
Efficient reconstruction of depth three circuits with top fan-in two

Gaurav Sinha∗

August 17, 2020

Abstract

In this paper we develop efficient randomized algorithms to solve the black-box reconstruction
problem for polynomials(over finite fields) computable by depth three arithmetic circuits with
alternating addition/multiplication gates, such that top(output) gate is an addition gate with in-
degree 2. Such circuits naturally compute polynomials of the form G×(T1+T2), where G,T1, T2
are product of affine forms computed at the first(addition) layer in the circuit, and polynomials
T1, T2 have no common factors. Rank of such a circuit is defined to be the dimension of vector
space spanned by all affine factors of T1 and T2. For any polynomial f computable by such a
circuit, rank(f) is defined to be the minimum rank of any such circuit computing it. Our work
develops randomized algorithms, which take as input a black-box computing polynomial f , with
coefficients in a finite field F, exhibiting such a circuit. Here are the results.

• [Low rank] ∶ When 5 ≤ r = rank(f) = O(log3 d), it runs in time (ndlog
3 d log ∣F∣)O(1) and

outputs a depth three circuit computing f (with high probability), with top addition gate
having in-degree ≤ drank(f).

• [High rank] ∶ When rank(f) = Ω(log3 d), it runs in time (nd log ∣F∣)O(1), and with high
probability outputs a depth three circuit computing f , with top addition gate having
in-degree 2.

Prior to our work, black-box reconstruction for this circuit class was addressed in [Shp07,
KS09, Sin16b]. Reconstruction algorithm in [Shp07] runs in time quasi-polynomial in n, d, ∣F∣
and that in [KS09] is quasi-polynomial in d, ∣F∣. Algorithm in [Sin16b] works only for polynomials
over characteristic zero fields. Thus ours is the first blackbox reconstruction algorithm for this
class of circuits that runs in time polynomial in log ∣F∣. This problem has been mentioned
as an open problem in [GKL12] (STOC 2012). In the high rank case, our algorithm runs in
(nd log ∣F∣)O(1) time, thereby significantly improving the existing algorithms in [Shp07, KS09].

∗Adobe Research Bangalore, India, email: gasinha@adobe.com

0

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 125 (2020)

1 Introduction

Arithmetic circuit reconstruction: Arithmetic circuits (Definition 1.1 in [SY10]) are Directed
Acyclic Graphs (DAG), describing succinct ways of computing multivariate polynomials. Analo-
gous to the exact learning problem for Boolean circuits [Ang88], Black-box reconstruction problem
(Section 5, [SY10]) has been asked for arithmetic circuits:

Given oracle1 access to a multivariate polynomial computable by an arithmetic circuit of size s,
construct an explicit circuit (ideally poly(s) sized) that computes the same polynomial.

Depth three circuit reconstruction: These are layered circuits with three layers of alternat-
ing plus(Σ) gates and product(Π) gates. Reconstruction of ΠΣΠ circuits amounts to black-box
polynomial factorization into sparse factors and efficient randomized algorithms are known [KT90].
However no such algorithm is known for ΣΠΣ circuits2 (Definition 1). First non-trivial algorithm
for this class, which takes exponential time in the fan-in of the multiplication gates, was given in
[KS03]. In fact, in a recent work [KS18] (Section 1.2) discuss that efficient reconstruction algo-
rithms for depth three circuits will imply super-polynomial lower bounds for them which is a long
standing open problem in Arithmetic complexity [SW99, Wig06]. Therefore, even for the class of
depth three circuits, reconstruction problem appears to be very challenging. Current state of the
art reconstruction algorithms for this class either work in the average case [KS18] or restrict the
fan-in of the top addition gate (also called top fan-in) [Shp07, KS09, Sin16b].

Bounded top fan-in: These are depth three circuits where fan-in of the top addition gate is
assumed to be k = O(1). For k = 2, [Shp07] designed a randomized reconstruction algorithm with
time complexity quasi-polynomial in n, d, log ∣F∣3. An important point to note is that when rank
(Definition 3) of the input polynomial is Ω(log2 d), their algorithm is proper i.e. output also has
top fan-in 2. This algorithm was generalized in [KS09] to circuits with top fan-in k = O(1), and
a deterministic algorithm with time complexity quasi-polynomial in log d and log ∣F∣ was given.
However, unlike [Shp07], their algorithm is improper and output might have much larger top fan-
in. [Sin16b] also considered the top fan-in 2 case, but over characteristic 0 fields, and rank of input
polynomial being Ω(1). Their algorithm runs in time polynomial in n, d, but their techniques do
not work over finite fields. Based on the above, the following questions seem very natural to ask:

• Q1. Does there exist a reconstruction algorithm for depth 3 circuits with top fan-in 2 (over
a finite field F), whose run-time depends polynomially in log ∣F∣? This was asked as an open
problem in [GKL12] (STOC 2012).

• Q2. Can such an algorithm be fully polynomial time (at-least in high rank case) i.e. runs
in time polynomial in n, d and log ∣F∣? This will substantially improve the result in [Shp07]
(STOC 2007).

In this paper we resolve both of these questions.

1also known as black-box
2from here onwards by depth three circuits we mean ΣΠΣ circuits only
3n is number of variables in input circuit, d is degree of Π gates and ∣F∣ is size of the underlying field

1

1.1 Our Results

Let n, d be positive integers and F be a finite field.

Homogeneity assumption As given in Lemma 3.5 of [DS05], every depth three circuit C of
rank r, computing an n−variate, degree d polynomial f can be converted into a homogeneous
depth three circuit Chom over ≤ n + 1 variables and rank ≤ r + 1, such that it’s multiplication gates
have in-degree d. Section 1.5 of [Sin16a] implies that black-box access to Chom can be simulated
efficiently using black-box access to f and integers n, d. Also there is an efficient algorithm to
obtain C from Chom. Hence, from now onwards we only consider homogeneous depth three circuits
(ΣΠΣ(k,n, d,F), Definition 2). Also, for any polynomial f , rank(f) (Definition 4) will be the
minimum rank of any ΣΠΣ(2, n, d,F) circuit computing it. Here are our results.

Theorem 1 (Low rank reconstruction). There exists a randomized algorithm which takes as input
integers n, d and black-box access to a polynomial f computable by a ΣΠΣ(2, n, d,F) circuit (5 ≤

rank(f) = O(log3 d)), runs in time (ndlog
3 d log ∣F∣)O(1) and outputs, with probability 1 − o(1), a

ΣΠΣ(k,n, d,F) (k ≤ drank(f)) circuit computing f .

Theorem 2 (High rank reconstruction). There exists a randomized algorithm which takes as
input integers n, d and black-box access to a polynomial f computable by a ΣΠΣ(2, n, d,F) cir-
cuit (rank(f) = Ω(log3 d)), runs in time (nd log ∣F∣)O(1) and with probability 1 − o(1), outputs a
ΣΠΣ(2, n, d,F) circuit computing f .

We allow algorithms to query input polynomial at points in a (nd)O(1) sized extension K of F.

Remarks Here are some remarks on the above results.

• Theorems 1 and 2 completely resolve Q1. Therefore we solve an open problem from [GKL12].
Theorem 2 resolves Q2 in the high rank case (Ω(log3 d)) and thus both theorems substantially
improve the overall reconstruction time complexity for this circuit class (as compared to
[Shp07] and [KS09]).

• When rank(f) ≤ 2, the polynomial factors into a product of linear forms and can be recon-
structed efficiently using Lemma 4. So only rank(f) = 3,4 are not covered by the algorithms
above.

• A crucial component of our proofs is a new structural result, which might be of indepen-
dent interest. We show that for any polynomial f computable by a ΣΠΣ(2, n, d,F) circuit
(rank(f) ≥ 5), the set of co-dimension 2 subspaces of Fn on which the “non-linear” part4 of
f vanishes, has size dO(1), and can be computed efficiently. We give a formal statement in
Theorem 3.

• In order to prove Theorem 2, we develop an interesting result related to Sylvester Gallai
(SG) type configurations (Definition 9) and present it in Lemma 1. We believe it might be of
independent interest. Similar results called Quantitative SG theorems are known (Theorem
5.1.2 and Section 5.3 in [Dvi12]). These quantitative versions prove bounds on number of
ordinary lines through a point, whereas our theorem considers dimension of the space spanned
by ordinary lines through a point.

4this is obtained by removing all linear factors of f . See Definition 5

2

Theorem 3. Let f ∈ F[x1, . . . , xn] be a polynomial computable by a ΣΠΣ(2, n, d,F) circuit (rank(f) ≥
5). Let S(f) be the set of co-dimension 2 subspaces on which NonLin(f) (Definition 5) vanishes.
The following are true.

1. ∣S(f)∣ ≤ 3d7.

2. There exists a randomized algorithm that takes as input black-box access to f along with
integers n, d, runs in time (nd log ∣F∣)O(1) and, outputs a set S (of size ≤ 3d7) containing
tuples of independent linear forms in F[x1, . . . , xn] such that

Pr[(`1, `2) ∈ S ⇒ {`1 = 0, `2 = 0} ∈ S(f)] ≥ 1 − o(1),

P r[{`1 = 0, `2 = 0} ∈ S(f)⇒ ∃(`′1, `
′
2) ∈ S s.t. sp{`1, `2} = sp{`

′
1, `

′
2}] ≥ 1 − o(1).

Lemma 1. Let S ⊂ Fn be a proper set (Definition 7) and T ⊂ Fn be any linearly independent set
of size ≥ log ∣S ∣ + 2. Then there exists t ∈ T , such that the set of ordinary lines O(t,S) (Definition
8) spans a high dimensional space. More precisely,

dim(∑
W ∈O(t,S)

W) ≥
dim(sp(S))

log ∣S ∣ + 2
.

