brascamp-Lieb constants [13], tensor scaling problems [8, 11, 9], and
null-cone problems [10]. At the heart of their work is a complexity analysis of the classical Sinkhorn scaling
algorithm [23], which is an iterative process for transforming a matrix to be doubly stochastic (all row and
column sums equal to 1). Once the matrix is doubly stochastic, the classical Van der Waerden inequality
for the permanent of a doubly stochastic matrix gives the desired exponential approximation. The crux of
their analysis relies on a bound on the stability of the Sinkhorn scaling procedure: if a matrix is only close
to being doubly stochastic, they give a bound on how far off the Van der Waerden inequality can be. This
is crucial, due to the iterative nature of the algorithm.

The original purpose of this paper was then to generalize this bound to the realm of stable polynomials,
and perhaps even beyond to log-concave/Lorentzian polynomials [3, 6]. Since the introduction of polynomial
capacity in [15], many similar combinatorial bounds and statements have been generalized in this way. These
bounds often give rise to exponential approximations for quantities which are #P-hard to compute exactly,
see [2, 24, 3]. This generalization to stable polynomials has not yet been done for the Sinkhorn scaling bound
of Linial-Samorodnitsky-Wigderson, and this is one of our main results. What was surprising to us is that
in the process of generalizing this bound, we were also able to strengthen the bound, and in fact our bound
is tight even in the original context of Sinkhorn scaling.

What led to this strengthening was the investigation of a related question. For a given non-negative
vector α ∈ Rn, let Matn(α) be the set of all n × n matrices A with non-negative entries such that the row
sums of A are all 1 and the column sums are given by α1, . . . , αn. Now the question:

For which α is it the case that all matrices in Matn(α) have positive permanent?

The Van der Waerden inequality implies the all-ones vector is one such “good” value of α. What is remarkable
is that the set of all such good vectors can be explicitly described as the set of all α for which ‖α −
1‖1 < 2 (Theorem 2.2). A analytic version of this fact then precisely gives our strengthening of the Linial-
Samorodnitsky-Wigderson bound (Theorem 2.1).

Beyond this strengthening of the bound, our main result is extending it to the realm of stable polynomials,
and the key idea here is the notion of productization. The typical way the matrix permanent problem is
related to stable polynomials is via the map A 7→ fA(x) :=

∏n
i=1(Ax)i which maps an n×n matrix with non-

negative entries to a product of linear forms in n variables. The permanent of A is precisely the coefficient
of x1x2 · · ·xn in fA, and thus the permanent approximation problem is a specific case of the more general
stable polynomial coefficient approximation.

Our main idea of productization is then a local converse to this fact. Morally speaking, it says that any
homogeneous real stable polynomial can be locally approximated by such a product of linear forms at any
specific point in the positive orthant (Theorem 2.4). That is, for any such p and x, there is an A such that

p(x) =

n∏
i=1

(Ax)i and ∇p(1) = ∇

[
n∏
i=1

(Ax)i

]
(1).

This fact immediately implies the extension of the strengthened Linial-Samorodnitsky-Wigderson bound to
stable polynomials as a corollary (see Corollary 7.5). The power of this technique is that is allows one
to use combinatorial arguments on non-negative matrices (products of linear forms) to prove more general
statements about stable polynomials. And further, this technique may extend to log-concave polynomials
in general as well. Because of this, we believe that this productization technique has the potential to drive
new connections between TCS and the various log-concave polynomial classes.

As a specific example, our main bound for non-homogeneous polynomials has a strong resemblance to
the bounds utilized in the recent exciting work on metric TSP by Karlin, Klien, and Oveis Gharan [20]. The
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bounds of [20] are doubly exponential in the number of variables, but they are still useful because they are
independent of degree. The bound we achieve here (see Theorem 2.6, and also Theorem 2.3) is not only
independent of degree, but it is also singly exponential in the number of variables. Such an improvement
was conjectured to be possible by the authors of [20] (see Section 1.2.2 in [20]), and thus our new bound will
imply further improvement to the approximation factor for metric TSP. We believe that our bounds here
have the potential to imply similar improvements to other approximation algorithm results.

2 Main Results

Our first main result is a sharp improvement of the Linial-Samorodnitsky-Wigderson bound used in [21] to
give a deterministic exponential approximation to the permanent of a matrix with non-negative entries.

Theorem 2.1 (= Corollary 7.5, Main homogeneous capacity bound). Let p(x) be a homogeneous real stable
polynomial of degree n in n variables. If p(1) = 1 and ‖1−∇p(1)‖1 < 2, then

inf
x1,...,xn>0

p(x)

x1 · · ·xn
≥
(

1− ‖1−∇p(1)‖1
2

)n
.

The bound of Linial-Samorodnitsky-Wigderson took a similar form, but with the more restrictive assumption
that ‖1−∇p(1)‖2 < 1√

n
. The fact that our assumption that ‖1−∇p(1)‖1 < 2 is as strong as possible is an

immediate consequence of our next result.

Theorem 2.2 (= Proposition 5.4, Marginals which imply positive permanent). Given a non-negative vector
α ∈ Rn, let Matn(α) be the set of all n× n matrices A with non-negative entries such that the row sums of
A are all equal to 1 and the column sums of A are equal to α1, . . . , αn. The following are equivalent.

1. The permanent of every matrix in Matn(α) is strictly positive.

2. ‖1− α‖1 < 2.

3.
∑
i∈F αi > |F | − 1 for all F ⊆ [n].

Note that the main capacity bound given above can be seen as an analytic version of this result.
We also prove another bound for non-homogeneous real stable polynomials, which leads to a strong

improvement of the capacity bound of Karlin-Klein-Oveis Gharan used in [20] to give an improved approxi-
mation factor for metric TSP. The key bound in [20] is doubly exponential in the number of variables; our
result here leads to a simply exponential bound (see Corollary 8.2).

Theorem 2.3 (= Corollary 7.6, Main non-homogeneous capacity bound). Let p(x) be a real stable polynomial
in n variables, and fix any κ ∈ Zn with non-negative entries. If p(1) = 1 and ‖κ−∇p(1)‖1 < 1, then

inf
x1,...,xn>0

p(x)

xκ1
1 · · ·x

κn
n
≥ (1− ‖κ−∇p(1)‖1)

n
.

Our main bounds are proven first for a specific class of stable polynomials: products of linear forms (see
Theorem 5.5). This class is easier to work with due to its intimate relationship with the space of matrices.
To transfer the bound from products of linear forms to stable polynomials more generally, we use a new
technique called productization. This bound transfer process is very general, which implies this productization
technique is of independent interest. We therefore state it as a result in its own right.

Theorem 2.4 (= Theorem 7.2, Productization of real stable polynomials). Let p be a real stable homogeneous
polynomial of degree d in n variables such that p(1) = 1 and ∇p(1) = α. For any y ∈ Rn in the positive

orthant, there exists a product of linear forms f(x) :=
∏d
i=1

∑n
j=1 aijxj for which aij ≥ 0 such that f(1) = 1,

∇f(1) = α, and p(y) = f(y).
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Note that while we are able to use this technique to extend results to stable polynomials, a similar produc-
tization result for other classes of log-concave polynomials remains an open problem.

Beyond the original application to matrix scaling for approximating the permanent, such capacity bounds
have also played an important role in the recent work on operator scaling and its generalizations and ap-
plications [13]. In a similar way, we can use our capacity bound to give a new scaling algorithm for stable
polynomials in full generality.

Theorem 2.5 (= Proposition 9.2, Stable polynomial scaling algorithm). Let p be a real stable homogeneous
polynomial of degree n in n variables for which the coefficient of x1x2 · · ·xn is positive. There is an iterative
algorithm for approximating, monotonically from above, the value of

inf
x1,...,xn>0

p(x)

x1 · · ·xn
.

For a given polynomial p, the rate of convergence is O(1/t) where t is the number of iterations.

Note that the iterative algorithm we define is different, and easier to implement, than the iterative algorithm
given by Bregman projections. See Remark 9.3 for more details.

As discussed above, our main non-homogeneous bound improves the one used recently in [20] to give an
improved approximation factor for metric TSP (see Corollary 8.2). We state this bound now, leaving further
discussion of the relevant notation to Section 8. Note that this bound is singly exponential in the number
of random variables, in contrast to the doubly exponential bound of [20].

Theorem 2.6 (= Corollary 8.2 and Corollary 8.3, Application to metric TSP). Let µ be a strongly Rayleigh
distribution on {0, 1}m, and let X be a random variable distributed according to µ. Let S1 t . . . t Sn = [m]
be a partition of [m], and define random variables A1, . . . , An via

Ai :=
∑
s∈Si

Xs ∀i ∈ [n].

If ‖E[A]− κ‖1 ≤ 1− ε, then

P[∀i : Ai = κi] ≥ εn
∏
κi>0

1

e
√
κi
.

In particular if κ = 1 and ‖E[A]− 1‖1 ≤ 1− ε, then

P[∀i : Ai = 1] ≥
( ε
e

)n
.

3 Roadmap

The remainder of the paper proceeds in a somewhat non-linear fashion, but each section (or subsection)
gives explication of a single concept or result. A description of each such section is given as follows.

� Section 4: Basic notation for polynomials and matrices, and some standard results regarding capacity
and polynomials.

