
A Strong XOR Lemma for Randomized Query Complexity

Joshua Brody1, Jae Tak Kim1, Peem Lerdputtipongporn1, and Hariharan Srinivasulu1

1Swarthmore College

Abstract

We give a strong direct sum theorem for computing XOR ◦g. Specifically, we show that for every
function g and every k ≥ 2, the randomized query complexity of computing the XOR of k instances of
g satisfies Rε(XOR ◦g) = Θ(kR ε

k
(g)). This matches the naive success amplification upper bound and

answers a conjecture of Blais and Brody [7].
As a consequence of our strong direct sum theorem, we give a total function g for which R(XOR ◦g) =

Θ(k log(k) · R(g)), answering an open question from Ben-David et al. [5].

1 Introduction

We show that XOR admits a strong direct sum theorem for randomized query complexity. Generally, the
direct sum problem asks how the cost of computing a function g scales with the number k of instances of
the function that we need to compute. This is a foundational computational problem that has received
considerable attention [9, 2, 13, 14, 10, 6, 8, 7, 3, 4, 5], including recent work of Blais and Brody [7], which
showed that average-case randomized query complexity obeys a direct sum theorem in a strong sense —
computing k copies of a function g with overall error ε requires k times the cost of computing g on one
input with very low (εk) error. This matches the naive success amplification algorithm which runs an ε

k -error
algorithm for f once on each of k inputs and applies a union bound to get an overall error guarantee of ε.

What happens if we don’t need to compute g on all instances, but only on a function f ◦ g of those
instances? Clearly the same success amplification trick (compute g on each input with low error, then apply
f to the answers) works for computing f ◦ g; however, in principle, computing f ◦ g can be easier than
computing each instance of g individually. When a function f ◦ g requires success amplification for all g, we
say that f admits a strong direct sum theorem. Our main result shows that XOR admits a strong direct sum
theorem.

Query Complexity

A query algorithm also known as decision tree computing f is an algorithm A that takes an input x to f ,
examines (or queries) bits of x, and outputs an answer for f(x). A leaf of A is a bit string q ∈ {0, 1}∗
representing the answers to the queries made by A on input x. Naturally, our general goal is to minimize
the length of q i.e., minimize the number of queries needed to compute f .

A randomized algorithm A computes a function f : {0, 1}n → {0, 1} with error ε ≥ 0 if for every input
x ∈ {0, 1}n, the algorithm outputs the value f(x) with probability at least 1 − ε. The query cost of A is
the maximum number of bits of x that it queries, with the maximum taken over both the choice of input x
and the internal randomness of A. The ε-error (worst-case) randomized query complexity of f (also known
as the randomized decision tree complexity of f) is the minimum query complexity of an algorithm A that
computes f with error at most ε. We denote this complexity by Rε(f), and we write R(f) := R 1

3
(f) to

denote the 1
3 -error randomized query complexity of f .

Another natural measure for the query cost of a randomized algorithm A is the expected number of
coordinates of an input x that it queries. Taking the maximum expected number of coordinates queried by

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 124 (2020)

A over all inputs yields the average query cost of A. The minimum average query complexity of an algorithm
A that computes a function f with error at most ε is the average ε-error query complexity of f , which we
denote by Rε(f). We again write R(f) := R 1

3
(f). Note that R0(f) corresponds to the standard notion of

zero-error randomized query complexity of f .

1.1 Our Results

Our main result is a strong direct sum theorem for XOR.

Theorem 1. For every function g : {0, 1}n → {0, 1} and all ε > 0, we have Rε(XOR ◦g) = Ω(k · Rε/k(g)).

This answers Conjecture 1 of Blais and Brody [7] in the affirmative.
We prove Theorem 1 by proving an analogous result in distributional query complexity. We also allow our

algorithms to abort with constant probability. Let Dµ
δ,ε(f) denote the minimal query cost of a deterministic

query algorithm that aborts with probability at most δ and errs with probability at most ε, where the
probability is taken over inputs X ∼ µ. Similarly, let Rδ,ε(f) denote the minimal query cost of a randomized
algorithm that computes f with abort probability at most δ and error probability at most ε (here probabilities
are taken over the internal randomness of the algorithm).

