
The Busy Beaver Frontier

Scott Aaronson∗

Abstract

The Busy Beaver function, with its incomprehensibly rapid growth, has captivated genera-
tions of computer scientists, mathematicians, and hobbyists. In this survey, I offer a personal
view of the BB function 58 years after its introduction, emphasizing lesser-known insights, re-
cent progress, and especially favorite open problems. Examples of such problems include: when
does the BB function first exceed the Ackermann function? Is the value of BB(20) independent
of set theory? Can we prove that BB(n+ 1) > 2BB(n) for large enough n? Given BB(n), how
many advice bits are needed to compute BB(n + 1)? Do all Busy Beavers halt on all inputs,
not just the 0 input? Is it decidable, given n, whether BB(n) is even or odd?

1 Introduction

The Busy Beaver1 function, defined by Tibor Radó [13] in 1962, is an extremely rapidly-growing
function, defined by maximizing over the running times of all n-state Turing machines that eventu-
ally halt. In my opinion, the BB function makes the concepts of computability and uncomputability
more vivid than anything else ever invented. When I recently taught my 7-year-old daughter Lily
about computability, I did so almost entirely through the lens of the ancient quest to name the
biggest numbers one can. Crucially, that childlike goal, if pursued doggedly enough, inevitably
leads to something like the BB function, and hence to abstract reasoning about the space of possi-
ble computer programs, the halting problem, and so on.2

Let’s give a more careful definition. Following Radó’s conventions, we consider Turing machines
over the alphabet {0, 1}, with a 2-way infinite tape, states labeled by 1, . . . , n (state 1 is the initial
state), and transition arrows labeled either by elements of {0, 1}×{L,R} (in which case the arrows
point to other states), or else by “Halt” (in which case the arrows point nowhere).3 At each time
step, the machine follows a transition arrow from its current state depending on the current symbol
being read on the tape, which tells it (1) which symbol to write, (2) whether to move one square
left on the tape or one square right, and (3) which state to enter next (see Figure 1).

Given a machine M , let s(M) be the number of steps that M takes before halting, including the
final “Halt” step, when M is run on an all-0 initial tape. If M never halts then we set s(M) :=∞.

∗University of Texas at Austin. Email: aaronson@utexas.edu. Supported by a Vannevar Bush Fellowship from
the US Department of Defense, a Simons Investigator Award, and the Simons “It from Qubit” collaboration.

1Radó named the function “Busy Beaver” after the image of a beaver moving back and forth across the Turing
machine tape, writing symbols. This survey will have no beaver-related puns.

2I developed this perspective for broader audiences in a 1999 essay (https://www.scottaaronson.com/writings/
bignumbers.html) as well as a 2017 public lecture (https://www.scottaaronson.com/blog/?p=3445).

3Radó also allowed the machines to write a symbol and move the tape head on the final “Halt” step. We omit
this, since for all the Busy Beaver functions we’ll consider, either the choice of what to do on the last step is irrelevant,
or else we can assume without loss of generality that the machine writes ‘1’ and moves one square (say) to the left.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 115 (2020)

https://www.scottaaronson.com/writings/bignumbers.html
https://www.scottaaronson.com/writings/bignumbers.html
https://www.scottaaronson.com/blog/?p=3445

A B

0 |1R

1 |1L

0 |1L

1 |H

. . . 0 0 0 0A 0 0 . . .initial state

. . . 0 0 0 1 0B 0 . . .step 1

. . . 0 0 0 1A 1 0 . . .step 2

. . . 0 0 0B 1 1 0 . . .step 3

. . . 0 0A 1 1 1 0 . . .step 4

. . . 0 1 1B 1 1 0 . . .step 5

. . . 0 1 1H 1 1 0 . . .step 6 (halt)

Figure 1: A 2-state Busy Beaver and its execution on an initially all-0 tape. Starting in state A,
the machine finds a 0 on its tape and therefore follows the arrow labeled 0|1R, which causes it to
replace the 0 by a 1, move one square to the right, and transition into state B, and so on until the
machine reaches the Halt arrow on its 6th step.

Also, let T (n) be the set of Turing machines with n states. For later reference, note that
|T (n)| = (4n+ 1)2n. A calculation reveals that, if we identify machines that are equivalent under
permuting the states, then each n-state machine can be specified using n log2 n+O(n) bits.

We now define the Busy Beaver function as follows:

BB(n) := max
M∈T (n) : s(M)<∞

s(M).

In words: among all the finitely many n-state Turing machines, some run forever when started on
an all-0 input tape and some halt. The nth Busy Beaver number, BB(n), is obtained by throwing
away all the n-state machines that run forever, and then maximizing the number of steps over all
the machines that halt. A machine M that achieves the maximum is also called an “n-state Busy
Beaver.” What Radó called the “Busy Beaver Game” is the game of finding these Busy Beavers,
and the corresponding BB(n) values, for n as large as possible.

Observe that BB(n) is a perfectly well-defined positive integer for every n—at least, assuming
one accepts that there’s a definite fact about whether a given Turing machine halts or runs forever
on the all-0 input. This follows from the principle that any finite set of integers (for example, the
halting times of the n-state Turing machines) has a maximum.

To illustrate, Figure 1 shows a 2-state Turing machine that runs for 6 steps on an initially all-0
tape, thus demonstrating that BB(2) ≥ 6. In fact this machine turns out to be a 2-state Busy
Beaver, so that BB(2) = 6 exactly (see [9]). For the few other known values of the BB function
see Section 4.

Technically, what we’ve called BB(n) is what Radó called the “shift function,” or S(n). Radó
also defined a “ones function,” Σ(n) ≤ S(n), which counts the maximum number of 1’s that
an n-state Turing machine can have on its tape at the time of halting, assuming an all-0 initial
tape. Other variants, such as the maximum number of visited tape squares, can also be studied;
these variants have interesting relationships to each other but all have similarly explosive growth.4

Personally, I find the shift function to be by far the most natural choice, so I’ll focus on it in this
survey, mentioning the Σ variant only occasionally.

4Empirically, for example, one seems to have BB(n) ≈ Σ(n)2, as we’ll discuss in Section 5.4.

2

In the literature on Busy Beaver, people also often study the function BB(n, k), which is the
generalization of BB(n) to Turing machines with a k-symbol alphabet. (Thus, BB(n) = BB(n, 2).)
People have also studied variants with a 2-dimensional tape, or where the tape head is allowed to
stay still in addition to moving left or right, etc. More broadly, given any programming language
L, whose programs consist of bit-strings, one can define a Busy Beaver function for L-programs:

BBL(n) := max
P∈L∩{0,1}≤n : s(P)<∞

s(P),

where s(P) is the number of steps taken by P on a blank input.5 Alternatively, some people
define a “Busy Beaver function for L-programs” using Kolmogorov complexity. That is, they let
BB′L(n) be the largest integer m such that KL(m) ≤ n, where KL(m) is the length of the shortest
L-program whose output is m on a blank input.

In this survey, however, I’ll keep things simple by focusing on Radó’s original shift function,
BB(n) = S(n), except when there’s some conceptual reason to consider a variant.

1.1 In Defense of Busy Beaver

The above definitional quibbles raise a broader objection: isn’t the Busy Beaver function arbitrary?
If it depends so heavily on a particular computational model (Turing machines) and complexity
measure (number of steps), then isn’t its detailed behavior really a topic for recreational program-
ming rather than theoretical computer science?

My central reason for writing this survey is to meet that objection: to show you the insights
about computation that emerged from the study of the BB function, and especially to invite you
to work on the many open problems that remain.

The charge of arbitrariness can be answered in a few ways. One could say: of course we don’t
care about the specific BB function, except insofar as it illustrates the general class of functions
with BB-like uncomputable growth. And indeed, much of what I’ll discuss in this survey carries
over to the entire class of functions.

Even so, it would be strange for a chess master to say defensively: “no, of course I don’t care
about chess, except insofar as it illustrates the class of all two-player games of perfect information.”
Sometimes the only way to make progress in a given field is first to agree on semi-arbitrary rules—
like those of chess, baseball, English grammar, or the Busy Beaver game—and then to pursue the
consequences of those rules intensively, on the lookout for unexpected emergent behavior.

And for me, unexpected emergent behavior is really the point here. The space of all possible
computer programs is wild and vast, and human programmers tend to explore only tiny corners of
it—indeed, good programming practice is often about making those corners even tinier. But if we
want to learn more about program-space, then cataloguing random programs isn’t terribly useful
either, since a program can only be judged against some goal. The Busy Beaver game solves this
dilemma by relentlessly optimizing for a goal completely orthogonal to any normal programmer’s
goal, and seeing what kinds of programs result.

