
Simulating DQBF Preprocessing Techniques
with Resolution Asymmetric Tautologies

Joshua Blinkhorn

Friedrich-Schiller-Universität, Jena, Germany

Abstract. Dependency quantified Boolean formulas (DQBF) describe an NEXPTIME-complete
generalisation of QBF, which in turn generalises SAT. DQBF solving is an emerging field with
further applications in, among others, incomplete circuit design.
QRAT is a recently proposed proof system for quantified Boolean formulas (QBF), which sim-
ulates the full suite of QBF preprocessing techniques and thus forms a uniform proof checking
format for solver verification.
In this work, we study QRAT in the more general DQBF context, obtaining a sound and complete
refutational DQBF proof system that we call DQRAT. We show that DQRAT can simulate the
full suite of dedicated DQBF preprocessing techniques, except those relying on defined variables,
which we cover with the introduction of a new form of prefix modification. Our work enables
generalisations of further QBF preprocessing techniques (e.g. blocked literal elimination) that
were not previously considered for DQBF.

Keywords: DQBF · QBF · QRAT · solving · preprocessing · proof systems

1 Introduction

Dependency quantified Boolean formulas (DQBF) [50] enrich propositional logic with Henkin
quantifiers [32], offering natural encodings of problems such as partial equivalence checking [30,
26] and synthesis of safe controllers [17]. The last few years has seen a surge of interest in
practical DQBF solving [28, 31, 61] and its accompanying theory of associated proof systems [4,
6, 8]. Indeed, as of 2018 the annual QBF evaluation competition runs a dedicated DQBF
track [51].

Formally a DQBF is a logical expression of the form

∀u1 · · · ∀um∃x1(S1) · · · ∃xn(Sn) · ψ ,

where ψ is a propositional formula and each dependency set Si is a subset of the universally
quantified variables {u1, . . . , um}. The intended meaning is as follows: for all Boolean values
for the ui, there exist Boolean values for the xi, each depending only Si, such that ψ is
satisfied. A traditional quantified Boolean formula (QBF) is obtained when the dependency
sets are linearly ordered with respect to set inclusion, i.e. S1 ⊆ · · · ⊆ Sn. A SAT instance is
obtained when the set of universal variables is empty.

Hence SAT is a strict subset of QBF, which in turn is a strict subset of DQBF. Moreover,
the decision problems for these three logical formalisms form canonical complete languages
for the complexity classes NP [21], PSPACE [60], and NEXPTIME [3], respectively.

An automated decision procedure for an NEXPTIME-hard language could scarcely have
been conceivable prior to the breakthroughs with SAT technologies [63] powered by conflict-
driven clause learning [58]. At the present time, however, the applicability of SAT-based
techniques to further logics is a thriving research area [12, 13], whereby (D)QBF serves as a
yardstick measuring progress in the algorithmic solution of increasingly harder problems.

The QBF landscape. Practitioners have been developing QBF solvers for a quarter of a century,
and a host of competitive implementations (CAQE [52], DepQBF [46], RAReQs [39], Qute [49],

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 112 (2020)

2 Joshua Blinkhorn

and so on) have steadily raised the performance bar. Breakthroughs for QBF technologies,
like those reported for SAT, are yet to be seen; nonetheless, a recent study showed that the
QBF-based workflow outperforms SAT on particular bounded synthesis problems [25].

Empirical studies report improved performance when the standard QBF preprocessor
bloqqer [15] is enabled. Preprocessing [55] involves the application of various satisfiability-
preserving transformations with the ultimate goal of reducing the size of the problem encod-
ing. QBF preprocessors empoy techniques such as blocked clause elimination [41, 15], blocked
literal elimination [37], and universal expansion [2, 14].

On the theory side, there exist a host of QBF proof systems [20], several of which ‘under-
pin’ solving techniques in the sense that the solver trace can be interpreted as a proof [16].
The relative proof complexities of these systems is very well understood [5, 10]. Moreover,
interpreting the trace as a proof allows the result of the solver to be verified.1

Consequently, arguably the most practically relevant QBF proof system is the general proof
checking format QRAT [38]. QRAT simulates the full suite of QBF preprocessing techniques [38,
18], and aims at verifying the complete workflow independently of the chosen solver. Since
its initial proposal [37], QRAT has stirred significant interest. It is known to simulate various
other proof systems [44, 43], support the efficient extraction of Skolem functions [36] (but
not Herbrand functions [19]), and forms the basis for further techniques in the preprocessor
QRATPre+ [47, 48].

The DQBF landscape. Research into DQBF solving began in 2012 [27]. There are three leading
solvers: iDQ [28], a solver based on first-order instantiation; HQS [31], which attempts to
reduce the problem to an equisatisfiable QBF; and DCAQE [61], which generalises the clausal
abstraction paradigm [52]

The developers of HQS also maintain the only publicly available DQBF preprocessor
HQSPre [65], which implements generalised QBF techniques along with some DQBF-specific
procedures. Preprocessing with HQSPre is becoming standard (e.g. [61]), and experiments
demonstrate improved performance when preprocessing is enabled [65]. Nonetheless, DQBF
solving is at a very early stage, and consists largely of SAT and QBF techniques, generalised
with varying degrees of success. The desire for further preprocessing techniques has been
acknowledged [57].

On the theory side, there have been mixed results. From the plethora of QBF proof systems,
only two (the expansion-based systems ∀Exp+Res [40] and IR-calc [10]) have been successfully
lifted to DQBF [6]. We now know that the subtleties of DQBF semantics, markedly different
from QBF, give rise to unsoundness [4] and incompleteness [11] issues for several standard
QBF proof systems in the DQBF setting [6, 16]. No further DQBF proof systems have been
proposed.2 Moreover, the practical relevance of the existing systems is unclear,3 and there is
no general proof checking format covering the preprocessor HQSPre.

1.1 Our contributions

One QBF proof system which has not been studied in the DQBF context is QRAT. This is
the task to which we take in this paper, and we are able to report some positive results. Our
contributions fall into three categories.

A new DQBF proof system. We show that the refutational QRAT proof system does
indeed lift naturally to DQBF. The resulting system, which we call DQRAT, is only the third
sound and complete refutational DQBF proof system proposed to date. To show that DQRAT

1 Verifying solvers by means of a unified proof format is already standard practice in the SAT community [64].
2 Fork Resolution [53] has been shown to be incomplete for DQBF [56].
3 There appears to be a connection between iDQ and IR-calc, but this is yet to be formally established.

Simulating DQBF Preprocessing Techniques 3

is sound, we prove two master theorems (Theorems 5 and 7) that generalise the correctness of
clause addition and literal elimination under certain conditions [38]. In turn, this necessitates
that we introduce non-trivial DQBF versions of the notion of ‘outer variables’ (Definitions 1
and 2). We show completeness via a polynomial-time simulation of ∀Exp+Res, generalising
the known QBF simulation [44].

Simuating existing DQBF preprocessing techniques. We demonstrate how DQRAT (or
more precisely, the underlying set of transformations that we call R) is able to simulate the
full suite of HQSPre preprocessing techniques, except those relying on defined variables. Using
our master theorems, our simulations double as correctness proofs for individual preprocessing
techniques. In several cases, this greatly simplifies the argument compared to its original direct
proof (cf. the appendix of [66]).

In order to cover the remaining techniques, we introduce advanced prefix modification
(APM), whose addition to R is sufficient to simulate the full suite with no exceptions. Cor-
rectness of APM is based on a new result (Theorem 30) showing how the existence of a variable
definition may allow a tightening of the quantifier prefix.

Enabling further DQBF preprocessing techniques. Finally, we show that blocked literal
elimination (BLE) and addition (BLA) are applicable to DQBFs. These techniques, currently
absent from HQSPre, were previously considered only in the QBF context [37]. As a corollary
to one of our master theorems (Theorem 7), we prove that both techniques are correct in
the DQBF setting. Since the QBF preprocessor bloqqer benefits from BLE [37], it may be a
welcome addition to HQSPre.

Organisation of the paper. Background on DQBF is covered in Section 2. In Sections 3 and 4,
we consider ‘outer variables’ and ‘quantified implied outer resolvents’ in the DQBF context,
culminating in the proof of our master theorems. In Section 5 we define R, a set of truth-
preserving DQBF transformations which functions as the basis for the proof system DQRAT,
covered in Section 6. Simulation of preprocessing techniques is covered in Section 7. Finally,
in Section 8, we offer some concluding thoughts and highlight some related open problems.

2 Preliminaries

DQBF syntax. We assume familiarity with the syntax of propositional logic and the notion
of Boolean formula (simply formula). A variable is an element z of the countable set U. A
literal is a variable z or its negation z. The negation of a literal a is denoted a, where z := z
for any variable z. A clause is a disjunction of literals. A conjunctive normal form formula
(CNF) is a conjunction of clauses. The set of variables appearing in a formula ψ is denoted
vars(ψ). For ease, we often write clauses as sets of literals, and CNFs as sets of clauses. For
any clause C and any set of variables Z, we define C�Z := {a ∈ C : var(a) ∈ Z}. The size of
clause |C| is its set cardinality, and the size of a CNF |ψ| is the sum of the sizes of its clauses.

A dependency quantified Boolean formula (DQBF) is a sentence of the form Ψ := Π · ψ,
where Π := ∀u1 · · · ∀um∃x1(SΠx1) · · · ∃xn(SΠxn) is the quantifier prefix and ψ is a CNF called the
matrix. In the quantifier prefix, each existential variable xi is associated with a dependency set
SΠxi , which is a subset of the universal variables {u1, . . . , um}. With vars∀(Π) and vars∃(Π) we
denote the universal and existential variables appearing in Π, and with vars(Π) their union.
We also put vars∀(Ψ) := vars∀(Π), vars∃(Ψ) := vars∃(Π), and vars(Ψ) := vars(Π). We assume
that a DQBF is closed by definition, that is vars(ψ) ⊆ vars(Π). The size of a DQBF is that
of its matrix, i.e. |Ψ | = |ψ|.

A QBF is a DQBF whose dependency sets are linearly ordered with respect to set inclusion,
i.e. Sx1 ⊆ · · · ⊆ Sxn . The prefix of a QBF can be written as a linear order of quantified variable
sets in the conventional way (see e.g. [1]).

4 Joshua Blinkhorn

DQBF semantics. An assignment α to a set Z of Boolean variables is a function from Z
into the set of Boolean constants {0, 1}. The domain restriction of α to a subset Z ′ ⊆ Z is
written α�Z ′. The set of all assignments to Z is denoted 〈Z〉. The restriction of a formula
ψ by α, denoted ψ[α], is the result of substituting each variable z in Z by α(z), followed by
applying the standard simplifications for Boolean constants, i.e. 0 7→ 1, 1 7→ 0, φ ∨ 0 7→ φ,
φ ∨ 1 7→ 1, φ ∧ 1 7→ φ, and φ ∧ 0 7→ 0. We say that α satisfies ψ when ψ[α] = 1, and falsifies
ψ when ψ[α] = 0.

A model for a DQBF Ψ := Π · ψ is a set of functions f := {fx : x ∈ vars∃(Ψ)}, fx :
〈Sx〉 → 〈{x}〉, for which, for each α ∈ 〈vars∀(Ψ)〉, the combined assignment α ∪ {fx(α�Sx) :
x ∈ vars∃(Ψ)} satisfies ψ. A DQBF is called true when it has a model, otherwise it is called
false. When two DQBFs share the same truth value, we write Ψ ≡tr Φ.

3 Outer Variables in the DQBF Setting

Recall that a QBF is a DQBF whose dependency sets can be linearly ordered with respect to
set inclusion. For example, consider a DQBF Ψ := Π · ψ with prefix

Π := ∀u1∀u2 ∃x1(∅) ∃x2({u1}) .

