
Size Bounds on Low Depth Circuits for Promise
Majority
Joshua Cook
The University Of Texas At Austin, Texas, USA
jac22855@utexas.edu

Abstract
We give two results on the size of AC0 circuits computing promise majority. ε-promise majority is
majority promised that either at most an ε fraction of the input bits are 1 or at most ε are 0.

First, we show super-quadratic size lower bounds on both monotone and general depth-3 circuits
for promise majority.

For any ε ∈ (0, 1/2), monotone depth-3 AC0 circuits for ε-promise majority have size

Ω̃
(
ε3n

2+ ln(1−ε)
ln(ε)

)
.

For any ε ∈ (0, 1/2), general depth-3 AC0 circuits for ε-promise majority have size

Ω̃
(
ε3n

2+ ln(1−ε2)
2 ln(ε)

)
.

These are the first quadratic size lower bounds for depth-3 ε-promise majority circuits for
ε < 0.49.
Second, we give both uniform and non-uniform sub-quadratic size constant-depth circuits for
promise majority.

For integer k ≥ 1 and constant ε ∈ (0, 1/2), there exists monotone non uniform AC0 circuits
of depth-(2 + 2k) computing ε-promise majority with size

Õ
(
n

1
1−2−k

)
.

For integer k ≥ 1 and constant ε ∈ (0, 1/2), there exists monotone uniform AC0 circuit of
depth-(2 + 2k) computing ε-promise majority with size

n

1
1−(2

3)k
+o(1)

.

These circuits are based on incremental improvements to existing depth-3 circuits for promise
majority given by Ajtai [2] and Viola [17] combined with a divide and conquer strategy.

2012 ACM Subject Classification Theory of computation → Circuit complexity

Keywords and phrases AC0, Approximate Counting, Approximate Majority, Promise Majority,
Depth 3 Circuits, Circuit Lower Bound

Funding This research was supported by NSF grant number 1705028.

Acknowledgements Thanks to Dana Moshkovitz for suggesting I study the size cost of derandomizing
AC0 circuits. Thanks to Justin Yirka and an anonymous reviewer for feedback on this paper.

1 Introduction

The majority function is a classic function that cannot be computed in AC0 [10]. But AC0
can compute majority promised the input is either mostly 1s or mostly 0s.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 122 (2020)

mailto:jac22855@utexas.edu

2 Size Bounds on Low Depth Circuits for Promise Majority

I Definition 1 (ε-Promise Majority). Let W : {0, 1}n → [n] be the function giving the number
of ones in the input1. Let ε ∈ (0, 1/2). Then define the ε promise inputs to be:

Maj0ε ={x ∈ {0, 1}n : W (x) ≤ εn}
Maj1ε ={x ∈ {0, 1}n : W (x) ≥ (1− ε)n}
Majε =Maj0ε ∪Maj1ε

We say that function f solves the ε-promise majority2 problem if:

f(Maj0ε) = 0

f(Maj1ε) = 1
That is, f computes the majority promised the input is in Majε.

We give size3 lower bounds to depth-3 circuits4 computing ε-promise majority. Then we
give small circuits solving promise majority with larger depth.

1.1 Motivation
Promise majority is an important tool in derandomizing circuits. We say a function f :
{0, 1}n × {0, 1}m → {0, 1} is a randomized function for g : {0, 1}n → {0, 1} if for all x ∈
{0, 1}n, Prr∈{0,1}m [f(x, r) = g(x)] ≥ 2/3. A circuit implementing f is called a randomized
circuit for g. We call r ∈ {0, 1}m a seed for f .

Adleman [1] showed that for any randomized function f : {0, 1}n × {0, 1}m → {0, 1},
implementing some g : {0, 1}n → {0, 1}, there is some choice of seeds R ⊆ {0, 1}m with |R| =
O(n) such that for all x and the majority of seeds in R, f computes g, i.e., Prr∈R[f(x, r) =
g(x)] > 1/2. If f has size-O(n) random circuits, this gives a size-O(n2) deterministic circuits
by computing majority of |R| copies of f and taking majority.

Unfortunately, AC0 cannot compute majority, but it can compute ε-promise majority.
With the same argument, we can getR with |R| = O(n) such that Prr∈R[f(x, r) = g(x)] > 3/5.
So, we only need to compute 2/5-promise majority since f only outputs the wrong bit for at
most 2/5 of r ∈ R.

Ajtai [2] gave depth-3 circuits of size O
(
n2+ ln(1−ε)

ln(ε)−ln(1−ε)

)
solving the ε-promise majority

problem. Applying a depth-d promise majority circuit, M , to the output of a depth-k circuit,
C, gives a depth-(k + d− 1) circuit since the kind of gate at the lowest level of M can be
made the same as the top level of C. Combining this result with Adleman takes a size-O(n),
depth-d randomized circuit and gives a depth-(d+ 2), size-O

(
n2+ ln(1−ε)

ln(ε)−ln(1−ε)

)
deterministic

circuit. This is bigger than the ideal O(n2) size from the unbounded depth setting.
This paper gives new, super-quadratic size lower bounds for depth-3 circuits computing

ε-promise majority. Thus applying Adleman’s technique on AC0 circuits to get size-O(n2)
deterministic circuits using promise majority requires a depth-3 increase. We show this is
tight by giving size-O(n2) depth-4 circuits for ε-promise majority. Thus Adleman’s technique
can be used to get size-O(n2) deterministic circuits with a depth-3 increase.

1 For functions and circuits, we implicitly refer to a family of functions, one for each size n where n is
implicit. The same holds for Majε.

2 Prior work often called promise majority “approximate majority” [17, 18]. But, approximate majority
also refers to the standard notion of approximating a Boolean function [5]. To avoid confusion, we follow
the convention suggested in [13] to refer to the promise problem version of majority as promise majority.

3 In this paper, we use size of a circuit to mean the number of gates.
4 In this paper, all circuits are constant depth alternating circuits (AC0 circuits) unless stated otherwise.

J. Cook 3

1.2 Our Results

For notation, let Õ(x) indicate order x up to polylogarithmic factors:

I Definition 2. f(n) = Õ(g(n)) if for some integer c, f = O(g(n) ln(n)c).
f(n) = Ω̃(g(n)) if for some integer c, f = Ω(g(n) ln(n)c).

First, we give a size lower bound for monotone, depth-3 circuits for promise majority.
Note that the best known depth-3 circuits are monotone.

I Theorem 3. For any ε ∈ (0, 1/2), a monotone, depth-3 circuit solving the ε-promise
majority problem must have size Ω̃

(
ε3n2+ ln(1−ε)

ln(ε)

)
.

We follow this up with some weaker, but still super-quadratic, size lower bounds for
depth-3 circuits computing promise majority.

I Theorem 4. For any ε ∈ (0, 1/2), a depth-3 circuit solving the ε-promise majority problem

must have size Ω̃
(
ε3n2+ ln(1−ε2)

2 ln(ε)

)
.

Minor improvements to Ajtai’s promise majority circuits [2] gives depth-4, quadratic size,
promise majority circuits.

I Theorem 5. For constant ε ∈ (0, 1/2), there exists non uniform, monotone, depth-4,
size-O

(
n2) circuits solving the ε-promise majority problem.

We then show how to solve ε-promise majority with even smaller circuits with larger
depths using a divide and conquer strategy.

I Theorem 6. For constant ε ∈ (0, 1/2), there exists non uniform, monotone, depth-(2 + 2k)
circuits solving the ε-promise majority problem with size Õ

(
n

1
1−2−k

)
.

The above circuits are not explicit, or uniform: we do not know how to construct it
efficiently. However, we next give P-Uniform circuits for promise majority: circuits with a
polynomial-time algorithm to construct them. These circuits use a slight improvement to
Viola’s depth-3 promise majority circuits [17] with a divide and conquer strategy.

I Theorem 7. For constant ε ∈ (0, 1/2), there exists P-uniform, monotone, depth-(2 + 2k)

circuits solving the ε-promise majority problem with size n
1

1−(2
3)k

+o(1)
.

For k = 2, this gives depth-6, size-o(n2), P-uniform, monotone circuits for promise
majority.

I Corollary 8. For constant ε ∈ (0, 1/2), there exists P-uniform, monotone, depth-6 circuits
solving the ε-promise majority problem with size n 9

5 +o(1).

Thus a P-uniform PRG withO(n) seeds for AC0 could derandomize linear-size, randomized
circuits to get quadratic-size, deterministic circuits with a depth increase of 5. Finding such
PRGs, or even PRGs with polynomially many seeds, is still open. Though, work by Dean
Doron, Dana Moshkovitz, Justin Oh and David Zuckerman constructs nearly quadratic PRGs
conditioned on some complexity theoretic assumptions [8].

