
Disjointness through the Lens of Vapnik–Chervonenkis

Dimension: Sparsity and Beyond

Anup Bhattacharya∗ Sourav Chakraborty∗ Arijit Ghosh∗ Gopinath Mishra∗

Manaswi Paraashar∗

Abstract

The disjointness problem - where Alice and Bob are given two subsets of {1, . . . , n} and

they have to check if their sets intersect - is a central problem in the world of communication

complexity. While both deterministic and randomized communication complexities for this

problem are known to be Θ(n), it is also known that if the sets are assumed to be drawn

from some restricted set systems then the communication complexity can be much lower. In

this work, we explore how communication complexity measures change with respect to the

complexity of the underlying set system. The complexity measure for the set system that we

use in this work is the Vapnik–Chervonenkis (VC) dimension. More precisely, on any set system

with VC dimension bounded by d, we analyze how large can the deterministic and randomized

communication complexities be, as a function of d and n. The d-sparse set disjointness problem,

where the sets have size at most d, is one such set system with VC dimension d. The deterministic

and the randomized communication complexities of the d-sparse set disjointness problem have

been well studied and is known to be Θ (d log (n/d)) and Θ(d), respectively, in the multi-round

communication setting. In this paper, we address the question of whether the randomized

communication complexity is always upper bounded by a function of the VC dimension of

the set system, and does there always exist a gap between the deterministic and randomized

communication complexity for set systems with small VC dimension.

In this paper, we construct two natural set systems of VC dimension d, motivated from

geometry. Using these set systems we show that the deterministic and randomized communication

complexity can be Θ̃ (d log (n/d)) for set systems of VC dimension d and this matches the

deterministic upper bound for all set systems of VC dimension d. We also study the deterministic

and randomized communication complexities of the set intersection problem when sets belong to

a set system of bounded VC dimension. We show that there exists set systems of VC dimension

d such that both deterministic and randomized (one-way and multi-round) complexities for the

set intersection problem can be as high as Θ (d log (n/d)), and this is tight among all set systems

of VC dimension d.
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1 Introduction

Since its introduction by Yao [Yao79], communication complexity occupies a central position

in theoretical computer science. A striking feature of communication complexity is its interplay

with other diverse areas like analysis, combinatorics, and geometry [KN96, Rou16]. Vapnik and

Chervonenkis [VC71] introduced the measure Vapnik-Chervonenkis dimension or VC dimension

for set systems in the context of statistical learning theory. As was the case with communication

complexity, VC dimension has found numerous connections and applications in many different

areas like approximation algorithms, discrete and combinatorial geometry, computational geometry,

discrepancy theory and many other areas [Mat09, Cha01, PA11, Mat13]. In this work we study

both of them under the same lens: of restricted systems and, for the first time, prove that geometric

simplicity does not necessarily imply efficient communication complexity.

Lets start with recollecting some definitions from Vapnik–Chervonenkis theory. Let S be a

collection of subsets of a universe U . For a subset y of U , we define

S|y := {y ∩ x : x ∈ S} .

We say a subset y of U is shattered by S if S|y = 2y, where 2y denotes the power set of y.

Vapnik–Chervonenkis (VC) dimension of S, denoted as VC-dim(S), is the size of the largest subset

y of U shattered by S. VC dimension has been one of the fundamental measures for quantifying

complexity of a collection of subsets.

Now let us revisit the world of communication complexity. Let f : Ω1×Ω2 → Ω. In communication

complexity, two players Alice and Bob get as inputs x ∈ Ω1 and y ∈ Ω2 respectively, and the goal

for the players is to device a protocol to compute f(x, y) by exchanging as few bits of information

between themselves as possible.

The deterministic communication complexity D(f) of a function f is the minimum number of

bits Alice and Bob will exchange in the worst case to deterministically compute the function f . In

the randomized setting, both Alice and Bob share an infinite random source1 and the goal is to

give the correct answer with probability at least 2/3. The randomized communication complexity

R(f) of f denotes the minimum number of bits exchanged by the players in the worst case input by

the best randomized protocol computing f . In both deterministic and randomized settings, Alice

and Bob are allowed to make multiple rounds of interaction. Communication complexity when the

number of rounds of interaction is bounded is also often studied. An important special case is when

only one round of communication is allowed, that is, only Alice is allowed to send messages to Bob

and Bob computes the output. We will denote by D→(f) and R→(f) the one way deterministic

communication complexity and one way randomized communication complexity respectively, of f .

One of the most well studied functions in communication complexity is the disjointness function.

Given a universe U known to both Alice and Bob, the disjointness function, DisjU : 2U×2U → {0, 1},
1This is the communication complexity setting with shared random coins. If no random string is shared, it is called

the private random coins setting. By [New91] we know that the communication complexity in both the setting differs
by at most a logarithmic additive factor.
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where 2U denotes the power set of U , is defined as follows:

DisjU (x, y) =

1, if x ∩ y = ∅

0, o/w
(1)

We also define the intersection function. Given a universe U known to both Alice and Bob, the

intersection function, IntU : 2U × 2U → 2U , where 2U denotes the power set of U , is defined as

IntU(x, y) = x ∩ y. It is easy to see that IntU is harder function to compute than DisjU . The

DisjU function and its different variants, like IntU , have been one of the most important problems in

communication complexity and have found numerous applications in areas like streaming algorithms

for proving lower bounds [Rou16, RY20]. By abuse of the notation, when U = [n], where [n] denotes

the set {1, . . . , n}, we will denote the functions Disj[n] and Int[n] by Disjn and Intn respectively.

