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Abstract

Query-to-communication lifting theorems translate lower bounds on query complexity to
lower bounds for the corresponding communication model. In this paper, we give a simplified
proof of deterministic lifting (in both the tree-like and dag-like settings). Whereas previous proofs
used sophisticated Fourier analytic techniques, our proof uses elementary counting together with
a novel connection to the sunflower lemma.

In addition to a simplified proof, our approach also gives quantitative improvements in terms
of gadget size. Focusing on one of the most widely used gadgets—the index gadget—existing
lifting techniques are known to require at least a quadratic gadget size. Our new approach
combined with robust sunflower lemmas allows us to reduce the gadget size to near linear. We
conjecture that it can be further improved to poly logarithmic, similar to the known bounds for
the corresponding robust sunflower lemmas.

1 Introduction

A query-to-communication lifting theorem is a reductive lower bound technique that translates lower
bounds on query complexity (such as decision tree complexity) to lower bounds for the corresponding
communication complexity model. For a function f : {0, 1}n → R, and a function g : X ×Y → {0, 1}
(called the gadget), their composition f ◦ gn : X n × Yn → R is defined by

(f ◦ gn)(x, y) := f(g(x1, y1), . . . , g(xn, yn)).

Here, Alice holds x ∈ X n and Bob holds y ∈ Yn. Typically g is the popular index gadget
Indm : [m]× {0, 1}m → {0, 1} mapping (x, y) to the x-th bit of y.

There is a substantial body of work proving lifting theorems for a variety of flavors of query-to-
communication, including: deterministic [RM99,GPW15,dRNV16,WYY17,CKLM17], nondetermin-
istic [GLM+16,Göö15], randomized [GPW17,CFK+19] degree-to-rank [She11,PR17,PR18,RPRC16]
and nonnegative degree to nonnegative rank [CLRS16,KMR17]. In these papers and others, lifting
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theorems have been applied to simplify and resolve some longstanding open problems, includ-
ing new separations in communication complexity [GP18, GPW15, GPW17, CKLM17, CFK+19],
proof complexity [GLM+16,HN12,GP18,dRNV16,dRMN+19,GKMP20] monotone circuit complex-
ity [GGKS18], monotone span programs and linear secret sharing schemes [RPRC16,PR17,PR18],
and lower bounds on the extension complexity of linear and semi-definite programs [CLRS16,KMR17,
LRS15]. Furthermore within communication complexity most functions of interest—e.g. equality,
set-disjointness, inner product, gap-hamming (c.f. [Kus97,Juk12])—are lifted functions.

At the heart of these proofs is a simulation theorem. A communication protocol for the lifted
function can “mimic” a decision tree for the original function by taking logm steps to calculate
each variable queried by the decision tree in turn. For m = nO(1) and for every f the deterministic
simulation theorem [RM99,GPW15] shows that this simulation goes the other way as well:

Pcc(f ◦ Indnm) = Pdt(f) ·Θ(logm)

The proof of this theorem has evolved considerably since [RM99], applying to a wider range of
gadgets [CFK+19], and with more sharpened results giving somewhat improved parameters and
simulation theorems for the more difficult settings of randomized and dag-like lifting. However,
nearly all proofs of even the basic deterministic simulation theorem use tools from the Fourier
analysis of Boolean functions, together with somewhat intricate counting arguments.

Lifting using the sunflower lemma. The primary purpose of this paper is to give a readable,
self-contained and simplified proof of the deterministic query-to-communication lifting theorem.
Our proof uses the same basic setup as in previous arguments, but our proof of the main invariant –
showing that any large rectangle can be decomposed into a part that has structure and a part that
is pseudo-random – is proven by a direct reduction to the famous sunflower lemma.

The sunflower lemma is one of the most important examples of a structure-versus-randomness
theorem in combinatorics. A sunflower with r petals is a collection of r sets such that the intersection
of each pair is equal to the intersection of all of them. The sunflower lemma of Erdös and Rado [ER60]
roughly states that any sufficiently large w-uniform set system (of size about ww) must contain a
sunflower. A recent breakthrough result due to Alweiss et al. [ALWZ20] proves the sunflower lemma
with significantly improved parameters, making a huge step towards resolving the longstanding
open problem obtaining optimal parameters.

Both the original Sunflower Lemma as well as Rossman’s robust version [Ros10] have played
an important role in recent advances in theoretical computer science. Most famously, Razborov
proved the first superpolynomial lower bounds for monotone circuits computing the Clique function,
using the Sunflower Lemma. It has also been a fundamental tool used to obtain a wide variety of
other hardness results including: hardness of approximation, matrix multiplication, cryptography,
and data structure lower bounds. (See [ALWZ20] for a nice survey of the many applications to
Computer Science.)

In all of these lower bounds, the central idea is to use the sunflower lemma in order to “tame”
a protocol or algorithm, in order to show that at each step of the computation, the underlying
set of inputs consistent so far can be partitioned into a structured part and a random part. This
allows the algorithm to be massaged into a simpler form, where the lower bound is easier to prove.
Since lifting theorems are attempting to do precisely the same thing, it is natural to expect that
there should be a connection between the two lines of research. Indeed, [LLZ18] made an explicit
connection between sunflowers and randomness extractors where the latter is again a primary tool
used in many if not all of the proofs of lifting.

Additionally these same tools can be used to prove a lifting theorem for dag-like communication
protocols, as originally proven in [GGKS18]. Again we follow the same proof as before but for the
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main invariant we rely on a connection to the sunflower lemma. In fact while the central lemma
needed for the invariant in the dag-like case is stronger than in the case of the basic lifting theorem,
it actually follows more directly from the connection to sunflowers. We note that our results extend
straightforwardly to the real communication setting as well.1

Gadget size. In spite of the tremendous progress in lifting theorems, most generic lifting theorems
require gadget sizes that are polynomial in n.2 Define the gadget size of g : X × Y → {0, 1}
as min(|X |, |Y|). For example, we now have lifting theorems for the three classical models of
communication: deterministic, non-deterministic, and randomized. In each of these results and
others that use Fourier-analytic arguments, the gadget size has to be at least Ω(n2). Can we
circumvent this quadratic barrier?

Gadget size is a fundamental parameter in lifting theorems and their applications. This is
because often in applications, one loses factors that depend polynomially on the gadget size (as
defined above). An ideal lifting theorem - one with constant gadget size - would give a unified way
to prove tight lower bounds in several models of computation. For example, the best known size
lower bounds for extension complexity as well as monotone circuit size is 2Ω̃(

√
n) [GJW18,HR00].

Improving the gadget size from polyn to O(1) (or even poly logn) would improve the best known
lower bounds for extended formulations and monotone circuit size to 2Ω̃(n).

Luckily the quadratic bottleneck comes from the core lemma that we reprove in this paper, and
as a nice side effect our simplified proof immediately gives us a gadget of size n1+ε. Furthermore by
inspecting the parameters of the argument we can prove a “sliding” lifting theorem which allows
us to make a tradeoff between the strength of our lower bound and the size of the gadget, up to
a gadget of size O(n logn). Our approach does not seem to have the same bottleneck as previous
approaches, and we conjecture that it can be pushed to poly-logarithmic gadget sizes (similar to the
improvements made for the sunflower lemma in [ALWZ20]).

We also use our sunflower method to give a new proof (and with tightened parameters) of
[GKMP20] who prove deterministic lifting with the gadget size bounded by a polynomial in the query
complexity of the outer function. This applies to situations such as fixed parameter complexity, where
the query complexity is modest, allowing us to lift problems with query complexity with gadgets of
comparable. Here we use a more involved argument using an older iteration of the sunflower lemma.
Again our approach does not seem to suffer from a bottleneck, and improvements to this theorem
would yield e.g. stronger lower bounds on the automatizability of Cutting Planes [GKMP20].

Organization for the rest of the paper. After setting up the preliminaries in Section 2, in
Section 3 we give an overview of our proof. In Section 4 we present our main contribution: a
simplified proof of lifting via the sunflower lemma. Then for the remainder of the paper we investigate
various extensions of this basic lifting theorem. In Section 5 we show that the gadget size m can
be improved to n1+ε, and by sacrificing in the strength of the lifting theorem we can even push it
down to O(n logn). In Section 6 we show that we can lift dag-like query complexity to dag-like
communication complexity. In Section 7 we show that m can be made poly(Pdt(f)) with no other
dependence on n. For these extensions we make extensive reference to the basic lifting theorem in
order to highlight how the proofs differ, and where necessary how our results fit into the context of
their original proofs. We conclude with directions for further research Section 8.

1In most query-to-communication settings it is fairly simple to extend results for communication complexity to
the real communication setting [Kra98]; we refer readers to e.g. [dRNV16,GGKS18] for examples of these techniques
and applications of lifting to real communication complexity.

2Some notable exceptions for models of communication with better gadget size are [She11,She14,GP18,PR17].
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2 Preliminaries

We will use n to denote the length of the input, N ≤ n to denote an arbitrary number, m to denote
an external parameter, and for this preliminaries section we will use U to denote an arbitrary set.
We will mostly focus on two types of universes, UN and (Um)N . In the case of UN we often refer to
i ∈ [N ] as being a coordinate, while in the case of (Um)N we often refer to i ∈ [N ] as being a block.
We will be primarily using terminology from previous lifting papers and computational complexity;
for a connection to the language more commonly used in sunflower papers and combinatorics, see
Appendix A.

Basic notation. For a set S ⊆ U we write S̄ := U r S. For a set U and a set I ⊆ [N ] we say a
string x is in UI if each value in x is an element of U indexed by a unique element of I. For a string
x ∈ UN and I ⊆ [N ] we define x[I] ∈ UI to be the values of x at the locations in I, and for a string
y ∈ (Um)N and I ⊆ [N ], α ∈ [m]I we define y[I, α] ∈ UI to be the values of y at the locations αi
for each i ∈ I. For a set X ⊆ UN we define XI ⊆ UI to be the set that is the projection of X onto
coordinates I, and for a set Y ⊆ (Um)N we define YI ∈ (Um)I likewise. For a set system F over U
and a set S ⊆ U , we define FS̄ := {γ r S : γ ∈ F , S ⊆ γ}.

Definition 2.1. Let γ ⊆ [mN ]. Treating each element in γ as being a pair (i, a) where i ∈ [N ] and
a ∈ [m], we say γ is over (Um)N , meaning that for s ∈ (Um)N each (i, a) ∈ γ indicates an element
s[i, a] ∈ U . We sometimes say (i, a) is a pointer.

For γ over (Um)N , γ is a block-respecting subset of [mN ] if γ contains at most one element per
block, or in other words if i 6= i′ for all distinct (i, a), (i′, a′) ∈ γ. We can represent γ by a pair
(I, α), where I ⊆ [N ] and α ∈ [m]I ; here γ chooses one element (indicated by αi) from each block
i ∈ I. A set system F over (Um)N is block-respecting if all elements γ ∈ F are block-respecting.

We say that a set ρ ∈ {0, 1, ∗}N is a restriction, or sometimes a partial assignment. We denote
by free(ρ) ⊆ [N ] the variables assigned a star, and define fix(ρ) := [N ] r free(ρ). If we have two
restrictions ρ, ρ′ such that fix(ρ) ∩ fix(ρ′) = ∅, then we define ρ ∪ ρ′ to be the restriction which
assigns fix(ρ) to ρ[fix(ρ)] and fix(ρ′) to ρ′[fix(ρ′)], with all other coordinates being assigned ∗.

In general in this paper we will use bold letters to denote random variables. For a set S we
denote by S ∈ S the random variable that is uniform over S. For S ⊆ UN and I ⊆ [N ] we denote
by SI the marginal distribution over coordinates I of the uniform distribution over S; note that the
random draw is taken over the original set S before marginalizing to the coordinates I, rather than
being the uniform distribution over SI .

