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Abstract

Locally correctable codes (LCCs) are error correcting codes C : Σk → Σn which admit local
algorithms that correct any individual symbol of a corrupted codeword via a minuscule number of queries.
This notion is stronger than that of locally decodable codes (LDCs), where the goal is to only recover
individual symbols of the message. One of the central problems in algorithmic coding theory is to
construct O(1)-query LCCs and LDCs with minimal block length. Alas, state-of-the-art of such codes
requires super-polynomial block length to admit O(1)-query algorithms for local correction and decoding,
despite much attention during the last two decades.

This lack of progress prompted the study of relaxed LCCs and LDCs, which allow the correction
algorithm to abort (but not err) on a small fraction of the locations. This relaxation turned out to allow
constant-query correcting and decoding algorithms for codes with polynomial block length. Focusing
on local correction, Gur, Ramnarayan, and Rothblum (ITCS 2018) showed that there exist O(1)-query
relaxed LCCs that achieve nearly-quartic block length n = k4+α, for an arbitrarily small constant α > 0.

We construct an O(1)-query relaxed LCC with nearly-linear block length n = k1+α, for an arbitrarily
small constant α > 0. This significantly narrows the gap between the lower bound which states that there
are no O(1)-query relaxed LCCs with block length n = k1+o(1). In particular, our construction matches
the parameters achieved by Ben-Sasson et al. (SIAM J. Comput. 2006), who constructed relaxed LDCs
with the same parameters. This resolves an open problem raised by Gur, Ramnarayan, and Rothblum
(ITCS 2018).
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1 Introduction

Locally correctable codes (LCCs) are error-correcting codes that exhibit local-to-global phenomena, allowing
for correction of individual symbols of a noisy codeword via a small number of queries. More precisely, a
code C : Σk → Σn is an LCC with correcting radius τ if there exists a probabilistic algorithm, called local
corrector, that is given an index i ∈ [n] and query access to an input w ∈ Σn such that if w is τ -close to a
valid codeword C(x), and outputs C(x)i (the i-th bit of C(x)) with high probability.

The notion of local codes, such as LCCs and the closely-related notion of locally decodable codes (LDCs),
are central to algorithmic coding theory. Indeed, their study led to progress in several areas of theoretical
computer science, including complexity theory, program checking, data structures, and cryptography (see
surveys [Tre04; Yek12; KS17] and references therein), and also led to practical applications in distributed
storage systems (notably, to Microsoft Azure [Hua+12]).

Unfortunately, the state of the art of LCC demands a steep price for the redundancy required to obtain
good locality. Despite two decades of extensive study, the best construction of O(1)-query LCCs is obtained
via a parameterization of the Reed–Muller code [Mul54], where the block length is exponential in the message
length of the code. This state of affairs is even worse than for O(1)-query LDC, for which sub-exponential
block length was achieved using a highly non-trivial construction of matching vector codes [Yek08; Efr12].

This lack of progress prompted the study of relaxed LCCs [GRR18] (following the relaxation of LDCs
that was introduced in the seminal work of Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan [Ben+06]).
This natural relaxation arguably captures the essence of local correction, yet allows for more efficient
constructions: an exponential improvement in block length. In a recent line of works [GGK15; GG16;
BDG17; GG18; GR18; Blo+18; GL20; RR19] relaxed LDCs and relaxed LCC have been studied and used
to obtain applications to data structures [CGW09], PCPs [MR10; DH13], property testing [CG18], and
probabilistic proofs [GGK15; GR17; GR18].

Loosely speaking, this relaxation of LCCs allows the local corrector to abort (i.e., output “don’t know”)
on a small fraction of the indices while still avoiding correction errors. More accurately, a relaxed LCC
C : Σk → Σn with correcting radius τ and success rate ρ is a code that admits a randomized algorithm,
called the local corrector, which receives an oracle access to a string w ∈ Σn and (a direct access to) an
index i ∈ [n]. The corrector makes a small number of queries to w and is required to satisfy the following
conditions:1

1. Completeness: If the input is a valid codeword (i.e., w = C(x)), the corrector must always output C(x)i.
2. Relaxed correction: If w is τ -close to a codeword C(x), with high probability, the corrector must either

output C(x)i or a special abort symbol ⊥ (indicating it detected a corruption and is unable to correct it).

This seemingly modest relaxation turns out to allow using powerful tools from the PCP literature. Using
such techniques, it was recently shown that there exist O(1)-query relaxed LCCs with polynomial block
length [GRR18]; more precisely, with nearly quartic block length n = k4+α, for an arbitrarily small constant
α > 0. On the other hand, it was recently shown that there cannot exist O(1)-query relaxed LCCs with block
length n = k1+o(1) [GL20],2 so we know that the block length must be super-linear.

It is natural to ask whether it is possible to reduce block length, ideally as close as possible to the lower
bound, while preserving O(1)-query relaxed local correction. In particular, in [GRR18] the following open
problem was raised:

Do there exist O(1)-query relaxed LCCs with nearly-linear block length?
1By standard transformations [Ben+06], the following two conditions imply a “success rate” property: the corrector will only

output ⊥ on a ρ-fraction of the coordinates, for an arbitrarily small constant ρ > 0.
2The bound in [GL20] is stated for relaxed LDCs, but it extends to relaxed LCCs via standard arguments (see, e.g., [BGT17]).
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1.1 Main result

Our main result provides a strong positive answer to the above open problem, giving a simple, explicit
construction ofO(1)-query relaxed LCCs with block length n = k1+α, for an arbitrarily small constant α > 0.

Theorem 1 (Informal, see Theorem 7.1). For every q ∈ N and field F there exists a O(q)-query relaxed LCC
C : FK → FN with constant relative distance and decoding radius that has block length

N = qO(
√
q) ·K1+O(1/

√
q) .

Note that the dependency of the block length in the query complexity allows a tradeoff ranging from
block length N = K1+α with query complexity O(1/α2) for constant α > 0, and down to block length
N = K · 2Õ(

√
log(K)) with query complexity q = log(K)/ log log(K).

1.2 Discussion

Below we make several remarks that highlight several aspects of our results.

Matching state-of-the-art of relaxed LDCs. The notion of relaxed locally correctable codes (relaxed
LCCs) is closely related to that of relaxed locally decodable codes (relaxed LDCs), wherein the goal is to
locally decode a symbol of the message rather than locally correct a symbol of the codeword. Obtaining the
stronger notion of relaxed local correctability is, in general, more challenging than obtaining relaxed local
decodability.

Our relaxed LCCs not only achieve constant query complexity and nearly-linear length, but rather exactly
match the parameters of the relaxed LDC in [Ben+06] (achieving block length N = K1+α and query
complexity O(1/α2) for any constant α > 0), which remains the state-of-the-art for over 15 years.

In addition, a recent work [GGK15] achieved a construction of O(1)-query, nearly-linear length relaxed
LDC, which are also strongly locally testable. Our construction of a relaxed LCC can also be made strongly
locally testable, via standard techniques at the cost of increasing the query complexity by a constant factor
(see discussion in Section 3). Our work thus extends the result in [GGK15] to the setting of relaxed LCCs.

In sum, our work implies that the efficiency of state-of-the-art constructions of relaxed LDCs can also
be achieved by the stronger notion of relaxed LCCs. Note that the lower bound of [GL20], stating that any
q-query RLCC must have block length N ≥ K1+Ω(1/q2), allows room for improving both upper and lower
bounds. This discussion raises several natural open problems that we leave for future work.

Open Problem 1. Is it possible to obtain an RLCC with a better block length vs query complexity tradeoff?

Open Problem 2. Is there a separation between the parameters that can be achieved by relaxed LCC and by
relaxed LDC?

Open Problem 3. Do there exist non-trivial RLCCs in the list correcting regime?

Open Problem 4. Is it possible to obtain RLCCs with improved block length by allowing poly-logarithmic
query complexity?
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Application to PCPs. A key component that we introduce in our proof of Theorem 1 is the notion of
relaxed-correctable PCPs (cPCP). Loosely speaking, these PCPs can be thought of as extending the decodable
PCPs (dPCP) of Dinur and Harsha [DH13] to the setting of local correctability, allowing for recovering any
symbol of the proof, rather than just the witness encoded in it. See Section 3.4 for a precise definition.

We observe that the relaxed LCCs in Theorem 1 can be used to derive the first construction of a cPCP
with nearly-linear length and query complexity O(1) (see Section 6). We find this result to be of independent
interest, and due to the importance of dPCPs in facilitating PCP composition, it is possible that cPCPs will be
useful in making progress on related problems.

On the alphabet of relaxed LCCs In the main body of the paper we prove Theorem 1 only for large
alphabet (yet sublinear in the block length K). It is quite straightforward (though a bit tedious) to adapt
our techniques to obtain a relaxed LCC with the same tradeoff between the query complexity and the block
length for binary alphabet. The details on the binary alphabet appear in Appendix A.

1.3 Organization

The rest of the paper is organized as follows. In Section 2 we present a high-level overview of the proof
of Theorem 1. In Section 3 we provide the necessary preliminaries. In Section 4 we introduce the notion
of consistency tests using random walks and prove a composition theorem for codes that admit such tests.
In Section 5 we prove a theorem which states that tensor codes admit consistency tests using random
walks. In Section 6, we provide a new construction of canonical PCPs of proximity that are relaxed locally
correctable. Finally, in Section 7 we combine these building blocks and prove Theorem 1 by composing
tensored Reed–Solomon codes with relaxed-correctable PCPs, via the composition theorem.

2 Techniques

Our starting point is the construction of the relaxed LCC in [GRR18], which below we refer to as “GRR”. We
begin by briefly recalling the high-level approach underlying GRR and the bottlenecks that lead to a nearly
quartic block length (i.e., N = K4+α for any small constant α > 0).

We then outline our new construction, which at a high level can be viewed as a length efficient variant
of [GRR18]. We introduce the notions of consistency check using random walks (CTRW) and relaxed
correctable PCPs, which underlie our construction and deem to be of independent interest. We show that
tensor codes admit CTRW, and we construct new relaxed-correctable PCPs. Then, we prove a composition
theorem using CTRW, and apply it to compose tensored Reed–Solomon codes with our relaxed-correctable
PCPs.

2.1 Challenges for reducing block length

To present the challenges in obtaining O(1)-query relaxed LCCs with near-linear length, we first briefly recall
the previous state of the art; namely, the construction in [GRR18].