Using the standard rank argument [KN96, RY20] one can show that D(Disjn) = Θ(n). In

a breakthrough paper, Kalyanasundaram and Schnitger [KS92] proved that R(Disjn) = Ω(n).

Razborov [Raz92] and Bar-Yossef et al. [BJKS04] gave alternate proofs for the above result. From

the above cited results we can also see the D(Intn) = R(Intn) = Θ(n).

Naturally, one would also like to ask what happens to the deterministic and randomized com-

munication complexity (one way or multiple round) of Disjn, when both Alice and Bob know that

their inputs have more structure. In particular what can we say if the inputs are guaranteed to

be from a subset of S ⊆ 2U , where S is known to both players. Let DisjU functions restricted to

S × S be denoted by DisjU |S×S . This problem has also been studied extensively, mostly for certain

special classes of subsets S ⊆ 2U . For example, the sparse set disjointness function, where the set S
contains all the subsets of U of size at most d, is an important special case of these works.

We will denote by d-SparseDisjn and d-SparseIntn, the functions Disjn |S×S and Intn |S×S
respectively, where S is the collections of all subsets of [n] of size at most d. Using the rank argu-

ment [KN96, RY20], one can again show that, for all d ≤ n, the deterministic communication complex-

ity of d-SparseDisjn is Ω
(
d log n

d

)
. H̊astad and Wigderson [HW07], and Dasgupta et al. [DKS12]

showed that the randomized communication complexity and one way randomized communication

complexity of d-SparseDisjn is R(d-SparseDisjn) = Θ(d) and R→(d-SparseDisjn) = Θ(d log d)

respectively. In a follow up work, Saglam and Tardos [ST13] proved that with O(log∗ d) rounds of com-

munication and O(d) bits of communication it is possible to compute d-SparseDisjn. More recently,

Brody et al. [BCK+14] proved that R→ (d-SparseIntn) = Θ (d log d) and R(d-SparseIntn) = Θ(d).

These results show that in the d-sparse setting, there is a separation between randomized and deter-

ministic communication complexity of Disjn and Intn functions.

One would like to ask what happens to the communication complexity for other restrictions

to the disjointness (and intersection) problem. The following are two natural problems, with a

geometric flavor, for which one would like to study the communication complexity.

Problem 1 (Discrete Line Disj). Let G ⊂ Z2 be a set of n points in Z2 and L be the set of all lines

in R2. Also, let L = Ld denote the collection of all d-size subsets of L. The Discrete Line Disj on

G and L is a function, DisjG |L×L: L×L → {0, 1} defined as DisjG |L×L ({`1, . . . , `d}, {`′1, . . . , `′d})
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is 1 if and only if there exists a line in Alice’s set2 that intersects some line in Bob’s set at some

point in G. Formally,

DisjG |L×L
(
{`1, . . . , `d}, {`′1, . . . , `′d}

)
=

1, if ∃i, j ∈ [d] s.t. `i ∩ `′j ∩G = ∅

0, o/w
(2)

Problem 2 (Discrete Interval Disj). Let X ⊂ Z be a set of n points in Z and Int be the

set of all possible intervals. Also, let I = Intd denote the collection of all d-size subsets of Int.

The Discrete Interval Disj on X and I is a function, DisjX |I×I : I × I → {0, 1} defined as

DisjX |I×I ({I1, . . . , Id}, {I ′1, . . . , I ′d}) is 1 if and only if there exists an interval in Alice’s set3 that

intersects some interval in Bob’s set at some point in X.

DisjX |I×I
(
{I1, . . . , Id}, {I ′1, . . . , I ′d}

)
=

1, if ∃i, j ∈ [d] s.t. Ii ∩ I ′j ∩X = ∅

0, o/w
(3)

Note that both the Discrete Line Disj and Discrete Interval Disj functions are generaliza-

tions of sparse set disjointness function.4 Although it may not be obvious at first look, but both the

Discrete Line Disj function and the Discrete Interval Disj functions are disjointness functions

restricted to a suitable subset. In fact, the connection between the Sparse set disjointness function

(d-SparseDisjn), the Discrete Line Disj function and the Discrete Interval Disj function run

deep - all the three subsets of the domain which help to define the functions as restriction of the dis-

jointness function have VC dimension Θ(d), see Appendix A. Naturally one would like to know, if the

fact that the collection of subsets S has VC dimension d has any implication on the communication

complexity of DisjU |S×S . For example, is the randomized communication complexity of Discrete

Line Disj function and the Discrete Interval Disj function upper bounded by a function of

d (independent of n)? And, do the Discrete Line Disj function and the Discrete Interval

Disj function also have a separation between their randomized and deterministic communication

complexities similar to that of the Sparse set disjointness function (d-SparseDisjn)? We show that

these are not necessarily the cases.

Theorem 3. For Discrete Interval Disj: there exists a X ⊂ Z with n points such that

D(DisjX |I×I) = D→(DisjX |I×I) = R→(DisjX |I×I) = Θ
(
d log

n

d

)
.

Theorem 4. For Discrete Line Disj: there exists a G ⊂ Z2 with n points such that D(DisjG |L×L
2We assume that Alice has the set {`1, . . . , `d} and Bob has the set {`′1, . . . , `′d}.
3We assume that Alice has the set {I1, . . . , Id} and Bob has the set {I ′1, . . . , I ′d}.
4Take n integer points on the x-axis. For Discrete Line Disj setting, restrict only to lines orthogonal to x-axis.