Definition 2.2. Let S be a set. For a random variable s ∈ S we define its min-entropy by H∞(s) :=
mins log(1/Pr[ s = s ]). We also define the deficiency of s by D∞(s) := log |S| −H∞(s) ≥ 0. When
s is chosen from a set S ⊆ UN , we define its blockwise min-entropy by min∅6=I⊆[N ]

1
|I|H∞(sI), or in

other words the least (normalized) marginal min-entropy over all subsets I of the coordinates [N ].

Search problems. A search problem is a relation f ⊆ Z × O such that for every z ∈ Z there
exists some o ∈ O such that (z, o) ∈ f . Let f(z) 6= ∅ denote the set of all o ∈ O such that (z, o) ∈ f .
Likewise a bipartite search problem is a relation F ⊆ X ×Y ×O such that F (x, y) 6= ∅, where F (x, y)
is defined analogously to f(z). We say that f is on Z and F is on X × Y.

Definition 2.3. Let m ∈ N. The index gadget, denoted Indm, is a Boolean function which takes
two inputs x ∈ [m] and y ∈ {0, 1}m, and outputs y[x]. We will often have N separate instances
of the index gadget, which we denote by IndNm and which is a function which takes two inputs
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x ∈ [m]N and y ∈ ({0, 1}m)N and outputs the Boolean string (y[i, xi])i∈[N ]. For a search problem
f with Z = {0, 1}n, the lifted search problem f ◦ Indnm is a bipartite search problem defined by
X := [m]n, Y := ({0, 1}m)n, and f ◦ Indnm(x, y) = {o ∈ O : o ∈ f(Indnm(x, y))}.

Intuitively, each x ∈ X can be viewed as a block-respecting subset over the universe [mn] where
n elements are chosen, one from each block of size m. For each i ∈ [n], to determine the value of
the variable zi in the original problem f , we restrict ourselves to the i-th block of y and take the bit
indexed by the i-th coordinate of x.

Consider a search problem f ⊆ {0, 1}n ×O. A decision tree T is a binary tree such that each
non-leaf node v is labeled with an input variable zi, and each leaf v is labeled with a solution ov ∈ O.
The tree T solves f if, for any input z ∈ {0, 1}n, the unique root-to-leaf path, generated by walking
left at node v if the variable zi that v is labeled with is 0 (and right otherwise), terminates at a leaf
u with ou ∈ f(z). We define

Pdt(f) := least depth of a decision tree solving f .

Consider a bipartite search problem F . A communication protocol Π is a binary tree where now
each non-leaf node v is labeled with a binary function gv which takes its input either from X or Y.
This is informally viewed as two players Alice and Bob jointly computing a function, where Alice
receives x ∈ X and Bob receives y ∈ Y, and where at each node in the protocol either Alice or Bob
computes gv(x) or gv(y), respectively, and “speaks” as to which child to go to, depending on whose
turn it is. The protocol Π solves F if, for any input (x, y) ∈ X × Y, the unique root-to-leaf path,
generated by walking left at node v if gv(x, y) = 0 (and right otherwise), terminates at a leaf u with
ou ∈ F (x, y). We define

Pcc(F ) := least depth of a communication protocol solving F .

An alternative characterization of communication protocols, which will be useful for proving our
main theorem, is as follows. Each non-leaf node v is labeled with a (combinatorial) rectangle
Rv = Xv × Yv ⊆ X × Y, such that if v` and vr are the children of v, Rv` and Rvr partition Rv.
Furthermore this partition is either of the form Xv` × Yv tXvr × Yv or Xv × Yv` tXv × Yvr . The
unique root-to-leaf path on input (x, y) is generated by walking to whichever child v of the current
node satisfies (x, y) ∈ Rv.

Sunflowers. Let F be a set system over some universe U . We say that F is (p, ε)-satisfying if

Pry⊆pU (∀γ ∈ F : γ 6⊆ y) ≤ ε

where ⊆p means that each element is added to y independently with probability p.
We say that F is a (p, ε)-robust sunflower (sometimes called an approximate sunflower or a

quasi-sunflower) if it satisfies the following. Let S = ∩T∈FT be the common intersection of all sets
in F . We require that FS is (p, ε)-satisfying. In other words,

Pry⊆pUrS(∀γ ∈ F : γ r S 6⊆ y) ≤ ε.

In this paper we will always be using p = 1/2, and so for convenience we simply write y ⊆ U rS
instead of ⊆1/2 and call F an ε-robust sunflower instead of an (1/2, ε)-robust sunflower. An analogue
of the famed sunflower lemma of Erdős was proved for robust sunflowers by Rossman [Ros10]:

Lemma 2.1 (Robust Sunflower Lemma). Let s ∈ N and let ε > 0. Let F be a set system over
U such that a) |γ| ≤ s for all γ ∈ F ; and b) |F| ≥ (Cs log 1/ε)s for some absolute constant C > 0.
Then F contains an ε-robust sunflower.
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A recent breakthrough result (proved in [ALWZ20] and simplified in [Rao19]) proves the sunflower
lemma with significantly improved parameters. As a stepping stone they also prove an improvement
on Robust Sunflower Lemma assuming a condition called spreadness, but which we will state in the
following way.
Lemma 2.2 (Blockwise Robust Sunflower Lemma). Let s ∈ N and let ε > 0. Let F be a set
system over U such that a) |γ| ≤ s for all γ ∈ F ; and b) F has blockwise min-entropy at least
log(K log s/ε) for some absolute constant K > 0. Then F is ε-satisfying.

In our main argument we will use a simple and general statement about the satisfiability of
monotone CNFs in order to connect sunflowers to restrictions.
Claim 2.3. Let C = C1 ∧ . . .∧Cm be a CNF on the variables x1 . . . xn such that no clause contains
both the literals xi and xi for any i. Let Cmon be the result of replacing, for every i, every occurrence
of xi in C with xi. Then

|{x ∈ {0, 1}n : C(x) = 1}| ≤ |{x ∈ {0, 1}n : Cmon(x) = 1}|

Proof. Let Ci be the result of replacing every occurrence of xi in C with xi. It is enough to show
that for any i, Ci(x) is satisfied by at least as many assignments β ∈ {0, 1}n to x as C(x) is, as we
can then apply the argument inductively for i = 1 . . . n. Let β−i ∈ {0, 1}[n]r{i} be an assignment to
every variable except xi. We claim that for every β−i, Ci(β−i, xi) is satisfied by at least as many
assignments βi ∈ {0, 1} to xi as C(β−i, xi).

Since there are no clauses with both xi and xi, each clause in C is of the form xi ∨A, xi ∨B, or
C, where A, B, and C don’t depend on xi; the corresponding clauses in Ci are xi ∨A, xi ∨B, and
C. If Ci(β−i, 0) = 1, then A(β−i) = B(β−i) = C(β−i) = 1 for all A, B, and C, and so Ci(β−i, xi) is
always satisfied. If Ci(β−i, 1) = 0, then it must be that C(β−i) = 0 for some C, and so C(β−i, xi)
has no satisfying assignments. Finally assume neither of these cases hold, and so Ci(β−i, 0) = 0 and
Ci(β−i, 1) = 1. Then it must be that either A(β−i) = 0 for some A, in which case C(β−i, 0) = 0, or
B(β−i) = 0 for some B, in which case C(β−i, 1) = 0. Therefore C(β−i, xi) has at least one falsifying
assignment, while Ci(β−i, xi) has exactly one.

3 The basic lifting theorem: proof overview

The following is our basic deterministic lifting theorem. An earlier version was originally proven
in [RM99] with m = n20, and more recently in [GPW15] with m = n2. We improve this to a near
linear dependence on n.
Theorem 3.1 (Basic Lifting Theorem). Let f be a search problem over {0, 1}n, and let m = n1.1.
Then

Pcc(f ◦ Indnm) = Pdt(f) ·Θ(logm)
In this section we will sketch out the technical ideas that go into proving Theorem 3.1, along

with some of the innovations that have helped simplify the proof since [RM99]. We prove that a) a
decision tree of depth d for f can be simulated by a communication protocol of depth O(d logm)
for the composed problem f ◦ Indnm, and b) a communication protocol of depth d logm for the
composed problem f ◦ Indnm can be simulated by a decision-tree of depth O(d) for f . Let {zi}i be
the variables of f and let {xi}i, {yi}i be the variables of f ◦ Indnm; recall that each zi takes values in
{0, 1}, xi takes values in [m], and yi takes values in {0, 1}m. The forward direction of the theorem
is obvious: given a decision tree T for f , Alice and Bob can simply trace down T and compute the
appropriate variable zi at each node v ∈ T visited, spending logm bits to compute Indm(xi, yi) to
do so. Thus we focus on simulating a communication protocol Π of depth d logm.
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High level idea: Tracing the “important” coordinates. What does it mean to “simulate” a
communication protocol for f ◦ Indnm by a decision tree for f? When we look at the communication
matrix for f ◦ Indnm, we label the (x, y) entry with the solutions o ∈ O satisfying (x, y) ∈ (f ◦
Indnm)−1(o). However we have no control over f , and so in some sense what we really care about
is the z variables. So instead we will think of the (x, y) entry as storing z = Indnm(x, y), and then
instead of having to reason about f we can instead ask “what does the set of z values that make it
to any given leaf of Π look like?”

For each leaf we want to split the coordinates into two categories: the “important” coordinates
where the coordinates are (jointly) nearly fixed, and the rest where every possibility is still open.
Hopefully this means that knowing the important coordinates is enough to declare the answer.
Applying the same logic to the internal nodes we can query variables as they cross the threshold
from unfixed to important, which leads us down to the leaves in a natural way. To do this efficiently,
we have to define “importance” in a way that satisfies all these conditions while also ensuring that
no leaf contains more than O(d) important variables.

Blockwise min-entropy. In order to prove this formally, we will trace down the communication
protocol node by node, at each step looking for the z variables that are fairly “well determined” by
the current rectangle. We focus exclusively on the X side of the current rectangle, since Y is so
large that it would take more than d logm rounds just to fix a single yi. Our measure of coordinate
i being well-determined will be the min-entropy of the uniform distribution on X marginalized
to the coordinate i. At the start of the protocol, every coordinate will have min-entropy logm,
while each round can drop the min-entropy of a coordinate by at most 1. Once a coordinate i falls
below a certain min-entropy threshold, say 0.95 logm, we can consider the coordinate important
enough to query in the decision tree. Also of note is that we can think of Π as having “paid” for the
coordinate i; since min-entropy can only drop by 1 each round, it took 0.05 logm rounds to reduce
the entropy of Xi to below the threshold, and since we ultimately want to shave an Ω(logm) factor
off the height of the communication protocol in our decision tree we can feel satisfied giving up the
rest of the information about Xi and Yi for free.