The relaxed LCC in GRR is obtained via the paradigm of PCP composition [AS98] by composing (i) a
relaxed LCC C with large query complexity with (ii) a special type of PCP (more accurately, special type
of PCP of proximity). The result of the composition is a relaxed LCC C ′ that (roughly) inherits the query
complexity of the PCP, with a controlled overhead in block length.
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The codewords of the composed code C ′ are constructed by taking each codeword of the relaxed LCC
C and concatenating it with a PCP for each local view that the relaxed local corrector for C could query,
asserting that this local view is one that would lead the corrector to successfully recover the value at the
desired coordinate.3

A straightforward argument shows that the foregoing approach allows to locally correct the bits of the
original relaxed LCC C without querying the entire local view that would have been queried by the original
corrector. Instead, we invoke the PCP verifier with respect to that local view and the corresponding PCP. The
relaxed corrector for the composed code C ′ takes the queries made by the original corrector as input, and uses
the PCP verifier to test that this local view would have lead the original corrector to output the right value.

However, more involved machinery is required to correct the PCP part of C ′. This is the main reason
why constructing relaxed LCC is significantly harder than constructing relaxed LDC, for which O(1)-query
decoding with nearly-linear block length was already shown in [Ben+06]. Indeed, the quartic blowup in
the GRR construction originates from the mechanism for correcting the part of the composed code C ′ that
consists of PCPs. In more detail, to correct the PCPs in the code in GRR, it was observed that both:

1. the Reed–Muller based PCP [BFL91; Bab+91], which has polynomial length and polylogarithmic query
complexity, and

2. the Hadamard based PCP [Aro+98], which has exponential length and constant query complexity,

can be made locally correctable if they are restricted to linear languages, since in essence, these PCPs are
based on codes which are (non-relaxed) LCCs themselves.4 However, known PCP composition techniques
do not preserve this property, and so we still do not know of polynomial-length PCP constructions that
are locally correctable using O(1) queries. (This is not surprising as, of course, we do not know of any
polynomial-length LCC with O(1) queries.)

Thus, to obtain O(1)-query relaxed LCC with polynomial block length, GRR starts with the Reed–Muller
code, and composes it with the self-correctable PCP with polynomial length and polylogarithmic query
complexity, and then performs another composition with the self-correctable PCP with exponential length
and constant query complexity. It is not hard to see that each such composition entails a quadratic blowup
(e.g., for composing with the Reed–Muller local corrector, we have to provide a PCP for each of the possible
O(n2) lines), and thus these two compositions result in a quartic blow up.

In order to avoid this blowup and obtain nearly-linear length, we will introduce and construct a new type
of PCP, which allows us to reduce the number of compositions to just a single one. In addition, we show a
new composition theorem which relies on the notion of consistency checks using random walks to perform a
more efficient composition that does not incur a quadratic overhead.

Our relaxed LCC is constructed via a composition theorem that takes codes that admit “consistency tests
using random walks” and composes them with a special type of “relaxed-correctable” PCPs to obtain the
relaxed LCC with the desired parameters. We begin by discussing the former component.

2.2 Building block I: consistency checks using random walks

We introduce the notion of consistency tests using random walks (CTRW). These are structured local tests
that assert the consistency of global object with an individual point inside it. We will later capitalize on the
specific structural properties of CTRW to obtain an efficient composition.

3For this idea to work, several important details must be addressed: the codeword of C should be replicated many times for C′ to
have distance, the relaxed LCC must be robust, and others. However, for the sake of simplicity, we ignore these issues here.

4Several other properties were required for the GRR construction, such as strong soundness, canonicity, linearity, and robustness.
We discuss the ones that are also relevant to us in Section 2.3.
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In our setting, we define CTRW as follows. An error correcting code C ⊆ Σn admits a consistency test
using a random walk if there exists a test, which gets a word w ∈ Σn that is close to C and a coordinate
i ∈ [n], that checks that the symbol wi is consistent with the rest of the codeword closest to w, by performing
a random walk over intersecting local constraints as follows.

At each step of the random walk, we check that the current constraint is satisfied, and that it is consistent
with the previous constraint on their intersection. That is, the test chooses a sequence of local constraints on
the purported codeword such that the (j + 1)-th constraint involves coordinates that intersect those involved
in the j-th constraint, and checks that w satisfies all local constraints, in which case it declares that wi is
globally consistent. See Section 4 for the precise definition of CTRW.

We require that on a valid codeword, the test will pass with probability 1, and that given a codeword that
is “close” (typically, within distance that is proportional to the distance of the code) to a valid codeword, with
high probability not only should the test reject, but also that the local view of the test should be “far” from an
accepting view (i.e., satisfying the robustness condition).

When constructing a CTRW, to minimize the query complexity of the test, we want the constraints to be
of small locality, as well as for the random walk to converge to the uniform distribution after a small number
of steps. Note that there is tension between these two properties. In addition, observe that this notion implies
relaxed local correctability with appropriate parameters.

Building on techniques from [GGK15], in Section 5 we prove that the structural properties of tensor
codes admit consistency tests using random walks. We provide a refined analysis of the robustness of these
tests, as in our application we require the codes to have relative distance close to 1.

Theorem 2.1 (informal, see Theorem 5.1). Let C : Fk → Fn be an arbitrary linear code of relative distance
δC , and let C⊗m be the m-dimensional tensor product of C. Then, C⊗m admits an CTRW that given a word
that is τ -close to a valid codeword, has ρ-robust soundness ε = (δC − 2ρ)m− τ . Furthermore, all predicates
defined by the CTRW for C⊗m check that a restriction of a given tensor word to a line belongs to C.

2.3 Building block II: relaxed-correctable PCPs

The second component in our composition theorem is a relaxed-correctable PCP, which is a special type
of PCP where proof oracles can be relaxed locally corrected, similarly to relaxed LCCs. Informally, for
a language L, a relaxed-correctable PCP system consists of PCP π(x) for each x ∈ L, and an algorithm
that on input that gets an input x, a purported proof π̃ of length |π(x)|, and a coordinate i ∈ [|π(x)|]. The
algorithm makes a small number of queries to the purported proof π̃ and satisfies the following guarantees. If
π̃i = π(x)i, then the algorithm returns π(x)i, and if π̃ is close to some π(x), then with high probability, the
algorithm either outputs π(x)i or a special abort symbol ⊥.

For technical reasons, the relaxed-correctable PCPs that we need must additionally be canonical PCPs of
proximity [GS06]. Informally, this means that the PCP satisfies two additional requirements:

• for every true statement there exists a unique canonical proof that the verifier is required to accept, and;
• the verifier is required to reject any pair of statement and proof with probability that is roughly proportional

to its distance from a true statement and its corresponding canonical proof.

These properties are important for local codes as they create a one-to-one correspondence between valid
statements and valid proofs. We discuss how these properties are used in our composition theorem in the next
subsection. For now, we merely note that PCPs of proximity (PCPPs) [Ben+06] where introduced to facilitate
PCP composition, and immediately proved to be a powerful tool for local codes, since on the one hand, in the
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setting of local codes we cannot afford reading an entire PCP oracle, whereas on the other hand the distance
property of codes is often compatible with the approximated decision problems that PCPPs can deal with.

Relying on recent progress on canonical PCPPs [DGG19; Par20], we provide new, simple constructions
of relaxed-correctable O(1)-query canonical PCPPs of polynomial length.

Theorem 2.2 (informal, see Theorem 6.1). For any language L in the class P , there exists a canonical
relaxed-correctable PCP of proximity with polynomial length, soundness 1/2, and query complexity O(1).
Furthermore, the PCP oracle is relaxed-correctable with O(1) queries.

In order to construct a relaxed-correctable PCPP we compose the relaxed LCC in [GRR18] (which has
polynomial block length and query complexity O(1)) with state-of-the-art canonical PCPPs of polynomial
block length and query complexity O(1). We stress that this composition is in the reversed direction
compared to our main composition theorem. Namely, we compose a PCPP with a relaxed LCC to obtain a
relaxed-correctable PCPP.5

2.4 A composition theorem using CTRW

We outline our composition theorem, which takes a code that admits CTRW (Component I, see Section 2.2)
and composes it with relaxed-correctable canonical PCPP (Component II, see Section 2.3) to obtain a relaxed
LCC that (roughly) inherits the query complexity from the PCPP, at the cost of increasing the block length by
a multiplicative sublinear factor. (See Theorem 4.3 for the exact parameters that our composition theorem
obtains.) Later on, in Section 2.5, we explain how to use our composition theorem, together with the
components that we constructed, to obtain our main result.

Our composition theorem roughly follows the outline of the composition theorem in [GRR18], however,
it is optimised to make use of the structural properties of consistency test via random walks, as well as on the
properties of our new PCPP. It, thus, suffices to perform a single composition to obtain a O(1)-query relaxed
LCC of nearly-linear length (rather than two compositions for quartic length, as in [GRR18]).

Let C be a code that admits a CTRW with constraint set C = {Cj}j∈[n], where each Cj is a collection of
constraints that depend on the j’th coordinate. Let π the encoding function of a relaxed-correctable canonical
PCPP. We compose C with π by constructing a new code C ′, where for each message x the corresponding
codeword consists of two parts:

1. a core that consists of (repetitions of) the original encoding C(x), where the number of repetitions asserts
that the core dominates the size of the composed codeword, and thus provides distance;

2. a PCP bundle that for each coordinate j ∈ [n] and constraint P ∈ Cj includes a PCPP π(j,P) which asserts
that C(x) satisfies the constraint P .

Correcting a point in the core of an alleged codeword C(x) is fairly straightforward. We perform a
random walk over intersecting constraints in a randomly chosen copy of the original codeword C(x) in the
composed codeword C ′(x), and check each constraint by invoking the corresponding PCPP verifier, rather
than querying the entire local view that the constraint refers to. The robustness of the CTRW ensures that this
preserves the soundness condition. Correcting the PCP bundle is more involved, however, as we discuss next.

The naive approach for correcting a point p in the PCP bundle of a purported codeword C ′(x) is by
relying on the relaxed-correctablity of the PCPP that we use and invoking the relaxed corrector on the relevant
PCPP oracle to recover p. Unfortunately, this does not suffice, as we discuss next.