For Discrete Interval Disj setting, take n integer points on Z and only restrict to intervals containing one integer
point. Both of these restriction will give the disjointness problem in the d-sparse setting.
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) = D→(DisjG |L×L) = Θ
(
d log n

d

)
and, for the randomized setting,

R(DisjG |L×L) = Ω

(
d

log(n/d)

log log(n/d)

)
Discrete Line Int, that is, the intersection finding version of Discrete Line Disj is defined

as follows : the objective is to compute a function IntG |L×L: L × L → G that is defined as

IntG |L×L ({`1, . . . , `d}, {`′1, . . . , `′d}) =
⋃

i,j∈[d]

(
`i ∩ `′j ∩G

)
.5

As we have already mentioned, Brody et al. [BCK+14] proved that R(d-SparseIntn) = Θ(d),

whereas D(d-SparseIntn) = Θ
(
d log n

d

)
. We show that Discrete Line Int does not demonstrate

such a separation between the deterministic and randomized communication complexity.

Theorem 5. For Discrete Line Int: there exists a G ⊂ Z2 with n points such that

D(IntG |L×L) = D→(IntG |L×L) = R→(IntG |L×L) = R(IntG |L×L) = Θ
(
d log

n

d

)
.

The upper bound for all the above three theorems can be obtained from the fact that the

corresponding sets have VC dimension Θ(d), see Appendix A. Sauer-Shelah Lemma [Sau72, She72,

VC71] states that if S ⊆ 2[n] and VC-dim(S) ≤ d then

|S| ≤
d∑
i=0

(
n

i

)
≤
(en
d

)d
.

Thus if VC-dim(S) ≤ d, then the Sauer-Shelah Lemma implies that

D→(Intn |S×S) = O
(
d log

n

d

)
.

So, O
(
d log n

d

)
is a upper bound to the above questions, both for randomized and deterministic

and also for the one-way communication. But can the randomized communication complexity of

DisjU |S×S and IntU |S×S be even lower when S has VC dimension d? The following result, which

is a direct consequence of Theorems 3, 4 and 5, enables us to we answer the question in the negative:

Theorem 6. Let 1 ≤ d ≤ n.

1. There exists S ⊆ 2[n] with VC-dim(S) ≤ d and R→(Disjn |S×S) = Ω
(
d log n

d

)
.

2. There exists S ⊆ 2[n] with VC-dim(S) ≤ d and R(Disjn |S×S) = Ω
(
d log(n/d)
log log(n/d)

)
.

3. There exists S ⊆ 2[n] with VC-dim(S) ≤ d and R(Intn |S×S) = Ω
(
d log n

d

)
.

The following table compares our result with the previous best known lower bound for DisjU |S×S
and IntU |S×S among all sets S ⊂ 2U of VC dimension d.

5Agian, we will assume that Alice has the set {`1, . . . , `d} and Bob has the set {`′1, . . . , `′d}.
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Problems R(Disjn |S×S) R→(Disjn |S×S) R(Intn |S×S) R→(Intn |S×S)

Previously Known Ω(d) Ω(d log d) Ω(d) Ω(d log d)

[HW07] [DKS12] [BCK+14] [BCK+14]

This Paper Ω
(
d log(n/d)
log log(n/d)

)
Ω
(
d log n

d

)
Ω
(
d log n

d

)
Ω
(
d log n

d

)
Table 1: The largest communication complexity, for the functions Disjn |S×S and Intn |S×S , among
all S ⊆ 2[n] of VC dimension d, that was previously known and what we prove in this paper.
Tight bounds of Ω

(
d log n

d

)
for the largest D(Disjn |S×S), D→(Disjn |S×S), D(Intn |S×S) and

D→(Intn |S×S), among all S ⊂ 2[n] of VC dimension d, follows directly from the fact that if S is a
collection of all subsets of [n] of size at most d then D (Disjn |S×S) = D(Intn |S×S) = Ω

(
d log

(
n
d

))
,

see [KN96, RY20].

Notations

We denote the set {1, . . . , n} by [n]. For a binary number x, decimal(x) denotes the decimal

value of x. For two vectors x and y in {0, 1}n, x ∩ y = {i ∈ [n] : xi = yi = 1}, and x ⊆ y when

xi ≤ yi for each i ∈ [n]. For a finite set X, 2X denotes the power set of X. For x, y ∈ R with x < y,

[x, y] denotes the closed interval is the set of all real numbers that lies between x and y

2 One way communication complexity (Theorems 3 and 6 (1))

In this section we will prove the following result.

Theorem 7. For all n ≥ d, there exists X ⊂ Z with |X| = n and R ⊆ 2X with VC-dim(R) = 2d,

such that

R ⊆

X ∩
 ⋃

1≤j≤d
Ij

 | {I1, . . . , Id} ∈ I
 and R→(DisjX |R×R) = Ω

(
d log

n

d

)
.

Note that the set I is defined in Problem 2.

Remark 1. The above result takes care of the proofs of Theorem 3 and Theorem 6 (1).

The hard instance, for the proof of the above theorem, is inspired by the interval set systems

in combinatorial geometry and is constructed in Section 2.1. In Section 2.2, we proof Theorem 7

by using a reduction from Augmented Indexing, which we denote by AugIndex`. Formally the

problem AugIndex` is defined as follows: Alice gets a string x ∈ {0, 1}` and Bob gets an index

j ∈ [`] and all xj′ for j′ < j. Bob reports xj as the output.

Proposition 8. (Miltersen et al. [MNSW98]) R→(AugIndex`) = Ω(`).