Since the dependency sets of Π can indeed be linearly ordered, as in SΠx1 = ∅ ⊆ SΠx2 = {u1},
Ψ is in fact a QBF. Such QBF prefixes can be written in a simpler form in which their
dependency sets need not be explicitly stated; for example, Π would typically be written

Π := ∃x1∀u1∃x2∀u2 ,

where the dependency set for xi can be recovered by collecting the preceding universal vari-
ables. In general, a QBF prefix takes the form ∃X1∀U1 · · · ∃Xk∀Uk, where the Xi, Ui are
pairwise disjoint sets (also called blocks) of Boolean variables. The order of quantification
within a block need not be fixed, insofar as all such orders produce logically equivalent QBFs.

Writing QBF prefixes in this way is not merely a syntactic convenience – it is an expression
of an ordered structure of variable dependencies, upon which the success of all dedicated
QBF techniques relies. Moreover, it gives rise to a natural notion of outer variables, which
is frequently used in proofs of QBF-specific results. Formally, the variables ‘outer’ to a given
variable are those quantified in the same or preceding blocks.4 For example, the variables outer
to u ∈ Ui are those of the set

⋃i
j=1Xi ∪

⋃i
j=1 Ui.

DQBF prefixes in general, however, do not possess this linear structure. The dependency
sets are only partially ordered with respect to set inclusion, whereby the notion of outer
variables appears to break down.

Presently we propose a DQBF generalisation of outer variables, which will play a key
role throughout. In a departure from QBF, we use separate definitions for universal and
existential variables, but both versions reduce to the familiar notion on the QBF fragment.
Our definitions are motivated in part by existing work, namely the DQBF generalisation of
QBF preprocessing techniques in [65].

The existential version. In a QBF, the variables outer to an existential are exactly those
universals in its dependency set, together with those existentials whose dependency sets are
no larger (again, with respect to set inclusion). Viewed this way, the following DQBF gener-
alisation is quite natural.

4 Many publications define ‘outer’ in terms of a relation ≤Π over the variables.

Simulating DQBF Preprocessing Techniques 5

Definition 1 (outer variables, ∃-version). Given a prefix Π and an existential y ∈ vars∃(Π),
we define the outer variables

OV(Π, y) := SΠy ∪ {x ∈ vars∃(Π) : SΠx ⊆ SΠy } .

The universal version. A natural analogue for universal variables is not so easy to conceive,
for the simple reason that universal variables do not have dependency sets. As a result, the
universal version is a more complicated affair.

Definition 2 (outer variables, ∀-version). Given a prefix Π and a universal u ∈ vars∀(Π),
the set of existential variables dependent on u is

DΠ
u := {x ∈ vars∃(Π) : u ∈ SΠx } ,

the set of existential variables independent of u is its complement

IΠu := {x ∈ vars∃(Π) : u /∈ SΠx } ,

and the kernel of u is

KΠ
u :=

⋂
x∈DΠu

SΠx .

We define the outer variables

OV(Π,u) := KΠ
u ∪ {x ∈ IΠu : SΠx ⊆ KΠ

u } .

The kernel KΠ
u operates rather like the dependency set SΠy in the existential version, in

the sense that the chosen existential variables have dependency sets no larger than KΠ
u . It is

readily verified that OV(Π,u) specifies the familiar notion on QBF, but this would not hold
if existentials outside of IΠu were included. Note that u always belongs to its kernel.

4 Quantified Implied Outer Resolvents for DQBF

Our goal in this section is to prove two theorems (Theorems 5 and 7), constituting DQBF
generalisations of known QBF results [38, Thms. 7, 8]. The theorems express the fact that
clause set modification (i.e. clause addition/elimination) and clause modification (i.e. literal
addition/elimination) are truth-value preserving, under particular semantic conditions.

Once again, we require separate existential and universal treatments. Common to both is
the definition of outer clause,5 which rests on the definition of outer variables (Section 3).

Definition 3 (outer clause). Given a clause D under a prefix Π, and a literal p ∈ D, we
define the outer clause

OC(Π,D, p) :=
{
a ∈ D : var(a) ∈ OV

(
Π, var(p)

)}
.

5 Here, p belongs to the outer clause, in contrast to the original definition (cf. [38]). Whereas the existential
literal p = y is inevitably removed (Definition 4), the univeral literal p = u need not be (Definition 6).

6 Joshua Blinkhorn

The existential treatment. Now we define the natural DQBF generalisation of the property
known as quantified implied outer resolvents (QIOR, [38]). First we consider the case where the
‘witnessing literal’ is existential. We say that a clause C is under a prefix Π when vars(C) ⊆
vars(Π).

Definition 4 (DQIOR∃). A clause C under a prefix Π has DQIOR∃ on an existential literal
y ∈ C with respect to a DQBF Π · ψ when

ψ |= C ∪
(
OC
(
Π,D, y

)
\ {y}

)
, for all D ∈ ψ with y ∈ D .

If a clause has DQIOR∃ (on any existential literal) with respect to a DQBF, it can be
added to the matrix while preserving truth value.

Theorem 5. Let Π · ψ be a DQBF, and let C be a clause under Π. If C has DQIOR∃ on an
existential literal p ∈ C with respect to Π · ψ, then

Π · ψ ≡tr Π · ψ ∪ {C} .

Proof. We let y := var(p), and assume without loss of generality that p is the positive literal
y. We use aliases for the DQBFs in question, namely Ψ := Π · ψ and ΨC := Π · ψ ∪ C. Since
the removal of clauses preserves the truth of a DQBF, truth of ΨC implies truth of Ψ . Thus,
we need only show that the addition of C to Ψ preserves truth.

We introduce aliases X := vars∃(Π) and U := vars∀(Π). Let f := {fx}x∈X be a model for
Ψ , and let A be the set of assignments ν ∈ 〈U〉 for which ν ∪ f(µ) falsifies C. Now, we define
a set of dependency functions g := {gx}x∈X as follows: when x 6= y, define gx = fx; otherwise,

gy :
〈
SΠy
〉
→
〈
{y}
〉

ρ 7→

{
y 7→ 1 if some assignment in A extends ρ ,

fy(ρ) otherwise .

We show that g models ΨC ; that is, letting µ ∈ 〈U〉, we show that µ ∪ g(µ) satisfies ψ ∪ {C}.
We consider two cases.

Case (a). Suppose that no assignment in A extends µ�SΠy . Then, since µ itself does not
belong to A, µ ∪ f(µ) satisfies C. By construction we have

gy(µ�S
Π
y) = fy(µ�S

Π
y) ,

so g(µ) = f(µ). Therefore µ ∪ g(µ) also satisfies ψ.
Case (b). On the other hand, suppose that some ν ∈ A extends µ�SΠy . Observe that

µ∪g(µ) and µ∪f(µ) agree on the variables vars(Π)\{y}, and gy(µ�SΠy)(y) = 1 by construction.
It is then easy to see that µ ∪ g(µ) satisfies C alongside all clauses E ∈ ψ with y /∈ E.

It remains to show that µ ∪ g(µ) satisfies each D ∈ ψ with y ∈ D. As µ and ν agree on
SΠy , they also agree on any SΠx ⊆ SΠy with x 6= y. As a consequence, ρ ∪ g(ρ) and µ ∪ f(µ)
agree on OV(Π, y) \ {y}, and hence agree on the clause D′ := OC(Π,D, y) \ {y}. As µ ∪ f(µ)
satisfies ψ and falsifies C, it satisfies D′ by definition of DQIOR∃ (Definition 4). Therefore
ρ ∪ g(ρ) satisfies D′, and hence also satisfies the full clause D. ut

The universal treatment. The universal version DQIOR∀ differs slightly from its existential
counterpart.6

6 In Definition 6, the universal literal u is deleted from C, while its negation u remains in OC(Π,D, u).
In contrast, in Definition 4 the positive existential literal y was not deleted, whereas its negation y was.
One could of course take the uniform approach (as in [38]) and delete both literals in a single definition,
potentially defining a weaker property. As the upshot of such nuances is currently unclear, we stick to the
most general definitions for which the proofs of Theorems 5 and 7 go through.

Simulating DQBF Preprocessing Techniques 7

Definition 6 (DQIOR∀). A clause C under a prefix Π has DQIOR∀ on a universal literal
u ∈ C with respect to a DQBF Π · ψ when

ψ |=
(
C \ {u}

)
∪ OC(Π,D, u) , for all D ∈ ψ with u ∈ D .

Literals witnessing DQIOR∀ can be eliminated while preserving truth value.

Theorem 7. Let Π · ψ be a DQBF, and let C be a clause under Π. If C has DQIOR∀ on a
universal literal u ∈ C with respect to Π · ψ, then

Π · ψ ∪ {C} ≡tr Π · ψ ∪
{
C \ {u}

}
.

Proof. We let u := var(p), and assume without loss of generality that p is the positive literal
u. We use aliases for the DQBFs, namely ΨC := Π ·ψ ∪ {C} and ΨC\{u} := Π ·ψ ∪

{
C \ {u}

}
.

Since the addition of literals to clauses preserves the truth of a DQBF, truth of ΨC\{u} implies
truth of ΨC . Hence we need only show the reverse implication, i.e. the removal of u from C
preserves truth of ΨC .

For any assignment α whose domain contains u, we denote by α−u the assignment obtained
from α by flipping the assignment to u, while preserving the assignment on the remainder of
the domain.

Once again we use the aliases U := vars∀(Π) and X := vars∃(Π), and we let f := {fx}x∈X
be a model for ΨC . Let A be the set of assignments ν ∈ 〈U〉 for which ν ∪ f(ν) falsifies
C \ {u}, and observe that every ν ∈ A assigns u to 1. We define a set of dependency functions
g := {gx}x∈X as follows: if x ∈ IΠu , we define gx := fx; if x ∈ DΠ

u , we define

gx :
〈
SΠx
〉
→
〈
{x}
〉

ρ 7→

{
fx
(
ρ−u

)
if some ν ∈ A extends ρ�KΠ

u ,

fx(ρ) otherwise .

We now show that g is a model for ΨC\{u}; that is, letting µ ∈ 〈U〉, we show that µ ∪ g(µ)
satisfies ψ ∪

{
C \ {u}

}
. We consider two cases.

Case (a). Suppose that no assignment in A extends µ�KΠ
u . For each x ∈ DΠ

u , we have
KΠ
u ⊆ SΠx , which implies that no assignment in A extends (µ�SΠx)�KΠ

u It follows that g(µ) =
f(µ). Since µ itself does not belong to A, µ∪ f(µ) satisfies ψ ∪

{
C \ {u}

}
. Thus µ∪ g(µ) also

satisfies ψ ∪
{
C \ {u}

}
.

Case (b). Suppose that some ν ∈ A extends µ�KΠ
u . In this case, for each x ∈ DΠ

u , ν
extends (µ�SΠx)�KΠ

u , so we have

gx
(
µ�SΠx

)
= fx

(
(µ�SΠx)

−u)
.

It follows that g(µ) = f(µ−u). This means that µ ∪ g(µ) and µ−u ∪ f(µ−u) agree on all of
the variables of Π except u. Note that µ−u(u) = 0, since ν(u) = 1 and u ∈ KΠ

u , implying
µ(u) = 1. Hence, since µ−u ∪ f(µ−u) satisfies C, it also satisfies C \ {u}. It is then easy to see
that µ ∪ g(µ) satisfies C \ {u} alongside each E ∈ ψ with u /∈ E.

