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Abstract

We prove new results on the polarizing random walk framework introduced in recent works of
Chattopadhyay et al. [CHHL19, CHLT19] that exploit L1 Fourier tail bounds for classes of Boolean
functions to construct pseudorandom generators (PRGs). We show that given a bound on the k-th
level of the Fourier spectrum, one can construct a PRG with a seed length whose quality scales with
k. This interpolates previous works, which either require Fourier bounds on all levels [CHHL19], or
has polynomial dependence on the error parameter in the seed length [CHLT19], and thus answers
an open question in [CHLT19]. As an example, we show that for polynomial error, Fourier bounds
on the first O(log n) levels is sufficient to recover the seed length in [CHHL19], which requires
bounds on the entire tail.

We obtain our results by an alternate analysis of fractional PRGs using Taylor’s theorem and
bounding the degree-k Lagrange remainder term using multilinearity and random restrictions. In-
terestingly, our analysis relies only on the level-k unsigned Fourier sum, which is potentially a much
smaller quantity than the L1 notion in previous works. By generalizing a connection established in
[CHH+20], we give a new reduction from constructing PRGs to proving correlation bounds.

Finally, using these improvements we show how to obtain a PRG for F2 polynomials with seed
length close to the state-of-the-art construction due to Viola [Vio09], which was not known to be
possible using this framework.

1 Introduction

A central pursuit in complexity theory is to understand the need of randomness in efficient computa-
tion. Indeed there are important conjectures (such as P = BPP) in complexity theory which state
that one can completely remove the use of randomness without losing much in efficiency. While we are
quite far from proving P = BPP, a rich line of work has focused on derandomizing simpler models
of computation (see Vadhan [Vad12] for a survey of prior work on derandomization). A key tool for
proving such derandomization results is through the notion of a pseudorandom generator defined as
follows.
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Definition 1.1. Let F be a class of n-variate Boolean functions. Then a pseudorandom generator
(PRG) for F with error ε > 0 is a random variable X ∈ {−1, 1}n such that for all f ∈ F ,

|EX[f(X)]− EUn [f(Un)]| ≤ ε,

where Un is the uniform distribution on {−1, 1}n. If X = G(Us) for some explicit function G :
{−1, 1}s → {−1, 1}n, then X has seed length s.

There is a long line of research on explicit constructions of PRGs (for various classes of Boolean
functions) in the literature and it is well beyond our scope to survey prior work here. Instead, we
focus on a recent line of work initiated by Chattopadhyay et al. [CHHL19, CHLT19] that provides
a framework for constructing pseudorandom generators for any Boolean function class that exhibit
Fourier tail bounds (we discuss this in more details in the next subsection; see Section 2.1 for a brief
introduction to Fourier analysis of Boolean functions). This provides a unified PRG for several well-
studied function classes such as small-depth circuits, low-sensitivity functions, and read-once branching
programs that exhibit such Fourier tails. We discuss this new framework in Section 1.1, and present
our results in Section 1.2.

1.1 The Polarizing Random Walk Framework

We now briefly explain the polarizing random walk framework introduced by [CHHL19]. The authors
show that for classes of n-variate Boolean functions that are closed under restrictions, one can quite
flexibly construct pseudorandom generators via a local-to-global principle that works as follows: it is
sufficient to construct fractional pseudorandom generators, a notion that generalizes a PRG to allow
the random variable X (in Definition 1.1) to be supported on the solid cube [−1, 1]n so that it fools the
multilinear expansion of each Boolean function in the class. Ideally, the variance of each coordinate
of the random variable should be as large as possible while still provably fooling the class. Towards
this, define a fractional PRG X to be p-noticeable if the variance in each of its coordinates is least p.
(See Definition 2.5 for a formal definition of a fractional PRG.)

To construct the full pseudorandom generator, the authors give a random walk gadget that com-
poses together independent copies of such a fractional generator as steps in a random walk that
polarizes quickly to the Boolean hypercube. The analysis for how the error accumulates in this pro-
cess relies on interpreting the intermediate points of this pseudorandom walk as an average of random
restrictions of the original function; because the fractional generator locally fools the class, this inter-
pretation shows that it does not incur much error at each intermediate step, and the rapid polarization
shows that it does not take too many steps. Taken together, these two facts imply the resulting random
variable successfully fools the class.

The above framework shows that if one can construct non-Boolean random variables, with suf-
ficiently large variance in each coordinate, that can locally fool any function in the class, then one
immediately obtains a pseudorandom generator using their random walk gadget. As these genera-
tors need not be Boolean, the construction of fractional pseudorandom generators is only easier than
constructing pseudorandom generators. To that end, [CHHL19] further show how to construct such
fractional pseudorandom generators for any class of functions satisfying Fourier tail bounds. Namely,
they show that if every function in the class is such that the L1 Fourier mass at each level 1 ≤ k ≤ n is
at most bk for some fixed b ≥ 1, then one can construct a fractional pseudorandom generator for error
ε with seed length O(log log n + log(1/ε)) and variance Θ(b−2) in each coordinate. Combining this
fractional pseudorandom generator with their random walk gadget yields a pseudorandom generator
with seed length b2 · polylog(n/ε). As a result, if one can show that a function class admits nontrivial
Fourier tail bounds, then the [CHHL19] construction immediately implies a pseudorandom generator.
Some examples of classes of Boolean functions that exhibit such tail bounds include AC0 circuits with
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the parameter b = poly(log n) [LMN89, Tal17], constant width read-once branching programs with
b = poly(log n) [CHRT18], and low-sensitivity functions with b = O(s) [GSW16, Tal17]. Using such
Fourier bounds, [CHHL19] immediately gave a polylogarithmic seed length PRG for these function
classes. It was also conjectured in [CHHL19] that the class of n-variate degree-d polynomials over F2

satisfy such tail bounds. We discuss this in more detail in Section 1.2.
In the work by [CHLT19], the authors show how to construct fractional pseudorandom generators

using far fewer assumptions on the Fourier tails. Building on the analysis of the celebrated work
of [RT19], which gave an oracle separation of BQP and PH (which itself relies on the [CHHL19]
random walk framework), they show that one can use this same framework to obtain a pseudoran-
dom generator with seed length depending only on bounds for the second Fourier level of the class.
However, with these weaker assumptions, they require a different fractional PRG. To do this, they
essentially derandomize the result of [RT19], which shows that classes of multilinear functions with
low level-two Fourier mass cannot nontrivially distinguish between a suitable variant of the Forre-
lation distribution and the uniform distribution. It turns out that this can be interpreted via Itô’s
Lemma, which shows that the local behavior of a smooth function of Brownian motion is essentially
determined by the first two derivatives [Wu20]. [CHLT19] show that one can derandomize this anal-
ysis by efficiently constructing fractional PRGs that simulate Gaussian random variables with small
covariance using the best-known constructions of error-correcting codes. However, this construction
incurs exponentially worse dependence on the error parameter in each fractional step to nearly sample
sufficiently good Gaussian random variables. The final seed length that this framework obtains has
the form O((b2/ε)2+o(1)polylog(n)), where b2 is the level-two Fourier mass of the class. Compared
to [CHHL19], this yields exponentially worse dependence on the error, as well as quadratically worse
dependence on the level-two mass (though [CHLT19] assume nothing about the rest of the Fourier
levels).

