
Size Bounds on Low Depth Circuits for Promise
Majority
Joshua Cook
University Of Texas At Austin, Texas USA
jac22855@utexas.edu

Abstract
We give two results on the size of AC0 circuits computing promise majority. ε-promise majority is
majority promised that either at most an ε fraction of the input bits are 1, or at most ε are 0.

First, we show super quadratic lower bounds on both monotone and general depth 3 circuits for
promise majority.

For any ε ∈ (0, 1/2), monotone depth 3 AC0 circuits for ε-promise majority have size

Ω̃
(
ε3n

2+ ln(1−ε)
ln(ε)

)
For any ε ∈ (0, 1/2), general depth 3 AC0 circuits for ε-promise majority have size

Ω̃
(
ε3n

2+ ln(1−ε2)
2 ln(ε)

)
These are the first nontrivial size lower bounds on depth 3 promise majority circuits for ε < 0.45.
Second, we give both uniform and non-uniform sub-quadratic size constant depth circuits for
promise majority.

For integer k ≥ 1, constant ε ∈ (0, 1/2), there exists monotone non uniform AC0 circuits of
depth 2 + 2 · k computing ε-promise majority with size

Õ
(
n

1
1−2−k

)
For integer k ≥ 1, constant ε ∈ (0, 1/2), there exists monotone uniform AC0 circuit of depth
2 + 2 · k computing ε-promise majority with size

n

1
1−(2

3)k
+o(1)

These circuits are based on incremental improvements to existing depth 3 circuits for promise
majority given by Ajtai [2] and Viola [16] combined with a divide and conquer strategy.

2012 ACM Subject Classification Theory of computation → Circuit complexity

Keywords and phrases AC0, Approximate Counting, Approximate Majority, Promise Majority,
Depth 3 Circuits, Circuit Lower Bound

Acknowledgements Thanks to Dana Moshkovitz for suggesting I study the size cost of derandom-
izing AC0 circuits. This research was supported by NSF grant 1705028.

1 Introduction

The majority function is a classic function that cannot be computed in AC0 [9]. But AC0
can compute majority promised the input is either mostly 1s or mostly 0s.

I Definition 1 (ε-promise majority). Let W : {0, 1}n → [n] be the function giving the number
of ones in the input. Let ε ∈ (0, 1/2). Then define the ε promise inputs to be:

Maj0ε ={x ∈ {0, 1}n : W (x) ≤ εn}
Maj1ε ={x ∈ {0, 1}n : W (x) ≥ (1− ε)n}
Majε =Maj0ε ∪Maj1ε

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 122 (2020)

mailto:jac22855@utexas.edu

2 Size Bounds on Low Depth Circuits for Promise Majority

We say that function f solves the ε-promise majority1problem if:

f(Maj0ε) = 0

f(Maj1ε) = 1

That is f computes the majority promised the input is in Majε.

We give size lower bounds to depth 3 alternating circuits computing ε-promise majority.
Then we give smaller circuits solving promise majority at larger depths.

1.1 Motivation
Promise majority is an important tool in derandomizing circuits. We say a circuit implement-
ing a function f : {0, 1}n × {0, 1}m → {0, 1} is a randomized circuit for g : {0, 1}n → {0, 1}
if Prr∈{0,1}m [f(x, r) = g(x)] ≥ 2/3. We say that a string r ∈ {0, 1}m is a seed for g.

Adleman [1] showed that any randomized n bit circuit has some O(n) fixed choices of
seeds that will always give the correct output on the majority of seeds. Taking majority of
these outputs gives the right answer. If the circuit has size O(n), this gives an O(n2) sized
deterministic circuit. Unfortunately, AC0 cannot compute majority. However, we can get
O(n) seeds where 3/5 always give the right answer. Thus we can use a 2/5-promise majority
circuit to derandomize AC0.

Ajtai [2] gave a depth 3 circuits of size O
(
n2+ ln(1−ε)

ln(ε)−ln(1−ε)

)
solving the ε-promise majority

problem. Combining this result with Adleman takes a size n, depth d randomized circuit
and gives a depth d + 2 size O

(
n2+ ln(1−ε)

ln(ε)−ln(1−ε)

)
deterministic circuit. This is bigger than

the ideal O(n2) circuit Adleman gave in the unbounded depth setting.
This paper gives new size lower bounds for AC0, depth 3 circuits. We show that

Adleman’s derandomization of AC0 circuits to get O(n2) size deterministic circuits using
promise majority requires a depth increase of 3. We further show that we can achieve O(n2)
size derandomization with a depth 3 increase.

1.2 Our Results
For notation, let Õ(x) indicate order x up to some polylogarithmic factors. That is:

I Definition 2. f(n) = Õ(g(n)) if for some integer c, f = O(g(n) ln(n)c).
f(n) = Ω̃(g(n)) if for some integer c, f = Ω(g(n) ln(n)c).

First, we give a lower bound on monotone depth 3 circuits for promise majority. The
best known depth 3 circuits are monotone, so this applies to the state of the art.

I Theorem 3. For any ε ∈ (0, 1/2), a monotone, depth 3 alternating circuit solving the
ε-promise majority problem must have Ω̃

(
ε3n2+ ln(1−ε)

ln(ε)

)
gates.

We follow this up with some worse, but still greater than quadratic, lower bounds on
any depth 3 AC0 circuit computing promise majority.

1 Prior work often called promise majority "approximate majority" [16, 17]. But approximate majority
also refers to the standard notion of approximating a boolean function [5]. To avoid confusion, we
follow the convention suggested in [12] to refer to the promise problem version of majority as promise
majority.

J. Cook 3

I Theorem 4. For any ε ∈ (0, 1/2), a depth 3 alternating circuit solving the ε-promise

majority problem must have Ω̃
(
ε3n2+ ln(1−ε2)

2 ln(ε)

)
gates.

Now that we have proven that we cannot construct quadratic size AC0 circuits in
depth 3 for promise majority, we show that we can construct them at higher depth. Minor
tweaks to Ajtai’s promise majority circuit [2] gives us a depth 4 quadratic size, promise
majority2circuit.

I Theorem 5. For constant ε ∈ (0, 1/2), there exists non uniform, monotone depth 4
alternating circuits solving the ε-promise majority problem with size O

(
n2).

We then show how to solve ε-promise majority with even smaller circuits at higher depths
using a divide and conquer strategy.

I Theorem 6. For constant ε ∈ (0, 1/2), there exists non uniform, monotone AC0 circuits
of depth 2 + 2 · k solving the ε-promise majority problem with size Õ

(
n

1
1−2−k

)
.

The above circuit is not explicit, or uniform, so we don’t know how to construct it
efficiently. We also give a P-Uniform circuit for promise majority: a circuit with a polynomial
time algorithm to construct it. It uses a slight improvement on Viola’s depth 3 promise
majority circuit [16] with a divide and conquer strategy.

I Theorem 7. For constant ε ∈ (0, 1/2), there exists P-uniform, monotone AC0 circuits of

depth 2 + 2 · k solving the ε-promise majority problem with size n
1

1−(2
3)k

+o(1)
.

This gives depth 6, o(n2) size, P-uniform monotone promise majority circuits.

I Corollary 8. For constant ε ∈ (0, 1/2), there exists P-uniform monotone AC0 circuits of
depth 6 solving the ε-promise majority problem with size n 9

5 +o(1).

Thus a P-uniform PRG with O(n) seeds for AC0 could derandomize linear sized AC0
randomized circuits to quadratic size with a depth increase of only 5. Finding such PRGs, or
even PRGs with polynomially many seeds, is still open. Though work by Dean Doron, Dana
Moshkovitz, Justin Oh and David Zuckerman construct nearly quadratic PRGs conditioned
on some complexity theoretic assumptions [7].

1.3 Related Work
There are already known polynomial size AC0 circuits for promise majority. The first and
smallest such circuit is by Ajtai [2] which gives a non uniform, polynomial size, depth 3 AC0
circuit for computing ε-promise majority problem.

Ajtai later gave a uniform, even deterministic log time uniform, AC0 circuit for promise
majority [3]. But this circuit has a large depth and its construction is complicated. Viola
later gave a simpler P-Uniform AC0 circuit for promise majority [16].

Exact threshold functions in AC0 has been studied extensively. Ragde and Wigderson
[14] show that for integer r > 0 the threshold ln(n)r has AC0 circuits with depth O(r) and
size o(n). This improves on a result by Ajtai and Ben-Or [4]. Further, Hastad, Wegener,
Wurm, and Yi [10] show that polylogarithmic threshold functions have sub polynomial size
constant depth circuits.