� Section 5: Proof of the main homogeneous capacity bound in the case of products of linear forms.

� Section 6: Proof of the main improved non-homogeneous capacity bound in the case of products of
linear forms.

� Section 7: Proof of the productization result for stable polynomials.

� Section 8: Explication of the connection between our bound and the recent work on metric TSP.

� Section 9: Discussion of the algorithms for stable polynomial scaling, and for computing the minimum
capacity value for a given gradient value.

� Section 10: Various other bounds and discussion for more general classes of polynomials.
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4 Preliminaries

4.1 Notation

We let R,R+,Z,Z+,N,C denote the reals, non-negative reals, integers, non-negative integers, positive inte-
gers, and complex numbers respectively. We further let Kd[x] = Kd[x1, . . . , xn] denote the set of homogeneous
polynomials of degree d in n variables with coefficients in K. For a polynomial p in n variables, the support
of p, denoted supp(p), is the set of all µ ∈ Zn+ such that xµ has non-zero coefficient in p. Further, the Newton
polytope of p, denoted Newt(p), is the convex hull of supp(p). We also denote ‖α‖1 :=

∑n
i=1 |αi| for α ∈ Rn+

as usual. We now define all of the various classes of matrices and polynomials we will consider.

Definition 4.1. Given an α ∈ Rn+ with ‖α‖1 = n, we define Matn(α) to be the set of n×n matrices A with
non-negative entries such that the row sums of A are all 1 and the column sums of A are given by α.

Definition 4.2. Given p ∈ Rd+[x1, . . . , xn], we say that p is real stable if p(x) = p(x1, . . . , xn) 6= 0 whenever
x1, . . . , xn are all in the complex upper half-plane.

Definition 4.3. Given p ∈ Rd+[x1, . . . , xn], we say that p is strongly log-concave if ∇v1 · · · ∇vkp is either
identically zero or log-concave in the positive orthant for all k ≥ 0 and all choices of v1, . . . , vk ∈ Rn+. (These
polynomials also go by the names completely log-concave and Lorentzian; see [3] and [6].)

Definition 4.4. For n ∈ N and α ∈ Rn+, we define the following classes of polynomials, ordered by inclusion:

1. Prodn(α) is the set of all polynomials of the form p(x) =
∏n
i=1(Ax)i, where A ∈ Matn(α). Note that

p(1) = 1 and ∇p(1) = α for all such polynomials.

2. HStabn(α) is the set of all real stable polynomials in Rn+[x1, . . . , xn] for which p(1) = 1 and ∇p(1) = α.

3. SLCn(α) is the set of all strongly log-concave polynomials in Rn+[x1, . . . , xn] for which p(1) = 1 and
∇p(1) = α.

4. LCn(α) is the set of all polynomials in Rn+[x1, . . . , xn] which are log-concave in the open positive orthant
and for which p(1) = 1 and ∇p(1) = α.

We also give a special name to such matrices and polynomials whenever α = 1.

Definition 4.5. We refer to matrices in Matn(1) as doubly stochastic. Similarly, if p ∈ Rn+[x1, . . . , xn] such
that p(1) = 1 and ∇p(1) = 1, then we say p is doubly stochastic.

Finally, we define the key quantity we study in this note.

Definition 4.6. Given a polynomial p ∈ Rn+[x1, . . . , xn], we define the capacity of p as

Cap1(p) := inf
x>0

p(x)

x1
= inf
x1,...,xn>0

p(x)

x1 · · ·xn
.

4.2 Basic Results

We state here a few standard basic results concerning polynomials, matrices, and capacity.

Proposition 4.7. Polynomials of the form
∏n
i=1(Ax)i for a given matrix A with non-negative coefficients

are homogeneous real stable, and homogeneous real stable polynomials are strongly log-concave.

Proposition 4.8 (see [17]). For any strongly log-concave p ∈ Rd+[x1, . . . , xn] and any µ ∈ Zn+, we have that
µ ∈ supp(p) if and only if µ ∈ Newt(p).

Proposition 4.9 (Symmetric exchange; see [6], Section 3.3). Let p ∈ Rd+[x1, . . . , xn] be strongly log-concave,
and let µ, ν ∈ supp(p) such that µi > νi for some i ∈ [n]. Then there exists j ∈ [n] such that µj < νj and
(µ− δi + δj), (ν + δi − δj) ∈ supp(p).
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Proposition 4.10 ([16]). If p is doubly stochastic then Cap1(p) = 1. In particular, if A is doubly stochastic
then Cap1(

∑n
i=1(Ax)i) = 1. More generally, if p(1) = 1 and ∇p(1) = α, then Capα(p) = 1.

Proposition 4.11. Given a polynomial p ∈ Rn+[x1, . . . , xn], we have that Cap1(p) > 0 if and only if
1 ∈ Newt(p).

Corollary 4.12. Given an n× n matrix A with non-negative entries, the following are equivalent:

1. per(A) = 0.

2. Cap1(
∏n
i=1(Ax)i) = 0.

3. Up to permutation, the bottom-left i× j block of A is 0 for some i+ j > n.

Proof. (1) ⇐⇒ (2). Let us denote p(x) :=
∏n
i=1(Ax)i. Recall that

per(A) = ∂x1
· · · ∂xnp.

From this expression, it is clear to see that per(A) > 0 iff 1 ∈ supp(p). Further, since p is a real stable
polynomial, we know that 1 ∈ supp(p) iff 1 ∈ Newt(p) by Proposition 4.8. Finally, Cap1(p) > 0 iff
1 ∈ Newt(p) by Proposition 4.11.

(1) ⇐⇒ (3). Follows from Hall’s marriage theorem.

Lemma 4.13. For any c ∈ Rn+, we have

Cap1((c · x)n) = nn
n∏
i=1

ci.

5 Capacity Bound for Product Polynomials

In this section we prove the main result (Theorem 2.1) for polynomials in Prodn(α). To simplify notation,
we define the following for n ∈ N and α ∈ Rn+:

Ln(α) ≡ LProd
n (α) := min

p∈Prodn(α)
Cap1(p) and LSLC

n (α) := min
p∈SLCn(α)

Cap1(p).

Before proving the result, we need Proposition 5.4, which has some resemblance to Corollary 4.12. In
particular note that both results give equivalent conditions for capacity bounds and Hall-like properties.
First though, we need a few lemmas.

Definition 5.1. Given a polynomial p ∈ Rn+[x1, . . . , xn], we say that p is a Hall polynomial if for all S ⊆ [n]
we have degS(p) ≥ |S| where degS(p) is the total degree of p involving variables with index in S.

Lemma 5.2. For any p ∈ Rn+[x1, . . . , xn], if Cap1(p) > 0 then p is a Hall polynomial. If p is strongly
log-concave, then these conditions are equivalent.

Proof. We prove the contrapositive of the first statement. Let S ⊆ [n] be such that degS(p) < |S|. So for
every degree vector v which shows up in p we have∑

i∈S
vi < |S|,

and therefore the same inequality holds for every v ∈ Newt(p). In particular, 1 6∈ Newt(p) and so Cap1(p) = 0
by Proposition 4.11.

Now suppose that p is strongly log-concave and that p is a Hall polynomial. We set out to show that
q := ∂xnp|xn=0 is a Hall polynomial. Fix S ⊆ [n− 1], and let µ ∈ supp(p) be such that degS(xµ) ≥ |S|. We
have three cases.
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Case 1: degn(xµ) ≥ 1. Let ν ∈ supp(p) be such that deg[n−1](x
ν) ≥ n − 1, so that degn(xν) ≤ 1. By

applying symmetric exchange (Proposition 4.9) from µ to ν, there exists µ′ ∈ supp(p) such that degS(xµ
′
) ≥

|S| and degn(xµ
′
) = 1. This implies degS(q) ≥ |S|.

Case 2: degn(xµ) = 0 and degS(xµ) > |S|. Let ν ∈ supp(p) be such that degn(xν) ≥ 1. By applying
symmetric exchange from ν to µ, there exists µ′ ∈ supp(p) such that degS(xµ

′
) ≥ |S| and degn(xµ

′
) = 1.

This implies degS(q) ≥ |S|.
Case 3: degn(xµ) = 0 and degS(xµ) = |S|. Let ν ∈ supp(p) be such that degS∪{n}(x

ν) ≥ |S|+1. Letting
T := [n − 1] \ S, we have that degT (xµ) = |T | + 1 and degT (ν) ≤ |T |. Apply symmetric exchange from µ
to ν, choosing indices from T to remove from µ, until we have µ′ ∈ supp(p) such that degj(x

µ′) ≤ degj(x
ν)

for all j ∈ T . This implies degT (xµ
′
) ≤ degT (xν) ≤ |T | = n− 1− |S| and degS(xµ

′
) ≥ |S|. Therefore either

degn(xµ
′
) ≥ 1 or degS(xµ

′
) > |S|, and so one of the previous two cases can be applied to xµ

′
.

In any case we have degS(q) ≥ |S|, and therefore q is a Hall polynomial. Since q is also strongly
log-concave, we inductively have Cap1(q) > 0. By Euler’s identity, this implies

Cap1(p) ≥ 1

n

n∑
i=1

Cap1(xi · ∂xip|xi=0) > 0.

