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Abstract

A Boolean function f : t0, 1un Ñ t0, 1u is k-linear if it returns the sum (over the binary
field F2) of k coordinates of the input. In this paper, we study property testing of the classes
k-Linear, the class of all k-linear functions, and k-Linear˚, the class Yk

j“0j-Linear. We give a
non-adaptive distribution-free two-sided ε-tester for k-Linear that makes

O

ˆ

k log k `
1

ε

˙

queries. This matches the lower bound known from the literature.
We then give a non-adaptive distribution-free one-sided ε-tester for k-Linear˚ that makes the

same number of queries and show that any non-adaptive uniform-distribution one-sided ε-tester
for k-Linear must make at least Ω̃pkq log n` Ωp1{εq queries. The latter bound, almost matches
the upper bound Opk log n ` 1{εq known from the literature. We then show that any adaptive
uniform-distribution one-sided ε-tester for k-Linear must make at least Ω̃p

?
kq log n ` Ωp1{εq

queries.

1 Inroduction

Property testing of Boolean function was first considered in the seminal works of Blum, Luby and
Rubinfeld [9] and Rubinfeld and Sudan [38] and has recently become a very active research area.
See for example, [1, 2, 3, 4, 7, 8, 10, 12, 13, 14, 15, 16, 17, 18, 19, 21, 25, 27, 30, 31, 33, 32, 34, 39]
and other works referenced in the surveys and books [23, 24, 35, 36].

A Boolean function f : t0, 1un Ñ t0, 1u is said to be linear if it returns the sum (over the
binary field F2) of some coordinates of the input, k-linear if it returns the sum of k coordinates,
and, k-linear˚ if it returns the sum of at most k coordinates. The class Linear (resp. k-Linear
and k-Linear˚) is the classes of all linear functions (resp. all k-linear functions and Yki“0k-Linear).
Those classes has been of particular interest to the property testing community [7, 8, 9, 10, 11, 21,
22, 24, 28, 35, 36, 37, 39].

1.1 The Model

Let f and g be two Boolean functions t0, 1un Ñ t0, 1u and let D be a distribution on t0, 1un. We
say that f is ε-far from g with respect to (w.r.t.) D if PrDrfpxq ­“ gpxqs ě ε and ε-close to g w.r.t.
D if PrDrfpxq ­“ gpxqs ď ε.
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In the uniform-distribution and distribution-free property testing model, we consider the prob-
lem of testing a class of Boolean function C. In the distribution-free testing model (resp. uniform-
distribution testing model), the tester is a randomized algorithm that has access to a Boolean
function f : t0, 1un Ñ t0, 1u via a black-box oracle that returns fpxq when a string x is queried.
The tester also has access to unknown distribution D (resp. uniform distribution) via an oracle
that returns x P t0, 1un chosen randomly according to the distribution D (resp. according to the
uniform distribution). A distribution-free tester, [26], (resp. uniform-distribution tester) A for C
is an tester that, given as input a distance parameter ε and the above two oracles to a Boolean
function f ,

1. if f P C then A accepts with probability at least 2{3.

2. if f is ε-far from every g P C w.r.t. D (resp. uniform distribution) then A rejects with
probability at least 2{3.

We will also call A an ε-tester for the class C or an algorithm for ε-testing C. We say that
A is one-sided if it always accepts when f P C; otherwise, it is called two-sided tester. The query
complexity of A is the maximum number of queries A makes on any Boolean function f . If the
query complexity is q then we call the tester a q-query tester or a tester with query complexity q.

In the adaptive testing (uniform-distribution or distribution-free) the queries can depend on
the answers of the previous queries where in the non-adaptive testing all the queries are fixed in
advance by the tester.

In this paper we study testers for the classes k-Linear and k-Linear˚.

1.2 Prior Results

Throughout this paper we assume that k ă
?
n. Blum et al. [9] gave an Op1{εq-query non-adaptive

uniform-distribution one-sided ε-tester (called BLR tester) for Linear. Halevy and Kushilevitz, [28],
used a self-corrector (an algorithm that computes gpxq from a black box query to f that is ε-close
to g) to reduce distribution-free testability to uniform-distribution testability. This reduction gives
an Op1{εq-query non-adaptive distribution-free one-sided ε-tester for Linear. The reduction can
be applied to any subclass of Linear. In particular, any q-query uniform-distribution ε-tester for
k-Linear (k-Linear˚) gives a Opqq-query distribution-free ε-tester.

It is well known that if there is a q1-query uniform-distribution ε-tester for Linear and a q2-
query uniform-distribution ε-tester for the class k-Junta1 then there is an Opq1`q2q-query uniform-
distribution Opεq-tester for k-Linear˚. Since k-Linear “ k-Linear˚zpk ´ 1q-Linear˚, if there is a q-
query uniform-distribution ε-tester for k-Linear˚ then there is an Opqq-query uniform-distribution
two-sided ε-tester for k-Linear. Therefore, all the results for testing k-Junta are also true for
k-Linear˚ and k-Linear in the uniform-distribution model.

For lower bounds on the number queries for two-sided uniform-distribution testing k-Linear (see
the table in Figure 1): For non-adaptive testers Fisher, et al. [21] gave the lower bound Ωp

?
kq.

Goldreich [22], gave the lower bound Ωpkq. In [8], Blais and Kane gave the lower bound 2k´ opkq.
Then in [7], Blais et al. gave the lower bound Ωpk log kq. For adaptive testers, Goldreich [22], gave
the lower bound Ωp

?
kq. Then Blais et al. [7] gave the lower bound Ωpkq and in [8], Blais and Kane

1The class of boolean functions that depends on at most k coordinates
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gave the lower bound k´ opkq. Then in [39], Saglam gave the lower bound Ωpk log kq. This bound
with the trivial Ωp1{εq lower bound gives the lower bound

Ω

ˆ

k log k `
1

ε

˙

(1)

for the query complexity of any adaptive uniform-distribution (and distribution-free) two-sided
testers.