2 It is important that ε stay bounded away from 1/2 in the upper bounds. The constant in all these
upper bounds depends on ε and increases as ε approaches 1/2.

4 Size Bounds on Low Depth Circuits for Promise Majority

Approximate majority in AC0 circuits have been investigated by Amano [5], O’Donnel
and Whimmer [13]. O’Donnel and Whimmer gave exponential size lower bounds for AC0
circuits computing majority on most inputs, which were shown to be tight by Amano. This
is consistent with promise majority results because most inputs are close to balanced, within
a O(1/

√
n) factor, but promise majority is only guaranteed to give majority on inputs that

are far from balanced.
For ε =

(
1
2 −

1
ln(n)k

)
, Viola shows that a randomized, polynomial size AC0 circuit with

depth k + 1 can solve ε-promise majority, and that polynomial size deterministic circuits
with depth k+ 2 cannot solve ε-promise majority. Further there is a depth k+ 3, polynomial
size, deterministic circuit for ε-promise majority [17].

The same work [17] gave size lower bounds for depth 3 ε-promise majority circuits, but
the bounds are less than linear for ε < 1

2 −
1

100 . Closer analysis gives better lower bounds,
but I could not get super linear lower bounds for ε < 1

2 −
1
20 with this technique.

A later work by Limaya, Srinivasan and Tripathi [12] showed that polynomial, determin-
istic AC0 circuits with parity gates of depth k + 1 also cannot solve

(
1
2 −

1
ln(n)k

)
-promise

majority.

2 Proof Ideas

2.1 Monotone Depth 3 Circuit Lower Bounds
For depth 3 promise majority circuits, WLOG assume the first level of gates are AND gates3.
Call the inputs variables, the first level gates clauses, and the second level gates DNFs.

For ε = Õ
(
n−1/2), all our lower bounds hold trivially as we need at least εn gates. So

we will assume otherwise. We do this so that all restrictions will indeed restrict a positive
number of items. We generally won’t worry about integrality.

To prove lower bounds of a depth 3 circuit, we construct adversarial restrictions that
simplify the circuit while setting too few variables to violate the promise. To do this, we use
two main tools. The first is a lemma from Viola [16] that we use to remove gates with very
small fan in at the first level.

The second is that any collections of large sets over some variables can have a large
fraction of sets hit by a small fraction of variables. To do this, just repeatedly select a
variable in at least the average number of sets per variable.

First we show DNFs have Ω̃(n1+α) clauses for some α > 0. To do this, we eliminate
small clauses with the first idea, then use the second idea to eliminate many clauses with few
0s. This leaves many clauses while eliminating a large fraction of clauses, thus we started
with even more clauses.

Then we show the circuit has Ω̃(n2+α) clauses. First we use the second idea to remove
any very large clauses. This lets us fix clauses to 1 without using too many variables. Then
using the second idea again, we can hit many DNFs with few clauses. Thus there must be
many clauses so we can’t hit every DNF with few clauses.

2.2 General Depth 3 Circuit Lower Bounds
The proof for non monotone circuits is similar, but with an additional hurdle. In monotone
circuits, setting variables to 0 only makes clauses 0. But with negations, we can actually

3 Switching the ANDs to ORs and ORs to ANDs in a circuit solving ε-promise majority still solves
ε-promise majority. To see this, observe that flipping all the input bits will flip a Maj1ε input to a Maj0ε
input. Then apply De Morgans.

J. Cook 5

shrink clauses without eliminating them. This is an issue for showing DNFs must be large,
but the rest of the argument only needs minor changes.

The solution is to set adversarial bits probabilistically. We independently set each bit to
1 with probability ε. With good probability, this will give an input in Maj0ε . Some DNFs
then must have a good probability of "noticing" and becoming 0.

With high probability, fixing a small fraction of variables according to Dε will eliminate
many clauses. For some α > 0, if the DNF is smaller than n1+α this will make it constant.
With good probability, setting the rest of the variables gives an input this DNF must "notice"
and become 0. Thus for some input both will happen. But then the DNF outputs 0 with
few 0 inputs. This can’t happen so the DNF must be larger than n1+α.

2.3 Small Sized Circuits
To get small circuits, first we amplify the ε promise input to a 1

polylog(n) promise input by
taking majority over O(ln(ln(n))) length walks on an expander graph. Then we separate our
input into polynomially small groups and run a 1

ln(n) -promise majority on each. This gives
a polynomially smaller layer which satisfies just an ln(n) factor worse promise. Applying
this several times computes majority of the promise input.

Ajtai’s promise majority strategy gives a quadratic sized 1/ ln(n)-promise majority circuit.
Using this with the divide and conquer strategy above gives non uniform small circuits.

For our uniform circuit, we look at Viola’s circuit [16]. It uses a hitting property that
requires n3+o(1) many random walks for each of our n bits, requiring an overall size of
n4+o(1). We reduce this by showing it suffices to let each bit only range over random walks
starting at that bit, giving an n3+o(1) sized 1/ ln(n)-promise majority circuit.

Applying this improved version of Viola’s depth 3 circuit with our divide and conquer
strategy gives our uniform small circuits.

2.4 Terminology
We will use a biased input in our proofs.

I Definition 9 (ε Biased Input). For any ε ∈ [0, 1] the ε biased input Dε is a random variable
over {0, 1}n where each bit independently is 1 with probability ε.

As with Maj0ε and Maj1ε , n in Dε is implicit. Dε is related to Maj0ε by a central limit
theorem: Pr[Dε ∈ Majε] > 1

3 for large enough n.
We will make sub DNFs by only taking some clauses from a larger DNF.

I Definition 10 (Sub DNF). Let G be a DNF with clauses C = {Ci : i ∈ [k]} so that
G =

∨
i∈[k] Ci. Let Λ ⊆ [k] and H be a DNF with H =

∨
i∈Λ Ci.

Then we say that H is sub DNF of G or G has sub DNF F.

Restrictions fix some bits in the input to a function. We formalize this as a function that
takes unrestricted bits as input and outputs the restricted and unrestricted bits together4.

I Definition 11 (Restriction). A restriction ρ on n variables of size m is a function ρ :
{0, 1}n−m → {0, 1}n such that for some constant of fixed bit values c ∈ {0, 1}m and
permutation of [n] for bit locations, π, for all x ∈ {0, 1}n−m and i ∈ n:

ρ(x)i =
{
cπi πi ≤ m
xπi−m πi > m

4 This is an equivalent, but slightly nonstandard way to define restrictions.

6 Size Bounds on Low Depth Circuits for Promise Majority

We say the size of ρ as |ρ| = m and we denote by f �ρ= f ◦ ρ.

When we compose a DNF, F, with a restriction ρ, we say F �ρ is a DNF which is F with
variables restricted in ρ set to their restricted value. We simplify such a DNF to remove any
clause that has been set to 0. We count the size of a DNF by its number of clauses.

I Definition 12 (DNF Terms). For a DNF F, the size of F, |F |, is the number of clauses in
F. Any DNF that is the constant 1 or 0 function has size 0.

We say a DNF F has width w if no clause in F has width greater then w.

3 Monotone Depth 3 Circuit Size Lower Bounds

3.1 Removing Small Clauses
We use a result from Viola in [16], Lemma 11. Intuitively, this lemma says for a DNF with
small width, either there is some setting to a small number of variables that makes it 0, or
under a randomized input it is unlikely to be 0.

I Lemma 13. Let G be a DNF with a sub DNF F. Assume for some positive integers w and
m, F has width at most w and Pr[G(Dε) = 0] ≥ e−εw·m/w2 . Then there exists a restriction
ρ with |ρ| ≤ m such that F �ρ= 0 and Pr[G �ρ (Dε) = 0] ≥ Pr[G(Dε) = 0]

The proof is in Appendix A. As a corollary, we can can apply small restrictions to
eliminate small width clauses.

I Corollary 14. Suppose ε ∈ (0, 1/2), DNF F and constant α has Pr[F (Dε) = 0] = Ω(1/nα).
Then for sufficiently large n and w = logε

(
ln(n)5

nε ln(ε)2

)
, there is a restriction ρ restricting

at most m = εn
ln(n) variables so that any clause C in F with width w has C �ρ= 0 and

Pr[F �ρ (Dε) = 0] ≥ Pr[F (Dε) = 0].