1.2 Our Contribution

Given these two works, a very natural question (explicitly asked in [CHLT19]) is whether it is possible
to interpolate between these constructions by assuming Fourier bounds on an intermediate level.
Concretely, can this framework still succeed if one has Fourier control at just level-k? If the class
further has such Fourier bounds up to and including level-k, can one interpolate between the seed
lengths of [CHHL19] and [CHLT19]? Given Fourier bounds from level-1 up to k, what range of error
ε > 0 can the resulting PRG tolerate while maintaining polylogarithmic dependence on 1/ε in the seed
length (or put contrapositively, given a desired error ε > 0, how many levels of Fourier bounds are
sufficient to ensure that the seed length remains polylogarithmic in 1/ε)?

Moreover, the recent work by Chattopadhyay et al.[CHH+20] shows that the problem of bounding
the level-two unsigned Fourier sum, defined by the absolute value of the sum of the Fourier coefficients
instead of the sum of their absolute values (as in the definition of L1 Fourier mass) that is required in
[CHHL19, CHLT19], corresponds to the problem of bounding the covariance of the function class and
the k-XOR of shifted majority functions. In particular, using this connection to this better-studied
object, they explicitly ask whether it suffices to give bounds on the weaker Fourier quantity M2(F) (or
more generally, Mk(F), see Section 2 for the precise definition) to obtain pseudorandom generators.
The reason for doing so is that for many classes of functions, we currently do not have strong enough L1

Fourier tail bounds, like the class of low-degree polynomials over F2 (though see Section 4). However,
if one can show this, one now reduces the construction of pseudorandom generators to proving weaker
Fourier bounds, which are hopefully more amenable to known techniques and thereby making the
problem easier.

In this work, we make progress on all of these questions, by providing a new analysis of the fractional
pseudorandom generator of [CHHL19]. Informally, we show that by only assuming a bound on some
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level-k Fourier quantity of the class, the [CHHL19] fractional pseudorandom generator will still be
valid. Moreover, our analysis actually shows that the error term that is induced by the high-order
component can be improved from L1,k(F) (the level-k Fourier mass) to Mk(F) (the level-k unsigned
Fourier sum, see Section 2), which is a priori significantly smaller. Here,

L1,k(f) ,
∑

S⊆[n]:|S|=k

|f̂(S)|

and

Mk(f) , max
x∈[−1,1]n

∣∣∣∣ ∑
S:|S|=k

f̂(S)xS
∣∣∣∣ = max

x∈{−1,1}n

∣∣∣∣ ∑
S:|S|=k

f̂(S)xS
∣∣∣∣.

and L1,k(F) and Mk(F) refer to the maximum of L1,k and Mk taken over functions in the class F .
Our main result is the following analysis of a fractional pseudorandom generator:

Theorem 1.1. Let F be any class of n-variate Boolean functions that is closed under restrictions and
negations. Suppose that Mk(F) ≤ bk for some b ≥ 1 and k ≥ 1. Then for any ε > 0, there exists an
explicit Ω(ε2/k/b2)-noticeable fractional PRG for F with error ε and seed length O(k · log(n)).1

Further, if it holds that L1,i(F) ≤ bi for all 1 ≤ i < k, then the seed length can be improved to
O(log log(n) + log k + log(1/ε)).

Note that for some Boolean classes of great interest such as the class of low-degree F2 polynomials,
Fourier tail bounds as required by [CHHL19] are not yet known and thus Theorem 1.1 allows us to
leverage potentially much weaker bounds proved in [CHHL19] to construct a PRG with polylogarithmic
dependence on n/ε in the seed length (see Theorem 1.3), almost matching the best known PRG due
to Viola [Vio09]. As we discuss below, the results in [CHHL19, CHLT19] are not quite good enough
to use known Fourier tail bounds to obtain such a PRG for the class of F2 polynomials.

Using the fractional pseudorandom generator from Theorem 1.1, we obtain the following conse-
quences almost immediately from the random walk gadget of [CHHL19] (see Theorem 2.2):

1. Pseudorandom Generators from Fourier Bounds at Level-k: From our fractional pseu-
dorandom generator, we show that the random walk framework yields nontrivial pseudorandom
generators assuming Fourier bounds just at level-k of the associated class, with improvements if
we assume bounds from level-1 up to level-k. The informal statement is the following:

Theorem 1.2. Let F be any class of n-variate Boolean that is closed under restrictions
and negations. Suppose that F satisfies Mk(F) ≤ bk for some b ≥ 1 and k > 2.
Then there exists an explicit pseudorandom generator for F for error ε with seed length
k · b2+4/(k−2)polylog(n/ε)/ε2/(k−2). The seed length can be improved if L1,i(F) ≤ bi for all levels
i ≤ k.

See Theorem 3.7 for the precise statement. One immediate consequence is that if one has com-
parable Fourier bounds at level k = 3, one recovers the seed length in [CHLT19]. Further, from
such a Fourier bound for just the level k = 4, one obtains quadratically better dependence on the
error in the seed length (as well as polylogarithmic factors in n/ε) compared to [CHLT19]. In par-
ticular, given an appropriate Fourier bound of bk on just some level k ≤ polylog(n), one obtains
a pseudorandom generator with error ε with seed length O(b2+4/(k−2)polylog(n/ε)/ε2/(k−2)).

1We remark that at this level of generality, this linear dependence on k is essentially necessary. Indeed, any Boolean
function on n-variables has L1 level-n mass at most 1, but one cannot hope to generically fool all Boolean functions
simultaneously without using n bits.
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We note that the fractional PRG from Theorem 1.1 cannot be converted into a PRG for k = 1, 2.
Informally, this is because of the following reason: The number of steps one needs to take in the
random walk gadget of [CHHL19] (with each step using an independent copy of the fractional
PRG) scales roughly inversely with linearly with the size (variance in each coordinate) of the
fractional PRG, and the error adds up from each step. As is clear from Theorem 1.1, for the
size of the fractional PRG to scale sublinearly with the error, one requires k > 2. This leads to
a non-trivial PRG when k > 2. See Remark 3.8 for more discussion.

2. Pseudorandom Generators with Polylogarithmic Error Dependence from up to
Level-k Bounds: A simple corollary of our fractional pseudorandom generator is that one
can recover the polylogarithmic dependence on 1/ε from [CHHL19] if ε ≥ b · log n · 2−O(k) and
we have Fourier bounds up to level-k.

Corollary 1.1. Let F be any class of n-variate Boolean functions that is closed under restrictions
and negations. Suppose that for some level k > 2 and b ≥ 1, we have Mk(F) ≤ bk and L1,i(F) ≤
bi for i < k. Then, for any ε ≥ b · log n · 2−O(k), there exists an explicit pseudorandom generator
for F for error ε with seed length O(b2polylog(n/ε)).

This actually covers the analysis of [CHHL19] without requiring anything on the full Fourier
tail, and addresses an open question of [CHLT19] asking how many levels of Fourier bounds one
needs control of to regain polylogarithmic dependence on ε. In particular, if one requires error
ε = 1/poly(n), then it suffices to have Fourier bounds up to level Θ(log(n)) to get the same
dependence.