The following Van der Waerden-type bound for n-variate, n-homogeneous strongly log-concave polynomials
p was proven by Gurvits in [18, 17]:

∂x1 · · · ∂xnp ≥
n!

nn
Cap1(p).

Lemma 5.3. Let p ∈ R+[x1, . . . , xn] be such that p(1) = 1, and let ∇p(1) = α. For all S ⊆ [n], we have∑
i∈S

αi ≤ degS(p).

Proof. By plugging in xi = 1 for all i 6∈ S, we may assume that S = [n]. (Note that we are not assuming
p is homogeneous.) Letting P be the homogenization of p, we have that ∇P (1) = (α1, . . . , αn, β) and
deg(P ) = deg(p). Therefore

β +

n∑
i=1

αi = deg(P ) =⇒
n∑
i=1

αi ≤ deg(p).

This completes the proof.

Proposition 5.4. Given α ∈ Rn+ such that
∑
i αi = n, the following are equivalent:

1. ‖1− α‖1 < 2.

2. LSLC
n (α) > 0.

3. Ln(α) ≡ LProd
n (α) > 0.

4.
∑
i∈F αi > |F | − 1 for all F ⊆ [n].

5. Every p ∈ SLCn(α) is a Hall polynomial.

Proof. Let δ := 1− α, so that
∑
i δi = 0. For any F ⊆ [n], let F = F+ t F− such that δi ≥ 0 for i ∈ F+ and

δi < 0 for i ∈ F−.
(1) =⇒ (4). For any F , we have∑

i∈F
αi = |F | −

∑
i∈F

δi = |F |+
∑
i∈F−

δi −
∑
i∈F+

δi.
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Since
∑
i δi = 0 and

∑
i |δi| < 2, we have that

∑
i∈F+

δi < 1. This implies∑
i∈F

αi = |F |+
∑
i∈F−

δi −
∑
i∈F+

δi > |F | − 1.

(4) =⇒ (1). Letting F = [n] with F+, F− defined as above, we have

|F+| −
∑
i∈F+

δi =
∑
i∈F+

αi > |F+| − 1 =⇒
∑
δi≥0

δi < 1.

Since
∑
i δi = 0, this implies

‖1− α‖1 =
∑
i

|δi| =
∑
δi≥0

δi −
∑
δi<0

δi < 2.

(2) =⇒ (3). Trivial.
(3) =⇒ (4). So as to get a contradiction, suppose there is some k ∈ [n] such that α1 + · · ·+αk ≤ k− 1.

We now construct a matrix A ∈ Matn(α) such that Cap1(
∏
i(Ax)i) = 0. Let A1 be a (k − 1) × k matrix

with column sums α1, . . . , αk and row sums all equal to β := α1+···+αk
k−1 . Since β ≤ 1, we can define

A :=

[
A1 ∗
0 ∗

]
∈ Matn(α),

where the bottom-left (n − k + 1) × k block of A is 0. Since (n − k + 1) + k > 0, Corollary 4.12 implies
Cap1(

∏
i(Ax)i) = 0. Therefore Ln(α) = 0.

(4) =⇒ (5). Follows from Lemma 5.3.
(5) =⇒ (2). Follows from Lemma 5.2.

We now state the main result of this section: a lower bound on the capacity of polynomials in Prodn(α).

Theorem 5.5. Fix n ∈ N, α ∈ Rn+, and p ∈ Prodn(α). If ‖1− α‖1 < 2, then

Cap1(p) ≥
(

1− ‖1− α‖1
2

)n
.

Proof. Define δ := 1− α. We just need to prove

Ln(α) ≥
(

1− ‖δ‖1
2

)n
.

Define
S := {(γ,D) ∈ R+ ×Matn(1) : A− γD ≥ 0 entrywise},

and further define (γ0, D0) ∈ S to be such that γ0 is maximized. (This maximum exists by compactness of
Matn(1), the Birkhoff polytope.) Now consider the matrix

M =
A− γ0D0

1− γ0
,

which is an element of Matn(α̃) for α̃ = α−γ0
1−γ0 . We now show that per(M) = 0. If not, then there is some

permutation matrix P and some ε > 0 such that

A− (γ0 + ε) · γ0D0 + εP

γ0 + ε

9



is entrywise non-negative. Since γ0D0+εP
γ0+ε

∈ Matn(1), this contradicts the maximality of γ0. So in fact

per(M) = 0, and therefore Ln(α̃) = 0 by Corollary 4.12. By Proposition 5.4, this implies∥∥∥∥ δ

1− γ0

∥∥∥∥
1

= ‖1− α̃‖1 ≥ 2 =⇒ γ0 ≥ 1− ‖δ‖1
2

.

Since D0 ∈ Matn(1), we have that Cap1(
∏
i(D0x)i) = 1 by Proposition 4.10. The fact that A ≥ γ0D0

entrywise then implies

Cap1

[
n∏
i=1

(Ax)i

]
≥ Cap1

[
n∏
i=1

(γ0D0x)i

]
≥ γn0 ≥

(
1− ‖δ‖1

2

)n
.

We finally state the following corollary of Proposition 5.4 and Theorem 5.5, which gives a similar result for
the 2-norm instead of the 1-norm.

Corollary 5.6. Fix n ∈ N, α ∈ Rn+, and p ∈ Prodn(α). If ‖1− α‖2 < 2√
n

, then

Cap1(p) ≥
(

1−
√
n · ‖1− α‖2

2

)n
.

Proof. Follows from ‖x‖1 ≤
√
n‖x‖2 for x ∈ Rn.

The corollary is a sharp improvement of the following similar inequality proved in [21] in the case that
‖1− α‖2 < 1√

n
:

Ln(α) ≥
(
1−
√
n · ‖1− α‖2

)n
.

This last inequality also plays a key role in the recent work on the operator scaling and its generalizations
and applications, see [13].

6 Improved Capacity Bound for Non-Homogeneous Product Poly-
nomials

In this section we prove the main result (Theorem 2.3) for non-homogeneous product polynomials. For this
section, we utilize slightly different notation to handle non-homogeneous polynomials.

Definition 6.1. For n, d ∈ N and α ∈ Rn+, we define the following:

1. NHMatdn(α) is the set of all d× (n+ 1) matrices with row sums all equal to 1 and column sums equal
to α1, . . . , αn, d− ‖α‖1.

2. NHProddn(α) is the set of all polynomials of the form

p(x) =

d∏
i=1

ai,n+1 +

n∑
j=1

ai,jxj

 ,

where A ∈ NHMatdn(α). In this case, we call p the polynomial associated to A. Note that p(1) = 1 and
∇p(1) = α for all such polynomials.

3. NHStabdn(α) is the set of all real stable polynomials in R+[x1, . . . , xn] of degree at most d for which
p(1) = 1 and ∇p(1) = α.

10



We also define the following for n ∈ N and α ∈ Rn+:

LNHProd
n (α;κ) := min

d∈N
min

p∈NHProddn(α)
Capκ(p).

To prove Theorem 2.3 for polynomials in NHProddn(α), we use different techniques than we used in the
previous section for homogeneous polynomials. Specifically, a log-concavity property of capacity means we
only need to check the bound for the extreme points of NHMatdn(α). An investigation of the extreme points
yields an inductive argument which then proves the result.

To this end, we prove a basic result about bipartite forest graphs, which implies a useful property of the
support of the polynomials associated to the extreme points of NHMatdn(α).

Lemma 6.2. Let G be a bipartite forest on m left vertices and n right vertices such that G has no vertices
of degree 0. Then G has at least m− n+ 1 left leaves.

Proof. We prove this by induction on m+ n, where the base case is any path graph. For this case, we have
m ∈ {n− 1, n, n+ 1}. If m = n− 1 then G has 0 left leaves, if m = n then G has 1 left leaf, and if m = n+ 1
then G has two left leaves. Thus the desired result holds in this case.

For the inductive step, G is not a path graph. Let v be any leaf of G, and construct a new graph G′ as
follows. Let v0 := v and remove v0 from G0 := G to create the graph G1. Let v1 be the one neighbor of v0
in G. If v1 is a leaf or vertex of degree 0 in G1, then remove v1 from G1 to create the graph G2. If v1 was a
vertex of degree 0, then stop and define G′ := G1. Otherwise let v2 be the one neighbor of v1, and continue
this process inductively until vk is not a leaf or a vertex of degree 0 in Gk. Once the process stops, define
G′ := Gk. Note that G′ is a bipartite forest which has no vertices of degree 0, and G′ is non-empty since G
is not a path graph. Further note that every leaf of G′ is also a leaf of G (that is, we have not created new
leaves by the above vertex removal process). We now have two cases: v is a left leaf of G, or v is a right leaf
of G.

First suppose v is a left leaf of G. Then for some i, G′ has m− i left vertices and at most n− i+ 1 right
vertices. Thus by induction, the number of left leaves of G is at least

1 + (m− i)− (n− i+ 1) + 1 = m− n+ 1

since v is a left leaf. Thus the result holds in this case.
Next suppose v is a right leaf of G. Then for some i, G′ has m − i left vertices and at most n − i right

vertices. Thus by induction, the number of left leaves of G is at least

(m− i)− (n− i) + 1 = m− n+ 1.