Proof. Let F ′ be the sub DNF of F with clauses of width less than w. Then see that

E[F (Dε) = 0] ≥ 1/nα = e−α ln(n) = e
−α ln(n)5

n
εn

ln(n)
ln(ε)2

ln(n)3 = e
−αεwm 1

ln(n)3 ≥ e−ε
wm 1

w2

From Lemma 13, there is a restriction ρ of size m with E[F �ρ (Dε) = 0] ≥ E[F (Dε) = 0]
setting F ′ �ρ= 0. Any width w clause C would be in F ′, thus C �ρ= 0 since F ′ �ρ= 0. J

3.2 Covering Many Large Sets with Few Elements
We prove the simplest version of this result, but slight variations will be used in multiple
places. Since the proofs look very similar, we only present one in detail. We show how to
remove many clauses from a monotone DNF with a small restriction

I Lemma 15. Let F be a monotone, width w DNF. Then for any positive integer b, there is
some restriction ρ with |ρ| = b only fixing variables to 0 such that |F �ρ| < |F |ew ln(1− b

n+1)

Proof. The idea is to restrict the variable that intersects the most clauses to 0. This removes
at least the average number of clauses per variable, which when we have m clauses and have
fixed i variables is at least mw

n−i . After b restrictions, we get ρ with |ρ| = b and

|F �ρ| ≤ |F |
b−1∏
i=0

(
1− w

n− i

)

J. Cook 7

We prove this by induction then simplify with calculus. For the base case where b = 0,
F is unchanged and we get the empty product, so done.

For b > 0, we have some ρ′ restricting b− 1 variables with |F �ρ′ | ≤ |F |
∏b−2
i=0

(
1− w

n−i

)
.

Then F �ρ′ is a function on n+ 1− b variables. Let s be the variable in the most clauses of
F �ρ′ . Then s is in at least |F �ρ′ | w

n+1−b clauses. Let ρ be ρ′ also fixing s to 0. Then:

|F �ρ| ≤ |F �ρ′ | − |F �ρ′ |
w

n+ 1− b = |F |
b−1∏
i=0

(
1− w

n− i

)
Completing our induction. This simplifies to

|F �ρ| = |F |
b−1∏
i=0

(
1− w

n− i

)
< |F |e

∑b−1
i=0
− w
n−i = |F |e−w

∑n

i=n+1−b
1
i

From calculus we have

b∑
i=a

1
i
≥
∫ b+1

a

1
x
dx = ln

(
b+ 1
a

)
Then applying this we get

|F �ρ| < |F |e
−w
∑n

i=n+1−b
1
i ≤ |F |e−w ln(n+1

n+1−b) = |F |ew ln(1− b
n+1)

J

The same idea gives the simpler bound:

I Corollary 16. Let F be a monotone DNF with clause width at least w. Then there is some
restriction ρ that fixes b variables such that |F �ρ| < |F |e−wb/n.

With this idea, we can remove all large clauses fixing few variable. For the non monotone
case, we only remove half the average number of clauses with each variable, giving:

I Corollary 17. Let F be a collection clauses. Then there is some restriction ρ fixing n/p
variables such that F �ρ has width w = 2 ln(|F |)p.

3.3 Monotone DNF Size
We prove that any DNF with a good chance of "noticing" inputs from Dε have a large size.

I Lemma 18. For ε ∈ (0, 1/2) and monotone DNF F with F (Maj1ε) = 1 and Pr[F (Dε) =
0] ≥ 1/nα for constant α. Then F has Ω̃

(
εn1+ ln(1−ε)

ln(ε)

)
clauses.

Proof. The idea is to restrict our function until we are only promised it outputs 1 on an
Maj1ε/ ln(n) input. Using Lemma 15, we can do this in such a way to eliminate a large fraction
of clauses. Then since we still need to output 1 if we have fewer than εn

ln(n) more 0s, we can
choose these remaining εn

ln(n) 0s to each eliminate one clause, showing that there are still
εn

ln(n) clauses left. This implies that we must have started with the above number of clauses.

For w = logε(
ln(n)5

nε ln(ε)2), by Corollary 14, there is restriction ρ with |ρ| ≤ εn
ln(n) and F �ρ

has no clauses smaller than w. Denote F2 = F �ρ. Note F2 solves F2(Maj1ε(1−1/ ln(n))) = 1
and has no clauses smaller than w.

8 Size Bounds on Low Depth Circuits for Promise Majority

Now use Lemma 15 to get restriction ρ2 that assigns εn(1− 2/ ln(n)) variables and:

|F2 �ρ2 | ≤|F2|ew ln
(

1− εn(1−2/ ln(n))
n+1

)
Now we simplify the exponent w ln

(
1− εn(1−2/ ln(n))

n+1

)
. For 0 < x < 1/2 and 0 < y by a

Taylor argument we have ln(1− x+ y) ≤ ln(1− x) + 2y. Then for sufficiently large n:

ln
(

1− εn(1− 2/ ln(n))
n+ 1

)
= ln

(
1− ε+ ε

n+ 1 + 2εn
n+ 1

1
ln(n)

)
≤ ln(1− ε) + 5ε

ln(n)

Now including w

w ln
(

1− εn(1− 2/ ln(n))
n+ 1

)
=

ln(n)− ln
(

ln(n)5

ε ln(ε)2

)
ln(1/ε)

(
ln(1− ε) + 5ε

ln(n)

)

<
ln(n) ln(1− ε)

ln(1/ε) −
ln
(

ln(n)5

ε ln(ε)2

)
ln(1− ε)

ln(1/ε) + 5
ln(1/ε)

Then applying this to our size bound

|F2 �ρ2 | ≤|F2|ew ln
(

1− εn(1−2/ ln(n))
n+1

)
<|F2|e

ln(n) ln(1−ε)
ln(1/ε) −

ln

(
ln(n)5

ε ln(ε)2

)
ln(1−ε)

ln(1/ε) + 5
ln(1/ε)

<|F2|e8n
ln(1−ε)
ln(1/ε)

ln(n)5

(1− ε) ln(ε)2 logε(1−ε)

<|F2|e8n
ln(1−ε)
ln(1/ε) 2 ln(n)5

Since F2 �ρ2 still satisfies F2 �ρ2 (Maj1ε/ ln(n)) = 1, it must have εn
ln(n) more clauses. Thus:

εn

ln(n) ≤ |F2 �ρ2 | ≤ e8|F2|n
ln(1−ε)
ln(1/ε) 2 ln(n)5

εn1+ ln(1−ε)
ln(ε)

2e8 ln(n)6 ≤|F2|

F has at least as many clauses as F2, thus |F | = Ω̃
(
εn1+ ln(1−ε)

ln(ε)

)
. J

3.4 Monotone Circuit Size Lower Bounds
Now we prove the monotone depth 3 promise majority circuit lower bounds.

I Theorem 3. For any ε ∈ (0, 1/2), a monotone, depth 3 alternating circuit solving the
ε-promise majority problem must have Ω̃

(
ε3n2+ ln(1−ε)

ln(ε)

)
gates.

Proof. Let F be a monotone depth 3 alternating circuit computing the ε-promise majority.
We will refer to the first level gates as clauses, and the second level gates as DNFs. Let |F |
refer to the number of clauses in F, and ‖F‖ refer to the number of DNFs. If F has more
than n2+α gates, we are done. So suppose it doesn’t.

Let α = ln(1−ε+3ε/ ln(n))
ln(ε−3ε/ ln(n)) . We can show that

α >
ln(1− ε)

ln(ε) −O
(

1
ln(n)

)

J. Cook 9

So if we show |F | = Ω̃
(
ε3n2+α), then the O term in α becomes a constant.

First, from Corollary 17, we have a restriction ρ fixing εn/ ln(n) variables such that any
clause wider than w = 2 ln(|F |) ln(n)

ε is set to 0. Let F2 = F �ρ. See that F2 solves the(
ε− 1

ln(n)

)
-promise majority problem and has no clauses wider than 6 ln(n)2

ε .
By Lemma 18, every DNF G with Pr[G(Dε(1−3/ ln(n))) = 0] ≥ 1/n3+α has at least

cεn1+α clauses for some polylogarithm c. Let F3 be the sub circuit of F2 with only the
DNFs of F2 larger than cεn1+α.

Since no clauses are wider than w, we can set any m clauses in F3 to 0 by fixing only
mw variables. Then, analogous to Corollary 16, there exists a restriction ρ2 fixing εn/ ln(n)
variables to one such that:

‖F3 �ρ2 ‖ ≤ ‖F3‖e−cεn
1+α(|ρ2|/w)/|F3|

Where ‖F3 �ρ2 ‖ is the number of DNFs in F3 not fixed to 1 or 0 under the restriction ρ2.
See that F2 �ρ2 still solves the ε(1 − 2/ ln(n))-majority problem. By a central limit

theorem Dε(1−3/ ln(n)) has a constant above 0 probability of being in Maj0ε(1−3/ ln(n)). Thus
since F2 has fewer than n2+α DNFs (by assumption), some DNF in F2, A, must be 0 on
Dε(1−3/ ln(n)) with probability greater than 1/n3+α. By Lemma 18, A has size at least
cεn1+α. Thus A must also be in F3. Thus ‖F3 �ρ2 ‖ ≥ 1.