5It might be interesting to note the total depth of the composition: our relaxed LCC indeed contains PCP that themselves contain
encodings of the (weaker) relaxed LCC in [GRR18], which yet again contains copies of simpler PCP that are based on (non-relaxed)
LCC.
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Let π′ be the purported PCPP oracle that contains the point p. The fact that π′ is relaxed locally correctable
tells us that if π′ is close to a valid PCPP π(j,P), we can correct (or detect corruption and abort) any of the
points it contains, including p. However, we encounter two problems: (i) if the purported PCPP oracle π′ is
far from a valid encoding (which it might, since the size of each PCPP oracle is negligible with respect to the
total size of the codeword), there is no guarantee regarding the success of the relaxed corrector. (ii) Even if π′

is a perfectly valid PCPP encoding, it might still not be an encoding that is consistent with the rest of the
word. Indeed, note that since the size of π′ is negligible, one can replace it with a completely different PCPP
oracle while remaining within the correcting radius.

This is where the power of canonical PCPP, wherein only the canonical proof for a correct statement is
accepted, kicks in. To deal with the first problem, note that if π′ is far from a valid encoding, then it is also far
from the prescribed canonical proof. Thus, the canonical PCPP verifier will reject, and the relaxed corrector
can return ⊥.

Dealing with the second problem requires a bit more work. Suppose that π′ is some perfectly valid PCPP
encoding (or close to one) that is not consistent with the rest of the codeword. Recall that π′ is a proof stating
that some local constraint on the core of the composed code C ′ is satisfied. Denote this local view of the core
by w. If w is not corrupted (or only slightly corrupted), then it is far from being consistent with π′, and so
again, we detected a corruption, and we can safely output ⊥. However, how can we detect a corruption if w
was also heavily corrupted such that it matches (the corrupted) π′? The crux is that w is a subset of the core
of C ′, which we already showed how to correct using CTRW. Since w is heavily corrupted, we can choose a
random point in w, invoke the relaxed-corrector on it, which will find that the random point in inconsistent
with the rest of the word.

2.5 Composing tensored Reed–Solomon codes with relaxed-correctable PCPs

We are now ready to describe the construction behind Theorem 1. We start with the Reed–Solomon code
parameterized such that its distance is roughly 1− 1/m, for a constant m ∈ N to be determined later. We
consider the m-th tensor power of the Reed–Solomon code, which we denote by RS⊗m, and denote its block
length by n. The reason we think of RS⊗m as a tensor code, rather than as the standard Reed–Muller code,
is because we wanted a length efficient consistency test using random walks, which only makes use of the
O(mn) axis-parallel lines out of all possible O(n2) lines. Details follow.

By Theorem 2.1, we know that RS⊗m admits a CTRW. For concreteness, we spell out this CTRW. The
constraints correspond to the consistency of each coordinate p of RS⊗m with each axis-parallel line ` that is
incident with p. To check the consistency of a point p with the global codeword, we perform a random walk
of roughly m steps (without repeating directions). That is, we first check the constraint that corresponds to p
and a random line `1 that is incident with it. Then we choose a random point p1 on `1 and check the constraint
that corresponds to p1 and a random line `2 that is incident with it, and so on. Theorem 2.1 guarantees that if
p is inconsistent with the global codeword, then this test succeeds with high probability.

We stress that we use the tensor of the Reed–Solomon code, rather than an arbitrary asymptotically
good code, in order to increase the robustness, which would, in turn, reduce the query complexity in the
composition theorem. To get some intuition for that, note that if we use a code with distance, say 1/4, then
each line incident with p has distance 1/4 from the correct codeword. Hence, it is possible that the line `1
can be changed in at most 1/4 fraction of the coordinates and to become consistent with p1 and consistent
with the global codeword. Similarly, if the chosen point p1 is inconsistent with the global codeword, then any
line `2 can be changed in at most 1/4 fraction of the coordinates to become consistent with p1 and consistent
with the global codeword. Thus implies that the CTRW will catch an inconsistency with probability only
1/4m. On the other hand, when tensoring the Reed–Solomon code, which has distance roughly 1− 1/m,
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this probability becomes (1− 1/m)m, which is a constant independent of m.
Finally, we invoke our composition theorem with respect to RS⊗m (and its corresponding CTRW that is

implied by Theorem 2.1), whose block length we denote by n, together the O(1)-query canonical relaxed-
correctable PCPP from Theorem 2.2 with proofs of polynomial length. By applying the composition theorem
we obtain a relaxed corrector with query complexity O(m2). As for the length, the composition adds a
PCPP oracle of size nO(1/m) for each one of the m · n axis-parallel lines. Hence the total block length of the
construction is roughly m · n · nO(1/m) = O(mn1+(1/m)), which gives us the desired block length by setting
a sufficiently large constant m.

3 Preliminaries

We begin with standard notation. The relative distance between two strings x, y ∈ Σn is defined as

dist(x, y) := |{i ∈ [n] : xi 6= yi}| /n .

If dist(x, y) ≤ ε, we say that x is ε-close to y; otherwise we say that x is ε-far from y. For a non-empty set
S ⊆ Σn define the distance of x from S as dist(x, S) := miny∈S dist(x, y). If dist(x, S) ≤ ε, we say that x
is ε-close to S; otherwise we say that x is ε-far from S.

We will also need a more general notion of a distance, allowing different coordinates to have different
weight. In particular, we will need the distance that gives constant weight to one of the coordinates, and
spreads the rest of the weight uniformly between all coordinates.

Definition 3.1. Fix n ∈ N and an alphabet Σ. For a coordinate k ∈ [n] define the distance distk between
two strings x, y ∈ Σn as

distk(x, y) =
1[xk 6=yk]

2
+
{i ∈ [n] : xi 6= yi}

2n
.

That is, if xk 6= yk, then distk(x, y) is at least 1/2.
Analogously to the distance with respect to the uniform measure, we define distk between a string x ∈ Σn

and a set S ⊆ Σn as
distk(x, S) = min

y∈S
distk(x, y) .

Let P : Σn → {0, 1} be a predicate. Typically, the predicate will depend on a small number of coordinates
(a local view), in which case we denote by Dom(P) the set of coordinates on which P depends, and identify
P with P : ΣDom(P) → {0, 1}. Finally, we denote by sat(P) = {y ∈ ΣDom(P) : P(y) = 1} the set of
assignments satisfying P . Then, for x ∈ ΣDom(P) we have

dist(x, sat(P)) = min
y∈ΣDom(P):P(y)=1

{i ∈ Dom(P) : xi 6= yi}
|Dom(P)|

,

and analogously

distk(x, sat(P)) = min
y∈ΣDom(P):P(y)=1

1[xk 6=yk]

2
+
{i ∈ Dom(P) : xi 6= yi}

2|Dom(P)|
.

We will also need the following concentration of measure inequality.

Theorem 3.2 (McDiarmid’s inequality). LetX1, X2, . . . , Xn be independent random variables such that, for
all i we have ai ≤ Xi ≤ bi, ci := bi−ai ≤ C. Let Sn :=

∑n
i=1Xi be their sum,En := E[Sn] =

∑n
i=1 E[Xi]

be its expected value, and Vn := Var[Sn] =
∑n

i=1 Var[Xi] be its variance. Then,

Pr [|Sn − En| > t] < 2 exp

(
− t2/2

Vn + C · t/3

)
.
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3.1 Basic coding theory

Let k < n be positive integers, and let Γ,Σ be two alphabets. A code C : Γk → Σn is an injective mapping
from messages of length k, over the alphabet Γ, to codewords of length n, over the alphabet Σ. Typically it
is the case that Γ = Σ, in which case we simply say that the code C is over the alphabet Σ. The message
length of the code is k, its block length is n (which we view as a function of k), and its rate is k/n. The
relative distance of the code is the minimum, over all distinct messages x, y ∈ Γk, of dist(C(x), C(y)). We
sometimes abuse notation and use C to denote the set of all of its codewords, {C(x)}x∈Γk ⊆ Σn.

Linear codes. Let F be a finite field. A code C : Fk → Fn is linear if it is a F-linear map from Fk to Fn.
In this case the set of codewords C is a subspace of Fn. A basic result about linear codes [Jus72] is that
there exist (explicit) constructions of linear codes that are binary (F = F2) and good (have constant rate and
constant relative distance).

Concatenation. Code concatenation is an operation on codes typically used to reduce the alphabet size.
Fix alphabets Σ,Ξ,Γ. Fix an outer code C : Γk → Ξn with relative distance δC and rate rC , and an inner
code D : Ξ → Σr with relative distance δD and rate rD. The concatenation of C with D is the code
Ccomp : Γk → Σr·n such that each x ∈ Γk is first encoded with C, and then each symbol of the resulting
codeword is encoded with D. The relative distance of Ccomp is δC · δD and the rate is rC · rD.

Focusing on linear codes, we have the following fact. Let F be a field, and G an extension of F; so that
G ∼= Fm for some m ∈ N. Let C : Fk → Gn and D : G→ Fr be codes that are F-linear (we identify G with
Fm). Then the code Ccomp : Fk → Fr·n obtained by concatenating C and D is F-linear.

Tensor product. Let C : Γk → Σn be a code with rate r and relative distance δ, and let m ∈ N. The tensor
product code C⊗m : Γk

m → Σnm
is the code with message length km, block length nm, rate rm, and relative

distance δm that comprises all functions c : Γk
m → Σnm

whose restriction to any axis-parallel line is in C.
Namely, for every j ∈ {1, . . . ,m} and a1, . . . , aj−1, aj+1, . . . , am ∈ Σk, the function c′ : Γk → Σn defined
by c′(i) := c(a1, . . . , aj−1, i, aj+1, . . . , am) belongs to C.

3.2 Relaxed locally correctable codes

Following the discussion in the introduction, we provide a formal definition of relaxed LCCs, and state some
basic facts and known results.

Definition 3.3 (Relaxed LCC). Let C ⊆ Σn be an error correcting code with relative distance δ, and let
q ∈ N, τcor ∈ (0, δ/2), ρ ∈ (0, 1), and ε ∈ (0, 1] be parameters. Let D be a randomized algorithm that
gets an oracle access to an input w ∈ Σn and an explicit access to an index i ∈ [n]. We say that D is a
q-local relaxed correction algorithm for C with correction radius τcor and soundness ε if for all inputs the
algorithm D reads explicitly the coordinate i ∈ [n], reads at most q (random) coordinates in w, and satisfies
the following conditions.