Thus the result holds in this case as well.

Lemma 6.3. Any extreme point of NHMatdn(α) has support given by a bipartite forest on d left vertices and
n+ 1 right vertices.

Proof. Let M be an extreme point of NHMatdn(α), and suppose its bipartite support graph G does not give
a forest. Then G must contain an even simple cycle. Group the edges of this cycle into two groups such that
the odd edges make up one group, and the even edges make up the other (with any starting point). Add
ε > 0 to all matrix entries corresponding to even edges and subtract ε to all matrix entries corresponding
to odd edges, to construct M+ ∈ NHMatdn(α). Do the same thing, but reverse the signs, to construct

M− ∈ NHMatdn(α). Thus M = M++M−
2 , contradicting the fact that M is an extreme point.

With this, we now prove a basic capacity lemma which will serve as the main induction step of the proof of
Theorem 2.3 for product polynomials.
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Lemma 6.4. For n ≥ 1, let p ∈ NHProddn(α) be the polynomial associated to a d × (n + 1) matrix M ∈
NHMatdn(α) such that column n has exactly one non-zero entry, and fix κ ∈ Zn+ such that ‖α− κ‖1 ≤ 1− ε
for some ε > 0. Then there exists q ∈ NHProdδn−1(β) such that

Capκ(p) ≥ ε · Capγ(q),

where γ = (κ1, . . . , κn−1) ∈ Zn−1+ , δ is either d− 1 or d, and β ∈ Rn−1+ is such that ‖β − γ‖1 ≤ 1− ε.

Proof. Let i0 be the row index of the one non-zero entry in column n. Since all row sums of M are equal
to 1, mi0,n ≤ 1 and thus αn ≤ 1. Since ‖α− κ‖1 ≤ 1− ε < 1, this implies κn is either 0 or 1. We now deal
with these two cases separately.

First we handle the κn = 1 case. In this case, we define q(x) = q(x1, . . . , xn−1) via

p(x) =

mi0,n+1 +

n∑
j=1

mi0,jxj

 · q(x).

That is, q(x) is the polynomial associated to the matrix obtained by removing row i0 of M . We then have

Capκ(p) ≥ Capen

mi0,n+1 +

n∑
j=1

mi0,jxj

 · Capγ(q) = mi0,n · Capγ(q),

where en is the nth standard basis vector. Note that q is the polynomial associated to a (d− 1)× n matrix
A with row sums all equal to 1. Let β be the vector of the first n − 1 column sums of this matrix, so that
q ∈ NHProdd−1n−1(β). Now note that

mi0,n = 1− |mi0,n − 1| ≥ 1− ‖α− κ‖1 ≥ 1− (1− ε) = ε.

And further, by the triangle inequality we have

‖β − γ‖1 =

n−1∑
j=1

|αj −mi0,j − κj | = −1 +

n∑
j=1

|αj −mi0,j − κj | ≤ ‖α− κ‖1 − 1 +

n∑
j=1

mi0,j ≤ ‖α− κ‖1.

This implies the desired result.
Next we handle the κn = 0 case. In this case, we define q0(x) = q0(x1, . . . , xn−1) via

q0(x) = p(x1, . . . , xn−1, 0),

so that
Capκ(p) = Capγ(q0).

Note that q0 is the polynomial associated to a d × n matrix A, where all row sums of A are equal to 1
except for row i0 which has row sum equal to 1−mi0,n = 1− αn. Note that αn ≤ ‖α− κ‖1 ≤ 1− ε implies

1 − αn ≥ ε > 0. We now construct a new matrix B ∈ NHMatdn−1(β) by dividing row i0 of A by 1 − αn.
Defining q(x) to be the polynomial associated to the matrix B, we have

Capκ(p) = Capγ(q0) = (1− αn) · Capγ(q) ≥ ε · Capγ(q).

Finally, by the triangle inequality we compute

‖β − γ‖1 =

n−1∑
j=1

∣∣∣∣αj −mi0,j +
mi0,j

1− αn
− κj

∣∣∣∣ =

n−1∑
j=1

∣∣∣∣αj +
mi0,j · αn

1− αn
− κj

∣∣∣∣
≤ ‖α− κ‖1 − αn +

αn
1− αn

n−1∑
j=1

mi0,j ≤ ‖α− κ‖1

This completes the proof.
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The following result then allow us to extend capacity bounds associated to extreme points of NHMatdn(α)
to all polynomials in NHProddn(α).

Lemma 6.5 (See Theorem 3.1 of [4]). Given κ ∈ Zn+ and α ∈ Rn+, let φ : NHMatdn(α)→ R+ be the function

which maps M to Capκ(p) where p is the polynomial associated to M . Then φ is log-concave on NHMatdn(α).

Proof. Fix any A,B ∈ NHMatdn(α), and let p, q, f be the polynomials associated to A,B, A+B
2 respectively.

By the AM-GM inequality, we compute

Capκ(f) = inf
x>0

∏d
i=1

(
ai,n+1+bi,n+1

2 +
∑n
j=1

ai,j+bi,j
2 · xj

)
xκ

= inf
x>0

∏d
i=1

[
(ai,n+1+

∑n
j=1 ai,jxj)+(bi,n+1+

∑n
j=1 bi,jxj)

2

]
xκ

≥ inf
x>0

∏d
i=1

(
ai,n+1 +

∑n
j=1 ai,jxj

)
xκ

·

∏d
i=1

(
bi,n+1 +

∑n
j=1 bi,jxj

)
xκ


1
2

≥ [Capκ(p) · Capκ(q)]
1
2 .

With this, we are now ready to prove Theorem 2.3 for product polynomials.

Theorem 6.6. For any κ ∈ Zn+, α ∈ Rn+, and ε > 0, if ‖α − κ‖1 ≤ 1 − ε then Capκ(p) ≥ εn for every

p ∈ NHProddn(α). That is, LNHProd
n (α;κ) ≥ εn whenever ‖α− κ‖1 ≤ 1− ε.

Proof. We prove the desired result by induction on (n, d) with lexicographical order. The base case is the case
where n = 0, which corresponds to p ≡ 1 for any d. In this case, κ is the empty vector and Capκ(p) = 1 = ε0,
which implies the desired result. (See Example 6.7 for the n = 1 case written out in detail.)

Now for n ≥ 1, fix any extreme point M ∈ NHMatdn(α), and let p be the polynomial associated to M .
By Lemma 6.3, M is the (weighted) bipartite adjacency matrix of a forest G.

If any of the first n columns of M is the all-zeros vector, then ‖α − κ‖1 ≤ 1 − ε < 1 implies the
corresponding entry of κ is 0. Thus we can remove this column from the matrix M , and the result follows
by induction. If column n+ 1 of M is the all-zeros vector, then p is homogeneous of degree d which implies
‖α‖1 = d. The reverse triangle inequality and ‖α− κ‖1 < 1 imply ‖κ‖1 = d. Thus we have

Capκ(p) = inf
x>0

p(x1, . . . , xn)

xκ1
1 · · ·x

κn
n

= inf
x>0

p( x1

xn
, . . . , xn−1

xn
, 1)

( x1

xn
)κ1 · · · (xn−1

xn
)κn−1

= Capγ(p(x1, . . . , xn−1, 1)),

where γ = (κ1, . . . , κn−1). Since we have p(x1, . . . , xn−1, 1) ∈ NHProddn−1(β) where β = (α1, . . . , αn−1), the
result follows by induction. Otherwise, G is a forest on d left vertices and n+ 1 right vertices such that no
vertices of G have degree 0.

We first consider the case where d ≥ n + 1. Then G has at least as many left vertices as right vertices.
By Lemma 6.2, M has (at least) d− n rows with exactly one non-zero entry. Letting xv be the polynomial
associated to these rows of M , we have

Capκ(p) = inf
x>0

xvf(x)

xκ
= Capκ−v(f).

With this, we now redefine κ to be κ−v, α to be α−v, p to be f , and M to be the matrix in NHMatnn(α−v)
with the d− n rows removed. The result in this case then follows by induction.

Now we consider the case where d ≤ n. Then G has at least one more right vertex than left vertices.
By Lemma 6.2, M has (at least) n− d+ 2 ≥ 2 columns with exactly one non-zero entry. Thus one of these
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columns has index in {1, 2, . . . , n}, and we may assume by permuting the variables that it in fact is column
n. By Lemma 6.4, there exists q ∈ Prodδn−1(β) such that

Capκ(p) ≥ ε · Capγ(q),

where γ = (κ1, . . . , κn−1) ∈ Zn−1+ , δ is either d − 1 or d, and β ∈ Rn−1+ is such that ‖β − γ‖1 ≤ 1 − ε. By

induction, this proves the result for polynomials associated to the extreme points of NHMatdn(α). Applying
Lemma 6.5 then completes the proof.