In fact we will use the generalization of min-entropy to blockwise min-entropy, and so instead
of tracking individual coordinates we stop whenever a set of coordinates I has a joint assignment
x[I] = α which violates 0.95 logm blockwise min-entropy. In addition we will use an entropy-
restoring procedure called the rectangle partition. Whenever we find an assigment x[I1] = α1 that
violates 0.95 logm blockwise min-entropy, we split X into two pieces: X1 = {x : x[I1] = α1} and
X −X1 = {x : x[I1] 6= α1}. Next we repeat for X −X1; if there is an assignment x[I2] = α2 that
violates 0.95 logm blockwise min-entropy, then we split X −X1 into X2 and (X −X1)−X2. We
repeat until there are no more assignments, and then we can make a decision to toss out all Xj sets
or to pick one and query z[Ij ].3

We now describe our high level procedure using this partitioning subroutine. In addition to the
rectangles Rv at each node v of Π, we maintain a subrectangle R = X×Y—initially full—which will
be our guide for how to proceed down Π. Starting at the root, we go down to the child v with the
larger intersection with R (in order to avoid stumbling into a situation where many coordinates get
fixed for free) until we find that a set of coordinates has blockwise min-entropy less than 0.95 logm
in R. After running the rectangle partition, we will need to decide which assignment to query;
ultimately once we’ve chosen the assignment x[Ij ] = αj , we will query z[Ij ] and restrict R to be
consistent with the result. Our first key lemma states that if we run the rectangle partition on X

3As described in Section 4.1, unlike in [GPW17] in our proof we truncate this procedure before X is empty, but
the same basic principle applies.
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Figure 1: Rectangle Partition procedure (figure from [GPW17]).

such that X has blockwise min-entropy at least 0.95 logm on Ij , and Y has size at least 2mn−poly(n)

there is always some choice of j such that for every possible result z[Ij ] = βj , the resulting rectangle
R is large on the Y side.

As mentioned before, our choice of min-entropy will be enough to guarantee that at every step,
our rectangle R will have every assignment to z consistent with the current path in the decision
tree available. When we reach a leaf ` and have queried some coordinates I, we need to ensure that
we know enough to output the same answer as Π. Our second key lemma states that if X and Y
are fixed on the coordinates I ⊆ [n], X has min-entropy at least 0.95 logm on I, and Y has size at
least 2m·|I|−poly(n), then IndIm(X,Y ) = {0, 1}I ; thus R ⊆ R` has every option left for I, and so it
cannot be that one of those assignments gives a different answer that the one covering R`.

Key lemmas through sunflowers. Up until this point, everything we’ve stated is as it appears
in [GPW17]. For our new proof we unify our two key lemmas with a more challenging but ultimately
more straightforward lemma: given X and Y such that XĪ has high blockwise min-entropy and Y

is large, there is a single row x∗ ∈ X such that IndĪm(x∗, Y ) = {0, 1}Ī . Given this statement both
claims are easy to see. In the rectangle partition, for every Ij , αj such that some value βj has few
ys consistent with it, we can simply throw out those ys; then since some row x∗ still has the full
range of values available, whichever Xj part it appears in must not have had any ys thrown out
on its account, and so y[Ij , αj ] should be fairly uniform. At the leaves, if a single x∗ gives the full
range, then so does X 3 x∗.

Despite seeming more challenging, this unifying lemma follows almost immediately from the
Blockwise Robust Sunflower Lemma. To illustrate this with a simple (but ultimately completely
general) case, assume the all-ones vector is missing from IndNm(x, Y ) for all x, or in other words
there is no (x, y) such that y[x] = 1N . Consider the universe [mN ], and let Sx be the set of size n
defined by the values x points to. Since X has high blockwise min-entropy, by Blockwise Robust
Sunflower Lemma a random set Sy ⊆ [mN ] will contain some Sx with high probability. If we look
at the incidence vector of our random Sy, it is a string y ∈ {0, 1}mN = ({0, 1}m)N , and for Sy to
not contain Sx is equivalent to saying that y[x] 6= 1N . Thus Pry[∀x : y[x] 6= 1x] is very low, or in
other words a sufficiently large set Y ⊆ ({0, 1}m)n must contain some y such that y[x] = 1x for
some x. This gives us our contradiction since we assumed Y was large.

One key aspect is that in the rectangle partition we’ve switched from proving an extractor-like
property—showing Y [Ij , αj ] is close to uniform—to proving a disperser-like property—showing
Indnm(x∗, Y ) has every option in its support without need to show any sort of uniformity. This was
an obstruction to getting small gadgets before, as Fourier arguments tend to be fairly coarse in
terms of the polynomials involved.

Recap. Summing up, our final procedure will be as follows. For all v ∈ Π let Rv be the rectangle
associated with node v, let R = [m]n × ({0, 1}m)n, and let v = root. At each step we go to the

8



child v′ of v maximizing R ∩ Rv′ . Then we perform the rectangle partition on X, query z[Ij ] for
Ij from the key lemma (possibly empty) to get the answer βj , and fix R to be consistent with
x[Ij ] = αj and y[Ij , αj ] = βj . As an invariant we have that at the start of each round R is fixed
on the coordinates J queried in our decision tree, XJ has blockwise min-entropy 0.95 logm, and
|YJ | ≥ 2m·|J |−n logn. When we reach a leaf we apply the key lemma one last time to get that all
possible z values consistent with our path in the decision tree are still available, and so we can
return the same answer as Π.

4 The basic lifting theorem: full proof

To prove Basic Lifting Theorem, we prove that if there exists a communication protocol Π of depth
d logm for the composed problem f ◦ Indnm, then there exists a decision tree of depth O(d) for f ;
the other direction is trivial as a communication protocol can simply compute each variable queried
by the decision tree. Our proof will follow the basic structure of previous works [GPW17,GGKS18].
We first define a procedure, called the rectangle partition, which forms the main technical tool in
our simulation. We then prove that with this tool and a few useful facts about its output, we can
efficiently simulate the protocol Π by a decision tree T , using a number of invariants to show the
efficiency and correctness of T . Before we begin, we prove a very useful lemma that shows that if
X has high blockwise min-entropy and Y is large then it’s possible to find an x∗ ∈ X such that the
full image of the index gadget is available to x∗, or in other words IndNm(x∗, Y ) = {0, 1}N . This
appears as Lemma 7 in [GGKS18] for dag-like lifting and is stronger than is necessary for proving
Basic Lifting Theorem, but the proof highlights our new counting strategy and will be a useful tool
throughout the rest of the paper.4

Lemma 4.1 (Full Range Lemma). Let m ≥ n1.1 and let N ≤ n. Let X×Y ⊆ [m]N ×({0, 1}m)N
be such that X has blockwise min-entropy at least 0.95 logm−O(1) and |Y | > 2mN−n logm. Then there
exists an x∗ ∈ X such that for every β ∈ {0, 1}N , there exists a yβ ∈ Y such that IndNm(x∗, yβ) = β.

Proof. Assume for contradiction that for all x there exists a βx such that |{y ∈ Y : y[x] = βx}| = 0,
or in other words for all (x, y) ∈ X × Y , y[x] 6= βx. Consider the CNF over y1 . . . ymN where clause
Cx is the clause uniquely falsified by y[x] = βx; then by Claim 2.3 we see that |{y ∈ ({0, 1}m)N :
∀x, y[x] 6= βx}| is maximized when βx = 0N . Thus because Y ⊆ ({0, 1}m)N ,

|{y ∈ Y : ∀x, y[x] 6= βx}| ≤ |{y ∈ ({0, 1}m)N : ∀x, y[x] 6= 0N}|

Consider the space [mN ] where each element is indexed by (i, α) ∈ [N ] × [m]. For each x ∈ X,
let Sx ⊆ [mN ] be the set defined by including (i, α) iff x[i] = α, and let SX = {Sx : x ∈ X}. By
the fact that m0.95 � O(n logm) and N ≤ n, SX has blockwise min-entropy 0.95 logm−O(1) >
log(Kn logm)) ≥ log(K log(N/ε)), where ε := 2−n logm and K is the constant given by Blockwise
Robust Sunflower Lemma. Thus we can apply Blockwise Robust Sunflower Lemma to SX and get
that PrSy⊆[mN ](∀Sx ∈ SX ,Sx 6⊆ Sy) ≤ ε,5 and if we look at y as being the indicator vector for Sy
then we get that Pry∼{0,1}mN (∀x ∈ X, y[x] 6= 0x) ≤ ε. Thus by counting we get

|Y | ≤ |{y ∈ ({0, 1}m)N : ∀x, y[x] 6= 0N}| ≤ ε · 2mN = 2mN−n logm

which is a contradiction as |Y | > 2mN−n logm by assumption.
4While we simplify things in this section by using m = n1.1, our improved gadget size (see Section 5) crucially

uses the improvements in Blockwise Robust Sunflower Lemma over the basic Robust Sunflower Lemma; the same
improvements also give us a very short proof of our main lemma. However, these improvements aren’t strictly necessary
for our techniques; in Section 7 we provide an alternate proof just using Robust Sunflower Lemma.

5Recall that it does not matter that Sy is not necessarily block-respecting.
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4.1 Density-restoring partition

Before going into the simulation, we define our essential tool, which is usually called the density-
restoring partition or rectangle partition as per [GPW17]. Let N ≤ n and let X × Y ⊆ [m]N ×
({0, 1}m)N . Our goal will be to output a set of rectangles Xj × Y j,β which cover most of X × Y
such that each Xj × Y j,β is “good” in a similar sense to the statement of Full Range Lemma. More
specifically, for each Xj × Y j,β there is some set of coordinates J ⊆ [N ] such that X and Y are
completely fixed on J and “very unfixed” on [N ]r J . For X this means high blockwise min-entropy
of XJ̄ , meaning that every joint setting of some set of free coordinates is roughly equally likely. For
Y the universe ({0, 1}m)N is so large in comparison to [m]N that a lower bound on |Y j,β

J̄
| is enough

to assure Y j,β is free enough in the unfixed coordinates.
Definition 4.1. Let N ≤ n and let ρ ∈ {0, 1, ∗}N be a partial assignment with J := fix(ρ) ⊆ [N ].
A rectangle R = X × Y ⊆ [m]N × ({0, 1}m)N is ρ-structured if the following conditions hold:
− X and Y are fixed on the blocks J and IndJm(XJ , YJ) = ρ[J ]
− XJ̄ has blockwise min-entropy at least 0.95 logm
− |YJ̄ | > 2m·|J̄ |−n logm

To perform the partition we will need to find the sets Xj × Y j,β along with a corresponding
assignment ρj,β for which they are ρj,β-structured. This is done in two phases. Our goal in Phase I
will be to break up X into disjoint parts Xj , such that each Xj is fixed on some set Ij ⊆ [N ] and
has blockwise min-entropy 0.95 logm on Ij—hence this partition is “density-restoring” when X
starts off with blockwise min-entropy below 0.95 logm. To do this, the procedure iteratively finds a
maximal partial assigment (Ij , αj) such that the assignment x[Ij ] = αj violates 0.95 logm blockwise
min-entropy in X, splits the remaining X into the part Xj satisfying this assignment and the part
X rXj not satisfying it, and recurses on the latter part. We do this until we’ve covered at least
half of X by Xj subsets.

Our goal in Phase II will be to break up Y into disjoint parts Y j,β for each Xj from Phase I,
such that each Xj × Y j,β is ρj,β-structured for some restriction ρj,β . We already have the blockwise
min-entropy of Xj in the coordinates [N ] r Ij by our first goal, so clearly fix(ρj,β) = Ij for any k.
Thus we need to fix the coordinates of Y within the blocks Ij , and within each Y j,β it should be
the case that y[Ij , αj ] = β for all y ∈ Y j,β , at which point ρj,β can be fixed to β on Ij and left free
everywhere else.