1. For every w ∈ C, and every coordinate i ∈ [n] it holds that Pr[Dw(i) = wi] = 1.

2. For every w ∈ Σn that is τcor-close to some codeword c ∈ C and every coordinate i ∈ [n] it holds that
Pr[Dw(i) ∈ {ci,⊥}] ≥ ε, where ⊥ 6∈ Σ is a special abort symbol.

The code C is said to be a (τcor, ε)-relaxed locally correctable code (RLCC) with query complexity q if it
admits a q-query relaxed local correction algorithm with correction radius τcor and soundness ε.

The following remark explains why in our setting we can omit the third condition of Definition 3.3.
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Remark 3.4 (On success rate). For relaxed LCC with query complexity O(1) it is known that, via standard
transformations [Ben+06], the third condition of relaxed LCCs follows directly from the first two conditions
in Definition 3.3. Since all of our constructions have query complexity O(1), we can restrict our attention to
only the first two conditions.

It would be also useful to note the following trivial observation.

Observation 3.5. Note that if C is a (τcor, ε)-RLCC, then every subset of C is also an RLCC with the same
parameters.

Finally, we will need the following theorem of Gur, Ramnarayan, and Rothblum [GRR18].

Theorem 3.6 ([GRR18]). There exists an explicit construction of a systematic binary linear (τcor, ε)-RLCCs
with constant relative distance, block length n = poly(k), query complexity q = O(1), with correction
radius τcor = Ω(1), and soundness ε = Ω(1)

3.3 Canonical PCPs of proximity

A canonical PCP of proximity strengthens the notion of a PCP of proximity (PCPP), which in turn strengthens
the notion of a PCP. We recall these latter notions before formally defining canonical PCPs of proximity. For
an intuitive discussion of these notions, see Section 2.3.

PCPs. A PCP for a language L is a polynomial-time randomized oracle algorithm V that receives direct
access to an input x and oracle access to a proof π. The algorithm V is allowed to make a small number of
queries to π such that the following holds: for every x ∈ L there exists a proof π such that Pr[V π(x) = 1] = 1,
and for every x 6∈ L and every proof π it holds that Pr[V π(x) = 1] ≤ 1/2.

PCP of proximity. A PCP of proximity for a language L, with respect to proximity parameter ρ, is a
polynomial-time randomized oracle algorithm V that receives oracle access to both an input x and a proof
π. The algorithm V is allowed to make a small number of queries to x and to π such that the following
holds: for every x ∈ L there exists a proof π such that Pr[V π(x) = 1] = 1, and for every x that is ρ-far
from the language L and every proof π it holds that Pr[V π(x) = 1] ≤ εPCPP for some soundness parameter
εPCPP < 1.

Canonical PCPs of proximity. A canonical PCPP is a PCPP in which every instance in the language has
a unique (thus canonical) accepting proof.

Definition 3.7 (canonical PCPP). A canonical PCPP for a language L ⊆ Σ∗ with soundness εPCPP with
respect to proximity parameter ρ, is a polynomial-time randomized oracle algorithm V satisfying the following
conditions with respect to some polynomial ` : N→ N.

• Canonical completeness: For every x ∈ L there exists a unique (canonical) proof π∗(x) ∈ Σ`(|x|) for which
Pr[V x,π∗(x) = 1] = 1.

• Canonical soundness: For every x′ ∈ Σn and proof π′ ∈ Σ`(|x|) such that

δ(x′, π′) , min
x∈Σn

{
max

(
dist(x′, x)

n
;

dist(π′, π∗(x))

`(n)

)}
> ρ , (1)

it holds that Pr[V x′,π′ = 1] ≤ εPCPP.

Above, for any x /∈ L we define π∗(x) = ⊥ and say that any proof π′ is 1-far from ⊥.
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The polynomial ` denotes the length of the canonical proof in the PCPP, and its query complexity is the
maximum number of queries that V makes to the instance and its (supposed) proof.

In this paper we use the following theorem due to Dinur, Goldreich, and Gur [DGG19]. (Alternatively,
we could have used the construction by Paradise [Par20].)

Theorem 3.8 ([DGG19]). Let ρ > 0 be a proximity parameter. For every language in L ∈ P there exists a
polynomial ` : N→ N and a canonical PCPP verifier for L satisfying the following properties.

1. For all x ∈ L of length |x| = n the length of the canonical proof π(x) is |π(x)| = `(n).

2. The query complexity of the PCPP verifier is q = O(1/ρ).

3. The PCPP verifier for L has perfect completeness and soundness ε = 1/2 for proximity parameter ρ (with
respect to the uniform distance measure).

3.4 Relaxed-correctable PCPs

We introduce a new notion of PCPs, to which we refer to as relaxed-correctable PCPs (cPCP). A cPCP is a
PCP system that is both locally checkable and relaxed locally correctable; that is, in addition to allowing
local verification of the validity of the given proof like a standard PCP, a cPCP also allows for relaxed local
correction of the PCP oracle itself.

The notion of cPCP is closely related to the decodable PCPs (dPCP) introduced by Dinur and Harsha
[DH13], which play an important role in PCP composition. In fact, cPCPs can be thought of as extending
the definition of dPCPs to the setting of local correctability, as they allow recovery of any symbol in the
PCP oracle, rather than just the encoded witness. We remind that similarly to our case, dPCPs admit relaxed
decoding proceedures, i.e., the decoder is allowed to abort (output, say, ⊥) in case it detects corruption.

In this work we focus on canonical PCPs of proximity, and so we define relaxed-correctable canonical
PCPPs; in short ccPCPPs.

Definition 3.9. [relaxed locally correctable cPCP of proximity] A language L ⊆ Σ∗ is said to admit a
ccPCPP with query complexity q and soundness εPCPP with respect to the proximity parameter ρ for the
canonical proof π(·), and correcting soundness εRLCC for correcting radius τcor if it satisfies the following
conditions.

1. There exists a is a q-query canonical PCPP for L that satisfies the conditions in Definition 3.7 with
soundness εPCPP with respect to the proximity parameter ρ for the canonical proof π(·).

2. The code ΠL = {w ◦ π(w) : w ∈ L} is a (τcor, εRLCC)-RLCC with query complexity q.

4 Consistency tests using random walks

We define the notion of consistency tests using random walks. Intuitively, given an error correcting code
C ⊆ Σn, a consistency test using a random walk gets a word w ∈ Σn that is close to some codeword c∗ ∈ C,
and a coordinate i ∈ [n]. The test checks that the symbol wi is equal to c∗i , i.e., wi is consistent with the
codeword closest to w. To this end, the test chooses a sequence of local constraints on the purported codeword
such that the (j + 1)-th constraint involves coordinates that intersect those involved in the j-th constraint,
and checks that w satisfies all local constraints, in which case it declares wi is globally consistent.

We note that this notion implies relaxed local correctability with appropriate parameters (see Remark 4.2).
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Definition 4.1. [Consistency test using random walks] Let C ⊆ Σn be an error correcting code. A (q, t)-
consistency test using random walks (CTRW) for C is a randomized algorithm that gets as input a string
w ∈ Σn and a coordinate i ∈ [n]. For each coordinate j ∈ [n] CTRW defines a collection of constraints Cj
such that each predicate P : Σn → {0, 1} in Cj depends on at most q coordinates. The test works as follows.

Algorithm 1 Consistency test using random walks

Input: w ∈ Σn, i ∈ [n]
1: k1 = i
2: for r = 1 to t do
3: Sample a predicate Pr ∈ Ckr according to a distribution Dr that may depend on the previous steps
4: Let Domr = Dom(Pr) be the set of coordinates on which Pr depends
5: Sample kr+1 ∼ Domr uniformly at random
6: end for

7: Read w in the coordinates ∪r∈[t]Domr

8: if Pr(w|Domr
) = 1 ∀r ∈ [t] then

9: return ACCEPT
10: else
11: return REJECT
12: end if

We say that CTRW has perfect completeness and (τ, ρ, ε)-robust soundness if it satisfies the following
guarantees.
Perfect completeness: If w ∈ C, then Pr[CTRWw(i) = ACCEPT ] = 1 for all i ∈ [n].
(τ, ρ, ε)-robust soundness: If w is τ -close to some c∗ ∈ C, but wi 6= c∗i , then

Pr[∃r ∈ [t] such that distkr(w|Domr
, sat(Pr)) ≥ ρ] ≥ ε .

Here distkr is defined as distkr(w|Domr
, c|Domr

) = 1
2 ·1[wkr 6=ckr ]+

{`∈Domr:w` 6=c`}
2|Domr| , and distkr(w|Domr

, sat(Pr)) =

minc:Pr(c)=1{distkr(w|Domr
, c|Domr

}. See Definition 3.1 and the following discussion in Section 3.

Remark 4.2. Note that if a code C admits a (q, t)-CTRW with perfect completeness and (τ, ρ, ε)-robust
soundness for any ρ > 0, then it is an (τ, ε)-RLCC with query complexity qt. Indeed, given a word w ∈ Σn

and a coordinate j ∈ [n] the local correction algorithm for C runs the (q, t)-CTRW on input (w, j). The
algorithm outputs wj if CTRW accepts, and outputs ⊥ otherwise. We omit the straightforward details.

4.1 Composition theorem using CTRW

Below we prove that if a code admits a (q, t)-CTRW then it can be composed with an appropriate PCPP to
obtain an RLCC with query complexity O(t).

Theorem 4.3 (Composition theorem). Consider the following components.

• Outer code: A code Cbase : Σk → Σn with the following properties.

1. Cbase admits a (n′, t)-CTRW with perfect completeness and (τ, ρ, εRW )-robust soundness.

2. For each j ∈ [n] and each P ∈ Cj it holds that sat(P) has distance δP ≥ 4ρ.

3. |Cj | = s for all j ∈ [n].
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• Inner PCPP: A qPCPP-query canonical PCPP system for each P ∈ Cj for all j ∈ [n] with the following
properties.

1. For all x ∈ sat(P) of length n′ the length of the canonical proof is `(n′).

2. The PCPP verifier for sat(P) has soundness εPCPP for proximity parameter ρ ≤ δP/4 with respect to
the distance measure distj .