1.2 Ideas and analysis of main algorithms

The algorithms mentioned in Theorems 1, 2 and 3 are given in Algorithms 3, 1 and 7 respectively.
In this section we discuss key technical ideas required for proving these theorems. Missing proofs
are supplied in the subsequent sections. Using Definition 2, write f = G× (T1 + T2) where G,T1, T2
are product of linear forms and gcd(T1, T2) = 1. Define Ti = {linear form ` ∶ ` ∣ Ti} and Vi = sp(Ti)
for i ∈ [2]. We use the definitions of NonLin(f) (Definition 5), set of ordinary lines (Definition 8)
and set of candidate linear forms L(f) (Definition 6).

1.2.1 Theorem 1: Key ideas for Algorithm 3

The algorithm mentioned in Theorem 1 is presented in Algorithm 3 and it’s correctness/complexity
is discussed in Section 3. As we discussed earlier, previous work in [Shp07] provides an algorithm5,
that runs in time quasi polynomial in n, d, log ∣F∣. In Algorithm 3([Shp07]), they perform a brute
force search on the space of linear forms to construct a high dimensional linearly independent set.
Step 2 in our algorithm makes this search efficient by performing a non-deterministic search over a
dO(1) sized set S(f)6. It’s correctness is justified by the analysis provided in Section 3. Next, we
outline the key technical ideas on which our algorithm is built.

• Polynomial NonLin(f) divides T1 + T2, and therefore it can be written as a polynomial over
any basis of the vector space V spanned by linear factors of T1 and T2. We try to construct
such a basis in a non-deterministic fashion.

5their low rank case assumes rank(f) = O(log2 d). we assume rank(f) = O(log3 d)
6containing tuples representing co-dimension 2 subspaces on which NonLin(f) vanishes

3

• Consider any linear form `1 ∣ T1 (`2 ∣ T2 respectively). Since NonLin(f) is not a constant
polynomial(due to rank(f) ≥ 5), it’s easy to see that there exists a linear form `2 ∣ T2 (`1 ∣ T1
respectively), such that NonLin(f) vanishes on the co-dimension 2 subspace {`1 = 0, `2 = 0}
of Fn. Any representation of this space, say {`1 = 0, `2 = 0} = {`′1 = 0, `′2 = 0} then satisfies
sp{`1, `2} = sp{`′1, `

′
2}. Therefore, rank(f) many such co-dimension 2 subspaces can easily

give us a basis for V . Details of this argument are provided in Lemma 7.

• By Theorem 3, we know that there are at most dO(1) many co-dimension 2 subspaces on
which NonLin(f) vanishes, and that these can be computed in (nd log ∣F∣)O(1) time. So we
have a dO(1) sized set S(f) to search for the above kind of subspaces which will help us create
a basis for V .

• We do not know rank(f) in advance but know that rank(f) = O(log3 d). So we non-
deterministically search for rank(f), and the rank(f) sized subset of S(f) that we described
above. For every such subset, we construct a basis of linear forms and try to interpolate
NonLin(f) as a homogeneous polynomial7 in the constructed basis.

• If our guessed value of rank(f), and the rank(f) sized subset are correct, we will be able
to interpolate and obtain a ΣΠΣ(trank(f), n, t,F) circuit computing NonLin(f). Also, if
interpolation is successful for an incorrect guess, we will still have a ΣΠΣ(tr, n, t,F) circuit
for some r ≤ log3 d. Clearly with high probability r ≤ rank(f).

• Finally, using Algorithm 2, linear factors of f can be obtained and multiplied to the circuit
above. With high probability we would have reconstructed a ΣΠΣ(trank(f), n, d,F) circuit for

f in (ndlog
3 d log ∣F∣)O(1) time.

1.2.2 Theorem 2: Analysis of Algorithm 1

Our algorithm has four stages: Try corner case → Separate linear/non-linear part → Compute
linearly independent set dividing Ti → Reconstruction using independent set. As mentioned earlier,
previous work in [Shp07], provides an algorithm for this case that runs in time quasi polynomial in
n, d, log ∣F∣. In Algorithm 4([Shp07]), they perform a brute force search on linear forms to construct
a high dimensional linearly independent set. Step 3 in our algorithm makes this search efficient by
performing a non-deterministic search over set L(f), and therefore results in an efficient algorithm.
It’s correctness has been justified in the discussion following our algorithm, and can be found in
the analysis of stages - “Compute linearly independent set dividing Ti” and “Reconstruction using
independent set”. Missing details have been provided in Section 4.2. We first give the algorithm
and then discuss correctness and complexity of each stage.

7degree of NonLin(f) is easily calculated using Algorithm 2

4

Algorithm 1 High rank reconstruction

Input - Black-box access to f , integers n, d.
Output - ΣΠΣ(2, n, d,F) circuit C or #.

1. Run Algorithm 6 with inputs as black-box access to f along with integers n, d. If output is
a circuit C, Return C. If output was #, go to the next step. ▷ Try corner case

2. Using Algorithm 2 with input as black-box access to f and integers n, d, compute list of linear
factors `1, . . . , `s and black-box access to NonLin(f). Compute the degree of NonLin(f) as
t = d − s. ▷ Separate linear/non-linear parts

3. Using Algorithm 4 with inputs as black-box access to f and integers n, d, construct the set
L(f). Find ` ∈ L(f) such that the set of ordinary lines, O(`,L(f)) (Definition 8) spans
a space of dimension Ω(log2 d). If no such ` exists, Return #. Otherwise, construct an
Ω(log2 d) sized linearly independent subset X ⊂ L(f), such that sp{`, x} is an ordinary line
from ` into L(f) (i.e sp{`, x} ∈ O(`,L(f))). Partition X into equal parts of size Ω(log d) each
and iterate over all parts B.

(a) Initialize sets U ,V ← φ. Iterate over all linear forms `′ ∈ B, and using Lemma 3, check if
NonLin(f))∣{`=0,`′=0} ≡ 0. If yes, add `′ to U else add it to V. Without loss of generality
assume U is larger and select r = 60 log d + 61 linear forms u1, . . . , ur ∈ U .

▷ Compute linearly independent set dividing Ti

(b) Run Algorithm 5 with inputs as black-box access to f , integers n, d and linear forms
u1, . . . , ur. If it returns a ΣΠΣ(2, n, d,F) circuit C, Return C. Else, go to the next B, `
in the search.

▷ Reconstruction using independent set

4. Return #

We outline the correctness and complexity of the algorithm below.

1. Try corner case(Step 1): In this stage, we try to reconstruct the circuit using Algorithm 6,
assuming that for some i ∈ [2], dim(Vi) = 1. This is equivalent to assuming Ti = α`

t for some
α ∈ F and linear form `. Correctness/complexity are implied by Algorithm 6, which runs in
time (nd log ∣F∣)O(1). We proceed to next stage only if reconstruction was not possible. Thus,
for subsequent stages we can assume dim(Vi) ≥ 2.

2. Separate linear/non-linear part(Step 2): Implied by Algorithm 2.

3. Compute linearly independent set dividing Ti(Steps 3, 3(a)): In this stage we try to compute
a linearly independent set of size r = 60 log d+61, such that all linear forms in this set divide T1
(or all divide T2). First, using Algorithm 4 with inputs as black-box access to f and integers
n, d, we compute L(f) in (nd log ∣F∣)O(1) time. We search for the linearly independent set
inside L(f) as follows.

(a) By Part 1 of Lemma 11, there exists ` ∈ L(f) dividing Ti (for some i ∈ [2]) such that
given `, we can compute a linearly independent set X ⊂ L(f) of size Ω(log2 d), such that
for all `′ ∈ X , sp{`, `′} is an ordinary line from ` into L(f).

5

(b) By Part 2 of Lemma 11, any partition of X into Ω(log d) equal parts, has a part B, such
that for all `′ ∈ B, `′ ∣ T1 × T2, sp{`, `

′} is an ordinary line from ` into the set of linear
factors of T1 ×T2 and it is also an ordinary line into the set of linear factors of (T1 +T2).

(c) By Part 3 of Lemma 11, for any `′ ∈ B, NonLin(f)∣{`=0,`′=0} = 0 ⇔ `′ divides T3−i. This
splits B into disjoint sets U ,V as:

U = {`′ ∈ B ∶ NonLin(f)∣{`=0,`′=0} = 0}, and V = B ∖ U .

Therefore all linear forms ∈ U divide T3−i, and those ∈ V divide Ti. Clearly, larger of U ,V
has size Ω(log d)8.

We non deterministically search for this ` ∈ L(f), use ` to compute X , and partition X
into Ω(log d) many equal parts. Then we non-deterministically search for the part B. After
this, for all `′ ∈ B, we restrict NonLin(f) to {` = 0, `′ = 0} and check (using Lemma 3) if
NonLin(f)∣{`=0,`′=0} ≡ 0. This creates the two sets U ,V described earlier. We select larger of
the two. If our guesses of ` and B are correct, using arguments above, the larger of U ,V has
size Ω(log d), and all linear forms in it divide T1 or T2. These linear forms are then used in
Algorithm 5 as described in next stage. We note that if an incorrect `,B was guessed, leading
to an incorrect reconstruction in Algorithm 5, it gets rejected inside Algorithm 5, during the
validation stage. Clearly all these steps work in (nd log ∣F∣)O(1) time.

4. Reconstruction using independent set(Step 3(b)): If the guesses of ` and B in the previous
stage are correct, Algorithm 5 with inputs as black-box access to f , integers n, d, and the
Ω(log d) many linearly independent linear forms computed above, reconstructs the circuit.
As mentioned before, Algorithm 5 validates the constructed circuit and rejects if incorrect.
Therefore if we output a circuit, it is always correct. Correctness and complexity are implied
by Algorithm 5.

1.2.3 Theorem 3: Key ideas for proof of Part 1

We outline the key technical ideas that form the proof. Details are provided in Section 5.1.

1. For any co-dimension 2 space on which NonLin(f) vanishes, we know that T1 + T2 vanishes
as well (since NonLin(f) divides T1 + T2). Thus T1∣W = −T2∣W . We split into two cases
from here. Either both T1∣W , T2∣W are zero or both are non-zero. When both are zero, we
immediately get that some linear forms `1 ∣ T1 and `2 ∣ T2 vanish on W . Since gcd(T1, T2) = 1,
we get that W = {`1 = 0, `2 = 0}, and therefore there are ≤ d2 such W ’s.