But why Turing machines? For all their historic importance, haven’t Turing machines been
completely superseded by better alternatives—whether stylized assembly languages or various code-
golf languages or Lisp? As we’ll see, there is a reason why Turing machines were a slightly
unfortunate choice for the Busy Beaver game: namely, the loss incurred when we encode a state

5And, let’s say, where the max is 0 if there are no valid L-programs of length at most n.

3

transition table by a string of bits or vice versa. But Turing machines also turn out to have a
massive advantage that compensates for this. Namely, because Turing machines have no “syntax”
to speak of, but only graph structure, we immediately start seeing interesting behavior even with
machines of only 3, 4, or 5 states, which are feasible to enumerate. And there’s a second advantage.
Precisely because the Turing machine model is so ancient and fixed, whatever emergent behavior
we find in the Busy Beaver game, there can be no suspicion that we “cheated” by changing the
model until we got the results we wanted.

In short, the Busy Beaver game seems like about as good a yardstick as any for gauging hu-
manity’s progress against the uncomputable.

1.2 A Note on the Literature

Most 20th-century research on the Busy Beaver function was recorded in journal articles—many of
them still well worth reading, even when their results have been superseded. For better or worse,
though, many of the newer bounds that I’ll mention in this survey have so far been documented
only in code repositories and pseudonymous online forum posts.

The most comprehensive source that I’ve found, for the history and current status of attempts
to pin down the values of BB(n) and its variants, is a 73-page survey article by Pascal Michel [12].6

While Michel’s focus is different from mine—he provides vast reams of data on specific Turing
machines, while I’m more concerned with general ideas and open problems—I found his survey
an invaluable resource. Meanwhile, for the past decade, the so-called Googology Wiki7 has been
the central clearinghouse for discussion of huge numbers: for example, it’s where the best current
lower bound on BB(7) was announced in 2014. Heiner Marxen’s Busy Beaver page8 and the Busy
Beaver Wikipedia entry9 are excellent resources as well.

2 Basic Properties

I’ll now review the central “conceptual properties” of the BB function—by which I mean, those
properties that would still hold if we’d defined BB using RAM machines, Lisp programs, or any
other universal model of computation instead of Turing machines.

First, BB(n) grows so rapidly that the ability to compute any upper bound on it would imply
the ability to solve the halting problem:

Proposition 1 One can solve the halting problem, given oracle access to any function f : N → N
such that f(n) ≥ BB(n) for all n. Hence, no such f can be computable.

Proof. To decide whether an n-state Turing machine M halts on the all-0 input, simply run M
for up to f(n) steps. If M hasn’t halted yet, then by the definition of BB, it never will.

Conversely, it’s clear that one can compute BB given an oracle for the language HALT, which
consists of descriptions of all Turing machines that halt on the all-0 input. Thus, BB is Turing-
equivalent to the halting problem.

6See also the associated website, http://www.logique.jussieu.fr/~michel/bbc.html
7https://googology.wikia.org/wiki/Googology_Wiki
8http://turbotm.de/~heiner/BB/
9https://en.wikipedia.org/wiki/Busy_beaver

4

http://www.logique.jussieu.fr/~michel/bbc.html
https://googology.wikia.org/wiki/Googology_Wiki
http://turbotm.de/~heiner/BB/
https://en.wikipedia.org/wiki/Busy_beaver

Notice that an n-state Busy Beaver, if we had it, would serve as an O(n log n)-bit advice string,
“unlocking” the answers to the halting problem for all nO(n) Turing machines with n states or
fewer. Furthermore, this is essentially optimal: if we had an advice string for the n-state halting
problem that was much shorter, then by hardwiring that advice into a Turing machine, we could
create an n-state machine that determined BB(n) and then ran for longer than BB(n) steps, an
obvious contradiction.10 Unfortunately, to use the advice, we’d still need to do a computation that
lasted BB(n) steps—but at least we’d know in advance that the computation would halt!

Although Proposition 1 goes some way toward explaining the Busy Beaver function’s explosive
growth, it’s not sharp. For example, it doesn’t imply that BB(n) dominates every computable
function f , but only that BB(n) ≥ f(n) for infinitely many n. The following proposition, which is
incomparable with Proposition 1, fixes this defect.

Proposition 2 Let f : N → N be any computable function. Then there exists an nf such that
BB(n) > f(n) for all n ≥ nf .

Proof. Let Mf be a Turing machine that computes f(n), for any n encoded on Mf ’s input tape.
Suppose Mf has c states. Then for all n, there exists a Turing machine Mf,n with c + O(log n)
states that, given an all-0 input tape, first writes n onto the input tape, then simulates Mf in order
to compute f(n), and finally executes an empty loop for (say) f(n)2 steps. Hence

BB (c+O(log n)) > f(n)

for all n, from which the proposition follows.
Note, in passing, that Proposition 2 is a “different” way to prove the existence of uncomputable

functions, one that never explicitly appeals to diagonalization.11

Finally, given that the Busy Beaver function is uncomputable, one could ask how many of its
values are “humanly knowable.” Once we fix an axiomatic basis for mathematics, the answer turns
out to be “at most finitely many of them,” and that by a simple application of Gödel.

Proposition 3 Let T be a computable and arithmetically sound axiomatic theory. Then there
exists a constant nT such that for all n ≥ nT , no statement of the form “BB(n) = k” can be proved
in T .

Proof. Let M be a Turing machine that, on the all-0 input tape, enumerates all possible proofs
in T , halting only if it finds a proof of 0 = 1. Then since T is sound, M never halts. But T can’t
prove that M never halts, since otherwise T would prove its own consistency, violating the second
incompleteness theorem.

Now suppose M has nT states. Then for all n ≥ nT , the value of BB(n) must be unprovable
in T . For otherwise T could prove that M never halted, by simulating M for BB(n) ≥ BB(nT)
steps and verifying that M hadn’t halted by then.

The proof that we gave for Proposition 3 has the great advantage that it yields an explicit upper
bound, namely nT − 1, on the number of BB values that the theory T can ever determine. This
fact is exploited by recent results (see Section 4.2) that show, for example, that when T is ZF set
theory, we can take nT = 748.

10This observation can also be related to the “algorithmic incompressibility” of Chaitin’s halting probability Ω.
11Implicitly, one might call the proof “diagonalization-adjacent.”

5

However, there’s also a different proof of Proposition 3, which has the advantage of never relying
on Gödel’s Theorem—in fact, it yields another proof of a version of Gödel’s Theorem. Here is the
other proof: suppose by contradiction that the theory T determined all the values of BB(n). Then
by enumerating all possible proofs in T , we could eventually learn BB(n) for any given n. But
this would mean that BB was computable, contradicting Propositions 1 and 2.

More than anything else, for me Proposition 3 captures the romance of the Busy Beaver function.
Even though its values are well-defined, there can never be any systematic way to make progress in
determining them. Each additional value (if it can be known at all) is a fresh challenge, requiring
fresh insights and ultimately even fresh axioms.

Even if we supposed that, for every n, there was some reasonable extension of ZF set theory
that was powerful enough to settle the value of BB(n)—even so, there could be no systematic way
to find those extensions. For if there were, then BB(n) would become computable.

I thank Oscar Cunningham for allowing me to share the following commentary on the above.12

I realised an interesting thing while reading this. If we define the theory Tn as

PA +“the nth Busy Beaver machine is b”

where b actually is the nth Busy Beaver machine, then T is a sequence of effectively ax-
iomatized consistent theories with arbitrarily high consistency strength! For any other
effectively axiomatized consistent theory S there’s some nS such that PA + Con(TnS)
proves Con(S).

So the Busy Beaver numbers give us a countable ladder on which we can place the
various Large Cardinal axioms for comparison to each other. Previously I’d been assum-
ing that the structure of all possible Large Cardinal axioms was much more complicated
than that, and that the order of their consistency strengths would be transfinite, with
no hope of having countable cofinality.

Proposition 3 is just a special case of a more general phenomenon. As we’ll see in Section 5.2,
there happens to be a Turing machine with 27 states, which given a blank input, runs through all
even numbers 4 and greater, halting if it finds one that isn’t a sum of two primes. This machine
halts if and only Goldbach’s Conjecture is false, and by the definition of BB, it halts in at most
BB(27) steps if it halts at all. But this means that knowing the value of BB(27) would settle
Goldbach’s Conjecture—at least in the abstract sense of reducing that problem to a finite, BB(27)-
step computation. Analogous remarks apply to the Riemann Hypothesis and every other unproved
mathematical conjecture that’s expressible as a “Π1 sentence” (that is, as a statement that some
computer program runs forever). In that sense, the values of the Busy Beaver function—and not
only that, but its relatively early values—encode a large portion of all interesting mathematical
truth, and they do so purely in virtue of how large they are.