Example 6.7. We explicitly prove Theorem 6.6 in the n = 1 case. Fix any extreme point M ∈ NHMatd1(α),
and let p be the polynomial associated to M . If either column of M is an all-zeros vector, then either
p(x1) = xd1 or p(x1) ≡ 1, and the result is trivial in this case. Otherwise, Lemma 6.2 implies d − 1 rows of
M have exactly one non-zero entry. Thus for some k ≤ d− 1 we have

p(x1) = xk1(ax1 + b),

where a+ b = 1 and a+ k = α1. Since κ1 ∈ Z+ and

1− ε ≥ |α1 − κ1| = |a+ k − κ1|,

we have that k is equal to either κ1 or κ1 − 1. If k = κ1, then

Capκ1
(p) = inf

x1>0

xk1(ax1 + b)

xk1
= b,

and
1− ε ≥ |a+ k − κ1| = a =⇒ b = 1− a ≥ ε.

If k = κ1 − 1, then

Capκ1
(p) = inf

x1>0

xk1(ax1 + b)

xk+1
1

= a,

and
1− ε ≥ |a+ k − κ1| = 1− a =⇒ a ≥ ε.

Therefore the result holds in both cases. Applying Lemma 6.5 then implies Theorem 6.6 in the n = 1 case.

7 Productization of Real Stable Polynomials

In this section we prove the productization result for d-homogeneous polynomials in n variables. This result
immediately implies the main results (Theorem 2.1 and Theorem 2.3) for polynomials in HStabn(α) and
NHStabdn(α) as corollaries (see Corollary 7.5 and Corollary 7.6).

To actually prove the productization result, we need a way to associate matrices to polynomials. For the
case of α = 1, this statement was conjectured by Gurvits in the slightly different form given below. The
conjecture was motivated by the case of determinantal polynomials, where the desired element of Matn(1)
can be constructed from the matrices in the determinant. We now state this result, the proof of which was
told to us by Petter Brändén in personal correspondence.

Theorem 7.1 (Brändén). Fix p ∈ HStabn(1), and let λ(x) denote the roots of f(t) = p(1t − x) for any
x ∈ Rn. Then for any x ∈ Rn, there exists some D ∈ Matn(1) such that Dx = λ(x).

Proof. To prove the result, we just need to prove the equivalent statement that λ(x) is majorized by the
vector x, denoted λ(x) ≺ x. By Lemma 3.8 of [5], we have that

λ(θ · x+ (1− θ) · y) ≺ θ · λ(x) + (1− θ) · λ(y).
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Let C be the set of all non-increasing vectors x for which λ(x) is majorized by x. For all x, y ∈ C, we then
have

λ(θ · x+ (1− θ) · y) ≺ θ · λ(x) + (1− θ) · λ(y) ≺ θ · x+ (1− θ) · y,

which implies C is a convex cone.
Now let y = (1, . . . , 1, 0, . . . , 0), where there are k ones and n− k zeros. By the majorization inequalities,

λ(y) ≺ y in this case is equivalent to 0 ≤ λmin(y) ≤ λmax(y) ≤ 1 and
∑
i λi(y) = k. To see that the roots

of f(t) = p(1t − y) have these properties, note first that t < 0 implies 1t − y has strictly negative entries,
which implies f(t) = p(1t− y) 6= 0. Similarly, t > 1 implies 1t− y has strictly positive entries, which implies
f(t) = p(1t − y) 6= 0. Finally, since p(1) = 1 implies f is monic, we can compute the sum of the roots of
f(t) by negating the second from the highest coefficient of f . Equivalently, we compute

− ∂t|t=0 p(1− ty) = −
n∑
i=1

−yi∂xip(1− ty)

∣∣∣∣∣
t=0

=

n∑
i=1

yi∂xip(1) = k,

since ∂yip(1) = 1 for all i. That is, y ∈ C for all values of k.
Since C is a convex cone, this implies that every non-increasing vector in the positive orthant is an

element of C. By possibly permuting the input variables of p, we can assume without loss of generality that
x is non-increasing. This proves the result.

We now utilize this result to prove the productization result for homogeneous real stable polynomials, and
in particular for polynomials in HStabn(α) and in NHStabdn(α).

Theorem 7.2. Fix n, d ∈ N, u, α ∈ Rn+, and p ∈ Rd+[x1, . . . , xn] such that p(1) = 1 and ∇p(1) = α. There
exists a d×n matrix A with entries in R+ such that the rows sums of A are all equal to 1, the column sums

of A are given by α, and p(u) =
∏d
i=1(Au)i.

Proof. We first prove the result in the case that α is rational. Denote α =
(
k1
N , . . . ,

kn
N

)
for some k1, . . . , kn ∈

Z+ and N ∈ N. Considering variables y1,1, . . . , y1,k1 , y2,1, . . . , yn,kn , we define

q(y) := p

(
y1,1 + · · ·+ y1,k1

k1
, . . . ,

yn,1 + · · ·+ yn,kn
kn

)N
,

so that q ∈ RdN+ [y1,1, . . . , yn,kn ]. Since q(1) = 1 and

∂yi,jq(1) =

[
N

ki
(∂xip)p

N−1
]

(1) = 1,

we in fact have q ∈ HStabdN (1). Letting v ∈ RdN+ be such that vi,j = ui for all i, j, note that the roots of
q(1t− v) will consist of N copies of the d roots of p(1t− u). So by Theorem 7.1, there exists D ∈ MatdN (1)
such that

Dv = (λ1(u), . . . , λ1(u), λ2(u), . . . , λ2(u), . . . , λd(u), . . . , λd(u))

where the roots are all repeated N times. Let D′ be the d × n matrix formed by summing the elements of
each N × ki block of D and dividing by N . We then have

d∏
i=1

(D′u)i =

d∏
i=1

λi(u) = (−1)np(1 · 0− u) = p(u).

Since the row sums of D′ are all equal to 1 and the column sums are given by ki
N , we have that D′ is the

desired d× n matrix with row sums 1 and column sums given by α, which proves the result for p.
We now handle the case of irrational α. First if αk = 0 for some k, then p does not depend on xk

and the result follows by induction. So we may assume that αk > 0 for all k ∈ [n]. By [22], the set of
homogeneous real stable polynomials of degree d in n variables is the closure of its interior with respect to
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the Euclidean topology on coefficients. Define the map M(q) := ∇q(1) on the space of q ∈ Rd[x1, . . . , xn]
for which q(1) = 1, and note that this map is linear and surjects onto the affine subspace of Rn consisting
of vectors whose entries sum to d. Choosing a small neighborhood U about p, surjectivity and linearity
imply M(U) contains a small open ball about α in the range of M . We can therefore choose a sequence
pj ∈ Rd+[x1, . . . , xn] such that pj(1) = 1, ∇pj(1) = αj , and αj is rational for all j, and αj → α and pj → p.
The previous arguments then imply there exists a d×n matrix Aj with row sums all equal to 1 and columns

sums given by αj , such that pj(u) =
∏d
i=1(Aju)i for all j. By compactness of the set of all d × n matrices

with non-negative entries and row sums all equal to 1, we can assume that Aj is a convergent subsequence
with limit A. Therefore A is a d × n matrix with non-negative entries such that the row sums of A are all
equal to 1, the column sums are given by α, and p(x) =

∏d
i=1(Au)i. This completes the proof.

Corollary 7.3. Fix n ∈ N, u, α ∈ Rn+, and p ∈ HStabn(α). There exists f ∈ Prodn(α) such that p(u) =
f(u).

Corollary 7.4. Fix n, d ∈ N, u, α ∈ Rn+, and p ∈ NHStabdn(α). There exists f ∈ NHProddn(α) such that
p(u) = f(u).

Proof. Let q(x) = xdn+1 · p
(

x1

xn+1
, . . . , xn

xn+1

)
be the homogenization of p, and define β := ∇q(1). So q ∈

Rd+[x1, . . . , xn+1] such that q(1) = 1 and ∇q(1) = β = (α1, . . . , αn, d − ‖α‖1). Define un+1 := 1, apply
Theorem 7.2 to q and u, and dehomogenize to obtain the desired result.

The perturbation argument at the end of the proof of Theorem 7.2 can also be replaced by a different
argument which uses the fact that r 7→ ∇p(r · x)|x=1 maps the strict positive orthant to the relative interior
of the Newton polytope of p. With this, we can choose pj ∈ Rd+[x1, . . . , xn] such that p(1) = 1 and
∇p(1) = αj for αj rational by choosing particular values of rj which limit to 1. As a note, both arguments
work for both log-concave and strongly log-concave polynomials (topological properties of the set of strongly
log-concave polynomials follow from results of [6]).

We now prove the capacity bound for real stable polynomials. Recall the definition of Ln(α) given in
Section 5.

Corollary 7.5. For p ∈ HStabn(α), we have

Cap1(p) ≥ Ln(α) ≥
(

1− ‖1− α‖1
2

)n
.

Proof. The second inequality is given by Theorem 5.5, so we just need to prove the first inequality. For any
x ∈ Rn+, let f ∈ Prodn(α) be such that p(x) = f(x) according to Corollary 7.3. With this, we have

Cap1(p) = inf
x>0

p(x)

x1
≥ inf
x>0

min
f∈Prodn(α)

f(x)

x1
= Ln(α).

Note that to get this lower bound on capacity, we actually only needed a lower bound for the productization.
That is, we only used the fact that for any p ∈ HStabn(α) and any x ∈ Rn+, there is some f ∈ Prodn(α)
such that p(x) ≥ f(x). Of course, having equality in the productization is a nice fact on its own.