For upper bounds for uniform-distribution two-sided ε-testing k-Linear, Fisher, et al. [21] gave
the first adaptive tester that makes Opk2{εq queries. In [11], Buhrman et al. gave a non-adaptive
tester that makes Opk log kq queries for any constant ε. As is mentioned above, testing k-Linear can
be done by first testing if the function is k-Junta and then testing if it is Linear. Therefore, using
Blais [5, 6] adaptive and non-adaptive testers for k-Junta we get adaptive and non-adaptive uniform-
distribution testers for k-Linear that makes Opk log k ` k{εq and Õpk1.5{εq queries, respectively.

For upper bounds for two-sided distribution-free testing k-Linear, as is mentioned above, from
Halevy et al. reduction in [28], an adaptive and non-adaptive distribution-free ε-tester can be
constructed from adaptive and non-adaptive uniform-distribution ε-testers. This gives an adaptive
and non-adaptive distribution-free two-sided testers for k-Linear that makes Opk log k ` k{εq and
Õpk1.5{εq queries, respectively. See the table in Figure 1.

1.3 Our Results

In this paper we prove

Theorem 1. For any ε ą 0, there is a polynomial time non-adaptive distribution-free one-sided
ε-tester for k-Linear˚ that makes

O

ˆ

k log k `
1

ε

˙

queries.

By the reduction from k-Linear to k-Linear˚, we get

Theorem 2. For any ε ą 0, there is a polynomial time non-adaptive distribution-free two-sided
ε-tester for k-Linear that makes

O

ˆ

k log k `
1

ε

˙

queries.

For one-sided testers for k-Linear we prove

Theorem 3. Any non-adaptive uniform-distribution one-sided ε-tester for k-Linear must make at
least Ω̃pkq log n` Ωp1{εq queries.

This almost matches the upper bound Opk log n` 1{εq that follows from the reduction of Gol-
dreich et. al [26] and the non-adaptive deterministic exact learning algorithm of Hofmeister [29]
that learns k-Linear with Opk log nq queries.

For adaptive testers we prove

Theorem 4. Any adaptive uniform-distribution one-sided ε-tester for k-Linear must make at least
Ω̃p
?
kq log n` Ωp1{εq queries.

The table in 1 summarizes all the results in the literature and our results for the class k-Linear.

3



Upper/ One-Sided/ Adaptive/ Uniform/
Lower Two-Sided Non-Adap. Dist. Free Result O{Ω Reference

Upper Two-Sided Adaptive Uniform k2{ε [21]

Upper Two-Sided Adaptive Uniform k log k ` k{ε [6]

Upper Two-Sided Adaptive Dist. Free k log k ` k{ε [28]

Upper Two-Sided Non-Adap. Uniform k log k (ε Const.) [11]

Upper Two-Sided Non-Adap. Uniform k1.5{ε [5]

Upper Two-Sided Non-Adap. Dist. Free k1.5{ε [28]

Upper Two-Sided Non-Adap. Dist. Free k log k ` 1{ε Ours

Lower Two-Sided Non-Adap. Uniform 1{ε Trivial

Lower Two-Sided Non-Adap. Uniform
?
k ` 1{ε [21]

Lower Two-Sided Non-Adap. Uniform k ` 1{ε [22]

Lower Two-Sided Non-Adap. Uniform k log k ` 1{ε [7]

Lower Two-Sided Adaptive Uniform
?
k ` 1{ε [22]

Lower Two-Sided Adaptive Uniform k ` 1{ε [7, 8]

Lower Two-Sided Adaptive Uniform k log k ` 1{ε [39]

Upper One-Sided Non-Adaptive Dist. Free k log n` 1{ε [26]

Lower One-Sided Non-Adaptive Uniform Ω̃pkqlog n` 1{ε Ours

Lower One-Sided Adaptive Uniform Ω̃p
?
kqlog n` 1{ε Ours

Figure 1: A table of results for the testability of the class k-Linear.

2 Overview of the Testers and Lower Bounds

In this section we give overview of the techniques used for proving the results in this paper.

2.1 One-sided Tester for k-Linear˚

The tester for k-Linear˚ first runs the tester BLR of Blum et al. [9] to test if the function f is
ε1-close to Linear w.r.t. the uniform distribution, where ε1 “ Θp1{pk log kqq. BLR is one-sided
tester and therefore, if f is k-linear then BRG accepts with probability 1. If f is ε1-far from Linear
w.r.t. the uniform distribution then, with probability at least 2{3, BLR rejects. Therefore, if the
tester BLR accepts, we may assume that f is ε1-close to Linear w.r.t. the uniform distribution. Let
g PLinear be the function that is ε1-close to f . If f is k-linear˚ then f “ g. This is because ε1 ă 1{8
and the distance (w.r.t. the uniform distribution) between every two linear functions is 1{2. BLR
makes Op1{ε1q “ Opk log kq queries.

In the second stage, the tester tests if g (not f) is k-linear˚. Let us assume for now that we can
query g in every string. Since g PLinear, we need to distinguish between functions in k-Linear˚ and
functions in Linearzk-Linear˚. We do that with two tests. We first test if g P 8k-Linear˚ and then
test if it is in k-Linear˚ assuming that it is in 8k-Linear˚. In the first test, the tester “throws”,
uniformly at random, the variables of g into 16k bins and tests if there is more than k non-empty
bins. If g is k-linear˚ then the number of non-empty bins is always less than k. If it is k1-linear for
some k1 ą 8k then with high probability (w.h.p.) the number of non-empty bins is greater than k.
Notice that if f is k-linear˚ then the test always accepts and therefore it is one-sided. This tests
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makes Opkq queries to g.
The second test is testing if g is in k-Linear˚ assuming that it is in 8k-Linear˚. This is done by

projecting the variables of g into r “ Opk2q coordinates uniformly at random and learning (finding
exactly) the projected function using the non-adaptive deterministic Hofmeister’s algorithm, [29],
that makes Opk log rq “ Opk log kq queries. Since g P 8k-Linear˚, w.h.p., the relevant coordinates
of the function are projected to different coordinates, and therefore, w.h.p., the learning gives a
linear function that has exactly the same number of relevant coordinates as g. The tester accepts
if the number of relevant coordinates in the projected function is at most k. If g P k-Linear˚, then
the projected function is in k-Linear˚ with probability 1 and therefore this test is one-sided. This
test makes Opk log kq queries.