I can’t resist a further comment. For me, perhaps the central philosophical reason to care
about the BB function is that it starkly renders the case for being a “Platonist” about arithmetical
questions, like Goldbach’s Conjecture or the Riemann Hypothesis. My own case would run as
follows: do we agree that it’s an iron fact that BB(2) = 6 and BB(3) = 21—a fact independent of
all axioms, interpretations, and models? Simply because BB(2) and BB(3) have been calculated
(see Section 4), as surely as 5 + 5 has been? But if so, then why shouldn’t there likewise be a fact

12See https://www.scottaaronson.com/blog/?p=4916#comment-1849770

6

https://www.scottaaronson.com/blog/?p=4916#comment-1849770

about BB(1000)? At exactly which n does the value of BB(n) become vague or indeterminate?
As we’ll see in Section 4.2, if there is a model-independent fact about BB(1000), then there are
also model-independent facts about the consistency of ZF set theory, the Goldbach Conjecture, the
Riemann Hypothesis, and much else, just as an “arithmetical Platonist” would claim.

3 Above and Below Busy Beaver

It’s natural to ask if there are functions that grow even faster than Busy Beaver—let’s say “much”
faster, in the sense that they still couldn’t be computably upper-bounded even given an oracle for
BB or HALT. The answer is easily shown to be yes.

Define the “super Busy Beaver function,” BB1(n), exactly the same way as BB(n), except
that the Turing machines being maximized over are now equipped with an oracle for the original
BB function—or, nearly equivalently (by Proposition 1), with an oracle for HALT. (The precise
definition of BB1 will depend on various details of the oracle access mechanism, but those are
unimportant for what follows.) Then since the arguments in Section 2 relativize, we find that
BB1(n) dominates not only BB(n) itself, but any function computable using a BB oracle.

Continuing, one can define the function BB2(n), by maximizing the number of steps over halting
n-state Turing machines with oracles for BB1. (Observe that, in our new notation, the original BB
function becomes BB0.) Next one can define BB3 in terms of Turing machines with BB2 oracles,
then BB4(n), and so on, and can proceed in this way through not only all the natural numbers,
but all the computable ordinals13: BBω(n), BBωω(n), BB

ωω··
· (n), and so on. (Technically, if α is a

computable ordinal, then the definition of BBα will depend not only on α itself, but on the notation
by which a Turing machine specifies ordinals up to α.) Each such function will grow faster than
any function computable using an oracle for all the previous functions in this well-ordered list.

One can even define, for example, BBωZF(n), where ωZF is the computable ordinal that’s the
supremum of all the computable ordinals that can be proven to exist in ZF set theory.14 Or—and
I thank Niels Lohmann for this observation15—one could even diagonalize across all computable
ordinals. So for example, let ω(n) be the supremum of all the computable ordinals whose order
relations are computable by n-state Turing machines. Then set F (n) := BBω(n)(n). One could of
course go even further than this, but perhaps that’s enough for now.

Perhaps the ultimate open problem in BusyBeaverology—albeit, not an especially well-defined
problem!—is just how much further we can go, while restricting ourselves to notations that are
“sufficiently clear and definite.”16 Regardless, it seems likely that a “who can name the bigger
number” contest, carried out between two experts, would quickly degenerate into an argument over
which notations, for ordinals and so forth, are allowed when defining a generalized BB function.

I can’t resist including a beautiful fact about the generalized BB functions, which was brought to

13A computable ordinal is simply the order type of some well-ordering of the positive integers, whose order relation
can be decided by a Turing machine. The supremum of the computable ordinals is the so-called Church-Kleene
ordinal, ωCK, which is not computable.

14For a self-contained proof that the ordinal ωZF is computable, see for example
https://mathoverflow.net/questions/165338/why-isnt-this-a-computable-description-of-the-ordinal-of-zf
15See comments 62 and 96 at https://www.scottaaronson.com/blog/?p=4916
16Rayo (see https://googology.wikia.org/wiki/Rayo%27s_number) claimed to define even faster-growing se-

quences, by using second-order logic. However, I’m personally unwilling to regard an integer sequence as “well-
defined,” if (as in Rayo’s case) the values of the integers might depend on the truth or falsehood of the Axiom of
Choice, the Continuum Hypothesis, or other statements of transfinite set theory.

7

https://mathoverflow.net/questions/165338/why-isnt-this-a-computable-description-of-the-ordinal-of-zf
https://www.scottaaronson.com/blog/?p=4916
https://googology.wikia.org/wiki/Rayo%27s_number

my attention by Bjørn Kjos-Hanssen.17 Computability theorists call a language L hyperarithmetic
if it’s computable given an oracle for BBα, for some computable ordinal α. Then:

Proposition 4 L is hyperarithmetic, if and only if it’s computable given an oracle for any suffi-
ciently rapidly-growing function.

Proof. For the forward direction, if L is computable given BBα, then L is also computable given
any upper bound f on BBα. For we can compute BBα given such an f , by just simulating all
n-state oracle Turing machines (and their oracles, and their oracles’ oracles, and so on) for the
appropriate number of steps.

For the reverse direction, Solovay [14] showed that L is hyperarithmetic if and only if for all
infinite sets S ⊆ N, there exists a subset A ⊆ S such that L is computable given an oracle for A.
Fix an f : N → N such that L is computable given an oracle for any upper bound on f . Then
for all infinite S ⊆ N, the subset A ⊆ S whose nth element is an S-element exceeding f(n) satisfies
Solovay’s condition, so L is hyperarithmetic.

3.1 Semi-Busy Beavers

As a teenager, soon after I learned about the Busy Beaver function, I wondered the following: is
there any function whose growth rate is intermediate between the computable functions and the
functions like Busy Beaver?

It turns out that, using standard techniques from computability theory, it’s not hard to construct
such a function:

Theorem 5 There exists a function g : N→ N such that

(i) for all computable functions f , there exists an nf such that g(n) > f(n) for all n ≥ nf , but

(ii) HALT (or equivalently, BB) is still uncomputable given an oracle for g.

Proof. Let f1, f2, . . . be an enumeration of all computable functions from N to N. We’ll set

g(n) := max
i≤w(n)

fi(n),

for some nondecreasing function w : N → N (to be chosen later) that increases without bound.
This is already enough to ensure property (i)—i.e., that g eventually dominates every computable
function fi. So all that remains is to choose w so that g satisfies property (ii).

Let R1, R2, . . . be an enumeration of Turing machines that are candidate reductions from HALT
to g. Then we construct w via the following iterative process: set w(1) := 1. Then, for each
n = 1, 2, 3, . . ., if there exists an input x ∈ {0, 1}∗ such that the machine Rgw(n)(x) queries g only

on values n′ ≤ n (i.e., the values for which g has already been defined), and then fails to decide
correctly whether x ∈ HALT, then set w(n+ 1) := w(n) + 1. Otherwise, set w(n+ 1) := w(n).

Provided w increases without bound, clearly this construction satisfies property (ii), since it
eventually “kills off” every possible reduction from HALT to g. So it remains only to verify that
w increases without bound. To see this, note that if w(n) “stalled” forever at some fixed value w∗,

17See https://www.scottaaronson.com/blog/?p=4916#comment-1850680

8

https://www.scottaaronson.com/blog/?p=4916#comment-1850680

then g would be computable, and Rgw∗ would decide HALT on all inputs. Therefore HALT would
be computable, contradiction.

More generally, one can create a dense collection of growth rates that interpolate between
computable and “Busy-Beaver-like.” And with a little more work, one can ensure that these
growth rates are all computable given a BB oracle. However, the intermediate growth rates so
constructed will all be quite “unnatural”; finding “natural” intermediates between the computable
functions and HALT is a longstanding open problem.18

4 Concrete Values

Having covered the theory of the Busy Beaver function and various generalizations, I’ll now switch
gears, and discuss what’s known about the values of the actual, concrete BB function, defined using
1-tape, 2-symbol Turing machines as in Section 1.

One warning: the recent bounds that I’ll cite typically come not from peer-reviewed papers,
but from posts to online forums or code repositories, with varying levels of explanation and docu-
mentation. It’s possible that bugs remain—particularly given the infeasibility of testing programs

that are supposed to run for > 1010
1010

steps! In this survey, I’ll give publicly available construc-
tions the benefit of the doubt, but it would be great to institute better vetting and ideally formal
verification.

The following table lists the accepted values and lower bounds for BB(1), . . . ,BB(7), as of July
2020. Because it will be relevant later, the values of Radó’s ones function Σ are also listed.

n BB(n) Σ(n) Reference

1 1 1 Trivial

2 6 4 Lin 1963 (see [9])

3 21 6 Lin 1963 (see [9])

4 107 13 Brady 1983 [2]

5 ≥ 47, 176, 870 ≥ 4, 098 Marxen and Buntrock 1990 [10]

6 > 7.4× 1036,534 > 3.5× 1018,267 Kropitz 2010 [8]

7 > 102×10
1010

18,705,353

> 1010
1010

18,705,353

“Wythagoras” 2014 (see [12, Section 4.6])

For completeness, here are the Busy Beavers and (for n ≥ 5) current champions themselves.
The states are labeled A, B, C, . . . (A is the initial state), H means Halt, and (e.g.) 1RB in the
A0 entry means “if in state A and reading 0, then write 1, move right, and transition to state B.”