4 Size Bounds on Low Depth Circuits for Promise Majority

1.3 Related Work

There are well known polynomial-size AC0 circuits for promise majority. First, Ajtai gave
polynomial size, depth-3 circuits for ε-promise majority [2]. Ajtai later gave uniform, even
deterministic log time uniform, AC0 circuits for promise majority [3]. But, these uniform
circuits have large depth and their constructions are complicated. Viola later gave simpler
P-Uniform, depth-3 AC0 circuits for promise majority [17].

Chaudhuri and Radhakrishnan [6] proved that any depth-d circuit computing ε-promise
majority must have size Ω

(
(εn)

1
1−1/4d − n

)
. This gives super-linear lower bounds for depth-3

circuits, but not close to quadratic. Their paper uses deterministic restrictions for lower
bounds similar to ours, but our paper uses fan-in lower bounds from Viola [17] and different
restrictions to get better depth-3 lower bounds.

In the same work [6], Chaudhuri and Radhakrishnan gave, for any k, depth-O(k) circuits
with size O

(
n1+ 1

2k
)
for ε-promise majority. Like our paper, it uses a recursive strategy, but

we use a different recursive strategy that gives shallower circuits.
Exact threshold functions in AC0 have been studied extensively. Ragde and Wigderson

[15] show that for integer r > 0, the ln(n)r threshold function, which computes whether
W (x) > ln(n)r, has AC0 circuits with depth O(r) and size o(n). This improves on a
result by Ajtai and Ben-Or [4]. Further, Håstad, Wegener, Wurm, and Yi [11] show that
polylogarithmic threshold functions have sub-polynomial size, constant-depth circuits.

Results by Amano [5] building on work by O’Donnell and Wimmer [14] prove the minimum
size for a depth-d circuit computing majority on most inputs is Θ

(
n

1
2d−1

)
. This is consistent

with promise majority results because most inputs are close to balanced, within a O(1/
√
n)

factor, but promise majority is only guaranteed to give majority on inputs that are far from
balanced.

For ε =
(

1
2 −

1
ln(n)k

)
, Viola proved that randomized, depth-(k + 1), polynomial-size

circuits can solve ε-promise majority, but deterministic, depth-(k + 2), polynomial-size
circuits cannot. Further, there are deterministic, depth-(k + 3), polynomial-size circuits for
ε-promise majority [18].

The same work [18] gave size lower bounds for depth-3 ε-promise majority circuits, but
the bounds are less than linear for ε < 0.49. Closer analysis gives better lower bounds, but
we could not get quadratic lower bounds for ε < 0.49 with this technique.

A later work by Limaye, Srinivasan and Tripathi [13] showed that deterministic, depth-
(k+1), polynomial-size AC0 circuits with parity gates also cannot solve

(
1
2 −

1
ln(n)k

)
-promise

majority.

2 Proof Ideas

2.1 Monotone Depth-3 Circuit Lower Bounds

For depth-3 promise majority circuits, without loss of generality, assume the first level of
gates are AND gates5. Call the inputs “variables”, the first level gates “clauses”, and the
second level gates “DNFs”.

5 Switching the ANDs to ORs and ORs to ANDs in a circuit solving ε-promise majority still solves
ε-promise majority. To see this, observe that flipping all the input bits will flip a Maj1ε input to a Maj0ε
input. Then apply de Morgan’s law.

J. Cook 5

To prove lower bounds for a depth-3 circuit, we construct adversarial restrictions that
simplify the circuit while setting too few variables to violate the promise. To do this, we use
two main tools. The first is a lemma from Viola [17] that we use to remove gates with very
small fan in at the first level.

The second is a greedy set cover algorithm which shows that any collections of large
subsets of variables can have a large fraction of sets hit by a small fraction of variables. To
do this, we repeatedly select a variable in at least the average number of sets per variable.

First, we show DNFs have Ω̃(n1+α) clauses for some α > 0. To do this, we eliminate
small clauses using the first idea, then eliminate a large fraction of clauses with few 0s using
the second idea. This leaves many clauses while eliminating a large fraction of clauses, thus
we started with many clauses.

Then, we show the circuit has Ω̃(n2+α) clauses. First, we use the second idea to remove
any very large clauses. This lets us fix clauses to 1 without using too many variables. Then,
using the second idea again, we can hit many DNFs using few clauses. Thus there must be
many clauses so we can not hit every DNF using few clauses.

We generally will not worry about integrality. This only becomes an issue when ε =
Õ
(
n−1/2) as some restrictions would not have size greater than one. In that case, our lower

bounds hold trivially as εn gates can be fixed to a constant assigning only εn variables.

2.2 General Depth-3 Circuit Lower Bounds
The proof for non-monotone circuits is similar but with an additional hurdle. In monotone
circuits, setting variables to 0 only makes clauses 0. But with negations, we can actually
shrink clauses without eliminating them. This is an issue for showing DNFs must be large,
but the rest of the argument only needs minor changes.

The solution is to set adversarial bits probabilistically. We independently set each bit to
1 with probability ε. With good probability, this will give an input in Maj0ε . Some DNFs
then must have a good probability of “noticing” and becoming 0.

With high probability, fixing a small fraction of variables according to Dε will eliminate
many clauses. For some α > 0, if a DNF is smaller than n1+α this will make it constant.
With good probability, setting the rest of the variables gives an input this DNF must “notice”
and become 0. Thus, if the DNF is small, for some input it will be fixed to the constant 0
with only a few variables fixed. This cannot happen, so the DNF must be larger than n1+α.

2.3 Small Sized Circuits
To get small circuits, first we amplify the ε promise input to a 1

polylog(n) promise input by
taking majority over O(ln(ln(n))) length walks on an expander graph. Then we separate our
input into polynomially small groups and run a 1

ln(n) -promise majority on each. This gives a
polynomially smaller layer which satisfies just an ln(n) factor worse promise. Applying this
several times computes majority of the promise input.

Ajtai’s promise majority strategy gives a quadratic-sized 1
ln(n) -promise majority circuit.

Using this with the divide and conquer strategy above gives non uniform small circuits.
For our uniform circuit, we look at Viola’s circuit [17]. It uses a hitting property that

requires n3+o(1) many random walks for each of our n bits, requiring an overall size of n4+o(1).
We reduce this by showing it suffices to let each bit only range over random walks starting
at that bit, giving a size-n3+o(1) circuit for 1

ln(n) -promise majority.
Applying this improved version of Viola’s depth-3 circuit with our divide and conquer

strategy gives our uniform small circuits.

6 Size Bounds on Low Depth Circuits for Promise Majority

2.4 Terminology
We will use biased inputs in our proofs.

I Definition 9 (ε Biased Input). For any ε ∈ [0, 1] the ε biased input Dε is a random variable
over {0, 1}n where each bit independently is 1 with probability ε.

As with Maj0ε and Maj1ε , n in Dε is implicit. Dε is related to Maj0ε by a central limit
theorem: Pr[Dε ∈ Maj0ε] > 1

3 for large enough n.
We will make sub DNFs by only taking some clauses from a larger DNF.

I Definition 10 (Sub DNF). Let G be a DNF with clauses C = {Ci : i ∈ [k]} so that
G =

∨
i∈[k] Ci. Let Λ ⊆ [k] and H be a DNF with H =

∨
i∈Λ Ci.

Then we say that H is sub DNF of G or G has sub DNF H.

Restrictions fix some bits in the input to a function. We formalize this as a function that
takes unrestricted bits as input and outputs the restricted and unrestricted bits together6.

I Definition 11 (Restriction). A restriction ρ on n variables of size m is a function ρ :
{0, 1}n−m → {0, 1}n such that for some c ∈ {0, 1}m and some permutation of [n], π, for all
x ∈ {0, 1}n−m and i ∈ n:

ρ(x)i =
{
cπi πi ≤ m
xπi−m πi > m

We write the size of ρ as |ρ| = m and define f �ρ= f ◦ ρ.

When we apply a restriction, ρ, to a DNF, F , we let F �ρ be the DNF which is F with
variables restricted in ρ set to their restricted value. We simplify such a DNF to remove any
clause that has been set to 0. We count the size of a DNF by its number of clauses.

I Definition 12 (DNF Size and Width). For a DNF F , the size of F , |F |, is the number of
clauses in F . Any DNF that is the constant 1 or 0 function has size 0.

We say a DNF F has width w if no clause in F has width greater than w.

3 Monotone Depth-3 Circuit Size Lower Bounds

3.1 Removing Small Clauses
We use a result from Viola [17], Lemma 11 therein. Intuitively, this lemma says for a DNF
with small width, either there is some setting to a small number of variables that makes it 0,
or under a randomized input it is unlikely to be 0.

I Lemma 13. Let G be a DNF with a sub DNF F . Assume for some positive integers w and
m, F has width at most w and Pr[G(Dε) = 0] ≥ e−εw·m/w2 . Then there exists a restriction ρ
with |ρ| ≤ m such that F �ρ= 0 and Pr[G �ρ (Dε) = 0] ≥ Pr[G(Dε) = 0].

