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Abstract

Query-to-communication lifting theorems translate lower bounds on query complexity
to lower bounds for the corresponding communication model. In this paper, we give a
simplified proof of deterministic lifting (in both the tree-like and dag-like settings). Whereas
previous proofs used sophisticated Fourier analytic techniques, our proof uses elementary
counting together with the sunflower lemma.
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1 Introduction

A query-to-communication lifting theorem is a reductive lower bound technique that translates lower
bounds on query complexity (such as decision tree complexity) to lower bounds for the corresponding
communication complexity model. There is a substantial body of work proving lifting theorems for
a variety of flavors of query-to-communication, including: deterministic [RM99, GPW15, dRNV16,
WYY17, CKLM17], nondeterministic [GLM+16, Göö15], randomized [GPW17, CFK+19] degree-to-
rank [She11, PR17, PR18, RPRC16] and nonnegative degree to nonnegative rank [CLRS16, KMR17].

In these papers and others, lifting theorems have been applied to simplify and resolve some long-
standing open problems, including new separations in communication complexity, [GP18, GPW15,
GPW17, CKLM17, CFK+19], proof complexity [GLM+16, HN12, GP18, dRNV16, dRMN+19,
GKMP20] monotone circuit complexity [GGKS18], monotone span programs and linear secret
sharing schemes [RPRC16, PR17, PR18], and lower bounds on the extension complexity of linear
and semi-definite programs [CLRS16, KMR17, LRS15].

At the heart of these proofs is a simulation theorem. For a function f : {0, 1}n → R, and a
function g : X × Y → {0, 1} (called the gadget), their composition f ◦ gn : X n × Yn → R is defined
by

(f ◦ gn)(x, y) := f(g(x1, y1), . . . , g(xn, yn)).

Here, Alice holds x ∈ X n and Bob holds y ∈ Yn. Typically g is the popular index gadget
Indm : [m]× {0, 1}m → {0, 1} mapping (x, y) to the xth bit of y. For m = nO(1), and for every f
the deterministic simulation theorem [RM99, GPW15] states that:

Pcc(f ◦ Indnm) = Pdt(f) ·Θ(logn).

The proof of this theorem has evolved considerably since [RM99], applying to a wider range of
gadgets, and with more sharpened results giving somewhat improved parameters and simulation
theorems for the more difficult settings of randomized and dag-like lifting. However, nearly all
proofs of even the basic deterministic simulation theorem are fairly involved, and use tools from the
Fourier analysis of Boolean functions, together with somewhat intricate counting arguments.

Lifting using the sunflower lemma. The primary purpose of this paper is to give a readable,
self-contained and simplified proof of the deterministic query-to-communication lifting theorem.
Our proof uses the same basic setup as in previous arguments, but our proof of the main invariant –
showing that any large rectangle can be decomposed into a part that has structure and a part that
is pseudo-random – is proven by a direct reduction to the famous sunflower lemma.

The sunflower lemma is one of the most important examples of a structure-versus-randomness
theorem in combinatorics. A sunflower with r petals is a collection of r sets such that the intersection
of each pair is equal to the intersection of all of them. The sunflower lemma of Erdös and Rado
[ER60] roughly states that in any sufficiently large k-uniform set system (of size about ww) must
contain a sunflower. A recent breakthrough result due to Alweiss et al. [ALWZ20] proves the
sunflower lemma with significantly improved parameters, making a huge step towards resolving the
longstanding open problem obtaining optimal parameters.

Both the original Sunflower Lemma as well as Rossman’s robust version [Ros10] have played
an important role in recent advances in theoretical computer science. Most famously, Razborov
proved the first superpolynomial lower bounds for monotone circuits computing the Clique function,
using the Sunflower Lemma. It has also been a fundamental tool used to obtain a wide variety of
other hardness results including: hardness of approximation, matrix multiplication, cryptography,
and data structure lower bounds. (See [ALWZ20] for a nice survey of the many applications to
Computer Science.)
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In all of these lower bounds, the central idea is to use the sunflower lemma in order to “tame”
a protocol or algorithm, in order to show that at each step of the computation, the underlying
set of inputs consistent so far can be partitioned into a structured part and a random part. This
allows the algorithm to be massaged into a simpler form, where the lower bound is easier to prove.
Since lifting theorems are attempting to do precisely the same thing, it is natural to expect that
there should be a connection between the two lines of research. Indeed, [LLZ18], made an explicit
connection between sunflowers and randomness extractors where the latter is again a primary tool
used in many if not all of the proofs of lifting.

Our main result is a self-contained proof of the deterministic lifting theorem, using the sunflower
lemma plus an elementary counting argument. As a nice side effect, our simplified proof easily
extends to the following generalizations:

− a gadget of quasilinear size; most previous constructions required gadget size at least n2

− a lifting theorem for dag-like protocols, as proven in [GGKS18]
− a gadget of size depending only on the query complexity, as proven in [GKMP20]

For all corresponding previous theorems, our proof simplifies one of the main technical components
of the result, as well as improving on the stated parameters. We note that our results extend
straightforwardly to the real communication setting as well.

Organization for the rest of the paper. After setting up the preliminaries, in Section 3 we
present our main contribution: a simplified proof of lifting via the sunflower lemma. Then for the
remainder of the paper we investigate various extensions of this basic lifting theorem. In Section 4
we show that the gadget size m can be improved to n1+ε, and by sacrificing in the strength of
the lifting theorem we can even push it down to O(n logn). In Section 5 we show that we can lift
dag-like query complexity to dag-like communication complexity. In Section 6 we show that m can
be made poly(Pdt(f)) with no other dependence on n. For these extensions we give only a sketch
of how the proof differs from the proof of the basic lifting theorem, and where necessary how our
results fit into the context of their original proofs.

Related results. After writing a first draft of our sunflower-based proof, Lovett et al. [LMZ20]
independently published a proof similar to the one we present, stated entirely in the language of
sunflowers by drawing a connection between the central subroutines in lifting theorems and sunflower
lemmas. Our proof is stated in the language of lifting theorems, which will hopefully give it utility
to serve as an entry point to the literature on lifting theorems, as well as covering some of the recent
generalizations and improvements to this central result. They also achieve a similar tradeoff of the
gadget size and lower bound obtained, which gives them a Õ(n log2 n) sized gadget at one extreme
and n1+ε at the other.

2 Preliminaries

We will use n to denote the length of the input, N ≤ n to denote an arbitrary number, m to denote
an external parameter, and for this preliminaries section we will use S to denote an arbitrary set.
We will mostly focus on two types of universes, SN and (Sm)N . In the case of SN we often refer to
i ∈ [N ] as being a coordinate, while in the case of (Sm)N we often refer to i ∈ [N ] as being a block.

Basic notation. For a set S ⊆ S we write S̄ := S r S. For a set S and a set I ⊆ [N ] we say a
string x is in SI if each value in x is an element of S indexed by a unique element of I. For a string
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x ∈ SN and I ⊆ [N ] we define x[I] ∈ SI to be the values of x at the locations in I, and for a string
y ∈ (Sm)N and I ⊆ [N ], α ∈ [m]I we define y[I, α] ∈ SI to be the values of y at the locations αi
for each i ∈ I. For a set X ⊆ SN we define XI ⊆ SI to be the set that is the projection of X onto
coordinates I, and for a set Y ⊆ (Sm)N we define YI ∈ (Sm)I likewise. For a set system F over S
and a set S ⊆ S, we define FS̄ := {γ r S : S ⊆ γ ∈ F}.1

Definition 2.1. Let γ ⊆ [mN ]. Treating each element in γ as being a pair (i, a) where i ∈ [N ] and
a ∈ [m], we say γ is over (Sm)N , meaning that for s ∈ (Sm)N each (i, a) ∈ γ indicates an element
s[i, a] ∈ S. We sometimes say (i, a) is a pointer.

For γ over (Sm)N , γ is a block-respecting subset of [mN ] if γ contains at most one element per
block, or in other words if i 6= i′ for all distinct (i, a), (i′, a′) ∈ γ. We can represent γ by a pair
(I, α), where I ⊆ [N ] and α ∈ [m]I ; here γ chooses one element (indicated by αi) from each block
i ∈ I. A set system F over (Sm)N is block respecting if all elements γ ∈ F are block respecting.

We say that a set ρ ∈ {0, 1, ∗}N is a restriction, or sometimes a partial assignment. We denote
by free(ρ) ⊆ [N ] the variables assigned a star, and define fix(ρ) := [N ] r free(ρ). If we have two
restrictions ρ, ρ′ such that fix(ρ) ∩ fix(ρ′) = ∅, then we define ρ ∪ ρ′ to be the restriction which
assigns fix(ρ) to ρ[fix(ρ)] and fix(ρ′) to ρ′[fix(ρ′)], with all other coordinates being assigned ∗.

In general in this paper we will use bold letters to denote random variables. For a set S we
denote by S ∈ S the random variable that is uniform over S. For S ⊆ SN and I ⊆ [N ] we denote
by SI the marginal distribution over coordinates I of the uniform distribution over S; note that the
random draw is taken over the original set S before marginalizing to the coordinates I, rather than
being the uniform distribution over SI .