We assumed that we can query g. We now show how to query g in Opk log kq strings so we
can apply the above two tests. For this, the tester uses self-corrector, [9]. To compute gpzq, the
self-corrector chooses a uniform random string a P t0, 1un and computes fpz ` aq ` fpaq. Since
f is Op1{pk log kqq-close to g w.r.t. the uniform distribution, we have that for any string z P
t0, 1un and an a P t0, 1un chosen uniformly at random, with probability at least 1´Op1{pk log kqq,
fpz ` aq ` fpaq “ gpz ` aq ` gpaq “ gpzq. Therefore, w.h.p., the self-corrector computes correctly
the values of g in Opk log kq strings. If f P k-Linear then g “ f and fpz ` aq ` fpzq “ fpzq “ gpzq,
i.e., the self-corrector gives the value of g with probability 1. This shows that the above two tests
are one-sided.

Now, if f is k-linear˚ then f “ g. If f is ε-far from every function in k-Linear˚ w.r.t. D then it
is ε-far from g w.r.t. D.

In the final stage the tester tests whether f is equal to g or ε-far from g w.r.t. D. Here
again the tester uses self-corrector. It asks for a sample tpzpiq, fpziqq|i P rtsu according to the
distribution D of size t “ Op1{εq and tests if fpzpiqq “ fpzpiq ` apiqq ` fpapiqq for every i P rts,
where apiq are i.i.d. uniform random strings. If fpzpiqq “ fpzpiq ` apiqq ` fpapiqq for all i then it
accepts, otherwise, it rejects. If f is k-linear then fpzpiqq “ fpzpiq ` apiqq ` fpapiqq for all i and
the tester accepts with probability 1. Now suppose f is ε-far from g w.r.t. D. Since f is ε1-close
to g w.r.t. the uniform distribution and ε1 ď 1{8 we have that, with probability at least 7{8,
fpzpiq ` apiqq ` fpapiqq “ gpzpiq ` apiqq ` gpapiqq “ gpzpiqq. Therefore, assuming the latter happens,
then, with probability at least 1´ ε we have fpzpiqq ­“ gpzpiqq “ fpzpiq`apiqq` fpapiqq. Thus, w.h.p,
there is i such that fpzpiqq ­“ fpzpiq ` apiqq ` fpapiqq and the tester rejects. This stage is one-sided
and makes Op1{εq queries.

2.2 Two-sided Testers for k-Linear

As we mentioned in the introduction, the one-sided q-query uniform-distribution ε-tester for k-Linear˚

gives a two-sided uniform-distribution Opqq-query ε-tester for k-Linear. This is because, in the uni-
form distribution, the linear functions are 1{2-far from each other and therefore, for any ε ă 1{4,
if f is ε-close to a k-linear function g then it is p1{2´ εq-far from pk ´ 1q-Linear˚. This is not true
for any distribution D, and therefore, cannot be applied here.

The algorithm in the previous subsection can be changed to a two-sided tester for k-Linear as
follows. The only part that should be changed is the test that g is in k-Linear˚ assuming that it
is in 8k-Linear˚. We replace it with a test that g is in k-Linear assuming that it is in 8k-Linear˚.
The tester rejects if the number of relevant coordinates in the function that is learned is not equal
to k. This time the test is two-sided. The reason is that the projection to Opk2q variables does
not guarantee (with probability 1) that all the variables of f are projected to different variables.
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Therefore, it may happen that f is k-linear and the projection gives a pk ´ 1q-linear˚ function.

2.3 The Lower Bound for One-sided Testers

We first show the result for non-adaptive testers. Suppose there is a one-sided non-adaptive uniform
distribution 1{8-tester Aps, fq for k-Linear that makes q queries, where s is the random seed of the
tester and f is the function that is tested. The algorithm has access to f through a black box
queries.

Consider the set of linear functions C “ tgp0qu Y tgp`q “ xn ` ¨ ¨ ¨ ` xn´``1|` “ 1, . . . , k ´ 1u Ď
pk´ 1q-Linear˚ where gp0q “ 0. Any k-linear function is 1{2-far from every function in C w.r.t. the
uniform distribution. Therefore, using the tester A, with probability at least 2{3, we can distinguish
between any k-linear and any function in C. By running the tester A Oplog kq times, and accept if
and only if all accept, we get a tester A1 that asks Opq log kq queries and satisfies

1. If f P k-Linear then with probability 1, A1ps, fq accepts.

2. If f P C then, with probability at least 1´ 1{p2kq, A1ps, fq rejects.

By an averaging argument (i.e., fixing coins for A1) and since |C| “ k, there exists a deterministic
non-adaptive algorithm B that makes q1 “ Opq log kq queries such that

1. If f P k-Linear then Bpfq accepts.

2. If f “ C then Bpfq rejects.

Let apiq, i “ 1, . . . , q1 be the queries that B makes. Let M be a q1 ˆ n binary matrix where the
i-th row of M is apiq and xf P t0, 1un where xfi “ 1 if i is a relevant coordinate in f . Then the vector
of answers to the queries of Bpfq is Mxf . If Mxf “Mxg for some g P C, that is, the answers of the
queries to f are the same as the answer of the queries to g, then Bpfq rejects. Therefore, for every
f P k-Linear and every g P C we have Mxf ­“ Mxg. Now since txf |f P k´Linearu is the set of all
strings of weight k, the sum (over the field F2) of every k columns ofM is not equal to 0 and not equal
to the sum of the last ` columns of M , for all ` “ 1, . . . , k´1. In particular, if Mi is the ith column
of M , for every i1, . . . , ik´` ď n´k`1, Mi1`¨ ¨ ¨`Mik´`

`Mn´``1`¨ ¨ ¨`Mn ­“Mn´``1`¨ ¨ ¨`Mn

and therefore Mi1 ` ¨ ¨ ¨ `Mik´`
­“ 0. That is, the sum of every less or equal k ´ 1 columns of the

first n´ k ` 1 columns of M is not equal to zero. We then show (via Hamming’s bound in coding
theory) that such matrix has at least q1 “ Ωpk log nq rows. This implies that q “ Ωppk{ log kq log nq.
See more details in Subsection 4.1.