2.1 Construction of a hard instance

We construct a set X ⊂ Z with |X| = n and R ⊆ 2X with VC-dim(R) = 2d. Informally, X

is the union of the set of points present in the union of d pairwise disjoint intervals, in Z, each
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containing n
d points. Each set in R is the union of the set of points in the subintervals anchored

either at the left or the right end point of each of the above d intervals. Formally, the description of

X and R are given below along with some of its properties that are desired to show Theorem 7.

The ground set X: Let m = n
d − 2. Without loss of generality we can assume that m = 2k,

where k ∈ N. Let J0 = {0, . . . ,m+ 1} be the set of m+ 2 consecutive integers that starts from the

origin and ends at m+ 1. Similarly, let Jp be the set of m+ 1 consecutive integers that starts at

p ∈ Z and ends at p+m+ 1. Let p1, . . . , pd be d points in Z such that the sets Jp1 , . . . , Jpd are

pairwise disjoint. Let the ground set X be

X =
d⋃
i=1

Jpi .

Note that X ⊂ Z and |X| = (m+ 2)d = n.

The subsets of X in R: R ⊆ 2X contains two types of sets R0 and Rm+1, where

• Take any d intervals R1, . . . , Rd of integer lengths such that, for all i ∈ [d], length of Ri is at

most m+ 1, Ri ⊆ [pi, pi +m+ 1], and Ri starts at pi. Note that Ri does not intersect with

any X \ Jpi . The set A =
d⋃
i=1

(Ri ∩X) is an element in R0. We say that A is generated by

R1, . . . , Rd.

• Take any d intervals R′1, . . . , R
′
d of integer lengths such that, for all i ∈ [d], length of R′i is at

most m+ 1, R′i ⊆ [pi, pi +m+ 1] and R′i ends at pi +m+ 1. Note that R′i does not intersect

with any X \Jpi . The set B =
d⋃
i=1

(R′i ∩X) is an element in Rm+1. We say that B is generated

by R′1, . . . , R
′
d.

The following claim bounds the VC dimension of R, constructed as above.

Claim 9. For X ⊂ Z with |X| = n and R ⊂ 2X as described above, VC-dim(R) = 2d,

Proof. The proof follows from the fact that any subset of of X containing 2d+ 1 points will contain

at least three points from some Jpi , where i ∈ [d]. These points in Jpi can not be shattered by the

sets in R. Also, observe that there exists 2d points, with two from each Jpj , that can be shattered

by the sets in R.

Now, we give a claim about X and R constructed above that will be required for our proof of

Theorem 7.

Claim 10. Let A ∈ R0 and B ∈ Rm+1 be such that A is generated by R1, . . . , Rd and B is generated

by R′1, . . . , R
′
d. Then A and B intersects if and only if there exists an i ∈ [d] such that Ri intersects

R′i at a point in Jpi.

The proof of Claim 10 follows directly from our construction of X ⊂ Z and R ⊆ 2X , as

Jp1 , . . . , Jpd are pairwise disjoint.
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2.2 Reduction from AugIndexd logm to DisjX |R×R

Before presenting the reduction we recall the definitions of AugIndexd logm and DisjX |R×R. In

AugIndexd logm, Alice gets x ∈ {0, 1}d logm and Bob gets an index j and xj′ for each j′ < j. The

objective of Bob is to report xj as the output. In DisjX |R×R, Alice gets A ∈ R0 and Bob gets

B ∈ Rm+1. The objective of Bob is to determine whether A∩B = ∅. Note that X,R,R0 and Rm+1

are as discussed in the Section 2.1.

Let P be an one-way protocol that solves DisjX |R×R with o
(
d log n

d

)
= o(d logm) bits of

communication. Now, we consider the following protocol P ′ for AugIndexd logm that has the

same one way communication cost as that of DisjX |R×R. Then we will be done with the proof of

Theorem 7.

Protocol P ′ for AugIndexd logm problem

Step-1 Let x ∈ {0, 1}d logm be the input of Alice. Bob gets an index j ∈ [d logm] and bits xj′ for

each j′ < j.

Step-2 Alice will form d strings a1, . . . ,ad ∈ {0, 1}logm by partitioning the string x into d parts

such that, ∀i ∈ [d], we have

ai = x(i−1) logm+1 . . . xi logm.

Bob first forms a string y ∈ {0, 1}d logm, where yj′ = xj′ for each j′ < j, yj = 1, and yj′ = 0

for each j′ > j. Then Bob finds b1, . . . ,bd ∈ {0, 1}logm by partitioning the string y in to d

parts such that, ∀i ∈ [d], we have

bi = y(i−1) logm+1 . . . yi logm.

Step-3 For each i ∈ [d], let Ri and R′i be the intervals that starts at pi and ends at pi + m + 1,

respectively, where

Ri = [pi,m+ pi − decimal(ai)]

and

R′i = [pi +m+ 1− decimal(bi), pi +m+ 1].

Alice finds the set A ∈ R0 generated by R1, . . . , Rd and Bob finds the set B ∈ Rm+1 generated

by R′1, . . . , R
′
d, i.e.,

A =
⋃
i∈[d]

(Ri ∩X) and B =
⋃
i∈[d]

(R′i ∩X).

Step-4 Alice and Bob solves DisjX |R×R on inputs A and B, and report xj = 0 if and only if

DisjX |R×R (A,B) = 0. Note that xj is the output of AugIndexd logm problem.