Definition 2.2. Let S be a set. For a random variable s ∈ S we define its min-entropy by H∞(s) :=
mins log(1/Pr[ s = s ]). We also define the deficiency of s by D∞(s) := log |S| −H∞(s) ≥ 0. When
s is chosen from a set S ⊆ SN or from a set system F over SN , we define its blockwise min-entropy
by min∅6=I⊆[N ]

1
|I|H∞(sI), or in other words the least (normalized) marginal min-entropy over all

subsets I of the coordinates [N ].

Search problems A search problem is a relation f ⊆ Z × O such that for every z ∈ Z there
exists some o ∈ O such that (z, o) ∈ f . Let f(z) 6= ∅ denote the set of all o ∈ O such that (z, o) ∈ f .
Likewise a bipartite search problem is a relation F ⊆ X ×Y ×O such that F (x, y) 6= ∅, where F (x, y)
is defined analogously to f(z). We say that f is on Z and F is on X × Y.

Definition 2.3. Let m ∈ N. The index gadget, denoted Indm, is a Boolean function which takes
two inputs x ∈ [m] and y ∈ {0, 1}m, and outputs y[x]. We will often have N separate instances
of the index gadget, which we denote by IndNm and which is a function which takes two inputs
x ∈ [m]N and y ∈ ({0, 1}m)N and outputs the Boolean string (y[i, xi])i∈[N ]. For a search problem
f with Z = {0, 1}n, the lifted search problem f ◦ Indnm is a bipartite search problem defined by
X := [m]n, Y := ({0, 1}m)n, and f ◦ Indnm(x, y) = {o ∈ O : o ∈ f(Indnm(x, y))}.

Intuitively, each x ∈ X can be viewed as a block-respecting subset over the universe [mn] where
n elements are chosen, one from each block of size m. For each i ∈ [n], to determine the value of
the variable zi in the original problem f , we restrict ourselves to the ith block of y and take the bit
indexed by the ith coordinate of x.

Consider a search problem f ⊆ {0, 1}n ×O. A decision tree T is a binary tree such that each
non-leaf node v is labeled with an input variable zi, and each leaf v of Π is labeled with a solution

1This is known in the sunflower literature as the link of F at S, and is usually written there as FS , but for the
sake of consistency we use the notation F

S
. Hopefully this won’t cause any confusion.
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ov ∈ O. The tree T solves f if, for any input z ∈ {0, 1}n the unique root-to-leaf path, generated by
walking left at node v if the variable zi that v is labeled with is 0 (and right otherwise), terminates
at a leaf u with ou ∈ f(z). We define

Pdt(f) := least depth of a decision tree solving f .

Consider a bipartite search problem F . A communication protocol Π is a binary tree where now
each non-leaf node v is labeled with a binary function v(x, y) which depends only on either X or Y
but not both. This is informally viewed as two players Alice and Bob jointly computing a function,
where Alice receives x ∈ X and Bob receives y ∈ Y, and where at each node in the protocol either
Alice or Bob computes v(x) or v(y), respectively, and ”speaks” as to which child to go to, depending
on whose turn it is. The protocol Π solves F if, for any input (x, y) ∈ X ×Y the unique root-to-leaf
path, generated by walking left at node v if v(x, y) = 1 (and right otherwise), terminates at a leaf u
with ou ∈ F (x, y). We define

Pcc(F ) := least depth of a communication protocol solving F .

An alternative characterization of communication protocols, which will be useful for proving our
main theorem, is as follows. Each non-leaf node v is labeled with a (combinatorial) rectangle
Rv = Xv × Yv ⊆ X × Y, such that if v` and vr are the children of v, Rv` and Rvr partition Rv.
Furthermore this partition is either of the form Xv` × Yv tXvr × Yv or Xv × Yv` tXv × Yvr . The
unique root-to-leaf path on input (x, y) is generated by walking to whichever child v of the current
node satisfies (x, y) ∈ Rv.

Sunflowers. Let F be a set system over some universe S, and for a set S ⊆ S recall the definition
of FS̄ . A (p, ε)-approximate sunflower is the set system FS̄ such that

Pry⊆pSrS(∀γ ∈ FS̄ : γ 6⊆ y) ≤ ε

where ⊆p means that each element is added to y independently with probability p. For this paper
we will always be using p = 1/2, and so for convenience we simply write y ⊆ S r S instead of ⊆1/2
and call FS̄ an ε-approximate sunflower instead of an (1/2, ε)-approximate sunflower. An analogue
of the famed sunflower lemma of Erdős was proved for approximate sunflowers by Rossman [Ros10]:

Lemma 2.1 (Approximate Sunflower Lemma). Let s ∈ N and let ε > 0. Let F be a set
system over S such that a) |γ| ≤ s for all γ ∈ F ; and b) |F| ≥ (s log 1/ε)s. Then F contains an
ε-approximate sunflower.

A recent breakthrough result (proved in [ALWZ20] and simplified in [Rao19]) proves the sunflower
lemma with significantly improved parameters. As a stepping stone they also prove an improvement
on Approximate Sunflower Lemma assuming a condition called spreadness; a set system F over S
is r-spread if |FS̄ | ≤ r|S|−|S| for every S ⊆ S. Note that if the blockwise min-entropy of F is log r,
then that |F| ≥ rN by averaging, and |FS̄ | ≤ |F| · r−|S| for all S ⊆ S by the definition of blockwise
min-entropy. Therefore we can state Lemma 4 in [Rao19] in the following way.

Lemma 2.2 (Blockwise Approximate Sunflower Lemma). Let s ∈ N and let ε > 0. Let F
be a set system over S such that a) |γ| ≤ s for all γ ∈ F ; and b) F has blockwise min-entropy at
least log(K log s/ε) for some absolute constant K. Then F contains an ε-approximate sunflower.
Furthermore the core of this sunflower is empty, and so by extension

Pry⊆S(∀γ ∈ F : γ 6⊆ y) ≤ ε
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In our main argument we will use a simple and general statement about the satisfiability of
monotone CNFs in order to connect sunflowers to restrictions.

Claim 2.3. Let C = C1 . . . Cm be a CNF on the variables x1 . . . xn such that no clause contains
both the literals xi and xi for any i. Let Cmon be the result of replacing, for every i, every occurrence
of xi in C with xi. Then

|{x ∈ {0, 1}n : C(x) = 1}| ≤ |{x ∈ {0, 1}n : Cmon(x) = 1}|

Proof. Let Ci be the result of replacing every occurrence of xi in C with xi. It is enough to show
that for any i, Ci(x) is satisfied by at least as many assignments β ∈ {0, 1}n to x as C(x) is, as we
can then apply the argument inductively for i = 1 . . . n. Let β−i ∈ {0, 1}[n]r{i} be an assignment to
every variable except xi. We claim that for every β−i, Ci(β−i, xi) is satisfied by at least as many
assignments βi ∈ {0, 1} to xi as C(β−i, xi).

Since there are no clauses with both xi and xi, each clause in C is of the form xi ∨A, xi ∨B, or
C, where A, B, and C don’t depend on xi; the corresponding clauses in Ci are xi ∨A, xi ∨B, and
C. If Ci(β−i, 0) = 1, then A(β−i) = B(β−i) = C(β−i) = 1 for all A, B, and C, and so Ci(β−i, xi) is
always satisfied. If Ci(β−i, 1) = 0, then it must be that C(β−i) = 0 for some C, and so C(β−i, xi)
has no satisfying assignments. Finally assume neither of these cases hold, and so Ci(β−i, 0) = 0 and
Ci(β−i, 1) = 1. Then it must be that either A(β−i) = 0 for some A, in which case C(β−i, 0) = 0, or
B(β−i) = 0 for some B, in which case C(β−i, 1) = 0. Therefore C(β−i, xi) has at least one falsifying
assignment, while Ci(β−i, xi) has exactly one.

3 The basic lifting theorem

The following determininistic lifting theorem was proven in [RM99], and more explicitly in [GPW15].

Lemma 3.1 (Basic Lifting Theorem [RM99, GPW15]). Let f be a search problem over {0, 1}n,
and let m = n1.1. Then

Pcc(f ◦ Indnm) = Pdt(f) ·Θ(logm)

To prove Basic Lifting Theorem, we prove that a) a decision tree of depth d for f can be
simulated by a communication protocol of depth O(d logm) for the composed problem f ◦Indnm, and
b) a communication protocol of depth d logm for the composed problem f ◦ Indnm can be simulated
by a decision-tree of depth O(d) for f . The forward direction is obvious: given a decision tree T for
f , Alice and Bob can simply trace down T and compute the appropriate variable zi at each node
v ∈ T visited, spending logm bits to compute Indm(xi, yi) to do so. Thus we focus on simulating a
communication protocol Π of depth d logm. Let {zi}i be the variables of f and let {xi}i, {yi}i be
the variables of f ◦ Indnm. Recall that each zi takes values in {0, 1}, xi takes values in [m], and yi
takes values in {0, 1}m.

Our proof will follow the basic structure of previous works [GPW17, GGKS18]. We first define a
procedure, called the rectangle partition, which forms the main technical tool in our simulation. We
then prove that with this tool and a few useful facts about its output, we can efficiently simulate the
protocol Π by a decision tree T , using a number of invariants to show the efficiency and correctness
of T . We give a complete and self-contained proof as well as some high-level intuition.