We view this work as a proof-of-concept that it is indeed possible to interpolate between the two
extremes of [CHHL19, CHLT19] in the polarizing random walk framework and obtain better results
using weakened Fourier assumptions. We prove Theorem 1.1 in Section 3, from which Theorem 1.2 and
Corollary 1.1 follow without much difficulty using the existing random walk technique of [CHHL19].

As a concrete possible application of this approach which would provably improve on these works,
both [CHHL19] and [CHLT19] conjecture Fourier bounds on the L1 mass of the class of F2 polynomials
of degree at most d. The former conjectures that this class satisfies a tail bound of the form ckd for
some constant cd at all levels 1 ≤ k ≤ n (so as to apply their approach), while the latter conjectures
just that the level-two L1 mass is O(d2). While neither conjecture seems close yet to being resolved,
one can imagine that should the latter be proved, it may be feasible to extend the analysis to achieve
a bound of (poly(d))k for k = Ω(1), or even more optimistically, k = Ω(log n). The pseudorandom
generator implied by the analysis here would thus apply and yield significantly improved seed length
compared to [CHLT19], though we note that our generator does not actually apply if such a bound
only holds at level k = 2. Such a result would imply a pseudorandom generator with improved seed
length compared to [CHLT19] for AC0[⊕] (see the discussion in [CHLT19], using results of Razborov
[Raz87] and Smolensky [Smo87, Smo93]). Finally note that we just need to bound the quantity Mk

as opposed to L1,k required in prior works.
Nonetheless, our analysis here, coupled with weaker Fourier tail bounds obtained in [CHHL19],

immediately implies the following:

Theorem 1.3. Let F be the class of degree-d polynomials over F2 on n variables. Then there exists
an explicit pseudorandom generator for F with error ε and seed length 2O(d)polylog(n/ε).

See Section 4 for the precise dependences in the seed length. While this result does not quite
match the current state-of-the-art PRG for this class due to Viola [Vio09] (and similarly, fails to give
anything nontrivial for d = Ω(log n)), we view this as a conceptual contribution that the random walk
framework can yield an explicit pseudorandom generator with error dependence that is polylogarithmic
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in n/ε, which was not previously known from [CHHL19] or [CHLT19]. The Fourier tail bounds that
are sufficient for our analysis are too weak to be employed in [CHHL19], and leads to a quadratic error
dependence in the level-two fractional pseudorandom generator by [CHLT19]. We present the proof
of Theorem 1.3 in Section 4.

Moreover, as stated before, recent work [CHH+20] has shown that it is possible to deduce bounds
on M2(F) using covariance bounds with the XOR of certain resilient functions. As we are able to
show that bounds on such quantities imply pseudorandom generators, we give an analogous argument
for an appropriate generalization of this result to Mk(F) in Section 5, thus reducing the problem of
constructing PRGs in this framework to proving correlation bounds.

1.3 Overview of Our Approach

To prove our results, we rely on an alternate, simple analysis of the fractional pseudorandom generator
considered by [CHHL19], where they assume control on the entire Fourier tail, and then use their
gadget construction to obtain the full pseudorandom generator. As this latter part can be done in an
entirely black-box fashion, we need only focus on the former. For this first part, their approach is the
following: consider a random variable X. By writing out f in the multilinear (Fourier) expansion, one
has

|EX[f(X)]− EUn [f(Un)]| =
∣∣EX

[ ∑
∅6=S⊆[n]

f̂(S)XS
]∣∣ (1)

≤
k−1∑
i=1

∑
S⊆[n]:|S|=i

|f̂(S)||EX[XS ]|

︸ ︷︷ ︸
low-order terms

+

n∑
i=k

∑
S⊆[n]:|S|=i

|f̂(S)||EX[XS ]|

︸ ︷︷ ︸
high-order terms

, (2)

where we used the triangle inequality in (2). [CHHL19] use two different methods to control each
component in (2); the first part is handled by sufficiently strong independence in the coordinates, while
the latter is handled by physical smallness of the random variable. To control the low-degree terms,
they require X to be O(ε)-almost k-wise independent. By definition, this forces the biases of all the
Fourier characters to be small in the low-order component. To deal with the higher-order component,
they use the fact that X need not be Boolean; that is, they can scale any such distribution down.
Because they assume that the Fourier mass on each level-k is bounded by bk, it suffices to scale down
a {±1}n valued random variable by Θ(1/b), forcing the higher-order error terms to form a geometric
series. One can show that to balance these terms, one may take the threshold at k = Θ(log(1/ε)) to
ensure that this yields ε error and seed length O(log log n+log(1/ε)) using known explicit constructions
of almost k-wise independent distributions.

Our analysis of this fractional PRG is instead driven by exploiting Taylor’s theorem, multilinearity,
and the technique of random restrictions that is used critically in [CHHL19]. The general approach
of using Taylor’s theorem in the construction of PRGs has been quite fruitful. The typical way in
which it is used is to write some smooth function to be fooled as a low-degree polynomial, which is
relatively easy to fool, plus an error term bounded by the next derivatives of the function which ideally
is negligible; this approach is often tied to invariance principles. We do the same decomposition, which
initially agrees with [CHHL19]:

|EX[f(X)]− EU[f(U)]| ≤
k−1∑
i=1

∑
S⊆[n]:|S|=i

|f̂(S)||EX[XS ]|

︸ ︷︷ ︸
low-order terms

+ |EX[Rk(X)]|︸ ︷︷ ︸
high-order term

, (3)
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where our higher order term arises from Taylor’s theorem. Näıvely, if one wanted to analyze the
quality of a fractional PRG for the multilinear expansion of f using Taylor’s theorem, this might do
precisely nothing; indeed, the multilinear expansion of f is by definition a polynomial, so is equal
to its Taylor series. Therefore, “using Taylor’s theorem” would give exactly nothing but the original
[CHHL19] approach! To get anything different than [CHHL19], we must truncate the Taylor series up
to some level k − 1 (which exactly agrees up to level k − 1 with the multilinear expansion) and then
study the error term, which is given by some k-th order derivatives of the Fourier expansion. The
hope in doing this is that implicitly, Taylor’s Theorem collapses the higher-order terms into level-k
derivatives. One might then hope that there are significant sign cancellations that thus avoid the use
of the complete Fourier tail assumption and triangle inequality as in (2). In particular, we only pay
the triangle inequality at level-k by doing so, though we now must study these new error terms.

If these derivatives in the error term were evaluated at the origin 0 ∈ Rn, then we would immedi-
ately be able to bound the entire error term by any level-k bounds on our class F . This is because these
derivatives at 0 are precisely the level-k Fourier coefficients. However, the remainder term is evaluated
at some intermediate point on the line between 0 and the realization of the supposed fractional PRG
X. It turns out, though, that using the closure of the class under restrictions and negations, one can
obtain an upper bound on this quantity using just the weaker Fourier quantity Mk(F).

To obtain pseudorandom generators, we then need only apply the random walk gadget of [CHHL19].
We refer the reader to Section 3 for formal proofs of the ideas sketched in this section.