Now we can compute a lower bound for |F3|:

1 ≤‖F3 �ρ2 ‖ ≤ ‖F3‖e−cεn
1+α |ρ2|

w|F3|

e
cε2n2+α 1

w|F3| ln(n) ≤‖F3‖

cε2n2+α 1
w|F3| ln(n) ≤ ln (‖F3‖)

cε3n2+α 1
2 ln(|F |) ln(n)|F3| ln(n) ≤ ln (‖F3‖)

Ω̃
(
ε3n2+α) ≤|F3|

Using the definition of alpha and that |F | > |F3| we get:

|F | ≥ Ω̃
(
ε3n2+α) ≥ Ω̃

(
ε3n

2+ ln(1−ε)
ln(ε) −O

(
1

ln(n)

))
≥ Ω̃

(
ε3n2+ ln(1−ε)

ln(ε)

)
J

4 General Depth 3 Circuits

The proof the size lower bound for general depth 3 circuits computing promise majority
follows almost the same as the monotone case, except the proof that DNFs must be large.
So we only prove our DNF bound here, but leave a brief proof of Theorem 4 in Appendix B.

I Lemma 19. Suppose ε ∈ (0, 1/2), and F is a DNF such that Pr[F (Dε) = 0] ≥ 1/nα for

some constant α and F (Maj1ε) = 1. Then F has size at least Ω̃
(
εn1+ ln(1−ε2)

2 ln(ε)

)
.

Proof. First, see that if F (Maj1ε) = 1 and F 6= 1, there must be at least εn clauses.
Otherwise we could fix one variable in each clause to 0 using fewer than nε 0s. Then for
ε = Õ

(
1√
n

)
the lemma is satisfied. So take ε = ω

(
ln(n)3
√
n

)
.

Letm = εn(1−2/ ln(n)) and w = logε(
ln(n)5

nε ln(ε)2). We will define a sequence of probabilistic
restrictions, ρ0, ..., ρm, each restricting one more variable according to Dε. At the same time

10Size Bounds on Low Depth Circuits for Promise Majority

we will construct a sequence of sub DNFs of F, F0, ..., Fm, each a subset of the last, so that
each Fi �ρi has width at least w.

Informally, with decent probability each Fi is significantly smaller than the last. Thus by
a Chernoff bound, with high probability Fm has a small fraction of the clauses of F. Then
we use Corollary 14 to eliminate the small width clauses in Fm �ρm . With good probability
the DNF will still not be 1, in which case it must still have an almost linear number of
clauses. Thus there must have been many clauses to destroy so many and have so many left.

Let ρ0 restrict no variables and F0 be F restricted to clauses wider than w. Then for
any i, let ρi be ρi−1 plus restricting whichever variable appears in the most clauses in
Fi−1 �ρi−1 to one with probability ε and 0 otherwise. Then let Fi be the clauses such that
they have width higher than w in F �ρi . See that Fi ⊆ Fi−1, since further restrictions will
only decrease the size and number of clauses.

With probability at least ε, ρi will eliminate at least |Fi−1|w
2(n−i+1) clauses. Thus:

Pr
[
|Fi+1| ≤ |Fi|

(
1− w

2(n− i)

)]
≥ ε

Let k be the number of times this inequality holds. By a argument similar to Lemma 15:

|Fm| ≤ |F0|
k−1∏
i=0

(
1− w

2(n− i)

)k
≤ e

w
2 ln(1− k

n+1)

See the expected value of k is at least mε. By a Chernoff bound, we have:

Pr[k < (1− 1/ ln(n))εm] ≤ e−
εm

2 ln(n)2 < e
− ε2n

ln(n)3

Now, notice that ρm only sets variables according to an ε biased distribution. So if we
just finish sampling the rest of the variables from Dε it is the same as sampling all the
variables from Dε. Thus:

Eρm [Pr[F �ρm (Dε) = 0]] = Pr[F (Dε) = 0]

We need high probability that F �ρm still outputs 0 with polynomial probability on Dε.

1
nα
≤Eρm [Pr[F �ρm (Dε) = 0]]

≤ 1
n2α + Pr

ρm

[
Pr[F �ρm (Dε) = 0] > 1

n2α

]
1
nα
− 1
n2α ≤Pr

ρm

[
Pr[F �ρm (Dε) = 0] > 1

n2α

]

The probability that ρm has both Pr[F �ρm (Dε) = 0] > 1/n2α and k > (1− 1
ln(n))εm is

at least 1
nα −

1
n2α − e

− ε2n
ln(n)3 , which for large n is positive. Then take such ρm as ρ.

By Corollary 14, we have a restriction of F |ρ, ρ′, which restricts εn/ ln(n) variables and
leaves no clauses of width less than w, and has

Pr[F �ρ�ρ′ (Dε) = 0] ≥ Pr[F �ρ (Dε) = 0] ≥ 1
n2α

Now call F ′ = F �ρ�ρ′ . See that F ′ has fixed εn(1− 1/ ln(n)) variables. Thus it still satisfies
F ′(Maj1ε/ ln(n)) = 1. Since F ′ 6= 1, |F ′| ≥ εn/ ln(n). The clauses in F ′ had width greater

J. Cook 11

than w in Fm, otherwise ρ′ would have set them to 0. Thus |Fm| ≥ εn/ ln(n). Together we
have:

εn

ln(n) ≤|F0|e
w
2 ln(1− k

n+1)

≤|F0|e
w
2 ln
(

1− (1−1/ ln(n))εm
n+1

)
≤|F0|e

ln

(
nε ln(ε)2

ln(n)5

)
2 ln(1/ε) (ln(1−ε2)+6ε/ ln(n))

Ω̃
(
εn1+

ln(1−ε2)
2 ln(ε)

)
≤|F0|

Thus F has at least Ω̃
(
εn1+

ln(1−ε2)
2 ln(ε)

)
clauses. J

5 Circuit Upper Bounds

The results in this section mostly use standard techniques and the details are given in
the appendix. A small improvement to Ajtai’s [2] promise majority circuit (shown in
Appendix C.1) gives:

I Theorem 20. For any ε ∈ (0, 1/2) there exists a monotone depth 3 AC0 circuit solving
the ε-promise majority problem with size O

(
(ε ln(ε))2

n2+ ln(1−ε)
ln(ε)−ln(1−ε)

)
.

This also gives the corollary we will use for our stronger upper bounds for higher depth.

I Corollary 21. For any ε = O
(

ln(ln(n))
ln(n)

)
, there is a monotone depth 3 AC0 circuit solving

the ε-promise majority problem with size O
(
n2).

Using random walks on expander graphs, we can amplify our promise (proof in Ap-
pendix C.2). The polylogarithmic factor in the size depends on ε and k.

I Lemma 22. For any constant k, ε ∈ (0, 1/2), there exists a monotone, P-Uniform depth
3 circuit of size Õ(n) amplifying a Maj0ε input to a Maj0 1

ln(n)k
output and a Maj1ε input to a

Maj1 1
ln(n)k

output.

With amplification and quadratic size circuits, we can trivially prove the existence of
depth 4, Õ(n2) sized circuits. But the circuit size only depends on the number of potential
inputs (NOT the number of bits used to represent them). Thus the circuit has O(n2) size.

I Theorem 5. For constant ε ∈ (0, 1/2), there exists non uniform, monotone depth 4
alternating circuits solving the ε-promise majority problem with size O

(
n2).

We can apply promise majority circuits in a divide and conquer fashion to get the
following (Proved in Appendix C.3).

I Lemma 23. If there is a depth 3 alternating circuit with size nα solving 1/ ln(n)-promise
majority, then for any positive integer k, there is a depth 1 + 2 · k alternating circuit solving
1/ ln(n)k-promise majority with size:

kn

1

1−(α−1
α)k

Which is uniform and monotone if the depth 3 circuit is uniform and monotone.

12Size Bounds on Low Depth Circuits for Promise Majority

Combining this with amplification and our quadratic sized majority gives:

I Theorem 6. For constant ε ∈ (0, 1/2), there exists non uniform, monotone AC0 circuits
of depth 2 + 2 · k solving the ε-promise majority problem with size Õ

(
n

1
1−2−k

)
.

For uniform circuits, we refine of Viola’s result [16].