Where our proof differs is in the proof of one crucial lemma about the rectangle partition. Before
we begin, we prove a very useful lemma that shows that when X has high blockwise min-entropy
and Y has low deficiency, then it’s possible to find an x∗ ∈ X such that the full image of the index
gadget is available to x∗, or in other words IndNm(x∗, Y ) = {0, 1}N . This appears as Lemma 7 in
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[GGKS18] for dag-like lifting and is stronger than is necessary for proving Basic Lifting Theorem,
but the proof highlights our new counting strategy and will be a useful tool throughout the rest of
the paper. While the original proof used tools from Fourier analysis, our proof is a simple application
of Blockwise Approximate Sunflower Lemma.2

Lemma 3.2 (Full Range Lemma). Let m ≥ n1.1 and let N ≤ n. Let X×Y ⊆ [m]N ×({0, 1}m)N
be such that X has blockwise min-entropy at least 0.95 logm−O(1) and |Y | > 2mN−n logm. Then there
exists an x∗ ∈ X such that for every β ∈ {0, 1}N , there exists a yβ ∈ Y such that IndNm(x∗, yβ) = β.

Proof. Assume for contradiction that for all x there exists a βx such that |{y ∈ Y : y[x] = βx}| = 0,
or in other words for all (x, y) ∈ X × Y , y[x] 6= βx. Consider the CNF over y1 . . . ymN where clause
Cx is the clause uniquely falsified by y[x] = βx; then by Claim 2.3 we see that |{y ∈ ({0, 1}m)N :
∀x, y[x] 6= βx}| is maximized when βx = 1N . Thus because Y ⊆ ({0, 1}m)N ,

|{y ∈ Y : ∀x, y[x] 6= βx}| ≤ |{y ∈ ({0, 1}m)N : ∀j, y[x] 6= 1N}|

By the fact that m0.95 � O(n logm) and N ≤ n, X has blockwise min-entropy 0.95 logm−O(1) >
log(Kn logm)) ≥ log(K log(N/ε)), where ε := 2−n logm and K is the constant given by Blockwise
Approximate Sunflower Lemma. Thus we can apply Blockwise Approximate Sunflower Lemma to
X and get that Pry⊆[mN ](∀x ∈ X,x 6⊆ y) ≤ ε, and so

|Y | ≤ {y ∈ ({0, 1}m)N : ∀j, y[x] 6= 1N}| ≤ ε · 2mN = 2mN−n logm

which is a contradiction as |Y | > 2mN−n logm by assumption.

3.1 Density-restoring partition

Before going into the simulation, we define our essential tool, which is usually called the density-
restoring partition or rectangle partition as per [GPW17]. Let N ≤ n and let X × Y ⊆ [m]N ×
({0, 1}m)N . Our goal will be to output a set of rectangles Xj × Y j,β which cover most of X × Y
such that each Xj × Y j,β is “good” in a similar sense to the statement of Full Range Lemma. More
specifically, for each Xj × Y j,β there is some set of coordinates J ⊆ [N ] such that X and Y are
completely fixed on J and “very unfixed” on [N ]r J . For X this means high blockwise min-entropy
of XJ̄ , meaning that every joint setting of some set of free coordinates is roughly equally likely. For
Y the universe ({0, 1}m)N is so large in comparison to [m]N that a lower bound on |Y j,β

J̄
| is enough

to assure Y j,β is free enough in the unfixed coordinates.

Definition 3.1. Let N ≤ n and let ρ ∈ {0, 1, ∗}N be a partial assignment with J := fix(ρ) ⊆ [N ].
A rectangle R = X × Y ⊆ [m]N × ({0, 1}m)N is ρ-structured if the following conditions hold:

− X and Y are fixed on the blocks J and IndJm(XJ , YJ) = ρ[J ]
− XJ̄ has blockwise min-entropy at least 0.95 logm
− |YJ̄ | > 2m·|J̄ |−n logm

To perform the partition we will need to find the sets Xj × Y j,β along with a corresponding
assignment ρj,β for which they are ρj,β-structured. This is done in two phases. Our goal in Phase I
will be to break up X into disjoint parts Xj , such that each Xj is fixed on some set Ij ⊆ [N ] and

2While we simplify things in this section by using m = n1.1, our improved gadget size (see Section 4) crucially uses
the improvements in Blockwise Approximate Sunflower Lemma over the basic Approximate Sunflower Lemma; the
same improvements also give us a very short proof of our main lemma. However, these improvements aren’t strictly
necessary for our techniques; in Section 6 we provide an alternate proof just using Approximate Sunflower Lemma.
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X1

X2

X3

...

x[I1] = α1

x[I2] = α2 x[I1] 6= α1

x[I3] = α3
x[I1] 6= α1

x[I2] 6= α2

X1

X2

X3

Y 1,00 Y 1,01 Y 1,10 Y 1,11

Y 2,000 Y 2,001 Y 2,010 Y 2,011 Y 2,100 Y 2,101

Y 3,0 Y 3,1

Figure 1: Phases I and II of Rectangle Partition. In each Xj × Y j,β , x[Ij ] is fixed to αj and y[Ij ]
is fixed so that IndIjm(Xj

Ij
, Y j,β

Ij
) = β.

has blockwise min-entropy 0.95 logm on Ij—hence this partition is “density-restoring” when X
starts off with blockwise min-entropy below 0.95 logm. To do this, the procedure iteratively finds a
maximal partial assigment (Ij , αj) such that the assignment x[Ij ] = αj violates 0.95 logm blockwise
min-entropy in X, splits the remaining X into the part Xj satisfying this assignment and the part
X rXj not satisfying it, and recurses on the latter part. We do this until we’ve covered at least
half of X by Xj subsets.

Our goal in Phase II will be to break up Y into disjoint parts Y j,β for each Xj from Phase I,
such that each Xj × Y j,β is ρj,β-structured for some restriction ρj,β . We already have the blockwise
min-entropy of Xj in the coordinates [N ] r Ij by our first goal, so clearly fix(ρj,β) = Ij for any k.
Thus we need to fix the coordinates of Y within the blocks Ij , and within each Y j,β it should be
the case that y[Ij , αj ] = β for all y ∈ Y j,β , at which point ρj,β can be fixed to β on Ij and left free
everywhere else.

Algorithm 1: Rectangle Partition
Initialize F = ∅, j = 1, and X≥1 := X;
PHASE I (Xj): while |X≥j | ≥ |X|/2 do

Let Ij be a maximal (possibly empty) subset of [N ] such that X≥j violates
0.95 logm-blockwise min-entropy on Ij , and let αj ∈ [m]Ij be an outcome witnessing
this: Prx∼X≥j (x[Ij ] = αj) > 20.95|Ij | logm;

Define Xj := {x ∈ X≥j : x[Ij ] = αj};
Update F ← F ∪ {(Ij , αj)}, X≥j+1 := X≥j rXj , and j ← j + 1;

end
PHASE II (Y j,β): for j, β ∈ {0, 1}Ij do

Let Y ′ = {y ∈ Y : y[Ij , αj ] = β}, and let ηj,β ∈ ({0, 1}m)|Ij | be the string which
maximizes |{y ∈ Y ′ : y[Ij ] = ηj,β}|;

Define Y j,β := {y ∈ Y : y[Ij ] = ηj,β};
end
return F , {Xj}j , {Y j,β}j;β;
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Our algorithm is formally described in Rectangle Partition.3 Let X ⊆ [m]N , let Y ⊆ ({0, 1}m)N ,
and let F , {Xj}j , {Y j,β}j;β be the outputs of the rectangle partition on X × Y . Recall that our
goal was to break X × Y up into ρj,β-structured rectangles Xj × Y j,β; the following simple claims
show that the obvious choice of ρj,β achieves two of the three conditions needed.

Claim 3.3. For all j and for all β ∈ {0, 1}Ij , define ρj,β ∈ {0, 1, ∗}N to be the restriction where
fix(ρj,β) = Ij and ρj,β [Ij ] = β. Then Xj×Y j,β is fixed on Ij and outputs IndIjm(Xj

Ij
, Y j,β

Ij
) = ρj,β [Ij ].

Proof. By definition Xj is fixed to αj on the coordinates Ij , while Y j,β is fixed to ηj,β on the blocks Ij .
Since ηj,β ∈ {0, 1}Ij clearly satisfies ηj,β[αj ] = β, it holds that IndIjm(Xj

Ij
, Y j,β

Ij
) = β = ρj,β[Ij ].

Claim 3.4. For all j, Xj

Ij
has blockwise min-entropy at least 0.95 logm.

Proof. Assume for contradiction that I∗ ⊆ [N ] r Ij such that Xj violates 0.95 logm-blockwise
min-entropy on I∗, and let α∗ be an outcome witnessing this. Then

Prx∼X≥j (x[Ij ] = αj ∧ x[I∗] = α∗) > 2−0.95|Ij | logm ·Prx∼Xj (x[I∗] = α∗)
> 2−0.95|Ij | logm−0.95|I∗| logm = 2−0.95|Ij∪I∗| logm

which contradicts the maximality of Ij .

Before moving to the third condition, the size of Y j,β

Ij
, we show that the deficiency of each Xj

drops by Ω(|Ij | logm). This will be used later to show the efficiency of our simulation.