Our main technical result is the following strong direct sum result for XOR ◦g for distributional algo-
rithms.

Lemma 1 (Main Technical Lemma, informally stated.). For every function g : {0, 1}n → {0, 1}, every
distribution µ, and every small enough δ, ε > 0, we have

Dµk

δ,ε(XOR ◦g) = Ω(kDµ
δ′,ε′(g)) ,

for δ′ = Θ(1) and ε′ = Θ(ε/k).

In [7], Blais and Brody also gave a total function g : {0, 1}n → {0, 1} whose average ε error query
complexity satisfies Rε(g) = Ω(R(g) · log 1

ε). We use our strong XOR Lemma together with this function
show the following.

Corollary 1. There exists a total function g : {0, 1}n → {0, 1} such that Rε(XOR ◦g) = Ω(k log(k) ·Rε(g)).

Proof. Let g : {0, 1}n → {0, 1} be a function guaranteed by [7]. Then, we have

R(XOR ◦g) ≥ R(XOR ◦g) ≥ Ω(k · R1/3k(g)) ≥ Ω(k · R(g) · log(3k)) = Ω(k log(k) · R(g)) ,

where the second inequality is by Theorem 1 and the third inequality is from the query complexity guarantee
of g.

This answers Open Question 1 from recent work of Ben-David et al. [5].

1.2 Previous and Related Work

Jain et al. [10] gave direct sum theorems for deterministic and randomized query complexity. While their
direct sum result holds for worst-case randomized query complexity, they incur an increase in error (Rε(f

k) ≥
δ · k · Rε+δ(f)) when computing a single copy of f . Shaltiel [14] gave a counterexample function for which
direct sum fails to hold for distributional complexity. Drucker [8] gave a strong direct product theorem for
randomized query complexity.

Our work is most closely related to that of Blais and Brody [7], who give a strong direct sum theorem for
Rε(f

k) = Ω(kRε/k(f)), and explicitly conjecture that XOR admits a strong direct product theorem. Both [7]
and ours use techniques similar to work of Molinaro et al. [11, 12] who give strong direct sum theorems for
communication complexity.

2

Our strong direct sum for XOR is an example of a composition theorem—lower bound on the query
complexity of functions of the form f ◦ g. Several very recent works studied composition theorems in query
complexity. Bassilakis et al. [1] show that R(f ◦ g) = Ω(fbs(f)R(g)), where fbs(f) is the fractional block
sensitivity of f . Ben-David and Blais [3, 4] give a tight lower bound on R(f ◦ g) as a product of R(g)
and a new measure they define called noisyR(f), which measures the complexity of computing f on noisy
inputs. They also characterize noisyR(f) in terms of the gap-majority function. Ben-David et al [5] explicitly
consider strong direct sum theorems for composed functions in randomized query complexity, asking whether
the naive success amplification algorithm is necessary to compute f ◦ g. They give a partial strong direct
sum theorem, showing that there exists a partial function g such that computing XOR ◦g requires success
amplification, even in a model where the abort probability may be arbitrarily close to 1.1 Ben-David et al.
explicitly ask whether there exists a total function g such that R(XOR ◦g) = Ω(k log(k)R(g)).

1.3 Our Technique.

Our technique most closely follows the strong direct sum theorem of Blais and Brody. We start with a query
algorithm that computes XOR ◦g and use it to build a query algorithm for computing g with low error. To
do this, we’ll take an input for g and embed it into an input for XOR ◦g. Given x ∈ {0, 1}n, i ∈ [k], and
y ∈ {0, 1}n×k, let y(i←x) := (y(1), . . . , y(i−1), x, y(i+1), . . . y(k)) denote the input obtained from y by replacing
the i-th coordinate y(i) with x. Note that if x ∼ µ and y ∼ µk,2 then y(i←x) ∼ µk for all i ∈ [k].

We require the following observation of Drucker [8].