Our result is slightly generalized over the original and the proof is given in Appendix A.
As a corollary, we can can apply small restrictions to eliminate small width clauses.

6 This is an equivalent but slightly nonstandard way to define restrictions.

J. Cook 7

I Corollary 14. Suppose we have ε ∈ (0, 1/2), DNF F and constant α > 0 such that
Pr[F (Dε) = 0] ≥ n−α. Then for sufficiently large n and

w = logε
(

ln(n)5

nε ln(ε)2

)
there is a restriction ρ restricting at most m = εn

ln(n) variables so that any clause C in F
with width less than w has C �ρ= 0 and Pr[F �ρ (Dε) = 0] ≥ Pr[F (Dε) = 0].

Proof. Let F ′ be the sub DNF of F with clauses of width less than w. Then

E[F (Dε) = 0] ≥ n−α = e−α ln(n) = e
−α ln(n)5

nε ln(ε)2
εn

ln(n)
ln(ε)2

ln(n)3 = e
−αεwm ln(ε)2

ln(n)3 ≥ e−ε
wm 1

w2

From Lemma 13, there is a restriction ρ of size m with E[F �ρ (Dε) = 0] ≥ E[F (Dε) = 0]
setting F ′ �ρ= 0. Any width w clause C would be in F ′, thus C �ρ= 0 since F ′ �ρ= 0. J

3.2 Covering Many Large Sets with Few Elements
We prove the simplest version of the clause elimination result, but slight variations will be
used in multiple places. In particular, in the non monotone lower bounds, we can’t quite
reduce the problem to set cover, but the same algorithm still works with a similar bound.
Since the proofs look very similar, we only present one in detail. We show how to remove
many clauses from a monotone DNF with a small restriction

I Lemma 15. Let F be a monotone DNF where each clause has width at least w. Then for
any positive integer b, there is some restriction ρ with |ρ| = b only fixing variables to 0 such
that |F �ρ| < |F |ew ln(1− b

n+1)

Proof. The idea is to restrict the variable that intersects the most clauses to 0. This removes
at least the average number of clauses per variable, which when we have m clauses and have
fixed i variables is at least mw

n−i . After b restrictions, we get ρ with |ρ| = b and

|F �ρ| ≤ |F |
b−1∏
i=0

(
1− w

n− i

)
.

We prove this by induction then simplify. For the base case where b = 0, F is unchanged
and we get the empty product, so the inequality holds.

For b > 0, we have some ρ′ restricting b− 1 variables with |F �ρ′ | ≤ |F |
∏b−2
i=0

(
1− w

n−i

)
.

Then F �ρ′ is a function on n+ 1− b variables. Let s be the variable in the most clauses of
F �ρ′ . Then s is in at least |F �ρ′ | w

n+1−b clauses. Let ρ be ρ′ also fixing s to 0. Then:

|F �ρ| ≤ |F �ρ′ | − |F �ρ′ |
w

n+ 1− b = |F |
b−1∏
i=0

(
1− w

n− i

)
,

completing our induction. The above equation simplifies to:

|F �ρ| = |F |
b−1∏
i=0

(
1− w

n− i

)
< |F |e

∑b−1
i=0
− w
n−i = |F |e−w

∑n

i=n+1−b
1/i
. (1)

From calculus we have
b∑
i=a

1
i
≥
∫ b+1

a

1
x
dx = ln

(
b+ 1
a

)
,

8 Size Bounds on Low Depth Circuits for Promise Majority

which applied to Equation (1) gives

|F �ρ| < |F |e
−w
∑n

i=n+1−b
1
i ≤ |F |e−w ln(n+1

n+1−b) = |F |ew ln(1− b
n+1).

J

The same idea gives the simpler bound:

I Corollary 16. Let F be a monotone DNF where each clause has width at least w. Then
for any integer b there is some restriction ρ with |ρ| ≤ b such that |F �ρ| < |F |e−wb/n.

With this idea, we can remove all large clauses fixing few variables. For the non monotone
case, we only remove half the average number of clauses with each variable, giving:

I Corollary 17. Let F be a collection of clauses. Then there is some restriction ρ fixing n/p
variables such that F �ρ has width w = 2 ln(|F |)p.

3.3 Monotone DNF Size
We prove that any DNF with a good chance of “noticing” inputs from Dε has a large size.

I Lemma 18. Suppose for ε ∈ (0, 1/2), there is a monotone DNF F with F (Maj1ε) = 1 and
Pr[F (Dε) = 0] ≥ 1/nα for constant α. Then F has Ω̃

(
εn1+ ln(1−ε)

ln(ε)

)
clauses.

Proof. The idea is to restrict our function until we are only promised it outputs 1 on an
Maj1ε/ ln(n) input. Using Lemma 15, we can do this in such a way to eliminate a large fraction
of clauses. Then since we still need to output 1 if we have fewer than εn

ln(n) more zeros, we
can choose these remaining εn

ln(n) zeros to each eliminate one clause, showing that there are
still εn

ln(n) clauses left. This will imply that we must have started with the claimed number of
clauses.

For w = logε
(

ln(n)5

nε ln(ε)2

)
, by Corollary 14, there is restriction ρ with |ρ| ≤ εn

ln(n) and F �ρ

that has no clauses smaller than w. Denote F2 = F �ρ. Note F2 solves F2

(
Maj1ε(1−1/ ln(n))

)
=

1 and has no clauses smaller than w.
Now we use Lemma 15 to get restriction ρ2 that assigns εn(1− 2/ ln(n)) variables and:

|F2 �ρ2 | ≤|F2|ew ln
(

1− εn(1−2/ ln(n))
n+1

)
.

Now we simplify the above exponent. For 0 < x < 1
2 and 0 < y, by a Taylor argument

we have ln(1− x+ y) ≤ ln(1− x) + 2y. Then for sufficiently large n:

ln
(

1− εn(1− 2/ ln(n))
n+ 1

)
= ln

(
1− ε+ ε

n+ 1 + 2εn
n+ 1

1
ln(n)

)
≤ ln(1− ε) + 5ε

ln(n) .

Now including w,

w ln
(

1− εn(1− 2/ ln(n))
n+ 1

)
≤

ln(n)− ln
(

ln(n)5

ε ln(ε)2

)
ln(1/ε)

(
ln(1− ε) + 5ε

ln(n)

)

<
ln(n) ln(1− ε)

ln(1/ε) −
ln
(

ln(n)5

ε ln(ε)2

)
ln(1− ε)

ln(1/ε) + 5
ln(1/ε) .

J. Cook 9

Then applying this to our size bound

|F2 �ρ2 | ≤|F2|ew ln
(

1− εn(1−2/ ln(n))
n+1

)
<|F2|e

ln(n) ln(1−ε)
ln(1/ε) −

ln

(
ln(n)5

ε ln(ε)2

)
ln(1−ε)

ln(1/ε) + 5
ln(1/ε)

<|F2|n
ln(1−ε)
ln(1/ε) 2 ln(n)5e8.

Since ρ and ρ2 only restricts εn
(

1− 1
ln(n)

)
clauses, F2 �ρ2 (Maj1ε/ ln(n)) = 1. Further,

since F is monotone, ρ and ρ2 only fixed variables to 0. So F2 �ρ2 6= 1. Then F2 �ρ2 must
have at least εn

ln(n) clauses. Thus:

εn

ln(n) ≤ |F2 �ρ2 | ≤ e8|F2|n
ln(1−ε)
ln(1/ε) 2 ln(n)5

εn1+ ln(1−ε)
ln(ε)

2e8 ln(n)6 ≤|F2|.

F has at least as many clauses as F2, thus |F | = Ω̃
(
εn1+ ln(1−ε)

ln(ε)

)
. J

3.4 Monotone Circuit Size Lower Bounds
Now we prove the monotone depth-3 promise majority circuit lower bounds.

I Theorem 3. For any ε ∈ (0, 1/2), a monotone, depth-3 circuit solving the ε-promise
majority problem must have size Ω̃

(
ε3n2+ ln(1−ε)

ln(ε)

)
.

Proof. Let F be a monotone depth-3 circuit computing ε-promise majority. We will refer
to the first level gates as clauses, and the second level gates as DNFs. Let |F | refer to the
number of clauses in F , and ‖F‖ refer to the number of DNFs. If F has more than n2+α

gates, we are done. So suppose it does not.
Let α = ln(1−ε+3ε/ ln(n))

ln(ε−3ε/ ln(n)) . We can show that

α >
ln(1− ε)

ln(ε) −O
(

1
ln(n)

)
.

So if we show |F | = Ω̃
(
ε3n2+α), then the second term in α becomes a constant.

First, from Corollary 17, we have a restriction ρ fixing εn
ln(n) variables such that any

clause wider than w = 2 ln(|F |) ln(n)
ε is set to 0. Let F2 = F �ρ. See that F2 solves the

ε
(

1− 1
ln(n)

)
-promise majority problem and has no clauses wider than 6 ln(n)2

ε .
By Lemma 18, every DNF G with Pr[G(Dε(1−3/ ln(n))) = 0] ≥ 1/n3+α has at least cεn1+α

clauses for some polylogarithm c. Let F3 be the sub circuit of F2 with only the DNFs of F2
larger than cεn1+α.