Claim 3.5. For all (Ij , αj) ∈ F , D∞(Xj

Īj
) ≤ D∞(X)− 0.05|Ij | logm+ 1.

Proof. By our choice of (Ij , αj) it must be that |Xj | = |X≥j | · Prx∼X≥j (x[Ij ] = αj) ≤ |X≥j | ·
2−0.95 logm. Then by a simple calculation

D∞(Xj

Īj
) = |Īj | logm− log |Xj |
≤ (N − |Ij |) logm− log(|X≥j | · 2−0.95|Ij | logm)
≤ (N logm− |Ij | logm)− log |X≥j |+ 0.95|Ij | logm− log |X|+ log |X|
= (N logm− log |X|)− 0.05|Ij | logm+ log(|X|/|X≥j |)
≤ D∞(X)− 0.05|Ij | logm+ 1

where the last step used the fact that |X≥j | ≥ |X|/2, since we terminate as soon as |X≥j | < |X|/2
at the start of the jth iteration.

For our last lemma before going into the simulation, instead of showing that |Y j,β

Ij
| = |Y j,β| is

large for every j and every β, we want to show that every |Y j,β| is large for some j and every β.
If every β were equally likely then |Y j,β| ≈ |Y |/2m·|Ij |; for us it is enough that the smallest Y j,β

be a factor of 2−O(|Ij | logm) away from this. We add two new assumptions on X × Y : 1) X starts
with blockwise min-entropy very close to 0.95 logm; and 2) Y is initially large. For convenience we
redefine X to only be the union of the Xj parts; since we terminate after |X≥j | < |X|/2 we can
do this and only decrease the blockwise min-entropy of X by 1. This lemma is new and is a fairly
direct application of Full Range Lemma, which only used the sunflower lemma.

3For those familiar with previous works [GPW17], Rectangle Partition varies in two ways: 1) we truncate Phase I
once we’ve partitioned at least half of X; and 2) in Phase II we fix the rest of Y j,β inside the blocks Ij .
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Lemma 3.6. Let X := ∪jXj be such that X has blockwise min-entropy 0.95 logm−O(1), and let
Y be such that |Y | > 2mN−n logm+1. Then there is a j such that for all β ∈ {0, 1}Ij ,

|Y j,β

Ij
| ≥ |Y |/2m·|Ij |+2|Ij | logm

Proof. We will show that there exists a j such that for every β ∈ {0, 1}Ij , |{y ∈ Y : y[Ij , αj ] = β}| ≥
|Y |/22|Ij | logm. If this is true, then by averaging there is some assignment to Ij—aka ηj,β—such that

|Y j,β

Ij
| = |Y j,β| ≥ (|Y |/22|Ij | logm)/2m·|Ij | = |Y |/2m·|Ij |+2|Ij | logm

Assume for contradiction that for every j there exists a βj such that |{y ∈ Y : y[Ij , αj ] = βj}| <
|Y |/22|Ij | logm. Define Y= := {y ∈ Y : ∃j, y[Ij , αj ] = βj}. We will show that |Y=| < |Y |/2. If this
is the case then for Y6= := Y r Y=, it must be that |Y 6=| ≥ |Y |/2 > 2mN−n logm. By Full Range
Lemma there must exist some x∗ ∈ X such that for every β ∈ {0, 1}N there exists yβ ∈ Y6= such
that yβ [x∗] = β. Since x∗ ∈ X, x∗ ∈ Xj , for some j, and so for any β ∈ {0, 1}N such that β[Ij ] = βj ,
there exists a yβ ∈ Y 6= such that yβ[x∗] = β. But since x∗ ∈ Xj , x∗[Ij ] = αj , so yβ[Ij , αj ] = βj
which is a contradiction since Y6= = {y ∈ Y : ∀j, y[Ij , αj ] 6= βj}.

We now show that |Y=| < |Y |/2. Define F(k) := {(Ij , αj) ∈ F : |Ij | = k}. Clearly |F(k)| ≤
21.9k logm−1 since there are at most

(N
k

)
� 20.9k logm−1 possible sets Ij , and for each there are mk

possible assignments αj . Furthermore F(0) must be empty, because if the empty restriction where
Ij = ∅ is in F , then the corresponding βj would be empty and {y ∈ Y : y[∅, ∅] = ∅} = Y would be
of size |Y |/20, which contradicts our choice of βj . Since we assumed that |{y ∈ Y : y[Ij , αj ] = β}| <
|Y |/22|Ij | logm for all j, by our bound on |F(k)|

|Y=| <
N∑
k=1

(21.9k logm−1 · |Y |
22k logm )

≤ |Y |
2 ·

N∑
k=1

(20.1·logm)−k

<
|Y |
2 ·

∞∑
k=1

2−k = |Y |2

which completes the proof.

3.2 Simulation

Proof of Basic Lifting Theorem. To recall, we start with a protocol Π of depth d logm for the
composed problem f ◦ Indnm and want to construct a decision-tree of depth O(d) for f . Note that
we can assume that d = o(n) as the theorem is trivial otherwise. The decision-tree is naturally
constructed by starting at the root of Π and taking a walk down the protocol tree guided by occasional
queries to the variables z = (z1, . . . , zn) of f . During the walk, we maintain a ρ-structured rectangle
R = X × Y ⊆ [m]n × ({0, 1}m)n which will be a subset of the inputs that reach the current node in
the protocol tree, where ρ corresponds to the restriction induced by the decision tree at the current
step. Thus our goal is to ensure that the image Indnm(X × Y ) has some of its bits fixed according to
the queries to z made so far, and no information has been leaked about the remaining free bits of z.

To choose which bits to fix, we use the density restoring partition to identify any assignments to
some of the x variables that have occurred with too high a probability; by the way the rectangle
partition is defined the corresponding sets Xj regain blockwise min-entropy. Then using Lemma 3.6,
we pick one of these assignments and query all the corresponding z variables, and for the resulting
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Rv` Rvr

R

Figure 2: One iteration of Simulation Protocol. We perform Rectangle Partition (green lines) on
the larger half of R after moving from v to its child (shaded in purple), use Lemma 3.6 to identify a
part j (shaded in blue), and then query Ij and set R to Xj × Y j,β for the result z[Ij ] = β (shaded
in brown).

β we know Xj × Y j,β is ρj,β-structured since the size of Y j,β doesn’t decrease too much. With the
blockwise min-entropy of X restored and the size of Y kept high, we can update ρ to include ρj,β
and continue to run the rectangle partition at the next node, and so we proceed in this way down
the whole communication protocol.

We describe our query simulation of the communication protocol Π in Simulation Protocol. For
all v ∈ Π let Rv = Xv × Yv be the rectangle induced at node v by the protocol Π. The query and
output actions listed in bold are the ones performed by our decision tree.

Algorithm 2: Simulation protocol
Initialize v := root of Π; R := [m]n × ({0, 1}m)n; ρ = ∗n;
while v is not a leaf do

Precondition: R = X × Y is ρ-structured; for convenience define J := fix(ρ);
Let v`, vr be the children of v, and update v ← v` if |R ∩Rv` | ≥ |R|/2 and v ← vr
otherwise;

Execute Rectangle Partition on (X ∩Xv)J̄ × (Y ∩ Yv)J̄ and let F = {(Ij , αj)}j , {Xj}j ,
{Y j,β}j;β be the outputs;

Apply Lemma 3.6 to F , {Xj}j , {Y j,β}j;β to get some index j corresponding to
(Ij , αj) ∈ F ;

Query each variable zi for every i ∈ Ij , and let β ∈ {0, 1}Ij be the result;
Update XJ̄ ← Xj and YJ̄ ← Y j,β, and update ρ← ρ ∪ ρj,β (recall that ρj,β ∈ {0, 1, ∗}n
is the restriction where fix(ρj,β) = Ij and ρj,β[Ij ] = β);

end
Output the same value as v does;
Before we prove the correctness and efficiency of our algorithm, we note that we make no
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distinction between Alice speaking and Bob speaking in our procedure. Here we note that each Rv is
a rectangle induced by the protocol Π, and so updating v only splits X or Y—corresponding to when
Alice and Bob speak respectively—but not both, and so since R ⊆ Rv we get that |X ∩Xv| ≥ |X|/2
and |Y ∩ Yv| ≥ |Y |/2.

Efficiency and correctness. To prove the efficiency and correctness of our algorithm, consider
the start of the tth iteration, where we are at a node v and maintaining Rt = Xt×Y t and ρt.4 Again
for convenience we write J t := fix(ρt). Let (It, αt) be the (possibly empty) assignment returned
by Lemma 3.6 corresponding to index jt, and let βt be the result of querying z[It]. Note that
J t+1 = J t t It, Xt+1

Jt+1 = Xjt

It
, and Y t+1

Jt+1 = Y jt,βt

It
. Also note that t ≤ d logm by the depth of the

protocol Π.
We show that our precondition that Rt is ρt-structured holds for all t, assuming for the moment

that that |J t| ≤ O(d) for all t. We show this by the following three invariants:

(i) Xt, Y t are fixed on J t and IndJtm (Xt
Jt , Y

t
Jt) = ρt[J t]

(ii) Xt
Jt

has blockwise min-entropy at least 0.95 logm
(iii) |Y t

Jt
| ≥ 2m·|Jt|−t−2|Jt| logm.