Lemma 2 ([8], Lemma 3.2). Let y ∼ µk be an input for a query algorithm A, and consider any execution of
queries by A. The distribution of coordinates of y, conditioned on the queries made by A, remains a product
distribution.

In particular, the answers to g(y(i)) remain independent bits conditioned on any set of queries made by
the query algorithm. Our first observation is that in order to compute XOR ◦g(y) with high probability,
we must be able to compute g(y(i)) with very high probability for many i’s. The intuition behind this
observation is captured by the following simple fact about the XOR of independent random bits.

Define the bias of a random bit X ∈ {0, 1} as r(X) := maxb∈{0,1} Pr[X = b]. Define the advantage of X

as adv(X) := 2r(X)− 1. Note that when adv(X) = δ, then r(X) = 1
2 (1 + δ).

Fact 1. Let X1, . . . , Xk bit independent random bits, and let ai be the advantage of Xi. Then,

adv(X1 ⊕ · · · ⊕Xk) =

k∏
i=1

adv(Xi) .

For completeness, we provide a proof of Fact 1 in Appendix A.
Given an algorithm for XOR ◦g that has error ε, it follows that for typical leaves the advantage of

computing XOR ◦g is & 1 − 2ε. Fact 1 shows that for such leaves, the advantage of computing g(y(i)) for
most coordinates i is & (1 − 2ε)1/k = 1 − Θ(ε/k). Thus, conditioned on reaching this leaf of the query
algorithm, we could compute g(y(i)) with very high probability. We’d like to fix a coordinate i∗ such that for
most leaves, our advantage in computing g on coordinate i∗ is 1 − O(ε/k). There are other complications,
namely that (i) our construction needs to handle aborts gracefully and (ii) our construction must ensure that
the algorithm for XOR ◦g doesn’t query the i∗-th coordinate too many times. Our construction identifies a
coordinate i∗ and a string z ∈ {0, 1}n×k, and on input x ∈ {0, 1}n it emulates a query algorithm for XOR ◦g
on input z(i

∗←x), and outputs our best guess for g(x) (which is now g evaluated on coordinate i∗ of z(i
∗←x)),

aborting when needed e.g., when the algorithm for XOR ◦g aborts or when it queries too many bits of x.
We defer full details of the proof to Section 2.

1In this query complexity model, called PostBPP, the query algorithm is allowed to abort with any probability strictly less
than 1. When it doesn’t abort, it must output f with probability at least 1− ε.

2We use µk to denote the distribution on k-tuples where each coordinate is independently distributed ∼ µ.

3

1.4 Preliminaries and Notation

Suppose that f is a Boolean function on domain {0, 1}n and that µ is a distribution on {0, 1}n. Let µk

denote the distribution obtained on k-tuples of {0, 1}n obtained by sampling each coordinate independently
according to µ.

An algorithm A is a [q, δ, ε, µ]-distributional query algorithm for f if A is a deterministic algorithm with
query cost q that computes f with error probability at most ε and abort probability at most δ when the
input x is drawn from µ. We write A(x) = ⊥ to denote that A aborts on input x.

Our main theorem is a direct sum result for XOR ◦g for average case randomized query complexity;
however, Lemma 1 uses distributional query complexity. The following results from Blais and Brody [7]
connect the query complexities in the randomized, average-case randomized, and distributional query models.

Fact 2 ([7], Proposition 14). For every function f : {0, 1}n → {0, 1}, every 0 ≤ ε < 1
2 and every 0 < δ < 1,

δ · Rδ,ε(f) ≤ Rε(f) ≤ 1
1−δ · Rδ,(1−δ)ε(f).

Fact 3 ([7], Lemma 15). For any α, β > 0 such that α+ β ≤ 1, we have

max
µ

Dµ
δ/α,ε/β(f) ≤ Rδ,ε(f) ≤ max

µ
Dµ
αδ,βε(f).

We’ll also use the following convenient facts about probability and expectation. For completeness we
provide proofs in Appendix A.