I Theorem 24. There exists a P-uniform, size O
(
n3+o(1)) depth 3 AC0 circuit solving the

1
ln(n) -promise majority problem.

The idea of this circuit is that if we get an input in Maj01/2 ln(n), there is no way to spread
ln(n) copies in a way that hits n bits. But if the input is in Maj11/2 ln(n) there is a way to
spread ln(n) copies in a way that hits all bits using one of a polynomial number of random
walks. We improve the results of Viola by showing a more efficient way to use the same
length random walk. Details in Appendix D.1.

Again applying amplification and divide and conquer we get:

I Theorem 7. For constant ε ∈ (0, 1/2), there exists P-uniform, monotone AC0 circuits of

depth 2 + 2 · k solving the ε-promise majority problem with size n
1

1−(2
3)k

+o(1)
.

6 Closing Statements & Open Problems

For constant ε, we have shown that depth 3 circuits solving the ε-promise majority problem
have greater than quadratic size. For ε bigger than inverse polynomial but smaller than
constant, the size of depth 3 ε-promise majority must be almost quadratic.

For ε bounded by a constant under 1/2, we can solve ε-promise majority with a constant
depth circuit that has size within an arbitrarily small polynomial factor of linear.

But our lower bounds and known circuits are not tight for all choices of ε and not for
depth greater than 3. Further its possible that one of our main uses for promise majority,
derandomization, may not actually need it. So we still have these open problems:

1. This shows that using Adleman’s derandomization of constant depth circuits, or any
conventional use of PRGs, requires a depth increase of 3 to have only quadratic overhead.
Is there a way to derandomize any constant depth circuit with only depth increase of 2
and quadratic size overhead?

2. Do negations help solve promise majority?
3. What are the optimal depth 3 bounds? For constant ε, there is a polynomial gap between

our lower bounds Ω̃
(
n2+ ln(1−ε)

ln(ε

)
, and our upper bounds O

(
n2+ ln(1−ε)

ln(ε)−ln(1−ε)

)
.

For ε ≤ 1√
n
, optimal circuit size is given trivially by a DNF. But for ε = n−α where

α ∈ (0, 1/2), there is a polynomial gap between our lower bounds Ω̃
(
n2−3α) and our

upper bounds Õ
(
n2−2α).

4. What are the size lower bounds for depth greater than 3?
5. Do these bounds extend to AC0 with parity, or other circuit classes below TC0?

References
1 Leonard Adleman. Two theorems on random polynomial time. In Proceedings of the 19th

Annual Symposium on Foundations of Computer Science, SFCS ’78, page 75–83, USA, 1978.
IEEE Computer Society.

2 Miklós Ajtai. Sigma11-formulae on finite structures. Ann. Pure Appl. Log., 24:1–48, 1983.

J. Cook 13

3 Miklós Ajtai. Approximate counting with uniform constant-depth circuits. In Advances In
Computational Complexity Theory, volume 13, pages 1–20, 1993.

4 Miklós Ajtai and Michael Ben-Or. A theorem on probabilistic constant depth computations.
In STOC ’84, pages 471–474, 1984.

5 Kazuyuki Amano. Bounds on the size of small depth circuits for approximating majority. In
Proceedings of the 36th International Colloquium on Automata, Languages and Programming:
Part I, ICALP ’09, page 59–70, Berlin, Heidelberg, 2009. Springer-Verlag.

6 Michael B. Cohen. Ramanujan graphs in polynomial time. 2016 IEEE 57th Annual Symposium
on Foundations of Computer Science (FOCS), pages 276–281, 2016.

7 Dean Doron, Dana Moshkovitz, Justin Oh, and David Zuckerman. Nearly optimal pseudor-
andomness from hardness. Electronic Colloquium on Computational Complexity (ECCC),
2019.

8 Alexander Healy. Randomness-efficient sampling within nc1. Computational Complexity,
17:3–37, 04 2008.

9 Johan Håstad. Almost optimal lower bounds for small depth circuits. In Proceedings of the
Eighteenth Annual ACM Symposium on Theory of Computing, STOC ’86, page 6–20, New
York, NY, USA, 1986. Association for Computing Machinery.

10 Johan Håstad, Ingo Wegener, Norbert Wurm, and Sang-Zin. Yi. Optimal depth, very small
size circuits for symmetrical functions in ac0. Information and Computation, 108(2):200 –
211, 1994.

11 Clemens Lautemann. Bpp and the polynomial hierarchy. Information Processing Letters,
17(4):215 – 217, 1983.

12 Nutan Limaye, Srikanth Srinivasan, and Utkarsh Tripathi. More on AC0[⊕] and variants
of the majority function. In 39th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2019), volume 150, pages 22:1–22:14,
2019.

13 Ryan O’Donnell and Karl Wimmer. Approximation by dnf: Examples and counterexamples. In
Proceedings of the 34th International Conference on Automata, Languages and Programming,
ICALP’07, page 195–206, Berlin, Heidelberg, 2007. Springer-Verlag.

14 Prabhakar Ragde and Avi Wigderson. Linear-size constant-depth polylog-threshold circuits.
Information Processing Letters, 39:143–146, 1991.

15 Salil P. Vadhan. Pseudorandomness. Foundations and Trends® in Theoretical Computer
Science, 7(1–3):1–336, 2012.

16 Emanuele Viola. On approximate majority and probabilistic time. Computational Complexity,
18:337–375, 2009.

17 Emanuele Viola. Randomness buys depth for approximate counting. In 2011 IEEE 52nd
Annual Symposium on Foundations of Computer Science, pages 230–239, 2011.

A Proof of Lemma 13

This proof was first presented by Viola [16] in the more straightforward case where G = F :
where there is only one DNF. We use this lemma on non monotone circuits to eliminate
small clauses in a DNF without fixing it to one, so we have to present it in this slight
generalization. This does not require any new ideas, just more careful analysis.

I Lemma 13. Let G be a DNF with a sub DNF F. Assume for some positive integers w and
m, F has width at most w and Pr[G(Dε) = 0] ≥ e−εw·m/w2 . Then there exists a restriction
ρ with |ρ| ≤ m such that F �ρ= 0 and Pr[G �ρ (Dε) = 0] ≥ Pr[G(Dε) = 0]

Proof. The proof follows closely from a basic idea: if there are many small independent
clauses in a DNF, it will accept with high probability. If there aren’t, then we can set a
small number of variables to decrease the size of each clause.

14Size Bounds on Low Depth Circuits for Promise Majority

See that since F is a sub DNF of G, for any ρ, G �ρ (x) = 0 =⇒ F �ρ (x) = 0. Thus for
any distribution y, Pr[F �ρ (y) = 0] ≥ Pr[G �ρ (y) = 0].

We will use a proof by induction. First the base case, where w = 1. If there are only m
clauses in F, then let ρ be restriction setting each variable in F to make its corresponding
clause 0. Then since this is the only assignment to these variables so that G is not one, we
have

Pr[G(Dε) = 0] ≤ Pr[G �ρ (Dε) = 0]

Otherwise F must have at least m + 1 clauses. Then Pr[F (Dε) = 0] is just the probability
that none of its at least m variables is one. Thus:

Pr[G(Dε) = 0] ≤ |Pr[F (Dε) = 0] ≤ (1− ε)m+1 < e−εm

but by assumption Pr[G(Dε) = 0] ≥ e−εm, thus this case cannot occur.
Now for the general case where w ≥ 2. We say that a set of variables, S, is a cover for

DNF F if every clause in F contains at least one variable from S. We say that a set of clauses
T is independent if no two clauses in T have any variables in common.

Consider a minimum cover of F, S. Let T be a maximal independent set of clauses in
F. See that |T |w ≥ |S| because if we take every variable in a maximal independent set of
clauses, we must get a cover for F (otherwise we would have another independent clause)
and we already said S is the smallest cover.

Then the probability the DNF is 0 is at most the probability each clause in T is 0. Thus:

Pr[F (Dε) = 0] ≤(1− εw)|T |

<e−|T |ε
w

≤e−|S|ε
w/w

Now if |S| ≥ m/w, then we have violated the assumption and are done. Thus we have
|S| < m/w.