Algorithm 1: Rectangle Partition
Initialize F = ∅, j = 1, and X≥1 := X;
PHASE I (Xj): while |X≥j | ≥ |X|/2 do

Let Ij be a maximal (possibly empty) subset of [N ] such that X≥j violates
0.95 logm-blockwise min-entropy on Ij , and let αj ∈ [m]Ij be an outcome witnessing
this: Prx∼X≥j (x[Ij ] = αj) > 2−0.95|Ij | logm;

Define Xj := {x ∈ X≥j : x[Ij ] = αj};
Update F ← F ∪ {(Ij , αj)}, X≥j+1 := X≥j rXj , and j ← j + 1;

end
PHASE II (Y j,β): for (Ij , αj) ∈ F , β ∈ {0, 1}Ij do

Let Y ′ = {y ∈ Y : y[Ij , αj ] = β}, and let ηj,β ∈ ({0, 1}m)|Ij | be the string which
maximizes |{y ∈ Y ′ : y[Ij ] = ηj,β}|;

Define Y j,β := {y ∈ Y : y[Ij ] = ηj,β};
end
return F , {Xj}j , {Y j,β}j,β;
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X1

X2

X3

...

x[I1] = α1

x[I2] = α2 x[I1] 6= α1

x[I3] = α3
x[I1] 6= α1

x[I2] 6= α2

X1

X2

X3

Y 1,00 Y 1,01 Y 1,10 Y 1,11

Y 2,000 Y 2,001 Y 2,010 Y 2,011 Y 2,100 Y 2,101

Y 3,0 Y 3,1

Figure 2: Phases I and II of Rectangle Partition. In each Xj × Y j,β , x[Ij ] is fixed to αj and y[Ij ]
is fixed so that IndIjm(Xj

Ij
, Y j,β

Ij
) = β.

Our algorithm is formally described in Rectangle Partition.6 Let X ⊆ [m]N , let Y ⊆ ({0, 1}m)N ,
and let F , {Xj}j , {Y j,β}j,β be the outputs of the rectangle partition on X × Y . Recall that our
goal was to break X × Y up into ρj,β-structured rectangles Xj × Y j,β; the following simple claims
show that the obvious choice of ρj,β achieves two of the three conditions needed.

Claim 4.2. For all j and for all β ∈ {0, 1}Ij , define ρj,β ∈ {0, 1, ∗}N to be the restriction where
fix(ρj,β) = Ij and ρj,β [Ij ] = β. Then Xj×Y j,β is fixed on Ij and outputs IndIjm(Xj

Ij
, Y j,β

Ij
) = ρj,β [Ij ].

Proof. By definition Xj is fixed to αj on the coordinates Ij , while Y j,β is fixed to ηj,β on the blocks Ij .
Since ηj,β ∈ {0, 1}Ij clearly satisfies ηj,β[αj ] = β, it holds that IndIjm(Xj

Ij
, Y j,β

Ij
) = β = ρj,β[Ij ].

Claim 4.3. For all j, Xj

Ij
has blockwise min-entropy at least 0.95 logm.

Proof. Assume for contradiction that I∗ ⊆ [N ] r Ij such that Xj violates 0.95 logm-blockwise
min-entropy on I∗, and let α∗ be an outcome witnessing this. Then

Prx∼X≥j (x[Ij ] = αj ∧ x[I∗] = α∗) > 2−0.95|Ij | logm ·Prx∼Xj (x[I∗] = α∗)
> 2−0.95|Ij | logm−0.95|I∗| logm = 2−0.95|Ij∪I∗| logm

which contradicts the maximality of Ij .

Before moving to the third condition, the size of Y j,β

Ij
, we show that the deficiency of each Xj

drops by Ω(|Ij | logm). This will be used later to show the efficiency of our simulation.

Claim 4.4. For all (Ij , αj) ∈ F , D∞(Xj

Īj
) ≤ D∞(X)− 0.05|Ij | logm+ 1.

6For those familiar with previous works [GPW17], Rectangle Partition varies in two ways: 1) we truncate Phase I
once we’ve partitioned at least half of X; and 2) in Phase II we fix the rest of Y j,β inside the blocks Ij .
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Proof. By our choice of (Ij , αj) it must be that |Xj | = |X≥j | · Prx∼X≥j (x[Ij ] = αj) ≥ |X≥j | ·
2−0.95 logm. Then by a simple calculation

D∞(Xj

Īj
) = |Īj | logm− log |Xj |
≤ (N − |Ij |) logm− log(|X≥j | · 2−0.95|Ij | logm)
≤ (N logm− |Ij | logm)− log |X≥j |+ 0.95|Ij | logm− log |X|+ log |X|
= (N logm− log |X|)− 0.05|Ij | logm+ log(|X|/|X≥j |)
≤ D∞(X)− 0.05|Ij | logm+ 1

where the last step used the fact that |X≥j | ≥ |X|/2, since we terminate as soon as |X≥j | < |X|/2
at the start of the j-th iteration.

For our last lemma before going into the simulation, instead of showing that |Y j,β

Ij
| = |Y j,β| is

large for every j and every β, we want to show that |Y j,β| is large for some j and every β. If every β
were equally likely then |Y j,β| ≈ |Y |/2m·|Ij |; for us it is enough that the smallest Y j,β be a factor of
2−O(|Ij | logm) away from this. We add two new assumptions on X × Y : 1) X starts with blockwise
min-entropy very close to 0.95 logm; and 2) Y is initially large. For convenience we redefine X to
only be the union of the Xj parts; since we terminate after |X≥j | < |X|/2 we can do this and only
decrease the blockwise min-entropy of X by 1. This lemma is a fairly direct application of Full
Range Lemma.
Lemma 4.5. Let X := ∪jXj be such that X has blockwise min-entropy 0.95 logm−O(1), and let
Y be such that |Y | > 2mN−n logm+1. Then there is a j such that for all β ∈ {0, 1}Ij ,

|Y j,β

Ij
| ≥ |Y |/2m·|Ij |+2|Ij | logm

Proof. We will show that there exists a j such that for every β ∈ {0, 1}Ij , |{y ∈ Y : y[Ij , αj ] = β}| ≥
|Y |/22|Ij | logm. If this is true, then by averaging there is some assignment to Ij—aka ηj,β—such that

|Y j,β

Ij
| = |Y j,β| ≥ (|Y |/22|Ij | logm)/2m·|Ij | = |Y |/2m·|Ij |+2|Ij | logm

Assume for contradiction that for every j there exists a βj such that |{y ∈ Y : y[Ij , αj ] =
βj}| < |Y |/22|Ij | logm. Define Y= := {y ∈ Y : ∃j, y[Ij , αj ] = βj} and Y6= := Y r Y= = {y ∈ Y :
∀j, y[Ij , αj ] 6= βj}. We will show that |Y=| < |Y |/2; if this is the case then for it must be that
|Y 6=| ≥ |Y |/2 > 2mN−n logm. By Full Range Lemma there must exist some x∗ ∈ X such that for every
β ∈ {0, 1}N there exists yβ ∈ Y6= such that yβ [x∗] = β. Since x∗ ∈ X, x∗ ∈ Xj for some j, and so for
any β ∈ {0, 1}N such that β[Ij ] = βj , there exists a yβ ∈ Y6= such that yβ [x∗] = β. But since x∗ ∈ Xj ,
x∗[Ij ] = αj , so yβ[Ij , αj ] = βj which is a contradiction since Y6= = {y ∈ Y : ∀j, y[Ij , αj ] 6= βj}.

We now show that |Y=| < |Y |/2. Define F(k) := {(Ij , αj) ∈ F : |Ij | = k}. Clearly |F(k)| ≤
21.9k logm−1 since there are at most

(N
k

)
� 20.9k logm−1 possible sets Ij , and for each there are mk

possible assignments αj . Furthermore F(0) must be empty, because if the empty restriction where
Ij = ∅ is in F , then the corresponding βj would be empty and {y ∈ Y : y[∅, ∅] = ∅} = Y would be
of size |Y |/20, which contradicts our choice of βj . Since we assumed that |{y ∈ Y : y[Ij , αj ] = β}| <
|Y |/22|Ij | logm for all j, by our bound on |F(k)|

|Y=| <
N∑
k=1

(21.9k logm−1 · |Y |
22k logm )

≤ |Y |
2 ·

N∑
k=1

(20.1·logm)−k

<
|Y |
2 ·

∞∑
k=1

2−k = |Y |2
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which completes the proof.

4.2 Simulation

Proof of Basic Lifting Theorem. For n sufficiently large let m = n1.1 and let d ≤ n. As stated in
Section 1 given a decision tree T for f of depth d we can build a communication protocol for f ◦Indnm
of depth d logm; Alice sends the entirety of xj for whatever variable zj the decision tree queries, Bob
sends back yj [xj ], and they go down the appropriate path in the decision tree. Thus we show the
other direction: given a protocol Π of depth d logm for the composed problem f ◦ Indnm we want to
construct a decision-tree of depth O(d) for f . Note that we can assume that d = o(n) as the theorem
is trivial otherwise. The decision-tree is naturally constructed by starting at the root of Π and
taking a walk down the protocol tree guided by occasional queries to the variables z = (z1, . . . , zn)
of f . During the walk, we maintain a ρ-structured rectangle R = X × Y ⊆ [m]n × ({0, 1}m)n which
will be a subset of the inputs that reach the current node in the protocol tree, where ρ corresponds
to the restriction induced by the decision tree at the current step. Thus our goal is to ensure that
the image Indnm(X × Y ) has some of its bits fixed according to the queries to z made so far, and no
information has been leaked about the remaining free bits of z.

To choose which bits to fix, we use the density restoring partition to identify any assignments to
some of the x variables that have occurred with too high a probability; by the way the rectangle
partition is defined the corresponding sets Xj regain blockwise min-entropy. Then using Lemma 4.5,
we pick one of these assignments and query all the corresponding z variables, and for the resulting
β we know Xj × Y j,β is ρj,β-structured since the size of Y j,β doesn’t decrease too much. With the
blockwise min-entropy of X restored and the size of Y kept high, we can update ρ to include ρj,β
and continue to run the rectangle partition at the next node, and so we proceed in this way down
the whole communication protocol.

We describe our query simulation of the communication protocol Π in Simulation Protocol. For
all v ∈ Π let Rv = Xv × Yv be the rectangle induced at node v by the protocol Π. The query and
output actions listed in bold are the ones performed by our decision tree.

Algorithm 2: Simulation protocol
Initialize v := root of Π; R := [m]n × ({0, 1}m)n; ρ = ∗n;
while v is not a leaf do

Precondition: R = X × Y is ρ-structured; for convenience define J := fix(ρ);
Let v`, vr be the children of v, and update v ← v` if |R ∩Rv` | ≥ |R|/2 and v ← vr
otherwise;

Execute Rectangle Partition on (X ∩Xv)J̄ × (Y ∩ Yv)J̄ and let F = {(Ij , αj)}j , {Xj}j ,
{Y j,β}j,β be the outputs;

Apply Lemma 4.5 to F , {Xj}j , {Y j,β}j,β to get some index j corresponding to
(Ij , αj) ∈ F ;

Query each variable zi for every i ∈ Ij , and let β ∈ {0, 1}Ij be the result;
Update XJ̄ ← Xj and YJ̄ ← Y j,β, and update ρ← ρ ∪ ρj,β (recall that ρj,β ∈ {0, 1, ∗}n
is the restriction where fix(ρj,β) = Ij and ρj,β[Ij ] = β);

end
Output the same value as v does;
Before we prove the correctness and efficiency of our algorithm, we note that we make no

distinction between Alice speaking and Bob speaking in our procedure. Here we note that each Rv is
a rectangle induced by the protocol Π, and so updating v only splits X or Y—corresponding to when
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Rv` Rvr

R

Figure 3: One iteration of Simulation Protocol. We perform Rectangle Partition (green lines) on
the larger half of R after moving from v to its child (shaded in purple), use Lemma 4.5 to identify a
part j (shaded in blue), and then query Ij and set R to Xj × Y j,β for the result z[Ij ] = β (shaded
in brown).

Alice and Bob speak respectively—but not both, and so since R ⊆ Rv we get that |X ∩Xv| ≥ |X|/2
and |Y ∩ Yv| ≥ |Y |/2.