Remark 1.2. A previous version of this paper took an alternate approach that works as follows: by
multilinearity, one can evaluate the error term in the Taylor expansion at the corner of some cube.
By leveraging known connections between these derivatives and p-biased Fourier coefficients (see, for
instance, Chapter 8 of [O’D14]), one can then apply a result of Keller [Kel12] that reduces bounds on
the resulting L1 mass of these biased coefficients at level-k to the unbiased L1 Fourier mass of some new
function defined on 2n variables that roughly simulates biased bits. For many classes, this reduction
comes at little loss in known Fourier bounds, but requires awkward bounds on an associated class
of functions. While this result still manages to partially interpolate between the previous approaches
in [CHHL19, CHLT19], as well as give a new PRG for the class of low-degree F2 polynomials, our
new approach removes this artificial caveat, as well as allows for the weaker Fourier requirements via
Mk(F) as opposed to L1,k(F).

2 Preliminaries

As in [CHHL19] and [CHLT19], we study PRGs for classes F of n-variate Boolean functions that are
closed under restriction and negation (that is, fixing any subset and flipping any subset of the bits of
the variables yields a function that remains in the class).

2.1 Fourier Analysis

We briefly recall basic Fourier analysis: any Boolean function f : {−1, 1}n → {−1, 1} admits a unique
multilinear expansion, also known as the Fourier expansion, given by

f(x) =
∑
S⊆[n]

f̂(S)xS , (4)

where we write xS ,
∏
i∈S xi. The Fourier coefficient f̂(S) is given by

f̂(S) = EX∼{−1,1}n [f(X)XS ].
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For more on Fourier analysis of Boolean functions, see the excellent book by O’Donnell [O’D14]. One
may thus extend the domain of f to [−1, 1]n, where f(x) for arbitrary x is evaluated according to the
expression in (4). Note that in this case, f(0) = f̂(∅) = EUn [f(Un)]. One of the main parameters of
interest from the Fourier expansion for this framework is the following:

Definition 2.1. The level-k mass of a Boolean function f is

L1,k(f) ,
∑

S⊆[n]:|S|=k

|f̂(S)|,

and the level-k mass of a class F is L1,k(F) , maxf∈F L1,k(f).

In this work, we will show how to construct PRGs whose seed length depends on the following,
smaller quantity:

Definition 2.2. For any multilinear polynomial f : Rn → R given by f(x) =
∑

S⊆[n] f̂(S)xS , define
the level-k part by

fk(x) ,
∑

S⊆[n]:|S|=k

f̂(S)xS , (5)

and further define f<k(x) ,
∑k−1

i=0 fi(x) and f≥k(x) ,
∑n

i=k fi(x). Then we define the level-k absolute
Fourier sum of f by

Mk(f) , max
x∈[−1,1]n

∣∣∣∣ ∑
S:|S|=k

f̂(S)xS
∣∣∣∣ = max

x∈{−1,1}n

∣∣∣∣ ∑
S:|S|=k

f̂(S)xS
∣∣∣∣ (6)

and analogously define Mk(F) , maxf∈FMk(f) for a class F .

Note that the equality arises by multilinearity, and clearly we have Mk(f) ≤ L1,k(f) by the triangle
inequality. Without loss of generality, we may further assume that our class is closed under flipping
the image, i.e. we may suppose that f ∈ F if and only if −f ∈ F ; indeed, this transformation does not
change either L1,k(f) or Mk(f), and therefore the same bound on the class still holds when completing
it to include all such functions. If this is the case, we get the more striking identity:

Lemma 2.1.
Mk(F) = max

f∈F

∑
S:|S|=k

f̂(S) = max
f∈F

fk (1) . (7)

To see this, simply note that, if (f, z) ∈ F × {−1, 1}n are maximizers in the definition of Mk(F)
(where we may now assume that sign is positive), then by replacing the function f(x) with g(x) =
f(x ◦ z), where ◦ denotes componentwise multiplication, we have

Mk(F) =

∣∣∣∣ ∑
S:|S|=k

f̂(S)zS
∣∣∣∣ =

∑
S:|S|=k

ĝ(S) = max
h∈F

∑
S:|S|=k

ĥ(S). (8)

In particular, it suffices to bound the unsigned level-k Fourier sum of such a class.
Lastly, we require the following notion:

Definition 2.3. Let F be a class of n-variate multilinear polynomials that is closed under restrictions
and negations. Then define conv(F) as the convex closure of F i.e.

conv(F) ,

{∑
f∈F

λff

∣∣∣∣∑
f∈F

λf = 1, λf ≥ 0 ∀f ∈ F
}
. (9)

We briefly note the following two elementary facts: first, by the assumption that F is closed under
restrictions and negations, the same is true of conv(F). Moreover, we have Mk(F) = Mk(conv(F))
by the triangle inequality.
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2.2 (Fractional) Pseudorandom Generators

We now recall the (well-known) definition of a pseudorandom generator, as well as the generalization
of a fractional pseudorandom generator as introduced by [CHHL19]:

Definition 2.4. Let F be a class of n-variate Boolean functions. Then a pseudorandom generator
(PRG) for F with error ε > 0 is a random variable X ∈ {−1, 1}n such that for all f ∈ F ,

|EX[f(X)]− EUn [f(Un)]| ≤ ε,

where Un is the uniform distribution on {−1, 1}n. If X = G(Us) for some explicit function G :
{−1, 1}s → {−1, 1}n, then X has seed length s.

Definition 2.5. A fractional pseudorandom generator (fractional PRG) for F with error ε > 0 is a
random variable X ∈ [−1, 1]n such that for all f ∈ F (identifying f with its multilinear expansion)

|EX[f(X)]− f(0)| ≤ ε,

where the definition of seed length is the same. A fractional PRG is p-noticeable if for each i ∈ [n],
E[X2

i ] ≥ p.

We now state the main results of [CHHL19] and [CHLT19] that show how to construct PRGs from
suitably combining noticeable fractional PRGs. This is done by the following amplification theorem,
which roughly composes fractional random variables into a random walk inside the Boolean hypercube:

Theorem 2.2. Suppose F is class of n-variate Boolean functions that is closed under restrictions, and
that X is a p-noticeable fractional PRG with error ε and seed length s. Then there exists an explicit
PRG for F with seed length O(s log(n/ε)/p) and error O(ε log(n/ε)/p).

Using this result, [CHHL19] proved the following theorem that exploits strong L1 control of each
Fourier level:

Theorem 2.3. Let F be any class of n-variate Boolean functions that is closed under restrictions.
Suppose that L1,k(F) ≤ bk for some b ≥ 1 and all 1 ≤ k ≤ n. Then for any ε > 0, there exists an
explicit PRG for F with error ε and seed length b2 · polylog(n/ε).

This is achieved by constructing a fractional PRG that is a scaled version of a nearly log(1/ε)-wise
independent distribution. As we will be analyzing a similar fractional PRG, we defer the details to
next section.