This is enough to show Rt is ρt structured as 2m·|Jt|−t−2|Jt| logm > 2m·|Jt|−n logm by assumption on
|J t|. All invariants hold at the start of the algorithm since ρ0 = ∗n and X0×Y 0 = [m]n× ({0, 1}m)n.
Inductively consider the t+ 1st iteration assuming all invariants holds for the tth iteration. After
applying Rectangle Partition invariant (i) follows by Claim 3.3 and invariant (ii) follows by Claim 3.4.
For invariant (iii) we first show that it is valid to apply Lemma 3.6 in the t+ 1st iteration. First,
because |Xt ∩Xv| ≥ |Xt|/2 we know that the blockwise min-entropy of (Xt ∩Xv)Jt is at most
one less than the blockwise min-entropy of Xt

Jt
, which is at least 0.95 logm. Second, we have

|(Y t ∩ Yv)Jt | ≥ |Y
t|/2 > 2m·|Jt|−t−2|Jt| logm−1 > 2m·|Jt|−O(d logm), and recall that d = o(n). Thus we

can apply Lemma 3.6 and we get

|Y t+1
Jt+1 | = |Y jt,βt

It
|

≥ |(Y t ∩ Yv)Jt |/2
m·|It|+2|It| logm

≥ 2m·|Jt|−t−2|Jt| logm−1/2m·|It|+2|It| logm

≥ 2m·(|Jt|−|It|)−t−1−2(|Jt|+It|) logm = 2m·|Jt+1|−(t−1)−2|Jt+1| logm

To show that |J t| ≤ O(d)—and by extension that our simulation is guaranteed to be efficient—it is
enough to show that D∞(Xt

Jt
) ≤ 2t− 0.05|J t| logm for every t ≤ d logm, as this gives a bound of

|J t| ≤ 2t/0.05 logm = O(d) by the non-negativity of deficiency. When t = 0 then J t is empty and
D∞(X) = 0. Now in the tth iteration recall that we query the set It, and by Claim 3.5 we get that

D∞(Xt+1
Jt+1) = D∞(Xjt

It
)

≤ D∞((X ∩Xv)Jt)− 0.05|It| logm+ 1
≤ 1 + (2t− 0.05|J t| logm)− 0.05|It| logm+ 1 = 2(t+ 1)− 0.05|J t+1| logm

We finally have to argue that if we reach a leaf v of Π while maintaining R and ρ, then the solution
o ∈ O output by Π is also valid solution to the values of z, of which the decision-tree knows that

4We understand that this notation is somewhat overloaded with Xj , Y j,β , and ρj,β . Since the proof that the
invariants hold is short and we only ever use t (or t+ 1) for the time stamps and j for the indices, hopefully this won’t
cause any confusion.
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z[fix(ρ)] = ρ[fix(ρ)]. Suppose Π outputs o ∈ O at the leaf v, and assume for contradiction that there
exists β ∈ {0, 1}n consistent with ρ such that β /∈ f−1(o). Since Indfix(ρ)

m (x, y) = ρ[fix(ρ)] = β[fix(ρ)]
for all (x, y) ∈ R, we focus on free(ρ), and let N := | free(ρ)|. Since R is ρ-structured, Xfree(ρ)
has blockwise min-entropy 0.95 logm and |Yfree(ρ)| > 2m·| free(ρ)|−n logm. Thus applying Full Range
Lemma, we know that that there exists (x, y) ∈ R such that Indnm(x, y) = β, which is a contradiction
as R ⊆ Rv ⊆ (f ◦ Indnm)−1(o).

4 Optimizing the gadget size

In Section 3 we loosely chose m = n1.1 for the purpose of showing the basic lifting statement. In
this section we improve from n1.1; more specifically we show a tradeoff between the gadget size and
the strength of the lifting theorem. Ultimately our tradeoff gives an optimal gadget size of m being
quasilinear in n.

Theorem 4.1 (Improved Lifting Theorem). Let f be a search problem over {0, 1}n, and let
m = Ω(n logn). Then

Pcc(f ◦ Indm) ≥ Ω(Pdt(f))

Warm-up: m = n1+ε. First we improve on Basic Lifting Theorem to get a gadget of size n1+ε for
any ε > 0, with no changes in the asymptotic strength of the lifting theorem nor anything non-trivial
in the proof. This comes from two observations. First, we only use the size of m in the two places
we apply Full Range Lemma, and in both cases we can apply Blockwise Approximate Sunflower
Lemma as long as 20.95 logm−O(1) ≥ Ω(n logm). Second, from the perspective of our simulation,
the constant 0.95 is only used to set the blockwise min-entropy threshold for the density-restoring
partition, and was chosen arbitrarily.

So for δ > 0 we can instead choose to put the threshold at (1 − δ) logm, at which point our
condition on m changes to m1−δ ≥ Ω(n logm). Clearly this can be made to fulfill our condition
m ≥ n1+ε with an appropriate choice of δ. The proof itself then simply becomes a matter of
replacing 0.95 with 1− δ and 0.05 with δ throughout the proof, as well as a few other constants.
Since Claim 3.5 now gives a drop in deficiency of δ for every coordinate we query, the non-negativity
of deficiency gives us |fix(ρt)| ≤ 2t/δ logm at any time t ≤ d logm, which gives us a decision tree of
depth (2/δ) · d = O(d) as required.

Optimal gadget: m = Θ(n logn). Building off the intuition from our warm-up, what happens if
δ is chosen to be subconstant? We cannot hope to get a tight lifting theorem, as our decision tree
will be of depth (2/δ) · d, and choosing δ = o(1/ logm) makes our blockwise min-entropy threshold
(1− δ) logm trivial, as logm is the maximum possible blockwise min-entropy for X. However it
turns out there are no other constraints to worry about, and so we can get the following general
lower bound, which gives Improved Basic Lifting Theorem as a special case.

Theorem 4.2 (Scaling Basic Lifting Theorem). Let f be a search problem over {0, 1}n, and
let m, δ be such that δ ≥ Ω( 1

logm) and m1−δ ≥ Ω(n logm). Then

Pcc(f ◦ Indm) ≥ Pdt(f) · Ω(δ logm)

Proof sketch. We start with a given communication protocol Π of depth d · δ logm for the composed
problem f ◦ Indnm and construct a decision-tree of depth O(d) for f . We define a ρ-structured
rectangle R as before except now with the condition that X has blockwise min-entropy (1− δ) logm.
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Then in Rectangle Partition we set the blockwise min-entropy threshold for a violating assignment
(Ij , αj) at (1− δ) logm as well.

To prove Full Range Lemma, note that we can apply Claim 2.3 regardless of m and N , and
we can still apply Blockwise Approximate Sunflower Lemma as long as we can choose m such
that (1− δ) logm− 2 > log(Kn logm). Thus for this altered rectangle partition procedure, by the
same proofs as before, Claim 3.4 states that Xj

Īj
has blockwise min-entropy at least (1− δ) logm,

Claim 3.5 states that D∞(Xj

Īj
) ≤ D∞(X)− |Ij | · δ logm+ 1, and Lemma 3.6 states that if X has

blockwise min-entropy (1− δ) logm− 2 and |Y | > 2mN−n logm, then there exists a j such that for
all β, |Y j,β| ≥ |Y |/2m·|Ij |+2|Ij | logm.

Now our simulation procedure is the same as Simulation Protocol. Again at the start of the tth
iteration we are maintaining Rt = Xt × Y t, ρt, and J t := fix(ρt), where now t ≤ d · δ logm. By the
same argument our procedure is well-defined as long as the precondition of Rt being ρt-structured
holds, and by a deficiency argument using our new Claim 3.5 we get that D∞(Xt

Jt
) ≤ 2t−|J t|·δ logm,

which implies |J t| ≤ 2t/δ logm ≤ 2d. Our precondition holds by applying the new versions of
Claim 3.3, Claim 3.4, and Lemma 3.6 as before. Finally our simulation is correct again by the
invariants and Full Range Lemma.

5 Lifting for dag-like protocols

In this section we show that we can perform our lifting theorem in the dag-like model, going from
decision dags to communication dags. This was originally proven by Garg et al. [GGKS18], who
required two main lemmas. The first is Full Range Lemma, and the second is the following lemma.

Lemma 5.1 (Rectangle Lemma, [GGKS18]). Given a rectangle R ⊆ [m]n ×{0, 1}mn, let {Xj ×
Y j,β}j;β be the output of Rectangle Partition on R. Then there exist sets Xerr ⊆ X and Yerr ⊆ Y ,
both of which have density 2−2d logm in [m]n and ({0, 1}m)n respectively, such that for each j, β one
of the following holds:

− structured: Xj × Y j,β is ρj,β structured for some ρj,β of width at most O(d)
− error: Xj × Y j,β ⊆ Xerr × {0, 1}mn ∪ [m]n × Yerr

Finally, a query alignment property holds: for every x ∈ [m]n rXerr there exists a subset Ix ⊆ [n]
with |Ix| ≤ O(d) such that every “structured” Xj ×Y j,β intersecting {x}×{0, 1}mn has fix ρj,β ⊆ Ix.