Choose some assignment to the variables in S to get ρ′ so that Pr[G �ρ′ (Dε) = 0] ≥
Pr[G(Dε) = 0]. By an averaging argument, some ρ′ must do this. This gives

Pr[G �ρ′ (Dε) = 0] ≥Pr[G(Dε) = 0]

≥e−ε
w·m/w2

>e−ε
w−1·mw−1

w−1
1

(w−1)w

≥e−ε
w−1·m 1−1/w

(w−1)2

Thus F �ρ′ is a new width w − 1 instance. Then by the inductive hypotheses, we have
a restriction ρ′′ of size at most m(1 − 1/w) setting F �ρ′�ρ′′= 0 and not decreasing the
probability G �ρ′ (Dε) is 0. Thus letting ρ = ρ′ ◦ ρ′′, we have

|ρ| ≤ m/w +m(1− 1/w) = m

F �ρ= 0

Pr[G �ρ (Dε) = 0] ≥ Pr[G(Dε) = 0]

J

J. Cook 15

B Proof of Theorem 4

Here We present the proof for the general case depth 3 circuit for promise majority lower
bounds. As previously mentioned, the proof is very similar to the proof of Theorem 3.

I Theorem 4. For any ε ∈ (0, 1/2), a depth 3 alternating circuit solving the ε-promise

majority problem must have Ω̃
(
ε3n2+ ln(1−ε2)

2 ln(ε)

)
gates.

Proof. As before, we first use εn/ ln(n) variables to remove all very large clauses. Then
we will use εn/ ln(n) more getting rid of many DNFs that output 0 on Dε(1−3/ ln(n)) with
polynomial probability. This will leave us with almost n DNFs that also must output 0 on
Dε(1−3/ ln(n)) with high probability.

Let F be a polynomial size, depth 3 circuit computing ε-promise majority. Then as in
the proof of Theorem 3, assume its first level of gates are AND gates, call them clauses and
our second level gates DNFs.

First using Corollary 17, there is a restriction ρ with |ρ| = εn/ ln(n) variables and
removes any clauses width greater than O(ln(n)2/ε). Then let F ′ = F |ρ.

Now let F2 be the subcircuit of F’ that only has DNFs of size at least cεn1+α for
α = ln(1−ε2)

2 ln(ε) and some c = polylog(n) given by Lemma 19. Now we fix ε2n/ ln(n)4 clauses
in F2 that eliminate as many DNFs as we can to get F3. This requires us to fix fewer than
εn/ ln(n) variables. By a similar proof to Theorem 3, we can get

‖F3‖ ≤ ‖F2‖e−ε
3 n2+α
|F2|polylog(n)

Now, ‖F3‖ must have at least 1 DNF of size cεn1+α because F3 still solves a ε
(

1− 2
ln(n)

)
-

promise majority problems. Thus:

1 ≤ ‖F2‖e−ε
3 n2+α
|F2|polylog(n)

This only holds if |F2| = Ω̃(ε3n2+α) or ‖F2‖ is exponentially large. Thus the size of the
circuit is Ω̃(ε3n2+α). J

C Circuit Upper Bounds

C.1 Ajtai’s Construction
Ajtai gave a randomized construction of a depth 3 circuit for promise majority. It is defined
recursively with each layer being a conjunction or disjunction of a specific number of random
circuits of smaller depth.

Intuitively, it gives a circuit which solves a coin problem, determining whether an input
comes from Dε or D1−ε, with exponentially high probability. Then feeding in random
indexes from a Majε instance is equivalent to feeding in an input from Dε or D1−ε. Then
by an averaging argument, some choice of indexes must always work.

So first we prove:

I Lemma 25. For any ε ∈ (0, 1/2) and positive integer n, there exists a monotone depth 3
alternating circuit, C, with size O

(
n2+ ln(1−ε)

ln(ε)−ln(1−ε)

)
so that for any δ ≤ ε:

Pr[C(Dδ) = 1] < 2−n

Pr[C(D1−δ) = 0] < 2−n

Note, breaking from convention, C will NOT have n input bits, but Õ(|C|) input bits.

16Size Bounds on Low Depth Circuits for Promise Majority

Proof. Let α = ln(1−ε)
ln(ε)−ln(1−ε) . We give a read once circuit C3 which solves this. Note, the

input length of C3 will be greater than n and in fact will be roughly equal to the number of
wires in C3. When we later use C3, the input bits will be randomly chosen from a smaller
input giving us a super linear number of gates.

Let C1 AND together lnε(n−1−α) bits. Then define C2 to OR together n1+α independent
copies of C1. Finally, let C3 AND together 3n independent copies of C2. Then C3 circuits
has O(n2+α) gates.

Now for δ < ε, we prove with exponentially low probability will C3 fail to output 0 on
Dδ or 1 on D1−δ. First observe that since C3 is monotone, increasing the probability a bit is
1 will only increase the probability C3 outputs 1. That is Pr[C3(Dδ) = 1] ≤ Pr[C3(Dε) = 1].
Similarly Pr[C3(D1−δ) = 0] ≤ Pr[C3(D1−ε) = 0]. So it suffices to show it distinguishes Dε

from D1−ε.
First take an input from Dε. Then, the probability a random gate at each level will

output 1 is:

C1 (AND):

εlnε(n
−1−α) = 1

n1+α

C2 (OR): See that for k ≥ 2, (1− 1/k) ≥ e−4/3k. Then:

1−
(

1− 1
n1+α

)n1+α

≤ 1− e−4/3 ≤ 3
4

C3 (AND):

(3/4)3n < 2−n

Now take an input from D1−ε. For simplicity, we look at feeding Dε into the negated
circuit (ORs and ANDs swapped), which is cleaner. Then the probability of outputting a 0
on C3 (or equivalently 1 on the negated circuit with negated input) is:

C1 (OR): Notice that by our choice of α that α = (1 + α) ln(1−ε)
ln(ε) . Then:

1− (1− ε)lnε(n−1−α) = 1− eln(1−ε)−(1+α) ln(n)
ln(ε) = 1− n−α ≤ e−n

−α

C2 (AND):

e−n
−αn1+α

= e−n

C3 (OR): For n ≥ 12

1− (1− e−n)3n ≤ 3ne−n < 2−n

Thus with probability less than 2−n will C3 fail to distinguish Dε from D1−ε and
the size of C3 is order of the fan in of C2 times the fan in of C3, which is O

(
n2+α) =

O
(
n2+ ln(1−ε)

ln(ε)−ln(1−ε)

)
. J

Then feeding in random indexes from a Majε input and an averaging argument gives an
ε-promise majority circuit.

I Theorem 26. For any ε ∈ (0, 1/2) there exists a monotone depth 3 AC0 circuit solving
the ε-promise majority problem with size O

(
n2+ ln(1−ε)

ln(ε)−ln(1−ε)

)
.

J. Cook 17

Proof. Let α = ln(1−ε)
ln(ε)−ln(1−ε) . Take C3 from Lemma 25. Construct a distribution of circuits

C which is C3 with inputs from C3 mapped to random bits in our n bit input.
An input into C with εn ones is equivalent to an input into C3 from Dε. Thus for any

x ∈ Majε, C outputs the wrong answer with probability less than 2−n. Thus by an averaging
argument, some circuit in the distribution of circuits C always outputs the right answer.
Then that circuit solves ε-promise majority. J

C.1.1 Ajtai’s Circuit for Small Promises

We can improve our result for small ε by observing we only need to get failure probability
below |Majε|−1, which will be more than 2−n for small ε. This gives us:

I Theorem 20. For any ε ∈ (0, 1/2) there exists a monotone depth 3 AC0 circuit solving
the ε-promise majority problem with size O

(
(ε ln(ε))2

n2+ ln(1−ε)
ln(ε)−ln(1−ε)

)
.

Proof. First, I show that

|Maj0ε | < 2log(2e/ε)εn

Consider sampling an element from Maj0ε by choosing εn indexes out of (1 + ε)n bits.
For any location chosen from the first n locations will be the locations of the 1 bits. See
that this selects from every input in Maj0ε with some probability. Further see that this only
samples at most

((1+ε)n
εn

)
values. Then we have:

|Maj0ε | ≤
(

(1 + ε)n
εn

)
≤
(
e(1 + ε)n

εn

)εn
<

(
2e
ε

)εn
= 2log(2e/ε)εn

Then we trivially get that |Majε| ≤ 22 log(2e/ε)εn.
Now using Lemma 25 with n = 2 log (2e/ε) εn, we get a circuit C with size

O
(

(2eε log(2e/ε))2+ ln(1−ε)
ln(ε)−ln(1−ε) n2+ ln(1−ε)

ln(ε)−ln(1−ε)

)
= O

(
(ε ln(ε))2

n2+ ln(1−ε)
ln(ε)−ln(1−ε)

)
For convenience, I am assuming ln(1−ε)

ln(ε)−ln(1−ε) is bounded. If not, then ε is close to one
half, ε ln(ε) is constant, and the bound holds by Theorem 26.