It remains to show that µ ∪ g(µ) satisfies each D ∈ ψ with u ∈ D. Recall that gx = fx
for each x ∈ IΠu . Since µ and ν agree on KΠ

u , g(µ) and f(ν) agree on each x ∈ IΠu for which
SΠx ⊆ KΠ

u . Therefore µ ∪ g(µ) and ν ∪ f(ν) agree on OV(Π,u). Since ν ∪ f(ν) satisfies ψ
and falsifies C \ {u}, it satisfies D′ := OC(Π,D, u) by definition of DQIOR∀ (Definition 6). It
follows that µ ∪ g(µ) satisfies D′, and hence satisfies D also. ut

8 Joshua Blinkhorn

clause set modification clause modification prefix modification

AT UR BPM

DQRAT∃ DQRAT∀ DRRS

Fig. 1. The six transformations of R.

5 Truth-preserving DQBF Transformations

With the intention of generalising the QRAT proof system, we define a set of six truth-value-
preserving DQBF transformations that we call R (Figure 1). R consists of two clause set
modification rules, two clause modification rules, and two prefix modification rules. Over the
course of this section, we will show the application of each R rule is both sound and tractable,
in the following sense.

Theorem 8. Each of the six rules of R is polynomial-time checkable and preserves DQBF
truth value.

In all cases, polynomial-time checkability is fairly self-evident, so we omit the complexity
details. Preservation of truth value is discussed per rule at the appropriate point.

Our presentation differs from the original QRAT system in two ways: first, with the addition
of the prefix modification category; and second, we present the transformations as reversible
– for example, AT handles both clause addition and elimination. With this we intend merely
to enhance the clarity of the presentation. We do not artificially inflate the strength of R
beyond a natural generalisation.

Asymmetric tautologies. Several of the rules of R rely on the notion of an asymmetric
tautology, which in turn relies on unit propagation.

Definition 9 (unit propagation). The application of unit propagation to a CNF ψ pro-
duces the CNF UP(ψ) defined as the output of the following routine.

1. UP(ψ)← ψ
2. while UP(ψ) contains a unit clause {a}
3. UP(ψ)← UP(ψ)[{a}]
4. return UP(ψ)

In summary, unit propagation is the assignment of unit literals until fixpoint. We note that
line 2 in the routine in Definition 9 introduces an ambiguity (the output UP(ψ) may depend
upon the choice of unit clause {a}), but this need not concern us. We are only interested in
cases where unit propagation produces the empty clause (i.e. ∅ ∈ UP(ψ)), and this occurs
independently of the choice of unit clause.

Definition 10 (AT [35, 38]). We call a clause C := {a1, . . . , ak} an asymmetric tautology
with respect to a CNF ψ (written ψ

U
|= C) when UP

(
ψ ∪

{
{a1}, · · · , {ak}

})
contains the empty

clause.

It is well known that an asymmetric tautology is always an implicant of the CNF [35].

Proposition 11. For each CNF ψ and clause C, ψ
U
|= C implies ψ |= C.

Moreover, unit propagation clearly runs in time polynomial in |C|+ |ψ|. Hence, identification
of asymmetric tautologies via unit propagation serves as an efficiently computable underap-
proximation to propositional entailment.

Simulating DQBF Preprocessing Techniques 9

Resolution asymmetric tautologies. Unit propagation also fosters efficiently computable
underapproximations of the properties DQIOR∃ and DQIOR∀ (Section 4).

Definition 12 (DQRAT∃). A clause C under a prefix Π has DQRAT∃ on an existential literal
y ∈ C with respect to a DQBF Π · ψ when

ψ
U
|= C ∪

(
OC
(
Π,D, y

)
\ {y}

)
, for all D ∈ ψ with y ∈ D .

Definition 13 (DQRAT∀). A clause C under a prefix Π has DQRAT∀ on a universal literal
u ∈ C with respect to a DQBF Π · ψ when

ψ
U
|=

(
C \ {u}

)
∪ OC(Π,D, u) , for all D ∈ ψ with u ∈ D .

Note that DQRAT∃ is identical to DQIOR∃, except that entailment (‘|=’) is approximated
by unit propagation (‘

U
|=’), and similarly for DQRAT∀. Both properties will be used within R.

It should be noted that Definitions 12 and 13 constitute DQBF generalisations of resolution
asymmetric tautology [42].

5.1 Clause set modification

R contains two clause set modification rules that allow the addition (or elimination) of clauses
to (or from) a DQBF matrix. The first works with asymmetric tautologies.

Definition 14 (AT clause set modification). AT clause set modification is the reversible
transformation

Π · ψ AT←−−→ Π · ψ ∪ {C} ,

where Π · ψ ∪ {C} is a DQBF, and ψ
U
|= C.

It is easy to see that whenever ψ |= C, any two DQBFs Π · ψ and Π · ψ ∪ {C} have exactly
the same set of models [55]. It follows that AT preserves truth value, by Proposition 11.

Our second clause set modification rule works with resolution asymmetric tautologies.

Definition 15 (DQRAT∃ clause set modification). DQRAT∃ clause set modification is the
reversible transformation

Π · ψ DQRAT∃←−−−−−→ Π · ψ ∪ {C} ,

where Π · ψ ∪ {C} is a DQBF, and C has DQRAT∃ on an existential literal with respect to
Π · ψ.

By Proposition 11, if C has DQRAT∃ on y with respect to Ψ , then it has DQIOR∃ on y with
respect to Ψ . Hence DQRAT∃ preserves truth value by Theorem 5.

5.2 Clause modification

R contains two clause modification transformations that allow the elimination (or addition)
of literals from (or to) a clause in a DQBF matrix. The first of these is universal reduction, a
staple ingredient of many QBF solvers and proof systems.

Definition 16 (UR). Universal reduction (UR) is the reversible transformation

Π · ψ ∪ {C} UR←−−→ Π · ψ ∪ {C \ {u}} ,

where Π ·ψ ∪ {C} is a DQBF, u ∈ C is a universal literal, and var(u) /∈ SΠx for each existential
variable x ∈ C.

10 Joshua Blinkhorn

The deletion of universal literals by universal reduction is known to preserve truth [4]. Since
deletion of literals trivially preserves falsity, UR preserves truth value.

The second clause modification rule is applicable when a universal literal witnesses a
resolution asymmetric tautology.

Definition 17 (DQRAT∀ clause modification). DQRAT∀ clause modification is the re-
versible transformation

Π · ψ ∪ {C} DQRAT∀←−−−−−→ Π · ψ ∪ {C \ {u}} ,

where Π ·ψ ∪ {C} is a DQBF, and C has DQRAT∀ on the universal literal u ∈ C with respect
to Π · ψ.

Again by Proposition 11, if C has DQRAT∀ on u with respect to Ψ , then it has DQIOR∀ on u
with respect to Ψ . Hence DQRAT∀ preserves truth value by Theorem 7.

5.3 Prefix modification

The remaining two R rules manipulate the quantifier prefix, while leaving the matrix un-
changed.

Basic prefix modification. Basic prefix modification is merely a device which allows arbi-
trary fresh variables to be introduced, quantified either universally or existentially, and in the
latter case with an arbitrary dependency set.

Definition 18 (basic prefix modification). Basic prefix modification (BPM) is the re-
versible transformation

Π · ψ BPM←−−−→ Ω · ψ ,

where Π · ψ is a DQBF, and the prefixes satisfy vars∀(Π) ⊆ vars∀(Ω), vars∃(Π) ⊆ vars∀(Ω),
and SΠx = SΩx for each x ∈ vars∃(Π).

Note that the reverse transformation allows redundant variables (i.e. those that do not appear
in the matrix ψ) to be deleted from the prefix.

To see that BPM preserves truth value, let Π · ψ and Ω conform to the definition. It is
easy to see that a model for Ω · ψ is transformed into a model for Π · ψ by deleting the
functions corresponding to the variables X := vars∃(Ω) \ vars∃(Π). Moreover, a model for
Ω · ψ is obtained from a model for Π · ψ by adding an arbitrary functions for X.

We note that QRAT was originally presented without explicit prefix modification. Instead,
prefix manipulations were built into the other rules wherever needed (cf. [38]). Here, we find it
more convenient to single out prefix modification. It allows all other rules to be stated under
a single, unmutable prefix, and thus simplifies definitions and proofs throughout the paper.

The reflexive resolution path dependency scheme. Our second prefix modification rule
DRRS is based on the reflexive resolution path dependency scheme (Drrs) [59]. A dependency
scheme [54] is a kind of truth-preserving prefix modification [67, 9], presented as a function
from the set of DQBFs to itself. The particular scheme Drrs is defined as follows.

Definition 19 (Drrs, adapted from [59]). The reflexive resolution path dependency scheme
(Drrs) is the mapping Π ·ψ 7→ Ω ·ψ, where, for each x ∈ vars∃(Π), SΩx is the set of universal
variables u ∈ SΠx for which there exists a sequence C1, . . . , Ck of clauses in ψ and a sequence
p1, . . . , pk−1 of existential literals satisfying the following conditions:

Simulating DQBF Preprocessing Techniques 11

(a) u ∈ C1 and u ∈ Ck,
(b) for some i ∈ [k − 1], x = var(pi),
(c) for each i ∈ [k − 1], pi ∈ Ci, pi ∈ Ci+1, and u ∈ SΠvar(pi),
(d) for each i ∈ [k − 2], var(pi) 6= var(pi+1).

Theorem 20 ([67]). For each DQBF Ψ , Ψ ≡tr Drrs(Ψ).

R accesses the reflexive resolution path dependency scheme via the rule DRRS.

Definition 21 (Drrs prefix modification). Drrs prefix modifictation (DRRS) is the re-
versible transformation

Ψ
DRRS←−−−→ Φ ,

where Ψ is a DQBF and Drrs(Ψ) ≤ Φ ≤ Ψ .

As we will see, DRRS is particularly important for the simulation of universal expansion [38].
Finally, we note that extended universal resolution, a feature of the original QRAT system,

is essentially universal reduction with respect to the prefix given by Drrs (cf. the treatment
in [44]). Loosely speaking we have broken up extended universal reduction into its component
parts, namely the prefix modification by Drrs (DRRS) and the clause modification by univer-
sal reduction (UR). One benefit of our approach is that the truth-value preservation of the
components is already established; in comparison, a formal proof of the soundness of extended
universal reduction was lacking.7

6 DQRAT as a Refutational DQBF Proof System

In this section, we show how our set R of truth-value-preserving transformations yields a
sound-and-complete refutational DQBF proof system which we call DQRAT. As one might
expect, the general setup follows that of the QBF proof system QRAT [38], to which DQRAT
reduces on the QBF fragment.

6.1 DQRAT refutations

To cast the rules of R as a refutational proof system, we essentially define a refutation as a
sequence of R-transformations of an input DQBF. A refutation concludes when the matrix
contains the empty clause, and the DQBF is trivially false.

In addition to R-transformations, we allow refutations to use arbitrary clause deletion,
which trivially preserves truth and is therefore a natural and sound addition to a refutational
system like DQRAT.

Definition 22 (DQRAT refutation). A DQRAT refutation of a DQBF Ψ is a sequence
π := Π1 ·ψ1, . . . ,Πk ·ψk of DQBFs in which Π1 ·ψ1 = Ψ , ψk contains the empty clause, and,
for each for each i ∈ [k − 1], either (a) there is an R-transformation from Ψi to Ψi+1, or (b)
Πi+1 = Πi and ψi+1 ⊆ ψi. The size of π is |π| := Σk

i=1|Πi · ψi|.

To show that DQRAT is a proof system in the formal sense [23], we must show three things:

(a) Soundness. If a DQBF has a DQRAT refutation, it is false.
(b) Completeness. Every false DQBF has a DQRAT refutation.
(c) Checkability. Given a DQBF Ψ and a sequence π of DQBFs, it can be determined in time

polynomial in |π| whether π is a DQRAT refutation of Ψ .

7 [38] refers to a result in [29], but the precise connection was not stated.