For the lower bound for adaptive testers we take C “ tgp`qu for some ` P t0, 1, . . . , k ´ 1u and
get a q ˆ n matrix M that the sum of every k ´ ` columns of M is not zero. We then show, that
there exists ` ď k ´ 1 where such a matrix must have at least q “ Ω̃p

?
k log nq rows. See more

details in Subsections 4.2 and 4.3.

3 The Testers for k-Linear˚ and k-Linear

In this section we give the non-adaptive distribution-free one-sided tester for k-Linear˚ and the
non-adaptive distribution-free two-sided tester for k-Linear.
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3.1 Notations

In this subsection, we give some notations that we use throughout the paper.
Denote rns “ t1, 2, . . . , nu. For S Ď rns and x “ px1, . . . , xnq. For X Ă rns we denote by t0, 1uX

the set of all binary strings of length |X| with coordinates indexed by i P X. For x P t0, 1un and
X Ď rns we write xX P t0, 1uX to denote the projection of x over coordinates in X. We denote
by 1X and 0X the all-one and all-zero strings in t0, 1uX , respectively. For a variable xi and a set
X, we denote by pxiqX the string x1 over coordinates in X where for every j P X, x1j “ xi. For

X1, X2 Ď rns where X1 X X2 “ H and x P t0, 1uX1 , y P t0, 1uX2 we write x ˝ y to denote their
concatenation, i.e., the string in t0, 1uX1YX2 that agrees with x over coordinates in X1 and agrees
with y over coordinates in X2. For X Ď rns we denote X “ rnszX “ tx P rns|x R Xu.

For example, if n “ 7, X1 “ t1, 3, 5u, X2 “ t2, 7u, y2 is a variable and z “ pz1, z2, z3, z4, z5, z6, z7q
P t0, 1u7 then py2qX1 ˝ zX2 ˝ 0X1YX2

“ py2, z2, y2, 0, y2, 0, z7q.

3.2 The Tester

Consider the tester Test-Linear˚k for k-Linear˚ in Figure 2. The tester uses three procedures.
The first is Self-corrector that for an input x P t0, 1un chooses a uniform random z P t0, 1un

and returns fpx` zq` fpzq. The procedure BLR that is a non-adaptive uniform-distribution one-
sided ε-tester for Linear. BLR makes c1{ε queries for some constant c1, [9]. The third procedure
is Hoffmeister’s Algorithm pN,Kq, a deterministic non-adaptive algorithm that exactly learns
K-Linear˚ over N coordinates from black box queries. Hoffmeister’s Algorithm makes c2K logN
queries for some constant c2, [29].

To test k-Linear we use the same tester but change step 11 to:
(11) If the output is not in k-Linear then reject

We call this tester Test-Lineark.

3.3 Correctness of the Tester

In this section we prove

Theorem 5. Test-Lineark is a non-adaptive distribution-free two-sided ε-tester for k-Linear that
makes

O

ˆ

k log k `
1

ε

˙

queries.

Theorem 6. Test-Linear˚k is a non-adaptive distribution-free one-sided ε-tester for k-Linear˚ that
makes

O

ˆ

k log k `
1

ε

˙

queries.

Proof. Since there is no stage in the tester that uses the answers of the queries asked in previous
ones, the tester is non-adaptive.

In Stage 1 the tester makes Op1{ε1q “ Opk log kq queries. In stage 2.1, Opkq queries. In stage 2.2,
Opk log rq “ Opk log kq queries and in stage 3, Op1{εq queries. Therefore, the query complexity of
the tester is Opk log k ` 1{εq.
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Test-Linear˚k
Input: Oracle that accesses a Boolean function f
Output: Either “Accept” or “Reject”

Procedures
Self-corrector gpxq :“ fpx` zq ` fpzq for uniform random z P t0, 1un.
BLR A procedure that ε-tests Linear using c1{ε queries.
Hofmeister’s AlgorithmpN,Kq for learning K-Linear˚ over

N coordinates using c2K logN queries.

Stage 1. BLR
1. Run BLR on f with ε1 “ 1{p12p16k ` c2k logp256k2qqqq
2. If BLR rejects then reject.
Stage 2.1. Testing if g is in Linearz8k-Linear˚

3. Choose a uniform random partition X1, . . . , X16k

4. CountÐ 0;
5. Choose a uniform random z P t0, 1un.
6. For i “ 1 to 16k
7. if gpzXi ˝ 0Xi

q “ 1 then CountÐ Count` 1

8. If Count ą k then reject.
Stage 2.2. Testing if g is in k-Linear assuming it is in 8k-Linear˚

9. Choose a uniform random partition X1, . . . , Xr for r “ 256k2

10. Run Hofmeister’s algorithm pN “ r,K “ 8kq in order
to learn F “ gppy1qX1 ˝ py2qX2 ˝ ¨ ¨ ¨ ˝ pyrqXrq

11. If the output is not in k-Linear˚ then reject
{˚ In Test-Lineark (for testing k-Linear) we replace (11) with:
{˚ 11. If the output is not in k-Linear then reject

Stage 3. Consistency test

12. Choose a sample xp1q, . . . , xptq according to D of size t “ 4{ε.
13. For i “ 1 to t.

14. If fpxpiqq ­“ gpxpiqq then reject.
15. Accept.

Figure 2: An optimal two-sided tester for k-Linear.

We will assume that k ě 12. For k ă 12, (see the introduction and Table 1) the non-adaptive
tester of k-Junta with the BLR tester and the self-corrector gives a non-adaptive testers that makes
Op1{εq “ Opk log k ` 1{εq queries.

Completeness: We first show the completeness for Test-Lineark that tests k-Linear. Suppose
f P k-Linear. Then for every x we have gpxq “ fpx ` zq ` fpzq “ fpxq ` fpzq ` fpzq “ fpxq.
Therefore, g “ f . In stage 1, BLR is one-sided and therefore it does not reject. In stage 2.1, since
X1, . . . , X16k are pairwise disjoint, the number of functions gpxXi ˝ 0Xi

q, i “ 1, 2, . . . , 16k, that
are not identically zero is at most k and therefore stage 2.1 does not reject. In stage 2.2, with
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probability at least 1 ´
`

k
2

˘

{p256k2q ě 2{3, the relevant coordinates of f fall into different Xi and
then F “ gppy1qX1 ˝ py2qX2 ˝ ¨ ¨ ¨ ˝ pyrqXrq “ fppy1qX1 ˝ py2qX2 ˝ ¨ ¨ ¨ ˝ pyrqXrq is k-linear. Then,
Hofmeister’s algorithm returns a k-linear function. Therefore, with probability at least 2{3 the
tester does not reject. Stage 3 does not reject since f “ g.