18The following computational task can be shown to have intermediate difficulty between computable and HALT:
given as input a Turing machine M , if M accepts on the all-0 input then accept, if M rejects then reject, and if M
runs forever, then either accept or reject. However, I don’t know how to use this task to define an intermediate
growth rate.

9

n = 2 A B

0 1RB 1LA

1 1LB H

n = 3 A B C

0 1RB 1LB 1LC

1 H 0RC 1LA

n = 4 A B C D

0 1RB 1LA H 1RD

1 1LB 0LC 1LD 0RA

n = 5 A B C D E

0 1RB 1RC 1RD 1LA H

1 1LC 1RB 0LE 1LD 0LA

n = 6 A B C D E F

0 1RB 1RC 1LD 1RE 1LA H

1 1LE 1RF 0RB 0LC 0RD 1RC

n = 7 A B C D E F G

0 1RB 1RC 1LD 1LF H 1RG 1LB

1 N/A 0LG 1RB 1LE 1LF 0LD 0RF

(The n = 7 machine has an “N/A” entry because it never returns to state A.)

It’s not hard to see that BB(1) = 1: on an all-0 input tape, a 1-state Turing machine either halts
on the very first step, or else it moves infinitely to either the left or the right. For larger values,
the hardest part is of course to show that all machines that run for longer than the claimed bound
actually run forever. For this, Lin and Radó [9] and Brady [2] used a combination of automated
proof techniques and hand analysis of a few “holdout” cases. Meanwhile, to find the current n = 5
champion, Marxen and Buntrock [10] had to do a computer search that was sped up by numerous
tricks, such as pruning the search tree of possible machines, and speeding up the simulation of
a given machine by grouping together many adjacent tape squares into blocks. Kropitz [8] then
built on those techniques to find the current n = 6 champion, and “Wythagoras” adapted Kropitz’s
machine to produce the current n = 7 champion.

But what do the record-holding machines actually do, semantically? Let’s consider just one
example: the 5-state machine found by Marxen and Buntrock [10], which established that BB(5) ≥
47, 176, 870. According to Michel [12, Section 5.2.1], the Marxen-Buntrock machine effectively
applies a certain iterative map, over and over, to a positive integer encoded on the tape. The
map is strongly reminiscent of the infamous Collatz map, which (recall) is the function f : N → N
defined by

f(x) :=

{
x/2 if x is even

3x+ 1 if x is odd

The Collatz Conjecture says that, for every positive integer x, repeated application of the above
map (f(x), f(f(x)), etc.) leads eventually to 1. This has been verified for all x ≤ 268 but remains
open.

For the Marxen-Buntrock machine, the relevant map is instead

g(x) :=


5x+18

3 if x ≡ 0 (mod 3)
5x+22

3 if x ≡ 1 (mod 3)

⊥ if x ≡ 2 (mod 3)

The question is whether, if we start from x = 0 and then repeatedly set x := g(x), we’ll ever
reach the ⊥ state. The answer turns out to be yes, via the following orbit (which happens to be
extremely long, compared to a random orbit of g):

0→ 6→ 16→ 34→ 64→ 114→ 196→ 334→ 564

→ 946→ 1584→ 2646→ 4416→ 7366→ 12284→ ⊥.

10

By iterating g and halting when x = ⊥ is reached, the Marxen-Buntrock machine verifies the above
fact about g. The machine runs for tens of millions of steps because of one further detail of its
construction: namely, that except for the very last iteration, it spends a number of steps mapping
x to g(x) that scales roughly like 5

9x
2.

As it turns out, the current 6-state champion, due to Kropitz, also applies a Collatz-like map,
albeit one that sends an integer x to an exponentially larger integer (see [12, Section 5.3.1]). With
the Kropitz machine, there are only five iterations until halting—but because of the repeated expo-
nentiation, that’s enough to produce an astronomical x, of order 430340, and hence an astronomical
runtime. Most other strong contenders over the past 30 years have also applied Collatz-like maps to
integers or pairs of integers, although not quite all of them. This of course raises the possibility—
whether enticing or terrifying!—that progress on determining the small values of BB(n) might go
hand in hand with progress on the Collatz Conjecture and its variants. (Indeed, given this con-
nection, it might come as no surprise that, as shown by John Conway [4], a generalized version of
the Collatz Conjecture is Turing-undecidable.)

4.1 Further Out

There are more general computable lower bounds on BB(n), although they’re of interest only for
small values of n (as n→∞ it becomes easy to beat them). For example, in 1964 Green [6] showed
that BB(2n) ≥ A(n−2) for all n ≥ 2. Here A is the Ackermann function, which is also famous for
its explosive growth even though it pales when compared to Busy Beaver: A(n) := A(n, n), where

A(0, n) := n+ 1,

A(m+ 1, 0) := A(m, 1),

A(m+ 1, n+ 1) := A(m,A(m+ 1, n)).

Actually Green proved even that Σ(2n) ≥ A(n− 2), where Σ is Radó’s ones function.
Building on Green’s work, as well as earlier work by online forum users, in 2016 “Wythagoras”

was able to show19 that BB(18) already exceeds Graham’s number20 G: a contender for the largest
number ever to appear in mathematical research, typically expressed via recursive use of Knuth’s
up-arrow notation.

4.2 Concrete Bounds on Knowability

Recall Proposition 3, one of the most striking facts about the Busy Beaver function: that for
any axiomatic theory (for example, ZF set theory), there exists a constant c such that the theory
determines at most c values of BB(n). But what is c? Is it more like 107 or like 10? Surprisingly,
until very recently, there seem to have been no attempts to address that question.

The question is interesting because it speaks to a very old debate: namely, whether Gödelian
independence from strong formal systems is a property only of “absurdly complicated” statements
in arithmetic, such as those that talk directly about the formal systems themselves, or whether
independence rears its head even for “natural” statements. Of course, expressibility by a small

19See https://googology.wikia.org/wiki/User_blog:Wythagoras/The_nineteenth_Busy_Beaver_number_is_

greater_than_Graham%27s_Number!
20See https://en.wikipedia.org/wiki/Graham%27s_number

11

https://googology.wikia.org/wiki/User_blog:Wythagoras/The_nineteenth_Busy_Beaver_number_is_greater_than_Graham%27s_Number!
https://googology.wikia.org/wiki/User_blog:Wythagoras/The_nineteenth_Busy_Beaver_number_is_greater_than_Graham%27s_Number!
https://en.wikipedia.org/wiki/Graham%27s_number

Turing machine is not quite the same as “naturalness,” but it has the great advantage of being
definite.21

Seeking to get the ball rolling with this subject, in 2016, my then-student Adam Yedidia and I
[15] proved the following.

Theorem 6 ([15]) There’s an explicit22 7910-state Turing machine that halts iff the set theory
ZF + SRP (where SRP means Stationary Ramsey Property) is inconsistent. Thus, assuming that
theory is consistent, ZF cannot prove the value of BB(7910).

Our proof of Theorem 6 involved three ideas. First, we relied heavily on work by Harvey
Friedman, who gave combinatorial statements equivalent to the consistency of ZF + SRP. Second,
since hand-designing a 7910-state Turing machine was out of the question, we built a custom
programming language called “Laconic,” along with a sequence of compilers (to multitape and then
single-tape Turing machines) that aggressively minimized state count at the expense of running time
and everything else. This was enough to produce a machine with roughly 400, 000 states. Third,
to reduce the state count, we repeatedly used the idea of “introspective encoding”: that is, a Turing
machine that first writes a program onto its tape, and then uses a built-in interpreter to execute
that program. This idea eliminates many redundancies that blow up the number of states.

Soon afterward, Stefan O’Rear improved our result to get a 1919-state machine, and then
following continued improvements, a 748-state machine.23 While it reuses a variant of our La-
conic language, as well as the introspective encoding technique, O’Rear’s construction just directly
searches for an inconsistency in ZF set theory, thereby removing the reliance on Friedman’s work
as well as on the SRP axiom. Assuming O’Rear’s construction is sound, we therefore have:

Theorem 7 (O’Rear) There’s an explicit 748-state Turing machine that halts iff ZF is inconsis-
tent. Thus, assuming ZF is consistent, ZF cannot prove the value of BB(748).

Meanwhile, a GitHub user named “Code Golf Addict” apparently showed:24

Theorem 8 There’s an explicit 27-state Turing machine that halts iff Goldbach’s Conjecture is
false.

And Matiyasevich, O’Rear, and I showed:25

Theorem 9 There’s an explicit 744-state Turing machine that halts iff the Riemann Hypothesis is
false.