2. In Lemma 13, we show that there is a fixed set A of dO(1) many co-dimension 1 subspaces,
such that for all W satisfying NonLin(f)∣W = 0 and T1∣W = −T2∣W ≠ 0, there is some V ∈ A

such that W ⊂ V . Using V and the fact that NonLin(f)∣W = 0, we can easily identify ≤ d
possibilities for W . Here each possibility corresponds to some linear factor of NonLin(f)∣V
as shown in Section 5.1. Thus there are dO(1) such W ’s. So only Lemma 13 is left to be
explained.

8we chose constants so that the larger has size 60 log d + 61

6

3. Here is the main idea for proving Lemma 13. Let W = {`1 = 0, `2 = 0}, be such that T1∣W =

−T2∣W ≠ 0 and Ti =
d

∏
j=1

`i,j for i ∈ [2]. By unique factorization and without loss of generality

we conclude that there are ≤ d distinct spaces Uj = sp{`1,j , `2,j} for j ∈ [d] that intersect
U = sp{`1, `2} non-trivially, i.e. U ∩ Uj is 1 dimensional. Then we have two subcases and
in each we identify a co-dimension 1 subspace containing W . We sketch the idea of these
subcases now and urge the reader to read the full proof in Appendix B

(a) There exist distinct Ui, Uj such that U ∩Ui = U ∩Uj: In this case we show that Ui ∩Uj

is a one-dimensional(= sp{`}) subset of U ⇒ W ⊂ V = {` = 0}. There are clearly ≤ d4

possibilities for Ui, Uj .

(b) For all distinct Ui, Uj, U ∩ Ui ≠ U ∩ Uj: Recall, we are given that 5 ≤ rank(f) =

dim(∑i∈[d]Ui). Using this we can conclude that, there are three spaces Ui, Uj , Uk such
that Uk /⊂ Ui +Uj . In this case we show that (Ui +Uj)∩Uk is a one-dimensional(= sp{`})
subset of U ⇒W ⊂ V = {` = 0}. There are clearly ≤ d6 possibilities for Ui, Uj , Uk.

(c) Using the above, we have a fixed set A of dO(1) size, as required in Part 2 above.

1.2.4 Theorem 3: Key ideas for Algorithm 7

The algorithm mentioned in Theorem 3 is presented in Algorithm 7 and it’s correctness/complexity
is discussed in Section 5.2. Here, we outline the key ideas involved in the different steps of our
algorithm. We urge the reader to go through the missing details in Section 5.2.

1. First, we apply a random transformation on our input black-box, giving us black-box com-
puting another polynomial g. An important aspect of this transformation is that we can
freely assume(using Fact 1) that (with high probability) co-dimension 2 subspaces on which
NonLin(g) vanishes have the form W = {x1 − `1(x3, . . . , xn) = 0, x2 − `2(x3, . . . , xn) = 0}. So
we only need to construct such spaces.

2. Next, we restrict NonLin(g) to different combinations of 5 variables x1, x2, x3, x4, xi at a
time, and interpolate to get monomial representation. For each such restriction, we compute
all co-dimension 2 subspaces of the type {x1 = y3x3 + y4x4 + yixi, x2 = z3x3 + z4x4 + zixi},
on which the restriction vanishes. This is done by substituting for x1, x2 in the restricted
polynomials and then solving for y3, y4, yi, z3, z4, zi, by equating coefficient polynomials to
zero. Application of Theorem 3 on the restricted polynomials(along with some simple facts
presented in Fact 1) guarantees that with high probability there are dO(1) many solutions,
and so we compute them by using Lemma 2.

3. Then, we merge the co-dimension 2 subspaces that were obtained for different restrictions.
By applying another random transformation on variables, we ensure efficient merging of the
spaces. Correctness is easily guaranteed with high probability using Facts 1 and 2.

4. After merging, as discussed above, we have a (nd)O(1) sized set of co-dimension 2 subspaces.
We prune this set and remove the spaces on which NonLin(g) does not vanish(using Lemma
3). Finally, we apply the inverse transformation, thereby giving us co-dimension 2 subspaces
on which NonLin(f) vanishes.

7

2 Preliminaries

2.1 Notations and definitions

Throughout the paper [n] will denote the set {1, . . . , n} and F will denote a finite field. We use
calligraphic letters like B,P,Q,R,S,T ,X to denote sets. Bold small letters x,y,u are used to
represent column vectors of variables. Bold capital letters A,B are used to represent matrices.
Unless otherwise mentioned, capital letters like G,H,T1, T2, S1, S2, U,Ui are either used to denote
polynomials that are a product of linear forms or are used to represent vector spaces of linear forms.
Small letters f, g, h, u, ` are also used to denote polynomials and linear forms. Next, we give some
definitions that are used in the paper.

Definition 1 (Depth 3 circuit, ΣΠΣ). A depth 3 circuit is a layered arithmetic circuit with three
layers of nodes labelled by arithmetic operations, defined on a set of n variables. First and third (Σ)
layers have addition nodes and second (Π) layer has multiplication nodes. Top layer has a single
addition node.

Definition 2 (Homogeneous Depth 3 circuit, ΣΠΣ(k,n, d,F)). A ΣΠΣ(k,n, d,F) circuit is a depth
three circuit such that the first (Σ) layer computes linear forms9 on n variables, there are k mul-
tiplication nodes at the second (Π) layer all having in-degree equal to d, and the addition node at
third(Σ) layer can only have incoming edges from the k multiplication nodes at second layer. Any
circuit belonging to this class naturally computes an n−variate polynomial f of the following form.

f = G × T1 +G × T2

where G,T1, T2 are product of linear forms with gcd(T1, T2) = 1 and deg(T1) = deg(T2), such that
polynomials G × T1,G × T2 are computed at the multiplication gates.

Definition 3 (Rank of ΣΠΣ(2, n, d,F) circuit, Section 1.3 in [Shp07]). Let C be a ΣΠΣ(2, n, d,F)
circuit with multiplication gates computing products of linear forms G×T1 and G×T2 with gcd(T1, T2) =
1 as described above, then the rank of C is defined as

rank(C) = dim(sp{affine form ` ∈ F[x] ∶ ` ∣ T1 × T2})

Definition 4 (Rank of polynomial). For any polynomial f ∈ F[x] computable by a ΣΠΣ(2, n, d,F)
circuit, it’s rank, called rank(f) is defined as the minimum of rank(C) over all ΣΠΣ(2, n, d,F)
circuits computing f .

Definition 5 (Linear and Non-linear parts). Let f ∈ F[x] be a polynomial. We define Lin(f),
called the linear part of f , to be the product (with multiplicity) of all affine polynomials dividing f
and NonLin(f), called the non-linear part of f as NonLin(f) = f

Lin(f) .

Definition 6 (Candidate linear form). Let f be a polynomial computable by a homogeneous ΣΠΣ(2, n, d,F)
circuit. Consider any non-zero n−variate linear form satisfying

1. NonLin(f)∣{l=0} is a non-zero product of linear forms.

2. There exist linear forms `1, `2 with `, `1, `2 linearly independent such that for i ∈ [2],

NonLin(f)∣{l=0,li=0}
= 0.

Define set L(f) to be a collection of such linear forms (modulo scalar multiplication)10. Elements

9no constant term
10basically, the set is defined in the projective space

8

of L(f) are called “candidate linear forms”.

Definition 7 (Proper set, Section 5.3, [Dvi12]). We call a set of points v1, . . . , vm ∈ Fn proper if
no two points are a constant multiple of each other and the zero point is not in the set (i.e. it is a
subset of the projective space).

Definition 8 (Ordinary line, Section 5.1, [Dvi12]). Let S ⊂ Fn be a proper set. For any t ∈ Fn and
s ∈ S, such that s ∉ sp{t}, the vector space sp{s, t} is called an Ordinary line from s into S, if and
only if sp{s, t} ∩ S ⊆ {s, t}. Define O(s,S) to be the set of ordinary lines from s into S.

Definition 9 (Sylvester Gallai (SG) configuration, Definition 5.3.1, [Dvi12]). A proper set S =

{s1, . . . , sm} ⊂ Fn is called an SG configuration if for every i ≠ j ∈ [n], ∃k ∈ [n]∖{i, j} with si, sj , sk
linearly dependent.

2.2 Known results

In this subsection, we list a few known results that are used in the paper.

Lemma 2 (Solving polynomial equations, Implied from [Ier89, Laz01]). There is a randomized
algorithm that takes as input n variate polynomials f1, . . . , fm each of degree ≤ d. If the system of
equations defined by setting these all polynomials simultaneously to zero, has finitely many solutions
in F̄ and all solutions are in Fn, then the algorithm computes all solutions with probability 1 −
exp(−mnd log ∣F∣). Running time of the algorithm is (mdn log ∣F∣)O(1).

Lemma 3 (Randomized polynomial identity test, Section 1, Lemma 1.2 in [Sax09]). There exists
a randomized algorithm that takes as input integer n and black-box access to a degree d, n−variate
polynomial f with coefficients in Fq, runs in time (nd log q)O(1) and outputs either ‘yes′ or ‘no′

such that,
output is ‘yes′ if f ≡ 0
Pr[output is ‘no′] ≥ 1 − o(1) if f /≡ 0

Lemma 4 (ΣΠΣ(k,n, d,F) deterministic polynomial identity test, Theorem 1 in [SS11]). There
exists a deterministic algorithm that takes as input black-box access to a degree d, n−variate poly-
nomial f computable by a ΣΠΣ(k,n, d,F) circuit, runs in time (ndk log ∣F∣)O(1) and, outputs ‘yes′

if f ≡ 0 and ‘no′ if f /≡ 0.

Lemma 5 (ΣΠΣ(k,n, d,F) Rank bound, Theorem 1.7 in [SS13]). Let C be a ΣΠΣ(k,n, d,F) circuit,

over an arbitrary field F, that is simple, minimal and zero. Then, rank(C) < 3k2 + k2

4 log d.