Efficiency and correctness. To prove the efficiency and correctness of our algorithm, consider
the start of the t-th iteration, where we are at a node v and maintaining Rt = Xt × Y t and ρt.7
Again for convenience we write J t := fix(ρt). Let (It, αt) be the (possibly empty) assignment
returned by Lemma 4.5 corresponding to index jt, and let βt be the result of querying z[It]. Note
that J t+1 = J t t It, Xt+1

Jt+1 = Xjt

It
, and Y t+1

Jt+1 = Y jt,βt

It
. Also note that t ≤ d logm by the depth of

the protocol Π.
We show that our precondition that Rt is ρt-structured holds for all t, assuming for the moment

that that |J t| ≤ O(d) for all t. We show this by the following three invariants:

(i) Xt, Y t are fixed on J t and IndJtm (Xt
Jt , Y

t
Jt) = ρt[J t]

(ii) Xt
Jt

has blockwise min-entropy at least 0.95 logm
(iii) |Y t

Jt
| ≥ 2m·|Jt|−t−2|Jt| logm.

This is enough to show Rt is ρt structured as 2m·|Jt|−t−2|Jt| logm > 2m·|Jt|−n logm by assumption on
|J t|. All invariants hold at the start of the algorithm since ρ0 = ∗n and X0×Y 0 = [m]n× ({0, 1}m)n.
Inductively consider the (t + 1)-th iteration assuming all invariants holds for the t-th iteration.
After applying Rectangle Partition invariant (i) follows by Claim 4.2 and invariant (ii) follows by
Claim 4.3. For invariant (iii) we first show that it is valid to apply Lemma 4.5 in the (t + 1)-th

7We understand that this notation is somewhat overloaded with Xj , Y j,β , and ρj,β . Since the proof that the
invariants hold is short and we only ever use t (or t+ 1) for the time stamps and j for the indices, hopefully this won’t
cause any confusion.
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iteration. First, because |Xt∩Xv| ≥ |Xt|/2 we know that the blockwise min-entropy of (Xt∩Xv)Jt
is at most one less than the blockwise min-entropy of Xt

Jt
, which is at least 0.95 logm. Second,

we have |(Y t ∩ Yv)Jt | ≥ |Y
t|/2 > 2m·|Jt|−t−2|Jt| logm−1 > 2m·|Jt|−O(d logm), and recall that d = o(n).

Thus we can apply Lemma 4.5 and we get

|Y t+1
Jt+1 | = |Y jt,βt

It
|

≥ |(Y t ∩ Yv)Jt |/2
m·|It|+2|It| logm

≥ 2m·|Jt|−t−2|Jt| logm−1/2m·|It|+2|It| logm

≥ 2m·(|Jt|−|It|)−t−1−2(|Jt|+It|) logm = 2m·|Jt+1|−(t−1)−2|Jt+1| logm

To show that |J t| ≤ O(d)—and by extension that our simulation is guaranteed to be efficient—it is
enough to show that D∞(Xt

Jt
) ≤ 2t− 0.05|J t| logm for every t ≤ d logm, as this gives a bound of

|J t| ≤ 2t/0.05 logm = O(d) by the non-negativity of deficiency. When t = 0 then J t is empty and
D∞(X) = 0. Now in the t-th iteration recall that we query the set It, and by Claim 4.4 we get that

D∞(Xt+1
Jt+1) = D∞(Xjt

It
)

≤ D∞((X ∩Xv)Jt)− 0.05|It| logm+ 1
≤ 1 + (2t− 0.05|J t| logm)− 0.05|It| logm+ 1 = 2(t+ 1)− 0.05|J t+1| logm

We finally have to argue that if we reach a leaf v of Π while maintaining R and ρ, then the solution
o ∈ O output by Π is also valid solution to the values of z, of which the decision-tree knows that
z[fix(ρ)] = ρ[fix(ρ)]. Suppose Π outputs o ∈ O at the leaf v, and assume for contradiction that there
exists β ∈ {0, 1}n consistent with ρ such that β /∈ f−1(o). Since Indfix(ρ)

m (x, y) = ρ[fix(ρ)] = β[fix(ρ)]
for all (x, y) ∈ R, we focus on free(ρ), and let N := | free(ρ)|. Since R is ρ-structured, Xfree(ρ)
has blockwise min-entropy 0.95 logm and |Yfree(ρ)| > 2m·| free(ρ)|−n logm. Thus applying Full Range
Lemma, we know that that there exists (x, y) ∈ R such that Indnm(x, y) = β, which is a contradiction
as R ⊆ Rv ⊆ (f ◦ Indnm)−1(o).

5 Optimizing the gadget size

In Section 4 we loosely chose m = n1.1 for the purpose of showing the basic lifting statement. In
this section we improve from n1.1; more specifically we show a tradeoff between the gadget size and
the strength of the lifting theorem. Ultimately our tradeoff gives an optimal gadget size of m being
quasilinear in n.

Theorem 5.1 (Improved Lifting Theorem). Let f be a search problem over {0, 1}n, and let
m = Ω(n logn). Then

Pcc(f ◦ Indm) ≥ Ω(Pdt(f))

Warm-up: m = n1+ε. First we improve on Basic Lifting Theorem to get a gadget of size n1+ε

for any ε > 0, with no changes in the asymptotic strength of the lifting theorem nor anything
non-trivial in the proof. This comes from two observations. First, we only use the size of m in
the two places we apply Full Range Lemma, and in both cases we can apply Blockwise Robust
Sunflower Lemma as long as 0.95 logm−O(1) ≥ log(Kn logm). Second, from the perspective of
our simulation, the constant 0.95 is only used to set the blockwise min-entropy threshold for the
density-restoring partition, and was chosen arbitrarily.

So for δ > 0 we can instead choose to put the threshold at (1 − δ) logm, at which point our
condition on m changes to (1 − δ)m ≥ log(Kn logm). Clearly this can be made to fulfill our
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condition m ≥ n1+ε with an appropriate choice of δ. The proof itself then simply becomes a matter
of replacing 0.95 with 1− δ and 0.05 with δ throughout the proof, as well as a few other constants.
Since Claim 4.4 now gives a drop in deficiency of δ for every coordinate we query, the non-negativity
of deficiency gives us |fix(ρt)| ≤ 2t/δ logm at any time t ≤ d logm, which gives us a decision tree of
depth (2/δ) · d = O(d) as required.

Near-linear gadget: m = Θ(n logn). Building off the intuition from our warm-up, what happens
if δ is chosen to be subconstant? We cannot hope to get a tight lifting theorem, as our decision tree
will be of depth (2/δ) · d. Furthermore choosing δ = o(1/ logm) makes our blockwise min-entropy
threshold (1− δ) logm trivial, as logm is the maximum possible blockwise min-entropy for X. Thus
by choosing δ = Ω(1/ logm) we can get the following general lower bound, which gives Improved
Basic Lifting Theorem as a special case.

Theorem 5.2 (Scaling Basic Lifting Theorem). Let f be a search problem over {0, 1}n, and
let m, δ be such that δ ≥ Ω( 1

logm) and m1−δ ≥ Ω(n logm). Then

Pcc(f ◦ Indm) ≥ Pdt(f) · Ω(δ logm)

Proof sketch. We start with a given communication protocol Π of depth d · δ logm for the composed
problem f ◦ Indnm and construct a decision-tree of depth O(d) for f . We define a ρ-structured
rectangle R as before except now with the condition that X has blockwise min-entropy (1− δ) logm.
Then in Rectangle Partition we set the blockwise min-entropy threshold for a violating assignment
(Ij , αj) at (1− δ) logm as well.

To prove Full Range Lemma, note that we can apply Claim 2.3 regardless of m and N , and
we can still apply Blockwise Robust Sunflower Lemma as long as we can choose m such that
(1 − δ) logm − 2 > log(Kn logm). Thus for this altered rectangle partition procedure, by the
same proofs as before, Claim 4.3 states that Xj

Īj
has blockwise min-entropy at least (1− δ) logm,

Claim 4.4 states that D∞(Xj

Īj
) ≤ D∞(X)− |Ij | · δ logm+ 1, and Lemma 4.5 states that if X has

blockwise min-entropy (1− δ) logm− 2 and |Y | > 2mN−n logm, then there exists a j such that for
all β, |Y j,β| ≥ |Y |/2m·|Ij |+2|Ij | logm.

Now our simulation procedure is the same as Simulation Protocol. Again at the start of the t-th
iteration we are maintaining Rt = Xt × Y t, ρt, and J t := fix(ρt), where now t ≤ d · δ logm. By the
same argument our procedure is well-defined as long as the precondition of Rt being ρt-structured
holds, and by a deficiency argument using our new Claim 4.4 we get that D∞(Xt

Jt
) ≤ 2t−|J t|·δ logm,

which implies |J t| ≤ 2t/δ logm ≤ 2d. Our precondition holds by applying the new versions of
Claim 4.2, Claim 4.3, and Lemma 4.5 as before. Finally our simulation is correct again by the
invariants and Full Range Lemma.

6 Lifting for dag-like protocols

In this section we show that we can perform our lifting theorem in the dag-like model, going from
decision dags to communication dags. This was originally proven by Garg et al. [GGKS18] using an
alternate proof of Full Range Lemma, and we follow their proof exactly; in fact the only difference
is that the parameters in Full Range Lemma require them to define ρ-structured with |Y | ≥ 2mn−n3 ,
whereas our definition of ρ-structured is the stricter |Y | ≥ 2mn−n logm, which will again allow us to
show the same improvements as in Section 5.
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6.1 Decision Trees and Dags

To begin we generalize the definition of decision trees and communication protocols for solving
search problems [Raz95, Pud10, Sok17]. Let f ⊆ Z × O be a search problem where Z = {0, 1}n
and O is the set of potential solutions to the search problem. Let Q be a family of functions from
Z to {0, 1}. A Q-decision tree T for f is a tree where each internal vertex v of T is labeled with
a function qv ∈ Q, each leaf vertex of T is labelled with some o ∈ O and satisfying the following
properties:

− q−1
v (1) = Z when v is the root of T

− q−1
v (1) ⊆ q−1

u (1) ∪ q−1
w (1) for any node v with children u and w

− q−1
v (1) ⊆ f−1(o) for any leaf node v labeled with o ∈ O

We can see that ordinary decision trees are Q-decision trees where Q is the set of juntas (i.e.,
conjunctions of literals). The root corresponds to the trivially satisfiable junta 1, and the leaves
are labeled with some junta that is sufficient to guarantee some answer o ∈ O. At any node v with
children u and w, since v(z), u(z), and w(z) are all juntas and q−1

v (1) ⊆ q−1
u (1) ∪ q−1

w (1), it is not
hard to see that there is some variable zi such that u(z) is a relaxation of qv(z) ∧ zi and qw(z) is a
relaxation of qv(z) ∧ zi, or vice-versa.

This notion also generalizes to communication complexity search problems F ⊆ X ×Y×O, where
now Q is the family of functions from X × Y to {0, 1} corresponding to combinatorial rectangles
X×Y ⊆ X ×Y ; more specifically qX×Y (x, y) = 1 iff (x, y) ∈ X×Y . Since q−1

v (1) ⊆ q−1
u (1)∪ q−1

w (1),
it must be that the rectangles we test membership for at u and w cover the rectangle being tested
at v, and again it is not hard to see that this corresponds to a relaxation of testing membership in
Xv = Xu tXw or Yv = Yu t Yw.

Now we generalize this notion to dags. For a search problem f ⊆ Z×O and a family of functions
Q from Z to {0, 1}, a Q-dag is a directed acyclic graph D where each internal vertex v of the dag is
labeled with a function qv(z) ∈ Q and each leaf vertex is labelled with some o ∈ O and satisfying
the following properties:

− q−1
v (1) = Z when v is the root of D

− q−1
v (1) ⊆ q−1

u (1) ∪ q−1
w (1) for any node v with children u and w

− q−1
v (1) ⊆ f−1(o) for any leaf node v labeled with o ∈ O

For Z = {0, 1}n a conjunction dag D solving f is a Q-dag where Q is the set of all juntas over Z. 8

For conjunction dags our measure of complexity will be a bit different than size. The width of Π is
the maximum number of variables occurring in any junta v(z). We define

w(f) := least width of a conjunction dag solving f .