21There are many examples of “simple” problems in arithmetic—Diophantine equations, tiling, matrix mortality,
etc.—that encode universal Turing computation, and that therefore, given a suitable input instance, would encode
Gödel undecidability as well. However, it’s important to realize that none of these count as “simple” examples of
Gödel undecidability in the sense we mean, unless the input that produces the Gödel undecidability is also simple.
The trouble is that typically, such an input will need to encode a program that enumerates all the theorems of ZF,
or something of that kind—a relatively complicated object.

22As an early reader pointed out, the word “explicit” is needed here because otherwise such theorems are vacuously
true! Consider, for example, a 1-state Turing machine M “defined” as follows: if ZF + SRP is inconsistent, then
choose M to halt in the first step; otherwise choose M to run forever.

23See https://github.com/sorear/metamath-turing-machines/blob/master/zf2.nql
24See https://gist.github.com/anonymous/a64213f391339236c2fe31f8749a0df6 or https://gist.github.com/

jms137/cbb66fb58dde067b0bece12873fadc76 for an earlier 47-state version with better documentation.
25See https://github.com/sorear/metamath-turing-machines/blob/master/riemann-matiyasevich-aaronson.

nql

12

https://github.com/sorear/metamath-turing-machines/blob/master/zf2.nql
https://gist.github.com/anonymous/a64213f391339236c2fe31f8749a0df6
https://gist.github.com/jms137/cbb66fb58dde067b0bece12873fadc76
https://gist.github.com/jms137/cbb66fb58dde067b0bece12873fadc76
https://github.com/sorear/metamath-turing-machines/blob/master/riemann-matiyasevich-aaronson.nql
https://github.com/sorear/metamath-turing-machines/blob/master/riemann-matiyasevich-aaronson.nql

5 The Frontier

My main purpose in writing this survey is to make people aware that there are enticing open
problems about the Busy Beaver function—many of them conceptual in nature, many of them
potentially solvable with modest effort.

5.1 Better Beaver Bounds

Perhaps the most obvious problem is to pin down the value of BB(5). Let me stick my neck out:

Conjecture 10 BB(5) = 47, 176, 870.

Recall that in 1990, Marxen and Buntrock [10] found a 5-state machine that halts after 47, 176, 870
steps. The problem of whether any 5-state machine halts after even more steps has now stood for
thirty years. In my view, the resolution of this problem would be a minor milestone in humanity’s
understanding of computation.

Apparently, work by several people, including Georgi Georgiev and Daniel Briggs, has reduced
the BB(5) problem to only 25 machines whose halting status is not yet known.26 These machines
are all conjectured to run forever. At my request, Daniel Briggs simulated these 25 “holdout”
machines for 100 billion steps each and confirmed that none of them halt by then,27 which implies
in particular that either BB(5) = 47, 176, 870 (i.e., Conjecture 10 holds) or else BB(5) > 1011. It
would be good to know whether the non-halting of some or all of these holdouts can be reduced to
Collatz-like statements, as with the halting of the Marxen-Buntrock machine (see Section 4).

It would also be great to prove better lower bounds on BB(n) for n > 5. Could BB(7)
or BB(8) already exceed Graham’s number G? As I was writing this survey, my 7-year-old
daughter Lily (mentioned in Section 1) raised the following question: what’s the first n such that
BB(n) > A(n), where A(n) is the Ackermann function defined in Section 4? Right now, I know only
that 5 ≤ n ≤ 18, where n ≤ 18 comes (for example) from the result of “Wythagoras,” mentioned
in Section 4.1, that BB(18) exceeds Graham’s number.

I find it difficult to guess whether the values of BB(6) and BB(7) will ever be known.

5.2 The Threshold of Unknowability

What’s the smallest n such that the value of BB(n) is provably independent of ZF set theory? As
we saw in Section 4.2, there’s now a claimed construction showing that ZF doesn’t prove the value
of BB(748). My own guess is that the actual precipice of unknowability is much closer:

Conjecture 11 ZF does not prove the value of BB(20).

While I’d be thrilled to be disproved,28 I venture this conjecture for two reasons. First, the
effort to optimize the sizes of undecidable machines only started in 2015—but since then, sporadic

26See https://skelet.ludost.net/bb/nreg.html for a list of 43 machines whose halting status was open around
2010. Daniel Briggs reports that 18 of these machines have since been proved to run forever, leaving only 25; see
https://github.com/danbriggs/Turing for more information.

27See https://github.com/danbriggs/Turing/blob/master/doc/analysis7-24-20.txt
28Even if Conjecture 11 is false, showing that ZF does settle the value of BB(20) (presumably, by settling that

value ourselves) strikes me as an astronomically harder undertaking than settling P vs. NP.

13

https://skelet.ludost.net/bb/nreg.html
https://github.com/danbriggs/Turing
https://github.com/danbriggs/Turing/blob/master/doc/analysis7-24-20.txt

work by two or three people has steadily reduced the number of states from more than a million to
fewer than a thousand. Why should we imagine that we’re anywhere near the ground truth yet?
Second, as we saw in Section 4, the known lower bounds show that 5-state and 6-state machines
can already engage number theory problems closely related to the Collatz Conjecture. How far off
could Gödel-undecidability possibly be?

We could also ask when the BB function first eludes Peano arithmetic. Given that multiple “el-
ementary” arithmetical statements are known to be independent of PA—for example, Goodstein’s
Theorem [5] and the Kirby-Paris hydra theorem [7]—here I’ll conjecture an even earlier precipice
than for ZF:

Conjecture 12 PA does not prove the value of BB(10).

Short of Conjecture 12, an excellent project would be to derive any upper bound on the number
of BB values provable in PA, better than what’s known for ZF.

Finally, we might wonder: are Con(ZF) or Con(PA) equivalent to some statement of the form
BB(n) = k? I conjecture that the answer is no, so that (for example) there’s a significant gap
between the smallest n1 such that ZF + Con(ZF) fails to prove the value of BB(n1), and the smallest
n2 such that from the value of BB(n2) one can prove Con(ZF).

5.3 Uniformity of Growth

Consider the following conjecture, whose non-obviousness was first brought to my attention by a
blog comment of Joshua Zelinsky:29

Conjecture 13 There exists an n0 such that for all n ≥ n0,

BB(n+ 1) > 2BB(n).

Given what we know about the BB function’s hyper-rapid growth, Conjecture 13 seems true
with a massive margin to spare—perhaps even with n0 = 6. Indeed, the conjecture still seems
self-evident, even if we replace the exponentiation by Ackermann or any other computable function.
But try proving it!

From the results in Section 2, all that follows is that BB(n+ 1) > 2BB(n) for infinitely many n,
not for almost all n.

It’s not hard to see that BB(n + 1) > BB(n) for all n, since given an n-state Busy Beaver we
can add an (n + 1)st state that stalls for one extra step. Recently, spurred by an earlier version
of this survey, Bruce Smith obtained the following improvement (which he’s kindly allowed me to
share) to that trivial bound:30

Proposition 14 BB(n+ 1) ≥ BB(n) + 3.

Proof. Let M be an n-state Busy Beaver. Let S be M ’s state immediately prior to halting
when it’s run on an all-0 tape, and when M enters state S for the last time, let its tape contain
b ∈ {0, 1} in the current square and c ∈ {0, 1} in the square immediately to the left. We form a
new (n+ 1)-state machine M ′ that’s identical to M , except that

29See https://www.scottaaronson.com/blog/?p=1385#comment-73298
30See https://www.scottaaronson.com/blog/?p=4916#comment-1850628

14

https://www.scottaaronson.com/blog/?p=1385#comment-73298
https://www.scottaaronson.com/blog/?p=4916#comment-1850628

(1) when M ′ is in state S and reads b, rather than halting, it writes b, moves left, and transitions
to a new state Z,

(2) when M ′ is in state Z and reads c, it writes 1− c, moves right, and transitions to S, and

(3) when M ′ is in state Z and reads 1− c, it halts.

One can check that, on the step where M would’ve halted, M ′ instead moves left, then right, then
left before halting. Hence M ′ runs for BB(n) + 3 steps.

Smith, along with an earlier pseudonymous commenter, also observed the following:31

Proposition 15 BB(n+ 2) ≥
(
1 + 2

n

)
BB(n).

Proof. Let M be an n-state Busy Beaver, and let S be a state that’s visited at least BB(n)/n
times when M is run on an all-0 tape. We form an (n + 2)-state machine M ′ that’s identical to
M , except that it has two new states Y and Z, and:

(1) when M ′ is in state S, it leaves the tape unchanged, moves right, and transitions to Y ,

(2) when M ′ is in state Y , it leaves the tape unchanged, moves left, and transitions to Z, and

(3) when M ′ is in state Z, it does exactly as M would have done in S.