Lemma 6 (Black-box multivariate polynomial factorization, [KT90]). There exists a randomized
algorithm that takes as input black-box access to a degree d, n−variate polynomial f with coefficients
in F, runs in time (nd log ∣F∣)O(1) and outputs black-box access to polynomials f1, . . . , fm (m ≤ d)
along with integers e1, . . . , em such that,

Pr[f ≡ fe11 . . . femm ⋀ f1, . . . , fm are irreducible] ≥ 1 − o(1).

Corollary 1 (Decomposition into linear and non-linear factors). There exists a randomized algo-
rithm that takes as input black-box access to a degree d, n−variate polynomial f with coefficients
in F, runs in time (nd log ∣F∣)O(1) and outputs a list {`1, . . . , `s} (s ≤ d) of affine forms along with
black-box access to a polynomial NonLin(f) such that,

Pr[f ≡ l1 . . . lsNonLin(f)⋀NonLin(f) has no linear factors] ≥ 1 − o(1).

9

Proof. We give the algorithm below. Correctness and time complexity proofs are pretty straight-
forward using Lemma 6 and Lemma 3.

Algorithm 2 Decomposition into linear and non-linear factors

Input - Black-box access to polynomial f , integers n, d.
Output - List of affine forms L and black-box access to polynomial NonLin(f).

1. Using algorithm in Lemma 6 on black-box computing f , obtain black-box access to polyno-
mials f1, . . . , fm along with integers e1, . . . , em. Initialize lists L,B ← φ.

2. For every i ∈ [s], construct linear form `i =
n

∑
j=1

(fi(ej) − fi(0))xj + fi(0), where ej ∈ Fn is the

vector with 1 in jth co-ordinate and 0 elsewhere and 0 = (0, . . . ,0) ∈ Fn. Using randomized
polynomial identity test in Lemma 3, check if fi − `i ≡ 0. If yes, add ei copies of `i to L.
Otherwise add ei copies of black-box computing fi to B.

3. Simulate black-box B computing polynomial NonLin(f) = ∏
h∈B

h. Return L,B.

2.3 Known facts

We list a few useful facts below without proof since they can be easily derived from popularly known
results. These are used later in the paper. Let F be a finite field and f(x) ∈ F[x]. Parts 1, 2, 3
of Fact 1 and Fact 2 can be easily proved by applying the Schwartz-Zippel lemma [Sch80, Zip79].
Part 4 of Fact 1 can be proved using Effective Hilbert irreducibility [Kal91].

Fact 1. Let Vi = {x5 = . . . = xi−1 = xi+1 = . . . = xn} ⊂ Fn be a co-dimension 5 subspace. Let A ∈ Fn×n

be a matrix with entries chosen independently and uniformly at random from F, then the following
are true with probability 1 − o(1).

1. A is invertible.

2. `1, `2 be linearly independent linear forms in F[x1, . . . , xn], then the vector space sp{`1(Ax), `2(Ax)}
is also spanned by some linear forms of the type x1 − `

′
1(x3, . . . , xn) and x2 − `

′
2(x3, . . . , xn)

where `′1, `
′
2 are linear forms in F[x3, . . . , xn].

3. Let f be computable by a ΣΠΣ(2, n, d,F) circuit such that rank(f) ≥ 5 and g(x) = f(Ax),
then rank(g∣Vi

) = 5.

4. Let NonLin(f) be the “non-linear” part of f as defined in Definition 5. and g(x) = f(Ax).
Then NonLin(g∣Vi

) = NonLin(g)∣Vi
.

Fact 2. Let B = (Bi,j) be a random matrix defined as:

Bi,j =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 i = j

uniform(F) (i, j) ∈ [5, n] × [3,4]

0 otherwise

10

where uniform(F) is chosen independently and uniformly at random from F. Let x be a tuple of
variables which is zero everywhere except x3, x4 and xi. For any two distinct tuples of linear forms
(x1 − `1(x), x2 − `2(x)) and (x1 − `

′
1(x), x2 − `

′
2(x)), the tuples (x1 − `1(Bx)∣{xi=0}

, x2 − `2(Bx)∣{xi=0}
and (x1 − `

′
1(Bx)∣{xi=0}

, x2 − `
′
2(Bx)∣{xi=0}

) are distinct.

3 Low Rank Reconstruction: Proof of Theorem 1

We first present Algorithm 3 which proves Theorem 1. Then we analyze it’s correctness and
running-time. Our algorithm has three main stages: Separate linear/non-linear parts → Interpolate
non-linear part → Build Circuit.

Algorithm 3 Low rank reconstruction

Input - Black-box access to f , integers n, d.
Output - ΣΠΣ circuit C or #.

1. Using Algorithm 2 with inputs as black-box access to f and integers n, d, compute list of
linear factors `1, . . . , `s and black-box access to NonLin(f). Compute degree of NonLin(f)
as t = d − s. Using this black-box and integers n, t as input to Algorithm 7, obtain set
S(f) containing tuples of linear forms representing co-dimension 2 subspaces of Fn on which
NonLin(f) vanishes.

▷ Separate linear/non-linear parts

2. For each r ∈ [log3 d], iterate over all r sized sets T ⊂ S(f). If the vector space spanned by
all linear forms from all tuples in T is r dimensional, find a basis of linear forms {y1, . . . , yr}
spanning this space. Interpolate NonLin(f) in the monomial basis {ya = ya11 × . . . × yarr ∶ a =

(a1, . . . , ar),∑ai = t} to get coefficients ca such that NonLin(f) = ∑a cay
a. If interpolation

was successful go to next step. If it wasn’t successful for any r, and any r sized subset then
Return #. ▷ Interpolate non-linear part

3. By creating appropriate multiplication/addition gates, construct a ΣΠΣ(tr, n, d,F) circuit C
that computes polynomial

f ′ = `1 × . . . × `s × (∑
a

ca × y
a1
1 × . . . × yarr)

Finally, Return C. ▷ Build Circuit

We outline the correctness and complexity of the algorithm below. Using Definition 2, we write
f = G × (T1 + T2) where G,T1, T2 are product of linear forms and gcd(T1, T2) = 1.

1. Separate linear/non-linear parts(Step 1): Obvious using Algorithms 2, 7.

2. Interpolate non-linear part(Step 2): In this stage, we try to interpolate the degree t polynomial
NonLin(f)(Definition 5) as a linear combination of degree t monomials, defined over some
linearly independent set of linear forms. Note that NonLin(f) divides T1 + T2 and therefore
the interpolation can be done using any basis of the space V spanned by linear forms dividing

11

T1 × T2. The following lemma describes a way to construct a basis of V using set S(f),
containing tuples of linear forms representing co-dimension 2 subspaces on which NonLin(f)
vanishes. For the sake of presentation, we move the proof to Section 3.1.

Lemma 7. There exist rank(f) many tuples in S(f), such that the space spanned by all
linear forms in these tuples is same as V .

We only know that rank(f) ≤ log3 d, so we non-deterministically search for it using r ∈ [log3 d].
Then, we non-deterministically search for an r sized subset T ⊂ S(f), such that linear forms
from tuples in T span an r dimensional space. If r is correctly guessed (i.e. r = rank(f)),
Lemma 7 implies the existence of such a set which spans V . If our guess for r and T are
correct, then using the r tuples in T , we can create a basis {y1, . . . , yr} of V and interpolate
NonLin(f) in the monomial basis of yi’s, using black-box access to it. So for the correct
guesses, we will always be able to interpolate. An important point to note is that even
for incorrect guesses, if the interpolation is successful, it is guaranteed to be correct. With
high probability, our search would have reconstructed the circuit for r ≤ rank(f). Hence at
the end of the algorithm we have a ΣΠΣ(k,n, t, log ∣F∣) circuit computing NonLin(f) with
k ≤ trank(f). By Part 1 of Theorem 3, S(f) has size dO(1) and therefore the non deterministic

search has dO(log3 d) iterations. For every such iteration of the search, basis computation can
be done in (nd log ∣F∣)O(1) time, and interpolation of NonLin(f) takes (ntlog

3 d log ∣F∣)O(1)

time. Therefore over all we take (ndlog
3 d log ∣F∣)O(1) time.

3. Build Circuit(Step 3): The correctness and complexity of this stage are pretty straightforward.
It’s easy to see we output a ΣΠΣ(k,n, d, log ∣F∣) circuit computing f , with k ≤ trank(f), and

take (ndlog
3 d log ∣F∣)O(1) time.

3.1 Proof of Lemma 7

Since rank(f) ≥ 5, we know that NonLin(f) is a non-constant polynomial. Consider any linear
form `1 dividing T1. Since gcd(T1, T2) = 1, it’s easy to see that NonLin(f)∣{`1=0}

divides T2∣{`1=0}
≠ 0.

Hence, there exists an `2 dividing T2 such that `2∣{`1=0}
is a factor of NonLin(f)∣{`1=0}

, further

implying that NonLin(f) vanishes on the co-dimension 2 space {`1 = 0, `2 = 0}. Therefore S(f)
contains a tuple (p, q) of linear forms representing this co-dimension 2 space. It’s easy to see that
sp{`1, `2} = sp{p, q}. Similarly for every linear form `2 dividing T2 there exists some linear form `1
dividing T1, such that there is tuple (p, q) ∈ S(f) satisfying sp{`1, `2} = sp{p, q}. Now if we just
use this argument with rank(f) many independent linear forms dividing T1 or T2, we will end up
with rank(f) many tuples in S(f) spanning the space V spanned by linear factors of T1 and T2.