Fact 4. Let S, T be random variables. Let E = E(S, T) and A be events, and for any s, let µs be the
distribution on T conditioned on S = s. Then,

Pr
S,T

[E|A] = E
S

[
Pr

T∼µS

[E(S, T)|A]

]
.

Fact 5 (Markov Inequality for Bounded Variables). Let X be a real-valued random variable with 0 ≤ X ≤ 1.
Suppose that E[X] ≥ 1− ε. Then, for any T > 1 it holds that

Pr[X < 1− Tε] < 1

T
.

2 Strong XOR Lemma

In this section, we prove our main result.

Lemma 3 (Formal Restatement of Lemma 1). For every function g : {0, 1}n → {0, 1}, every distribution µ
on {0, 1}n, every 0 ≤ δ ≤ 1

5 , and every 0 < ε ≤ 1
800 , we have

Dµk

δ,ε(XOR ◦g) = Ω
(
k ·Dµ

δ′,ε′(g)
)
,

for δ′ = 0.34 + 4δ and ε′ = 320000ε
k .

Proof. Let q := Dµk

δ,ε(XOR ◦g), and suppose that A is a [q, δ, ε, µk]-distributional query algorithm for XOR ◦g.
Our goal is to construct an [O(q/k), δ′, ε′, µ]-distributional query algorithm A′ for g. Towards that end, for
each leaf ` of A define

b` := argmax
b∈{0,1}

Pr
x∼µk

[XOR ◦g(x) = b| leaf(A, x) = `]

r` := Pr
x∼µk

[XOR ◦g(x) = b`| leaf(A, x) = `]

a` := 2r` − 1 .

4

Call a` the advantage of A on leaf `.
The purpose of A is to compute XOR ◦g; however, we’ll show that Amust additionally be able to compute

g reasonably well on many coordinates of x. For any i ∈ [k] and any leaf `, define

bi,` := argmax
b∈{0,1}

Pr
x∼µk

[b = g(x(i))| leaf(A, x) = `]

ri,` := Pr
x∼µk

[bi,` = g(x(i))| leaf(A, x) = `]

ai,` := 2ri,` − 1 .

If A reaches leaf ` on input y, then write A(y)i := bi,`. A(y)i represents A’s best guess for g(y(i)).
Next, we define some structural characteristics of leaves that we’ll need to complete the proof.

Definition 1 (Good leaves, good coordinates).

• Call a leaf ` good if r` ≥ 1− 200ε.

• Call a leaf ` good for i if ai,` ≥ 1− 80000ε/k.

• Call coordinate i good if Prx∼µk [leaf(A, x) is good for i|A(x) doesn’t abort] ≥ 1− 3
50 .

When a leaf is good for i, then A, conditioned on reaching this leaf, computes g(x(i)) with very high
probability. When a coordinate i is good, then with high probability A reaches a leaf that is good for i. To
make our embedding work, we need to fix a good coordinate i∗ such that A makes only O(q/k) queries on
this coordinate. The following claim shows that most coordinates are good.

Claim 1. i is good for at least 2
3k indices i ∈ [k].

We defer the proof of Claim 1 to the following subsection. Next, for each i ∈ [k], let qi(x) denote the
number of queries that A makes to x(i) on input x. The query cost of A guarantees that for each input x,∑

1≤i≤k qi(x) ≤ q. Therefore,
∑
i∈[k]Ex∼µk [qi(x)] ≤ q, and so at least 2

3k indices i ∈ [k] satisfy

E
x∼µk

[qi(x)] ≤ 3q

k
. (1)

Thus, there exists i∗ which satisfies both Claim 1 and inequality (1). Fix such an i∗. For inputs y ∈ {0, 1}n×k
and x ∈ {0, 1}n, let y(i

∗←x) := (y(1), . . . , y(i
∗−1), x, y(i

∗+1), . . . y(k)) denote the input obtained from y by
replacing y(i

∗) with x. Note that if y ∼ µk and x ∼ µ, then y(i←x) ∼ µk for all i ∈ [k]. With this notation
and using Fact 4, the conditions from inequality (1) and Claim 1 satisfied by i∗ can be rewritten as

E
y∼µk

[
E
x∼µ

[
qi∗(y

(i∗←x))
]]
≤ 3q

k
,

and

E
y∼µk

[
Pr
x∼µ

[
leaf

(
A, y(i

∗←x)
)

is bad for i∗|A(y(i
∗←x)) doesn’t abort

]]
≤ 3

50
.