Since no clauses are wider than w, we can set any m clauses in F3 to 0 by fixing only
mw variables. Then, analogous to Corollary 16, there exists a restriction ρ2 fixing εn/ ln(n)
variables to 1 such that:

‖F3 �ρ2 ‖ ≤ ‖F3‖e−cεn
1+α(|ρ2|/w)/|F3|,

where ‖F3 �ρ2 ‖ is the number of DNFs in F3 not fixed to 1 or 0 under the restriction ρ2.

10 Size Bounds on Low Depth Circuits for Promise Majority

See that F2 �ρ2 still solves the ε(1−2/ ln(n))-majority problem. By a central limit theorem,
Dε(1−2/ ln(n)) has a constant nonzero probability of being in Maj0ε(1−2/ ln(n)). Since F2 has
fewer than n2+α DNFs (by assumption), some DNF in F2, A, must be 0 on Dε(1−2/ ln(n))
with probability greater than 1/n3+α. By Lemma 18, A has size at least cεn1+α. Thus A
must also be in F3. Thus ‖F3 �ρ2 ‖ ≥ 1.

Now we can compute a lower bound for |F3|:

1 ≤‖F3 �ρ2 ‖ ≤ ‖F3‖e−cεn
1+α |ρ2|

w|F3|

e
cε2n2+α 1

w|F3| ln(n) ≤‖F3‖

cε3n2+α 1
2 ln(|F |) ln(n)|F3| ln(n) ≤ ln (‖F3‖)

Ω̃
(
ε3n2+α) ≤|F3|.

Using the definition of α and that |F | > |F3| we get:

|F | ≥ Ω̃
(
ε3n2+α) ≥ Ω̃

(
ε3n

2+ ln(1−ε)
ln(ε) −O

(
1

ln(n)

))
≥ Ω̃

(
ε3n2+ ln(1−ε)

ln(ε)

)
.

J

4 General Depth-3 Circuits

The proof of the size lower bound for general depth-3 circuits computing promise majority is
almost the same as the monotone case, except for the proof that DNFs must be large. We
only prove our DNF bound here, but leave a brief proof of Theorem 4 in Appendix B.

I Lemma 19. Suppose ε ∈ (0, 1/2), and F is a DNF such that Pr[F (Dε) = 0] ≥ 1/nα for

some constant α and F (Maj1ε) = 1. Then F has size at least Ω̃
(
εn1+ ln(1−ε2)

2 ln(ε)

)
.

Proof. First, see that if F (Maj1ε) = 1 and F 6= 1, there must be at least εn clauses. Otherwise
we could fix one variable in each clause to 0 using fewer than nε zeros. Then for ε = Õ

(
1√
n

)
the lemma is satisfied. So take ε = ω

(
ln(n)3
√
n

)
.

Let m = εn(1−2/ ln(n)) and w = logε(
ln(n)5

nε ln(ε)2). We will define a sequence of probabilistic
restrictions, ρ0, ..., ρm, each restricting one more variable according to Dε. At the same time
we will construct a sequence of sub DNFs of F , F0, ..., Fm, each a subset of the last, so that
each Fi �ρi has width at least w.

Informally, with decent probability each Fi is significantly smaller than the last. Thus by
a Chernoff bound, with high probability Fm has a small fraction of the clauses of F . Then we
use Corollary 14 to eliminate the small width clauses in Fm �ρm . With good probability the
DNF will still not be 1, in which case it must still have an almost linear number of clauses.
Thus there must have been many clauses to destroy so many and have so many left.

Let ρ0 restrict no variables and F0 be F restricted to clauses wider than w. Then for any i,
let ρi be ρi−1 plus restricting whichever variable appears in the most clauses in Fi−1 �ρi−1 to
one with probability ε and 0 otherwise. Then let Fi be the clauses such that they have width
greater than w in F �ρi . See that Fi ⊆ Fi−1, since further restrictions will only decrease the
size and number of clauses.

With probability at least ε, ρi will eliminate at least |Fi−1|w
2(n−i+1) clauses. Thus:

Pr
[
|Fi+1| ≤ |Fi|

(
1− w

2(n− i)

)]
≥ ε.

J. Cook 11

Let k be the number of times the above inequality holds. By an argument similar to
Lemma 15:

|Fm| ≤ |F0|
k−1∏
i=0

(
1− w

2(n− i)

)k
≤ |F0|e

w
2 ln(1− k

n+1).

See the expected value of k is at least mε. By a Chernoff bound, we have:

Pr[k < (1− 1
ln(n))εm] ≤ e−

εm
2 ln(n)2 < e

− ε2n
ln(n)3 .

Now, notice that ρm only sets variables according to an ε biased distribution. So if we
just finish sampling the rest of the variables from Dε, it is the same as sampling all the
variables from Dε. Thus:

Eρm [Pr[F �ρm (Dε) = 0]] = Pr[F (Dε) = 0].

We need high probability that F �ρm still outputs 0 with polynomial probability on Dε.
Applying the above equation and our assumption we get:

1
nα
≤Eρm [Pr[F �ρm (Dε) = 0]]

≤ 1
n2α + Pr

ρm

[
Pr[F �ρm (Dε) = 0] > 1

n2α

]
1
nα
− 1
n2α ≤Pr

ρm

[
Pr[F �ρm (Dε) = 0] > 1

n2α

]
.

The probability that ρm has both Pr[F �ρm (Dε) = 0] > 1/n2α and k > (1− 1
ln(n))εm is

at least 1
nα −

1
n2α − e

− ε2n
ln(n)3 , which for large n is positive. Then take such ρm as ρ.

By Corollary 14, we have a restriction of F |ρ, ρ′, which restricts εn/ ln(n) variables and
leaves no clauses of width less than w, and has

Pr[F �ρ�ρ′ (Dε) = 0] ≥ Pr[F �ρ (Dε) = 0] ≥ 1
n2α .

Now call F ′ = F �ρ�ρ′ . See that F ′ has fixed εn(1− 1
ln(n)) variables. Thus it still satisfies

F ′(Maj1ε/ ln(n)) = 1. Since F ′ 6= 1, |F ′| ≥ εn/ ln(n). The clauses in F ′ had width greater
than w in Fm, otherwise ρ′ would have set them to 0. Thus |Fm| ≥ εn/ ln(n). Together we
have:

εn

ln(n) ≤|F0|e
w
2 ln(1− k

n+1)

≤|F0|e
w
2 ln
(

1− (1−1/ ln(n))εm
n+1

)
≤|F0|e

ln

(
nε ln(ε)2

ln(n)5

)
2 ln(1/ε) (ln(1−ε2)+6ε2/ ln(n))

Ω̃
(
εn1+

ln(1−ε2)
2 ln(ε)

)
≤|F0|.

Thus F has at least Ω̃
(
εn1+

ln(1−ε2)
2 ln(ε)

)
clauses. J

12 Size Bounds on Low Depth Circuits for Promise Majority

5 Circuit Upper Bounds

This section mostly uses standard techniques and the details are given in the appendix. A
close analysis of Ajtai’s [2] promise majority circuits (shown in Appendix C.1) gives:

I Theorem 20. For any ε ∈ (0, 1/2), there exists monotone, depth-3 circuits solving the
ε-promise majority problem with size O

(
(ε ln(ε))2

n2+ ln(1−ε)
ln(ε)−ln(1−ε)

)
.

This also gives the corollary we will use for our stronger upper bounds for higher depth.

I Corollary 21. For any ε = O
(

ln(ln(n))
ln(n)

)
, there are monotone, depth-3 circuits solving the

ε-promise majority problem with size O
(
n2).

Using random walks on expander graphs, we can amplify our promise (proof in Ap-
pendix C.2). The polylogarithmic factor in the size depends on ε and k.

I Lemma 22. For any constant k and ε ∈ (0, 1/2), there exists P-Uniform, monotone,
depth-3 circuits with size Õ(n) amplifying a Maj0ε input to a Maj0 1

ln(n)k
output and a Maj1ε

input to a Maj1 1
ln(n)k

output.

With amplification and quadratic-size circuits, we can trivially prove the existence of
depth-4, size-Õ(n2) circuits. But the circuit size only depends on the number of potential
inputs (not the number of bits used to represent them). Thus the circuit has size O(n2).

I Theorem 5. For constant ε ∈ (0, 1/2), there exists non uniform, monotone, depth-4,
size-O

(
n2) circuits solving the ε-promise majority problem.

We can apply promise majority circuits in a divide and conquer fashion to get the following
(proved in Appendix C.3):

I Lemma 23. If there are depth-3 circuits with size nα solving 1
ln(n) -promise majority, then

for any positive integer k, there are depth-(1 + 2k) circuits solving 1
ln(n)k -promise majority

with size

kn

1

1−(α−1
α)k ,

which is uniform and monotone if the depth-3 circuits are uniform and monotone.