3. The code ΠP = {w ◦ π(w) : w ∈ sat(P)} is a (τ, εin)-RLCC with query complexity qPCPP.

Then, there exists a code Ccomp : Σk → ΣN for N = 2n · s · `(n′). The code Ccomp is a (τcor, εRLCC)-RLCC
with query complexity (t+ 1) · qPCPP, where the decoding radius of Ccomp is τcor = τ/4 and the soundness
is εRLCC = min( εRW ·(1−εPCPP)·δP

2 , εin4 ).

Constructing the composed code Ccomp: Given the components in the statement of Theorem 4.3 the
composed code Ccomp : Σk → ΣN is obtained by combining Cbase with the PCPP as follows. Each
c∗ ∈ Cbase corresponds to a unique codeword c ∈ Ccomp. The codeword c consists of two parts c = cbase ◦Π
defined as follows.

1. cbase consists of s · `(n′) repetitions of c∗. The repetition of c∗ is somewhat artificial, and is done so that
this part will constitute a constant fraction of the length of the codeword c. The exact reason for this will
be clear in the proof of correctness.

2. Π is the concatenation of proofs of proximity π(j,P) (as per the inner PCPP in the hypothesis of the
theorem) for each j ∈ [n] and each constraint P ∈ Cj asserting that c|Dom(P) ∈ sat(P) (or rather c|Dom(P)

is close to sat(P) with respect to the distribution distj). That is, each π(j,P) is a proof asserting that (i) the
restriction of some w ∈ Σn to Dom(P) satisfies P , and that (ii) the value wj is indeed the correct value.

Remark 4.4. Note that if every two assignments in sat(P) are δP -far from each other, then requiring
that w has the “correct” value in the j-th coordinate is non-trivial in the following sense: for any w such
that w|Dom(P) ∈ sat(P) and w′ obtained from w by changing only the j-th coordinates it holds that
distj(w|Dom(P), w

′
|Dom(P)) ≥ 0.5 and distj(w

′
|Dom(P), sat(P)) ≥ Ω(δP). Hence, no proof will convince

the PCPP verifier that w′ is close to sat(P) with high probability.

Parameters of Ccomp: For the block length of Ccomp : Σk → ΣN note that each codeword c′ ∈ Ccomp
consists of s · `(n′) · n symbols (of the s · `(n′) copies) of the base codeword c ∈ Σn, concatenated with n · s
proofs of proximity, each of length `(n′). Therefore, total block length of Ccomp is 2n · s · `(n′).

4.2 Local correction algorithms for composed codes

Before presenting the correction algorithm for Ccomp we first consider a (slightly simpler) code that contains
only one copy of Cbase and all proofs as in Item 2 of the definition of Ccomp. For this code we describe a
local correction algorithm for correcting the symbols in the part corresponding to the base code.
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Algorithm 2 Local correction for the base part without repetitions

Input: w∗ ∈ Σn,Π = (πj,P)j∈[n],P∈Cj ∈ (Σ`(n′))ns, i∗ ∈ [n]

1: Run the CTRW for Cbase on input (w∗, i∗)
2: Let P1, . . . ,Pt be the constraints sampled by the CTRW, and let k1, . . . , kt be the coordinates defined

by Pr’s
3: for r = 1 to t do
4: Run the PCPP verifier on π(kr,Pr) to check that w∗|Domr

is close to sat(Pr) with respect to distkr
5: end for

6: if all iterations of Step 4 accept then
7: return w∗i∗
8: else
9: return ⊥

10: end if

Claim 4.5. Let w∗ ∈ Σn,Π = (πj,P)j∈[n],P∈Cj ∈ Σns`(n′) and i∗ ∈ [n] be input to Algorithm 2. Suppose
that the base part of w∗ is τcor-close to some base codeword c∗ ∈ Cbase, but w∗i∗ 6= c∗i∗ . Then Algorithm 2
will output ⊥ with probability at least εRW · (1− εPCPP).

Proof. If we choose the constraints as per Step 2 of Algorithm 2, then with probability at least εRW there
will be some r ∈ [t] such that distkr(w|Domr

, sat(Pr)) ≥ ρ. If that happens, then the PCPP verifier applied
to the predicate Pr in Step 4 will accept with probability at most εPCPP, and thus the algorithm will output ⊥
with probability at least εRW · (1− εPCPP).

We are now ready to present the local correction algorithm for Ccomp. The algorithm has two cases
depending on whether (1) the coordinate corresponds to (one of the copies of) a symbol in the base code, or
(2) it belongs to the PCPP part πi∗,P for some i∗ ∈ [n] and P ∈ Cj .

1. Suppose first that the coordinate i ∈ [N ] that corresponds to a coordinate of the base code. In this case the
local correction algorithm works as follows.

Algorithm 3 Local correction for the base part of Ccomp

Input: w ∈ ΣN , i ∈ [N ]
1: Let i∗ ∈ [n] be the coordinate of Cbase that corresponds to the coordinate i ∈ [N ]
2: Sample r ∈ [s · `(n′)] uniformly at random
3: Let w∗ ∈ Σn be the substring of w whose coordinates correspond to the r-th copy of the base codeword
4: Let Π = (π(j,P))j∈[n],P∈Cj be the part of w corresponding to the concatenation of all proofs of proximity
5: return Algorithm 2 on the input (w∗,Π, i∗)

2. Suppose now that i ∈ [N ] is a coordinate that belongs to a proof of proximity π(i∗,P) for some coordinate i∗

corresponding to a symbol from the base code, and a constraintP ∈ Ci∗ of the formP : ΣDom(P) → {0, 1}.
In this case the local correction algorithm works as follows.
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Algorithm 4 Local correction for the PCPP part of Ccomp

Input: w ∈ ΣN , i ∈ [N ]
1: Let i∗ ∈ [n] and P : ΣDom(P) → {0, 1} be the coordinate and the constraint corresponding to the proof

containing the i-th coordinate
2: Sample r ∈ [s · `(n′)] uniformly at random
3: Let w∗ ∈ Σn be the substring of w whose coordinates correspond to the r-th copy of the base codeword

4: Run the PCPP verifier for P on π(i∗,P) to check that disti∗(w
∗
|Dom(P), sat(P)) ≤ ρ

5: if Step 4 rejects then
6: return ⊥
7: end if

8: Let Π = (π(j,P))j∈[n],P∈Cj be the part of w corresponding to the concatenation of all proofs of proximity
9: Run Algorithm 2 on the input (w∗,Π, j′) for a uniformly random coordinate j′ of w∗|Dom(P)

10: if Step 9 returns ⊥ then
11: return ⊥
12: end if

13: Run the local corrector of the inner PCPP on (w∗|Dom(P) ◦ π(i∗,P)) to correct the i∗-th coordinate
14: return the value obtained in Step 13

Query complexity: It is clear that the query complexity is upper bounded by that of Algorithm 4. The total
number of queries in upper bounded by (i) qPCPP queries in Step 4, (ii) at most t · qPCPP queries in Step 9,
and (iii) at most qRLCC queries in Step 13.

4.3 Analysis of the algorithm

It is obvious that given a codeword w ∈ Ccomp and an index i ∈ [N ] the local correction always returns the
correct answer wi.

Suppose now that the input is some w ∈ ΣN that is τcor-close to some codeword c ∈ Ccomp. We show
below that Pr[ALGw(i) ∈ {c∗i ,⊥}] ≥ εRLCC .

Let c∗ be the base codeword of c, that is, c is obtained from repetitions of c∗ concatenated with the
corresponding canonical proofs. Denote by wbase ∈ Σns`(n′) the restriction of w to the coordinates containing
the s · `(n′) repetitions of the base codeword. Since w is τcor-close to Ccomp, it follows that wbase is
2τcor-close to s · `(n′) repetitions of some base codeword c∗ ∈ Cbase. Denote by Wclose the event that
dist(w∗, c∗) ≤ 4τcor = τ , where w∗ is a substring of w corresponding to a random copy of the basecode.
Then Pr[Wclose] ≥ 1/2.

Consider the two cases depending on the coordinate i.

1. Suppose first that i ∈ [N ] is a coordinate in some copy of the base code, and let w∗ be a random copy of
the base codeword. By the discussion above with probability at least 1/2 the event Wclose holds, i.e., the
w∗ is τ -close to c∗ ∈ Cbase. Therefore,

Pr[ALGw3 (i) ∈ {ci,⊥}] ≥ 1/2 · Pr[ALGw2 (i) ∈ {c∗i∗ ,⊥}|Wclose] .

Analysing the term Pr[ALGw2 (j) ∈ {c∗i∗ ,⊥}|Wclose], we have

Pr[ALGw2 (i∗) ∈ {c∗i∗ ,⊥}|Wclose] = Pr[ALGw2 (i∗) ∈ {c∗i∗ ,⊥}|w∗i∗ = c∗i∗ ∧Wclose] · Pr[w∗i∗ = c∗i∗ |Wclose]

+ Pr[ALGw2 (i∗) ∈ {c∗i∗ ,⊥}|w∗i∗ 6= c∗i∗ ∧Wclose] · Pr[w∗i∗ 6= c∗i∗ |Wclose] .
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For the first term note that Algorithm 2 always returns either w∗i∗ or ⊥. Therefore if w∗i∗ = c∗i∗ , then
Pr[ALGw2 (i∗) ∈ {c∗i∗ ,⊥}|w∗i∗ = c∗i∗ ∧Wclose] = 1.

Suppose now that w∗i∗ 6= c∗i∗ , then if we choose the constraints as per Step 2 of Algorithm 2, then with
probability at least εRW there will be some r ∈ [t] such that distkr(w|Domr

, sat(Pr)) ≥ ρ. If that happens,
then the PCPP verifier applied to the predicate Pr in Step 4 will accept with probability at most εPCPP.
Therefore, the second term is lower bounded by

Pr[ALGw2 (i∗) = ⊥|w∗i∗ 6= c∗i∗ ∧Wclose] ≥ εRW (1− εPCPP) .

Combining the two terms we conclude that

Pr[ALGw3 (i) ∈ {ci,⊥}] ≥
εRW · (1− εPCPP)

2
≥ εRLCC .

2. Next, let i ∈ [N ] be a coordinate that belongs to a proof of proximity π(i∗,P) for some coordinate i∗

corresponding to a symbol from the base code, and a predicate P ∈ Ci∗ . We prove that if Pr[ALGw4 (i) =
⊥] < εRLCC , then Pr[ALGw4 (i) = ci] ≥ εin/4. This clearly suffices as by the choice of εRLCC we have
εin/4 ≥ εRLCC .