For a communication complexity search problem F ⊆ X × Y ×O and a family of functions Q from
X × Y to {0, 1}, we define a Q-dag solving F analogously. A rectangle dag Π solving F is a Q-dag
where Q is the set of all indicator vectors of rectangles X × Y ⊆ X × Y. We define

rect-dag(F ) := least size of a rectangle dag solving F .

8As noted above the terms “conjunction” and “junta” are closely related, but conjunctions are usually thought of
as syntactic objects while juntas are functions. We keep the term conjunction dag from [GGKS18] for consistency
even though we switch to using junta for the functions in Q.
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6.2 Main theorem

The following is our dag-like deterministic lifting theorem. Again an earlier version was originally
proven in [GGKS18] with m = n2, and we improve this to a near linear dependence on n.

Theorem 6.1 (Dag-like Lifting Theorem [GGKS18]). Let f be a search problem over {0, 1}n,
and let m = n1+ε for some constant ε > 0. Then

log rect-dag(f ◦ Indnm) = w(f) ·Θ(logm)

In fact one can easily check that the same scaling argument as Scaling Basic Lifting Theorem
can also be applied to the proof of Dag-like Lifting Theorem, as noted above.

Proof. For n sufficiently large let m = n1+ε and let d ≤ n. Again one direction is simple; given a
conjunction dag D for f of width d we can construct a rectangle dag Π for f ◦ Indnm of size mO(d)

by simply replacing each edge in D with a short protocol that queries all variables fixed by the
edge. Thus we will prove that given a rectangle dag Π for f ◦ Indnm of size md we can construct a
conjunction dag D of width O(d) for f (again we can assume d = o(n) since the problem is trivial
otherwise).

Our procedure is similar to before, maintaining a ρ-structured rectangle R ⊆ Rv at every step,
but now there’s a slight twist: the protocol may have depth greater than d and can decide to “forget”
some bits at each stage, at which point we will have to make sure the assignment ρ we maintain
also stays small.

This presents two problems. First off, it won’t be enough to find a subrectangle of our current
rectangle R, since R has some bits fixed that may be forgotten by the protocol. We circumvent this
by applying the rectangle partition procedure to the actual rectangle Rv, which allows us to find
the “important bits” as before, and then shift to a good rectangle Xj × Y j,β, leaving R behind.

The second challenge is that whenever we apply Rectangle Partition we need to ensure that
every set Ij we find is of size O(d). The Rectangle Lemma is the main technical lemma of [GGKS18],
establishing extra properties of Rectangle Partition. We give a new proof of the Rectangle Lemma,
showing that that by slightly modifying Rectangle Partition we can remove some “error sets” from
X and Y and afterwards assume that all our rectangles Xj × Y j,β are ρ-structured for some small
restriction ρ, aka one that fixes O(d) coordinates. Here we don’t require that X has high blockwise
min-entropy or Y is large; recall that in Rectangle Partition these conditions were only needed to
find a “good” j. We prove this at the end of the section.

Lemma 6.2 (Rectangle Lemma, [GGKS18]). Let R = X × Y ⊆ [m]N × {0, 1}mN and let d < n.
Then there exists a procedure which outputs {Xj×Y j,β}j,β, Xerr, Yerr, where Xerr ⊆ X and Yerr ⊆ Y
have density 2−2d logm in [m]n and ({0, 1}m)n respectively, and for each j, β one of the following
holds:

− structured: Xj × Y j,β is ρj,β structured for some ρj,β of width at most O(d)
− error: Xj × Y j,β ⊆ Xerr × {0, 1}mn ∪ [m]n × Yerr

Finally, a query alignment property holds: for every x ∈ [m]n rXerr there exists a subset Ix ⊆ [n]
with |Ix| ≤ O(d) such that every “structured” Xj×Y j,β intersecting {x}×{0, 1}mn has fix(ρj,β) ⊆ Ix.

With the Rectangle Lemma at hand, the simulation algorithm (Algorithm 3) and proof of
correctness essentially follows [GGKS18]. In particular Algorithm 3 starts with a preprocessing step
where for each vertex v in the communication dag, we apply Lemma 6.2. Then in a bottom-up
fashion. and for each v we remove from Rv all error sets appearing in descendants of v.
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Algorithm 3: Dag-like Simulation Protocol
PREPROCESSING: initialize X∗err = ∅ and Y ∗err = ∅, and for all v ∈ Π let
Rv := Xv × Yv be the rectangle corresponding to v;
for v ∈ Π starting from the leaves and going up to the root do

Update Xv ← Xv rX∗err and Yv ← Yv r Y ∗err;
Apply Lemma 6.2 to Xv × Yv and let {Xj

v}j , {Y j,β
v }j,β , Xerr, Yerr, {Ix}x be the outputs;

Update X∗err ← X∗err ∪Xerr and Y ∗err ← Y ∗err ∪ Yerr;
end
Initialize v := root of Π; R := Rv; ρ = ∗n;
while v is not a leaf do

Precondition: R = X × Y is ρ-structured, for convenience define J := fix(ρ), and
furthermore |J | ≤ O(d);
Apply Full Range Lemma to XJ̄ × YJ̄ to get x∗ ∈ X;
Let v`, vr be the children of v, let j`, jr be the indices such that x∗ ∈ Xj`

v`
and x∗ ∈ Xjr

vr ,
and let Ij` and Ijr be the query alignment sets Ix∗ for v` and vr respectively;

Query each variable zi for every i ∈ (Ij` ∪ Ijr) r J , let βj` ∈ {0, 1}
Ij` be the result

concatenated with ρ[J ] and restricted to Ij` , and let βjr ∈ {0, 1}Ijr be defined
analogously;

Let y∗ ∈ Y be such that IndIj`m (x∗, y∗) = βj` and IndIjrm (x∗, y∗) = βjr , and let c ∈ {`, r}
be such that (x∗, y∗) ∈ Xjc

vc × Y
jc,βjc
vc ;

Update X × Y = Xjc
vc × Y

jc,βjc
vc and ρ← ρjc,βjc ;

end
Output the same value as v does;

After preprocessing to remove the error sets, we enter the main while loop of the algorithm, which
iteratively walks down the communication dag, maintaining the invariant that when processing node
v, we have a ρ-structured rectangle R associated with v with at most O(d) bits fixed. We apply
Full Range Lemma to R to find some x∗. Since all error sets were removed in the preprocessing
step, we are guaranteed that x∗ is contained not only in R (the rectangle associated with v), but
also in the rectangles associated with the children of v. That is, x∗ ∈ Xj`

v`
and x∗ ∈ Xjr

vr for some
Xj`
v`

generated in the left child and Xjr
vr generated in the right child. Furthermore x∗ has full range

in R ⊆ Rv` ∪Rvr , and so there cannot be any Y j`,β
v`

or Y jr,β
vr that is missing.

We use the query alignment property for Ij` and Ijr corresponding to Xj`
v`

and Xjr
vr , and query

all unknown bits for both sets. Then because of the full range of x∗ we find a y∗ compatible with
all bits fixed, and move to the (structured) rectangle output by the partition at whichever child of v
contains y∗, since R is in the union of the rectangles at v’s children. Thus when we move down to a
child of v, we maintain our invariant of being in a ρ-structured rectangle with at most O(d) fixed
bits. We state the algorithm (Algorithm 3) formally in the next page.

We briefly go over the invariants needed to run Dag-like Simulation Protocol. For the pre-
processing step consider any node v. Since the number of descendants of v is at most |Π| = md,
we know that after having removed all error sets below the current node v we’ve only lost a
md×2−2d logm � 1/2 fraction of Xv and Yv. At the root of Π, after processing Rv in total we’ve lost
an md · 2−2d logm � 1/2 fraction of [m]n and ({0, 1}m)n each, meaning we start with |Xv| = mn/2
and |Yv| = 2mn/2. After this the rectangle associated with the root we will never encounter an error
rectangle in our procedure. This will be the only place where we use the fact that |Π| = md.
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Rv`

Rvr

R

x∗

y∗

Figure 4: One iteration of Dag-like Simulation Protocol. We perform Rectangle Partition (green
lines) on both Rv` and Rvr separately, use Full Range Lemma find an x∗ ∈ R with full range,
query all bits in the sets Ij` and Ijr corresponding to Xj` , Xjr 3 x∗ (shaded in blue), find a y∗ for
which Indnm(x∗, y∗) matches the result, and set R to Xjc × Y jc,βc 3 (x∗, y∗) (shaded in brown) for
c ∈ {`, r} (shaded in purple).

In the main procedure, assuming the precondition of R being ρ-structured holds we meet all
conditions for applying Full Range Lemma. Since x∗ has full range we know that every Y j`,βj`

v` and
Y
jr,βjr
vr exists, and since we removed all error sets the rectangle Xjc

vc × Y
jc,βc
vc we end up in must be

in the “structured” case of Lemma 6.2. Thus again end up in an R which is ρ′-structured for some
ρ′ which fixes at most O(d) coordinates, and so we’ve met the preconditions for the next round.

Our argument at the leaves is identical to the proof of Basic Lifting Theorem, but we restate it
for completeness. We have to argue that if we reach a leaf v of Π while maintaining R and ρ, then the
solution o ∈ O output by Π is also valid solution to the values of z, of which the decision-dag knows
that z[fix(ρ)] = ρ[fix(ρ)]. Suppose Π outputs o ∈ O at the leaf v, and assume for contradiction that
there exists β ∈ {0, 1}n consistent with ρ such that β /∈ f−1(o). Since Indfix(ρ)

m (x, y) = ρ[fix(ρ)] =
β[fix(ρ)] for all (x, y) ∈ R, we focus on free(ρ), and let N := | free(ρ)|. Since R is ρ-structured,
Xfree(ρ) has blockwise min-entropy 0.95 logm and |Yfree(ρ)| > 2m·| free(ρ)|−n logm. Thus applying Full
Range Lemma, we know that that there exists (x, y) ∈ R such that Indnm(x, y) = β, which is a
contradiction as R ⊆ Rv ⊆ (f ◦ Indnm)−1(o).

Proof of Lemma 6.2. Our procedure for generating rectangles Xj × Y j,β will be nearly the same as
Rectangle Partition, with the one small caveat that we run Phase I until X≥j is empty instead of
stopping after partitioning half of X.9 Let R ⊆ [m]n × {0, 1}mn, let {Xj × Y j,β}j,β be the output

9Our procedure doesn’t require a drop in deficiency anymore, since it’s enough to maintain the invariant that
we’ve fixed at most O(d) coordinates.
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Yerr

Xerr

Figure 5: Error rectangles shaded in blue. Xj is added to Xerr if Ij is too large (bottom), while
Y j,β is added to Yerr if Y j,β is too small (right).

of this procedure on R, and let F = {(Ij , αj)} be the set of assignments found in the procedure as
in Rectangle Partition. We first need to define the error rectangles Xerr and Yerr. Intuitively every
“structured” Xj × Y j,β is ρj,β structured for some ρj,β , and furthermore we want to ensure that the
number of bits fixed in ρj,β is at most O(d). For X this means ensuring that Ij is small, while for
Y this means ensuring that Y j,β is large. We initialize Jgood = [|F|], and we repeatedly find “bad”
j ∈ Jgood and add either Xj or Y j,β to Xerr or Yerr.