Combining Lemma 23 with amplification and our quadratic-sized majority gives:

I Theorem 6. For constant ε ∈ (0, 1/2), there exists non uniform, monotone, depth-(2 + 2k)
circuits solving the ε-promise majority problem with size Õ

(
n

1
1−2−k

)
.

For uniform circuits, we refine of Viola’s result [17] by giving a more efficient way to use
the random walks in the existing algorithm. Details in Appendix D.1.

I Theorem 24. There exists P-uniform, monotone, depth-3, size-O
(
n3+o(1)) circuits solving

the 1
ln(n) -promise majority problem.

Again applying amplification and divide and conquer we get:

I Theorem 7. For constant ε ∈ (0, 1/2), there exists P-uniform, monotone, depth-(2 + 2k)

circuits solving the ε-promise majority problem with size n
1

1−(2
3)k

+o(1)
.

J. Cook 13

6 Closing Statements & Open Problems

These results are essentially tight in the following sense. For a wide range of ε, between
ε = o(1) and ε = n−o(1), the optimal size of depth-3 circuits for ε-promise majority is n2±o(1).

These lower bounds do not obviously extend to depth-4 circuits, so the right size for
promise majority at higher depths is less clear. Better amplification plus Ajtai’s promise
majority circuit can actually achieve circuits with size significantly smaller than n2. So our
upper bounds are not optimal for depths greater than 3.

For depth-3 circuits computing promise majority, we gave four different size bounds: a
lower bound for monotone circuits, a lower bound for general circuits, an upper bound for
monotone circuits, and an upper bound for uniform monotone circuits. Each of these bounds
differs by a polynomial factor, but we suspect they are equal.

Finally, here are some open problems:

1. Is there a way to derandomize any depth-d, size-O(n), randomized circuit to get a
depth-(d+ 2), size-O(n2), deterministic circuit?
We did not find any function f that has a randomized, depth-d, size-O(n) circuit, R,
computing f , but no deterministic, depth-(d+ 2), size-O(n2) circuit computing f . We
only showed that taking promise majority over O(n) copies of R (as you would with
an ideal PRG) would give super-quadratic circuits. There may always be some other
deterministic, depth-(d+ 2), size-O(n2) circuit computing f .

2. Do negations help solve promise majority?
Our lower bounds for monotone circuits are better than our general lower bounds. It
does not seem like negations should help, but we were unable to rule it out.

3. What is optimal size for depth-3 circuits computing ε-promise majority?
For constant ε ∈ (0, 1/2), there is a polynomial gap between even our monotone lower
bounds Ω̃

(
n2+ ln(1−ε)

ln(ε)

)
, and upper bounds O

(
n2+ ln(1−ε)

ln(ε)−ln(1−ε)

)
.

For constant α ∈ (0, 1/2) and ε = n−α, there is a polynomial gap between our lower
bounds Ω̃

(
n2−3α) and our upper bounds Õ

(
n2−2α).

4. What is the optimal size for depth greater than 3?
Chaudhuri and Radhakrishnan [6] gave size lower bounds of roughly Ω

(
n1+ 1

22d
)
for

depth-d ε-promise majority circuits, while we only achieve upper bounds of roughly
Ω
(
n

1+ 1
2d/2−1

)
.

5. Do these bounds extend to AC0 with parity, or other circuit classes below TC0?
6. Are there uniform depth-3 circuits for promise majority with the same size as Ajtai’s

construction? Can we get uniform, depth-4, quadratic size circuits for promise majority?

References
1 Leonard Adleman. Two theorems on random polynomial time. In Proceedings of the 19th

Annual Symposium on Foundations of Computer Science, SFCS ’78, page 75–83, USA, 1978.
IEEE Computer Society.

2 Miklós Ajtai. Sigma11-formulae on finite structures. Ann. Pure Appl. Log., 24:1–48, 1983.
3 Miklós Ajtai. Approximate counting with uniform constant-depth circuits. In Advances In

Computational Complexity Theory, volume 13, pages 1–20, 1993.
4 Miklós Ajtai and Michael Ben-Or. A theorem on probabilistic constant depth computations.

In STOC ’84, pages 471–474, 1984.

14 Size Bounds on Low Depth Circuits for Promise Majority

5 Kazuyuki Amano. Bounds on the size of small depth circuits for approximating majority. In
Proceedings of the 36th International Colloquium on Automata, Languages and Programming:
Part I, ICALP ’09, page 59–70, Berlin, Heidelberg, 2009. Springer-Verlag.

6 Shiva Chaudhuri and Jaikumar Radhakrishnan. Deterministic restrictions in circuit complexity.
In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
STOC ’96, page 30–36, New York, NY, USA, 1996. Association for Computing Machinery.
doi:10.1145/237814.237824.

7 Michael B. Cohen. Ramanujan graphs in polynomial time. 2016 IEEE 57th Annual Symposium
on Foundations of Computer Science (FOCS), pages 276–281, 2016.

8 Dean Doron, Dana Moshkovitz, Justin Oh, and David Zuckerman. Nearly optimal pseudor-
andomness from hardness. In To appear in The proceedings of the 61st IEEE Symposium on
Foundations of Computer Science, 2020.

9 Alexander Healy. Randomness-efficient sampling within nc1. Computational Complexity,
17:3–37, 04 2008.

10 Johan Håstad. Almost optimal lower bounds for small depth circuits. In Proceedings of the
Eighteenth Annual ACM Symposium on Theory of Computing, STOC ’86, page 6–20, New
York, NY, USA, 1986. Association for Computing Machinery.

11 Johan Håstad, Ingo Wegener, Norbert Wurm, and Sang-Zin. Yi. Optimal depth, very small
size circuits for symmetrical functions in ac0. Information and Computation, 108(2):200 – 211,
1994.

12 Clemens Lautemann. Bpp and the polynomial hierarchy. Information Processing Letters,
17(4):215 – 217, 1983.

13 Nutan Limaye, Srikanth Srinivasan, and Utkarsh Tripathi. More on AC0[⊕] and variants
of the majority function. In 39th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2019), volume 150, pages 22:1–22:14,
2019.

14 Ryan O’Donnell and Karl Wimmer. Approximation by dnf: Examples and counterexamples. In
Proceedings of the 34th International Conference on Automata, Languages and Programming,
ICALP’07, page 195–206, Berlin, Heidelberg, 2007. Springer-Verlag.

15 Prabhakar Ragde and Avi Wigderson. Linear-size constant-depth polylog-threshold circuits.
Information Processing Letters, 39:143–146, 1991.

16 Salil P. Vadhan. Pseudorandomness. Foundations and Trends® in Theoretical Computer
Science, 7(1–3):1–336, 2012.

17 Emanuele Viola. On approximate majority and probabilistic time. Computational Complexity,
18:337–375, 2009.

18 Emanuele Viola. Randomness buys depth for approximate counting. In 2011 IEEE 52nd
Annual Symposium on Foundations of Computer Science, pages 230–239, 2011.

A Proof of Lemma 13

This proof was first presented by Viola [17] in the more straightforward case where G = F :
where there is only one DNF. We use this lemma on even non monotone circuits to eliminate
small clauses in a DNF without fixing it to one, so we have to present it in this slight
generalization. This does not require any new ideas, just more careful analysis.

I Lemma 13. Let G be a DNF with a sub DNF F . Assume for some positive integers w and
m, F has width at most w and Pr[G(Dε) = 0] ≥ e−εw·m/w2 . Then there exists a restriction ρ
with |ρ| ≤ m such that F �ρ= 0 and Pr[G �ρ (Dε) = 0] ≥ Pr[G(Dε) = 0].

Proof. The proof follows closely from a basic idea: if there are many small independent
clauses in a DNF, it will accept with high probability. If there aren’t, then we can set a
small number of variables to decrease the size of each clause.

https://doi.org/10.1145/237814.237824

J. Cook 15

See that since F is a sub DNF of G, for any ρ, G �ρ (x) = 0 =⇒ F �ρ (x) = 0. Thus for
any distribution y, Pr[F �ρ (y) = 0] ≥ Pr[G �ρ (y) = 0].

We will use a proof by induction. First the base case, where w = 1. If there are only m
clauses in F , then let ρ be restriction setting each variable in F to make its corresponding
clause 0. Then since this is the only assignment to these variables so that G is not one, we
have

Pr[G(Dε) = 0] ≤ Pr[G �ρ (Dε) = 0]

Otherwise F must have at least m + 1 clauses. Then Pr[F (Dε) = 0] is just the probability
that none of its at least m variables is one. Thus:

Pr[G(Dε) = 0] ≤ |Pr[F (Dε) = 0] ≤ (1− ε)m+1 < e−εm

but by assumption Pr[G(Dε) = 0] ≥ e−εm, thus this case cannot occur.
Now for the general case where w ≥ 2. We say that a set of variables, S, is a cover for

DNF F if every clause in F contains at least one variable from S. We say that a set of
clauses T is independent if no two clauses in T have any variables in common.