To lessen the requisite assumptions on the Fourier spectrum, [CHLT19] derandomize a construc-
tion of [RT19] to prove the following result that requires only level-two control, albeit at a cost of
exponentially worse dependence on the error ε, and quadratically worse dependence on the level-two
mass:

Theorem 2.4. Let F be any class of n-variate Boolean functions that is closed under restrictions.
Suppose that L1,2(F) ≤ b2 for some b ≥ 1. Then for any ε > 0, there exists an explicit PRG for F
with error ε and seed length O((b2/ε)2+o(1)polylog(n)).

3 Fractional PRGs from the k-th Fourier Level

We now turn to the proof of our main result yielding a fractional pseudorandom generator from level-k
bounds, Theorem 1.1. Throughout the remainder of this section, we assume that F is closed under
restrictions and negations of variables. We restate the result here:
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Theorem 3.1 (Theorem 1.1, restated). Let F be any class of n-variate Boolean functions that is
closed under restrictions and negations. Suppose that Mk(F) ≤ bk for some b ≥ 1 and k > 2. Then
for any ε > 0, there exists a Ω(ε2/k/b2)-noticeable explicit fractional PRG for F with error ε and seed
length O(k · log(n)).

If it further holds that L1,i(F) ≤ bi for all 1 ≤ i < k, then the seed length can be improved to
O(log log(n) + log k + log(1/ε)).

To set up the proof of this theorem, we require some auxilliary results. The main technical claim
we need is the following, which bounds the error term we will encounter using the quantity Mk(F) we
defined before (Definition 2.2).

Lemma 3.2. Let f ∈ F . Then for all c ∈ (0, 1), we have

max
x∈[−c,c]n

|f≥k(x)| ≤
(

c

1− c

)k
Mk(F). (10)

To prove this lemma, we require the following simple results. The first simply shows that we
may always bound the contribution of the level-k part of any function in F by simply rescaling the
argument:

Lemma 3.3. Let f ∈ conv(F). Then, for all c ∈ (0, 1) and x ∈ [−c, c]n, we have

|fk(x)| ≤ ckMk(F). (11)

Proof. Simply observe that c−1x ∈ [−1, 1]n by assumption, and by homogeneity of fk as a polynomial,
we have

|fk(x)| = ck|fk(c−1x)| ≤ ckMk(conv(F)) = ckMk(F). (12)

The next simple, but powerful, claim simply shows that one can “recenter” functions in F and
remain in conv(F) (and therefore, enjoy the same Fourier bounds). This random restriction technique
is a key tool in [CHHL19]:

Lemma 3.4. Let f ∈ conv(F) and a,b ∈ [−1, 1]n such that |ai|+ |bi| ≤ 1 for all i ∈ [n]. Define f̃ by
f̃(x) = f(a + b ◦ x), where ◦ denotes componentwise multiplication. Then, f̃ ∈ conv(F).

Proof. Given a,b, define a distribution Di on Zi = {−1, 1, xi,−xi} where xi is treated as formal
variable, such that Eyi∼Di [yi] = ai+bixi; note that this is possibly by the assumption that |ai|+|bi| ≤ 1.
Let D =

∏
iDi be the product distribution of the Di. For any z ∈

∏
i Zi, define fz(x) as the

function obtained by setting xi = zi for each i; in particular, each variable gets set to ±1 or remains
a formal variable (or becomes the negation). By our assumption on the closure of F , we clearly
have fz ∈ F for any z. By multilinearity and independence of the product distribution, we have
f(a + b ◦ x) = Ez∼D[fz(x)]. Thus f̃ ∈ conv(F).

As mentioned before, our fundamental approach will be to bound the higher-order terms of the
Fourier expansion at the fractional points of the fractional generator via the error term that arises in
Taylor’s theorem. Denote by h(k) the k-th derivative of any Ck function h : R → R. We then have
the following claim:

Lemma 3.5. Let f : Rn → R be multilinear and let x ∈ Rn. Define g : R→ R by g(t) = f(tx). Then,

g(k)(0) = k! · fk(x). (13)

10



Proof. From the definition, it follows that

g(t) =
∑
S⊆[n]

t|S|f̂(S)xS .

Differentiating with respect to t, we get

g(k)(t) =
∑

S:|S|≥k

( k−1∏
i=0

(|S| − i)
)
t|S|−kf̂(S)xS .

Setting t = 0 eliminates all of the monomials with |S| > k, giving us the required bound.

Finally, we connect the function defined in the previous part with our assumed Fourier bounds:

Lemma 3.6. Let f ∈ conv(F), c ∈ (0, 1) and x ∈ [−c, c]n. Define g as in Lemma 3.5. Then,

max
s∈[0,1]

|g(k)(s)| ≤
(

c

1− c

)k
· k! ·Mk(F)

Proof. Fix s ∈ [0, 1] and let λ = 1 − c. Define the auxiliary function f̃(y) = f(sx + λy). Writing
a = sx and b = (λ, . . . , λ), we clearly have s|xi| + |λ| ≤ 1, so we may apply Lemma 3.4 to see that
f̃ ∈ conv(F). Now writing g̃(t) = f̃(tx) = f(sx + λtx), we also have g̃(t) = g(s + tλ). By the chain
rule, differentiating both sides k times and then setting t = 0,

λkg(k)(s) = g̃(k)(0). (14)

On the other hand, by Lemma 3.5, we have g̃(k)(0) = k! · f̃k(x), and as f̃ ∈ conv(F) by Lemma 3.4,
we conclude using Lemma 3.3 that

g(k)(s) =
g̃(k)(0)

λk
≤
(

c

1− c

)k
· k! ·Mk(F), (15)

as desired.

With these in order, we can finally return to the proof of Lemma 3.2:

Proof of Lemma 3.2. Let f ∈ F ,x ∈ [−c, c]n and define g(t) = f(tx). Then, by Taylor expanding
about t = 0 and evaluating at t = 1, we have

g(1) =
∑
i<k

g(i)(0)

i!
+Rk, (16)

where Rk is the error term and is given in Lagrange form by

Rk =
g(k)(s)

k!
(17)

for some s ∈ [0, 1]. By Lemma 3.5, we easily see that the first term is precisely f<k(x), and as
g(1) = f(x), we clearly then must have Rk = f≥k(x). But by Lemma 3.6, we obtain

|f≥k(x)| =
∣∣∣∣g(k)(s)

k!

∣∣∣∣ ≤ ( c

1− c

)k
Mk(F), (18)

as desired.
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With these technical results in place, we now have everything we need to easily prove Theorem 1.1.

Proof of Theorem 1.1. Fix f ∈ F , and let X be an arbitrary random variable such that |Xi| = x ≤ 1/2
for all i for some x > 0 we specify momentarily. Then we have, via the Fourier expansion,

|EX[f(X)]− f(0)| =
∣∣∣∣EX

[ ∑
S⊆[n]:1≤|S|≤k−1

f̂(S)XS

]∣∣∣∣+ |EX[f≥k(X)]|.

To deal with the second term, by Lemma 3.2, we have

|EX[f≥k(X)]| ≤
(

x

1− x

)k
Mk(F). (19)

By assumption, Mk(F) ≤ bk for some b ≥ 1; therefore, by taking x = Θ(ε1/k/b), this term is at most
ε/2.