Our proof of Lemma 5.1 is nearly identical to [GGKS18].5 For completeness we introduce their
main result, sketch the simulation and proof of their main result using Lemma 5.1 and Full Range
Lemma, and reprove Lemma 5.1. We refer those interested in the details to [GGKS18].

5.1 Preliminaries

To begin we briefly redefine decision trees and communication protocols in a slightly different way.
Consider a search problem f ⊆ Z ×O where Z = {0, 1}n, and let Q be a family of functions from
Z to {0, 1}. More specifically let Q be the set of all conjunctions over Z. We can think of a decision
tree T for f as being a tree where each node v is labeled with a function v(z) ∈ Q such that

− v(z) ≡ 1 when v is the root of T
5In fact the only difference is that our definition of ρ-structured has a slightly stricter condition on |Y |; in

[GGKS18] a coarse lower bound of |Y j,β | ≥ 2mn−n
2

is enough. We stick to our definition for consistency and to show
that the same improvements as in Section 4 hold in the dag-like setting as well.
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− v−1(1) ⊆ u−1(1) ∪ w−1(1) for any node v with children u and w
− v−1(1) ⊆ f−1(o) for any leaf node v labeled with o ∈ O

We can see that this exactly recaptures our notion of a decision tree. The root corresponds to the
trivially satisfiable conjunction 1, and the leaves are labeled with some conjunction that is sufficient
to guarantee some answer o ∈ O. At any node v with children u and w, since v(z), u(z), and w(z)
are all conjunctions and v−1(1) ⊆ u−1(1) ∪ w−1(1), it is not hard to see that there is some variable
zi such that u(z) is a relaxation of v(z) ∧ zi and w(z) is a relaxation of v(z) ∧ zi, or vice-versa.

This notion also generalizes to bipartite search problems F ⊆ X × Y ×O, where now Q is the
family of functions from X × Y to {0, 1} corresponding to membership in X × Y ⊆ X × Y. Since
v−1(1) ⊆ u−1(1) ∪ w−1(1), it must be that the rectangles we test membership for at at u and w
cover the rectangle being tested at v, and again it is not hard to see that this corresponds to a
relaxation of testing membership in Xv = Xu tXw or Yv = Yu t Yw.

Now we generalize this notion to dags, and for convenience we also generalize it to any family
of functions Q. For a search problem f ⊆ Z ×O and a family of functions Q from Z to {0, 1}, a
Q-dag is a directed acyclic graph where each node v is labeled with a function v(z) ∈ Q such that

− v(z) ≡ 1 when v is the root of T
− v−1(1) ⊆ u−1(1) ∪ w−1(1) for any node v with children u and w
− v−1(1) ⊆ f−1(o) for any leaf node v labeled with o ∈ O

For Z = {0, 1}n a conjunction dag D solving f is a Q-dag where Q is the set of all conjunctions
over Z. For conjunction dags our measure of complexity will be a bit different than size. The width
of Π is the maximum number of variables occurring in any conjunction v(z). We define

w(f) := least width of a conjunction dag solving f .

For a bipartite search problem F ⊆ X × Y ×O and a family of functions Q from X × Y to {0, 1},
we define a Q-dag solving F analogously. A rectangle dag Π solving F is a Q-dag where Q is the
set of all indicator vectors of rectangles X × Y ⊆ X × Y. We define

rect-dag(F ) := least size of a rectangle dag solving F .

5.2 Main theorem

The main lifting theorem in [GGKS18] can be stated as follows:

Theorem 5.2 (Dag-like Lifting Theorem [GGKS18]). Let f be a search problem over {0, 1}n,
and let m = n1+ε. Then

log rect-dag(f ◦ Indnm) = w(f) ·Θ(logm)

In fact one can easily check that the same scaling argument as Scaling Basic Lifting Theorem
can also be applied to the proof of Dag-like Lifting Theorem.

Proof sketch. Given a rectangle dag Π of size md, we construct a conjunction dag D of width O(d)
to simulate Π. Our procedure is roughly the same as before, but with a slight twist: the protocol
may have depth greater than d and can decide to “forget” some bits at each stage, at which point
we will have to make sure the assignment ρ we maintain also stays small.

To start, at each node v ∈ Π we partition the rectangle Rv using Lemma 5.1, and for the moment
assume that the sets Xerr and Yerr are empty. Now at the current node v we apply Full Range
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Lemma with the guarantee that the x∗ we find is in structured rectangles for both children of v.
Then we use the query alignment property for both children and query all unknown bits for both
sets. Then because of the full range of x∗ we find a y∗ compatible with all bits fixed, and move
to the (structured) rectangle output by the partition at whichever child of v contains y∗, since
R is in the union of the rectangles at v’s children. Thus we maintain our invariant of being in a
ρ-structured rectangle with at most O(d) fixed bits, and when we arrive at a leaf the correctness is
fairly immediate.

To deal with the error sets, we include a preprocessing step where we partition each v using
Lemma 5.1 in a bottom-up fashion, and for each v we remove from Rv all error sets appearing in
descendants of v. This guarantees that at the very root of Π, by losing an md · 2−2d logm � 1/4
fraction of the rectangle associated with the root we will never encounter an error rectangle in our
procedure.

Below we present Dag-like Simulation Protocol assuming we have Lemma 5.1 and Full Range
Lemma in hand. We leave the verification of all details stated above to the reader we present the
dag-like version of Simulation Protocol and leave the verification to the reader.

Algorithm 3: Dag-like Simulation Protocol
PREPROCESSING: initialize X∗err = ∅ and Y ∗err = ∅;
for v ∈ Π starting from the leaves and going up to the root do

Update Xv ← Xv rX∗err and Yv ← Yv r Y ∗err;
Apply Lemma 5.1 to Xv × Yv and let {Xj

v}j , {Y j,β
v }j;β , Xerr, Yerr, {Ix}x be the outputs;

Update X∗err ← X∗err ∪Xerr and Y ∗err ← Y ∗err ∪ Yerr;
end
Initialize v := root of Π; R := Rv; ρ = ∗n;
while v is not a leaf do

Apply Full Range Lemma to XJ̄ × YJ̄ to get x∗ ∈ X;
Let v`, vr be the children of v, let j`, jr be the indices such that x∗ ∈ Xj`

v`
and x∗ ∈ Xjr

vr ,
and let Ij` and Ijr be the query alignment sets Ix∗ for v` and vr respectively;

Query each variable zi for every i ∈ (Ij` ∪ Ijr) r J , let βj` ∈ {0, 1}
Ij` be the result

concatenated with ρ[J ] and restricted to Ij` , and let βjr ∈ {0, 1}Ijr be defined
analogously;

Let y∗ ∈ Y be such that IndIj`m (x∗, y∗) = βj` and IndIjrm (x∗, y∗) = βjr , and let c ∈ {`, r}
be such that (x∗, y∗) ∈ Xjc

vc × Y
jc,βjc
vc ;

Update X × Y = Xjc
vc × Y

jc,βjc
vc and ρ← ρjc,βjc ;

end
Output the same value as v does;

Proof of Lemma 5.1. Our procedure for generating rectangles Xj × Y j,β will be nearly the same as
before, with the one small caveat that we run Phase I until X≥j is empty instead of stopping after
partitioning half of X. We first need to define the error rectangles Xerr and Yerr. Intuitively every
“structured” Xj × Y j,β is ρj,β structured for some ρj,β , and furthermore we want to ensure that the
number of bits fixed in ρj,β is at most O(d). For X this means ensuring that Ij is small, while for
Y this means ensuring that Y j,β is large. We initialize Jgood = [|F|], and we repeatedly find “bad”
j ∈ Jgood and add either Xj or Y j,β to Xerr or Yerr.

− Xerr: while there exists j ∈ Jgood such that |Ij | > 40d, update Xerr ← Xerr ∪ Xj and
Jgood ← Jgood r {j}
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Rv`

Rvr

R

x∗

y∗

Figure 3: One iteration of Dag-like Simulation Protocol. We perform Rectangle Partition (green
lines) on both Rv` and Rvr separately, use Full Range Lemma find an x∗ ∈ R with full range,
query all bits in the sets Ij` and Ijr corresponding to Xj` , Xjr 3 x∗ (shaded in blue), find a y∗ for
which Indnm(x∗, y∗) matches the result, and set R to Xjc × Y jc,βc 3 (x∗, y∗) (shaded in brown) for
c ∈ {`, r} (shaded in purple).

− Yerr: while there exists j ∈ Jgood and β such that |Y j,β r Yerr| < 2m·|Ij |−5d logm, update
Yerr ← Yerr ∪ Y j,β for all such β and Jgood ← Jgood r {j}

We prove a series of short claims about Xerr and Yerr, most of which immediately follow in the
same way as Claim 3.3, Claim 3.4, and Lemma 3.6. The first puts these claims together to show
that all rectangles corresponding to j ∈ Jgood fulfill the “structured” case of Lemma 5.1.

Claim 5.3. For all j ∈ Jgood and all β ∈ {0, 1}Ij , Xj × Y j,β is ρj,β structured for some ρj,β which
fixes at most O(d) coordinates.