Now for the tester Test-Linear˚k, in stage 2.2, with probability 1 the function F is in k-Linear˚.
In fact, if t relevant coordinates falls into the set Xi then the coordinate i (that correspond to the
variable yi) will be relevant in F if and only if t is odd. Therefore, the tester does not reject.

Notice that Test-Linear˚k is one-sided and Test-Lineark is two-sided.

Soundness: We prove the soundness for Test-Lineark. The same proof also works for Test-
Linear˚k. Suppose f is ε-far from k-Linear w.r.t. the distribution D. We have four cases

Case 1 : f is ε1-far from Linear w.r.t. the uniform distribution.

Case 2 : f is ε1-close to g PLinear and g is in Linearz8k-Linear˚.

Case 3 : f is ε1-close to g PLinear and g is in 8k-Linear˚zk-Linear.

Case 4 : f is ε1-close to g PLinear, g is in k-Linear and f is ε-far from k-Linear w.r.t. D.

For Case 1, if f is ε1-far from Linear then, in stage 1, BLR rejects with probability 2{3.
For Cases 2 and 3, since f is ε1-close to g, for any fixed x P t0, 1un with probability at least

1´2ε1 (over a uniform random z), fpx`zq`fpzq “ gpx`zq`gpzq “ gpxq. Since stages 2.1 and 2.2
makes p16k ` c2k log rq queries (to g), with probability at least 1´ p16k ` c2k log rq2ε1 ě 5{6, gpxq
is computed correctly for all the queries in stages 2.1 and 2.2.

For Case 2, consider stage 2.1 of the tester. If g is in Linearz8k-Linear˚ then g has more than
8k relevant coordinates. The probability that less than or equal to 4k of X1, . . . , X16k contains
relevant coordinates of g is at most

ˆ

16k

4k

˙

1

48k
ď

ˆ

e16k

4k

˙4k 1

48k
ď

1

12
.

If Xi contains the relevant coordinates i1, . . . , i` then gpxXi ˝0Xi
q “ xi1`¨ ¨ ¨`xi` and therefore,

for a uniform random z P t0, 1un, with probability at least 1{2, gpzXi ˝ 0Xi
q “ 1. Therefore, if at

least 4k of X1, . . . , X16k contains relevant coordinates then, by Chernoff bound, with probability
at least 1´ e´k{4 ě 11{12, the counter “Count” is greater than k. Therefore, for Case 2, if g is in
Linearz8k-Linear˚ then, with probability at least 1´ p1{6` 1{12` 1{12q “ 2{3, the tester rejects.

For Case 3, consider stage 2.2. If g is in 8k-Linear˚zk-Linear then g has at most 8k relevant
coordinates. Then with probability at least 1 ´

`

8k
2

˘

{p256k2q ě 5{6, the relevant coordinates of
g fall into different Xi and then Hofmeister’s algorithm returns a linear function with the same
number of relevant coordinates as g. Therefore stage 2.2 rejects with probability at least 2{3.

For Case 4, if g is in k-Linear and f is ε-far from k-Linear w.r.t. D, then f is ε-far from g
w.r.t. D. Then for uniform random z and x „ D,

PrD,zrfpxq ­“ gpxqs ě PrD,zrfpxq ­“ gpxq|gpxq “ fpx` zq ` fpzqsPrD,zrgpxq “ fpx` zq ` fpzqs

“ PrDrfpxq ­“ gpxqsPrzrgpxq “ fpx` zq ` fpzqs

ě εp1´ ε1q ě ε{2.

Therefore, with probability at most p1´ ε{2qt “ p1´ ε{2q4{ε ď 1{3, stage 3 does not reject.

9



4 Lower Bound

In this section we prove

Theorem 7. Any non-adaptive uniform-distribution one-sided 1{8-tester for k-Linear must make
at least Ω̃pk log nq queries.

Theorem 8. Any adaptive uniform-distribution one-sided 1{8-tester for k-Linear must make at
least Ω̃p

?
k log nq queries.

4.1 Lower Bound for Non-Adaptive Testers

We first show the result for non-adaptive testers.
Suppose there is a non-adaptive uniform-distribution one-sided 1{8-tester Aps, fq for k-Linear

that makes q queries, where s is the random seed of the tester and f is the function that is tested.
The algorithm has access to f through a black box queries.

Consider the set of linear functions C “ tgp0qu Y tgp`q “ xn ` ¨ ¨ ¨ ` xn´``1|` “ 1, . . . , k ´ 1u Ď
pk´ 1q-Linear˚ where gp0q “ 0. Any k-linear function is 1{2-far from every function in C w.r.t. the
uniform distribution. Therefore, using the tester A, with probability at least 2{3, A can distinguish
between any k-linear function and functions in C. We boost the success probability to 1´ 1{p2kq
by running A, logp2kq{ log 3 times, and accept if and only if all accept. We get a tester A1 that asks
Opq log kq queries and satisfies

1. If f P k-Linear then with probability 1, A1ps, fq accepts.

2. If f P C then, with probability at least 1´ 1{p2kq, A1ps, fq rejects.

Therefore, the probability that for a uniform random s, A1ps, fq accepts for some f P C is at
most 1{2. Thus, there is a seed s0 such that A1ps0, fq rejects for all f P C (and accept for all
f P k-Linear). This implies that there exists a deterministic non-adaptive algorithm Bp“ A1ps0, ˚qq
that makes q1 “ Opq log kq queries such that

1. If f P k-Linear then Bpfq accepts.

2. If f P C then Bpfq rejects.

Let apiq, i “ 1, . . . , q1 be the queries that B makes. Let M be a q1ˆn binary matrix that it’s i-th
row is apiq. Let xf P t0, 1un where xfi “ 1 iff i is relevant coordinate in f . Then the vector of answers
to the queries of Bpfq is Mxf . If Mxf “Mxg for some g P C, that is, the answers of the queries to f
are the same as the answers of the queries to g, then Bpfq rejects. Therefore, for every f P k-Linear
and every g P C we haveMxf ­“Mxg. Now since txf |f P k´Linearu is the set of all strings of weight
k, the sum (over the field F2) of every k columns of M is not equal to 0 (zero string) and not equal
to the sum of the last ` columns of M , for all ` “ 1, . . . , k´1. In particular, if Mi is the ith column
of M , for every i1, . . . , ik´` ď n´k`1, Mi1`¨ ¨ ¨`Mik´`

`Mn´``1`¨ ¨ ¨`Mn ­“Mn´``1`¨ ¨ ¨`Mn

and therefore Mi1 ` ¨ ¨ ¨ `Mik´`
­“ 0. That is, the sum of every less or equal k columns of the first

n´ k ` 1 columns of M is not equal to zero. We then show in Lemma 10 that such matrix has at
least q1 “ Ωpk log nq rows. This implies that q “ Ωppk{ log kq log nq.