Consider a minimum cover of F , S. Let T be a maximal independent set of clauses in
F . See that |T |w ≥ |S| because if we take every variable in a maximal independent set of
clauses, we must get a cover for F (otherwise we would have another independent clause)
and we already said S is the smallest cover.

Then the probability F is 0 is at most the probability each clause in T is 0. Thus:

Pr[F (Dε) = 0] ≤(1− εw)|T |

<e−|T |ε
w

≤e−|S|ε
w/w

Now if |S| ≥ m/w, then we have violated the assumption and are done. Thus we have
|S| < m/w.

Choose some assignment to the variables in S to get ρ′ so that Pr[G �ρ′ (Dε) = 0] ≥
Pr[G(Dε) = 0]. By an averaging argument, some ρ′ must do this. This gives

Pr[G �ρ′ (Dε) = 0] ≥Pr[G(Dε) = 0]

≥e−ε
w·m/w2

>e−ε
w−1·mw−1

w−1
1

(w−1)w

≥e−ε
w−1·m 1−1/w

(w−1)2

Thus F �ρ′ is a new width w − 1 instance. Then by the inductive hypotheses, we have
a restriction ρ′′ of size at most m(1 − 1/w) setting F �ρ′�ρ′′= 0 and not decreasing the
probability G �ρ′ (Dε) is 0. Thus letting ρ = ρ′ ◦ ρ′′, we have

|ρ| ≤ m/w +m(1− 1/w) = m

F �ρ= 0

Pr[G �ρ (Dε) = 0] ≥ Pr[G(Dε) = 0]

J

16 Size Bounds on Low Depth Circuits for Promise Majority

B Proof of Theorem 4

Here we present the proof for the general case depth-3 circuit for promise majority lower
bounds. As previously mentioned, the proof is very similar to the proof of Theorem 3.

I Theorem 4. For any ε ∈ (0, 1/2), a depth-3 circuit solving the ε-promise majority problem

must have size Ω̃
(
ε3n2+ ln(1−ε2)

2 ln(ε)

)
.

Proof. As before, we first use εn/ ln(n) variables to remove all very large clauses. Then we
will use εn/ ln(n) more getting rid of many large DNFs. This will leave us with at least 1
large DNF since we still output 0 on Dε(1−2/ ln(n)) with high probability.

Let F be a polynomial size, depth-3 circuit computing ε-promise majority. Then as in
the proof of Theorem 3, assume its first level of gates are AND gates, call them clauses and
our second level gates DNFs.

First, using Corollary 17, there is a restriction ρ with |ρ| = εn/ ln(n) variables and
removes any clauses width greater than O(ln(n)2/ε). Then let F ′ = F |ρ.

Now let F2 be the subcircuit of F’ that only has DNFs of size at least cεn1+α for
α = ln(1−ε2)

2 ln(ε) and some c = polylog(n) given by Lemma 19. Now we fix ε2n/ ln(n)4 clauses
in F2 that eliminate as many DNFs as we can to get F3. This requires us to fix fewer than
εn/ ln(n) variables. By a similar proof to Theorem 3, we can get

‖F3‖ ≤ ‖F2‖e−ε
3 n2+α
|F2|polylog(n)

Now, ‖F3‖ must have at least 1 DNF of size cεn1+α because F3 still solves a ε
(

1− 2
ln(n)

)
-

promise majority problems. Thus:

1 ≤ ‖F2‖e−ε
3 n2+α
|F2|polylog(n)

This only holds if |F2| = Ω̃(ε3n2+α) or ‖F2‖ is exponentially large. Thus the size of F is
Ω̃(ε3n2+α). J

C Circuit Upper Bounds

C.1 Ajtai’s Construction
Ajtai gave a randomized construction of a depth-3 circuit for promise majority. It is defined
recursively with each layer being a conjunction or disjunction of a specific number of random
circuits of smaller depth.

Intuitively, it gives a circuit which solves a coin problem, determining whether an input
comes from Dε or D1−ε, with exponentially high probability. Then feeding in random indexes
from a Majε instance is equivalent to feeding in an input from Dε or D1−ε. Then by an
averaging argument, some choice of indexes must always work.

So first we prove:

I Lemma 25. For any ε ∈ (0, 1/2) and positive integer n, there exists a monotone depth-3
circuit, C, with size O

(
n2+ ln(1−ε)

ln(ε)−ln(1−ε)

)
so that for any 0 ≤ δ ≤ ε:

Pr[C(Dδ) = 1] < 2−n

Pr[C(D1−δ) = 0] < 2−n

Note, breaking from convention, C will NOT have n input bits, but Õ(|C|) input bits.

J. Cook 17

Proof. Let α = ln(1−ε)
ln(ε)−ln(1−ε) . Let C1 AND together lnε(n−1−α) bits. Then define C2 to OR

together n1+α independent copies of C1. Finally, let C3 AND together 3n independent copies
of C2. Then C3 circuits has O(n2+α) gates.

Now for δ < ε, we prove C3 fail to output 0 on Dδ or 1 on D1−δ with exponentially low
probability. First observe that since C3 is monotone, increasing the probability a bit is 1
will only increase the probability C3 outputs 1. That is Pr[C3(Dδ) = 1] ≤ Pr[C3(Dε) = 1].
Similarly Pr[C3(D1−δ) = 0] ≤ Pr[C3(D1−ε) = 0]. So it suffices to show it distinguishes Dε

from D1−ε.
First take an input from Dε. Then, the probability a random gate at each level will

output 1 is:

C1 (AND):

εlnε(n
−1−α) = 1

n1+α

C2 (OR): See that for k ≥ 2, (1− 1/k) ≥ e−4/3k. Then:

1−
(

1− 1
n1+α

)n1+α

≤ 1− e−4/3 ≤ 3
4

C3 (AND):

(3/4)3n < 2−n

Now take an input from D1−ε. Then the probability of C3 outputting a 0 (or equivalently
1 on the negated circuit with negated input) is:

C1 (OR): Notice that by our choice of α that α = (1 + α) ln(1−ε)
ln(ε) . Then:

1− (1− ε)lnε(n−1−α) = 1− eln(1−ε)−(1+α) ln(n)
ln(ε) = 1− n−α ≤ e−n

−α

C2 (AND):

e−n
−αn1+α

= e−n

C3 (OR): For n ≥ 12

1− (1− e−n)3n ≤ 3ne−n < 2−n

Thus with probability less than 2−n will C3 fail to distinguish Dε from D1−ε and the
size of C3 is the fan in of C3 plus the fan in of C3 times the fan in of C2, which is
O
(
n2+α) = O

(
n2+ ln(1−ε)

ln(ε)−ln(1−ε)

)
. J

Then feeding in random indexes from a Majε input and an averaging argument gives an
ε-promise majority circuit.

I Theorem 26. For any ε ∈ (0, 1/2) there exists a monotone depth-3 circuit solving the
ε-promise majority problem with size O

(
n2+ ln(1−ε)

ln(ε)−ln(1−ε)

)
.

Proof. Let α = ln(1−ε)
ln(ε)−ln(1−ε) . Take C3 from Lemma 25. Construct a distribution of circuits

C which is C3 with inputs from C3 mapped to random bits in our n bit input.
An input into C with εn ones is equivalent to an input into C3 from Dε. Thus for any

x ∈ Majε, C outputs the wrong answer with probability less than 2−n. Thus by an averaging
argument, some circuit in the distribution of circuits C always outputs the right answer.
Then that circuit solves ε-promise majority. J

18 Size Bounds on Low Depth Circuits for Promise Majority

C.1.1 Ajtai’s Circuit for Small Promises
We can improve our result for small ε by observing we only need to get failure probability
below |Majε|−1, which will be more than 2−n for small ε. This gives us:

I Theorem 20. For any ε ∈ (0, 1/2), there exists monotone, depth-3 circuits solving the
ε-promise majority problem with size O

(
(ε ln(ε))2

n2+ ln(1−ε)
ln(ε)−ln(1−ε)

)
.

Proof. First, I show that

|Maj0ε | < 2log(2e/ε)εn

Consider sampling an element from Maj0ε by choosing εn indexes out of (1 + ε)n bits. For
any location chosen from the first n locations will be the locations of the 1 bits. See that this
selects from every input in Maj0ε with some probability. Further see that this only samples
at most

((1+ε)n
εn

)
values. Then we have:

|Maj0ε | ≤
(

(1 + ε)n
εn

)
≤
(
e(1 + ε)n

εn

)εn
<

(
2e
ε

)εn
= 2log(2e/ε)εn

Then we trivially get that |Majε| ≤ 22 log(2e/ε)εn.
Now using Lemma 25 with n = 2 log (2e/ε) εn, we get a circuit C with size

O
(

(2ε log(2e/ε))2+ ln(1−ε)
ln(ε)−ln(1−ε) n2+ ln(1−ε)

ln(ε)−ln(1−ε)

)
= O

(
(ε ln(ε))2

n2+ ln(1−ε)
ln(ε)−ln(1−ε)

)
For convenience, I am assuming ln(1−ε)

ln(ε)−ln(1−ε) is bounded. If not, then ε is close to one
half, ε ln(ε) is constant, and the bound holds by Theorem 26.