Then M ′ has the same behavior as M , except that it runs for 2 extra steps whenever it visits S.
In contrast to the above, suppose we want to modify a Turing machine M to run for way more

than s(M) steps: for example, 2s(M). Then the trouble is that we quickly find ourselves adding
many new states to M . This is closely related to the fact that Turing machines have no built-in
notion of subroutines, modularity, or local and global workspaces.

For Turing machines, the best known way to increase the running time massively by adding
more states is due to Ben-Amram and Petersen [1] from 2002:

Theorem 16 ([1]) Let f be any computable function. Then there exists a constant cf such that,
for all n,

BB (n+ 8 dn/ log2 ne+ cf) > f (BB(n)) .

The main idea in the proof of Theorem 16 is what Adam Yedidia and I [15] later termed
introspective encoding. Given an n-state Turing machine M , suppose we could design another
Turing machine M ′, with only slightly more states than M (say, n+ c states), which wrote a coded
description of M onto its tape. Then by adding O(1) additional states, we could do whatever we
liked with the coded description—including simulating M , or (say) counting the number of steps

s(M) until M halts, and then looping for 2s(M) or 22
s(M)

steps. Thus, for any computable function
f , such an encoding would imply the bound

BB (n+ c+Of (1)) > f (BB(n)) .

Unfortunately, given an n-state Turing machine M , the obvious machine that writes a descrip-
tion of M (up to isomorphism) to the tape has n log2 n+O(n)� n states: one for each bit of M ’s
description. However, by using a more careful encoding, it turns out that we can get this down
to n + O(n/ log n) states: off by only an additive error term from the information-theoretic lower
bound of n states. More generally:

31See https://www.scottaaronson.com/blog/?p=1385#comment-74461 and https://www.scottaaronson.com/

blog/?p=4916#comment-1850926

15

https://www.scottaaronson.com/blog/?p=1385#comment-74461
https://www.scottaaronson.com/blog/?p=4916#comment-1850926
https://www.scottaaronson.com/blog/?p=4916#comment-1850926

Lemma 17 (Introspective Encoding Lemma, implicit in [1]) Let x ∈ {0, 1}dn log2 ne. Then

there exists a Turing machine Mx, with n+O
(

n
logn

)
states, that outputs x (and only x) when run

on an all-0 tape.

Note that, by a counting argument, such an Mx must have at least n − O
(

n
logn

)
states in

general.
Thus, one natural way to make progress toward Conjecture 13 would be to improve the error

term in Lemma 17: say, to O (
√
n) or even O(log n). On the other hand, to establish large,

uniform gaps between (say) BB(n) and BB(n+1), one might need to move beyond the introspection
technique.

Let me remark that the situation is better for most programming languages; Turing machines
are almost uniquely bad for Zelinsky’s problem. More concretely, let L be a programming language
whose programs consist of bit-strings. Recall that BBL(n) is the largest finite number of steps
taken on a blank input by any L-program at most n bits long. Then to study the fine-grained
growth of BBL(n), the relevant question is this: given an n-bit L-program Q, how long must an
L-program Q′ be that stores Q as a string and then interprets the string?

If Q′ can be only log2 n+O(1) bits longer than Q itself—say, because Q′ just needs to contain
n and Q, in addition to a constant-sized interpreter—then we get that for all computable functions
f , there exists a constant cf such that for all n,

BBL (n+ log2 n+ cf) > f (BBL(n)) .

In the special case of Lisp, matters are better still, because of Lisp’s “quote” mechanism and its
built-in interpreter. There we get that for all computable functions f , there exists a constant cf
such that for all n,

BBLisp (n+ cf) > f (BBLisp(n)) .

Moreover, for simple functions f the constant cf should be quite small.

5.4 Shifts Versus Ones

Using Lemma 17 (i.e., introspective encoding), Ben-Amram and Petersen [1] established other
interesting inequalities: for example, that there exists a constant c such that

BB(n) < Σ (n+ 8 dn/ log2 ne+ c)

for all n, where Σ(n) is Radó’s ones function. This is the best current result upper-bounding BB
in terms of Σ. If, however, we could move beyond introspection, then perhaps we could get a much
tighter relationship, like the following:

Conjecture 18 BB(n) < Σ(n+ 1) for all n ≥ 4.

Currently, the inequality BB(n) < Σ(n+ 1) is known to fail only at BB(3) = 21 and Σ(4) = 13.
Based on the limited data we have, I can’t resist venturing an outrageously strong conjecture:

namely, that Radó’s shift function and ones function are quadratically related, with BB(n) ≈ Σ(n)2

for all n. Or more precisely:

16

Conjecture 19

lim
n→∞

log BB(n)

log Σ(n)
= 2.

A heuristic argument for Conjecture 19 is that the known Busy Beavers, and current champions,
all seem to move back and forth across the tape order Σ(n) times, visiting a few more squares each
time, until order Σ(n) squares have been visited. But of course, another possibility is that the
limit in Conjecture 19 doesn’t even exist.

5.5 Evolving Beavers

Suppose you already knew BB(n). Could a trusted wizard32 send you a short message that would
let you calculate BB(n + 1) as well? Equivalently, in the hunt for an (n + 1)-state Busy Beaver,
how useful of a clue is an n-state Busy Beaver?

Chaitin [3] raised the above question, motivated by a hypothetical model of “Turing machine
biology,” in which larger Busy Beavers need to evolve from smaller ones. Perhaps surprisingly, he
observed that BB(n) can provide a powerful clue about BB(n+ 1).

To state Chaitin’s result formally, recall that a language L ⊂ {0, 1}∗ is called prefix-free if no
string in L is a proper prefix of any other. Also, given a programming language L, recall that
BBL is the variant of the Busy Beaver function for L. Finally, given strings x and y, recall that
the conditional Kolmogorov complexity K(y|x) is the bit-length of the shortest program P , in some
universal programming language, such that P (x) = y.

I’ll prove the following result for completeness, since the proof might be hard to extract from
[3]. I thank my former student, Luke Schaeffer, for explaining the proof to me.

Theorem 20 (implicit in Chaitin [3]) Let L be any standard prefix-free universal programming
language, such as Lisp. Then K (BBL(n+ 1) | BBL(n)) = O(log n).33

Proof. We can assume without loss of generality that n itself is provided to the program for
BBL(n+ 1) along with BBL(n), since that adds only an O(log n) overhead.

The key idea is to relate BBL to Chaitin’s famous halting probability Ω = ΩL, which is defined
as

Ω :=
∑

P∈L : P (ε) halts

2−|P |,

where |P | is the bit-length of P and ε is the empty input. Since L is prefix-free, Ω ∈ (0, 1).
Let Ωn < Ω be the approximation to Ω obtained by truncating its binary expansion to the first

n bits.
Then our first claim is that, if we know BBL(n), then we can compute Ωn−c, for some c =

O(log n). To see this, recall that knowledge of BBL(n) lets us solve the halting problem for all
L-programs of length at most n. Now let Aβ be a program that hardwires a constant β ∈ (0, 1),
with n− c bits of precision, and that dovetails over all L-programs, maintaining a running bound

32The wizard has to be trusted, since otherwise we could compute BB(n+ 1) (and then BB(n+ 2), etc.) ourselves,
by iterating over all possible messages until we found one that worked. So for complexity theorists: we’re asking
here for Karp-Lipton advice, not for a witness from Merlin.

33If one is interested in unconditional Kolmogorov complexity, the analysis of Chaitin’s Ω used in the proof of this
theorem also establishes that K (BBL(n)) = n±O(logn).

17

q. Initially q = 0. Whenever a program P is found to halt, Aβ sets q := q + 2−|P |. If q ever
exceeds β then Aβ halts. Clearly, then, Aβ eventually halts if Ω > β, and it runs forever otherwise.
Furthermore, such an Aβ can be specified with at most n bits: n − c bits for β, and c bits for
everything else in the program, including the O(log n) overhead from the prefix-free encoding. But
this means that, by repeatedly varying β and then using BBL(n) to decide whether Aβ halts, we
can determine the first n− c bits of Ω.

Our second claim is that, if we know Ωn, then we can compute BBL(n). To do so, we simply
dovetail over all L-programs, again maintaining a running lower bound q on Ω. Initially q = 0.
Whenever a program P is found to halt, we set q := q + 2−|P |. We continue until q ≥ Ωn—which
must happen eventually, since Ωn is a strict lower bound on Ω. By this point, we claim that every
halting program P of length at most n must have halted. For suppose not. Then we’d have

q + 2−|P | ≥ Ωn + 2−n > Ω,

an absurdity. But this means that we can now compute BBL(n), by simply maximizing the running
time s(P) over all the programs P ∈ L ∩ {0, 1}≤n that have halted.

Putting the claims together, if we know BBL(n) then we can compute Ωn−c, for some c =
O(log n). But if we know Ωn−c, then we need to be told only c+ 1 additional bits in order to know
Ωn+1. Finally, if we know Ωn+1 then we can compute BBL(n+ 1).