The following observation follows from the description of the protocol P ′ and from the construction

of X ⊂ Z and R ⊆ 2X .
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Observation 11. Let i∗ ∈ [d] such that j ∈ {(i∗ − 1) logm+ 1, i∗ logm}. Then

(i) Ri ∩R′i = ∅ for all i 6= i∗.

(ii) Ri∗ ∩R′i∗ = ∅ if and only if decimal(bi∗) ≤ decimal(ai∗).

(iii) decimal(bi∗) ≤ decimal(ai∗) if and only if xj = 0.

We will use the above observation to show the correctness of the protocol P ′.
First consider the case DisjX |R×R (A,B) = 0. Then, by Claim 10, there exists an i ∈ [d] such

that Ri and R′i intersects at a point in Jpi . From Observation 11 (i), we can say Ri∗ ∩ R′i∗ 6= ∅.
Combining Ri∗ ∩R′i∗ 6= ∅ with Observations 11 (ii) and (iii), we have xj = 0. Hence, DisjX |R×R
(A,B) = 0 implies xj = 0. The converse part, i.e., xj = 0 implies DisjX |R×R (A,B) = 0, can be

shown in the similar fashion.

The one-way communication complexity of protocol P ′ for AugIndexd logm is the same as that

of P for DisjX |R×R, that is, o(d logm). However, this is impossible as the one-way communication

complexity of Augmented Indexing, over d logm bits, is Ω(d logm) = Ω
(
d log n

d

)
bits. This

completes the proof of Theorem 7.

3 Two way communication complexity (Theorems 4, 5, 6(2) and

6(3))

In this section, we prove the following theorems.

Theorem 12. For all n ≥ d, there exists a G ⊂ Z2 with |G| = n and T ⊆ 2G with VC-dim(T ) = 2d,

such that

T ⊆

G ∩
 ⋃

1≤j≤d
`j

 | {`1, . . . , `d} ∈ L
 and R(DisjG |T ×T ) = Ω

(
d

log(n/d)

log log(n/d)

)
.

The set L is as defined in Problem 1.

Theorem 13. For all n ≥ d, there exists a G ⊂ Z2 with |G| = n and T ⊆ 2G with VC-dim(T ) = 2d,

such that

T ⊆

G ∩
 ⋃

1≤j≤d
`j

 | {`1, . . . , `d} ∈ L
 and R(IntG |T ×T ) = Ω

(
d log

n

d

)
.

The set L is as defined in problem 1.

Remark 2. Theorem 12 takes care of Theorem 4 and 6(2). Theorem 13 takes care of Theorem 5

and 6(3).

Note that the same set system will be used for the proofs of the above theorems. The hard

instance, for the proof of the above theorems, is inspired by point line incidence set systems in

9



computational geometry and is constructed in Section 3.1. We prove Theorems 12 and 13 in

Sections 3.2 and 3.3, respectively, using reductions.

3.1 The hard instance for the proofs of Theorems 12 and 13

In this subsection, we give the description of G ⊂ Z2 with |G| = n and T ⊆ 2G, with

VC-Dim(T ) = 2d. The same G and T will be our hard instance for the proofs of Theorems 12

and 13. In this subsection, without loss of generality, we can assume that d divides n and n/d is a

perfect square.

Informally, G is the set of points present in the union of d many pairwise disjoint square grids

each containing n
d points and the grids are taken in such a way that any straight line of non-negative

can intersects with at most one grid. Also, each set in T is the union of the set of points present in

d many lines of non-negative slope such that one line intersects with exactly one grid. Moreover, all

of the d lines have slopes either zero or positive. Formally, the description of G and T are given

below along with some of its properties that are desired to show Theorems 12 and 13.

The ground set G: Let m =
√

n
d , and

G(0,0) =
{

(x, y) ∈ Z2 : 0 ≤ x, y ≤ m− 1
}

be the grid of size m×m anchored at the origin (0, 0). For any p, q ∈ Z, the m×m grid anchored

at (p, q) will be denoted by G(p,q), i.e.,

G(p,q) =
{

(i+ p, j + q) : (i, j) ∈ G(0,0)

}
.

For d ∈ N, consider G(p1,q1), . . . , G(pd,qd) satisfying the following property:

Property For any i, j ∈ [d], with i 6= j, let L1 and L2 be lines of non-negative slopes that pass

through at least two points of G(pi,qi) and G(pj ,qj), respectively. Then L1 and L2 does not intersect

at any point inside
⋃d
`=1G(p`,q`).

Observe that there exists G(p1,q1), . . . , G(pd,qd) satisfying Property. We will take the ground set

G as

G =

d⋃
`=1

G(p`,q`).

Without loss of generality, we can assume that (p1, q1) = (0, 0). Note that G ⊂ Z2 and |G| = dm2 =

n.

The subsets of G in T : T contains two types of subsets T1 and T2 of G, and they are generated

by the following ways:

• Take any d lines L1, . . . , Ld of non negative slope such that, ∀i ∈ [d], Li passes through

(pi, qi) ∈ G(pi,qi) and (at least) another point in G(pi,qi). Note that Li does not contain any
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point from G \G(pi,qi). The set A =
⋃d
i=1

(
Li ∩G(pi,qi)

)
is in T1, and we say A is generated by

the lines L1, . . . , Ld.

• Take any d vertical lines L′1, . . . , L
′
d such that, ∀i ∈ [d], L′i contains at least one point from

G(pi,qi). Note that L′i does not contain any point fromG\G(pi,qi). The set B =
⋃d
i=1(L′i∩G(pi,qi))

is in T2, and we say B is generated by the lines L′1, . . . , L
′
d.