4 High Rank Reconstruction: Proof of Theorem 2

The algorithm in Theorem 2 is presented in Algorithm 1 and analysis is presented in Section 1.2.2.
Algorithm 1 uses Algorithms 4, 5 and 6. We present and analyze them in Sections 4.1, 4.2 and 4.3
respectively. Also, to complete our analysis given in Section 1.2.2 we provide a proof to Lemma
11 in Section 4.4. This lemma was used in stage “Compute linearly independent set dividing Ti”
of Algorithm 1. Since f ∈ ΣΠΣ(2, n, d,F) (Definition 2), throughout this section we will assume a

12

representation of the form
f = G × (T1 + T2)

whereG,T1, T2 are product of linear forms such that gcd(T1, T2) = 1. We define Vi = sp({linear form ` ∶
` ∣ Ti}) for i ∈ [2]. In the next subsection, we explain construction of the set of candidate linear
forms (Definition 6).

4.1 Computing Candidate Linear forms

Here is a lemma summarizing the construction of set L(f) of candidate linear forms (Definition 6).

Lemma 8. There exists a randomized algorithm that takes as input integers n, d and black-box
access to f , runs in time (nd log ∣F∣)O(1), and outputs a set L of linear forms such that,

Pr[L = L(f)] = 1 − o(1).

Our algorithm for the above lemma has three main stages: Separate linear/non-linear parts →
Join co-dimension 2 subspaces into candidates → Restrict non-linear parts and check factorization.
We first give the algorithm and then discuss correctness and complexity of each stage.

Algorithm 4 Candidate linear forms

Input - Black-box access to polynomial f , integers n, d.
Output - A set of linear forms L.

1. Using Algorithm 2 with inputs as black-box access to f and integers n, d, obtain list of
linear factors `1, . . . , `s and access to black-box computing NonLin(f). Compute degree of
NonLin(f) as t = d − s. ▷ Separate linear/non-linear parts

2. Using Algorithm 7, compute the set S(f) of tuples of linear forms representing co-dimension
2 subspaces on which NonLin(f) vanishes. Initialize L ← φ. For all pairs of tuples
(p1, q1), (p2, q2) ∈ S(f), check if sp{p1, q1} ∩ sp{p2, q2} = sp{`} (i.e. is one dimensional),
for some linear form `. If yes and no scalar multiple of ` is already present in L, then add `
to L. ▷ Join co-dimension 2 subspaces into candidates

3. For each ` ∈ L, simulate black-box computing NonLin(f)∣{`=0} . Using Lemma 3, check if this
black-box computes the 0 polynomial. If ’yes’, remove ` from L. Otherwise, using Algorithm
2, with inputs as this restricted black-box and integers n, t, compute list of linear factors and
check whether there are t of them. If not, then remove ` from L. Finally, Return L.

▷ Restrict non-linear parts and check factorization

We outline the correctness and complexity of all stages below.

1. Separate linear/non-linear parts(Step 1): Obvious using Algorithm 2.

2. Join co-dimension 2 subspaces into candidates(Step 2): This stage tries to obtain all linear
forms which satisfy second condition of Definition 6. Correctness is clear from Definition 6
and Algorithm 7. Algorithm 7 runs in (nd log ∣F∣)O(1) time. Part 1 of Theorem 3 implies
∣S(f)∣ ≤ 3d7, therefore iterating over all pairs of tuples in S(f), and taking intersection of the

13

2 dimensional space they form takes (nd log ∣F∣)O(1) time. Size bound on S(f) also implies
that at the end of this stage L has ≤ 9d14 elements.

3. Restrict non-linear parts and check factorization(Step 3): At the end of the previous stage,
we have all linear forms (dO(1) many) that satisfied second condition of Definition 6. In
this stage we select the linear forms which also satisfy the first condition of Definition 6.
Lemma 3 efficiently checks for non-zeroness, and then Algorithm 2 computes all linear fac-
tors of NonLin(f)∣{`=0} , and checks whether there are t = deg(NonLin(f)) such factors.

Correctness/Complexity of Lemma 3 and Algorithm 2 clearly imply that this stage takes
(nd log ∣F∣)O(1) time.

4.2 Reconstruction with linearly independent set dividing Ti given

Suppose we are given linearly independent linear forms u1, . . . , ut, t > 60 log d + 61, such that for
some i ∈ [2], all the uj ’s divide Ti. Then there exists an efficient reconstruction algorithm as
summarized in lemma below.

Lemma 9. There exists a randomized algorithm which takes as input integers n, d, black-box ac-
cess to polynomial f computable by a ΣΠΣ(2, n, d,F) circuit and linearly independent linear forms
u1, . . . , ut, t > 60 log d + 61 (for some i ∈ [2], all uj’s divide Ti), runs in time (nd log ∣F∣)O(1) and
with probability 1 − o(1) outputs a ΣΠΣ(2, n, d,F) circuit computing f .

We present the algorithm for proving the above lemma in Algorithm 5. The algorithm has two
stages: Compute and merge restrictions → Reconstruct and validate. We use Algorithm 5 of [Shp07]
in the “Compute and merge restrictions” stage to merge a collection of multi-sets corresponding to
restrictions of linear forms. More details on this merge algorithm can be found in Algorithm 5 and
Theorem 29 of [Shp07].

14

Algorithm 5 Linearly independent linear factors of a multiplication gate are known

Input - Black-box access to polynomial f , integers n, d, linear forms u1, . . . , ut, t > 60 log d+61.
Output - A ΣΠΣ(2, n, d,F) circuit C or #.

1. Extend {u1, . . . , ut} to a basis {u1, . . . , un} and define invertible transformation ui ↦ xi using
matrix A such that x = Au (u = (u1, . . . , un)). Simulate blackbox computing h(x) = f(Ax).
Using Algorithm 2 with inputs as black-box computing h and integers n, d, obtain all linear
factors `1, . . . , `s of h and black-box access to NonLin(h). Compute degree of NonLin(h) as
t = d−s. Remove all multiples of x1, . . . , xt from `1, . . . , `s and without loss of generality assume
that `1, . . . , `q are left after removal. Simulate black-box computing g = `1×. . . `q×NonLin(h).

2. For each i ∈ [t], simulate black-box computing g∣{xi=0}
and using Algorithm 2 with inputs as

this black-box, compute it’s factors. If there are non linear factors, Return #. Otherwise,
store factors in multi-set Ui. Using Algorithm 5 in [Shp07] merge the multi-sets Ui together
to obtain a multiset U . ▷ Compute and merge Restrictions

3. Construct the multi-set U ′ = {`∣{x1=0}
∶ ` ∈ U}. Check if this multi-set U ′ and U1 contain same

linear forms (upto multiplicity). If not, Return #. Otherwise compute scalar

α = ∏
`∈U1

`/ ∏
`∈U ′

`

by matching linear forms between the two sets. Simulate black-box computing g − α ∏
`∈U

`

and factorize this polynomial using Algorithm 2. If all factors are not linear, Return #.
Otherwise, store factors in multi-set V. Apply inverse transformation x↦A−1x to all linear
forms in U ,V. Simulate black-box for f − f ′, where

f ′ =
t

∏
i=1
ueii × (α∏

`∈U
` +∏

`∈V
`)

where ei is number of multiples of xi in the linear factors `1, . . . , `s. Using Lemma 4 for
ΣΠΣ(4, n, d,F) circuits, check if f −f ′ ≡ 0. If output is ’yes’, construct ΣΠΣ(2, n, d,F) circuit
C computing f ′ and Return C. If not, then Return #.

▷ Reconstruct and validate

We outline the correctness and complexity of all stages below.

1. Compute and merge restrictions(Steps 1,2): In this stage, we make some preparations to use
Algorithm 5 from [Shp07]. We first map our linearly independent set {u1, . . . , ut} onto the
variables {x1, . . . , xt} using an invertible transformation, apply it to the input black-box and
simulate black-box computing h(x) = f(Ax). All these steps clearly run in (n log ∣F∣)O(1)

time. Using Algorithm 2, for all xj we remove its multiples from h. Since uj divided Ti, the
polynomial g that remains still exhibits a ΣΠΣ(2, n, d,F) circuit, say g = H × (S1 + S2) with
H,S1, S2 being product of linear forms and gcd(S1, S2) = 1. It’s easy to see that reconstructing

15

this circuit is enough. Without loss of generality all xj divide S1 implying,

g∣{xj=0}
= (H × S2)∣{xj=0}

≠ 0.

We factorize the above using Algorithm 2, thereby computing multi-sets Uj containing all
linear factors of (H × S2)∣{xj=0}

correctly in (nd log ∣F∣)O(1) time. Since ∣Uj ∣ ≤ d and t >

60 log d + 61, all conditions of Algorithm 5([Shp07]) are met, and we use it to merge the Uj ’s
and obtain U such that H × S2 = α∏`∈U ` for some α ∈ F, as guaranteed by Theorem 29 of
[Shp07]. Running time of Algorithm 5([Shp07]) can be easily seen to be (nd log ∣F∣)O(1) time.

2. Reconstruct and validate(Step 3): In the previous stage, we computed a multi-set U containing
all linear factors of H ×S2 (upto scalar multiplication). To reconstruct, we first compute the
scalar α described above. We know that H × S2 = α ∏

`∈U
`. On restricting to {x1 = 0}, we see

that

α = (H × S2)∣{x1=0}
/∏

`∈U
`∣{x1=0}

.

Thus, α is easily computed by first computing set U ′ = {`∣{x1=0}
∶ ` ∈ U} and then matching

sets U1 and U ′. Once α is computed, we can simulate black-box computing g − α∏`∈U ` and
factorize it using Algorithm 2 to get all linear factors of H × S1. Then we apply inverse
transformation x ↦ A−1x on all linear forms in U ,V. Using `1, . . . , `s from Step 1, we can
easily find the largest power ei of xi that divides h and then construct a ΣΠΣ(2, n, d,F) circuit
C computing,

f ′ =
t

∏
i=1
ueii × (α∏

`∈U
` +∏

`∈V
`)

Finally we validate our solution by checking if f − f ′ ≡ 0. For this we simulate black-box
computing f − f ′ using C. Note that f − f ′ can be computed by a ΣΠΣ(4, n, d,F) circuit.
Therefore using Lemma 4, we can check whether f −f ′ ≡ 0 in (nd log ∣F∣)O(1) time and output
C if the test returns ’yes’ and # otherwise. Due to this, our output will always be correct.