− Xerr: while there exists j ∈ Jgood such that |Ij | > 40d, update Xerr ← Xerr ∪ Xj and
Jgood ← Jgood r {j}

− Yerr: while there exists j ∈ Jgood and β such that |Y j,β r Yerr| < 2m·|Ij |−5d logm, update
Yerr ← Yerr ∪ Y j,β for all such β and Jgood ← Jgood r {j}

We prove a series of short claims about Xerr and Yerr, most of which immediately follow in the
same way as Claim 4.2, Claim 4.3, and Lemma 4.5. The first puts these claims together to show
that all rectangles corresponding to j ∈ Jgood fulfill the “structured” case of Lemma 6.2.

Claim 6.3. For all j ∈ Jgood and all β ∈ {0, 1}Ij , Xj × Y j,β is ρj,β structured for some ρj,β which
fixes at most O(d) coordinates.

Proof. As usual, for all j and for all β ∈ {0, 1}Ij , define ρj,β ∈ {0, 1, ∗}N to be the restriction where
fix(ρj,β) = Ij and ρj,β[Ij ] = β. Then

− by Claim 4.2, Xj × Y j,β is fixed on Ij and outputs IndIjm(Xj
Ij
, Y j,β

Ij
) = ρj,β[Ij ].

− by Claim 4.3, XIj
has blockwise min-entropy 0.95 logm.

− since j ∈ Jgood, it must be that |Y j,β| ≥ 2m·|Ij |−5d logm ≥ 2m·|Ij |−n logm. 10

and so Xj × Y j,β is ρj,β-structured. Furthermore, since j ∈ Jgood it must be the case that
|fix(ρj,β)| = |Ij | ≤ 40d.

10Note that even if some of Y j,β is lost when we expand Yerr for some j′, the loop will not terminate until every
Y j,β that is currently too small is added, and so if Y j,β survives then it must be large enough.
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Finally we handle the density of the error rectangles. In our simulation this will be used to
ensure we can apply Full Range Lemma at every step.

Claim 6.4. |Xerr| ≤ mn · 2−2d logm and |Yerr| ≤ 2mn · 2−2d logm

Proof. For Xerr we have two cases: either Xerr is empty, in which case the claim is trivial,
or Xerr is not empty and there is some minimal j such that Xj gets added to Xerr, and by
extension |Ij | > 40d. Recall that we showed |Xj | ≤ |X≥j | · 2−0.95|Ij | logm, and by extension
H∞(Xj) ≥ H∞(X≥j)−|Ij |·0.95 logm. Then because Xj is a set in [m]n fixed on coordinates Ij ⊆ n,
H∞(Xj) ≤ (n− |Ij |) logm. Combining these two bounds gives us H∞(X≥j) ≤ (n− 0.05|Ij |) logm,
and note that Xerr ⊆ X≥j . Thus by our choice of j we get that

|Xerr| ≤ |X≥j | < 2(n−0.05·40d) logm < mn · 2−2d logm

For Yerr, as in the proof of Lemma 4.5 for all k ∈ [40d] there are
(n
k

)
·mk · 2k < 23k logm choices of

(Ij , αj , βj) such that |Y j,βj | < 2m·(N−k)−5d logm, and taking a union bound we get that

|Yerr| ≤
40d∑
k=1

23k logm · 2m·(N−k)−5d logm ≤ 40d · 2m(N−1)−2d logm � 2mn · 2−2d logm

which completes the proof.

The proof of Lemma 6.2 is now fairly immediate. The density of Xerr and Yerr follows from
Claim 6.4. For any Xj ×Y j,β , if j ∈ Jgood then by Claim 6.3 this fulfills the structured case, while if
j /∈ Jgood then either Xj ⊆ Xerr or Y j,β ⊆ Yerr by definition. The query alignment property holds
by taking Ix = Ij for all x /∈ Xerr, where j is such that x ∈ Xj .

7 Lifting that scales with simulation length

In this section we prove a variant on Basic Lifting Theorem, which allows us to set the gadget size
m in terms of the target decision tree depth d. This theorem was originally proven in [GKMP20]
but here we get a simpler proof via the sunflower lemma together with simple counting.

Theorem 7.1 (Low-depth Lifting Theorem [GKMP20]). Let f be a search problem over
{0, 1}n, and let m ≥ (Pdt(f))5+ε for some constant ε > 0. Then

Pcc(f ◦ Indm) ≥ Pdt(f) · Ω(logm)

Proof sketch. Again we start with a given real protocol Π of depth d logm for the composed
problem f ◦ Indnm and construct a decision-tree of depth O(d) for f . Putting aside Full Range
Lemma for the moment, we can apply Rectangle Partition as in Basic Lifting Theorem, and Claims
4.2, 4.3, and 4.4 hold with no change in proof. For Lemma 4.5 we impose the slightly stronger
precondition that |Y | ≥ 2mN−O(d logm),11 which will become useful when we go to prove Full
Range Lemma. Our simulation proceeds according to to Simulation Protocol, and the same proofs
hold to show our simulation’s efficiency. For correctness note that with our new condition that
|Y | ≥ 2m·| free(ρ)|−O(d logm) the same argument holds as before, as long as m1−δ > O(d logm), where
(1− δ) logm is our blockwise min-entropy threshold in Rectangle Partition.

11Since our invariants actually give |Y t| ≥ 2m·| free(ρt)|−t−2d logm for t ≤ d logm, we could have stated Lemma 4.5
this way originally, but to simplify the presentation we omitted any reference to d in Rectangle Partition
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Now we return to Full Range Lemma. To see why this is our main technical challenge, note
that we can apply Claim 2.3 as before, but the rest of the argument no longer holds for m � n,
as we cannot apply Blockwise Robust Sunflower Lemma for (1− δ) logm < log(K log(N/ε)). We
will prove a variant of Lemma 4.1, from which Lemma 4.5 follows using our additional constraint
|Y | > 2mN−O(d logm). As usual we work with the relatively simple blockwise min-entropy threshold
0.95 logm and gadget size d7 as a matter of clarity, and at the end of the section we prove it more
generally to get better parameters. For convenience we reuse the shorthand γj := (Ij , αj).

Lemma 7.2. Let N ≤ n, let d = o(n), and let m > d7. Let X be such that X has blockwise
min-entropy 0.95 logm, and let F = {γj}j be a block-respecting set system over [m]N such that 1)
for all x ∈ X there exists a γj ∈ F consistent with x, and 2) |γj | ≤ O(d) for all j. Then

Pry⊆[mN ](∀j : γj 6⊆ y) < 2−Ω(d logm)

We prove this lemma in Section 7.1, as it is our main technical contribution.

7.1 Proof of Lemma 7.2

Proof sketch. Our goal will be to show that F contains an 2−Ω(d logm)-robust sunflower with an
empty core. Note that in proving Full Range Lemma we invoked Blockwise Robust Sunflower
Lemma, which stated that X contained an ε-robust sunflower with an empty core. However, while
we still have blockwise min-entropy on X, for m� N we cannot use Blockwise Robust Sunflower
Lemma on X.

Instead we turn to F , and since we don’t have a notion of blockwise min-entropy for F we switch
to using the basic Robust Sunflower Lemma, and instead use the blockwise min-entropy of X to
ensure F is large. More specifically, because the blockwise min-entropy of X is at least 0.95 logm,
for any non-empty set γj ∈ F the set of all x ∈ X consistent with γj can only cover a 2−0.95|γj | logm

fraction of X. Since each x ∈ X must be consistent with some γj , there must be a huge number of
sets γj in F , and so by Robust Sunflower Lemma F contains some ε-robust sunflower FS̄ even for
very small ε.

If |S| = 0 then we are done, but unfortunately using Robust Sunflower Lemma we have no
control over |S|. Instead, we employ the strategy an iterative strategy where we drive down the
size of the smallest core S for which FS̄ is an ε-robust sunflower. For simplicity assume there is
some s ≤ 20d such that every set in F has size s, and so in the worst case we can assume that every
core S for which FS̄ is an ε-robust sunflower has size s− 1. We want to show now that there exist
enough such cores S that the collection of these cores itself is an ε-robust sunflower, and so it must
have a core S′ of size at most s− 2. If this is true then it turns out FS̄′ is an ε′-robust sunflower for
ε′ only slightly larger than ε. From this we’ve made progress; by increasing ε slightly we’ve found a
core of a smaller size.

Using this idea, at a high level we will perform an iterative procedure, where we repeat the
following three steps until we find a sunflower with an empty core in F : 1) repeatedly pluck ε-robust
sunflowers from F ; 2) when we have enough sunflowers, pluck an robust sunflower from their cores;
3) increase ε enough so that the core of this new sunflower is the core of an ε-robust sunflower in F
as well. In our actual calculations we will need to keep track of the sets of cores of each size, as well
as to focus only on the sets in F of a certain size. This will allow us to know when we should pluck
a sunflower from the cores, and will give us a measure of progress towards finding an empty core,
which will allow us to choose our ε small enough to get 2−Ω(d logm) at the end.

The last remaining piece is showing that we can actually pluck enough sunflowers from F to
repeat this procedure enough to get an empty core, without running out of sets in F . Unfortunately
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when we find a core S and pluck the sunflower FS̄ , we have no control over how many sets are
actually in FS̄ , and so it seems hopeless to control how many rounds we can run for. However,
note that the 0.95 logm lower bound on the blockwise min-entropy of X holds for any S over [m]N ,
which applies to a) the original sets γj ∈ F , and b) the cores S that we pluck. Thus instead of
arguing that each FS̄ we find is small, we instead argue that the fraction of X covered by sets
remaining in F is large, using the blockwise min-entropy of X for all (non-empty) cores S we’ve
found so far. Then, again using the blockwise min-entropy of X on F , we know that F must still
have many sets to cover the remaining fraction of X, as we did when showing that F was originally
big enough to apply Robust Sunflower Lemma.

Proof. It is sufficient to show that F contains an ε-robust sunflower with an empty core for some
ε ≤ 2−Ω(d logm). Again we assume ∅ /∈ F as the lemma is trivial otherwise, and so for all s ∈ [O(d)] let
F(s) be the set of all sets in F of size exactly s, and let X(s) be the set of all x ∈ X consistent with
a set in F(s). Since every x is consistent with some γ ∈ F = ∪sF(s), we know that X = ∪sX(s).
Therefore by averaging there must exist some s ∈ [O(d)] such that |X(s)| ≥ 1

O(d) |X|, and so we fix
an arbitrary such s.

We define an iterative procedure to find an robust sunflower with an empty core in F(s). Set
t = 0, set ε0 := 2−Ω(d logm)−s2 logm, and set F0 := F(s). For k = 0 . . . s− 1 set Sk := ∅. We repeat
the following until we ever add a set to S0:

0. abort if the following invariants ever do not hold:
(a) |Sk| ≤ 20.5k logm

(b) |F t| ≥ 20.5s logm

(c) for every k and every S ∈ Sk, |S| = k and F(s)S̄ is an εt-robust sunflower
(d) εt < 2−Ω(d logm)

1. let F t
S̄

be an εt-robust sunflower in F t; if none exists, abort
2. increment t and set εt ← εt−1
3. set S |S| ← S |S| ∪ {S} and set F t ← F t−1 −F t−1

S̄

4. while there exists k such that |Sk| = 20.5k logm:
(a) if k = 0, exit and return εt
(b) let Sk

S̄
be an ε0-robust sunflower in Sk; if none exists, abort

(c) increment t and set εt ← εt−1 + ε0
(d) set S |S| ← S |S| ∪ {S}, set Sk′ ← Sk′ − Sk′

S̄
for all k′ > |S|, and set F t ← F t−1 −F t−1

S̄

If this process exits without aborting, clearly by invariants (c) and (d), F(s) is a 2−Ω(d logm)-robust
sunflower with an empty core as desired (note that when the procedure exits, |S0| = 20.5·0 logm = 1).
Thus we prove that the process never aborts.