Proof. As usual, for all j and for all β ∈ {0, 1}Ij , define ρj,β ∈ {0, 1, ∗}n to be the restriction where
fix(ρj,β) = Ij and ρj,β[Ij ] = β. Then

− by Claim 3.3, Xj × Y j,β is fixed on Ij and outputs IndIjm(Xj
Ij
, Y j,β

Ij
) = ρj,β[Ij ]

− by Claim 3.4, XIj
has blockwise min-entropy 0.95 logm

− since j ∈ Jgood, it must be that |Y j,β| ≥ 2m·|Ij |−5d logm ≥ 2m·|Ij |−n logm

and so Xj × Y j,β is ρj,β-structured. Furthermore, since j ∈ Jgood it must be the case that
|fix(ρj,β)| = |Ij | ≤ 40d.

We briefly note that our error rectangle has succeeded in making sure any output row x∗ from
Full Range Lemma on (X rXerr)× (Y r Yerr) lands in a good j (recall that we partitioned all of
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Yerr

Xerr

Figure 4: Error rectangles shaded in blue. Xj is added to Xerr if Ij is too large (bottom), while
Y j,β is added to Yerr if Y j,β is too small (right).

X in Phase I). This is not necessary to prove Lemma 5.1 but is needed to ensure that in Dag-like
Simulation Protocol we can always query all bits of Ij for Xj 3 x∗ given by Full Range Lemma.

Claim 5.4. Assume there exists an x∗ ∈ X rXerr such that Indnm(x∗, Y r Yerr) = {0, 1}n, and let
j be the unique index such that x∗ ∈ Xj. Then j ∈ Jgood.

Proof. If j /∈ Jgood, then either Xj ⊆ Xerr or there exists a β such that Y j,β ⊆ Y err. The former
case cannot happen as x∗ ∈ X rXerr, while in the latter case Indnm(x∗, y) is not consistent with
ρj,β for all y ∈ Y r Yerr, which is a contradiction since Indnm(x∗, Y r Yerr) = {0, 1}n.

Finally we handle the density of the error rectangles. In our simulation this will be used to
ensure we can apply Full Range Lemma at every step.

Claim 5.5. |Xerr| ≤ mn · 2−2d logm and |Yerr| ≤ 2mn · 2−2d logm

Proof. For Xerr we have two cases: either Xerr is empty, in which case the claim is trivial, or Xerr is
not empty and there exists some largest j such that Xerr ⊆ X≥j , and by extension |Ij | > 40d. Recall
that we showed |Xj | ≤ |X≥j |·2−0.95|Ij | logm, and by extension H∞(Xj) ≥ H∞(X≥j)−|Ij |·0.95 logm.
Then because Xj is a set in [m]n fixed on coordinates Ij ⊆ n, H∞(Xj) ≤ (n−|Ij |) logm. Combining
these two bounds gives us H∞(X≥j) ≤ (n− 0.05|Ij |) logm, and by our choice of j we get that

|Xerr| ≤ |X≥j | < 2(n−0.05·40d) logm < mn · 2−2d logm

For Yerr, as in the proof of Lemma 3.6 for all k ∈ [40d] there are
(n
k

)
·mk · 2k < 23k logm choices of

(Ij , αj , βj) such that |Y j,βj | < 2m·(N−k)−5d logm, and taking a union bound we get that

|Yerr| ≤
40d∑
k=1

23k logm · 2m·(N−k)−5d logm ≤ 40d · 2m(N−1)−2d logm � 2mn · 2−2d logm

which completes the proof.
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The proof of Lemma 5.1 is now fairly immediate, and for completeness we state it explicitly. The
density of Xerr and Yerr follows from Claim 5.5. For any Xj × Y j,β , if j ∈ Jgood then by Claim 5.3
this fulfills the structured case, while if j /∈ Jgood then either Xj ⊆ Xerr or Y j,β ⊆ Yerr by definition.
The query alignment property holds by taking Ix = Ij for all x /∈ Xerr.

6 Lifting that scales with simulation length

In this section we prove a variant on Basic Lifting Theorem, which allows us to set the gadget size
m in terms of the target decision tree depth d. This theorem was originally proven in [GKMP20]
but here we get a simpler proof via the sunflower lemma together with simple counting.

Theorem 6.1 (Low-depth Lifting Theorem [GKMP20]). Let f be a search problem over
{0, 1}n, and let m ≥ (Pdt(f))30. Then

Pcc(f ◦ Indm) ≥ Pdt(f) · Ω(logm)

Proof sketch. Again we start with a given real protocol Π of depth d logm for the composed problem
f ◦ Indnm and construct a decision-tree of depth O(d) for f . Putting aside Full Range Lemma for
the moment, we can apply Rectangle Partition as in Basic Lifting Theorem, and Claims 3.3, 3.4,
and 3.5 hold with no change in proof. For Lemma 3.6 we impose the slightly stronger precondition
that |Y | ≥ 2mN−O(d logm),6 which will become useful when we go to prove Full Range Lemma. Our
simulation proceeds according to to Simulation Protocol, and the same proofs hold to show our
simulation’s efficiency and correctness.

Finally we return to Full Range Lemma. To see why this is our main technical challenge, note
that we can apply Claim 2.3 as before, but the rest of the argument no longer holds for m � n,
as we cannot apply Blockwise Approximate Sunflower Lemma for 0.95 logm < log(K log(N/ε)).
Instead, it is enough to prove the following lemma, since we imposed the additional constraint
|Y | > 2mN−O(d logm) in the invariants and in Lemma 3.6. For convenience we reuse the shorthand
γj := (Ij , αj), and we round 0.95 logm−O(1) down to 0.9 logm for clarity.

Lemma 6.2. Let N ≤ n, let d = o(n), and let m > d30. Let X be such that X has blockwise
min-entropy 0.9 logm, and let F = {γj}j be a block-respecting set system over [m]N such that 1) for
all x ∈ X there exists a γj ∈ F consistent with x, and 2) |γj | ≤ O(d) for all j. Then

Pry⊆[mN ](∀j : γj 6⊆ y) < 2−Ω(d logm)

We prove this lemma in Section 6.1, as it is our main technical contribution.

6.1 Proof of Lemma 6.2

Proof sketch. Our goal will be to show that F contains an 2−Ω(d logm)-approximate sunflower with an
empty core. Note that in proving Full Range Lemma we invoked Blockwise Approximate Sunflower
Lemma, which stated that X contained an ε-approximate sunflower with an empty core. However,
while we still have blockwise min-entropy on X, for m� N we cannot use Blockwise Approximate
Sunflower Lemma on X.

Instead we turn to F , and since we don’t have a notion of blockwise min-entropy for F we switch
to using the basic Approximate Sunflower Lemma, and instead use the blockwise min-entropy of X

6Since our invariants actually give |Y t| ≥ 2m·| free(ρt)|−t−2d logm for t ≤ d logm, we could have stated Lemma 3.6
this way originally, but to simplify the presentation we omitted any reference to d in Rectangle Partition
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to ensure F is large. More specifically, because the blockwise min-entropy of X is at least 0.9 logm,
for any non-empty set γj ∈ F the set of all x ∈ X consistent with γj can only cover a 2−0.9|γj | logm

fraction of X. Since each x ∈ X must be consistent with some γj , there must be a huge number of
sets γj in F , and so by Approximate Sunflower Lemma F contains some ε-approximate sunflower
FS̄ even for very small ε.

If |S| = 0 then we are done, but unfortunately using Approximate Sunflower Lemma we have
no control over |S|. Instead, we employ the strategy an iterative strategy where we drive down
the size of the smallest core S for which FS̄ is an ε-approximate sunflower. For simplicity assume
there is some s ≤ 20d such that every set in F has size s, and so in the worst case we can assume
that every core S for which FS̄ is an ε-approximate sunflower has size s− 1. We want to show now
that there exist enough such cores S that the collection of these cores itself is an ε-approximate
sunflower, and so it must have a core S′ of size at most s− 2. If this is true then it turns out FS̄′ is
an ε′-approximate sunflower for ε′ only slightly larger than ε. From this we’ve made progress; by
increasing ε slightly we’ve found a core of a smaller size.

Using this idea, at a high level we will perform an iterative procedure, where we repeat the
following three steps until we find a sunflower with an empty core in F : 1) repeatedly pluck
ε-approximate sunflowers from F ; 2) when we have enough sunflowers, pluck an approximate
sunflower from their cores; 3) increase ε enough so that the core of this new sunflower is the core of
an ε-approximate sunflower in F as well. In our actual calculations we will need to keep track of
the sets of cores of each size, as well as to focus only on the sets in F of a certain size. This will
allow us to know when we should pluck a sunflower from the cores, and will give us a measure of
progress towards finding an empty core, which will allow us to choose our ε small enough to get
2−Ω(d logm) at the end.

The last remaining piece is showing that we can actually pluck enough sunflowers from F to
repeat this procedure enough to get an empty core, without running out of sets in F . Unfortunately
when we find a core S and pluck the sunflower FS̄ , we have no control over how many sets are
actually in FS̄ , and so it seems hopeless to control how many rounds we can run for. However,
note that the 0.95 logm lower bound on the blockwise min-entropy of X holds for any S over [m]N ,
which applies to a) the original sets γj ∈ F , and b) the cores S that we pluck. Thus instead of
arguing that each FS̄ we find is small, we instead argue that the fraction of X covered by sets
remaining in F is large, using the blockwise min-entropy of X for all (non-empty) cores S we’ve
found so far. Then, again using the blockwise min-entropy of X on F , we know that F must still
have many sets to cover the remaining fraction of X, as we did when showing that F was originally
big enough to apply Approximate Sunflower Lemma.