4.3 Reconstruction when T1 (or T2) = αyt1

Suppose we know that one of the multiplication gates is power of a linear form (upto scalar multipli-
cation) y1 over F. In this case we need slightly different techniques. Here is a lemma summarizing
the reconstruction algorithm in this case.

Lemma 10. If for some i ∈ [2], Ti = αy
t
1 for some linear form y1 and α ∈ F, then there exists a

randomized algorithm that takes as input integers n, d and black-box access to polynomial f , runs
in time (nd log ∣F∣)O(1), and with probability 1−o(1) outputs a ΣΠΣ(2, n, d,F) circuit computing f .

Next, we give the algorithm mentioned in the above lemma. Our algorithm has three stages:
Obtain G and T1 + T2 → Guess y1 and compute α s.t. Ti = αyt1 → Reconstruct other gate and
validate.

16

Algorithm 6 A corner case

Input - Black-box access to polynomial f , integers n, d.
Output - A ΣΠΣ(2, n, d,F) circuit or #.

1. Using Algorithm 2 with inputs as black-box access to f and integers n, d compute linear
factors `1, . . . , `s and get access to black-box computing NonLin(f). Compute degree of
NonLin(f) as t = d − s. ▷ Obtain G and T1 + T2

2. Using Algorithm 4, compute set L(f). Iterate over linear forms y1 ∈ L(f).

(a) Simulate black-box for NonLin(f)∣{y1=0}
and using Algorithm 2 identify two linearly

independent factors say y2, y3. Extend {y1, y2, y3} to a linearly independent set
{y1, . . . , yn}. Compute invertible matrix A such that x = Ay. Simulate black-box for

g(x1, x2, x3) = NonLin(f)(Ax)∣{x4=...=xn=0}

(b) Interpolate g in monomial basis of F[x1, x2, x3]. Substitute x2 = βx1 in all monomials
and rearrange to get a representation in F[β][x1, x3]. Equate coefficient polynomials of
monomials containing x3 to 0 and solve the resulting system of equations using Lemma
2. If all y1’s have been tried and no solution was obtained, Return #. Otherwise, for
each solution, evaluate coefficient polynomial of xt1, creating a set of scalars.

▷ Guess y1 and compute α s.t. Ti = αy
t
1

(c) Iterate over all α’s in the set of scalars obtained above. Simulate black-box for
NonLin(f)−αyt1 and using Algorithm 2 check if it has t linear factors say `s+1, . . . , `s+t.
If not, then go to the next α. If all α have been tried, go to next y1 ∈ L(f). If all y1’s
have been tried, Return #. Otherwise, simulate black-box for f − f ′, where

f ′ = `1 × . . . × `s × (αyt1 + `s+1 × . . . × `s+t)

and using Lemma 4 for ΣΠΣ(4, n, d,F) circuits, check if f − f ′ ≡ 0. If output is ’yes’,
construct ΣΠΣ(2, n, d,F) circuit C computing f ′. Return C. If not, then go to next
α. If all α have been tried, go to next y1 ∈ L(f). If all y1’s have been tried, Return #.

▷ Reconstruct other gate and validate

We outline the correctness and complexity of all the stages below.

1. Obtain G and T1 + T2(Step 1): We claim the following. Proof of this claim is provided in
Appendix A.

Claim 1. Assume Ti = αy
t
1, for some i ∈ [2], α ∈ F and linear form y1. Then Lin(f) = G

(NonLin(f) = T1 + T2).

This claim implies that in Step 1, using Algorithm 2, we obtain all linear factors of G and
black-box access to T1 + T2 in (nd log ∣F∣)O(1) time.

2. Guess y1 and compute α s.t. Ti = αy
t
1(Steps 2(a),2(b)): We claim that y1 is already in L(f).

17

Claim 2. Assume Ti = αy
t
1, for some i ∈ [2], α ∈ F and linear form y1, then some scalar

multiple of y1 belongs to L(f).

Using the above claim, in this stage, we non-deterministically search for y1 inside L(f) and
use it to compute a set of size ≤ t which contains α satisfying Ti = αy

t
1. In last stage, the

reconstructed circuit is validated, and rejected if incorrect. So we show that the set of scalars
obtained at end of this stage contains the correct α when y1 is chosen correctly.

(a) This implies that (T1 +T2)∣{y1=0}
= T3−i∣{y1=0}

is a non-zero product of linear forms. Since

rank(f) ≥ 5, using Algorithm 2 on black-box computing T1 + T2 (that was obtained
in previous stage), we can easily find independent linear factors y2, y3 of T3−i∣{y1=0}

in

(nt log ∣F∣)O(1) time. Clearly, there is some β ∈ F such that (y2 − βy1) divides T3−i.
Computing these β’s will lead to us to computing a small set containing α.

(b) Extending {y1, y2, y3} to basis {y1, . . . , yn}, application of invertible transformation yi ↦
xi and restriction to {x4 = . . . = xn = 0} on black-box computing (T1+T2) are easily done
in (n log ∣F∣)O(1) time. Clearly g(x1, x2, x3) = αx

t
1+(x2−βx1)h(x1, x2, x3) for some poly-

nomial h. In (t log ∣F∣)O(1) time, we interpolate g in monomial basis of F[x1, x2, x3]. It’s
easy to see that g depends on x3 (y3 divides T3−i∣{y1=0}

), but g(x1, βx1, x3) is independent
of x3. We use this observation to compute set containing β.

(c) Substituting x2 = βx1 and computing coefficient polynomials in F[β] is easily done in
(t log ∣F∣)O(1) time. There are ≤ tO(1) many univariate coefficient polynomials(each of
degree ≤ t) corresponding to monomials containing x3. The system of equations defined
by these polynomials have ≤ t solutions since they are univariates. All solutions are
found in (t log ∣F∣)O(1) time using Lemma 2. Substituting x2 = βx1 with the correct β,
reduces g to αxt1 and therefore gives α. So we plug all solutions for β and create a set
of size ≤ t which contains α.

3. Reconstruct other gate and validate(Step 2(c)): We non-deterministically search for α in set
created during previous stage. As discussed earlier, we validate later for checking correctness.
Thus we only need to show that for correct choice of y1 and α, circuit is reconstructed
correctly. Note, when y1, α are correct, (T1 + T2) − αy

t
1 is a product of linear forms, say

`s+1, . . . , `s+t, which are found using Algorithm 2 in (nd log ∣F∣)O(1) time. Finally we validate
our solution by checking if f −f ′ ≡ 0, where f ′ = `1×. . .×`s×(αy

t
1+`s+1×. . .×`s+t). Polynomial

f − f ′ is clearly computable by a ΣΠΣ(4, n, d,F) circuit and a black-box computing it can be
simulated in (nd log ∣F∣)O(1) time using definition of f ′. Lemma 4, checks whether f − f ′ ≡ 0
in (nd log ∣F∣)O(1) time. If this validation fails we try the next guesses for α, y1. It’s easy to
see that the search over α, y1 happens at most dO(1) times. The validation ensures that we
only output the correct circuit.

4.4 Identify Linearly Independent Set Dividing Ti

In this subsection, our goal is to provide proof of Lemma 11. It plays a crucial role in Algorithm 1
as explained in Section 1.2.2, by optimizing the search for a large linearly independent set of linear
forms dividing one of T1, T2. As we mentioned earlier, [Shp07] compute such an independent set by
using a brute force search (Algorithm 4, [Shp07]) on the space of linear forms over many variables,
and therefore take quasi-polynomial time even before using this set in Algorithm 5 (of [Shp07]). We

18

significantly improve the search using candidate linear forms and ordinary lines among them. First,
in Section 4.4.1 below we give intuition about why set of candidate linear forms approximates set
of linear factors of T1×T2 and then in Section 4.4.2 use this set of candidate linear forms in Lemma
11 to construct the required linearly independent set. Define Vi = sp({linear form ` ∶ ` ∣ Ti}) for
i ∈ [2]. Results in this subsection are true under the assumption dim(Vi) ≥ 2. for i = 1,2.

4.4.1 Candidate set approximates set of linear forms dividing T1, T2

In order to quantify how close the candidate set is to the set of linear forms in the input circuit,
we define some new sets.

Lgood = {` ∈ L(f) ∶ ` ∣ T1 × T2}, Lbad = L(f) ∖Lgood,

Lothers = {` ∣ T1 × T2 ∶ sp(`) ∩L(f) = φ} and Lfactors = {` ∶ ` ∣ T1 + T2}

For all sets, we only keep linear forms upto scalar multiplication and therefore treat them as proper
sets (Definition 7). Lgood contains all candidate linear forms which also divide one of the two gates
T1, T2. Lbad are candidates which do not divide T1 or T2. Lother are linear forms dividing one of the
gates but not captured in the candidate set and Lfactors contain linear forms that divide T1 + T2.
In the following claim, we show that Lgood is high dimensional and Lbad,Lother are low dimensional
quantifying the closeness of L(f) to the set of linear forms dividing T1 × T2. We also show that
Lfactors is low dimensional. For better exposition, proof is provided in Appendix A.

Claim 3. The following claim is true about these newly constructed sets.

1. dim(sp(Lfactors)) ≤ log d + 2,

2. dim(sp(Lgood)) ≥ rank(f) − 2,

3. dim(sp(Lbad)) ≤ log d + 2, and

4. dim(sp(Lothers)) ≤ 2.

4.4.2 Proof of Lemma 11

In this subsection, we prove Lemma 11 which was used by Algorithm 1. Recall that rank(f) =

Ω(log3 d). We use definitions of Lgood,Lbad,Lother,Lfactors given in Section 4.4.1. Recall the defi-
nition of the set of ordinary lines from Definition 8.

Lemma 11. The following are true.

1. ∃ ` ∈ Lgood such that ordinary lines from ` into L(f) span an Ω(log2 d) dimensional space
⇒ ∃ a linearly independent subset X ⊂ L(f) of size Ω(log2 d) such that for all `′ ∈ X , sp{`, `′}
is an ordinary line from ` into L(f).