Finally, we apply the productization result to obtain the desired capacity bound for non-homogeneous
real stable polynomials. Recall the definition of LNHProd

n (α;κ) given in Section 6.

Corollary 7.6. For p ∈ NHStabdn(α) and κ ∈ Zn+ such that ‖α− κ‖1 ≤ 1− ε, we have

Capκ(p) ≥ LNHProd
n (α;κ) ≥ εn.
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Proof. The second inequality is given by Theorem 6.6, so we just need to prove the first inequality. For any
x ∈ Rn+, let f ∈ NHProddn(α) be such that p(x) = f(x) according to Corollary 7.4. With this, we have

Capκ(p) = inf
x>0

p(x)

xκ
≥ inf
x>0

min
d∈N

min
f∈NHProddn(α)

f(x)

xκ
= LNHProd

n (α;κ).

8 Application to Metric TSP

In a recent paper [20], Karlin, Klein and Oveis Gharan give an improved approximation factor for metric
TSP. Their proof relies on bounds similar to that of Theorem 2.1 and Theorem 2.3. In this section, we
discuss how our bounds relate to their bounds.

First we need to set up a bit of their notation. Let µ be a probability distribution on {0, 1}m, and let
the corresponding probability generating function be given by

pµ(z) :=
∑
S⊆[m]

P(1S)zS .

Such a distribution µ is called strongly Rayleigh (SR) when the polynomial p is real stable. Let X be a
random variable distributed according to µ. We then want to investigate random variables A1, . . . , An which
are defined via sets S1 t · · · t Sn = [m] by

Ai :=
∑
s∈Si

Xs.

That is, Ai is the random variable given by summing the entries of X corresponding to Si. Our Theorem 2.1
then naively implies the following bound. Note that for large d, this is much weaker than what we achieve
below in Corollary 8.2.

Corollary 8.1. Let µ be a strongly Rayleigh distribution on {0, 1}m, and let A1, . . . , An be random variables
corresponding to sets S1, . . . , Sn as described above. Define βi := E[Ai], and let d be the size of the largest
set that µ assigns a non-zero probability. If ‖β − 1‖1 < 1− ε, then

P[∀i : Ai = 1] > e−nεd.

Proof. To prove this, we translate the above discussion into the language of polynomials. Given µ and
S = (S1, . . . , Sn), define

pµ,S(x1, . . . , xn) := pµ(z)|zi=xj for i∈Sj .

So pµ,S is a polynomial in n variables of degree at most m, and the coefficient of xκ is the probability that
(A1, . . . , An) = κ. In particular, we want to bound the coefficient of x1 in pµ,S . Further, we also define
Pµ,S(x1, . . . , xn, xn+1) as the homogenization of pµ,S , and d ≤ m is its degree. Since setting variables equal
and homogenization are operations which preserve real stability when the coefficients are non-negative, we
have that Pµ,S is real stable when µ is SR. We finally define

Qµ,S(x1, . . . , xd) := Pµ,S

(
x1, . . . , xn,

xn+1 + · · ·+ xd
d− n

)
which is then also a real stable homogeneous polynomial, of degree d in d variables.

We now apply our bound to the polynomial Qµ,S . Since β := ∇pµ,S(1), we have

α := ∇Qµ,S(1) =

(
β1, . . . , βn,

d− ‖β‖1
d− n

)
.
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Note further that Qµ,S(1) = 1. Now, ‖β − 1‖1 < 1− ε then implies

‖α− 1‖1 = ‖β − 1‖1 + (d− n)

∣∣∣∣d− ‖β‖1d− n
− 1

∣∣∣∣
= ‖β − 1‖1 +

∣∣∣∣∣
n∑
i=1

1− βi

∣∣∣∣∣
< 2(1− ε).

Applying our theorem then gives

inf
x1,...,xd>0

Qµ,S
x1 · · ·xd

≥
(

1− ‖1− α‖1
2

)d
> εd.

Additionally, it is easy to see that the x1 coefficients of Qµ,S and pµ,S are related via

〈x1〉pµ,S =
(d− n)d−n

(d− n)!
· 〈x1〉Qµ,S .

We finally apply Gurvits’ original coefficient bound (see Theorem 1.4 of [20]) to get

〈x1〉Qµ,S ≥
d!

dd
· inf
x1,...,xd>0

Qµ,S
x1 · · ·xd

>
d!

dd
· εd.

Combining everything then gives

P[∀i : Ai = 1] = 〈x1〉pµ,S >
(d− n)d−n

(d− n)!
· d!

dd
· εd ≥ e−nεd,

as desired.

Our Theorem 2.3 then implies the following bound. This bound is a major improvement over that of
Corollary 8.1 above.

Corollary 8.2. Let µ be a strongly Rayleigh distribution on {0, 1}m, and let A1, . . . , An be random variables
corresponding to sets S1, . . . , Sn as described above. Let βi := E[Ai] and fix κ ∈ Zn+. If ‖β − κ‖1 ≤ 1 − ε,
then

P[∀i : Ai = κi] ≥ e−‖κ‖1
κκ

κ!
εn ≥ εn

∏
κi>0

1

e
√
κi
.

Proof. As in the proof of Corollary 8.1, given µ and S = (S1. . . . , Sn) we define

pµ,S(x1, . . . , xn) := pµ(z)|zi=xj for i∈Sj .

So pµ,S ∈ NHStabmn (β) and the coefficient of xκ is the probability that (A1, . . . , An) = κ. We now want to
bound the coefficient of xκ in pµ,S . We first apply Gurvits’ coefficient bound (see Corollary 3.6 of [17]) to
get

〈xκ〉pµ,S ≥ e−‖κ‖1
κκ

κ!
Capκ(pµ,S).

By applying the bound of Corollary 7.6, we then obtain

〈xκ〉pµ,S ≥ e−‖κ‖1
κκ

κ!
εn.

This proves the first inequality, and the second inequality follows from Stirling’s approximation.
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Corollary 8.3. Let µ be a strongly Rayleigh distribution on {0, 1}m, and let A1, . . . , An be random variables
corresponding to sets S1, . . . , Sn as described above. Let βi := E[Ai]. If ‖β − 1‖1 ≤ 1− ε, then

P[∀i : Ai = 1] ≥
( ε
e

)n
.

Our bound in Corollary 8.1 compares favorably to that of [20] when d is of order at most 2n. However, the
main problem with that bound is its dependence on d, which could be as large as m. In [20], the authors were
able to achieve a bound that was independent of m (and d), and this was important to their applications.

Corollary 8.2 and Corollary 8.3 utilize more intricate arguments than what was used to prove Corollary
8.1; see Section 6. The benefit is a vastly superior bound for large d, which is also independent of m and d
as required by the arguments of [20]. Utilizing these improved bounds in the context of [20] should lead to
a significant further improvement of approximation constant for metric TSP.

9 Algorithms

9.1 Scaling for real stable polynomials

In this section, we describe the scaling algorithm referenced in Theorem 2.5 and demonstrate its rate of
convergence To do this, we first introduce some notation. We define the vector x(0) := 1 as the starting
point for algorithm, and for a given fixed homogeneous polynomial p of degree n in n variables we define

x
(t+1)
i :=

c(t)

γ
(t)
i

· x(t)i where γ
(t)
i :=

x
(t)
i ∂xip(x

(t))

p(x(t))
and c(t) :=

(
γ
(t)
1 · · · γ(t)n

) 1
n

for all t ∈ N. Note that since x(0) := 1, we have that
∏
i x

(t)
i = 1 for all t by induction.

The algorithm for scaling is then given precisely by iteratively constructing the vectors x
(t)
i as defined

above. We prove the claimed rate of convergence for this algorithm in Proposition 9.2 below. First though,
we need a lemma.

Lemma 9.1. There exists a positive constant C such that for large enough n and all γ ∈ Rn+ for which∑
i γi = n, we have

log(γ1 · · · γn) ≤ max

{
−C,−‖1− γ‖

2
2

6

}
.

When ‖1− γ‖1 < 2, we further have

log(γ1 · · · γn) ≤ −‖1− γ‖
2
2

6
.

Proof. We split into two cases. In the first case, we assume that γi ∈ (0, 2) for all i. (Note that ‖1− γ‖1 < 2
implies that we are in this case since

∑
i γi = n.) So we can use the Taylor expansion of log(1− x) to get

log(γ1 · · · γn) = −
∞∑
k=1

1

k

n∑
i=1

(1− γi)k = −
n∑
i=1

(1− γi)−
∞∑
k=2

1

k

n∑
i=1

(1− γi)k = −
∞∑
k=2

1

k

n∑
i=1

(1− γi)k,

since
∑
i γi = n. Since γi ∈ (0, 2), we also have that |1− γi|k ≥ |1− γi|k+1. This implies

−
∞∑
k=2

1

k

n∑
i=1

(1− γi)k ≤ −
∞∑
k=2

(−1)k

k

n∑
i=1

|1− γi|k

= −
n∑
i=1

|1− γi|2

6
−

n∑
i=1

|1− γi|2 − |1− γi|3

3
−

∞∑
k=4

k, even

n∑
i=1

[
|1− γi|k

k
− |1− γi|

k+1

k + 1

]

≤ −
n∑
i=1

|1− γi|2

6
− 0− 0.
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This proves the result in the first case.
In the second case, we assume that γi ≥ 2 for some i, and without loss of generality we can assume i = n.