First we show that by Robust Sunflower Lemma, in steps 1 and 4b we always find an robust
sunflower. Recall that m > d7.12 For step 1, by invariant (b) and the fact that 1/εt ≤ 1/ε0 =
2Ω(d logm)+s2 logm we have

|F t| ≥ 20.5s logm = (m0.5)s � (Ω(d3 logm))s ≥ (s · log exp(Ω(d logm) + s2 logm))s ≥ (s · log 1/εt)s

and for step 4b by the inner loop condition the same calculation shows

|Sk| = 20.5k logm = (m0.5)k � (Ω(d3 logm))k ≥ (k · log exp(Ω(d logm) + s2 logm))k = (k · log 1/ε0)k

12Here is the first place where we use the gadget size.
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We now prove that the invariants hold. For invariant (a), clearly after exiting the inner loop
|Sk| < 20.5k logm for all k. Before the inner loop runs we add at most one element to at most one
set Sk, and thus for that set |Sk| < 20.5k logm + 1, or in other words |Sk| ≤ 20.5k logm. At the start
of each iteration of the inner loop at most one set Sk has size 20.5k logm, and since we remove at
least one element from it and add at most one element to at most one other set we maintain that
invariant.

For invariant (b), assume for contradiction that |F t| < 20.5s logm. Recall that X has blockwise
min-entropy at least 0.95 logm, meaning that every set S over [m]N covers at most 2−0.95|S| logm · |X|
elements in X, and by extension in X(s). In particular this applies to every set γj ∈ F t as well
as every set S ∈ Sk. Lastly by assumption |F t| < 20.5s logm, and likewise by invariant (a) we know
that |Sk| < 20.5k logm for every k. Therefore since m > d7,13

|X(s)| ≤ |F t| · (2−0.95s logm · |X|) +
s−1∑
k=1
|Sk| · (2−0.95k logm · |X|)

< 20.5s logm · 2−0.95s logm · |X|+
s−1∑
k=1

20.5k logm · 2−0.95k logm · |X|

= (
s∑

k=1
2−0.45k logm) · |X|

≤ (s · 2−0.45 logm) · |X|
≤ (s · d−3) · |X| = 1

ω(d) |X|

which is a contradiction of our choice of s.
For invariant (c), we first note the following simple observation about sunflowers.

Fact 7.3. Let F and H be any two set systems such that H ⊆ F , let ε, ε′ > 0 be such that ε ≤ ε′,
and let S be any set. Then if HS̄ is an ε-robust sunflower, FS̄ is also an ε′ robust sunflower.

Consider S ∈ Sk. Clearly |S| = k by construction, and so we show that F(s)S̄ is an εt-robust
sunflower. We consider only the value of t when S was added to Sk, as εt only grows, and we do
this by induction on t. First observe that for any t, if S was added to Sk in step 1 then the claim
follows immediately since F t ⊆ F(s). This establishes the base case since at t = 0 we are at the
start of the procedure, and so we consider t > 0. We show this with induction on k in reverse order
from s− 1 to 0. If k = s− 1, since there is no Sk′ for k′ > s− 1 it must have been added in step 1,
and so again the claim follows immediately. Thus we consider k < s− 1 and assume S was added in
step 4b.

Let k′ > k be such that Sk′S was the sunflower discovered in step 4b which made us add S
to Sk. We claim that F(s)S̄ is an (εt−1 + ε0)-robust sunflower, which completes the claim since
εt = εt−1 + ε0. Consider the probability that a random set y ⊆ [mN ]− S doesn’t contain any set in
F(s)S̄ . For this to happen, for every set S′ ∈ Sk′

S̄
either y contains no sets in F(s)S̄′ or it does not

contain S′ itself. If there is some S′ such that S′ ⊆ y, then by the inductive hypothesis on t and k
we know that F t′S′ is an εt′-robust sunflower, where t′ ≤ t− 1 was the value of t when S′ was added
to Sk. Since εt′ ≤ εt−1 and F t′ ⊆ F(s), by extension y avoids every set in F(s)S′ with probability
at most εt−1. In the other case where no such S′ exists, then because Sk′

S̄
is an ε0-robust sunflower y

avoids every set S′ ∈ Sk′
S̄

with probability at most ε0. Taking a union bound over these two events
gives us our claim.

13Here is the second place where we use the gadget size.
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Finally for invariant (d), we claim that t ≤ 2s2 logm − 1 when the process ends. Putting this fact
together with ε0 := 2−Ω(d logm)−s2 logm and εt ≤ εt−1 + 2−Ω(d logm)−s2 logm for all t gives us

εt ≤ ε0 + t · ε0 ≤ 2s2 logm · 2−Ω(d logm)−s2 logm = 2−Ω(d logm)

We associate each tuple S := (Sk)k=1...s−1 with the string τ(S) = |S1|#|S2|# . . .#|Ss−1|. We claim
that for every t there is a unique string τt corresponding to τ(S) at the time t was incremented.
This is simply because in every round of the outer loop we increase the size of at least one set
Sk, and in every round of the inner loop that we cause some Sk to shrink in some round of the
inner loop, we also cause some set Sk′ to grow where k′ < k. By invariant (a) and the inner loop
condition, |Sk| ≤ 20.5k logm for every k whenever we updated t, and so as long as |S0| = 0—in other
words for all t except the very last one—we have

t ≤ |τ(S)| =
s−1∏
k=1

20.5k logm = (20.5 logm)
∑s−1

k=1 k < 2s2 logm − 2

and so at the end of the procedure t ≤ 2s2 logm − 1.

7.2 Better gadget size

By balancing the parameters in Lemma 7.2 we can prove our scaling lifting theorem.

Lemma 7.4. Let N ≤ n, let d = o(n), and let m > d5+ε for any constant ε > 0. Let X and δ
be such that X has blockwise min-entropy (1 − δ) logm, and let F = {γj}j be a block-respecting
set system over [m]N such that 1) for all x ∈ X there exists a γj ∈ F consistent with x, and 2)
|γj | ≤ O(d) for all j. Then

Pry⊆[mN ](∀j : γj 6⊆ y) < 2−Ω(d logm)

Proof. As usual we set our blockwise min-entropy threshold at (1− δ) logm, and furthermore we
set our cutoff for the size of the sets Sk at m(1−δ′)k. There are two conditions that need to be
fulfilled: 1) to show we can apply the sunflower lemma to F t and Sk we need m1−δ′ = Ω(d3 logm);
2) to bound |X(s)| we need mδ−δ′ < ω(d−2). Clearly our first step is to set δ to be smaller than
an arbitrarily small constant ε′—recall that this does not affect the asymptotic strength of our
lifting theorem—and for simplicity we replace logm with dε

′ in the first condition, and so we get
m1−δ′ = d3+ε′ and mδ′−ε′ = d2. Setting δ′ = 0.4 gives us m = d5+ε for some constant ε = O(ε′), and
since we make ε′ arbitrarily small we can do the same for ε.

8 Open problems

Towards poly(log) gadget size. As discussed in the paper, one of the core issues in improving
gadget size with current techniques is to prove the extractor or disperser like analogues of Lemma 4.1
for small gadget sizes. To this end, we pose the following concrete conjecture:

Conjecture 1. There exist a constant c such that for all large enough m the following holds.
Let X,Y be distributions on [m]N , ({0, 1}m)N with entropy deficiency at most ∆ each. Then,
IndNm(X,Y ) contains a subcube of co-dimension at most c∆. That is, there exists I ⊆ [N ], |I| ≤ c∆,
and α ∈ {0, 1}I such that for all z ∈ {0, 1}N with zI = α, we have

PrX,Y [IndNm(X,Y ) = z] > 0.
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Proving the above statement seems necessary for obtaining better lifting theorems with current
techniques. Further, while there are other obstacles to be overcome, proving the conjecture for
smaller gadget-sizes would be a significant step toward improving gadget size (e.g., at least in
the non-deterministic setting as considered in [GLM+16]). Our work proves the conjecture where
m = O(N logN), whereas previous techniques needed m � N2. The robust-sunflower theorem
of [ALWZ20] can be seen as proving a related statement: For gadget-size m = poly(logN), if X has
deficiency at most ∆, Y is the p-biased distribution, then we get the stronger guarantee that for some
I ⊆ [N ], |I| = O(∆), α ∈ {0, 1}I we have that for all z with zI = αI , PrY [∃x ∈ X, IndNm(X,Y ) =
z] ≈ 1. We believe that these arguments could be useful in proving the above conjecture when the
gadget-size is m = poly(logN).
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A A Rosetta Stone for lifting and sunflower terminology

In this appendix we draw relations between concepts in lifting theorems and in sunflowers lemmas.

Spreadness and min-entropy. One way of understanding the jump in [GPW17] from single
coordinates to blocks of coordinates is as a movement to a “higher moment method”, similar to
the one used in [ALWZ20] to improve the parameters in the classic Sunflower Lemma. For this
we will be focusing on universes UN split into N blocks. A set system F over U is r-spread if
|FS̄ | ≤ |F|/r|S| for every ∅ 6= S ⊆ U . Recall that the blockwise min-entropy of a set system F over
U is min∅6=I⊆[N ]

1
|I|H∞(FI). We will draw the following equivalence:

F is r − spread⇔ F has blockwise min-entropy log r

⇒: consider a set I ⊆ [N ] and a block-respecting subset S containing elements exactly from the
blocks I. Since |FS̄ | ≤ |F|/r|S| for every ∅ 6= S ⊆ U , it follows that Prγ∼F [S ⊆ γ] ≤ r−|S|. Applying
this to every such S gives us H∞(FI) ≥ 1

|I| log r, and taking the minimum over all I completes the
proof.
⇐: for every set ∅ 6= S ⊆ U we have two cases: either S is also block respecting or it is not. In

the former case then by blockwise min-entropy we have |FS̄ | ≤ |F| · 2−|S| log r. In the latter case,
note that |FS̄ | = 0 since every set γ ∈ F is block respecting and therefore S cannot be a subset of
γ—in other words the blockwise-respecting nature of F is irrelevant, as claimed in Section 2. Either
way S meets the spreadness condition.

We put a last note in, which is that we derived Blockwise Robust Sunflower Lemma from Lemma
4 of [Rao19] using this equivalence. There there is an additional condition that |F| ≥ rN ; if the
blockwise min-entropy of F is log r then this follows by averaging, just considering all sets S of size
N .

Disperser property and full range. In [GPW17] there was an improvement to Lemma 4.5
which showed that IndNm(x,y) is multiplicatively close to uniform given blockwise min-entropy and
largeness. In combinatorics, this uniformity is what is often called an extractor property. By contrast
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a disperser property is one that only ensures that IndNm(X,Y ) has full range, similar to our key Full
Range Lemma. While this coarseness means we cannot achieve a lifting theorem for BPP, it was
the key to applying our sunflower techniques, and ultimately necessary for going to a quasilinear
size gadget.

Covers and the rectangle partition. For two set systems F and X over U , F is a cover of X
if for every x ∈ X there exists a γ ∈ F such that γ ⊆ x. Furthermore F is an r-tight cover if for
every γ ∈ F , |Xγ | > k−|γ||X|. Going by our translation from spreadness to blockwise min-entropy,
it is clear that Rectangle Partition is designed to find a tight cover of X, since γ corresponds to an
assignment that is too likely in X, and in each resulting part Xj we want to ensure that blockwise
min-entropy is restored. There is a bit more work involved with turning a tight cover into a rectangle
partition, but the principle is exactly the same.

Link of F at S. The link of F at S is {γ r S : γ ∈ F , S ⊆ γ}. While a comparatively minor
point, it is worth pointing out that we use the terminology FS to refer to the link, while in sunflower
papers this is often written as FS . We did so to keep consistency with the rest of our set notation.
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