12 Joshua Blinkhorn

Proving soundness and checkability is straightforward. The proof of completeness is de-
ferred to the following subsection.

Theorem 23. DQRAT is a proof system for the language of false DQBFs.

Proof. Soundness. Let Ψ1, . . . , Ψk be a DQRAT refutation of Ψ = Ψ1. Aiming for contradiction,
suppose that Ψ is true. By Theorem 8 and the fact that

Π · ψ is true and φ ⊆ ψ =⇒ Π · φ is true ,

we deduce that Ψk is true. This is a contradiction, since Ψk, whose matrix contains the empty
clause, is trivially false. Therefore Ψ is false. Completeness. Established by Corollary 26 (Sec-
tion 6.2). Checkability. The validity of each transformation from Ψ to Φ using some r ∈ R,
along with the validity of clause deletion yielding Φ from Ψ , can be determined in time poly-
nomial in |Ψ |+ |Φ|. Thus DQRAT refutations can be checked in polynomial time.

6.2 Completeness by simulation of ∀Exp+Res

It remains to establish the completeness of DQRAT (Corollary 26), which we demonstrate via a
simulation of ∀Exp+Res (Theorem 25). The proof method closely follows that of the anologous
QBF result [44]. We first provide a brief summary of ∀Exp+Res [40], followed by the details of
the simulation. For a gentle introduction to ∀Exp+Res and the expansion paradigm, see [16].

∀Exp+Res Preliminaries. For a given DQBF Ψ := Π · ψ, a ∀Exp+Res refutation works on
clauses over the variable set

varsex(Ψ) := {xµ : x ∈ vars∃(Ψ), µ ∈ 〈SΠx 〉} .

We emphasise that vars(Ψ) and varsex(Ψ) are disjoint. For any variable xµ ∈ varsex(Ψ), we
refer to x ∈ vars∃(Ψ) as the base of xµ (written base(xµ)), and to µ as its annotation. The
expansion of Ψ is the CNF

ex(Ψ) :=
⋃

µ∈〈vars∀(Ψ)〉
ψ[µ][sµ] ,

where sµ substitutes each x ∈ vars∃(Ψ) with xµ�S
Π
x ∈ varsex(Ψ). The resolvent of two clauses C

and D over a variable p with p ∈ C and p ∈ D is the clause res(C,D, p) :=
(
C\{p}

)
∪
(
D\{p}

)
.

Definition 24 (∀Exp+Res [40]). A ∀Exp+Res refutation of a DQBF Ψ is a sequence of
clauses C1, . . . , Ck in which Ck is the empty clause and at least one of the following holds for
each i ∈ [k]:

(a) Axiom: Ci is a clause in the expansion of Ψ ;

(b) Resolution: Ci = res(Cr, Cs, p), for some r, s < i and p ∈ varsex(Ψ).

For the sake of clarity, we emphasise that a ∀Exp+Res refutation of a DQBF is merely
a resolution refutation of its expansion, and the expansion is merely a propositional CNF
representation of the DQBF on a fresh variable set. It is well known that a DQBF is false if,
and only if, its expansion is unsatisfiable. Hence ∀Exp+Res is a sound and complete refutational
DQBF proof system.

Theorem 25. DQRAT p-simulates ∀Exp+Res on the language of false DQBFs.

Simulating DQBF Preprocessing Techniques 13

Proof. Let π := A1, . . . , Ak, R1, . . . , Rl be a ∀Exp+Res refutation of a DQBF Ψ := Π · ψ, in
which each Ai is introduced as an axiom and each Ri is derived by resolution (that is, we us
assume without loss of generality that every axiom in π precedes every resolution step).
Moreover, we assume without loss of generality that no clause in ψ is a tautology. We construct
a DQRAT refutation of Ψ in five distinct phases.

Phase 1: extension of prefix. The DQRAT refutation must work with the annotated vari-
ables varsex(Ψ), more precisely with the subset of varsex(Ψ) which appears in π. In the first
phase we extend the prefix Π to incorporate the annotated variables. Let us write the variables
appearing in π as the set Zπ := {z1, . . . , zv}, and let us define the prefix

Ππ := ∃z1(SΠbase(z1)) · · · ∃zv(S
Π
base(zv)

) .

Note that Zπ ⊆ varsex(Ψ) consists exclusively of annotated variables, and hence that Zπ and
vars(Ψ) are disjoint variable sets.

Claim 1. A DQRAT derivation of ΠΠπ ·ψ from Ψ can be constructed in time polynomial in |π|.

Phase 2: introduction of definitions. In the second phase we introduce ‘defining clauses’
for the annotated variables Zπ, in the form of the CNF

ψdef :=
{
{¬base(zi), zi}, {base(zi),¬zi} : i ∈ [v]

}
.

Claim 2. A DQRAT derivation of ΠΠπ · ψ ∪ ψdef from ΠΠπ · ψ can be constructed in time
polynomial in |π|.

Phase 3: preparation of axioms. In the third phase, we use ψdef to substitute the existential
variables in ψ with the appropriate annotated variables from Zπ. For each i ∈ [k], let Di ∈ ψ
be a clause for which Ai = Di[µ][sµ] for some µ (that is, Di ∈ ψ corresponds to the axiom
Ai), and let D∀i be its universal subclause. We define the CNF ψprep := {{Ai ∪D∀i } : i ∈ [k]}.

Claim 3. A DQRAT derivation of ΠΠπ ·ψprep from ΠΠπ ·ψ ∪ ψdef can be constructed in time
polynomial in |π|.

Phase 4: derivation of axioms. In the fourth phase, we eliminate all universal variables,
leaving us with a fully existentially quantified DQBF whose matrix consists of the axioms of
π. We define the prefix Π∅π := ∃z1(∅) · · · ∃zv(∅).

Claim 4. A DQRAT derivation of Π∅π · {A1, . . . , Ak} from ΠΠπ · ψprep can be constructed in
time polynomial in |π|.

Phase 5: derivation of resolvents. In the final phase, we add the remaining clauses of π,
namely the resolvents R1, . . . , Rk, to the matrix. The final addition of the empty clause R
completes the DQRAT refutation.

Claim 5. A DQRAT derivation of Π∅π · {A1, . . . , Ak, R1, . . . , Rl} from Π∅π · {A1, . . . , Ak} can be
constructed in time polynomial in |π|.

From these five claims, it follows that a DQRAT refutation of Ψ can be constructed in time
polynomial in |π|. It remains to prove them.

14 Joshua Blinkhorn

Proof of Claim 1. Since vars(ψ) ⊆ vars(Π) and vars(Π) ∩ vars(Ππ) = ∅, ΠΠπ · ψ can be ob-
tained from Π · ψ using BPM. Hence the sequence Ψ,ΠΠπ · ψ is a DQRAT derivation, clearly
constructible in time polynomial in |π|.

Proof of Claim 2. We let ψ0
def := ∅, and for each i ∈ [v] we define the CNF

ψidef := ψi−1def ∪
{
{¬base(zi), zi}, {base(zi),¬zi}

}
.

Now, fixing i ∈ [v], we introduce two aliases C := {base(zi),¬zi} and C ′ := {¬base(zi), zi}.
Since zi does not appear at all in ψi−1, C

′ has DQRAT∃ on zi with respect to ΠΠπ ·ψ ∪ ψi−1
vacuously. Therefore

ΠΠπ · ψ ∪ ψi−1def

DQRAT∃−−−−−→ ΠΠπ · ψ ∪ ψi−1def ∪ C
′ . (1)

Also, C has DQRAT∃ on ¬zi with respect to the right-hand side of (1). To see this, observe
that the only matrix clause containing zi is C ′, where OC(ΠΠπ, D,¬zi) = C ′ and

∅
U
|= C ∪

(
OC(ΠΠπ, C

′,¬zi) \ {zi}
)

holds trivially because the right-hand side is a tautology. Therefore

ΠΠπ · ψ ∪ ψi−1def ∪ C
′ DQRAT∃−−−−−→ ΠΠπ · ψ ∪ ψidef .

Since ψwdef = ψdef, we obtain a derivation of ΠΠπ ·ψ from ΠΠπ ·ψ ∪ ψdef, clearly constructible
in time polynomial in |π|.

Proof of Claim 3. We let ψ0
prep := ∅, and for each i ∈ [k] we define the CNF

ψiprep := ψi−1prep ∪ {Ai ∪D∀i } .

Let i ∈ [k]. Observe that Di is obtained from Ai ∪D∀i by replacing each annotated variable
in Ai with its base (i.e. by inverting the substitution sµ). Also, Di belongs to ψ, and for each
z ∈ vars(Ai), the clauses {¬base(z), z}, {base(z),¬z} belong to ψdef. Thus it is easy to see
that {Di} ∪ ψdef

U
|= {Ai ∪D∀i }; hence,

Π ′ · ψ ∪ ψdef ∪ ψi−1prep
AT−−→ Π ′ · ψ ∪ ψdef ∪ ψiprep .

Since ψkprep = ψprep, we obtain the required derivation, clearly constructible in time polyno-
mial in |π|.

Proof of Claim 4. First, since vars∃(Π) and vars(ψprep) are disjoint, vars∃(Π) and the associ-
ated dependency sets can be removed via BPM; that is,

ΠΠπ · ψprep
BPM−−−→ ∀u1 · · · ∀umΠπ · ψprep ,

where vars∀(Π) = {u1, . . . , um}. Next, we observe that

∀u1 · · · ∀umΠπ · ψprep
DRRS−−−−→ ∀u1 · · · ∀umΠ∅π · ψprep .

To see that this step is valid, consider an arbitrary uj ∈ vars∀(Π). Aiming for contradiction,
suppose that there exists a sequence of clauses C1, . . . , Cl ∈ ψprep and a sequence of existential
literals p1, . . . , pl−1 satisfying conditions (a) to (d) of Definition 19 with respect to the prefix

Simulating DQBF Preprocessing Techniques 15

∀u1 · · ·umΠπ. Since uj ∈ C1 by condition (a), the annotation of p1 contains uj . Moreover,
since the annotations in any given Ci are consistent, we deduce by condition (c) that the
annotation of each pi contains uj . In particular the annotation of pl−1 contains uj , and since
pl−1 ∈ Cl by condition (c), we must have uj ∈ Cl. Since uj ∈ Cl by condition (a), Cl is a
tautology. But this implies that some clause in ψ is a tautology, a contradiction. Therefore
each dependency set in Drrs(∀u1 · · · ∀umΠπ · ψprep) is empty.

Finally, we reduce all the universal literals from ψprep, then remove the universal variables
from the prefix; that is,

∀u1 · · · ∀umΠπ · ψprep
UR∗−−→ ∀u1 · · · ∀umΠ∅π · {A1, . . . , Ak}

BPM−−−→ Π∅π · {A1, . . . , Ak} .

Note that this comprises at most m · |π| applications of UR. The complete derivation of
Π∅π · {A1, . . . , Ak} from ΠΠπ · ψprep can clearly be constructed in time polynomial in |π|.

Proof of Claim 5. Let i ∈ [l]. By the definition of ∀Exp+Res refutation, there exist two clauses
Cr, Cs ∈ {A1, . . . , Ak, R1, . . . , Ri−1} and a variable z ∈ varsex(Ψ) with z ∈ Cr, z ∈ Cs, such
that Ri =

(
Cr \ {z}

)
∪
(
Cs \ {z}

)
. It is readily verified that {Cr, Cs}

U
|= Ri, and so

Ππ · {A1, . . . , Ak, R1, . . . , Ri−1}
AT−−→ Ππ · {A1, . . . , Ak, R1, . . . , Ri} .

Thus, a DQRAT derivation of Ππ · {A1, . . . , Ak, R1, . . . , Rl} from Ππ · {A1, . . . , Ak} can clearly
be constructed in time polynomial in |π|. ut

Since ∀Exp+Res is itself complete for DQBF [7], completeness of DQRAT follows immedi-
ately from the simulation (Theorem 25).