Since A has at most δ abort probability, we have

E
y∼µk

[
Pr
x∼µ

[
A(y(i

∗←x)) = ⊥
]]
≤ δ .

Finally, for any leaf ` for which i∗ is good, we have ai∗,` ≥ 1− 80000ε/k. Hence

E
y∼µk

[
Pr
x∼µ

[
A(y(i

∗←x))i∗ 6= g(x)| leaf
(
A, y(i

∗←x)
)

is good for i∗
]]
≤ 80000ε

k
.

5

Therefore by Markov’s Inequality, there exists z ∈ {0, 1}n×k such that

E
x∼µ

[
qi∗(z

(i∗←x))
]
≤ 12q

k
, (2)

Pr
x∼µ

[
leaf(A, z(i

∗←x)) is bad for i∗|A(z(i
∗←x)) 6= ⊥

]
≤ 6

25
, (3)

Pr
x∼µ

[
A(z(i

∗←x)) = ⊥
]
≤ 4δ , and (4)

Pr
x∼µ

[
A(z(i

∗←x))i∗ 6= g(x)| leaf(A, z(i
∗←x)) is good for i∗

]
≤ 320000ε

k
. (5)

Fix this z. Now that i∗ and z are fixed, we are ready to describe our algorithm.

Algorithm 1 A′z,i∗(x)

1: y ← z(i
∗←x)

2: Emulate algorithm A on input y.
3: Abort if A aborts, if A queries more than 120q

k bits of x, or if A reaches a bad leaf.
4: Otherwise, output A(y).

Note that the emulation is possible since whenever A queries the j-th bit of y(i
∗), we can query xj , and

we can emulate A querying a bit of y(i) for i 6= i∗ directly since z is fixed. It remains to show that A′ is a[
120q
k , 0.34 + 4δ, 320000εk , µ

]
-distributional query algorithm for f .

First, note that A′ makes at most 120q/k queries, since it aborts instead of making more queries. Next,
consider the abort probability of A′. Our algorithm aborts if A aborts, if A probes more than 120q

k bits,
or if A reaches a bad leaf. By inequality (4), A aborts with probability at most 4δ. By inequality (2) and
Markov’s Inequality, the probability that A probes 120q/k bits is at most 1/10. By inequality (3), we have
Prx∼µ[A reaches a bad leaf] ≤ 6/25. Hence, A′ aborts with probability at most 4δ + 1

10 + 6
25 = 0.34 + 4δ.

Finally, note that if A′ doesn’t abort, then A reaches a leaf which is good for i∗. By inequality (5), A′ errs
with probability at most 320000ε/k in this case.

We have constructed an algorithm A′ for g that makes at most 120q/k queries, and when the input
x ∼ µ, A′ aborts with probability at most δ′ and errs with probability at most ε′. Hence, Dµ

δ′,ε′(g) ≤ 120q/k.

Rearranging terms and recalling that q = Dµk

δ,ε(XOR ◦g), we get

Dµk

δ,ε(XOR ◦g) ≥ k

120
Dµ
δ′,ε′(g) ,

completing the proof.

2.1 Proof of Claim 1.

Proof of Claim 1. Let I be uniform on [k]. We want to show that Pr[I is good] ≥ 2/3.
Conditioned on A not aborting, it outputs the correct value of XOR ◦g with probability at least 1− ε

1−δ ≥
1 − 2ε. We first analyze this error probability by conditioning on which leaf is reached. Let ν be the
distribution on leaf(A, x) when x ∼ µk, conditioned on A not aborting. Let L ∼ ν. Then, we have

1− 2ε ≤ Pr
x∼µk

[A(x) = XOR ◦g(x)|A doesn’t abort]

=
∑
leaf `

Pr
L∼ν

[L = `] · Pr[A(x) = XOR ◦g(x)|L = `]

=
∑
`

Pr[L = `] · r`

= E
L

[rL] .