By assumption, we have that
∑n−1
i=1 γi = n− γn, and to follows from concavity of log that log(γi · · · γn−1) is

maximized over this domain when γ1 = γ2 = · · · = γn−1 = n−γn
n−1 . With this we have

log(γ1 · · · γn) ≤ log

[(
1− γn − 1

n− 1

)n−1]
+ log γn ≈ 1− γn + log γn,

for large enough n. The right-hand side is decreasing in γn for γn ≥ 2, and so

1− γn + log γn ≤ −1 + log 2 = −C.

This completes the proof.

With this, we now prove the rate of convergence of the above iterative procedure.

Proposition 9.2. Let p be a real stable homogeneous polynomial of degree n in n variables such that p(1) = 1
and Cap1(p) > 0. The above iterative procedure gives an algorithm for approximating, monotonically from
above, the value of Cap1(p). The rate of convergence is O(1/t) where t is the number of iterations and O
depends on n and the value of Cap1(p).

Proof. Applying Proposition 10.2 gives

p(x(t+1))

p(x(t))
≤

(
1

n

n∑
i=1

γ
(t)
i ·

x
(t+1)
i

x
(t)
i

)n
=

(
1

n

n∑
i=1

γ
(t)
i ·

c(t)

γ
(t)
i

)n
= γ

(t)
1 · · · γ(t)n .

By definition of γ
(t)
i , Euler’s identity for homogeneous functions gives

n∑
i=1

γ
(t)
i =

n∑
i=1

x
(t)
i ∂xip(x

(t))

p(x(t))
=
n · p(x(t))
p(x(t))

= n.

By the previous lemma, this implies

log
(
p(x(t+1))

)
− log

(
p(x(t))

)
≤ log

(
γ
(t)
1 · · · γ(t)n

)
≤ max

{
−C,−‖1− γ

(t)‖22
6

}
for n large enough where C is the positive constant from the previous lemma. Defining εt := log p(x(t)) −
log Cap1(p), this implies

εt+1 ≤ εt + max

{
−C,−‖1− γ

(t)‖22
6

}
.

We now set out to describe the rate at which the error εt goes to 0.
First suppose that ‖1− γ(0)‖1 ≥ 2. Then ‖1− γ(t)‖22 ≥ 1

n‖1− γ
(t)‖21 ≥ 4

n , which implies

εt+1 ≤ εt + max

{
−C,−‖1− γ

(t)‖22
6

}
≤ εt + max

{
−C,− 2

3n

}
≤ εt −

2

3n
.

Since log Cap1 is a finite constant, this implies that either the error is 0 or ‖1 − γ(t)‖1 < 2 after a number
of iterations which is linear in n.

Therefore, we from now on assume that ‖1 − γ(0)‖1 < 2. This allows us to use our main bound from
Theorem 2.1, which implies

εt = log p(x(t))− log Cap1(p) ≤ 0− n · log

(
1− 1

2
‖1− γ(t)‖1

)
.
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The inequality log p(x(t)) ≤ 0 follows inductively from the fact that our starting point above was x = 1 (for
which this inequality holds) and at every step εt is decreasing. Using the Taylor expansion for log and the
inequality between the 1-norm and the 2-norm, we then have

εt ≤ −n · log

(
1− 1

2
‖1− γ(t)‖1

)
≤ −n · −1

2
‖1− γ(t)‖1 ≤

n
√
n

2
‖1− γ(t)‖2.

Rearranging this gives

−‖1− γ
(t)‖22

6
≤ − 2

3n3
· ε2t .

Using the previous lemma in the case that ‖1− γ‖1 < 2, we then have

εt+1 ≤ εt −
‖1− γ(t)‖22

6
≤ εt −

2

3n3
· ε2t .

Denoting δt := 2
3n3 · εt, this implies

δt+1 ≤ δt − δ2t .

We claim that this implies

δt ≤
1

δ−10 + t
.

To see this, first note that it is trivial for the base case t = 0. Then by induction, we have

δt+1 ≤ δt − δ2t ≤
1

δ−10 + t
− 1

(δ−10 + t)2
=
δ−10 + t− 1

δ−10 + t
· 1

δ−10 + t
≤ δ−10 + t

δ−10 + t+ 1
· 1

δ−10 + t
=

1

δ−10 + t+ 1
.

This finally implies

εt ≤
3n3

2
· 1

3n3

2ε0
+ t

=
ε0

1 + 2ε0
3n3 · t

,

which is what was to be proven.

Remark 9.3. There is another iterative algorithm for scaling a polynomial p0 to have marginals equal to 1,
via Bregman projections in terms of standard Kullback-Leibler divergence between the vectors of coefficients
of polynomials (see [7]). This algorithm is given as follows. First, project p0 onto the space of polynomial for
which p(1) = 1 and ∂x1p(1) = 1 to get p1. Next, project p1 onto the space of polynomial for which p(1) = 1
and ∂x2p(1) = 1 to get p2. Continue this process for all partial derivatives ∂x1 , ∂x2 , ∂x3 , . . ., and once all
variables have been used, start the process over again at ∂x1

. If Cap1(p0) > 0, then this process will converge.
This iterative algorithm is not the same as ours given above. In fact, this Bregman projections approach
works for general polynomials with non-negative coefficients, while our approach requires restrictions on the
polynomial (log-concavity, at least). The benefit of our algorithm is that it is simpler to implement.

9.2 An algorithm for computing Ln(α)

In this section, we give an algorithm for computing the minimum capacity value Ln(α) for any fixed α > 0.
Recall

Ln(α) = min
p∈Prodn(α)

Cap1(p) = min
p∈HStabn(α)

Cap1(p),

where the second equality follows from the results of the previous section. To compute this minimum, first
note that

f(M) := log Cap1

(
n∏
i=1

(Mx)i

)
= inf
x>0

(
n∑
i=1

log(Mx)i − αi log xi

)
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is concave as a function of M ∈ Matn(α). This follows from the fact that
∑n
i=1 log(Mx)i − αi log xi is a

concave function in M for all x, and concavity is preserved under taking inf. Therefore to compute

Ln(α) = min
p∈Prodn(α)

Cap1(p) = min
M∈Matn(α)

ef(M),

we just need to minimize f(M) over the extreme points of Matn(α). The support (non-zero entries) of the
extreme points of Matn(α) then correspond to bipartite forests on 2n vertices. (To see this, note that if the
support of M contains a cycle, then one can perturb the corresponding entries by ±ε with alternating sign
to show that M is not extreme.) Now let M be an extreme point of Matn(α) with support F which is a
bipartite forest on 2n vertices. Then there is some row or column of M which contains exactly one non-zero
element, corresponding to an edge connected to a leaf of F . The appropriate row or column sum then forces
a specific value for this entry of M . Remove that edge from F , and remove the corresponding row or column
from M . Since F is still a forest after this, we can recursively apply the above argument. This implies the
entries of M are actually determined by F . So for every bipartite forest F on 2n vertices, there is at most
one M with support F . The above argument also describes the algorithm for constructing the matrix M
from F . (If at any point a row or column sum is violated, it means there is no such M with support F .)
These observations then yield an algorithm for computing Ln(α), given as follows.

1. Iterate over all bipartite forests F on 2n vertices.

2. Construct the matrix M ∈ Matn(α) associated to F , or skip this F if no such M exists.

3. Compute f(M), keeping track of the minimum value.

This algorithm has running time on the order the number of spanning forests of the complete bipartite graph
on 2n vertices, which is at least n2(n−1).

10 More General Polynomial Classes

10.1 Bounds for other polynomial classes

We have not yet been able to prove the same capacity bound for log-concave or strongly log-concave poly-
nomials. In this section, we discuss a number of results and observations which suggest that such a bound
should be possible. The main thing we are missing is a productization result for strongly log-concave poly-
nomials. For real stable polynomials, we were able to explicitly construct the matrices which gave rise to
the productization. The first lemma here shows that a productization result already follows from a bound
by the min and max product polynomials.

Lemma 10.1. Fix n ∈ N, x, α ∈ Rn+, and p ∈ Rn+[x1, . . . , xn] such that p(1) = 1 and ∇p(1) = α. Suppose
further that

max
f∈Prodn(α)

f(x) ≥ p(x) ≥ min
f∈Prodn(α)

f(x).

Then there exists f ∈ Prodn(α) such that p(x) = f(x).

Proof. Define the map P : Matn(α)→ R+ via

P (A) :=

n∏
i=1

(Ax)i.

Since Matn(α) is a closed convex polytope, its image under P is a closed interval. The result follows.
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Further, we actually only need the productization lower bound to obtain capacity lower bounds. That is, to
prove a capacity bound for (strongly) log-concave polynomials, we just need to prove for any x and α that

min
p∈LCn(α)

p(x) ≥ min
f∈Prodn(α)

f(x).

That said, we now state various relations between these upper and lower bounds for the various classes of
polynomials.

Proposition 10.2. Fix n ∈ N and y ∈ Rn+. Given p ∈ Rn+[x1, . . . , xm], define γ = ∇p(y·x)
p(y)

∣∣∣
x=1

. For any

x ∈ Rm+ , we have

1.
p(x)

p(y)
≤ 1

n

m∑
i=1

γi

(
xi
yi

)n
for all p ∈ Rn+[x1, . . . , xm].