Corollary 26. Every false DQBF has a DQRAT refutation.

7 Simulating DQBF Preprocessing Rules with R

The primary purpose of the original QRAT proof system was to simulate all known QBF
preprocessing techniques with a small set of inference rules. In this section we investigate the
analogous question of how far R simulates the state-of-the-art in DQBF preprocessing.

As it turns out, R is capable of simulating almost all existing preprocessing techniques,
and more. Only techniques involving so-called variable definitions appear difficult to simulate.
As a solution, we introduce an advanced form of prefix modification, whose addition to R is
sufficient to cover their simulation.

In Subsection 7.1, we cover the R-simulation of the majority of known DQBF preprocess-
ing. Advanced prefix modification and variable definitions are dealt with in Subsection 7.2.
Further preprocessing techniques for DQBF are covered in Subsection 7.3.

7.1 Preprocessing without variable definitions

The preprocessing techniques with which we deal in this section are grouped into five cate-
gories. We discuss each category in turn, accompanied by a table in which the techniques,
their preconditions, and their R-simulations are formalised.8

Equivalent literals. HQSPre identifies equivalent literals by searching the binary implication
graph of the DQBF matrix.

8 We omit the table for dependency set reduction, whose R-simulation is trivial.

16 Joshua Blinkhorn

preprocessing preconditions R-simulation

Π · ψ EL1
==⇒ Π · {∅}

var(p) ∈ vars∀(Π)

var(q) ∈ vars∀(Π)

Π · ψ
AT−→ Π · ψ ∪ {{p, q}}
UR∗−−→ Π · ψ ∪ {∅}

Π · ψ EL2
==⇒ Π · {∅}

var(p) ∈ vars∀(Π)

var(q) = x ∈ vars∃(Π)

var(q) /∈ SΠx

Π · ψ
AT∗−−→ Π · ψ ∪ {{p, q}, {p, q}}
UR∗−−→ Π · ψ ∪ {{p}, {p}}
AT−→ Π · ψ ∪ {∅}

Π · ψ EL3
==⇒ Π \ {∃x(SΠx)} · ψ[p/q]

var(p) ∈ vars∀(Π)

var(q) = x ∈ vars∃(Π)

var(p) ∈ SΠx

Π · ψ
AT∗−−→ Π · ψ ∪ {{p, q}, {p, q}}
AT∗−−→ Π · ψ ∪ {{p, q}, {p, q}} ∪ ψ[p/q]
AT∗−−→ Π · {{p, q}, {p, q}} ∪ ψ[p/q]
DQRAT∗∃−−−−−→ Π · ψ[p/q]
BPM−−−→ Π \ {∃x(SΠx)} · ψ[p/q]

Fig. 2. Summary of theR-simulation of equivalent literal preprocessing steps. Literals p and q are binary-clause
equivalent with respect to ψ.

Definition 27. Given a CNF ψ, the binary implication graph BIG(ψ) = (V,E) has vertex
set V := {z, z : z ∈ vars(ψ)} and edge set E := {(p, q), (p, q) : {p, q} ∈ ψ}.

The following is easy to see: if there are paths P1 (from p to q) and P2 (from q to p)
in BIG(ψ), then ψ and ψ[q/p] are equivalent [65, Lemma 3]. The paths P1 and P2 encode
sequences of binary clauses from ψ of the form

S1 := {p, r1}, {r1, r2}, . . . , {rk−1, rk}, {rk, q} ,
S2 := {q, s1}, {s1, s2}, . . . , {sk′−1, sk′}, {sk′ , p} ,

We say that p and q are binary clause equivalent in ψ. Note that both {p, q} and {p, q} are
asymmetric tautologies with respect to ψ.

HQSPre implements four preprocessing steps based on equivalent literals, which we denote
EL1 through EL4. The R-simulation of EL1 through EL3 is summarised in Figure 2; EL4
involves defined variables, and is covered in Subsection 7.2.

EL1 determines that equivalent universal literals imply the falsity of the DQBF. The
appropriate R-simulation derives a trivially false DQBF, i.e. one whose matrix contains the
empty clause. This is as simple as adding {p, q} by AT and applying universal reduction (UR).

EL2 determines that the DQBF is false when p is universal, q is existential, and the
dependency set for var(q) does not contain var(p). Once again, the R-simulation derives a
trivially false DQBF with a combination of AT and UR.

EL3 covers the sister case where the dependency set for var(q) does contain var(p), in which
case p can be substituted for q and var(q) removed from the prefix. After introducing {p, q}
and {p, q}, it is easy to see that ψ can be transformed into ψ[p/q] by successive applications
of AT, first introducing the clauses in the latter one by one, then deleting those of the former.
Note that {p, q} has DQRAT∃ on q with respect to Π · {p, q} ∪ ψ[p/q], and {p, q} has DQRAT∃
(trivally) on q with respect to Π · ψ[p/q], hence both clauses can be removed via DQRAT∃.

Simulating DQBF Preprocessing Techniques 17

preprocessing
Π · ψ ∪ {C1 ∪ {p}, . . . , Cr ∪ {p}, D1 ∪ {p}, . . . , Ds ∪ {p}}
EVE1
===⇒ Π \ {∃x(SΠx)} · ψ ∪ {Ci ∪Dj : i ∈ [r], j ∈ [s]}

preconditions

x ∈ vars∃(Π)

x /∈ vars(ψ)

var(p) = x

OC(Π,Di ∪ {p}, x) = Di ∪ {p}, for each i ∈ [r]

R-simulation

Π · ψ ∪ {C1 ∪ {p}, . . . , Cr ∪ {p}, D1 ∪ {p}, . . . , Ds ∪ {p}}
AT∗−−→ Π · ψ ∪ {C1 ∪ {p}, . . . , Cr ∪ {p}, D1 ∪ {p}, . . . , Ds ∪ {p}}

∪ {Ci ∪Dj : i ∈ [r], j ∈ [s]}
DQRAT∗∃−−−−−→ Π · ψ ∪ {D1 ∪ {p}, . . . , Ds ∪ {p}} ∪ {Ci ∪Dj : i ∈ [r], j ∈ [s]}
DQRAT∗∃−−−−−→ Π · ψ ∪ {Ci ∪Dj : i ∈ [r], j ∈ [s]}
BPM−−−→ Π \ {∃x(SΠx)} · ψ ∪ {Ci ∪Dj : i ∈ [r], j ∈ [s]}

Fig. 3. The R-simulation of existential variable elimination by resolution.

Then existential variable var(q), which no longer appears in the matrix ψ[p/q], is removed
from the prefix with BPM.

Dependency set reduction. HQSPre implements dependency set reduction (DSR) using
the standard dependency scheme (Dstd). Since Dstd is less general than Drrs [59, 67], that is
to say

Drrs(Ψ) ≤ Dstd(Ψ) ≤ Ψ , for each DQBF Ψ ,

application of Dstd is trivially simulated by DRRS.

Existential variable elimination by resolution. Davis-Putnam resolution [24] is an early
CNF-based decision procedure. In summary, variables are eliminated one by one from a CNF
by adding all resolvents over a given variable while deleting the clauses in which it appears.
Davis-Putnam resolution is indeed a decision procedure, in the precise sense that a CNF is
unsatisfiable if, and only if, the described procedure generates the empty clause. The elimina-
tion of individual, innermost existential variables via Davis-Putnam resolution is a standard
QBF preprocessing technique [38].

HQSPre implements existential variable elimination via Davis-Putnam resolution under
two scenarios, which we denote EVE1 and EVE2. The latter, which involves variable definitions,
is covered in Subsection 7.2.

EVE1 allows an existential variable x to be eliminated provided that, for either literal p
with var(p) = x, all clauses containing p contain only variables outer to x. In essence, this
allows Davis-Putnam resolution to be performed over x as if it were an innermost existential
variable in a QBF prefix.

The R-simulation of EVE1, shown in Figure 3, follows the analogous QBF simulation [38].
All x-resolvents can be introduced as asymmetric tautologies with respect to the matrix. Then,
clauses containing p always have DQRAT∃ on p with respect to the remaining DQBF, and can
be deleted one by one. Thereafter, since literal p no longer appears, clauses containing p have

18 Joshua Blinkhorn

preprocessing preconditions R-simulation

Π · ψ ∪ {C ∪ {p}}
BCE
==⇒ Π · ψ

var(p) ∈ vars∃(Π)

for each D ∈ ψ with p ∈ D,(
C \ {p}) ∪

(
OC(Π,D, p) \ {p}

)
is a tautology.

Π · ψ ∪ {C ∪ {p}}
DQRAT∃−−−−−→ Π · ψ

Π · ψ ∪ {C ∪ {p}, D}
HLA
==⇒ Π · ψ ∪

{C ∪ {p}, D ∪ {p}}
C ⊆ D

Π · ψ ∪ {C ∪ {p}, D}
AT−−→ Π · ψ ∪
{C ∪ {p}, D,D ∪ {p}}

AT−−→ Π · ψ ∪
{C ∪ {p}, D ∪ {p}}

Π · ψ ∪ {C ∪ {p}}
CLA
==⇒ Π · ψ ∪ {C ∪ {p, q}}

for each D ∈ ψ with p ∈ D,(
C \ {p}) ∪

(
OC(Π,D, p) \ {p}

)
is a tautology, or else contains q

Π · ψ
AT−−→ Π · ψ ∪
{C ∪ {p}, C ∪ {p, q}}

DQRAT∃−−−−−→ Π · ψ ∪ {C ∪ {p, q}}

Fig. 4. Summary of the R-simulation of blocked clause elimination, hidden literal addition, and covered literal
addition.

DQRAT∃ (trivially) with respect to the remaining DQBF, and can also be deleted one by one.
Finally, since x no longer appears in the matrix, it is eliminated via BPM.

Blocked clause elimination (including hidden and covered literal addition). The
elimination of blocked clauses [45] is standard in SAT [41] and QBF [15] preprocessing. Blocked
clause elimination (BLE) is often performed in conjunction with literal addition techniques
such as hidden (HLA) [33] and covered (CLA) [34] literal addition. HQSPre implements BCE
in the DQBF setting, and exploits HLA and CLA to strengthen clause eliminability.

The R-simulations of these three preprocessing steps is shown in Figure 4. As in the QBF
case, BCE is simulated merely by a single application of DQRAT∃, since a blocked clause always
has DQRAT∃ on the blocking literal p with respect to the remaining DQBF. The simulation
of HLA, which is a purely propositional preprocessing technique, is simulated easily by AT,
while the simulation of CLA is identical to its QBF counterpart [38].

Universal expansion. The expansion of individual universal variables is a standard QBF
technique [14, 38]. HQSPre utilises universal expansion (UE) in the DQBF setting in much the
same way.

As opposed the complete expansion of all universal variables as in the proof system
∀Exp+Res (Section 6), the goal here is to remove a single universal variable u from the DQBF.
To account for the dependencies on u, we must introduce a fresh copy x′ of each existential
x ∈ DΠ

u , and replace the matrix ψ with

ψ[0/u] ∪ ψ[1/u, x′/x for each x ∈ DΠ
u] .

The R-simulation in Figure 5 is lengthy, but the individual steps are relatively simple to
verify, and the overall structure of the simulation is a straightforward generalisation from the
QBF setting [38].