Again, by the discussion above, the event Wclose holds with probability at least 1/2, i.e., a random copy of
the base codeword w∗ is 4τcor = τ -close to c∗ ∈ Cbase. We will assume that in Step 3 we choose such w∗.

If Algorithm 4 returns ⊥ with probability less than εRLCC in Step 6, then the PCPP verifier for π(i∗,P)

in Step 4 accepts with probability at least 1 − εRLCC > εPCPP. Therefore, there is some cP ∈ sat(P)
(not necessarily equal to c∗|Dom(P)) such that disti∗(w

∗
|Dom(P), cP) ≤ ρ, and π(i∗,P) is ρ-close to π(cP).

Therefore, since ρ < 1/2, it follows that (i) w∗i∗ = (cP)i∗ , (ii) dist(w∗|Dom(P), cP) ≤ 2ρ with respect to
the uniform distance, (iii) and π(i∗,P) is ρ-close to π(cP).

Suppose that Algorithm 2 in Step 11 returns ⊥ with probability less than εRLCC . Consider Step 9 in
Algorithm 4, where we run Algorithm 2 on the input w∗ for a random coordinate j′ in Dom(P). For
each j′ ∈ Dom(P) let pj′ be the probability that step 9 accepts on j′. Then E[pj′ ] > 1 − εRLCC , and
hence for more than (1− δP/2)|Dom(P)| coordinates j′ ∈ Dom(P) we have pj′ ≥ 1− 2εRLCC/δP ≥
1− εRW · (1− εPCPP).

Therefore, by the analysis of Algorithm 3 it follows that for more than (1− δP/2)|Dom(P)| coordinates
j′ ∈ Dom(P) it holds that w∗j′ = c∗j′ , i.e., dist(w∗|Dom(P), c

∗
|Dom(P)) < δP/2. Combining with the

conclusion from the previous step that dist(w∗|Dom(P), cP) ≤ 2ρ it follows that dist(c∗|Dom(P), c|Dom(P)) <

2ρ+ δP/2 ≤ δP . Therefore, since sat(P) has distance δP we conclude that c∗|Dom(P) = c|Dom(P).

So far we showed that if Algorithm 4 returns ⊥ with probability less than εRLCC and w∗ is τ -close to c∗

(which happens with probability at least 1/2), then w∗|Dom(P) is 2ρ-close to c∗|Dom(P), and π(i∗,P) is ρ-close
to π(c∗|Dom(P)). Hence, the local correction algorithm for the inner PCPP applied on (w∗|Dom(P) ◦ π(i∗,P))
in Step 13 will return c∗i or ⊥ with probability at least εin. Therefore,

Pr[ALGw4 (i) ∈ {c∗i ,⊥}] ≥ Pr[Step 14 returns c∗i or ⊥|Wclose] · Pr[Wclose] ≥ εin/2 .

However, by the assumption Algorithm 4 returns ⊥ with probability at most εRLCC ≤ εin/4, and thus
Pr[ALGw4 (i) = ci] ≥ εin/2− εRLCC ≥ εin/4. This completes the proof of correctness.
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5 CTRW for tensor codes

In this section we prove a general theorem saying that the tensor product of any code with a good distance code
admits a CTRW with appropriate parameters. Indeed, this theorem will be used as one of the components
required for composition as per Theorem 4.3 described in the previous section.

Theorem 5.1. Let C ⊆ Fn be an arbitrary linear code of relative distance δC , and let C⊗m be the m-
dimensional tensor product of C. Then, C⊗m admits an (n,m)-CTRW with (τ, ρ, ε)-robust soundness,
where the soundness parameter is ε = (δC − 2ρ)m − τ .

Furthermore, all predicates defined by the CTRW for C⊗m check that the restriction of the given tensor
word to a line belongs to C.

Proof. We describe the consistency test for C⊗m. Fix a word w ∈ F[n]m and an index z̄ = (z1, . . . , zm) ∈
[n]m. The consistency test works as follows.

Algorithm 5 Consistency test for the m-dimensional tensor product of C⊗m

Input: w ∈ F[n]m , z̄ = (z1, . . . , zm) ∈ [n]m

1: Let z(1) = z̄.
2: Sample r̄ = (r1, . . . , rm) ∈ [n]m uniformly at random.
3: for j = 1 to m do
4: Let z(j+1) = (r1, . . . , rj , zj+1, . . . , zm) ∈ [n]m.
5: Let `j = (r1, . . . , rj−1, ∗, zj+1, . . . , zm) be the line that passes through z(j) and z(j+1).
6: Let Pj be the predicate that accepts if and only if w(`j) is a codeword in C.
7: end for
8: return ACCEPT if and only if Pj is satisfied for all j ∈ [m].

By construction, if w ∈ C⊗m, then the consistency test always accepts. For the soundness analysis, let
w ∈ F[n]m be a word that is τ -close to some codeword c∗ ∈ C, and let z̄ = (z1, . . . , zm) ∈ [n]m be such that
wz̄ 6= c∗z̄ . Note that we may assume without loss of generality that w is τ -close to the all-zero codeword, i.e.,
c∗ = 0. Indeed, suppose that wī is τ -close to some codeword c∗ ∈ C that is not all-zeros, and consider the
word w′ = w − c∗. It is easy to verify that w′ is τ -close to 0, and the behaviors of the consistency test on w
and w′ are the same.

Next we show that if w is τ -close to the zero codeword but wz̄ 6= 0, then

Pr[∃j ∈ [m] such that distz(j)(w|`j , C) ≥ ρ] ≥ (δC − 2ρ)m − τ .

We introduce notation that will be used throughout the proof. For each point x ∈ [n]m and j ∈ [m] denote
by Lx,j the line in direction j that passes through x, i.e., Lx,j = {(x1, . . . , xj−1, t, xj+1, . . . , xm) : t ∈ [n]}.
For each j ∈ [m] denote by Fj the event that wz(j) 6= 0 and w has more than (δC − 2ρ)n non-zeros on the
line Lz(j),j ; denote by Ej the event that wz(j) 6= 0 and w has at most (δC − 2ρ)n non-zeros on the line
Lz(j),j . Informally, the events Fj “contribute” to the distance of w from the zero codeword, and the events
Ej “contribute” to the probability that distz(j)(w|`j+1

, C) ≥ ρ.
For each j ∈ [m] denote

εj = Pr
[
(∧j−1

i=1Fi)
∧
Ej

]
.

That is, εj is the probability that in Algorithm 5 j is the minimal index such that wz(1) , . . . wz(j) are non-zeros,
and the line `j contains at most (δC − 2ρ)n non-zero points. Note that the events corresponding to εj’s are
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disjoint, and if they happen, then w|`j is ρ-far from C with respect to distz(j) . Therefore,

Pr[∃j ∈ [m] such that distz(j)(w|`j , C) ≥ ρ] ≥
m∑
j=2

εj .

Below we show that the distance of w from the zero codeword is at least (δC−2ρ)m−
∑m

j=2(δC−2ρ)m−jεj .
Note that z(m+1) is distributed uniformly in [n]m, and thus

dist(w, 0) = Pr[wz(m+1) 6= 0] ≥ Pr[(∧mj=2Fj) ∧ wz(m+1) 6= 0] .

By definition if Fm holds, then Pr[wz(m+1) 6= 0|Fm] ≥ (δC−2ρ). Furthermore, also conditioning on ∧mj=2Fj
it holds that Pr[wz(m+1) 6= 0| ∧mj=2 Fj ] ≥ (δC − 2ρ). Hence

dist(w, 0) ≥ Pr[(∧mj=2Fj) ∧ wz(m+1) 6= 0]

= Pr[∧mj=2Fj ]× Pr[wz(m+1) 6= 0| ∧mj=2 Fj ]

≥ Pr[∧mj=2Fj ]× (δC − 2ρ) .

Therefore,
dist(w, 0) ≥ Pr[∧mj=2Fj ]× (δC − 2ρ) . (2)

Next, we lower bound Pr[∧mj=2Fj ] by “peeling off” one Fj at a time. Specifically, we show that

Pr[∧mj=2Fj ] ≥ Pr[∧m−1
j=2 Fj ]× (δC − 2ρ)− εm . (3)

Indeed, observe that

Pr[(∧m−1
j=2 Fj) ∧ wz(m) 6= 0] = Pr[∧mj=2Fj ] + Pr[(∧m−1

j=2 Fj) ∧ Em]

= Pr[∧mj=2Fj ] + εm .

On the other hand

Pr[(∧m−1
j=2 Fj) ∧ wz(m) 6= 0] = Pr[(∧m−1

j=2 Fj)]× Pr[wz(m) 6= 0| ∧m−1
j=2 Fj ]

≥ Pr[(∧m−1
j=2 Fj)]× (δC − 2ρ) ,

which proves Eq. (3).
By repeating the same argument, peeling off one Fj at a time, we get

Pr[(∧mj=2Fj)] ≥ Pr[(∧m−1
j=2 Fj)]× (δC − 2ρ)− εm

≥ (Pr[(∧m−2
j=2 Fj)]× (δC − 2ρ)− εm−1)× (δC − 2ρ)− εm

= Pr[(∧m−2
j=2 Fj)]× (δC − 2ρ)2 − (δC − 2ρ)εm−1 − εm

≥ . . .

≥ Pr[F2]× (δC − 2ρ)m−2 −
m∑
j=3

(δC − 2ρ)m−jεj

≥ (δC − 2ρ− ε2)× (δC − 2ρ)m−2 −
m−1∑
j=2

(δC − 2ρ)m−jεj

= (δC − 2ρ)m−1 −
m∑
j=2

(δC − 2ρ)m−jεj .
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Plugging this into Eq. (2) we get

dist(w, 0) ≥ (δC − 2ρ)m −
m∑
j=2

(δC − 2ρ)m+1−jεj ≥ (δC − 2ρ)m − (δC − 2ρ)
m∑
j=2

εj .

Therefore, using the fact that Pr[∃j ∈ [m] such that distz(j)(w|`j , C) ≥ ρ] ≥
∑m−1

j=1 εj we conclude that

Pr[∃j ∈ [m] such that distz(j)(w|`j , C) ≥ ρ] ≥ (δC − 2ρ)m − dist(w, 0) ≥ (δC − 2ρ)m − τ ,

as required.