So that for any δ < ε

Pr[C(Dδ) = 1] < 2−2 log(2e/ε)εn < |Majε|−1

Pr[C(D1−δ) = 0] < 2−2 log(2e/ε)εn < |Majε|−1

Then applying C to random indexes of our input, any x ∈ Majε will give the wrong
answer with probability less than |Majε|−1. Thus some choice of indexes works for every
c ∈ Majε. Then C at these indexes solves ε-promise majority. J

Given amplification, our depth 4 upper bounds in Theorem 5 follows in a similar manner.
These marginal improvements tell us that for polynomially small ε, depth 3 ε-promise

majority circuits can be smaller than quadratic. This still leaves an ε factor between our
lower bounds in Theorem 4 and our best known circuits in Theorem 20.

18Size Bounds on Low Depth Circuits for Promise Majority

C.2 Amplification

Now to get our smaller circuits, we need amplify a constant Majε input to a Maj1/ log(n)
input.

One way to perform this amplification is to use a randomized construction similar to
Ajtai’s that has a 1/polylog(n) chance of outputting correctly whether this is a Maj1ε input
or a Maj0ε input. Then we can use a Chernoff bound to show that if we select npolylog(n)
of these circuits at random, with probability all but 2−n a Maj1ε input will map to a
Maj11/polylog(n) input and a Maj0ε input will map to a Maj01/polylog(n). Thus some circuit will
do that mapping.

Instead, our amplification procedure will be a majority of short walks in an expander.
This, combined with a Chernoff bound for expander graphs, will give us our amplification.
Note this solution actually gives a significantly WORSE polylogarithmic overhead than the
randomized construction above. But we are ignoring polylogarithmic factors in our result
and we can use this same construction in our uniform bounds.

For notation:

I Definition 27 (Random walks). If G is a graph, let Gt be the length t walks on G.

The expander Chernoff bound is given explicitely by Healy [8] as theorem 1:

I Lemma 28. For G a regular graph with n vertices and spectral expansion λ and f : [n]→
[0, 1] be any function. Let µ = Ev∈[n][f(v)]. Then for any ε > 0:

Pr
w∈Gt

[∣∣Ei∈[t][f(wi)]− µ
∣∣ ≥ ε] ≤ 2e−

ε2(1−λ)t
4

Then this almost directly gives our amplification .

I Lemma 29. For constant ε ∈ (0, 1/2) and any δ ∈ (0, 1/2), there is a P-Uniform, depth
2 monotone AC0 circuit, C, outputting O(n/δO(1)) bits such that:

C
(
Maj1ε

)
⊆ Maj1δ

C
(
Maj0ε

)
⊆ Maj0δ

And C has size

|C| = O(n/δO(1))

Where we allow both constants to depend on ε.

Proof. Take a constant degree d regular expander graph G with constant spectral expansion
λ < 1 over the n input bits. That such a graph exists is standard result [6]. Now we just
need our walk to be long enough that we have only probability δ that our sample differs
from the mean by more than 1/2− ε. This happens when

t = 4(ln(2)− ln(δ))
(1/2− ε)2(1− λ) = 16(ln(2)− ln(δ))

(1− 2ε)2(1− λ)

For notation, let M take an index to value of a bit at that index. See that for an input
with at most ε fraction of the bits one, Ev∈[n][M(v)] = µ ≤ ε and:

J. Cook 19

Pr
w∈Gt

[Ei∈[t][M(wi)] ≥ 1/2] = Pr
w∈Gt

[Ei∈[t][M(wi)]− ε ≥ 1/2− ε]

≤ Pr
w∈Gt

[Ei∈[t][M(wi)]− µ ≥ 1/2− ε]

≤ Pr
w∈Gt

[
∣∣Ei∈[t][M(wi)]− µ

∣∣ ≥ 1/2− ε]

≤2e−
(1/2−ε)2(1−λ)t

4

=2eln(δ)−ln(2)

=δ

Thus with probability at most δ will it give the wrong output. Thus taking all random
walks on G of length t will give a Maj0δ input. Similarly for an input with at most ε 0s.

Thus such a random walk works, now we just need to show that there aren’t too many
walks. See that the number of random walks is:

|Gt| = n · dt−1

=n · d
4(ln(2)−ln(δ))

(1/2−ε)2(1−λ)
−1

=n · d
4 ln(2)

(1/2−ε)2(1−λ)
−1
(

1
δ

) 4 ln(d)
(1/2−ε)2(1−λ)

=O(n)
(

1
δ

)O(1)

Now for the size of the circuit computing majority for one of these walks. For each of
these walks, we have a DNF computing the majority. Any DNF on t variables is of size at
most

2t = 2
16(ln(2)−ln(δ))
(1−2ε)2(1−λ) = O(1) (1/δ)O(1)

Then the total size of the circuit is just that, times the number of walks, which is just
O(n/δO(1)). J

And the specific delta we need is inverse poly logarithmic. This immediately gives us
Lemma 22.

I Lemma 22. For any constant k, ε ∈ (0, 1/2), there exists a monotone, P-Uniform depth
3 circuit of size Õ(n) amplifying a Maj0ε input to a Maj0 1

ln(n)k
output and a Maj1ε input to a

Maj1 1
ln(n)k

output.

C.3 Recursive Majority Proof
We can get sub quadratic sized circuits for promise majority, down to size n1+α for arbitrarily
small α with a constant depth depending on α. The basic idea is to first amplify the input.
Then separate it into nα sized sections and use our promise majority circuit on each of these.
This will give us a new input which satisfies a slightly worse promise but is only of size
n1−α. Then we can just repeat this process log2(1/α) times before the output is a single
value which solves our promise majority problem.

This is the iterative equivalent of a recursive divide an conquer technique where we
separate the input into n 1+α

2 groups of size n 1−α
2 and do our recursive promise majority on

20Size Bounds on Low Depth Circuits for Promise Majority

each of these groups. Then do a final promise majority on the output. These produce the
same circuits and the analysis is almost the same.

This process will work using any circuit computing promise majority as a subroutine as
long as we can easily perform whatever amplification it needs. We use 1/ ln(n) for the ε
used by our promise majority sub routine. This is convenient, but it could be smaller, even
down to an appropriate polynomial as long as we can still do the amplification efficiently.

We first prove the strategy works on a Maj1/polylog(n) input, and this combined with
amplification solves our promise majority problem.

I Lemma 23. If there is a depth 3 alternating circuit with size nα solving 1/ ln(n)-promise
majority, then for any positive integer k, there is a depth 1 + 2 · k alternating circuit solving
1/ ln(n)k-promise majority with size:

kn

1

1−(α−1
α)k

Which is uniform and monotone if the depth 3 circuit is uniform and monotone.

Proof. The proof will go by induction. For the base case, k = 1, we have by assumption a

size nα = n
1

1−α−1
α depth 3 circuit.

In general, for k ≥ 2, let β = 1
1−(α−1

α)k , and γ = β−1
α−1 . Separate the input into sets of

size nγ . Then let C1 be the depth 3 circuit that just computes a 1/ ln(n)-promise majority
on each of these groups. See that the number of groups is n1−γ . Then the size C1 will be:

n1−γ (nγ)α = n1−γ+αγ = n1+(α−1) β−1
α−1 = nβ

By a counting argument, if an input satisfies the 1/ ln(n)k promise, since our promise
majority at depth 3 solves the 1/ ln(n) promise, the output of C1 will satisfy a 1/ ln(n)k−1

promise. This is because fooling one of the promise majority will require nγ/ ln(n) of the
minority bits. Since we only have n/ ln(n)k bits, we can only fool n1−γ/ ln(n)k−1 groups,
which is only a 1/ ln(n)k−1 fraction of the groups.

Now we can use our induction hypothesis on this output. By assumption, we have a
circuit C2 with depth 1 + 2 · (k − 1) that solves the 1/ ln(n)k−1-promise majority on n1−γ

bits and has size (k − 1)n
1−γ

1−(α−1
α)k−1

. That is C2 ◦C1 solves the 1/ ln(n)k promise majority
problem. Now for the size of C2. First we will simplify the number of groups. See that

1− γ =1− β − 1
α− 1

=α− β
α− 1

=
α− 1

1−(α−1
α)k

α− 1

=
α
(

1−
(
α−1
α

)k)− 1

(α− 1)
(

1−
(
α−1
α

)k)
=

α− 1− α
(
α−1
α

)k
(α− 1)

(
1−

(
α−1
α

)k)
=

1−
(
α−1
α

)k−1

1−
(
α−1
α

)k

J. Cook 21

Then the size is of C2 is

(k − 1)n
1−γ

1−(α−1
α)k−1

=(k − 1)

n 1−(α−1
α)k−1

1−(α−1
α)k


1

1−(α−1
α)k−1

=(k − 1)
(
n

1

1−(α−1
α)k

)
=(k − 1)

(
nβ
)

Then C2 ◦ C1 has size

nβ + (k − 1)nβ = knβ

Further, see that for any promise input, if you flip all the bits, you get a promise input that
outputs the opposite value. So switching all the AND gates to OR gates and all the OR
gates to AND gates still gives a promise majority circuit. This can be seen by negating the
circuit twice, once to use De Morgans, and once to flip all the input bits.