Simulating DQBF Preprocessing Techniques 19

preprocessing

Π · ψ ∪ {C1 ∪ {u}, . . . , Cr ∪ {u}, D1 ∪ {u}, . . . , Ds ∪ {u}, E1, . . . , Et}
UE
==⇒

(
Π \ ({∀u} ∪ {∃x(SΠx) : x ∈ DΠ

u })
)
∪
{
∃x

(
SΠx \ {u}

)
∃x′

(
SΠx \ {u}

)
: x ∈ DΠ

u

}
·

ψ ∪ {C1, . . . , Cr, E1, . . . , Et} ∪ {D1, . . . , Ds, E1, . . . , Et}[x′/x : x ∈ DΠ
u]

preconditions

vars(ψ) ∩DΠ
u = ∅

vars(Ei) ∩DΠ
u 6= ∅, for each i ∈ [t]

x′ /∈ vars(Π), for each x ∈ DΠ
u

R-simulation

Π · ψ ∪ {C1 ∪ {u}, . . . , Cr ∪ {u}, D1 ∪ {u}, . . . , Ds ∪ {u}, E1, . . . , Et}
AT∗−−→ Π · ψ ∪ {C1 ∪ {u}, . . . , Cr ∪ {u}, D1 ∪ {u}, . . . , Ds ∪ {u}, E1, . . . , Et}

∪ {E1 ∪ {u}, . . . , Et ∪ {u}, E1 ∪ {u}, . . . , Et ∪ {u}}
AT∗−−→ Π · ψ ∪ {C1 ∪ {u}, . . . , Cr ∪ {u}, D1 ∪ {u}, . . . , Ds ∪ {u}}

∪ {E1 ∪ {u}, . . . , Et ∪ {u}, E1 ∪ {u}, . . . , Et ∪ {u}}
BPM−−−→ Π ∪

{
∃x′(SΠx) : x ∈ DΠ

u

}
· ψ

∪ {C1 ∪ {u}, . . . , Cr ∪ {u}, D1 ∪ {u}, . . . , Ds ∪ {u}}
∪ {E1 ∪ {u}, . . . , Et ∪ {u}, E1 ∪ {u}, . . . , Et ∪ {u}}

DQRAT∗∃−−−−−→ Π ∪
{
∃x′(SΠx) : x ∈ DΠ

u

}
· ψ

∪ {C1 ∪ {u}, . . . , Cr ∪ {u}, D1 ∪ {u}, . . . , Ds ∪ {u}}
∪ {E1 ∪ {u}, . . . , Et ∪ {u}, E1 ∪ {u}, . . . , Et ∪ {u}}
∪
{
{u, x, x′}, {u, x, x′} : x ∈ DΠ

u

}
AT∗−−→ Π ∪

{
∃x′(SΠx) : x ∈ DΠ

u

}
· ψ

∪ {C1 ∪ {u}, . . . , Cr ∪ {u}, D1 ∪ {u}, . . . , Ds ∪ {u}}
∪ {E1 ∪ {u}, . . . , Et ∪ {u}, E1 ∪ {u}, . . . , Et ∪ {u}}
∪
{
{u, x, x′}, {u, x, x′} : x ∈ DΠ

u

}
∪ {D1 ∪ {u}, . . . , Ds ∪ {u}, E1 ∪ {u}, . . . , Et ∪ {u}}[x′/x : x ∈ DΠ

u]
AT∗−−→ Π ∪

{
∃x′(SΠx) : x ∈ DΠ

u

}
· ψ

∪ {C1 ∪ {u}, . . . , Cr ∪ {u}, E1 ∪ {u}, . . . , Et ∪ {u}}
∪
{
{u, x, x′}, {u, x, x′} : x ∈ DΠ

u

}
∪ {D1 ∪ {u}, . . . , Ds ∪ {u}, E1 ∪ {u}, . . . , Et ∪ {u}}[x′/x : x ∈ DΠ

u]
DQRAT∗∃−−−−−→ Π ∪

{
∃x′(SΠx) : x ∈ DΠ

u

}
· ψ

∪ {C1 ∪ {u}, . . . , Cr ∪ {u}, E1 ∪ {u}, . . . , Et ∪ {u}}
∪ {D1 ∪ {u}, . . . , Ds ∪ {u}, E1 ∪ {u}, . . . , Et ∪ {u}}[x′/x : x ∈ DΠ

u]
DRRS∗−−−−→

(
Π \ {∃x(SΠx) : x ∈ DΠ

u }
)
∪
{
∃x

(
SΠx \ {u}

)
, ∃x′

(
SΠx \ {u}

)
: x ∈ DΠ

u

}
· ψ

∪ {C1 ∪ {u}, . . . , Cr ∪ {u}, E1 ∪ {u}, . . . , Et ∪ {u}}
∪ {D1 ∪ {u}, . . . , Ds ∪ {u}, E1 ∪ {u}, . . . , Et ∪ {u}}[x′/x : x ∈ DΠ

u]
UR∗−−→

(
Π \ {∃x(SΠx) : x ∈ DΠ

u }
)
∪
{
∃x

(
SΠx \ {u}

)
, ∃x′

(
SΠx \ {u}

)
: x ∈ DΠ

u

}
·

ψ ∪ {C1, . . . , Cr, E1, . . . , Et} ∪ {D1, . . . , Ds, E1, . . . , Et}[x′/x : x ∈ DΠ
u]

BPM−−−→
(
Π \ ({∀u} ∪ {∃x(SΠx) : x ∈ DΠ

u })
)
∪
{
∃x

(
SΠx \ {u}

)
∃x′

(
SΠx \ {u}

)
: x ∈ DΠ

u

}
·

ψ ∪ {C1, . . . , Cr, E1, . . . , Et} ∪ {D1, . . . , Ds, E1, . . . , Et}[x′/x : x ∈ DΠ
u]

Fig. 5. The R-simulation of universal expansion.

20 Joshua Blinkhorn

Note that the application of DRRS is valid, since (at that point in the simulation) the
variables depending on u can be partitioned into the two sets DΠ

u and {x′ : x ∈ DΠ
u }, where

the former appear only in clauses containing the positive literal u, and the latter only in
clauses containing the negative literal u. Hence, in the image under Drrs, u does not appear
in any dependency set.

7.2 Advanced prefix modification: working with variable definitions

In the previous subsection, we saw that R is capable of simulating the full suite of DQBF
preprocessing techniques, except those involving defined variables, namely EL4 and EVE2.
In this subsection we propose advanced prefix modification (APM), whose addition to R is
sufficient to simulate both techniques.

The defined variable is a well-studied CNF (i.e. propositional) concept. Defined variables
most commonly arise via Tseitin transformation [62] of circuit representations into CNF, but
can also occur in any given instance independently of such transformations.

As an example, consider the CNF

ψ := {{u, v, x}, {u, x}, {v, x}} .

It is easy to see that any satisfying assignment α for ψ must set α(x) ≡ α(u)∧α(v); moreover,
any satisfying assignment for any larger CNF φ ⊇ ψ must also have this property. It is said
that ψ constitutes a functional definition of x, which means (informally) that ψ encodes a
relationship x ≡ f(u, v), and in our example f is the Boolean OR function.

For our current purposes, we define ‘defined variable’ so as to abstract away the defining
function f . We require only that such a function exists.

Definition 28 (defined variable). A variable z is defined in a CNF ψ by a variable set
Z ⊆ vars(ψ) when, for each α ∈ 〈Z〉, either {x} ∈ ψ[α] or {x} ∈ ψ[α].

We will concern ourselves only with defined existential variables. For particular ‘defining
sets’ Z, the dependency set for a defined variable can be reduced via the following transfor-
mation.

Definition 29 (advanced prefix modification). Advanced prefix modification (APM) is
the reversible transformation

Π · ψ APM←−−−→ Ω · ψ ,

where Π · ψ is a DQBF, x ∈ vars∃(Π) is defined by Z in ψ, and the prefixes satisfy

(a) vars∀(Π) = vars∀(Ω) and vars∃(Π) = vars∀(Ω),
(b) SΠy = SΩy for each y ∈ vars∃(Π) \ {x},
(c) putting Z∀ := Z ∩ vars∀(Ψ) and Z∃ := Z ∩ vars∃(Ψ),Z∀ ∪ ⋃

y∈Z∃

SΠy

 ∩ SΠx ⊆ SΩx ⊆ SΠx .

Intuitively, APM preserves truth value for the following reason: in any model for Ψ , the
particular function fx must match any functional definition f for x in ψ. As such, fx can only
depend on variables on which f depends (i.e. the set Z∀ ∪

⋃
y∈Z∃ S

Π
y), meanwhile it may not

depend on any variable outside of SΠx . A formal proof follows.

Theorem 30. APM preserves DQBF truth value.

Simulating DQBF Preprocessing Techniques 21

preprocessing Π · ψ EL4
==⇒

(
Π \ {∃x(SΠx), ∃y(SΠy)}

)
∪ {∃x(SΠx ∩ SΠy)} · ψ[p/q]

preconditions

var(p) = x ∈ vars∃(Π)

var(q) = y ∈ vars∃(Π)

p and q are binary-clause equivalent in ψ

R-simulation

Π · ψ
APM−−−→

(
Π \ {∃x(SΠx)}

)
∪ {∃x(SΠx ∩ SΠy)} · ψ

AT∗−−→
(
Π \ {∃x(SΠx)}

)
∪ {∃x(SΠx ∩ SΠy)} · ψ ∪ ψ[p/q]

AT∗−−→
(
Π \ {∃x(SΠx)}

)
∪ {∃x(SΠx ∩ SΠy)} · ψ[p/q]

BPM−−−→
(
Π \ {∃x(SΠx), ∃y(SΠy)}

)
∪ {∃x(SΠx ∩ SΠy)} · ψ[p/q]

Fig. 6. The R′-simulation of preprocessing using equivalent existential literals.

Proof. Let Ψ := Π · ψ and Φ := Ω · ψ be DQBFs whose prefixes conform to the definition of
APM (Definition 29). We will show that Ψ ≡tr Φ.

Suppose on the one hand that Ψ is false. From conditions (a)–(c) of Definition 29, it follows
immediately that that Φ ≤ Ψ . Therefore Φ is also false.

Suppose on the other hand that Ψ is true, and has a model f := {fy}y∈vars∃(Π). Let
hx : 〈Z〉 → 〈{x}〉 be some function corresponding to the definition of x in ψ by Z, i.e.

hx : 〈Z〉 → 〈{x}〉

α 7→

{
{x} if {x} ∈ ψ[α] ,

{x} otherwise .

Further, let U := Z∀ ∪
⋃
y∈Z∃ S

Π
y , and consider the function h′x : 〈U〉 → 〈{x}〉 obtained from

h by substituting the existential assignments for the outputs from the model f ; that is,

h′x : 〈U〉 → 〈{x}〉
µ 7→ hx

(
µ�Z∀ ∪ {fy(µ�SΠy) : y ∈ Z∃}

)
.

We claim that fx(ν�SΠx) = h′x(ν�U), for each ν ∈ 〈vars∀(Π)〉. It follows immediately that fx
depends on no variable outside of U ∩ SΠx . Hence, viewing fx as a function whose domain is
〈U ∩ SΠx 〉, f becomes a model for Φ. Thus Φ is true.

To prove the claim, let ν ∈ 〈vars∀(Ψ)〉, and consider the CNF

ψ′ := ψ[ν ∪ {fy(ν�SΠy) : y ∈ vars∃(Ψ) \ {x}}] .

Now, if {x} ∈ ψ′, it is easy to see that we must have fx(ν�SΠx) = {x} (by definition of model),
and h′x(ν�U) = {x} (by definition of hx and h′x). On the other hand, if {x} /∈ ψ′, we have
must have {x} ∈ ψ′ by Definition 28, and fx(ν�SΠx) = h′x(ν�U) = {x} follows similarly. ut

For the remainder of the section, we let R′ := R ∪ {APM} denote R supplemented by
advance prefix modification.