To deal with the lower order terms, we take the same approach as [CHHL19]. If no assumptions are
made on the level-j mass for j < k, then one may take X = x ·Y, where Y ∈ {−1, 1}n is (k− 1)-wise
independent to incur zero error on the lower order terms. This has seed length O(k log(n)) [Vad12]
and gives no additional error. Note that then X is Θ(ε2/k/b2)-noticeable.

If one further assumes that L1,i(F) ≤ bi for all i < k, then one may apply their same analysis
and instead let X = x ·Y′, where Y′ is an (ε/2)-almost (k − 1)-wise independent distribution. Then,
exactly as in [CHHL19]:∣∣∣∣EX

[ ∑
S⊆[n]:1≤|S|≤k−1

f̂(S)XS

]∣∣∣∣ ≤ k−1∑
i=1

xi
∑

S:|S|=i

|f̂(S)||E[Y
′S ]| ≤ (ε/2)

k−1∑
i=1

(bx)i ≤ ε/2, (20)

as we choose x such that (bx) ≤ 1/2. By standard constructions, such a random variable can be
efficiently sampled with seed length O(log log(n) + log k + log(1/ε)) [NN93]. Combining these two
errors yields the claim. Again, X remains Θ(ε2/k/b2)-noticeable.

3.1 From Fractional Generators to PRGs

Using Theorem 1.1 and Theorem 2.2, it is fairly immediate to obtain PRGs that rely only on level-k
bounds. Similarly, bounds on levels up to k can be leveraged to get an improved seed length.

Theorem 3.7 (Theorem 1.2, restated). Let F be any class of n-variate Boolean functions that is
under restrictions and negations. Suppose that Mk(F) ≤ bk for some b ≥ 1 and k > 2. Then for any
ε > 0, there exists an explicit PRG for F with error ε with seed length

s = O

(
b2+ 4

k−2 · k · log(n) log1+ 2
k−2 (n/ε)

ε
2

k−2

)
. (21)

If it further holds that L1,i(F) ≤ bi for all 1 ≤ i < k, then the seed length can be improved to

s = O

(
b2+ 4

k−2 · (log log n+ log k + log(b/ε)) · log1+ 2
k−2 (n/ε)

ε
2

k−2

)
. (22)

Proof. By Theorem 2.2, given an explicit p-noticeable fractional PRG for F with error δ and seed
length s, one immediately obtains an explicit PRG for F with error O(δ log(n/δ)/p) and seed length
O(s log(n/δ)/p).
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For the first statement, by our assumption and using the fractional PRG guaranteed by Theo-
rem 1.1, for any δ > 0, we immediately obtain an explicit PRG for F with error O(b2δ1−2/k log(n/δ))
and seed length O(b2k log(n) log(n/δ)/δ2/k). To get the error below ε, we set

δ = Θ

((
ε

b2 log(n/ε)

) k
k−2
)

(23)

(the astute reader may notice we implicitly use b ≤ n here). This yields a PRG with error ε and seed
length

s = O

(
b2+ 4

k−2 · k · log(n) log1+ 2
k−2 (n/ε)

ε
2

k−2

)
. (24)

The second statement follows in an identical manner from using the improved seed length from
the second part of Theorem 1.1 in the case that one has control on the L1 Fourier mass on the lower
levels.

Corollary 1.1 is now an immediate consequence of Theorem 3.7; for any desired ε > b·log(n)·2−O(k),
one can simply apply Theorem 3.7 using level k = Θ(log(b log(n)/ε)) to obtain a PRG for F with error
at most ε with seed length

s = O(b2 · log(b log(n)/ε) · log(n/ε)). (25)

Note that if ε = 1/poly(n), then this means that one needs bounds only up to level Θ(log(n)) (again,
using the fact that b ≤ n). This also partially answers an open question of [CHLT19], which asks how
many levels of Fourier bounds suffice to recover polylogarithmic dependence in 1/ε.

Remark 3.8. Note that this Taylor approach does not yield anything nontrivial given just level-
two bounds, unlike the fractional generator in [CHLT19]. This is actually a necessary byproduct of
combining this approach with the random walk gadget of [CHHL19]. Given only level-two bounds, this
approach attempts to use j-wise independence for j < k = 2 and smallness to deal with errors on the
high degree terms (k ≥ 2). However, the trivial random variable that is ±1 with equal probability is
trivially 1-wise independent, as each component is a uniform random bit, albeit trivially correlated.
No matter how we scale them, one can show that composing arbitrarily many independent copies of
this random variable via the random walk gadget will necessarily polarize to ±1 at termination, which
clearly cannot fool nontrivial functions.

4 Low-Degree Polynomials over F2

Our analysis recovers all the existing applications of [CHHL19] (among them, AC0 circuits, low-
sensitivity functions, and read-once branching programs); indeed, all the classes considered there
satisfy L1 Fourier bounds on the entire tail. To our knowledge, our new analysis does not immediately
improve the seed lengths obtained there, though it shows (i) the seed lengths there can potentially
be improved using stronger bounds on Mk, and (ii) the analysis would still have been valid had these
Fourier bounds been known only up to some level k.

However, the generality afforded to us by this new analysis allows us to obtain a new PRG for
low-degree polynomials over F2, which addresses an open question of [CHHL19] by showing that this
framework can handle this class. Indeed, let F be the set of n-variate, degree-d polynomials over F2.
As a preliminary step towards deriving Fourier tail bounds that would imply a nontrivial PRG for
this class using their framework, [CHHL19] prove the following Fourier bounds:

Proposition 4.1 (Theorem 6.1 of [CHHL19]). Let p : Fn2 → F2 be a degree-d polynomial, and let
f(x) = (−1)p(x). Then L1,k(f) ≤ (k · 23d)k.
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Note that this result cannot be applied to their original analysis, for they require a nontrivial
bound at all levels, while this bound is trivial for k = Ω(

√
n) and any d. While Theorem 2.4 can yield

a nontrivial PRG by just applying the level-two bound, the dependence on 1/ε is at least quadratic.2

However, using our new, more flexible analysis, one can obtain a nontrivial PRG with polylogarithmic
dependence on the error parameter. Our formal result is the following:

Theorem 4.2. Let F be the class of degree-d polynomials over F2 on n variables. Then there exists
an explicit pseudorandom generator for F with error ε and seed length

s = O(2O(d) · log3(log(n)/ε) · log(n/ε)). (26)

Proof. Fix ε > 0 and let k = Θ(log(log(n)/ε)). By Proposition 4.1, we have that for all j ≤ k,

L1,j(F) ≤ (Θ(log(log(n)/ε) · 23d))j . (27)

By setting b = Θ(log(log(n)/ε) · 23d), we may apply Theorem 3.7 for F and error ε. Note that
ε−Θ(1/ log(1/ε)) = O(1), so plugging in this value of b, we immediately obtain the desired pseudorandom
generator.

For comparison, the best known construction by Viola [Vio09], obtained by summing d independent
copies of a sufficiently good small-biased space, attains seed length d · log(n)+O(d ·2d log(1/ε)), which
for constant ε and d is within an additive constant of the optimal possible seed. The generator
implied by our analysis recovers this polylogarithmic dependence in n/ε, although with slightly worse
dependence on log n and polynomially worse dependence in log(1/ε). Neither generator can handle
superlogarithmic degree. While this result clearly falls short of the state-of-the-art, we emphasize that
this generator is conceptually distinct from the existing constructions, and yet belongs to this generic
random walk framework.