So that for any δ < ε

Pr[C(Dδ) = 1] < 2−2 log(2e/ε)εn < |Majε|−1

Pr[C(D1−δ) = 0] < 2−2 log(2e/ε)εn < |Majε|−1

Then applying C to random indexes of our input, any x ∈ Majε will give the wrong
answer with probability less than |Majε|−1. Thus some choice of indexes works for every
c ∈ Majε. Then C at these indexes solves ε-promise majority. J

Given amplification, our depth 4 upper bounds in Theorem 5 follows in a similar manner.
These marginal improvements tell us that for polynomially small ε, depth-3 ε-promise

majority circuits can be smaller than quadratic. This still leaves an ε factor between our
lower bounds in Theorem 4 and our best known circuits in Theorem 20.

C.2 Amplification
Now to get our smaller circuits, we need amplify a constant Majε input to a Maj1/ log(n)
input.

One way to perform this amplification is to use a randomized construction similar to
Ajtai’s that has a 1/polylog(n) chance of outputting correctly whether this is a Maj1ε input or
a Maj0ε input. Then we can use a Chernoff bound to show that if we select npolylog(n) of these
circuits at random, with probability all but 2−n a Maj1ε input will map to a Maj11/polylog(n)
input and a Maj0ε input will map to a Maj01/polylog(n). Thus some circuit will do that mapping.

Instead, our amplification procedure will be a majority of short walks on an expander.
This, combined with a Chernoff bound for expander graphs, will give us our amplification.

J. Cook 19

Note this solution actually gives a significantly WORSE polylogarithmic overhead than the
randomized construction above. But we are ignoring polylogarithmic factors in our result
and we can use this same construction in our uniform bounds.

For notation:

I Definition 27 (Random walks). If G is a graph, let Gt be the length t walks on G.
For random walk w ∈ Gt, and i ∈ [t], let wi be the ith bit visited in walk w.

The expander Chernoff bound is given explicitely by Healy [9] as theorem 1:

I Lemma 28. For G a regular graph with n vertices and spectral expansion λ and f : [n]→
[0, 1] be any function. Let µ = Ev∈[n][f(v)]. Then for any ε > 0:

Pr
w∈Gt

[∣∣Ei∈[t][f(wi)]− µ
∣∣ ≥ ε] ≤ 2e−

ε2(1−λ)t
4

Then this almost directly gives our amplification .

I Lemma 29. For constant ε ∈ (0, 1/2) and any δ ∈ (0, 1/2), there is a P-Uniform, depth-2
monotone circuit, C, outputting O(n/δO(1)) bits such that:

C
(
Maj1ε

)
⊆ Maj1δ

C
(
Maj0ε

)
⊆ Maj0δ

And C has size

|C| = O(n/δO(1))

Where we allow both constants to depend on ε.

Proof. Take a constant degree d regular expander graph G with constant spectral expansion
λ < 1 over the n input bits. That such a graph exists is standard result [7]. Now we just
need our walk to be long enough that we have only probability δ that our sample differs
from the mean by more than 1/2− ε. This happens when

t = 4(ln(2)− ln(δ))
(1/2− ε)2(1− λ) = 16(ln(2)− ln(δ))

(1− 2ε)2(1− λ)

For notation, let M take an index to value of a bit at that index. See that for an input
with at most ε fraction of the bits one, Ev∈[n][M(v)] = µ ≤ ε and:

Pr
w∈Gt

[Ei∈[t][M(wi)] ≥ 1/2] = Pr
w∈Gt

[Ei∈[t][M(wi)]− ε ≥ 1/2− ε]

≤ Pr
w∈Gt

[Ei∈[t][M(wi)]− µ ≥ 1/2− ε]

≤ Pr
w∈Gt

[
∣∣Ei∈[t][M(wi)]− µ

∣∣ ≥ 1/2− ε]

≤2e−
(1/2−ε)2(1−λ)t

4

=2eln(δ)−ln(2)

=δ

Thus with probability at most δ will the majority of the bits in a random walk differ
from the majority. Then majority on all random walks on G of length t will give a Maj0δ

20 Size Bounds on Low Depth Circuits for Promise Majority

input. Similarly for an input with at most ε fraction 0s. Now we just need to show that
there aren’t too many walks. See that the number of random walks is:

|Gt| = n · dt−1

=n · d
4(ln(2)−ln(δ))

(1/2−ε)2(1−λ)
−1

=n · d
4 ln(2)

(1/2−ε)2(1−λ)
−1
(

1
δ

) 4 ln(d)
(1/2−ε)2(1−λ)

=O(n)
(

1
δ

)O(1)

Now for the size of the circuit computing majority for one of these walks. For each of
these walks, we have a DNF computing the majority. Any DNF on t variables is of size at
most

2t = 2
16(ln(2)−ln(δ))
(1−2ε)2(1−λ) = O(1) (1/δ)O(1)

Then the total size of the circuit is just that, times the number of walks, which is just
O(n/δO(1)). J

And the specific delta we need is inverse poly logarithmic. This immediately gives us
Lemma 22.

I Lemma 22. For any constant k and ε ∈ (0, 1/2), there exists P-Uniform, monotone,
depth-3 circuits with size Õ(n) amplifying a Maj0ε input to a Maj0 1

ln(n)k
output and a Maj1ε

input to a Maj1 1
ln(n)k

output.

C.3 Recursive Majority Proof
We can get sub-quadratic sized circuits for promise majority, down to size n1+α for arbitrarily
small α with a constant-depth depending on α. The basic idea is to first amplify the input.
Then separate it into nα sized sections and use our promise majority circuit on each of these.
This will give us a new input which satisfies a slightly worse promise but is only of size n1−α.
Then we can just repeat this process log2(1/α) times before the output is a single value
which solves our promise majority problem.

This is the iterative equivalent of a recursive divide an conquer technique where we
separate the input into n 1+α

2 groups of size n 1−α
2 and do our recursive promise majority on

each of these groups. Then do a final promise majority on the output. These produce the
same circuits and the analysis is almost the same.

This process will work using any circuit computing promise majority as a subroutine
as long as we can easily perform whatever amplification it needs. We use ε = 1

ln(n) for our
promise majority sub routine. This is convenient, but it could be smaller, even down to an
appropriate polynomial as long as we can still do the amplification efficiently.

We first prove the strategy works on a Maj1/polylog(n) input, and this combined with
amplification solves our promise majority problem.

I Lemma 23. If there are depth-3 circuits with size nα solving 1
ln(n) -promise majority, then

for any positive integer k, there are depth-(1 + 2k) circuits solving 1
ln(n)k -promise majority

with size

kn

1

1−(α−1
α)k ,

J. Cook 21

which is uniform and monotone if the depth-3 circuits are uniform and monotone.

Proof. The proof is by induction. For the base case, k = 1, we have by assumption a size-nα,
depth-3 circuit.

In general, for k ≥ 2, let β = 1
1−(α−1

α)k , and γ = β−1
α−1 . Separate the input into sets of

size nγ . Then let C1 be the depth-3 circuit that just computes a 1
ln(n) -promise majority on

each of these groups. See that the number of groups is n1−γ . Then the size of C1 will be:

n1−γ (nγ)α = n1−γ+αγ = n1+(α−1) β−1
α−1 = nβ

By a counting argument, if an input satisfies the 1
ln(n)k promise, since our promise majority

at depth-3 solves the 1
ln(n) promise, the output of C1 will satisfy a 1

ln(n)k−1 promise. This is
because fooling one of the promise majority will require nγ

ln(n) of the minority bits. Since we
only have n

ln(n)k bits, we can only fool n1−γ

ln(n)k−1 groups, which is only a 1
ln(n)k−1 fraction of

the groups.
Now we use our induction hypothesis on the output of C1. By assumption, we have a

circuit C2 with depth (1 + 2(k − 1) that solves the 1
ln(n)k−1 -promise majority on n1−γ bits

and has size (k − 1)n
1−γ

1−(α−1
α)k−1

. Then C2 ◦ C1 solves the 1
ln(n)k promise majority problem.