6

Thus, E[rL] ≥ 1 − 2ε. Recalling that ` is good if r` ≥ 1 − 200ε and using Fact 5, L is good with
probability at least 0.99. Note also that when ` is good, then a` ≥ 1 − 400ε. Let β` := PrI [` is bad for I].
Using 1 + x ≤ ex and e−2x ≤ 1− x (which holds for all 0 ≤ x ≤ 1/2), we have for any good leaf `

1− 400ε ≤ a` =

k∏
i=1

ai,` ≤
(

1− 80000ε

k

)kβ`

≤ e−80000ε·β` ≤ 1− 40000εβ` .

Rearranging terms, we see that β` ≤ 0.01. We’ve just shown that a random leaf ` is good with high
probability, and when ` is good, it is good for many i. We need to show that there are many i such that
most leaves are good for i. Towards that end, let δi,` := 1 if ` is good for i; otherwise, set δi,` := 0.

E
I

[
Pr
x∼µk

[leaf(A, x) good for I|A doesn’t abort]

]
= E

I

[∑
`

Pr[L = `] · δI,`

]
=
∑
`

Pr[L = `] E
I
[δI,`]

=
∑
`

Pr[L = `] Pr
I

[` good for I]

≥
∑
good`

Pr[L = `] · (1− β`)

= Pr
L

[L is good] · (1− β`)

≥ 0.99(1− β`)
> 0.98 .

Thus, EI
[
Prx∼µk [leaf(A, x) good for I|A doesn’t abort]

]
≥ 1− 1

50 . Recalling that i is good if
Pr[leaf(A, x) good for i|A(x) doesn’t abort] ≥ 1− 3

50 and using Fact 5, it follows that PrI [I is good] ≥ 2/3.
This completes the proof.

2.2 Proof of Theorem 1

Proof of Theorem 1. Define ε′ := 640000ε. Let µ be the input distribution for g achieving maxµD
µ
1
2 ,

ε′
k

(g),

and let µk be the k-fold product distribution of µ. By the first inequality of Fact 2 and the first inequality
of Fact 3, we have

Rε(XOR ◦g) ≥ 1

50
R 1

50 ,ε
(XOR ◦g) ≥ 1

50
Dµk

1
25 ,2ε

(XOR ◦g) .

Additionally, by Lemma 1 and the second inequalities of Facts 2 and 3, we have

Dµk

1
25 ,2ε

(XOR ◦g) ≥ k

120
Dµ

1
2 ,

ε′
k

(g) ≥ k

120
R 2

3 ,
4ε′
k

(g) ≥ k

360
R 12ε′

k
(g) .

Thus, we have Rε(XOR ◦g) = Ω
(

Dµk

1
25 ,2ε

(XOR ◦g)
)

and Dµk

1
25 ,2ε

(XOR ◦g) = Ω
(
kR 12ε′

k
(g)
)

. By standard

success amplification R 12ε′
k

(g) = Θ(R ε
k

(g)). Putting these together yields

Rε(XOR ◦g) = Ω
(

Dµk

1
25 ,2ε

(XOR ◦g)
)

= Ω
(
kR 12ε′

k
(g)
)

= Ω
(
R ε

k
(g)
)
,

hence Rε(XOR ◦g) = Ω
(
kR ε

k
(g)
)

completing the proof.

Acknowledgments

The authors thank Runze Wang for several helpful discussions.

7

References

[1] Andrew Bassilakis, Andrew Drucker, Mika Gs, Lunjia Hu, Weiyun Ma, and Li-Yang Tan. The power of
many samples in query complexity. In Proceedings 47th Annual International Colloquium on Automata,
Languages, and Programming, 2020.

[2] Yosi Ben-Asher and Ilan Newman. Decision trees with AND, OR queries. In Proceedings 10th Annual
Structure in Complexity Theory Conference, pages 74–81, 1995.

[3] Shalev Ben-David and Eric Blais. A new minimax theorem for randomized algorithms, 2020.