Equivalent literals revisited. Consider binary-equivalent literals p and q in some CNF ψ.
In conjunction with AT (via the introduction of {p, q} and {p, q}) the equivalence always gives

22 Joshua Blinkhorn

preprocessing
Π · ψ ∪ {C1 ∪ {x}, . . . , Cr ∪ {x}, D1 ∪ {x}, . . . , Ds ∪ {x}}
EVE2
===⇒ Π \ {∃x(SΠx)} · ψ ∪ {Ci ∪Dj : i ∈ [r], j ∈ [s]}

preconditions x ∈ vars∃(Π) is defined in ψ by Z ⊆ OV(Π,x)

R-simulation

Π · ψ ∪ {C1 ∪ {x}, . . . , Cr ∪ {x}, D1 ∪ {x}, . . . , Ds ∪ {x}}
APM−−−→

(
Π \ {∃x(SΠx)}

)
∪ {∃x(vars∀(Π))} ·

ψ ∪ {C1 ∪ {x}, . . . , Cr ∪ {x}, D1 ∪ {x}, . . . , Ds ∪ {x}}
AT∗−−→

(
Π \ {∃x(SΠx)}

)
∪ {∃x(vars∀(Π))} ·

ψ ∪ {C1 ∪ {x}, . . . , Cr ∪ {x}, D1 ∪ {x}, . . . , Ds ∪ {x}}
∪ {Ci ∪Dj : i ∈ [r], j ∈ [s]}

DQRAT∗∃−−−−−→
(
Π \ {∃x(SΠx)}

)
∪ {∃x(vars∀(Π))} ·

ψ ∪ {D1 ∪ {x}, . . . , Ds ∪ {x}} ∪ {Ci ∪Dj : i ∈ [r], j ∈ [s]}
DQRAT∗∃−−−−−→

(
Π \ {∃x(SΠx)}

)
∪ {∃x(vars∀(Π))} · ψ ∪ {Ci ∪Dj : i ∈ [r], j ∈ [s]}

BPM−−−→ Π \ {∃x(SΠx)} · ψ ∪ {Ci ∪Dj : i ∈ [r], j ∈ [s]}

Fig. 7. The R′-simulation of the elimination by resolution of a defined existential variable.

rise to some functional definition var(q) ≡ f(var(p)), where f is either the identity or Boolean
negation. Hence var(q) is defined by {var(p)} in ψ (and vice versa).

Therefore, in the particular case where var(p) = x and var(q) = y are both existential,
advanced prefix modification allows either dependency set SΠx or SΠy to be replaced with their
intersection. Meanwhile, either variable may be eliminated due to the equivalence as in EL3
(Subsection 7.1).

In fact, this describes exactly how HQSPre uses EL4 to handle equivalent existential literals.
The formal definition of EL4 and its R′-simulation appear in Figure 6.

Existential variable elimination revisited. We may now cover to the second scenario
in which HQSPre implements existential variable elimination via Davis-Putnam resolution,
namely EVE2. In this scenario, the eliminated existential variable x is defined in the DQBF
matrix by some subset of OV(Π,x) – this precondition is vital for soundness, and allows APM
to simulate the variable elimination.

Details are given in Figure 7. Notice that APM is applied here in reverse: the dependency
set for the defined variable x grows maximally to vars∀(Π). To see that this application is
valid, we observe that

Z ⊆ OV(Π,x) =⇒ Z∀ ∪
⋃
y∈Z∃

SΠy ⊆ SΠx ,

from which it follows thatZ∀ ∪ ⋃
y∈Z∃

vars∀(Π)

 ∩ SΠx ⊆ SΠx ⊆ vars∀(Π) .

Hence APM (applied in the forward direction) would allow a maximal dependency set for x
to be reduced to SΠx .

Simulating DQBF Preprocessing Techniques 23

preprocessing preconditions R-simulation

Π · ψ ∪ {C ∪ {p}}
BCE
==⇒ Π · ψ ∪ {C}

var(p) ∈ vars∀(Π)

for each D ∈ ψ with p ∈ D,(
C \ {p}) ∪

(
OC(Π,D, p) \ {p}

)
is a tautology.

Π · ψ ∪ {C ∪ {p}}
DQRAT∀−−−−−→ Π · ψ ∪ {C}

Fig. 8. The R-simulation of blocked literal elimination.

Complexity of APM. We do not prove that APM is efficiently checkable - indeed, it presum-
ably isn’t, since checking for defined variables (as in Definition 28) is clearly coNP-complete.
Nonetheless, given the clear connection between defined variables and satisfiability, an imple-
mented search for defined variables is likely to be simulated by (efficiently-checkable) SAT
preprocessing techniques. Hence, an appropriate formulation of ‘efficiently checkable variable
definitions’ based on current implementations can presumably be substituted. We choose to
leave Definition 28 as is, such that Theorem 30 describes the maximal scope of APM.

7.3 Further R-enabled DQBF preprocessing techniques

The alert reader may have noticed that DQRAT∀ did not feature whatsoever in the foregoing
preprocessing simulations, nor did it feature in the simulation of ∀Exp+Res, so DQRAT remains
a complete proof system without it. It is therefore reasonable to enquire as to its purpose.

In fact, DQRAT∀ fosters the DQBF generalisation of a QBF preprocessing concept known
as blocked literals [37]. To the best of our knowledge, blocked literals (as apposed to blocked
clauses) have not been considered in the DQBF context, presumably because soundness of
blocked literal elimination (BLE) and addition (BLA) for DQBF (based on a natural gen-
eralisation of outer variables for a universal) had not been established prior to this paper.
Since BLE has a clear positive impact on QBF preprocessing and solver performance [37], it
is natural to conjecture that a DQBF preprocessor such as HQSPre would benefit from its
inclusion.

Figure 8 details the natural DQBF generalisation of BLE. Informally, a universal literal
is blocked when it satisfies the same criterion as for a blocking existential literal in a blocked
clause (BCE, Subsection 7.1), namely all ‘outer resolvents’ are tautologous.9 In fact, a universal
literal p is blocked in a clause C only if C has DQRAT∀ on p. As such, blocked literals are
a special case of DQRAT∀, which in turn is a special case of DQIOR∀. Thus the soundness of
BLE can be considered a corollary of Theorem 7.

Since BLE is simulated by reversible R transformations, the reverse procedure BLA is also
truth-value preserving. While the impact of BLA in QBF preprocessing is not comparable
with that of BLE, it can serve to reduce the blow-up due to universal expansion [37]. For the
same reason it may also prove useful in the DQBF setting.

8 Conclusions

The award of the infamous ‘prepended D’ is a high point in the career of any QBF concept.
In this paper, we showed that QRAT is eligible for the honour. In other words, the natural
DQBF generalisation DQRAT is a sound and complete proof system for false DQBFs. With

9 There is a nomenclative distinction between blocked (universal) and blocking (existential) literals [37].

24 Joshua Blinkhorn

the addition of an advanced form of prefix modification, it is able to simulate the full suite of
state-of-the-art DQBF preprocessing techniques.

We also showed that blocked literal elimination (BLE) is applicable to DQBFs. Empirical
studies have shown that BLE is beneficial in QBF preprocessing [38]. We suggest that its
impact on DQBF preprocessing (HQSPre in particular) deserves a similar empirical investi-
gation.

Our work highlights several related open problems:

• We showed that DQRAT simulates ∀Exp+Res, but does it simulate the stronger expansion-
based proof system IR-calc? This question is still unsolved even on the QBF fragment.
• Since NP 6= NEXPTIME by the Non-deterministic Time Hierarchy Theorem [22], refu-

tational DQBF proof systems cannot be polynomially bounded. Hence DQRAT is not
polynomially bounded – but can we find concrete DQBF families which require large
refutations? Such DQBF families would be practically relevant, since they define hard
problems for any solver simulated by DQRAT.
• In the QBF setting, QRAT forms not only a proof system for false QBFs, but also a

dual system for true QBFs which supports the efficient extraction of Skolem function
models [36]. The analogous situation for DQRAT and true DQBFs remains unclear.

Acknowledgements. I would like to thank Tomáš Peitl, David Sherratt and Friedrich
Slivovsky for inspiring discussions at Dagstuhl seminar 20061 “SAT and Interactions”, Febru-
ary 2020.

References

1. Arora, S., Barak, B.: Computational Complexity - A Modern Approach. Cambridge University Press (2009)
2. Ayari, A., Basin, D.A.: QUBOS: deciding quantified Boolean logic using propositional satisfiability solvers.

In: Aagaard, M., O’Leary, J.W. (eds.) Conference on Formal Methods in Computer-aided Design (FM-
CAD). Logical Methods in Computer Science, vol. 2517, pp. 187–201. Springer (2002)

3. Azhar, S., Peterson, G., Reif, J.: Lower bounds for multiplayer non-cooperative games of incomplete infor-
mation. Journal of Computers and Mathematics with Applications 41, 957 – 992 (2001)

4. Balabanov, V., Chiang, H.K., Jiang, J.R.: Henkin quantifiers and Boolean formulae: A certification per-
spective of DQBF. Theoretical Computer Science 523, 86–100 (2014)

5. Balabanov, V., Widl, M., Jiang, J.R.: QBF resolution systems and their proof complexities. In: Sinz, C.,
Egly, U. (eds.) International Conference on Theory and Practice of Satisfiability Testing (SAT). Lecture
Notes in Computer Science, vol. 8561, pp. 154–169. Springer (2014)

6. Beyerdorff, O., Blinkhorn, J., Chew, L., Schmidt, R., Suda, M.: Reinterpreting dependency schemes: Sound-
ness meets incompleteness in DQBF. Journal of Automated Reasoning 63(3), 597–623 (2019)

7. Beyersdorff, O., Blinkhorn, J., Chew, L., Schmidt, R.A., Suda, M.: Reinterpreting dependency schemes:
Soundness meets incompleteness in DQBF. Journal of Automated Reasoning 63(3), 597–623 (2019)

8. Beyersdorff, O., Blinkhorn, J., Mahajan, M.: Building strategies into QBF proofs. Journal of Automated
Reasoning (2020). https://doi.org/10.1007/s10817-020-09560-1

9. Beyersdorff, O., Blinkhorn, J., Peitl, T.: Strong (D)QBF dependency schemes via tautology-free resolution
paths. In: International Conference on Theory and Practice of Satisfiability Testing (SAT) (2020), in press.

10. Beyersdorff, O., Chew, L., Janota, M.: New resolution-based QBF calculi and their proof complexity. ACM
Transactions on Computation Theory 11(4), 26:1–26:42 (2019)

11. Beyersdorff, O., Chew, L., Schmidt, R.A., Suda, M.: Lifting QBF resolution calculi to DQBF. In: Creignou,
N., Berre, D.L. (eds.) International Conference on Theory and Practice of Satisfiability Testing (SAT).
Lecture Notes in Computer Science, vol. 9710, pp. 490–499. Springer (2016)

12. Beyersdorff, O., Creignou, N., Egly, U., Vollmer, H.: SAT and interactions (dagstuhl seminar 16381).
Dagstuhl Reports 6(9), 74–93 (2016)

13. Beyersdorff, O., Egly, U., Mahajan, M., Nalon, C.: SAT and interactions (dagstuhl seminar 20061).
Dagstuhl Reports 6(9), 74–93 (2020), in press.