The following claim bounds the VC dimension of T , which as described above.

Claim 14. For G ⊂ Z2 and T ⊆ 2G as described above, VC-dim(T ) = 2d.

Proof. The proof follows from the fact that any subset of X containing 2d+ 1 points will contain at

least three points from some G(pj ,qj), j ∈ [d]. These points in G(pj ,qj) can not be shattered by the

sets in T . Also, observe that there exists 2d points two from each G(pj ,qj) that can be shattered by

the sets in T .

Now, we give two claims about G and T , constructed above, that follow directly from our

construction of G ⊂ Z2 and T ⊆ 2G.

Claim 15. Let A ∈ T1 and B ∈ T2 such that A is generated by lines L1, . . . , Ld and A is generated

by lines L′1, . . . , L
′
d. Then A and B intersect if and only if there exists i ∈ [d] such that Li and L′i

intersect at a point in G(pi,qi).

Claim 16. Let A ∈ T1 and B ∈ T2 such that A is generated by lines L1, . . . , Ld and B is generated

by lines L′1, . . . , L
′
d. Also let |A ∩B| = d. Then for each i ∈ [d], Li and L′i intersect at a point in

G(pi,qi). Moreover, A (B) can be determined if we know B (A) and A ∩B.

The above claims will be used in the proofs of Theorems 12 and 13.

3.2 Proof of Theorem 12

Let us consider a problem in communication complexity denoted by Or-Disjt{0,1}` that will be

used in our proof. In Or-Disjt{0,1}` , Alice gets t strings x1, . . . ,xt ∈ {0, 1}` and Bob also gets t

strings y1, . . . ,yt ∈ {0, 1}`. The objective is to compute

Or-Disjt{0,1}` ((x1, . . . ,xt) , (y1, . . . ,yt)) =
t∨
i=1

Disj{0,1}` (xi,yi) .

Note that Disj{0,1}`(xi,yi) is a binary variable that takes value 1 if and only if xi ∩ yi = ∅.

Proposition 17 (Jayram et al. [JKS03]). R
(
Or-Disjt{0,1}`

)
= Ω(`t).

Note that Proposition 17 directly implies the following result.

Proposition 18. R
(
Or-Disjt{0,1}` |S`×S`

)
= Ω(`t), where S` = {0, 1}` \ {0`}.
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Let k ∈ N be the largest integer such that first k consecutive primes p1, . . . , pk satisfy the

following inequalty:

Πk
i=1pi ≤

√
n

d
. (4)

Using the fact that Πk
i=1pi = e(1+o(1))k log k, we get k = Θ

(
log(n/d)

log log(n/d)

)
.

We prove the theorem by a reduction from Or-Disjd{0,1}k |Sk×Sk
to DisjG |T ×T , where

Sk := {0, 1}k \ {0k}.

Note that G ⊂ Z2 with |G| = n, and T ⊆ 2G, with VC-dim(T ) = 2d, are the same as that we

constructed in Section 3.1. To reach a contradiction, assume that there exists a two way protocol P
that solves DisjG |T ×T with communication cost of

o

(
d

logm

log logm

)
= o

(
d

log(n/d)

log log(n/d)

)
.

Now, we give protocol P ′ that solves Or-Disjd{0,1}k |Sk×Sk
, as described below.

Protocol P ′ for Or-Disjd{0,1}k |Sk×Sk

Step-1 Let A = (x1, . . . ,xd) ∈ [Sk]
d 6 and B = (y1, . . . ,yd) ∈ [Sk]

d be the inputs of Alice and

Bob for Or-Disjd{0,1}k |Sk×Sk
. Recall that Sk = {0, 1}k \ {0k}. Bob finds B̄ = (ȳ1, . . . , ȳd) ∈[

{0, 1}k
]d

, where ȳi is obtained by complementing each bit of yi.

Step-2 Both Alice and Bob privately determine first k prime numbers p1, . . . , pk without any

communication.

Step-3 Let Φ : {0, 1}k → {0, 1}dlog(
√

n
d )e be the function such that φ(x) is the bit representation

of the number
∏k
i=1 p

xi
i , where x = (x1, . . . , xk) ∈ {0, 1}k. Alice finds A′ = (a1, . . . ,ad) ∈[

{0, 1}dlog(
√

n
d )e
]d

and Bob finds B′ = (b1, . . . ,b1 ∈
[
{0, 1}dlog(

√
n
d )e
]d

privately without any

communication, where ai = φ(xi) and bi = φ(ȳi) for each i ∈ [d].

Step-4 For each i ∈ [d], let Li and L′i be the lines having equation

Li : y − qi =
decimal(ai)− 1

decimal(ai)
(x− pi)

and

L′i : x− pi = decimal(bi).

Alice finds A′′ ∈ T that is generated by the lines L1, . . . , Ld, and Bob finds B′′ ∈ T which is

6For a set W , [W ]d = W × . . .×W (d times).
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generated by the lines L′1, . . . , L
′
d, i.e.,

A′′ =
⋃
i∈[d]

(Li ∩G(pi,qi)) and B′′ =
⋃
i∈[d]

(L′i ∩G(pi,qi)).

Step-5 Then Alice and Bob solve DisjG |T ×T (A′′, B′′), and report
d∨
i=1

Disj{0,1}k(xi,yi) = 1 if and

only if DisjG |T ×T (A′′, B′′) = 0.