2. Let X be as described in the previous part. Then, every partition of X into Ω(log d) equal
parts of size Ω(log d) each, contains a part B such that B ⊂ Lgood and for every `′ ∈ B, sp{`, `′}
is an ordinary line into Lgood,Lbad,Lothers,Lfactors.

3. Consider any linear form `′ ∈ B. Assume ` divides Ti, then we can show that

NonLin(f)∣{`=0,`′=0} = 0⇔ `′ divides Ti.

19

Proof. We prove all parts one by one.

1. Let T ⊂ Lgood be a linearly independent set of size 126 log d+ 2 (exists by Claim 3). Applying
Lemma 1 on L(f) and T implies that there exists ` ∈ T such that

dim(∑
W ∈O(`,L(f))

W) ≥
dim(sp(L(f)))

126 log d + 2
≥
dim(sp(Lgood))

126 log d + 2
= Ω(log2 d)

Thus ordinary lines from ` into L(f) span a space of dimension Ω(log2 d) and therefore we
can compute the linearly independent set X of size 4(log d + 4)2 as required.

2. Consider any partition of X into Ω(log d) parts of size Ω(log d) each.

(a) We first claim that Ω(log d) parts in this partition are inside Lgood. If not, then Ω(log d)
parts intersect Lbad ⇒ dim(sp(Lbad)) = Ω(log d), contradicting Claim 3. Now we will
only deal with these Ω(log d) parts inside Lgood. Since Lgood,Lbad ⊂ L(f), we see that
for all `′ in any of these parts sp{`, `′} is an ordinary line in Lgood,Lbad as required.

(b) Next we show that out of the Ω(log d) parts inside Lgood, there is a part B such that for
all `′ ∈ B, sp{`, `′} is an ordinary line in Lothers,Lfactors, thereby completing the proof.
If not then there are Ω(log d) many `′’s, each belonging to a different part among the
Ω(log d) parts, such that sp{`, `′} intersects Lothers ∪ Lfactors at a linear form outside
sp{`}∪ sp{`′} say `′′. Since all the Ω(log d) `′’s are independent, the `′′’s span a spance
of Ω(log d)⇒ dim(sp(Lothers ∪Lfactors)) = Ω(log d), contradicting Claim 3.

Therefore, we have shown the existence of a part B as desired.

3. Without loss of generality assume ` divides T1. For all `′ ∈ B, we show

NonLin(f)∣{`=0,`′=0} = 0⇔ T2∣{`=0,`′=0} = 0⇔ `′ ∣ T2,

which completes the proof. Let H be product of all linear factors of T1 + T2. Therefore
(T1 + T2) =H ×NonLin(f). On restricting to the space {` = 0, `′ = 0}, we get

T2∣{`=0,`′=0} = (T1 + T2)∣{`=0,`′=0} =H∣{`=0,`′=0} ×NonLin(f)∣{`=0,`′=0}

The first equality holds since ` ∣ T1.

• (First ⇔) NonLin(f)∣{`=0,`′=0} = 0 ⇒ T2∣{`=0,`′=0} = 0 is obvious from the above equation.
The other direction is also true. If not then by the equation above, H∣{`=0,`′=0} = 0 ⇒

sp{`, `′} intersects Lfactors. The intersection cannot happen inside sp{`} ∪ sp{`′} since
both `, `′ divide T1 or T2 and can’t divide T1 + T2(as gcd(T1, T2) = 1).

• (Second ⇔) `′ ∣ T2 ⇒ T2∣{`=0,`′=0} = 0 is obvious. For the other direction, observe that,

T2∣{`=0,`′=0} = 0 ⇒ there is some `′′ dividing T2 such that `′′ ∈ sp{`, `′}. Clearly `′′ ∈

Lgood ∪ Lothers (since they together contain all linear factors of T1, T2). We know from
the previous part that sp{`, `′} is an ordinary line in Lgood∪Lothers ⇒ `′′ ∈ sp{`}∪sp{`′}.
gcd(T1, T2) = 1 implies that `, `′′ are not scalar multiples, therefore `′′ ∈ sp{`′}⇒ `′ ∣ T2,
completing the proof.

20

5 Co-dim 2 subspaces where f vanishes: Proof of Theorem 3

In this section we prove Theorem 3. Part 1 is proved in Section 5.1. Algorithm proving Part
2 is presented in Algorithm 7 and it’s correctness/complexity are analyzed in Section 5.2. Since
our input polynomial f is computable by a ΣΠΣ(2, n, d,F) circuit we write f = G × (T1 + T2),
where G,T1, T2 are product of linear forms and gcd(T1, T2) = 1. Recall the definition of NonLin(f)
(Definition 5), which denotes the “non-linear” part of f . The set of co-dimension 2 subspaces on
which NonLin(f) vanishes is denoted by S(f)11.

5.1 Proof of Part 1

Let W ⊂ Fn be a co-dimension 2 subspace on which NonLin(f) vanishes. Since NonLin(f) divides
T1 + T2 we get that T1∣W + T2∣W = 0. This implies that either T1∣W = T2∣W = 0, or T1∣W = −T2∣W ≠ 0.
We prove the following lemma which implies the bound.

Lemma 12. The following are true.

1. #{W ⊂ Fn ∶ codim(W) = 2, T1∣W = T2∣W = 0} ≤ d2.

2. #{W ⊂ Fn ∶ codim(W) = 2, T1∣W = −T2∣W ≠ 0} ≤ d5 + d7.

Proof of Part 1: We are given that T1∣W = T2∣W = 0⇒ there are linear forms `1 ∣ T1 and `2 ∣ T2
such that `1∣W = `2∣W = 0. Also, `1, `2 are linearly independent since gcd(T1, T2) = 1. Since W
is a co-dimension 2 subspace of Fn, we get that W = {`1 = 0, `2 = 0}. There are ≤ d2 such W ’s
completing the proof.

Proof of Part 2: We use the following lemma to prove this part. For clarity of presentation, we
move it’s proof to Appendix B.

Lemma 13. There exists a set A of co-dimension 1 subspaces of Fn with ∣A∣ ≤ d4 + d6 such that
for every co-dimension 2 subspace W ⊂ Fn satisfying T1∣W = −T2∣W ≠ 0 , ∃ V ∈ A with W ⊂ V .

Assuming Lemma 13, we complete the proof as follows. For every W on which NonLin(f)
vanishes and T1∣W = −T2∣W ≠ 0, we consider any V = {` = 0} ∈ A given by Lemma 13 such that
W ⊂ V . We can now get a representation of W as W = {` = 0, `′ = 0} for some linear form
`′. From here we claim that `′′ = `′∣V is then a linear form (in one less variable) that divides
polynomial NonLin(f)∣V , implying that there are ≤ d such `′′ upto scalar multiplication. Note
that W = {` = 0, `′ = 0} = {` = 0, `′′ = 0} and therefore there can be at most (d4 + d6) × d many such
W ’s. Our claim is implied by the following easy to verify statement.

NonLin(f)∣W = 0⇒ (NonLin(f)∣V)∣{`′′=0} = 0

5.2 Analysis of Algorithm 7

Our algorithm can be divided into five main stages: Transform → Restrict → Compute → Merge →
Validate. We first give the algorithm and then discuss correctness and complexity of each stage.

11we compute this as a set of tuples of linearly independent linear forms

21

Algorithm 7 Compute co-dimension 2 subspaces on which NonLin(f) vanishes

Input - Black-box access to polynomial f , integers n, d.
Output - A set S of tuples of independent linear forms in F[x1, . . . , xn].

1. Pick a random matrix A ∈ Fn×n. If A is not invertible, Return φ. Else, simulate black-box
for g(x) = f(Ax). ▷ Transform

2. Using Algorithm 2 with inputs as black-box access to g along with integers n, d obtain black-
box access to NonLin(g) and integer s denoting the number of linear factors of g. Define
t = d − s. For every i ∈ [5, n], simulate black-box for the restricted polynomial

hi = NonLin(g)(x1, x2, x3, x4,0, . . . ,0, xi,0, . . . ,0).

Using multivariate polynomial interpolation, with inputs as this black-box computing hi and
integer t, interpolate hi as a homogeneous polynomial of degree t and get it’s coefficients.

▷ Restrict

3. Substitute x1 = y3x3 + y4x4 + yixi, and x2 = z3x3 + z4x4 + zixi in gi to obtain a polynomial in
F[y3, y4, yi, z3, z4, zi][x3, x4]. Find common solutions to the system of polynomial equations
defined by setting all coefficient polynomials (∈ F[y3, y4, yi, z3, z4, zi]) to zero. Initialize a set
Si ← φ and for each solution (y3, y4, yi, z3, z4, zi) of the system above add tuple (x1 − y3x3 −
y4x4 − yixi, x2 − z3x3 − z4x4 − zixi) to Si. ▷ Compute

4. Construct a matrix B = (Bi,j) ∈ Fn×n as follows.

Bi,j =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 i = j

uniform(F) (i, j) ∈ [5, n] × [3,4]

0 otherwise

Where uniform(F) is sampled from the uniform distribution on F. Replace each tuple
(p(x), q(x)) ∈ ⋃

i∈[5,n]
Si, with (p(Bx), q(Bx)). Initialize a set S ← φ.

5. For each tuple (x1 − αx3 − βx4 − γx5, x2 − δx3 − θx4 − ψx5) ∈ S5, initialize linear forms `1 ←
x1 − αx3 − βx4 − γx5 and `2 ← x2 − δx3 − θx4 − ψx5.

(a) For each i ∈ [6, n], try to find tuple (x1−αx3−βx4−κxi, x2−δx3−θx4−ωxi) ∈ Si for some
κ,ω ∈ F. If only one such tuple is found in Si then update `1 ← `1−κxi and `2 ← `2−ωxi.
If multiple or no tuples are found in Si then break out of this loop and go to the next
tuple in Step 5.