2.
p(x)

p(y)
≤

(
1

n

m∑
i=1

γi ·
xi
yi

)n
for all p ∈ Rn+[x1, . . . , xm] which is log-concave in Rm+ .

3.
p(x)

p(y)
≥
(
x1
y1

)γ1
· · ·
(
xm
ym

)γm
for all p ∈ Rn+[x1, . . . , xm].

Proof. Since p(x)
p(y) = p(y·x)

p(y) and variable scaling preserves the various classes of polynomials, we only need to

prove the bounds for y = 1 and p(1) = 1.
(1). By AM-GM, we have xµ ≤

∑m
i=1

µi
n x

n
i for any µ ∈ Zn+ and any x ∈ Rn+. Therefore

p(x) =
∑
µ

pµx
µ ≤

∑
µ

pµ

m∑
i=1

µix
n
i

n
=

m∑
i=1

xni
n

∑
µ

µipµ =

m∑
i=1

xni
n
· γi.

(2). By log-concavity, p
1
n is concave in the positive orthant. Further, we have

p
1
n (1) =

∑m
i=1 γi · 1
n

and ∇|x=1(p
1
n ) =

(γ1
n
, . . . ,

γm
n

)
= ∇|x=1

(∑n
i=1 γixi
n

)
.

Since 1
n

∑n
i=1 γixi is linear and p

1
n is concave, this immediately implies p(x) ≤

(
1
n

∑n
i=1 γixi

)n
.

(3). Proposition 4.10 implies p(x)
xγ ≥ 1, which gives the bound.

An immediate corollary of (2) in the above proposition is that the maximizing polynomial for log-concave
polynomials is a product polynomial, stated formally as follows.

Corollary 10.3. For n ∈ N and x, α ∈ Rn+, we have

max
p∈Prodn(α)

p(x) =

(∑n
i=1 αixi
n

)n
= max
p∈LCn(α)

p(x).

Note also that (1) in the above proposition implies there is no such relationship between product polynomials
and polynomials p ∈ Rn+[x1, . . . , xn] in general.

Of course what we really care about here is the lower bound, which in general is more difficult. In
particular, it seems unlikely that the minimums will have explicit formulas like the maximums did in Corollary
10.3. One thing we can say in the direction of a lower bound follows from (3) in the above proposition, stated
as follows.

Corollary 10.4. For n ∈ N, x ∈ Rn+, and non-negative integer vector α ∈ Zn+, we have

min
p∈Prodn(α)

p(x) =

n∏
i=1

xαii = min
p∈Rn+[x1,...,xn]

p(x).

Proof. Follows from the fact that
∏n
i=1 x

αi
i is a product polynomial when α ∈ Zn+.
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10.2 The general minimization problem

In general, the minimization problem for general polynomials p ∈ Rn+[x1, . . . , xm] for which p(1) = 1 and
∇p(1) = α can be written as the linear program

min
pµ≥0∑
µ µ·pµ=α

∑
µ

pµt
µ

where t > 0 is fixed. (Note that homogeneity makes the p(1) = 1 condition equivalent to
∑
i αi = n.) One

thing we can do is characterize the support of the minimizers of the above linear program.

Proposition 10.5. For t, α ∈ Rm+ , a support set S is the support of a polynomial p ∈ Rn+[x1, . . . , xm] which
minimizes the above linear program if and only if the following hold.

1. α is in the convex hull of S.

2. There exists β ∈ Rm such that

(t1x1 + · · ·+ tmxm)n − (β1x1 + · · ·+ βmxm)(x1 + · · ·+ xm)n−1

is supported outside of S and has non-negative coefficients.

Proof. ( =⇒ ). Property (1) is immediate. For property (2), consider the standard dual linear program,
along with an equivalent formulation with slack variables:

min
y∈Rm∑m

i=1 µiyi≤t
µ

m∑
i=1

αiyi ⇐⇒ min
y∈Rm∑m

i=1 µiyi+sµ=t
µ

sµ≥0

m∑
i=1

αiyi.

Now suppose p? is an optimum for the primal program with support S, and let y?, s? be an optimum for the
dual program with slack variables. Strong duality then implies

α · y? =
∑
µ

p?µt
µ =

∑
µ

p?µ
[
µ · y? + s?µ

]
= α · y? +

∑
µ

p?µs
?
µ =⇒

∑
µ

p?µs
?
µ = 0.

Therefore s?µ = 0 for µ ∈ S, which implies
∑m
i=1 µiy

?
i = tµ for µ ∈ S. With this, define

q(x) :=
∑
µ

(
n

µ

)
xµ

[
tµ −

m∑
i=1

µiy
?
i

]
= (t1x1 + · · · tmxm)n − n

m∑
i=1

y?i xi
∑
µ

(
n− 1

µ− δi

)
xµ−δi

= (t1x1 + · · · tmxm)n − n(y?1x1 + · · · y?mxm) · (x1 + · · ·xm)n−1.

Letting β := ny? completes this direction of the proof.
(⇐= ). Now let p be a polynomial with support S for which ∇p(1) = α, and let

q(x) = (t1x1 + · · ·+ tmxm)n − (β1x1 + · · ·+ βmxm)(x1 + · · ·+ xm)n−1.

Using the Bombieri (Fischer-Fock, etc.) inner product, we have

0 = 〈p, q〉 = p(t)− β

n
· ∇p(1) = p(t)− α · β

n
=⇒ p(t) =

α · β
n

.

Further, for any polynomial p with non-negative coefficients and ∇p(1) = α we have

0 ≤ 〈p, q〉 = p(t)− α · β
n

=⇒ p(t) ≥ α · β
n

.

Therefore p minimizes the primal linear program, and this completes this direction of the proof.

24



For rational gradient, a completely general lower bound in terms of product polynomials is unlikely to hold.
To see this, note the following support condition implied by the above results.

Lemma 10.6. Fix n ∈ N and α ∈ Rn+, and let p ∈ Rn+[x1, . . . , xn] be such that p(1) = 1 and ∇p(1) = α. If
Cap1(p) ≥ Ln(α), then either 1 ∈ Newt(p) or ‖1− α‖1 ≥ 2.

Proof. If Cap1(p) > 0, then 1 ∈ Newt(p) by Proposition 4.11. Otherwise, 0 = Cap1(p) ≥ Ln(α) which
implies ‖1− α‖1 ≥ 2 by Proposition 5.4.

That is, a general lower bound by product polynomials is contradicted by the existence of a polynomial with
non-negative coefficients for which ∇p(1) is close to 1 but 1 6∈ Newt(p). Such a polynomial likely exists.
On the other hand, the well-known matroidal support conditions of strongly log-concave polynomials imply
that this polynomial cannot be in SLCn(α), and so a lower bound by product polynomials is still possible
in the strongly log-concave case.

10.3 Capacity upper bounds

Although we are mainly interested in lower bounds on capacity in this paper, upper bounds can also be
achieved using similar methods. In this section we use the results of Section 10 to prove upper bounds on
the capacity of various classes of polynomials. We present these observations for the interested reader, but
say nothing further about them. The first is a tight bound for p ∈ LCn(α) which is also tight for Prodn(α).

Proposition 10.7. For n ∈ N, α ∈ Rn+, and p ∈ LCn(α), we have

Cap1(p) ≤
n∏
i=1

αi.

This bound is tight over all p ∈ Prodn(α), and hence tightness also holds for p ∈ LCn(α), p ∈ SLCn(α), and
p ∈ HStabn(α).

Proof. By (2) of Proposition 10.2 and Lemma 4.13, we have

Cap1(p) = Cap1

((
1

n

n∑
i=1

αixi

)n)
=

n∏
i=1

αi.

Tightness follows from the fact that
(
1
n

∑n
i=1 αixi

)n ∈ Prodn(α).

Interestingly this bound does not hold for polynomials in general, for which we obtain a different tight bound.

Proposition 10.8. For n ∈ N, α ∈ Rn+, and p ∈ Rn+[x1, . . . , xn] such that p(1) = 1 and ∇p(1) = α, we have

Cap1(p) ≤

(
n∏
i=1

αi

) 1
n

,

and this bound is tight.

Proof. By (1) of Proposition 10.2, we have

Cap1(p) ≤ Cap1

(
1

n

n∑
i=1

αix
n
i

)
.

We then compute

0 = ∇ log

( 1
n

∑n
i=1 αie

nxi

e1·x

)
= ∇

[
log

(
1

n

n∑
i=1

αie
nxi

)
− 1 · x

]
⇐⇒ αie

nxi

1
n

∑n
i=1 αie

nxi
= 1 ∀i.
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This is equivalent to saying that αie
nxi = αje

nxj for all i, j, which occurs when xi = − logαi
n for all i.

Plugging this in to the objective function gives

log Cap1(p) ≤ log

(
1
n

∑n
i=1 αi · α

−1
i

(α1 · · ·αn)−
1
n

)
= log

(
(α1 · · ·αn)

1
n

)
.

Exponentiating gives the bound. Tightness is immediate.

Again, since this paper is predominantly about lower bounds on polynomial capacity, we say nothing further
about these upper bounds.
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