Now we argue for the correctness of the protocol P ′. Let DisjG |T ×T (A′′, B′′) = 0, that is,

A′′ ∩B′′ 6= ∅. By Claim 15 and from the description of P ′, there exists i ∈ [d] such that the lines

Li : y − qi = decimal(ai)−1
decimal(ai)

(x− pi) and L′i : x− pi = decimal(bi) intersect at a point in G(pi,qi), that

is, the lines y = decimal(ai)−1
decimal(ai)

x and x = decimal(bi) intersect at a point in G(0,0). Now, we can say

that, there exists i ∈ [d] such that decimal(ai) divides decimal(bi), equivalently, φ(xi) divides φ(ȳi).

This implies xi is a subset of ȳi ( or xi ∩ yi = ∅) for some i ∈ [d]. Hence,
d∨
i=1

Disj{0,1}k(xi,yi) = 1.

The converse part, that is,
d∨
i=1

Disj{0,1}k(xi,yi) = 1 implies DisjG |T ×T (A′′, B′′) = 0 can be shown

in the similar fashion.

Observe that the communication cost of protocol P ′ for Or-Disjd{0,1}k |Sk×Sk
is same as that of

protocol P for DisjG |T ×T , is

o

(
d

logm

log logm

)
= o

(
d

log(n/d)

log log(n/d)

)
= o(dk).

The above two equalities follows from the facts that m =
√

n
d and k = Θ

(
log(n/d)

log log(n/d)

)
. This

contradicts Proposition 18 which says that

R
(
Or-Disjd{0,1}k |Sk×Sk

)
= Ω(dk).

3.3 Proof of Theorem 13

With out loss of generality, we also assume that d divides n and, more over, n/d is a perfect

square.

First, consider the problem LearnG |T ×T , where the objective of Alice and Bob is to learn each

other’s set. Note that G ⊂ Z2 with |G| = n and T ⊆ 2G with VC-Dim(T ) = 2d are same as that

constructed in Section 3.1. In LearnG |T ×T , Alice and Bob get two sets A and B, respectively,

from T with a promise |A ∩B| = d. The objective of Alice (Bob) is to learn B (A). Observe that

R(LearnG |T ×T ) = Ω(d log n) as there are Ω(md) = Ω
((√

n
d

)d)
many candidate sets for the inputs

of Alice and Bob. We prove the theorem by a reduction from LearnG |T ×T to IntG |T ×T .

Let by contradiction consider a protocol P that solves IntG |T ×T by using o(d log n) bits of

communication. To solve LearnG |T ×T , Alice and Bob first run a protocol P and finds A∩B. Now

by Claim 15, it is possible for Alice (Bob) to determine B (A) by combining A (B) along with A∩B,
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with out any communication with Bob (Alice). Now, we have a protocol P ′ that solves LearnG |T ×T
with o(d log n) bits of communication. However, this is impossible as R(LearnG |T ×T ) = Ω(d log n).

Hence, we are done with the proof of Theorem 13.

4 Conclusion and Discussion

In this paper, we studied Disjn |S×S and Intn |S×S when S is a subset of 2[n] and VC-dim(S) ≤ d.

One of the main contributions of our work is the result (Theorem 6) showing that unlike in the case

of d-SparseDisjn and d-SparseDisjn functions, there is no separation between randomized and

deterministic communication complexity of Disjn |S×S and Intn |S×S functions when VC-dim(S) ≤
d. Note that we have settled both the one-way and two-way (randomized) communication complexities

of Intn |S×S when VC-dim(S) ≤ d (Theorem 6 (1) and (3)). In the context of Disjn |S×S , we

have settled the one-way (randomized) communication complexity. The two-way communication

complexity for Disjn |S×S is tight up to factor log log n
d (See Theorem 6 (2)). However, we believe

that the factor of log log n
d should not be present in the statement of Theorem 6 (2).

Conjecture 1. There exists S ⊆ 2[n] with VC-dim(S) ≤ d and R(Disjn |S×S) = Ω
(
d log n

d

)
.

Recall G ⊂ Z2 with |G| = n and T ⊆ 2G with VC-Dim(T ) = 2d construction from Section 3.1,

that served as the hard instance for the proof of Theorem 12 and Theorem 13. The same G and T
can not be the hard instance for the proof of Conjecture 1 because of the following result.

Theorem 19. Let us consider G ⊂ Z2 with |G| = n and T ⊆ 2G with VC-Dim(T ) = 2d as defined

in Section 3.1. Also, recall the definition of T1 and T2. There exists a randomized communication

protocol that can, ∀A ∈ T1 and ∀B ∈ T2, can compute DisjG |T ×T (A,B), with probability at least

2/3, and uses O
(
d log d log n

d
log log n

d
· log log log n

d

)
bits of communication.

We use the following observation to prove the above theorem.

Observation 20. Let us consider the communication problem Gcdk(a, b), where Alice and Bob get

a and b respectively from {1, . . . , k}, and the objective is for both the players to compute gcd(a, d).

Then there exists a randomized protocol, with success probability at least 1− δ, for Gcdk that uses

O
(

log k
log log k · log log log k · log 1

δ

)
bits of communication.