Let πpn, kq be the minimum integer q such that there exists a q ˆ n matrix over F2 that the
sum of any of its less than or equal k columns is not 0. We have proved

10



Lemma 9. Any non-adaptive uniform-distribution one-sided 1{8-tester for k-Linear must make at
least Ωpπpn´ k ` 1, kq{ log kq queries.

Now to show that Ωpπpn ´ k ` 1, kq{ log kq “ Ωpk log nq we prove the following result. This
lemma follows from Hamming’s bound in coding theory. We give the proof for completeness

Lemma 10. (Hamming’s Bound) We have

πpn, kq ě log

t k
2 u
ÿ

i“0

ˆ

n

i

˙

“ Ωpk logpn{kqq.

Proof. Let M be a πpn, kqˆn matrix over F2 that the sum of any of its less than or equal k columns
is not 0. Let m “ tk{2u and S “ tMi1 ` ¨ ¨ ¨ `Mit | t ď m and 1 ď i1 ă ¨ ¨ ¨ ă it ď nu Ď t0, 1uπpn,kq

be a multiset. The strings in S are distinct because, if for the contrary, we have two strings in S
that satisfies Mi1 ` ¨ ¨ ¨ `Mit “Mj1 ` ¨ ¨ ¨ `Mjt1 then Mi1 ` ¨ ¨ ¨ `Mit `Mj1 ` ¨ ¨ ¨ `Mjt1 “ 0 (equal

columns are cancelled) and t` t1 ď k, which is a contradiction. Therefore, 2πpn,kq ě |S| “
řm
i“0

`

n
i

˘

and πpn, kq ě log |S|.

4.2 Lower Bound for Adaptive Testers

For the lower bound for adaptive testers we take C “ tgp`qu for some ` P t0, 1, . . . , k ´ 1u and get
an adaptive algorithm A that makes q queries and satisfies

1. If f P k-Linear then with probability 1, Aps, fq accepts.

2. If f “ gp`q then, with probability at least 2{3, Aps, fq rejects.

This implies that there exists a deterministic adaptive algorithm B “ Aps0, ˚q that makes q queries
such that

1. If f P k-Linear then Bpfq accepts.

2. If f “ gp`q then Bpfq rejects.

Then, by the same argument as in the case of non-adaptive tester, we get a qˆn matrix M that the
sum of every k´ ` columns of the first n´ ` columns of M is not zero. Let Πpn, kq be the minimum
integer q such that there exists a qˆn matrix over F2 that the sum of any of its k columns is not 0.
Then, we have proved that

Lemma 11. Any adaptive uniform-distribution one-sided 1{8-tester for k-Linear must make at
least Ωpmax1ď`ďk Πpn´ k, `qq queries.

In the next subsection, we show that there exists 1 ď ` ď k such that Πpn, `q “ Ω̃p
?
k log nq.

4.3 A Lower Bound for Π

In this section we prove

Lemma 12. We have max1ď`ďk Πpn, `q “ Ω̃p
?
k log nq.

11



The idea of the proof is the following. For a set of integers L an L-good matrix M is a matrix
that for every ` P L the sum of every ` columns of M is not zero. A k-good matrix is a tku-good
matrix. We say that the matrix M is almost L-good if there is a “small” number (polypkq) of
columns of M that can be removed to get an L-good matrix. The concatenation M1 ˝M2 (the
matrix that contains the rows of both matrices) of almost L1-good matrix M1 with an almost
L2-good matrix M2 is an almost L1 Y L2-good matrix.

Let K “ t
?
k{p2 log kqu and rKs “ t1, 2, . . . ,Ku. The idea of the proof is to construct an almost

rKs-good matrix M by concatenating t “ Oplog kq matrices M1 ˝M2 ˝ ¨ ¨ ¨ ˝Mt where Mi is ki-good
pΠpn, kiq ˆ nq-matrices for some ki ď k. Then after removing small number (polypkq) columns of
M we get a rKs-good matrix M with

řt
i“1 Πpn, kiq rows and n´ polypkq columns. By Hamming’s

bound, Lemma 10, M contains at least ΩpK log nq rows. Therefore,
řt
i“1 Πpn, kiq “ ΩpK log nq.

So there is i such that Πpn, kiq “ ΩpK log n{ log kq “ Ωp
?
k log n{ log2 kq “ Ω̃p

?
k log nq.

We now give more intuition to how to construct an almost rKs-good matrix from ki-good
matrices. Denote by Nd “ ti : d ffl iu X rKs. Let k “ k1. We first show that if M1 is k1-good
matrix then there exists a set of integers L1 Ď rKs such that M1 is almost L1-good matrix and
d1 :“ gcdprKszL1q ffl k1. The intuition is that if, for the contrary, there are many pairwise disjoint
sets of columns that sum to 0 that the great common divisor of their sizes divides k1, then the union
of some of them gives k1-set of columns that sum to 0 and then we get a contradiction. Therefore
d1 ­“ 1, L1 Ě Nd1 and M1 is almost Nd1-good. We then take k2 :“ d1tk{d1u and a k2-good
Πpn, k2q ˆ n matrix M2. Then, as before, M2 is almost Nd2-good matrix with d2 ffl k2. Therefore,
d2 ffl d1. Now the concatenation of both matrices M1 ˝ M2 is almost Nd1 Y Nd2 “ Nlcmpd1,d2q.
Since d2 ffl d1 we must have d12 :“ lcmpd1, d2q ě 2d1. We then take k3 “ d12tk{d12u and a k3-good
Πpn, k3q ˆ n matrix M3 and concatenate it with M1 ˝ M2 to get an almost Nlcmpd1,d2,d3q-good
matrix with lcmpd1, d2, d3q ě 2d12 “ 2 lcmpd1, d2q ě 4d1. After, t “ Oplog kq iterations, we get a
p
řt
i“1 Πpn, kiqq ˆ n matrix M “M1 ˝M2 ˝ ¨ ¨ ¨ ˝Mt that is almost Nd-good for some d ě 2td1 ą K