[4] Shalev Ben-David and Eric Blais. A tight composition theorem for the randomized query complexity
of partial functions, 2020.

[5] Shalev Ben-David, Mika Göös, Robin Kothari, and Thomas Watson. When is amplification necessary
for composition in randomized query complexity? CoRR, abs/2006.10957, 2020.

[6] Shalev Ben-David and Robin Kothari. Randomized query complexity of sabotaged and composed
functions. Theory of Computing, 14(1):1–27, 2018.

[7] Eric Blais and Joshua Brody. Optimal separation and strong direct sum for randomized query complex-
ity. (Originally appeared in CCC 2019) CoRR, abs/1908.01020, 2019.

[8] Andrew Drucker. Improved direct product theorems for randomized query complexity. Computational
Complexity, 21(2):197–244, 2012.

[9] Russell Impagliazzo, Ran Raz, and Avi Wigderson. A direct product theorem. In Proceedings 9th
Annual Structure in Complexity Theory Conference, pages 88–96, 1994.

[10] Rahul Jain, Hartmut Klauck, and Miklos Santha. Optimal direct sum results for deterministic and
randomized decision tree complexity. Inf. Process. Lett., 110(20):893–897, 2010.

[11] Marco Molinaro, David P Woodruff, and Grigory Yaroslavtsev. Beating the direct sum theorem in
communication complexity with implications for sketching. In Proceedings of the twenty-fourth annual
ACM-SIAM symposium on Discrete algorithms, pages 1738–1756. SIAM, 2013.

[12] Marco Molinaro, David P Woodruff, and Grigory Yaroslavtsev. Amplification of one-way information
complexity via codes and noise sensitivity. In International Colloquium on Automata, Languages, and
Programming, pages 960–972. Springer, 2015.

[13] Noam Nisan, Steven Rudich, and Michael E. Saks. Products and help bits in decision trees. SIAM
Journal on Computing, 28(3):1035–1050, 1999.

[14] Ronen Shaltiel. Towards proving strong direct product theorems. Computational Complexity, 12(1-
2):1–22, 2003.

A Proofs of Technical Lemmas

Proof of Fact 1. For each i, let bi := argmaxb∈{0,1} Pr[Xi = b] and δi := adv(Xi). Then Pr[Xi = bi] =
1
2 (1 + δi). We prove Fact 1 by induction on k. When k = 1, there is nothing to prove. For k = 2, note that

Pr[X1 ⊕X2 = b1 ⊕ b2] =
1

2
(1 + δ1)

1

2
(1 + δ2) +

1

2
(1− δ1)

1

2
(1− δ2)

=
1

4
(1 + δ1 + δ2 + δ1δ2) +

1

4
(1− δ1 − δ2 + δ1δ2)

=
1

2
(1 + δ1δ2) .

8

Hence X1⊕X2 has advantage δ1δ2 and the claim holds for k = 2. For an induction hypothesis, suppose that
the claim holds for X1 ⊕ · · · ⊕Xk−1. Then, setting Y := X1 ⊕ · · · ⊕Xk−1, by the induction hypothesis, we

have adv(Y) =
∏k−1
i=1 adv(Xi). Moreover, X1 ⊕ · · · ⊕Xk = Y ⊕Xk, and

adv(X1 ⊕ · · · ⊕Xk) = adv(Y ⊕Xk) = adv(Y) adv(Xk) =

k∏
i=1

adv(Xi) .

Proof of Fact 4. We condition PrS,T [E(S, T)|A] on S.

Pr
S,T

[E|A] =
∑
s

Pr[S = s|A] Pr
T

[E(S, T)|A, S = s]

=
∑
s

Pr[S = s|A] Pr
T∼µs

[E(S, T)|A]

= E
S

[
Pr

T∼µS

[E(S, T)|A]

]
.

Proof of Fact 5. Let Y := 1−X. Then, E[Y] ≤ ε. By Markov’s Inequality we have

Pr[X < 1− Tε] = Pr[Y > Tε] ≤ 1

T
.

9

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