Proof. We will give a protocol P for the case when δ = 1/3 that uses O
(

log k
log log k · log log log k

)
bits of communication. By repeating O

(
log 1

δ

)
times protocol P and reporting the majority of the

outcomes as the output, we will get the correct answer with probability at least 1− δ. Both Alice

and Bob generate all the prime numbers p1, . . . , pt between 1 and k. From the Prime Number

Theorem, we known that t = Θ
(

k
log k

)
. Alice and Bob separately, construct the sets Sa and Sb that

contain the prime numbers that divides a and b respectively. Note that |Sa| and |Sb| is bounded by

O
(

log k
log log k

)
.7 Alice and Bob compute Sa ∩ Sb by solving Sparse Set Intersection problem on input

7The product of first t prime numbers is e(1+o(1))t log t.
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Sa and Sb using O
(

log k
log log k

)
bits of communication [BCK+14]. For p ∈ Sa ∩ Sb, let αp,a and αp,b

denote the exponent of p in a and b, respectively. Observe that

gcd(a, b) =
∏

p∈Sa∩Sb

pmin{αp,a, αp,b}.

For each p ∈ Sa, Alice sends αp,a to Bob. Number of bits of communication required to send the

exponents of all the primes in Sa ∩ Sb, is

|Sa ∩ Sb|+
∑

p∈Sa∩Sb

log(αp,a) ≤ O
(

log k

log log k

)
+ |Sa ∩ Sb| log


∑

p∈Sa∩Sb

αp,a

|Sa ∩ Sb|


≤ O

(
log k

log log k

)
+ |Sa ∩ Sb| log

(
log k

|Sa ∩ Sb|

)
≤ O

(
log k

log log k
· log log log k

)

In the above inequalities, we used the facts that |Sa ∩ Sb| = O
(

log k
log log k

)
,

∑
p∈Sa∩Sb

αp,a ≤ log k and

log x is a concave function. After getting the exponents αp,a of the primes p ∈ Sa ∩ Sb from Alice,

Bob also sends the exponents αp,b of the primes p ∈ Sa ∩ Sb to Alice using O
(

log k
log log k log log log k

)
bits of communication to Alice. Since both Alice and Bob now know the set Sa ∩ Sb, and the

exponents αp,a and αp,b for all p ∈ Sa ∩ Sb, both of them can compute gcd(a, b). Total number of

bits communicated in this protocol is O
(

log k
log log k log log log k

)
.

We will now give the proof of Theorem 19.

Proof of the Theorem 19. Consider the case when d = 1. From the description of G and T in

Section 3.1, we can say that G = G(0,0), where G(0,0) = {(x, y) ∈ Z2 : 0 ≤ x, y ≤
√
n} 8. Moreover,

each set in T1 is a set of points present in a straight line of non-negative slope that passes through

two points of G(0,0) with one point being (0, 0) and each set in T2 is a set of points present in a

vertical straight line that passes through exactly
√
n many grid points. Keeping Claims 15 and 16

in mind, we will be done if we can show the existence of a randomized communication protocol for

computing the function DisjG |T ×T , with probability of success at least 1− δ and number of bits

communicated by the protocol being bounded by O
(

logn
log logn · log log log n · log 1

δ

)
, for the special

case when d = 1. This is because for general d, we will be solving d instances of the above problem,

with the number of points in each grid being n
d

9 and setting δ = 1
3d for each of the d instances.

Protocol for d = 1. Alice and Bob get A and B from T1 and T2, respectively. Let A is generated

by the straight line LA and B is generated by LB, where LA is a straight line with non-negative

slope and LB is a vertical line. If LA is a horizontal one : Alice just sends this information to Bob

8With out loss of generality assume that
√
n is an integer

9Recall that we have assumed, without loss of generality, that d divides n.
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and then both report that A ∩B 6= ∅. If LA is a vertical line : Alice sends this information to Bob

and he reports A∩B 6= ∅ if and only if LB passes through origin. Now assume that LA is neither a

horizontal nor a vertical line. Let the equation of LA be y = p
qx, where 1 ≤ p, q ≤

√
n, and p and q

are relatively prime to each other. Also, let equation of Bob’s line LB be x = r, where 0 ≤ r ≤
√
n.

Observe that A ∩ B 6= ∅ if and only if LA and LB intersects at a point of G(0,0). Moreover, LA

and LB intersects at a grid point if and only if q divides r and 1 ≤ pr
q ≤

√
n. So, Alice and Bob

run the communication protocol for Gcd√n(q, r) to decide whether q = gcd(q, r). If q = gcd(q, r)

and 1 ≤ pr
q ≤

√
n (again Alice and Bob can decide this using O(1) bits of communications) then

A ∩B 6= ∅, otherwise A ∩B = ∅. Alice and Bob can decide if q = gcd(q, r) and 1 ≤ pr
q ≤

√
n using

O(1) bits of communication.

The communication cost of our protocol is dominated by the communication complexity of

Gcd√n(q, r), which is equal to O
(

logn
log logn log log log n log 1

δ

)
by Observation 20.
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A VC dimension, and Problems 1 and 2

VC dimension, and collection of d lines. Let G ⊂ Z2 be a set of n points in Z2. Observe,

that the communication functions DisjG |L×L (defined in Problem 1) and DisjG |G×G , where

G =

G ∩
 ⋃

1≤j≤d
`j

 | {`1, . . . , `d} ∈ L
 ,

are equivalent problems. Note that the set L is defined in Problem 1. Using standard geometric

arguments, see [Mat13, Chap. 10] and [HP11, Chap. 5], we can show that VC-dim(G) = 2d.

VC dimension, and collection of d intervals. Let X ⊂ Z be a set of n points in Z. Observe,

that the communication functions DisjX |I×I (defined in Problem 2) and DisjX |F×F , where

F =

X ∩
 ⋃

1≤j≤d
Ij

 | {I1, . . . , Id} ∈ I
 ,

are equivalent problems. Note that the set I is defined in Problem 2. Using standard geometric

arguments, as in the above case, we can show that VC-dim(F) = 2d.
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