Thus, we can choose C1 such that its top level of gates are the same as the bottom level
gates of C2, so they can merge. Thus C2 ◦ C1 has depth 3 + 1 + 2 · (k − 1)− 1 = 1 + 2 · k.
So C2 ◦ C1 is our promise majority circuit as we wanted. J

D Viola’s Promise Majority Circuit

Viola [16] gave a depth 3 circuit ε-promise majority circuit where the lowest level has fan
in O

(
ln(n)

ln(ln(n))

)
and solves the 1/ ln(n) promise majority problem. This combined with the

amplification from Lemma 22 gives a constant depth circuit for ε-promise majority.
Normally this would give a depth 4 circuit. But the second level of this circuit, only

depends on O(ln(n)) bits, so we can switch them from CNFs to DNFs or DNFs to CNFs
with only polynomial overhead. This switching collapses a layer yielding a polynomial size
depth 3 circuit.

Unfortunately, the depth 3 circuit is significantly larger than cubic, thus we will consider
amplification separately. This leaves us is in much the same situation as the non uniform
construction, except that our 1

ln(n) -promise promise majority circuit is larger, requiring
greater depths to get the same size.

D.1 Improvement on Viola’s Promise Majority
First, we will give some intuition for Viola’s promise majority. Viola’s construction builds
off of Lautemann’s proof [11] that

BPTime(n) ⊆ Σ2Time(n2polylog(n))

We will look at a slight generalization of Lautemann’s approach. Let M : [n] → {0, 1}
simply be the function that takes an index to the value of the input bit at that index. The
idea is to take a family of bijections, F , and some collection of tuples of bijections G ⊆ Fm
and check if:

∃f1, ..., fm ∈ G : ∀u ∈ [n] : ∃i ∈ [m] : M(fi(u))

22Size Bounds on Low Depth Circuits for Promise Majority

The idea is that each function spreads the input bits in some way, then we OR them together.
Then we ask, was there some spreading that made our 1s cover the entire space? If we had
less than a 1/m fraction of 1s, we can’t do this. This is because at best our functions will
multiply our number of ones by m.

If we have more than 1/m fraction of ones, sure SOME choice of functions will give us
the spread we need. But we can’t enumerate over ALL functions. Lautemann used bitwise
xor with random strings as his family of functions and used a probabilistic argument to
show this works. But every choice of m n bit strings is still too many options, so Viola used
random walks on expander graphs over the indexes to get his values to xor with. We take
this one step further and let the functions themselves be the random walks.

In the ones case, we argue that some choice of random walk will "spread" the ones to cover
the space. The idea is to view the construction of the family of functions as randomized.
Then we argue the probability over functions and indexes that we don’t cover that index is
less than the number of indexes. Thus, by an averaging argument, some family of functions
actually obtains the average, and thus never outputs a 0.

That is, we want to prove

Pr
f1,...,fm∈G,u∈[n]

[∀i ∈ [m] : M(fi(u)) = 0] < 1/n

Which implies:

∃f1, ..., fm ∈ G : ∀u ∈ [n] : ∃i ∈ [m] : M(fi(u))

I Theorem 24. There exists a P-uniform, size O
(
n3+o(1)) depth 3 AC0 circuit solving the

1
ln(n) -promise majority problem.

Proof. First, observe that there exists an expander, G, on n vertices (representing the n
bits) that is d = 5 ln(n) regular with spectral expansion λ ≤ 2√

d
= 2√

5 ln(n)
. Specifically, we

will use a bipartite Ramanujan graph as is shown to be constructable by Cohen [6]. To do
this we will assume that n is even. Otherwise we can add a 0 bit and our promise will be
changed negligibly. We will use the bipartite structure later for defining our random walks
in such a way to make our functions bijections.

We want a way to enumerate the paths of length t over both the starting index, and the
choice of steps in an independent way. Let Gt be the length t walks over graph G. Let W t

d

be the set of walk strategies for length t walks regardless of origin. That is the choices of
edges to take on a length t path in a d regular graph. This will correspond to at every step,
giving an index of the next edge to take. We will show later how to index the edges in such
a way that each step forms a bijection.

Let w ∈W t
d be a function w : [n]→ Gt that takes a starting vertex and a walk strategy

to that walk. Thus we can see that Gt = {w(i) : i ∈ [n], w ∈ W t
d}, or that the set of all

length t walks is equal to all walks from every starting vertex with every walk strategy.
We will let the length of our walks be t = 2 ln(n)/ ln(ln(n)) + 1. Then we have number

of walk strategies:

|W t
d| = dt−1 = (5 ln(n))2 ln(n)/ ln(ln(n)) = n2+o(1)

As above, let M be the function that takes a variable index to the value of that bit in
the input. We claim that the proposition

∃w ∈W t
d : ∀u ∈ [n] : ∃i ∈ [t] : M(w(u)i)

is true if our input is in Maj11/ ln(n), and false if it is in Maj01/ ln(n). Finally, this statement is
computed by a depth 3 AC0 circuit with size O(n3+o(1)).

J. Cook 23

0 Input is in Maj01/ ln(n): This comes from a counting argument. But we need our functions,
w(u)1, ..., w(u)t, to be permutations of the vertices, that is bijections. To do this, we
make each choice of edge a permutation.
A walk strategy will just be a series of t numbers saying whether to take the first, second,
up to dth edge. We label each edge with an index so that every vertex has exactly one
edge with each label adjacent to it. Then to take edge i is just to go across the edge
labelled i adjacent to the vertex. Then we need d disjoint perfect matchings on our
graph.
Our graph is regular and bipartite, so it has a perfect matching. Take a perfect matching
and label each edge in that matching 1 and remove them. This leaves us with again a
bipartite regular graph, so we can get another matching for label 2, and so on until we
have labeled every edge. By definition of perfect matching, each vertex and each label
will have exactly one edge incident to that vertex with that label.
Then with this labeling, each step is a permutation, so every length i walk strategy is a
permutation. Therefore the number of pairs, (u, i), such that M(w(u)i) is one is at most

n

ln(n) · t <
n

ln(n)
3 ln(n)

ln(ln(n)) < n

Therefore, for some u, there must not be any i so that M(w(u)i) = 1. Thus there does
not exist such a walk strategy so that for all u, that strategy starting at u hits a one.

1 Input is in Maj11/ ln(n): As a reminder, our strategy is to prove that the probability of
outputting a 0 for every step of a random walk is so low that some strategy doesn’t do
this on any bit. That is:

Pr
w∈W t

d
,u∈[n]

[∀i ∈ [m] : M(w(u)i) = 0] < 1/n

This comes from the well known result [15] of expander walks that for any expander on
n vertices G with spectral expansion λ and any set of vertices A with density µ = |A|/n:

Pr
w∈Gt

[∀i ∈ [t] : wi ∈ A] ≤ µ(µ+ (1− µ)λ)t−1

In particular, for our graph

Pr
w∈W t

d
,u∈[n]

[∀i ∈ [m] : M(w(u)i) = 0] = Pr
w∈Gt

[∀i ∈ [m] : M(wi) = 0]

≤µ(µ+ (1− µ)λ)t−1

<
(

1/ ln(n) + 2/
√

5 ln(n)
)t−1

<
(

1/
√

ln(n)
)t−1

<
(

1/
√

ln(n)
)2 ln(n)/ ln(ln(n))

=n−1

By an averaging argument, there must be some walk strategy w so that

Pru∈[n][∀i ∈ [m] : M(w(u)i) = 0] < n−1

But there are only n choices for u. Thus for all u, there is some i so that M(w(u)i) = 1.
That is exactly what we needed to prove.

24Size Bounds on Low Depth Circuits for Promise Majority

Finally, see the statement represents a small AC0 circuit. This is purely syntactic. Each
quantifier is a layer of gates where the fan in is represented by the domain of the variables.
3 quantifiers means 3 layers, and the size is at most the product of number of choices at
each level. Thus the size is at most:

|W t
d| · n · t = n2+o(1) · n · (2 ln(n)/ ln(ln(n)) + 1) = n3+o(1)

J

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