Proof. It is sufficient to show that F contains an ε-approximate sunflower with an empty core for
some ε ≤ 2−Ω(d logm). Again we assume ∅ /∈ F as the lemma is trivial otherwise, and so for all
s ∈ [O(d)] let F(s) be the set of all sets in F of size exactly s, and let X(s) be the set of all x ∈ X
consistent with a set in F(s). Since every x is consistent with some γ ∈ F = ∪sF(s), we know that
X = ∪sX(s). Therefore by averaging there must exist some s ∈ [O(d)] such that |X(s)| ≥ 1

O(d) |X|,
and so we fix an arbitrary such s.

We define an iterative procedure to find an approximate sunflower with an empty core in F(s).
Set t = 0, set ε0 := 2−Ω(d logm)−s2 logm, and set F0 := F(s). For k = 0 . . . s − 1 set Sk := ∅. We
repeat the following until we ever add a set to S0:

0. abort if the following invariants ever do not hold:
(a) |Sk| ≤ 20.8k logm

(b) |F t| ≥ 20.8s logm
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(c) for every k and every S ∈ Sk, |S| = k and F(s)S̄ is an εt-approximate sunflower
(d) εt < 2−Ω(d logm)

1. let F t
S̄

be an εt-approximate sunflower in F t; if none exists, abort
2. increment t and set εt ← εt−1
3. set S |S| ← S |S| ∪ {S} and set F t ← F t−1 −F t−1

S̄

4. while there exists k such that |Sk| = 20.8k logm:
(a) if k = 0, exit and return εt
(b) let Sk

S̄
be an ε0-approximate sunflower in Sk; if none exists, abort

(c) increment t and set εt ← εt−1 + ε0
(d) set S |S| ← S |S| ∪ {S}, set Sk′ ← Sk′ − Sk′

S̄
for all k′ > |S|, and set F t ← F t−1 −F t−1

S̄

If this process exits without aborting, clearly by invariants (c) and (d), F(s) is a 2−Ω(d logm)-
approximate sunflower with an empty core as desired (note that when the procedure exits, |S0| =
20.8·0 logm = 1). Thus we prove that the process never aborts.

First we show that by Approximate Sunflower Lemma, in steps 1 and 4b we always find an
approximate sunflower. Recall that m > d30. For step 1, by invariant (b) and the fact that
1/εt ≤ 1/ε0 = 2Ω(d logm)+s2 logm we have

|F t| ≥ 20.8s logm = (m0.8)s � (Ω(d3 logm))s ≥ (s · log exp(Ω(d logm) + s2 logm))s ≥ (s · log 1/εt)s

and for step 4b by the inner loop condition the same calculation shows

|Sk| = 20.8k logm = (m0.8)k � (Ω(d3 logm))k ≥ (k · log exp(Ω(d logm) + s2 logm))k = (k · log 1/ε0)k

We now prove that the invariants hold. For invariant (a), clearly after exiting the inner loop
|Sk| < 20.8k logm for all k. Before the inner loop runs we add at most one element to at most one
set Sk, and thus for that set |Sk| < 20.8k logm + 1, or in other words |Sk| ≤ 20.8k logm. At the start
of each iteration of the inner loop at most one set Sk has size 20.8k logm, and since we remove at
least one element from it and add at most one element to at most one other set we maintain that
invariant.

For invariant (b), assume for contradiction that |F t| < 20.8s logm. Recall that X has blockwise
min-entropy at least 0.9 logm, meaning that every set S over [m]N covers at most 2−0.9|S| logm · |X|
elements in X, and by extension in X(s). In particular this applies to every set γj ∈ F t as well
as every set S ∈ Sk. Lastly by assumption |F t| < 20.8s logm, and likewise by invariant (a) we know
that |Sk| < 20.8k logm for every k. Therefore since m > d30,

|X(s)| ≤ |F t| · (2−0.9s logm · |X|) +
s−1∑
k=1
|Sk| · (2−0.9k logm · |X|)

< 20.8s logm · 2−0.9s logm · |X|+
s−1∑
k=1

20.8k logm · 2−0.9k logm · |X|

= (
s∑

k=1
2−0.1k logm) · |X|

≤ (s · 2−0.1 logm) · |X|
≤ (s · d−3) · |X| = 1

ω(d) |X|

which is a contradiction of our choice of s.
For invariant (c), we first note the following simple observation about sunflowers.
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Fact 6.3. Let F and H be any two set systems such that H ⊆ F , let ε, ε′ > 0 be such that ε ≤ ε′,
and let S be any set. Then if HS̄ is an ε-approximate sunflower, FS̄ is also an ε′ approximate
sunflower.

Consider S ∈ Sk. Clearly |S| = k by construction, and so we show that F(s)S̄ is an εt-
approximate sunflower. We consider only the value of t when S was added to Sk, as εt only grows,
and we do this by induction on t. First observe that for any t, if S was added to Sk in step 1 then
the claim follows immediately since F t ⊆ F(s). This establishes the base case since at t = 0 we are
at the start of the procedure, and so we consider t > 0. We show this with induction on k in reverse
order from s− 1 to 0. If k = s− 1, since there is no Sk′ for k′ > s− 1 it must have been added in
step 1, and so again the claim follows immediately. Thus we consider k < s− 1 and assume S was
added in step 4b.

Let k′ > k be such that Sk′S was the sunflower discovered in step 4b which made us add S to
Sk. We claim that F(s)S̄ is an (εt−1 + ε0)-approximate sunflower, which completes the claim since
εt = εt−1 + ε0. Consider the probability that a random set y ⊆ [mN ]− S doesn’t contain any set
in F(s)S̄ . For this to happen, for every set S′ ∈ Sk′

S̄
either y contains no sets in F(s)S̄′ or it does

not contain S′ itself. If there is some S′ such that S′ ⊆ y, then by the inductive hypothesis on t
and k we know that F t′S′ is an εt′-approximate sunflower, where t′ ≤ t− 1 was the value of t when
S′ was added to Sk. Since εt′ ≤ εt−1 and F t′ ⊆ F(s), by extension y avoids every set in F(s)S′
with probability at most εt−1. In the other case where no such S′ exists, then because Sk′

S̄
is an

ε0-approximate sunflower y avoids every set S′ ∈ Sk′
S̄

with probability at most ε0. Taking a union
bound over these two events gives us our claim.

Finally for invariant (d), we claim that t ≤ 2s2 logm − 1 when the process ends. Putting this fact
together with ε0 := 2−Ω(d logm)−s2 logm and εt ≤ εt−1 + 2−Ω(d logm)−s2 logm for all t gives us

εt ≤ ε0 + t · ε0 ≤ 2s2 logm · 2−Ω(d logm)−s2 logm = 2−Ω(d logm)

We associate each tuple S := (Sk)k=1...s−1 with the string τ(S) = |S1|#|S2|# . . .#|Ss−1|. We claim
that for every t there is a unique string τt corresponding to τ(S) at the time t was incremented.
This is simply because in every round of the outer loop we increase the size of at least one set
Sk, and in every round of the inner loop that we cause some Sk to shrink in some round of the
inner loop, we also cause some set Sk′ to grow where k′ < k. By invariant (a) and the inner loop
condition, |Sk| ≤ 20.8k logm for every k whenever we updated t, and so as long as |S0| = 0—in other
words for all t except the very last one—we have

t ≤ |τ(S)| =
s−1∏
k=1

20.8k logm < (20.8 logm)
∑

k≤s k < 2s2 logm − 2

and so at the end of the procedure t ≤ 2s2 logm − 1.

7 Open problems

The next clear frontier for this counting style of lifting is the BPP lifting of [GPW17]. Two main
improvements are needed to Lemma 3.6. First, we need to prove that for a random choice of x ∼ X,
the index j corresponding to Xj 3 x is valid for Lemma 3.6. This is actually not very difficult; since
our only restriction is on the blockwise min-entropy of X, we can start by assuming for contradiction
that a large fraction of X is bad, and remove those before applying Lemma 3.6 to the remainder.
The much larger issue is that we need a random choice of y falls evenly in each Y j,β . As noted before,
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in Lemma 3.6 we only show that |Y j,β| is a multiplicative 2−|Ij | logm factor away from |Y |/2−|Ij |,
while [GPW17] show that |Y j,β| is an additive 1/poly(n) factor away instead. Our argument comes
from our upper bound on |F(k)| by counting the number of possible restrictions (Ij , αj), and while
this may seem coarse, even more subtle arguments—such as using the fact that each (Ij , αj) violates
0.95 logm blockwise min-entropy in X≥j—fail to asymptotically improve this counting argument.
More importantly, this is the also only barrier in our argument to getting a smaller gadget size in
Improved Basic Lifting Theorem and Dag-like Lifting Theorem; if we could put the threshold for a
bad |Y j,β at |Y |/2−O(|Ij |), it would immediately imply a gadget of size m = Θ(n).
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