Our analysis allows us to exploit known Fourier bounds that are too weak for the existing analyses
to obtain polylogarithmic error dependence. In particular, to get a nontrivial pseudorandom gen-
erator for polynomials of superlogarithmic degree with nontrivial seed length, our work shows that
the following weaker conjecture would suffice to break the logarithmic degree barrier and still achieve
polylogarithmic (in n) seed length for ε = 1/poly(n):

Conjecture 4.3. Let F be the class of degree-d polynomials over F2 on n variables. Then

Mk(F) ≤ (poly(k, log n) · 2o(d))k (28)

for k ≤ O(log n).

In fact, we observe that to break the logarithmic degree barrier, it actually suffices that this holds
just at k = 3, though with poor dependence on ε. Note that this is a significantly weaker conjecture
than positing that the same bounds hold for L1,k(F). Moreover, as we explain in the next section,
Mk(F) can be controlled using correlation bounds, which are much better studied than L1 Fourier
bounds.

2By applying this Fourier bound at level-two, one can use the fractional PRG of [CHLT19] to obtain seed length
2O(d)polylog(n)/ε2+o(1) using the random walks framework. This gives exponentially worse error dependence compared
to our approach.
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5 Bounds on Mk(F) via Correlation with Shifted Majorities

As we have seen, this analysis allows for the construction of PRGs from the weaker quantity Mk(F).
In this section, we repeat the argument of [CHH+20] to show how bounds on Mk(F) follow from
covariance bounds with certain resilient functions (in particular, shifted majorities). In their paper,
they deal with the case of k = 2; we rather straightforwardly generalize this argument, but stress
that the approach is the same as in Section 6 of their paper. To that end, for convenience and
consistency with their argument, we adopt their conventions and requisite definitions just for this
section. We will now consider Boolean functions written as f : {0, 1}n → {0, 1}. Translating to this
notation, for any such Boolean function, let e(f)(x) , (−1)f(x). Then, letting F = e(f), we now have
F̂ (S) = Ex[F (x)e(

∑
i∈S xi)].

Definition 5.1. The covariance between f and g, where f, g are Boolean is

cov(f, g) , |E[e(f(x))e(g(x))]− E[e(f(x))]E[e(g(x))]|, (29)

while the covariance between a function f and a class G is defined as cov(f,G) , maxg∈G cov(f, g).

For any x ∈ {0, 1}n, we write |x| for the Hamming weight, i.e.
∑n

i=1 xi. For any a ∈ {0, 1, . . . , n},
[CHH+20] define Maja by

Maja(x) ,

{
1 if |x| > a

0 else,
(30)

as well as the following associated functions for any θ ∈ [n/2]:

Thrθ(x) ,

{
(−1)Majn/2(x) if

∣∣|x| − n/2∣∣ > θ

0 else
(31)

We now show the following lemma relating Mk(F) with covariance bounds against k-XORs of these
functions:

Lemma 5.1 (Lemma 6.1 of [CHH+20], adapted). Let F be any family of (kn)-variate Boolean func-
tions that is closed under relabeling variables. Further, suppose that for any a1, . . . , ak such that
|ai − n/2| = O(

√
kn log n) for all i ∈ [k], and all f ∈ F , we have for some t ≥ 1

cov(f(x1, . . . ,xk),⊕ki=1Majai) ≤
(√

t

n

)k
, (32)

where xi ∈ {0, 1}n and ⊕ denotes the XOR function.
Then, it holds that

Mk(F) ≤ O(
√
tk log n)k. (33)

To prove this lemma, [CHH+20] use the following sequence of claims.

Fact 5.1 (Claim 6.2 in [CHH+20]). For any f ∈ F , let F (x1, . . . ,xk) = e(f(x1, . . . ,xk)). Under the
hypotheses of Lemma 5.1, for any 1 ≤ a1, . . . , ak ≤ O(

√
kn log n),

|Ex1,...,xk
[(F (x1, . . . ,xk)− E[F ])

k∏
i=1

Thrai(xi)]| ≤
(√

t

n

)k
. (34)

.

Fact 5.2 (Claim 6.3 of [CHH+20]). For any x ∈ {0, 1}n,
∑n

i=1 e(xi) = 2
∑

1≤a≤n/2 Thra(x).
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Fact 5.3 (Claim 6.4 of [CHH+20], adapted). For any Boolean function f : {0, 1}kn → {0, 1}, there
exists a k-equipartition of [kn] into disjoint sets S1, . . . , Sk such that∣∣∣∣ ∑

S⊆[kn]:|S|=k

f̂(S)

∣∣∣∣ ≤ Ck∣∣∣∣ ∑
ij∈Sj ∀j∈[k]

f̂({i1, . . . , ik})
∣∣∣∣ (35)

for some absolute constant C > 0.

As this fact is not quite identical to that in [CHH+20], we give an argument here:

Proof. We (effectively) use the probabilistic method: let P be the set of k-equipartitions of [kn]. Let
T ⊆ [kn] of size k be arbitrary; without loss of generality, suppose T = [k]. Consider a uniformly
random k-equipartition P = S1 t . . . t Sk ∈ P. The probability that each i ∈ T belong to distinct Sj
is easily seen to be

k−1∏
i=1

(k − i) · n
kn− i

≥ (k − 1)!nk−1

(kn)k−1
=

(k − 1)!

kk−1
= e−O(k), (36)

where the last line uses Stirling’s approximation. By symmetry, let α ∈ N be the number of k-
equipartitions that any arbitrary subset T is in. Then we have

α

∣∣∣∣ ∑
S⊆[kn]:|S|=k

f̂(S)

∣∣∣∣ =

∣∣∣∣ ∑
P∈P

∑
ij∈Sj ∀j∈[k]

f̂({i1, . . . , ik})
∣∣∣∣ (37)

≤
∑
P∈P

∣∣∣∣ ∑
ij∈Sj ∀j∈[k]

f̂({i1, . . . , ik})
∣∣∣∣ (38)

≤ |P|max
P∈P

∣∣∣∣ ∑
ij∈Sj ∀j∈[k]

f̂({i1, . . . , ik})
∣∣∣∣. (39)

The first line follows from simple counting, while the second is the triangle inequality. Rearranging,
we deduce that (writing T as a generic subset of size k)∣∣∣∣ ∑

S⊆[kn]:|S|=k

f̂(S)

∣∣∣∣ ≤ |P|α max
P∈P

∣∣∣∣ ∑
ij∈Sj ∀j∈[k]

f̂({i1, . . . , ik})
∣∣∣∣ (40)

= Pr
P∼P

(T ∈ P )−1 max
P∈P

∣∣∣∣ ∑
ij∈Sj ∀j∈[k]

f̂({i1, . . . , ik})
∣∣∣∣ (41)

≤ eO(k) max
P∈P

∣∣∣∣ ∑
ij∈Sj ∀j∈[k]

f̂({i1, . . . , ik})
∣∣∣∣. (42)

The last fact that is needed can be deduced from the Chernoff bound:

Fact 5.4 (Claim 6.5 of [CHH+20], adapted). For any a ≥ Ω(
√
kn log n), E[|Thra|] ≤ O(1/nk).