and therefore, M is almost rKs-good.
We note here that we can get the bound Ωp

?
kplog log kq log n{ log2 kq by choosing k1 “ lcmp1, 2, 3,

¨ ¨ ¨ ,miq ď k, and then ki “ d1i´1 lcmp1, 2, 3, ¨ ¨ ¨ ,miq ă k where mi “ Oplogpkqq. See [20].
We now give the full proof. We start with some preliminary results, Lemmas 13-18.

Lemma 13. Let W Ď rms and w “ gcdpW q. There is a subset W 1 ĎW of size

O

ˆ

log m
w

log log m
w

˙

ă log
m

w

such that gcdpW 1q “ gcdpW q.

Proof. Define the set D “ W {w “ tb{w|b P W u. Then D Ď rtm{wus and gcdpDq “ 1. Let
D1 Ď D be a minimum size set with gcdpD1q “ 1 and W 1 “ wD1 Ď W . Let D1 “ td1, . . . , dtu and
gi “ gcdpD1ztdiuq for i “ 1, . . . , t. Since D1 is minimum gi ą 1. We also have for i ­“ j,

1 “ gcdpD1q “ gcdpgcdpD1ztdiuq, gcdpD1ztdjuqq “ gcdpgi, gjq

and therefore g1, . . . , gt are pairwise relatively prime. Since for all i ą 1, gi “ gcdpD1ztdiuq|d1 we
have

śt
i“2 gi|d1. Therefore, tm{wu ě d1 ě

śt
i“2 gi ě

śt
i“2 i “ t! “ |D1|! “ |W 1|! and the result

follows.

Lemma 14. Let d, d1, k, y ě 1 be integers that satisfy d|y, d|k, d|d1 and gcdpy, d1q “ d. There is
0 ď λ ă d1{d such that d1|pk ´ λyq.

12



Proof. Let ŷ “ y{d, k̂ “ k{d and d̂ “ d1{d. Then gcdpŷ, d̂q “ 1. Consider the set B “ tk̂ ´ iŷ | i “
0, . . . , d̂ ´ 1u. If for 0 ď i1 ă i2 ď d̂ ´ 1 we have k̂ ´ i1ŷ “ pk̂ ´ i2ŷ mod d̂q then pi1 ´ i2qŷ “ p0
mod d̂q. Since gcdpŷ, d̂q “ 1 we get i1 “ pi2 mod d̂q and therefore i1 “ i2. This shows that the
elements in B are distinct modulo d̂ and therefore there is 0 ď λ ă d̂ “ d1{d such that k̂ ´ λŷ “ p0
mod d̂q. Then k ´ λy “ p0 mod d1q.

Lemma 15. Let k be an integer. Let J “ tj1, . . . , j`u be a set of integers such that 1 ď j1, . . . , j` ď?
k{` and d :“ gcdpj1, . . . , j`q|k. There exist non-negative integers 0 ď λ1, . . . , λ`´1 ď

?
k and

0 ď λ` ď k such that
λ1j1 ` λ2j2 ` ¨ ¨ ¨ ` λ`j` “ k.

Proof. We prove the result by induction on `. For ` “ 1, given J “ tj1u, 1 ď j1 ď
?
k and d “ j1|k

we let λ1 “ k{d. Then λ1 ď k and λ1j1 “ k.
Assume that the result is true for `´ 1. We prove the result for `.
Given d :“ gcdpj1, . . . , j`q|k. Let d1 “ gcdpj2, . . . , j`q. We have two cases: d1 “ d and d1 ą d.

If d1 “ d then d1|k and for i ą 1, ji ď
?
k{` ď

?
k{p` ´ 1q. By the induction hypothesis there are

0 ď λ2, . . . , λ`´1 ď
?
k and 0 ď λ` ď k such that λ2j2 ` λ3j3 ` ¨ ¨ ¨ ` λ`j` “ k. We choose λ1 “ 0

and the result follows.
Now suppose d1 ą d. We have d|j1, d|k, d|d1 and gcdpj1, d

1q “ d. By Lemma 14, there is λ1
such that 0 ď λ1 ă d1{d and d1|k1 :“ k ´ λ1j1. Since λ1 ă d1{d ď j2 ď

?
k, we also have

k1 “ k ´ λ1j1 ě k ´
?
k
?
k{` “

`´ 1

`
k

and therefore j2, . . . , j` ď
?
k{` ď

?
k1{p`´ 1q. Since d1|k1, by the induction hypothesis there exist

0 ď λ2, . . . , λ`´1 ď
?
k1 ď

?
k and 0 ď λ` ď k1 ă k such that λ2j2 ` λ3j3 ` ¨ ¨ ¨ ` λ`j` “ k1. Then

λ1j1 ` λ2j2 ` ¨ ¨ ¨ ` λ`j` “ k.

Let M be a q ˆ n binary matrix. Recall that Mi is the ith column of M . For every j ě 1, let
`jpMq denotes the maximum number of disjoint j-subsets A1, A2, . . . of rns such that

ř

jPAi
Mj “ 0

for all i. We say that M is pj, `q-good if `jpMq ď ` and pj, `q-bad if it is not pj, `q-good, i.e.,
`jpMq ą `. For L, J Ď rns, we say that M is pL, `q-good if it is pj, `q-good for all j P L and
pJ, `q-bad if it is pg, `q-bad for all j P J . When ` “ 0 we just say j-good, L-good, j-bad and J-bad.