The following corollary, which we will use as a component in our composition theorem, follows
immediately from Theorem 5.1.

Corollary 5.2. For integer parameters d,m ≥ 2 let n = 2md. Let RS = RS(n, d) be the Reed–Solomon
code of message length d and block length n over some field F of size at least n, so that its distance is
δC = 1− 1/2m. Then RS⊗m satisfies the following properties.

1. The code RS⊗m has message length dm and block length nm = (2m)m · dm.

2. The relative distance of RS⊗m is (1− 1
2m)m ≥ 0.5.

3. RS⊗m admits an (n,m)-CTRW with (τ = 0.1, ρ = 1/4m, εRW = 0.15)-robust soundness.

4. For each coordinate z̄ = (z1, . . . , zm) ∈ [n]m of RS⊗m the set of all constraints Cz̄ defined by the CTRW
consists of m predicates, one for each axis-parallel line passing through z̄, checking that the restriction of
the tensor word to the line belongs to RS(n, d). In particular, the corresponding language is solvable in
polynomial time and has distance 1− 1/2m > 1/2.

Proof of Corollary 5.2. It suffices to invoke Theorem 5.1 as follows. For n = 2md the code C = RS(n, d)
has relative distance is δC = 1 − 1/2m, and the tensor code RS(n, d)⊗m has relative distance (1 −
1/2m)m ≥ 0.5. Therefore, by Theorem 5.1 the tensor code RS(n, d)⊗m admits an (n,m)-CTRW with
(τ = 0.1, ρ = 1/4m, ε)-robust soundness, for ε = (δC − 2ρ)m − τ = (1− 1/m)m − 0.1 ≥ 0.15. The last
item of Corollary 5.2 is immediate by definition of constraints in Algorithm 5.

6 Relaxed-correctable canonical PCPPs

In this section we describe a new and simple construction of canonical PCPs of proximity that are relaxed
locally correctable. Specifically, we show that for every language L ∈ P and all j ∈ N there exists a
canonical PCP of proximity verifier such that for any x ∈ L the length of π(x), the canonical proof for x is
|π(x)| = poly(|x|), and the language of the canonical proofs {x ◦ π(x) : x ∈ L} admits a local correction
algorithm with correction radius τcor = Ω(1), soundness ε = 1/2 for proximity parameter ρ > 0 with respect
to distance measure distj , and query complexity O(1/ρ).

Theorem 6.1. Let L ⊆ Σ∗ be a language in P , let j ∈ N, and let ρ > 0 be a proximity parameter. There
exists a canonical PCPP verfier with the following properties.

1. For all n ≥ j the PCPP verifier on inputs of length n has soundness εPCPP = 0.5 for proximity parameter
ρ with respect to the distance measure distj .
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2. The query complexity of the PCPP verifier is qPCPP = O(1/ρ).

3. For every x ∈ L of length |x| = n and every coordinate j ∈ [n] the length of the canonical proof is
`(n) = |x|O(1).

4. The code ΠL = {w ◦ π(w) : w ∈ L} is a (τ, εin)-RLCC with query complexity qRLCC = O(1) for
correcting radius τ = Ω(1) (with respect to dist(·)) and soundness εin = 1/2.

The following notation will be used in the proof of Theorem 6.1.

Definition 6.2. For x ∈ Σn and j ∈ [n] denote by define x(j) the concatenation of x with n repetitions of xj .
That is, x(j) = x ◦ xnj .

For a language L ⊆ Σ∗ and j ∈ N define L(j) = ∪∞n=j{x(j) : x ∈ L ∩ Fn}.

It is clear from the definition that if L ∈ P , then L(j) ∈ P . The following observation is immediate from
the definition.

Observation 6.3. Fix a language L ⊆ F∗. Then, for all w ∈ Fn and all j ∈ [n] it holds that

distj(w,L) = dist(w(j), L(j)) .

Proof of Theorem 6.1. Let L be a language in P , and let j ∈ N. In order to construct the required cPCPP
verifier we use the following two prior constructions.

• Theorem 3.8: a (non-correctable) strongly canonical PCP of proximity for L with polynomial length and
query complexity O(1/ρ) and soundness 1/2 for proximity parameter ρ/4.

• Theorem 3.6: a systematic (qRLCC , τcor)-RLCC CRLCC of message length k and block length n = poly(k)
with query complexity qRLCC = O(1), correcting radius τcor = Ω(1), and soundness ε = 1/2.

We combine these ingredients via a simple composition to obtain the desired PCPP for L.
Let V (j) be the PCPP verifier for L(j) as per Theorem 3.8. Define a PCPP verifier Vj for L that checks

that a given string is close to L with respect to the distance distj as follows. Given an oracle access to x ∈ Fn
the verifier Vj runs V (j) on x(j) by reading one symbol of x for each query that V (j) makes to x(j). By
Theorem 3.8 the verifier Vj makes O(1/ρ) queries, and has soundness 1/2 for proximity parameter ρ/4 (with
respect to the uniform distance). Therefore, by Observation 6.3 it follows the verifier Vj defines for each
x ∈ L a proof πx,j of length |πx,j | = `(2n) = poly(|x|). The verifier Vj makes O(1/ρ) queries to x, and
has soundness 1/2 for proximity parameter ρ/4 with respect to the distance measure distj .

Next, given Vj we define a canonical PCPP verifier V RLCC
j such that the language of canonical proofs

admits a local correcting algorithm with desired parameters. Given an input x ∈ Σn and a canonical proof
πj(x) for Vj claiming that x is (distj-close to some word) in L we define a canonical proof πRLCC

j (x) for
V RLCC
j by encoding π using a relaxed locally correctable code CRLCC as in Theorem 3.6 as follows. The

canonical proof of x ∈ L for V RLCC
j , denoted by πRLCC

j (x), is given by concatenating t identical copies of
πj(x) with CRLCC(x ◦ πj(x)), where the number of t is such that 2|CRLCC(x ◦ πj(x))|/ρ < t · |πj(x)|, and
we treat CRLCC as a mapping from Σn+`(2n) to Σpoly(`(n)). The PCPP verifier V RLCC

j on input x ∈ Σn and
j ∈ [n] invokes the verifier Vj on a random copy of the systematic part of πRLCC

j (x) obtained by sampling
each of the symbols of πj(x) by sampling each symbol uniformly among the t corresponding symbols
independently.

It is clear that V RLCC
j inherits the completeness property of Vj . For the soundness suppose that either x

is ρ-far from L or x is ρ-close to some w ∈ L but the proof is ρ-far from πRLCC
j (x). We consider each of the

two cases below.
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• x is ρ-far from L: In this case no proof will convince the verifier to accept with probability more than 1/2.

• x is ρ-close to some w ∈ L, but the proof is ρ-far from the canonical proof πRLCC
j (w). In this case, by

the choice of t satisfying 2|CRLCC(x ◦ πj(x))|/ρ < t · |πj(x)| it follows that the t copies of πj(x) are at
least ρ/2-far from t repetitions of πj(w). Therefore, by concentration inequalities for sums of bounded
independent (but not identically distributed) random variables, such as Theorem 3.2, if we choose a random
copy of πj(w) by sampling each symbol independently, then with probability at least p0 = Ω(1) a random
copy is ρ/4-far from πj(w). Therefore, the PCPP verifier will reject with probability at least p0 · 1/2. By
repeating the verifier O(1) times we obtain a verifier with soundness εPCPP = 1/2, as required.

It is left to prove that {w ◦ πRLCC
j (w) : w ∈ L} admits a local correction algorithm (where recall that

j is fixed in Theorem 6.1). Indeed, for any w ∈ L of length |w| = n the length of w ◦ πj(w) is n+ `(2n).
By the assumption, for each n ∈ N we have {πRLCC

j (w) : w ∈ L ∩Σn} ⊆ {CRLCC(y) : y ∈ {0, 1}n+`(2n)}.
Therefore, since {CRLCC(y) : y ∈ {0, 1}n+`(2n)} is an RLCC it follows from Observation 3.5 that the local
correction algorithm for CRLCC is also a local correction algorithm for {w ◦ πRLCC

j (w) : w ∈ L} with the
same soundness guarantees.

Remark 6.4 (cPCPP with nearly-linear length and query complexity O(1)). The proof of Theorem 6.1
shows how to compose a PCPP with a relaxed LCC to obtain a cPCP (note that this composition is in the
reverse direction of our main composition theorem for deriving relaxed LCC from PCPPs). The length
of the composed cPCPP is the length of the original PCPP, with a blowup that is determined by the block
length of the relaxed LCC, and its query complexity is proportional to the maximum between the query
complexity of the original PCPP and the relaxed LCC. Thus, by applying the argument in Theorem 6.1 to a
nearly-linear length, O(1)-query PCPP (say, the construction in [BS08; Din07]) together with our main result
(the O(1)-query relaxed LCC with nearly-linear block length in Theorem 1), we obtain the first construction
of cPCPP with nearly-linear length and query complexity O(1). Other constructions in the literature, which
(implicitly) achieve relaxed-correctability in our setting, either have super-constant query complexity, or
exponential length.

7 Proof of main theorem

Below restate our main result (Theorem 1) formally, and prove this theorem using the various components
that we constructed.

Theorem 7.1. Let k, q ∈ N be parameters, and let F be a finite field of size |F| ≥ k. Then, there exists a
O(q)-query relaxed LCC C : FK → FN with relative distance δ(C) ≥ 1/4, decoding radius τcor = Ω(1),
and block length

N = qO(
√
q) ·K1+O(1/

√
q) .

In particular, there exists a RLCC of message length K and block length N ≤ K · 2Õ
(√

log(K)
)

with con-
stant relative distance that admits a local correction algorithm with query complexity q = log(K)/ log log(K)
and correction radius τcor = Ω(1).