With these facts, we can now prove Lemma 5.1 in an entirely analogous fashion to [CHH+20]:

Proof of Lemma 5.1. Fix f ∈ F , and again write F (x1, . . . ,xk) = e(f(x1, . . . ,xk)). Let F ′ = F−E[F ].
Let Uj = {i : (j − 1)n + 1 ≤ i ≤ jn}. Then, possibly after relabelling variables, we have by Fact 5.3
that

Mk(f) =

∣∣∣∣ ∑
S⊆[kn]:|S|=k

f̂(S)

∣∣∣∣ ≤ Ck∣∣∣∣ ∑
ij∈Uj ,∀j∈[k]

f̂({i1, . . . , ik})
∣∣∣∣, (43)
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so we may turn to bounding this latter term. We have∣∣∣∣ ∑
ij∈Uj ,∀j∈[k]

f̂({i1, . . . , ik})
∣∣∣∣ =

∣∣∣∣ ∑
ij∈Uj ,∀j∈[k]

E[F ′(x1, . . . ,xk)
k∏
j=1

e((xj)ij )]

∣∣∣∣
=

∣∣∣∣E[F ′(x1, . . . ,xk)
k∏
j=1

( ∑
ij∈Uj

e((xj)ij )

)]∣∣∣∣
≤ 2k

∑
1≤ai≤n/2,∀i∈[k]

∣∣∣∣E[F ′(x1, . . . ,xk)
k∏
i=1

Thrai(xi)

]∣∣∣∣
≤ 2k

( ∑
1≤ai≤O(

√
kn logn),∀i∈[k]

∣∣∣∣E[F ′(x1, . . . ,xk)

k∏
i=1

Thrai(xi)

]∣∣∣∣+O(1)

)

≤ 2k ·O
(√

kn log n
)k
·
(√

t

n

)k
= O

(√
tk log n

)k
.

The first inequality follows from Fact 5.2, the second from Fact 5.4, and the last by Fact 5.1. As
f ∈ F was arbitrary, and by absorbing the constant C from above into the implicit constant here in
this bound, we obtain the desired claim.

6 Discussion and Open Questions

In this work, we have given a nearly complete interpolation between the PRGs obtained in the polariz-
ing random walks framework by exploiting level-k bounds on the class of functions, thus answering an
open question from [CHLT19]. We do so by exploiting an alternate Fourier analysis via Taylor’s the-
orem and utilizing multilinearity and random restrictions. This new analysis enables us to construct
PRGs from bounds on the potentially much smaller and better-understood, Fourier quantity Mk(F),
for any k ≥ 3. By generalizing the connection established in [CHH+20], this reduces the problem of
constructing PRGs in this framework to proving correlation bounds. Further, we show how to improve
the seed length of the PRG if we have bounds on L1,i, for all i ≤ k, where k ≥ 3. A natural open
question along these lines is to obtain such an improved seed length using bounds on Mi (instead of
L1,i) for all i ≤ k. Another natural question is to construct a PRG using bounds on just M2 (recall
that [CHLT19] gives such a construction using bounds on L1,2 and our analysis only gives a non-trivial
PRG from bounds on Mk when k ≥ 3).

Finally, exploiting known level k bounds for F2 polynomials, our approach shows that the random
walks framework can yield pseudorandom generators for the class of F2 polynomials that is competitive
with, though falls short of, the state-of-the-art. As mentioned, we hope this paper both gives evidence
that stronger Fourier control (perhaps via proving the required correlation bounds) can give better
PRGs using this framework, and can also handle classes that were previously not known to be possible.
In particular, we emphasize that proving Conjecture 4.3 even for the case of k = 3 will lead to PRGs
for F2 polynomials with degree ω(log n), a longstanding problem in complexity theory.

References

[CHH+20] Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, Shachar Lovett, and David Zucker-
man. XOR lemmas for resilient functions against polynomials. In Proceedings of the 52nd

17



Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, page 234–246,
New York, NY, USA, 2020. Association for Computing Machinery.

[CHHL19] Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, and Shachar Lovett. Pseudorandom
generators from polarizing random walks. Theory of Computing, 15(10):1–26, 2019.

[CHLT19] Eshan Chattopadhyay, Pooya Hatami, Shachar Lovett, and Avishay Tal. Pseudorandom
Generators from the Second Fourier Level and Applications to AC0 with Parity Gates. In
Avrim Blum, editor, 10th Innovations in Theoretical Computer Science Conference (ITCS
2019), volume 124 of Leibniz International Proceedings in Informatics (LIPIcs), pages
22:1–22:15, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[CHRT18] Eshan Chattopadhyay, Pooya Hatami, Omer Reingold, and Avishay Tal. Improved pseudo-
randomness for unordered branching programs through local monotonicity. In Proceedings
of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los
Angeles, CA, USA, June 25-29, 2018, pages 363–375, 2018.

[GSW16] Parikshit Gopalan, Rocco A. Servedio, and Avi Wigderson. Degree and sensitivity: Tails
of two distributions. In Ran Raz, editor, 31st Conference on Computational Complexity,
CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, volume 50 of LIPIcs, pages 13:1–13:23.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

[Kel12] Nathan Keller. A simple reduction from a biased measure on the discrete cube to the
uniform measure. European Journal of Combinatorics, 33(8):1943 – 1957, 2012.

[LMN89] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, Fourier trans-
form, and learnability. In 30th Annual Symposium on Foundations of Computer Science,
pages 574–579. IEEE, 1989.

[NN93] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and
applications. SIAM Journal on Computing, 22(4):838–856, 1993.

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.

[Raz87] A. A. Razborov. Lower bounds on the size of bounded depth circuits over a complete
basis with logical addition. Mathematical notes of the Academy of Sciences of the USSR,
41(4):333–338, Apr 1987.

[RT19] Ran Raz and Avishay Tal. Oracle separation of BQP and PH. In Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, page 13–23, New
York, NY, USA, 2019. Association for Computing Machinery.

[Smo87] R. Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit com-
plexity. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing,
STOC ’87, page 77–82, New York, NY, USA, 1987. Association for Computing Machinery.

[Smo93] R. Smolensky. On representations by low-degree polynomials. In Proceedings of the 1993
IEEE 34th Annual Foundations of Computer Science, SFCS ’93, page 130–138, USA, 1993.
IEEE Computer Society.

[Tal17] Avishay Tal. Tight bounds on the Fourier spectrum of AC0. In 32nd Computational
Complexity Conference (CCC 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2017.

18



[Vad12] Salil P Vadhan. Pseudorandomness. Foundations and Trends R© in Theoretical Computer
Science, 7(1–3):1–336, 2012.

[Vio09] Emanuele Viola. The sum of d small-bias generators fools polynomials of degree d. Com-
putational Complexity, 18(2):209–217, 2009.

[Wu20] Xinyu Wu. A stochastic calculus approach to the oracle separation of BQP and PH. arXiv
preprint arXiv:2007.02431, 2020.

19

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