Can one prove a version of Theorem 20 for the “classic” Busy Beaver function BB(n), defined
using Turing machines rather than prefix-free programming languages? I can indeed do so, by
combining the ideas of Theorem 20 with the introspective encoding from Section 5.3. As far as I
know, this little result is original to this survey. The bound I’ll get—that BB(n+ 1) is computable
given BB(n) together with O(n) advice bits—is quantitatively terrible compared to the O(log n)
advice bits from Theorem 20, but it does beat the trivial n log2 n±O(n) bits that would be needed
to describe an (n+ 1)-state Busy Beaver “from scratch.”

Theorem 21 K (BB(n+ 1) | BB(n)) = O(n).

Proof. Let enc be a function that takes as input a description 〈M〉 of a Turing machine M , and that
outputs a binary encoding, in some prefix-free language, of 〈M〉’s equivalence class under permuting

the states. It’s possible to ensure that, ifM has n states, then enc (〈M〉) ∈ {0, 1}n log2 n+O(n). Using
enc, we can define Chaitin’s halting probability for Turing machines as follows:

Ω :=
∑

M(ε) halts

2−|enc(〈M〉)|.

We now simply follow the proof of Theorem 20. Let Ωm < Ω be the approximation to Ω obtained
by truncating its binary expansion to the first m bits.

Then our first claim is that, if we know BB(n), then we can compute Ωn log2 n−c, for some
c = O(n). This follows from the same analysis as in Theorem 20, combined with Lemma 17 (the
Introspective Encoding Lemma). The latter is what produces the loss of O(n) bits.

Our second claim is that, if we know Ωn log2 n+c
′ , for some c′ = O(n), then we can compute

BB(n + 1). This follows from the same analysis as in Theorem 20, combined with the fact that
enc (〈M〉) maps each n-state machine to a string of length n log2 n+O(n).

Putting the claims together, if we know BB(n) then we can compute Ωn log2 n−c. So we need to
be told only c+ c′ = O(n) additional bits in order to know Ωn log2 n+c

′ , from which we can compute
BB(n+ 1).

18

I can now pose the open problem of this section. Can one improve Theorem 21, to show (for
example) that

K (BB(n+ 1) | BB(n)) = O(log n)?

Bruce Smith observes34 that, for Turing machines, Ω(log n) is the best that we could hope for here,
since K (BB(n)) = n log2 n±O(n). On the other hand, for bit-based programs, could Theorem 20
be improved to get the number of advice bits below O(log n)—possibly even down to a constant?
How interrelated are the successive values of BB(n)?

5.6 Behavior on Nonzero Inputs

Michel (see [11]) proved a striking property of the 2-, 3-, and 4-state Busy Beavers. Namely,
all of these machines turn out to halt on every finite input—that is, every initial tape with only
finitely many 1’s—rather than only the all-0 input.35 Michel also showed that the 5-state champion
discovered by Marxen and Buntrock [10] (see Section 4) halts on every finite input, if and only if
the following conjecture holds:

Conjecture 22 The map g : N→ N∪{⊥}, from Section 4, leads to ⊥ when iterated starting from
any natural number x.

Conjecture 22 looks exceedingly plausible, from heuristics as well as numerical evidence—but
proving it is yet another unsolved “Collatz-like” problem in number theory. The situation for the
current 6- and 7-state champions is similar (see [12, Section 5.7]): they plausibly halt on all inputs,
but only if some Collatz-like conjecture is true.

These observations inspire broader questions. For example, do all Busy Beavers halt on all
finite inputs? If not, then does any Busy Beaver have some input that causes it to reach an infinite
loop on a fixed set of tape squares, rather than using more and more squares? Does any Busy
Beaver act as a universal Turing machine?

5.7 Uniqueness of Busy Beavers

I thank Joshua Zelinsky and Nick Drozd36 for the following question. Call Turing machines M and
M ′ “essentially different” if they’re not equivalent under permuting the states and interchanging
left with right. Then there are two essentially different 1-state Turing machines that demonstrate
BB(1) = 1: one that halts immediately on reading either 0 or 1, and one that halts on 0 but
continues on 1. Likewise, there turn out to be several essentially different 2-state machines that
demonstrate BB(2) = 6. By contrast, the 3- and 4-state Busy Beavers are essentially unique, as is
the current 5-state candidate. What happens for larger n?

Conjecture 23 For all n ≥ 3, there is an essentially unique n-state Busy Beaver.

34See https://www.scottaaronson.com/blog/?p=4916#comment-1851116
35By contrast, if we allow infinite inputs, then even a 1-state Busy Beaver can easily be made to run forever, by a

starting it on an all-1’s tape.
36See comments 66 and 77 at https://www.scottaaronson.com/blog/?p=4916

19

https://www.scottaaronson.com/blog/?p=4916#comment-1851116
https://www.scottaaronson.com/blog/?p=4916

5.8 Structure of Busy Beavers

I thank (once again) Joshua Zelinsky37 for the following question. If we draw the Busy Beavers
and current Busy Beaver candidates for n ≤ 6 as directed graphs, with the n states as vertices and
the 2n transitions as edges, we find that all are strongly connected : that is, every state (including
the initial state) is reachable from every other state via some sequence of symbols. By contrast,
the n = 7 candidate found by “Wythagoras” does not have this property, as the initial state is
never revisited. But, partly for that reason, the n = 7 candidate seems clearly suboptimal. This
leads to the following conjecture:

Conjecture 24 Every Busy Beaver Turing machine, viewed as a directed graph, is strongly con-
nected.

Or at least, one might conjecture that every Busy Beaver is strongly connected on all but O(1)
states. A related intuition, though harder to formalize, is that Busy Beavers shouldn’t be “cleanly
factorizable” into main routines and subroutines—but rather, that the way to maximize runtime
should be via “spaghetti code,” or a single n-state amorphous mass.

5.9 The Spectrum of Runtimes

Recall from Section 1 that T (n) is the set of n-state Turing machines, and s(M) is the running time
of machine M on an all-0 input tape. Let R(n) be the spectrum of possible runtimes of n-state
machines on the all-0 input:

R(n) := {k ∈ N : s(M) = k for some M ∈ T (n)} .

There are many interesting questions that we could ask about R(n), beyond just its maximum
element (namely BB(n)). As one example, how many distinct runtimes are there for n-state
machines? As a second example, how does the gap between BB(n) and the second -longest runtime
behave, as a function n? For n ∈ {2, 3}, this gap is only 1, but for n = 4 the gap appears to be
10, and for n = 5, assuming Conjecture 10, it appears to be 23, 622, 106, almost exactly half the
runtime of the current 5-state champion (see Michel [12]).

Here is a third example: following a suggestion by a commenter on my blog,38 define the nth

Lazy Beaver Number, or LB(n), to be the least k ∈ N such that k 6∈ R(n): that is, such that
no n-state machine runs for exactly k steps. Unlike the BB function, the LB function is clearly
computable. Moreover, by a simple counting argument, we have

LB(n) ≤ |T (n)|+ 1 ≤ (4n+ 1)2n + 1.

What else can we say about the growth rate of LB? Certainly LB(n+ 1) > LB(n) for all n, since
we can always use an extra state either to maintain the same runtime or to increase it by 1. Also,
via explicit constructions of Turing machines, and using Lemma 17 (the Introspective Encoding
Lemma of Ben-Amram and Petersen [1]), it is not hard to show that there exists a constant c such
that LB(n) ≥ |T (n)| /cn for all n. I conjecture that a stronger lower bound holds:

37See https://www.scottaaronson.com/blog/?p=4916#comment-1850560
38See https://www.scottaaronson.com/blog/?p=4916#comment-1850265

20

https://www.scottaaronson.com/blog/?p=4916#comment-1850560
https://www.scottaaronson.com/blog/?p=4916#comment-1850265

Conjecture 25

LB(n) ≥ |T (n)|
nO(1)

.

Regarding concrete values, my modest searches have revealed that LB(n) = BB(n) + 1 for n ∈
{1, 2, 3}, and also that LB(4) ≥ 41. I believe that it ought to be feasible to calculate LB(n) for
n ∈ {4, 5, 6}.

5.10 Beeping Busy Beavers

The following question emerged from an email conversation between me and Harvey Friedman.
Recall, from Section 3, that one can define a function BB1(n), involving Turing machines with
oracles for the original BB function, which grows uncomputably quickly even given an oracle for
BB. Could we compute the first values of BB1? Alas, this is liable to be uninteresting, just
because the details of how a Turing machine queries a BB oracle (by writing n onto an oracle tape,
etc.) will involve many kludgy and non-canonical choices, and one might need many states before
one saw the effect of those choices.