For two q1 ˆ n and q2 ˆ n matrices M and M 1, respectively, the concatenation of M and M 1 is
M ˝M 1 “ rM˚|M 1˚s˚ where ˚ is the transpose of a matrix. That is, M ˝M 1 is the pq1 ` q2q ˆ n
matrix that results from the rows of M follows by the rows of M 1.

The following result is obvious

Lemma 16. If M is pL, `q-good and M 1 is pL1, `q-good then M ˝M 1 is pLY L1, `q-good.

Lemma 17. Let M be a q ˆ n matrix. If M is prds, `q-good then q “ Ωpd logppn´ p`d2{2qq{dqq.

Proof. For every j P rds we have `jpMq ď `. That is, for every j, there are at most ` disjoint j-sets
of columns that sum to zero. We remove those columns (for all j P rds) and get a prds, 0q-good
matrix. The number of columns that are removed is at most

řd
j“1 `j ď `d2{2. Using Hamming’s

bound, Lemma 10, the result follows.

We now prove
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Lemma 18. Let m, q, w and t “ mqw be integers. Let J “ tj1, . . . , jwu Ď rms. Let M be a
pJ, tq-bad matrix. Then for any λ1, . . . , λw P rqs we have that M is pλ1j1 ` ¨ ¨ ¨ ` λwjwq-bad.

Proof. Let r “ λ1j1 ` ¨ ¨ ¨ ` λwjw. We need to show that there are r columns of M that sum to 0.
Since M is pj1, tq-bad and λ1 ď t, there are λ1 pairwise disjoint j1-sets A1,1, A1,2, ¨ ¨ ¨ , A1,λ1 such
that

ř

jPA1,i
Mj “ 0 for all i P rλ1s. Since M is pj2, tq-bad and λ2 ď t´ λ1j1, there are λ2 pairwise

disjoint j2-sets A2,1, A2,2, ¨ ¨ ¨ , A2,λ2 sets that are also pairwise disjoint with A1,1, A1,2, ¨ ¨ ¨ , A1,λ1

such that
ř

jPA2,i
Mj “ 0 for all i P rλ2s. We continue with this procedure until we find a collection

A1 of disjoint sets that contains, for every i ď w ´ 1, λi ji-sets that corresponds to columns of
M that sum to 0. Now since λw ď t ´ pλ1j1 ` ¨ ¨ ¨ ` λw´1jw´1q, there are λw pairwise disjoint
jw-sets Aw,1, Aw,2, ¨ ¨ ¨ , Aw,λw sets that are also pairwise disjoint with all the sets in A1 such that
ř

jPAw,i
Mj “ 0 for all i P rλws. Let A “ A1YtAw,i|i P rλwsu. Obviously, |YA| “ λ1j1`¨ ¨ ¨`λwjw

and
ř

jPYAMj “ 0.

We now show that if a k-good matrix M is pJ, polypkqq-bad then gcdpJq ffl k.

Lemma 19. Let K “ t
?
k{p2 log kqu, κ “ k1.5, J Ď rKs and k{2 ď k1 ď k. Let M be a matrix that

is k1-good and pJ, κq-bad. Then gcdpJq ffl k1.

Proof. Let d “ gcdpJq and suppose, for the contrary, that d|k1. By Lemma 13, there is J 1 Ď J of
size w :“ |J 1| ď logpK{dq ă log k such that d “ gcdpJ 1q. Let J 1 “ tj1, . . . , jwu. By Lemma 15,
there exist 0 ď λ1, . . . , λw ď k such that λ1j1 ` ¨ ¨ ¨ ` λwjw “ k1. By Lemma 18, M is k1-bad. A
contradiction.

Let K “ t
?
k{p2 log kqu and κ “ k1.5. Let Nd be the set of integers in rKs that are not divisible

by d.

Lemma 20. Let J be the maximum subset of rKs such thatM is pJ, κq-bad. ThenM is pNgcdpJq, κq-
good.

Proof. Since J is the maximum set, M is prKszJ, κq-good. Since J Ď rKszNgcdpJq we have rKszJ Ě
NgcdpJq and therefore M is pNgcdpJq, κq-good.

We now show how to construct from a pNd, κq-good matrix a pNd1,κq-good matrix with d1 ě 2d.

Lemma 21. Let M be a q ˆ n matrix that is pNd, κq-good. There exist k1 ď k, q1 “ q ` Πpk1, nq,
d1 ě 2d and a q1 ˆ n matrix M 1 that is pNd1 , κq-good.

Proof. Consider k1 “ dtk{du and let M̂ be a Πpn, k1q ˆ n matrix that is k1-good. Let J 1 be the
maximum subset of rKs such that M̂ is pJ 1, κq-bad. By Lemma 19, gcdpJ 1q ffl k1 “ dtk{du and
therefore gcdpJ 1q ffl d. By Lemma 20, M̂ is pNgcdpJ 1q, κq-good. Define M 1 “M ˝ M̂ .

First, the number of rows of M 1 is q1 “ q`Πpk1, nq. Now, by Lemma 16, M 1 is pNgcdpJ 1qYNd, κq-
good. Since NgcdpJ 1q Y Nd “ Nd1 for d1 “ lcmpgcdpJ 1q, dq we have that M 1 is pNd1 , κq-good. Since
gcdpJ 1q ffl d we have d1 “ lcmpgcdpJ 1q, dq ě 2d. This implies the result.

We are ready now to prove the final result

Lemma 22. For n ě k2.5 there is k1 ď k such that Πpn, k1q “ Ωpp
?
k{ log2 kq log nq.
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Proof. Let M be the 1 ˆ n matrix r111 ¨ ¨ ¨ 1s. Then M is N2-good. By Lemma 21, there exist
k1, k2, ¨ ¨ ¨ , kt ď k, t “ Oplog kq, qt “ 1 ` Πpk1, nq ` ¨ ¨ ¨ ` Πpkt, nq, d

1 ě 2t`1 ą K and a qt ˆ n
matrix M 1 that is pNd1 , κq-good. Since d1 ą K, M 1 is prKs, κq-good. By Lemma 17,

qt “ Ω

ˆ

K log
n´ κK2

K

˙

“ Ω

˜ ?
k

log k
log n

¸

.

Therefore, there exists k1 :“ ki ď k such that

Πpn, k1q “ Ω

˜ ?
k

log2 k
log n

¸

.
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