Now for the size of C2. First we will simplify the number of groups. See that

1− γ =1− β − 1
α− 1

=α− β
α− 1

=
α− 1

1−(α−1
α)k

α− 1

=
α
(

1−
(
α−1
α

)k)− 1

(α− 1)
(

1−
(
α−1
α

)k)
=

α− 1− α
(
α−1
α

)k
(α− 1)

(
1−

(
α−1
α

)k)
=

1−
(
α−1
α

)k−1

1−
(
α−1
α

)k
Then the size of C2 is

(k − 1)n
1−γ

1−(α−1
α)k−1

=(k − 1)

n 1−(α−1
α)k−1

1−(α−1
α)k

1

1−(α−1
α)k−1

=(k − 1)
(
n

1

1−(α−1
α)k

)
=(k − 1)

(
nβ
)

Then C2 ◦ C1 has size

nβ + (k − 1)nβ = knβ

22 Size Bounds on Low Depth Circuits for Promise Majority

Further, see that for any promise input, if you flip all the bits, you get a promise input that
outputs the opposite value. So switching all the AND gates to OR gates and all the OR
gates to AND gates still gives a promise majority circuit. This can be seen by negating the
circuit twice, once to use De Morgan’s law, and once to flip all the input bits.

Thus, we can choose C1 such that its top level of gates are the same as the bottom level
gates of C2, so they can merge. Thus C2 ◦C1 has depth 3 + 1 + 2 · (k− 1)− 1 = 1 + 2 · k. So
C2 ◦ C1 is our promise majority circuit as we wanted. J

D Viola’s Promise Majority Circuit

Viola [17] gave a depth-3 circuit ε-promise majority circuit where the lowest level has fan
in O

(
ln(n)

ln(ln(n))

)
and solves the 1

ln(n) promise majority problem. This combined with the
amplification from Lemma 22 gives a constant-depth circuit for ε-promise majority.

Normally this would give a depth-4 circuit. But the second level of this circuit, only
depends on O(ln(n)) bits, so we can switch them from CNFs to DNFs or DNFs to CNFs
with only polynomial overhead. This switching collapses a layer yielding a polynomial size
depth-3 circuit.

Unfortunately, the depth-3 circuit is significantly larger than cubic, thus we will consider
amplification separately. This leaves us is in much the same situation as the non uniform
construction, except that our 1

ln(n) -promise promise majority circuit is larger, requiring
greater depths to get the same size.

D.1 Improvement on Viola’s Promise Majority
First, we will give some intuition for Viola’s promise majority. Viola’s construction builds off
of Lautemann’s proof [12] that

BPTime(n) ⊆ Σ2Time(n2polylog(n))

We will look at a slight generalization of Lautemann’s approach. Let M : [n]→ {0, 1} simply
be the function that takes an index to the value of the input bit at that index. The idea is
to take a family of bijections, F , and some collection of tuples of bijections G ⊆ Fm and
check if:

∃f1, ..., fm ∈ G : ∀u ∈ [n] : ∃i ∈ [m] : M(fi(u))

The idea is that each function mixes the input bits in some way. Then we look at groups of
functions as spreading the input by applying all the functions and taking the OR of their
outputs. Then we ask, can one of our groups spread the 1s to cover the entire space? If we
had less than a 1/m fraction of 1s, we can’t do this. This is because at best our functions
will multiply our number of ones by m.

If we have more than 1/m fraction of ones, SOME choice of functions will give us the
spread we need. But we can’t enumerate over ALL functions. Lautemann used bitwise xor
with random strings as his family of functions and used a probabilistic argument to show this
works. But every choice of m n bit strings is still too many options, so Viola used random
walks on expander graphs to get values to xor with. We take this one step further and let
the functions themselves be the random walks.

In the ones case, we argue that some choice of random walk will “spread” the ones to
cover the space. The idea is to view the construction of the family of functions as randomized.
Then we argue the probability over functions and indexes that we don’t cover that index is

J. Cook 23

less than the number of indexes. Thus, by an averaging argument, some family of functions
actually obtains the average, and thus never outputs a 0.

That is, we want to prove

Pr
f1,...,fm∈G,u∈[n]

[∀i ∈ [m] : M(fi(u)) = 0] < 1/n

Which implies:

∃f1, ..., fm ∈ G : ∀u ∈ [n] : ∃i ∈ [m] : M(fi(u))

I Theorem 24. There exists P-uniform, monotone, depth-3, size-O
(
n3+o(1)) circuits solving

the 1
ln(n) -promise majority problem.

Proof. First, observe that there exists an expander, G, on n vertices (representing the n
bits) that is d = 5 ln(n) regular with spectral expansion λ ≤ 2√

d
= 2√

5 ln(n)
. Specifically, we

will use a bipartite Ramanujan graph as is shown to be constructable by Cohen [7]. To do
this we will assume that n is even. Otherwise we can add a 0 bit and our promise will be
changed negligibly. We will use the bipartite structure later for defining our random walks
in such a way to make our functions bijections.

We want a way to enumerate the paths of length t over both the starting index, and the
choice of steps in an independent way. Let Gt be the length t walks over graph G. Let W t

d

be the set of walk strategies for length t walks regardless of origin. That is the choices of
edges to take on a length t path in a d regular graph. This will correspond to at every step,
giving an index of the next edge to take. We will show later how to index the edges in such
a way that each step forms a bijection.

Let w ∈W t
d be a function w : [n]→ Gt that takes a starting vertex and a walk strategy

to that walk. Thus we can see that Gt = {w(i) : i ∈ [n], w ∈ W t
d}, or that the set of all

length t walks is equal to all walks from every starting vertex with every walk strategy.
We will let the length of our walks be t = 2 ln(n)/ ln(ln(n)) + 1. Then we have number of

walk strategies:

|W t
d| = dt−1 = (5 ln(n))2 ln(n)/ ln(ln(n)) = n2+o(1)

As above, let M be the function that takes a variable index to the value of that bit in
the input. We claim that the proposition

∃w ∈W t
d : ∀u ∈ [n] : ∃i ∈ [t] : M(w(u)i)

is true if our input is in Maj11/ ln(n), and false if it is in Maj01/ ln(n). Finally, this statement is
computed by a depth-3 circuit with size O(n3+o(1)).

0 Input is in Maj01/ ln(n): This comes from a counting argument. But we need our functions,
w(u)1, ..., w(u)t, to be permutations of the vertices, that is bijections. To do this, we
make each choice of edge a permutation.
A walk strategy will just be a series of t numbers saying whether to take the first, second,
up to dth edge. We label each edge with an index so that every vertex has exactly one
edge with each label adjacent to it. Then to take edge i is just to go across the edge
labelled i adjacent to the vertex. Then we need d disjoint perfect matchings on our graph.
Our graph is regular and bipartite, so it has a perfect matching. Take a perfect matching
and label each edge in that matching 1 and remove them. This leaves us with again a
bipartite regular graph, so we can get another matching for label 2, and so on until we

24 Size Bounds on Low Depth Circuits for Promise Majority

have labeled every edge. By definition of perfect matching, each vertex and each label
will have exactly one edge incident to that vertex with that label.
Then with this labeling, each step is a permutation, so every length i walk strategy is a
permutation. Therefore the number of pairs, (u, i), such that M(w(u)i) is one is at most

n

ln(n) · t <
n

ln(n)
3 ln(n)

ln(ln(n)) < n

Therefore, for some u, there must not be any i so that M(w(u)i) = 1. Thus there does
not exist such a walk strategy so that for all u, that strategy starting at u hits a one.

1 Input is in Maj11/ ln(n): As a reminder, our strategy is to prove that the probability of
outputting a 0 for every step of a random walk is so low that some strategy doesn’t do
this on any bit. That is:

Pr
w∈W t

d
,u∈[n]

[∀i ∈ [m] : M(w(u)i) = 0] < 1/n

This comes from the well known result [16] of expander walks that for any expander on n
vertices G with spectral expansion λ and any set of vertices A with density µ = |A|/n:

Pr
w∈Gt

[∀i ∈ [t] : wi ∈ A] ≤ µ(µ+ (1− µ)λ)t−1

In particular, for our graph

Pr
w∈W t

d
,u∈[n]

[∀i ∈ [m] : M(w(u)i) = 0] = Pr
w∈Gt

[∀i ∈ [m] : M(wi) = 0]

≤µ(µ+ (1− µ)λ)t−1

<
(

1/ ln(n) + 2/
√

5 ln(n)
)t−1

<
(

1/
√

ln(n)
)t−1

<
(

1/
√

ln(n)
)2 ln(n)/ ln(ln(n))

=n−1

By an averaging argument, there must be some walk strategy w so that

Pru∈[n][∀i ∈ [m] : M(w(u)i) = 0] < n−1

But there are only n choices for u. Thus for all u, there is some i so that M(w(u)i) = 1.
That is exactly what we needed to prove.

Finally, see the statement represents a small AC0 circuit. This is purely syntactic. Each
quantifier is a layer of gates where the fan in is represented by the domain of the variables. 3
quantifiers means 3 layers, and the size is at most the product of number of choices at each
level. Thus the size is at most:

|W t
d| · n · t = n2+o(1) · n · (2 ln(n)/ ln(ln(n)) + 1) = n3+o(1)

J

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