But there’s an alternative. Define a beeping Turing machine to be exactly the same as one of
the Turing machines from Section 1, except that it emits a “beep” as it exits a certain designated
state, called the “beep state.” Then given a beeping Turing machine M , let b(M) be the number
of the last step on which M beeps (or b(M) := ∞ if M beeps infinitely often), when M is run on
an initially all-0 input tape. Finally, define the nth Beeping Busy Beaver number by

BBB(n) := max
M∈T (n) : b(M)<∞

b(M).

Clearly BBB(n) ≥ BB(n) for all n, since we could designate the state from which M halts as
its beep state. One can show that, as n gets larger, BBB must grow uncomputably faster than
even BB—indeed, it grows at a similar rate to BB1, in the sense that BBB and BB1 are both
computable given an oracle for any upper bound on the other. This is because the problem of
whether a given machine M beeps finitely many times is complete for Σ2, the second level of the
arithmetical hierarchy. By contrast, the question of whether M halts is complete for Σ1.

39

Via case analysis, I’ve confirmed that BBB(1) = 1 and BBB(2) = 6, same as for the standard
BB function. I’ve also confirmed that

BBB(3) ≥ 55 > BB(3) = 21,

via the following 3-state machine, with B as its beep state:

A B C

0 1LB 1RA 1RC

1 0RB 0LC 1RA

39A different way to get BB1-like growth, which was actually Friedman’s original suggestion, would be to define a
Busy Beaver function for nondeterministic Turing machines, with the “running time” of such a machine taken to be
the number of steps in its longest halting path. However, BBB struck me as more amenable to empirical study for
small values of n.

21

After last visiting state B at step 55, this machine spends an eternity in state C. I found many
other 3-state machines that approach this performance but none that exceed it, which leads to the
guess BBB(3) = 55.

Beyond proving or disproving that guess, it would be extremely interesting to know by just how
much BBB(4) exceeds BB(4), and to compare the best lower bounds for n ∈ {5, 6, 7}. Also, can
we show that the value of BBB(n) is independent of ZF set theory, for n much smaller than what
we know for BB?

5.11 Busy Beaver and Number Theory

I’ll conclude with questions posed by my former student Andy Drucker. He asked:
Is BB(n) infinitely often even? Odd? Is the set {n : BB(n) is odd} computable?
Currently, we know only that BB(2) is even, while BB(1), BB(3), and BB(4) are odd. If

Conjecture 10 holds then BB(5) is even.
We could likewise ask: is BB(n) infinitely often prime? Composite? (Right now one prime

value is known: BB(4) = 107.) Is BB(n) ever a perfect square or a power of 2? Etc.
Of course, just like many of the questions discussed in previous sections, the answers to these

questions could be highly sensitive to the model of computation. Indeed, it’s easy to define a
Turing-complete model of computation wherein every valid program is constrained to run for an
even number of steps (or a square number of steps, etc), so that some of these number-theoretic
questions would be answered by fiat!

But what are the answers in “natural” models of computation, like Turing machines (as for the
usual BB function), RAM machines, or Lisp programs?

Admittedly, these are not typical research questions for computability theory, since they’re so
model-dependent. But that’s part of why I’ve grown to like the questions so much. Even to make
a start on them, it seems, one would need to say something new and general about computability,
beyond what’s common to all Turing-universal models—something able to address “computational
epiphenomena,” like whether a machine will run for an odd or even number of steps, after we’ve
optimized it for a property completely orthogonal to that question.

Nearly sixty years after Radó defined it, Busy Beaver—a finite-valued function with infinite
aspirations—continues to beckon and frustrate those for whom the space of all possible programs
is a world to be explored. Granted that we’ll never swim in it, can’t we wade just slightly deeper
into Turing’s ocean of unknowability?

6 Acknowledgments

I thank Bill Gasarch for proposing this article, Lily Aaronson for raising the question about BB(n)
versus A(n), Daniel Briggs and Georgi Georgiev for answering my questions about the 5-state
holdout machines, Oscar Cunningham for the comment in Section 2, Andy Drucker for raising the
questions in Section 5.11, Harvey Friedman for inspiring Section 5.10, Marijn Heule for Figure 1 and
for inspiring Section 5.6, Bjørn Kjos-Hanssen for Proposition 4, Niels Lohmann for the observation
in Section 3, Luke Schaeffer for helping me understand the ideas in Sections 5.3 and 5.5, Bruce
Smith for Propositions 14 and 15, and Joshua Zelinsky for raising the questions in Sections 5.3,
5.7, and 5.8. I also thank Nick Drozd, Adam Klivans, Heiner Marxen, Toby Ord, John Stillwell,
Ronald de Wolf, and the aforementioned people for discussions and feedback.

22

References

[1] A. M. Ben-Amram and H. Petersen. Improved bounds for functions related to Busy
Beavers. Theory Comput. Syst., 35(1):1–11, 2002. http://citeseerx.ist.psu.edu/

viewdoc/download?doi=10.1.1.136.5997&rep=rep1&type=pdf.

[2] A. H. Brady. The determination of the value of Rado’s noncomputable function Σ(k) for
four-state Turing machines. Mathematics of Computation, 40(162):647–665, 1983.

[3] G. Chaitin. To a mathematical theory of evolution and biological creativity. Technical Report
391, Centre for Discrete Mathematics and Theoretical Computer Science, 2010. www.cs.

auckland.ac.nz/research/groups/CDMTCS/researchreports/391greg.pdf.

[4] J. H. Conway. Unpredictable iterations. In Proc. 1972 Number Theory Conference, University
of Colorado, Boulder, pages 49–52, 1972.

[5] R. Goodstein. On the restricted ordinal theorem. J. Symbolic Logic, 9:33–41, 1944. https:

//pdfs.semanticscholar.org/4d96/c256994f190617a34aac56c9b9bfb23f43d9.pdf.

[6] M. W. Green. A lower bound on Rado’s Sigma function for binary Turing machines. In Proc.
IEEE FOCS, pages 91–94, 1964.

[7] L. Kirby and J. Paris. Accessible independence results for Peano arithmetic. Bulletin of
the London Mathematical Society, 14:285–293, 1982. https://faculty.baruch.cuny.edu/

lkirby/accessible_independence_results.pdf.

[8] P. Kropitz. Busy Beaver Problem. Bachelors thesis, Charles University in Prague, 2011. In
Czech. https://is.cuni.cz/webapps/zzp/detail/49210/.

[9] S. Lin and T. Radó. Computer studies of Turing machine problems. J. of the ACM, 12(2):196–
212, 1965.

[10] H. Marxen and J. Buntrock. Attacking the Busy Beaver 5. Bulletin of the EATCS, 40:247–251,
1990. http://turbotm.de/~heiner/BB/mabu90.html.

[11] P. Michel. Busy beaver competition and Collatz-like problems. Archive for Mathematical
Logic, 32:351–367, 1993.

[12] P. Michel. The Busy Beaver competition: a historical survey. https://arxiv.org/abs/0906.
3749, 2019.

[13] T. Radó. On non-computable functions. Bell System Technical Journal, 41(3):877–884, 1962.
https://archive.org/details/bstj41-3-877/mode/2up.

[14] R. M. Solovay. Hyperarithmetically encodable sets. Transactions of the AMS, 239:99–122,
1978. https://www.ams.org/journals/tran/1978-239-00/S0002-9947-1978-0491103-7/

S0002-9947-1978-0491103-7.pdf.

[15] A. Yedidia and S. Aaronson. A relatively small Turing machine whose behavior is independent
of set theory. Complex Systems, (25):4, 2016. https://arxiv.org/abs/1605.04343.

23

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.136.5997&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.136.5997&rep=rep1&type=pdf
www.cs.auckland.ac.nz/research/groups/CDMTCS/researchreports/391greg.pdf
www.cs.auckland.ac.nz/research/groups/CDMTCS/researchreports/391greg.pdf
https://pdfs.semanticscholar.org/4d96/c256994f190617a34aac56c9b9bfb23f43d9.pdf
https://pdfs.semanticscholar.org/4d96/c256994f190617a34aac56c9b9bfb23f43d9.pdf
https://faculty.baruch.cuny.edu/lkirby/accessible_independence_results.pdf
https://faculty.baruch.cuny.edu/lkirby/accessible_independence_results.pdf
https://is.cuni.cz/webapps/zzp/detail/49210/
http://turbotm.de/~heiner/BB/mabu90.html
https://arxiv.org/abs/0906.3749
https://arxiv.org/abs/0906.3749
https://archive.org/details/bstj41-3-877/mode/2up
https://www.ams.org/journals/tran/1978-239-00/S0002-9947-1978-0491103-7/S0002-9947-1978-0491103-7.pdf
https://www.ams.org/journals/tran/1978-239-00/S0002-9947-1978-0491103-7/S0002-9947-1978-0491103-7.pdf
https://arxiv.org/abs/1605.04343