Proof. We prove the theorem by invoking the composition theorem (Theorem 4.3) with respect to the
components we constructed. Specifically, by Corollary 5.2 the code RS⊗m has message length dm and block
length (2md)m. The tensor code RS⊗m admits an (n,m)-CTRW with appropriate parameters. Therefore,
by applying Theorem 4.3 to the components given in Corollary 5.2 and Theorem 6.1 with ρ = 1/4m
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we obtain a code Ccomp ⊆ FN of message length K = dm and block length N = 2(2md)m · m ·
(2dm)O(1) = mO(m) · K1+O(1/m). The code Ccomp is a (τ, εRLCC)-RLCC with query complexity m ·
qPCPP = O(m2), where the decoding radius of Ccomp is τcor = τ/4 = Ω(1) and the soundness is
εRLCC = min( εRW ·(1−εPCPP)·δC

2 , εin2 ) = Ω(1).
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A Proof of Theorem 1 for binary codes

Below we explain how to prove Theorem 1 for the binary alphabet. The key idea is to use concatenated codes.

Definition A.1. Let Cout : Fk → Fn be an error correcting code over the alphabet F = GF(2`
′
), and let

Cbin : {0, 1}`′ → {0, 1}` be a binary error correcting code. Code concatenation of Cout and Cbin, denoted
by Cin ◦ Cout, is the code Cconcat : {0, 1}k`

′ → {0, 1}`n defined as follows: A message x ∈ {0, 1}k`′ is
treated as a string in Fk. It is first encoded using Cout, and then each symbol of the resulting codeword in Fn
is encoded with Cin. It will be convenient to treat a codeword c ∈ {0, 1}`n of Cconcat as c ∈ ({0, 1}`)n with
the natural interpretation that each block in {0, 1}` is a codeword of Cin encoding of one of the symbols in F.

For a coordinate i ∈ [n] of the outer code denote by B[i] ⊆ [`n] the coordinates corresponding to the
i’th block. More generally, for Q ⊆ [n] define B[Q] = ∪i∈QB[i] to be all coordinates of Cconcat in all blocks
that belong to Q.

Below we define a block consistency test using random walk (bCTRW) for the concatenated code
Cin ◦ Cout. This notion extends the notion of CTRW in Definition 4.1. Informally, block consistency test
for concatenated codes is defined using a CTRW on the outer code, Cout. and the notion of distance in the
soundness condition is adapted to the concatenated code.

Before formally defining bCTRW we need one more definition, generalizing the notion of distk in
Definition 3.1. For a set Q ⊆ [n] define the distance distQ between two strings x, y ∈ Σn as

distQ(x, y) =
{i ∈ Q : xi 6= yi}

2|Q|
+
{i ∈ [n] : xi 6= yi}

2n
,

and define distQ between a string x ∈ Σn and a set S ⊆ Σn as distQ(x, S) = miny∈S distQ(x, y).

Definition A.2 (Block consistency test for concatenated codes). Let Cout : Fk → Fn be an error correcting
code over the alphabet F = GF(2`

′
), and suppose that Cout admits a (q, t)-CTRW. Let Cin : {0, 1}`′ →

{0, 1}` be a binary error correcting code.
A (`q, t+ 1)-block consistency test using random walk (bCTRW) for the concatenated code Cin ◦ Cout

is an algorithm that gets as input a string w ∈ {0, 1}`n and a coordinate i ∈ [`n], and works as follows.

Algorithm 6 Block consistency test using random walks for the concatenated code Cin ◦ Cout
Input: w ∈ {0, 1}`n, i ∈ [`n]

1: Define w̄ ∈ Fn by letting w̄j = arg minσ∈F{dist(Cin(σ), w|B[j])}. The ties are broken arbitrarily.
2: Treat w as a string in ({0, 1}`)n and let k1 ∈ [n] be the index of the block containing the coordinate i.
3: Let P0 be the predicate checking that w|B[k1] ∈ Cin.
4: Run the CTRW for Cbase on input (w̄, k1), and let P̄1, . . . , P̄t be the obtained predicates with domains

Dom1, . . . ,Domt ⊆ [n]
5: For each r ∈ [t] define Pr be the predicate on {0, 1}B[Domr] checking that P̄r(w̄|Domr

) = 1 and
wB[j] ∈ Cin for all j ∈ Domr.

6: if P0(w|B[k1]) = 1 and Pr(w|B[Domr]|) = 1 ∀r ∈ [t] then
7: return ACCEPT
8: else
9: return REJECT

10: end if
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That is, the test creates t+ 1 predicates, P0,P1, . . . , Pt. The predicate P0 checks that the block containing i
contains a codeword of Cin, and for r ≥ 1 the predicates Pr behave similarly to CTRW on Cout, by checking
that each block separately is in Cin, and the symbols they encode satisfy the corresponding constraints of
Cout. In particular, P0 depends on at most ` coordinates of w, and for r ≥ 1 the predicates Pr depends on at
most `q coordinates.
We say that bCTRW has perfect completeness and (τ, ρ, ε)-robust soundness if it satisfies the following
guarantees.
Perfect completeness: If w ∈ C, then Pr[bCTRWw(i) = ACCEPT ] = 1 for al i ∈ [`n].
(τ, ρ, ε)-robust soundness: If w is τ -close to some c∗ ∈ C, but wi 6= c∗i , then

Pr[disti(w|B[k1], sat(P0)) ≥ ρ or ∃r ∈ [t] such that distB[kr](w|B[Domr], sat(Pr)) ≥ ρ] ≥ ε .

Below we prove that if Cout admits a CTRW and Cin is an arbitrary code with good distance, then their

composition admits a bCTRW with related parameters.

Theorem A.3. Let Cout : Fk → Fn be a linear error correcting code over the alphabet F = GF(2`
′
), and let

Cbin : {0, 1}`′ → {0, 1}` be a linear binary error correcting code. Suppose that they satisfy the following
properties

1. Cout admits a (q, t)-CTRW with perfect completeness and (τ, ρ, ε)-robust soundness for ρ < 1/2.

2. Cin has minimal distance δ.

Then Cconcat = Cin ◦ Cout admits a (`q, t + 1)-bCTRW with perfect completeness and ( δτ2 ,
δρ
2 , ε)-robust

soundness.

Proof. It is clear from Algorithm 6 that if w ∈ Ccomp, then the bCTRW always accepts. For the soundness
analysis, let w ∈ {0, 1}`n be a word that is δτ

2 -close to some codeword c∗ ∈ Cconcat, and let i ∈ [`n].
Observe that by linearity we may assume that the closest codeword to w is the all-zero codeword, and

that wi = 1. Indeed, if c∗ is not the all-zeros codeword, then we can consider the word w′ = w − c∗. It is
easy to verify that w′ is δτ

2 -close to the all-zero codeword, and the behaviors of the consistency test on w and
w′ are the same.

Define w̄ ∈ Fn by letting w̄j = arg minσ∈F{dist(Cin(σ), w|B[j])}, breaking ties arbitrarily. That is w̄ is
obtained from w by taking in the j’th block the symbol σ ∈ F such that Cin(σ) is the closest to w|B[j].

Let k1 ∈ [n] be the index of the block containing the i’th coordinate.
Note first that since wi = 1 and the minimal distance of Cin is at least δ, it follows that if wB[k1] contains

at most (δ − δρ)` ones, then disti(w|B[k1], sat(P0)) ≥ δρ
2 , which implies the robust soundness condition.

Next, observe that if dist(wB[k1], Cin) ≥ δρ, i.e., wB[k1] differs from all c ∈ Cin in at least δρ`
coordinates, then disti(w|B[k1], sat(P0)) ≥ δρ

2 , which also implies the robust soundness condition.
Therefore, we will assume from now on that dist(wB[k1], Cin) < δρ, and wB[k1] contains more than

(δ − δρ)` ones. Since ρ < 1/2, this implies that w̄k1 6= 0. Also, observe that if w is δτ
2 -close to the all-zero

codeword in Cconcat, then w̄ is τ -close to the all-zero codeword in Cout. Therefore, if we run CTRW for
Cout on the input (w̄, k1), then

Pr[∃r ∈ [t] such that distkr(w̄, sat(P̄r)) ≥ ρ] ≥ ε .

Note that if distkr(w̄, sat(P̄r)) ≥ ρ, then distB[kr](wB[Domr], sat(Pr)) ≥ δρ
2 . Therefore, if wB[k1] contains

more than (δ − δρ)` ones, then

Pr[∃r ∈ [t] such that distB[kr](wB[Domr], sat(Pr)) ≥
δρ

2
] ≥ ε ,

27



as required. This completes the proof of Theorem A.3.

By applying the composition theorem on Theorem A.3 we obtain Theorem 1 for binary alphabet.

Theorem A.4. Let K, q ∈ N be parameters. Then, there exists a O(q)-query relaxed LCC C : {0, 1}K →
{0, 1}N with relative distance δ(C) = Ω(1), decoding radius τcor = Ω(1), and block length

N = qO(
√
q) ·K1+O(1/

√
q) .

Proof Sketch. The proof of Theorem A.4 is analogous to the proof of Theorem 1 in Section 7. Specifically,
let RS = RS(n, d) be the Reed-Solomon code over a field F of char(F) = 2, and F = GF(2`

′
) such that n ≤

2`
′ ≤ 2n, and let Cout be RS⊗m. By Corollary 5.2 Cout admits a (n,m)-CTRW with perfect completeness

and (τ = 0.1, ρ = 1/4m, εRW = 0.15)-robust soundness. Let Cin : {0, 1}`′ → {0, 1}` be an arbitrary error
correcting code of constant rate and constant distance. By applying Theorem A.3 we conclude that their
concatenation Cin ◦Cout admits an (n · `,m+1)-bCTRW with (τ = Ω(1), ρ = Ω(m), εRW = Ω(1))-robust
soundness. Finally by composing this code with the PCPP from Theorem 6.1 using Theorem 4.3 we conclude
Theorem A.4.

The only subtle issue is in the PCPP parts of the code. First, for every coordinate i ∈ `n, and the
block containing i we need to define a PCPP claiming that the block contains a string that is close to Cin
with respect to the distance disti. In addition for every coordinate kr of Cout and a line containing it we
need to construct a PCPP that is sound with respect to the distance distB[kr](·, sat(Pr)), where Pr is the
predicated checking that each block on the line is in Cin, and the corresponding encoded symbols constitute
an evaluation of a low degree polynomial. The construction of such PCPP is similar to that in Theorem 6.1.
The only difference is that we need to adapt Definition 6.2 to the notion of distB[kr]: given a language
L = sat(Pr), we define L(B[kr]) where each string is obtained from a string x ∈ L by concatenating to it
|Domr| copies of x|B[kr], so that these repetitions constitute half of the new string.

We omit the straightforward details.
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