14. Biere, A.: Resolve and expand. Lecture Notes in Computer Science, vol. 3542, pp. 59–70. Springer (2004)
15. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner, N., Sofronie-Stokkermans,

V. (eds.) International Conference on Automated Deduction (CADE). Lecture Notes in Computer Science,
vol. 6803, pp. 101–115. Springer (2011)

Simulating DQBF Preprocessing Techniques 25

16. Blinkhorn, J.: Quantified Boolean Formulas: Proof Complexity and Models of Solving. Ph.D. thesis, Uni-
versity of Leeds (2019)

17. Bloem, R., Könighofer, R., Seidl, M.: SAT-based synthesis methods for safety specs. In: McMillan, K.L.,
Rival, X. (eds.) International Conference on Verification, Model Checking and Abstract Interpretation
(VMCAI). Lecture Notes in Computer Science, vol. 8318, pp. 1–20. Springer (2014)

18. Chew, L., Clymo, J.: The equivalences of refutational QRAT. In: International Conference on Theory and
Practice of Satisfiability Testing (SAT). pp. 100–116 (2019)

19. Chew, L., Clymo, J.: How QBF expansion makes strategy extraction hard. International Joint Conference
on Automated Reasoning (IJCAR) (2020), in press.

20. Chew, L.N.: QBF proof complexity. Ph.D. thesis, University of Leeds, UK (2017)
21. Cook, S.A.: The complexity of theorem-proving procedures. In: Harrison, M.A., Banerji, R.B., Ullman,

J.D. (eds.) ACM Symposium on Theory of Computing (STOC). pp. 151–158. ACM (1971)
22. Cook, S.A.: A hierarchy for nondeterministic time complexity. In: Fischer, P.C., Zeiger, H.P., Ullman, J.D.,

Rosenberg, A.L. (eds.) ACM Symposium on Theory of Computing (STOC). pp. 187–192. ACM (1972)
23. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. Journal of Symbolic

Logic 44(1), 36–50 (1979)
24. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7(3), 201–215

(1960)
25. Faymonville, P., Finkbeiner, B., Rabe, M.N., Tentrup, L.: Encodings of bounded synthesis. In: Legay, A.,

Margaria, T. (eds.) International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS). Lecture Notes in Computer Science, vol. 10205, pp. 354–370. Springer (2017)

26. Finkbeiner, B., Tentrup, L.: Fast DQBF refutation. In: Sinz, C., Egly, U. (eds.) International Conference
on Theory and Practice of Satisfiability Testing (SAT). Lecture Notes in Computer Science, vol. 8561, pp.
243–251. Springer (2014)

27. Fröhlich, A., Kovásznai, G., Biere, A.: A DPLL algorithm for solving DQBF (2012)
28. Fröhlich, A., Kovásznai, G., Biere, A., Veith, H.: iDQ: Instantiation-based DQBF solving. In: Berre, D.L.

(ed.) Workshop on Pragmatics of SAT (POS). EPiC Series in Computing, vol. 27, pp. 103–116. EasyChair
(2014)

29. Gelder, A.V.: Variable independence and resolution paths for quantified Boolean formulas. In: Lee, J.H.
(ed.) International Conference on Principles and Practice of Constraint Programming (CP). Lecture Notes
in Computer Science, vol. 6876, pp. 789–803. Springer (2011)

30. Gitina, K., Reimer, S., Sauer, M., Wimmer, R., Scholl, C., Becker, B.: Equivalence checking of partial
designs using dependency quantified Boolean formulae. In: International Conference on Computer Design
(ICCD). pp. 396–403. IEEE Computer Society (2013)

31. Gitina, K., Wimmer, R., Reimer, S., Sauer, M., Scholl, C., Becker, B.: Solving DQBF through quantifier
elimination. In: Nebel, W., Atienza, D. (eds.) Design, Automation & Test in Europe Conference (DATE).
pp. 1617–1622. ACM (2015)

32. Henkin, L.: Some remarks on infinitely long formulas. Infinitistic Methods pp. 167 – 183 (1961)
33. Heule, M., Järvisalo, M., Biere, A.: Clause elimination procedures for CNF formulas. In: Fermüller, C.G.,

Voronkov, A. (eds.) International Conference on Logic for Programming, Artificial Intelligence and Rea-
soning (LPAR). Lecture Notes in Computer Science, vol. 6397, pp. 357–371. Springer (2010)

34. Heule, M., Järvisalo, M., Biere, A.: Covered clause elimination. In: Voronkov, A., Sutcliffe, G., Baaz,
M., Fermüller, C.G. (eds.) International Conference on Logic for Programming, Artificial Intelligence and
Reasoning - Short Papers (LPAR). EPiC Series in Computing, vol. 13, pp. 41–46. EasyChair (2010)

35. Heule, M., Järvisalo, M., Lonsing, F., Seidl, M., Biere, A.: Clause elimination for SAT and QSAT. Journal
of Artificial Intelligence Research 53, 127–168 (2015)

36. Heule, M., Seidl, M., Biere, A.: Efficient extraction of skolem functions from QRAT proofs. In: Conference
on Formal Methods in Computer-aided Design (FMCAD). pp. 107–114. IEEE (2014)

37. Heule, M., Seidl, M., Biere, A.: Blocked literals are universal. In: Havelund, K., Holzmann, G.J., Joshi, R.
(eds.) NASA International Symposium on Formal Methods (NFM). Lecture Notes in Computer Science,
vol. 9058, pp. 436–442. Springer (2015)

38. Heule, M.J.H., Seidl, M., Biere, A.: Solution validation and extraction for QBF preprocessing. Journal of
Automated Reasoning 58(1), 97–125 (2017)

39. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with counterexample guided re-
finement. Artificial Intelligence 234, 1–25 (2016)

40. Janota, M., Marques-Silva, J.: Expansion-based QBF solving versus Q-resolution. Theoretical Computer
Science 577, 25–42 (2015)

41. Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Esparza, J., Majumdar, R. (eds.)
International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
Lecture Notes in Computer Science, vol. 6015, pp. 129–144. Springer (2010)

42. Järvisalo, M., Heule, M., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller, D., Sattler, U. (eds.)
International Joint Conference on Automated Reasoning (IJCAR). Lecture Notes in Computer Science,
vol. 7364, pp. 355–370. Springer (2012)

26 Joshua Blinkhorn

43. Kiesl, B., Heule, M.J.H., Seidl, M.: A little blocked literal goes a long way. In: Gaspers, S., Walsh, T.
(eds.) International Conference on Theory and Practice of Satisfiability Testing (SAT). Lecture Notes in
Computer Science, vol. 10491, pp. 281–297. Springer (2017)

44. Kiesl, B., Seidl, M.: QRAT polynomially simulates ∀Exp+Res. In: Janota, M., Lynce, I. (eds.) International
Conference on Theory and Practice of Satisfiability Testing (SAT). Lecture Notes in Computer Science,
vol. 11628, pp. 193–202. Springer (2019)

45. Kullmann, O.: On a generalization of extended resolution. Discrete Applied Mathematics 96-97, 149–176
(1999)

46. Lonsing, F., Biere, A.: DepQBF: A dependency-aware QBF solver. Journal of Satisfiability, Boolean Mod-
eling and Computation 7(2-3), 71–76 (2010)

47. Lonsing, F., Egly, U.: QRAT+: generalizing QRAT by a more powerful QBF redundancy property. In:
Galmiche, D., Schulz, S., Sebastiani, R. (eds.) International Joint Conference on Automated Reasoning
(IJCAR). Lecture Notes in Computer Science, vol. 10900, pp. 161–177. Springer (2018)

48. Lonsing, F., Egly, U.: QRATPre+: Effective QBF preprocessing via strong redundancy properties. In:
Janota, M., Lynce, I. (eds.) International Conference on Theory and Practice of Satisfiability Testing
(SAT). Lecture Notes in Computer Science, vol. 11628, pp. 203–210. Springer (2019)

49. Peitl, T., Slivovsky, F., Szeider, S.: Dependency learning for QBF. Journal of Artificial Intelligence Research
65, 180–208 (2019)

50. Peterson, G.L., Reif, J.H.: Multiple-person alternation. In: Symposium on Foundations of Computer Science
(FOCS). pp. 348–363. IEEE Computer Society (1979)

51. Pulina, L., Seidl, M.: The 2016 and 2017 QBF solvers evaluations (QBFEVAL’16 and QBFEVAL’17).
Artificial Intelligence 274, 224–248 (2019)

52. Rabe, M.N., Tentrup, L.: CAQE: A certifying QBF solver. In: Kaivola, R., Wahl, T. (eds.) Conference on
Formal Methods in Computer-aided Design (FMCAD). pp. 136–143. IEEE (2015)

53. Rabe, M.N.: A resolution-style proof system for DQBF. In: Gaspers, S., Walsh, T. (eds.) International
Conference on Theory and Practice of Satisfiability Testing (SAT). Lecture Notes in Computer Science,
vol. 10491, pp. 314–325. Springer (2017)

54. Samer, M., Szeider, S.: Backdoor sets of quantified Boolean formulas. Journal of Automated Reasoning
42(1), 77–97 (2009)

55. Samulowitz, H., Davies, J., Bacchus, F.: Preprocessing QBF. In: Benhamou, F. (ed.) International Con-
ference on Principles and Practice of Constraint Programming (CP). Lecture Notes in Computer Science,
vol. 4204, pp. 514–529. Springer (2006)

56. Scholl, C., Jiang, J.R., Wimmer, R., Ge-Ernst, A.: A PSPACE subclass of dependency quantified Boolean
formulas and its effective solving. In: National Conference on Artificial Intelligence (AAAI). pp. 1584–1591.
AAAI Press (2019)

57. Scholl, C., Wimmer, R.: Dependency quantified boolean formulas: An overview of solution methods and
applications - extended abstract. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) International Conference
on Theory and Practice of Satisfiability Testing (SAT). Lecture Notes in Computer Science, vol. 10929,
pp. 3–16. Springer (2018)

58. Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability. In: Rutenbar, R.A.,
Otten, R.H.J.M. (eds.) International Conference on Computer-Aided Design (ICCAD). pp. 220–227. IEEE
Computer Society / ACM (1996)

59. Slivovsky, F., Szeider, S.: Soundness of Q-resolution with dependency schemes. Theoretical Computer
Science 612, 83–101 (2016)

60. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: Preliminary report. In: Aho,
A.V., Borodin, A., Constable, R.L., Floyd, R.W., Harrison, M.A., Karp, R.M., Strong, H.R. (eds.) ACM
Symposium on Theory of Computing (STOC). pp. 1–9. ACM (1973)

61. Tentrup, L., Rabe, M.N.: Clausal abstraction for DQBF. In: Janota, M., Lynce, I. (eds.) International
Conference on Theory and Practice of Satisfiability Testing (SAT). Lecture Notes in Computer Science,
vol. 11628, pp. 388–405. Springer (2019)

62. Tseitin, G.S.: On the complexity of derivation in propositional calculus. Studies in Constructive Mathe-
matics and Mathematical Logic, Part 2 pp. 115–125 (1968)

63. Vardi, M.Y.: Boolean satisfiability: Theory and engineering. Communications of the ACM 57(3), 5 (2014)
64. Wetzler, N., Heule, M., Jr., W.A.H.: DRAT-trim: Efficient checking and trimming using expressive clausal

proofs. In: Sinz, C., Egly, U. (eds.) International Conference on Theory and Practice of Satisfiability Testing
(SAT). Lecture Notes in Computer Science, vol. 8561, pp. 422–429. Springer (2014)

65. Wimmer, R., Gitina, K., Nist, J., Scholl, C., Becker, B.: Preprocessing for DQBF. In: International Con-
ference on Theory and Practice of Satisfiability Testing (SAT). pp. 173–190 (2015)

66. Wimmer, R., Scholl, C., Wimmer, K., Becker, B.: Dependency schemes for DQBF (AVACS technical report
no. 110) (2014)

67. Wimmer, R., Scholl, C., Wimmer, K., Becker, B.: Dependency schemes for DQBF. In: Creignou, N., Berre,
D.L. (eds.) International Conference on Theory and Practice of Satisfiability Testing (SAT). Lecture Notes
in Computer Science, vol. 9710, pp. 473–489. Springer (2016)

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