(b) Update S ← S ∪ {(`1(B
−1x), `2(B

−1x))} ▷ Merge

6. For each (`1, `2) ∈ S, simulate black-box access to polynomial

NonLin(g)∣{`1=0,`2=0}
.

Using randomized polynomial identity test given in Lemma 3 with input as the above black-
box and integer n, check if it is identically the zero polynomial. If ’no’, remove the tuple from
S, else replace it with (`1(A

−1x), `2(A
−1x)). Return S. ▷ Validate

22

We outline the correctness and complexity of all the stages below.

1. Transform(Step 1): In this stage, we apply a random transformation on our variables to help
us deal with some degeneracy later. By Part 1 of Fact 1, A is invertible and we proceed.
Black-box for g can be easily simulated in (n log ∣F∣)O(1) time. Since rank(g) ≥ 5, Part 1 of
Theorem 3 implies that ∣S(g)∣ = dO(1) and we try to compute this set first. It’s easy to see that
NonLin(f) vanishes on {`1 = 0, `2 = 0}⇔ NonLin(g) vanishes on {`1(Ax) = 0, `2(Ax) = 0}.
Part 2 of Fact 1 implies that every co-dimension 2 subspace on which NonLin(g) vanishes has
the form W = {x1 − `1(x3, . . . , xn) = 0, x2 − `2(x3, . . . , xn) = 0}. So we only need to construct
such spaces.

2. Restrict(Step 2): In this stage, for each i ∈ [5, n] we compute restriction of NonLin(g) to
subspaces Vi = {x5 = . . . = xi−1 = xi+1 = . . . xn = 0} and then in (t log ∣F∣)O(1) time interpolate to
get their monomial representation in F[x1, x2, x3, x4, xi]. Algorithm 2 implies that NonLin(g)
is correctly computed from black-box computing g in (nd log ∣F∣)O(1) time. Parts 4 and 3
of Fact 1 imply that NonLin(g∣Vi

) = NonLin(g)∣Vi
(upto scalar multiplication) and that

rank(g∣Vi
) ≥ 5 ⇒ ∣S(g∣Vi

)∣ = dO(1) Part 1 of Theorem 3. These further imply that for all

co-dimension 2 subspaces {`1 = 0, `2 = 0} on which NonLin(g) vanishes, the restriction
NonLin(g)∣Vi

vanishes on {`1∣Vi
= 0, `2∣Vi

= 0}, and,NonLin(g)∣Vi
vanishes on at most dO(1)

co-dimension 2 subspaces. So we first try to compute co-dimension 2 subspaces on which
NonLin(g)∣Vi

vanishes.

3. Compute(Step 3): To compute co-dimension 2 subspaces on which NonLin(g)∣Vi
vanishes, we

simply substitute x1 = y3x3+y4x4+yixi and x2 = z3x3+z4x4+zixi in every monomial and set the
resulting polynomial to 0. This gives us a system of tO(1) many polynomial equations of degree
≤ t in 6 variables y3, y4, yi, z3, z4, zi. It’s easy to see that the coefficient polynomials can be
computed in (t log ∣F∣)O(1) time. Each solution to this system uniquely defines a co-dimension
2 subspace on which NonLin(g)∣Vi

vanishes. By discussion above, each such system has at

most dO(1) solutions. Therefore, using Lemma 2, for each i we can compute all solutions in
(d log ∣F∣)O(1) time, giving us sets Si that contain tuples (x1−y3x3−y4x4−yixi, x2−z3x3−z4x4−
zixi) representing co-dimension 2 subspaces {x1−y3x3−y4x4−yixi = 0, x2−z3x3−z4x4−zixi = 0}.
We show in the merge stage that it is enough to only compute subspaces of this kind.

4. Merge(Steps 4-5): In this stage, we merge the elements from different Si computed in the
previous stage. As explained in the Transform stage above, all co-dimension 2 spaces where
NonLin(g) vanishes have the form:

W = {x1 − `1(x3, . . . , xn) = 0, x2 − `2(x3, . . . , xn) = 0}.

Also from discussion in the Restrict stage above, we know that, for any such W , NonLin(g)∣Vi
vanishes on {x1 − `1(x3, . . . , xn)∣Vi

= 0, x2 − `2(x3, . . . , xn)∣Vi
= 0} and so tuple corresponding

to it has been computed in the previous stage. Hence the plan is to merge these tuples for
i ∈ [5, n] to get tuple of linear forms representing W . However, simply merging them is not
possible due to some degenerate cases and so we apply another random transformation. We

23

use a random matrix B = (Bi,j) defined as:

Bi,j =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 i = j

uniform(F) (i, j) ∈ [5, n] × [3,4]

0 otherwise

where uniform(F) is sampled uniformly randomly from F. It’s easy to see that B is invertible
and so is the transformation x ↦ Bx. For each set Si, this transformation is applied to all
tuples by applying it to linear forms in the tuple. Note that applying this transformation does
not affect the coefficients of x1, x2 and therefore the form we mention is maintained. Since
size of Si is bounded by 3d7 as argued in the previous stage, for each Si the transformation
takes (d log ∣F∣)O(1) time. Now we can show that the merge is possible for any co-dimension
2 subspace W that we considered. Consider a tuple in S5 that looks like (x1 − αx3 − βx4 −
γx5, x2−δx3−θx4−ψx5). We iterate through Si

12, i ∈ [6, n] and look for tuples of linear forms
which match with the above tuple in coefficients of x1, x2, x3, x4 and are therefore of the kind
(x1 −αx3 − βx4 − κx5, x2 − δx3 − θx4 − ωx5). Using our discussion above, there is at least one
such tuple in every Si

13. By Fact 2, there can be at most one such tuple. Therefore we will be
able to merge these tuples and create a tuple of linear forms, which after applying the inverse
transformation x ↦ B−1x represents W . All Si had size ≤ 3d7 and therefore the merged set
can have at most 3nd7 tuples. Due to the efficient merge process, we take (nd log ∣F∣)O(1)

time in this stage.

5. Validate(Step 6): As discussed above, the previous stage gives us a set (of tuples of linear
forms) of size ≤ 3nd7. Also by the discussion above, tuples representing all co-dimension 2
subspaces where NonLin(g) vanishes will be in this set. However we might have added more
tuples and so we complete the algorithm by pruning this set and throwing away tuples for
which NonLin(g) does not vanish on the subspace they represent. This is easily done by
iterating through all the tuples (`1, `2) and simulating black-box for NonLin(g)∣{`1=0,`2=0}

and
then using efficient randomized black-box polynomial identity test in Lemma 3 to check if this
restricted polynomial is identically 0. The black-box can be easily simulated in (n log ∣F∣)O(1)

time. We have computed S(g) and by applying inverse transformation x ↦ A−1x to each
tuple in S(g), we get S(f). Clearly, these operations take (nd log ∣F∣)O(1) time.

6 Ordinary lines span large space: Proof of Lemma 1

In this section we present our proof of Lemma 1. The proof is immediately implied by Lemma 14
which is itself proved using Lemma 15. Recall definition of set of ordinary lines(Definition 8).

Lemma 14. Let S ⊂ Fn be a proper set (Definition 7) and T ⊂ Fn be any linearly independent set
of size log ∣S ∣ + 2. Then, the following holds.

sp(S) ⊆ ∑
t∈T

∑
W ∈O(t,S)

W

12after the transformation
13corresponding to restrictions of linear forms representing W after transformation

24

Proof of Theorem 1 using Lemma 14: By simply taking dimension of both sides in the con-
tainment, applying union bound on the right hand side and assuming t ∈ T maximizes dim(∑W ∈O(t,S)W)),
we get

dim(∑
W ∈O(t,S)

W) ≥
dim(sp(S))

log ∣S ∣ + 2
.

which proves Theorem 1. So we are left with proving Lemma 14.

Proof of Lemma 14 Let V be the vector space ∑t∈T ∑W ∈O(t,S)W . We define set S ′ = S ∖ V .
Clearly S ′ is a proper set. We will show that S ′ = φ⇒ sp(S) ⊂ V . If not, we show that there cannot
be any ordinary line from T into S ′. Suppose there is some such line sp{t, s} where t ∈ T and s ∈ S ′

are not scalar multiples. Since it is an ordinary line into S ′, we get that sp{s, t}∩S ′ ⊂ sp{s}∪sp{t}.
Then one of the following mutually exclusive statements will obviously be true.

1. sp{s, t} ∩ V ⊂ sp{s} ∪ sp{t}

2. sp{s, t} ∩ V /⊂ sp{s} ∪ sp{t}

In the first case, since S = S ′ ∪ (S ∩ V)⇒ sp{s, t} ∩ S ⊂ sp{s} ∪ sp{t}. Therefore it is an ordinary
line into S. But all such lines are subsets of V ⇒ s ∈ V which is a contradiction since s ∈ S ′ which
is disjoint from V . In the second case, there is some v ∈ sp{s, t} ∩ V such that v ∉ sp{s} ∪ sp{t}.
Therefore t, s, v are linearly dependent but t, s and s, v are not ⇒ s ∈ sp{t, v}. Both t, v are in V
by construction and thus s ∈ V which is again a contradiction since s ∈ S ′ which is disjoint from V .
Therefore if S ′ is non-empty, there are no ordinary lines from T into S. Now we use Lemma 15
and complete the proof. We will prove Lemma 15 after the current proof.

Lemma 15. Let S(≠ φ) ⊂ Fn be a proper set and T ⊂ Fn be linearly independent such that for
every t ∈ T , there is no ordinary line (Definition 8) from t into S. Then ∣T ∣ ≤ log ∣S ∣ + 1.

Using Lemma 15 with S ′ and T , we get that log ∣S ∣+2 = ∣T ∣ ≤ log ∣S ′∣+1 which is a contradiction
since S ′ ⊂ S. Therefore, the only conclusion left is S ′ = φ, which completes the proof of our lemma
as explained earlier.

Proof of Lemma 15: Let ∣T ∣ = d and ∣S ∣ = m. We present a counting argument by building
a one-to-one function mapping subsets of [d − 1] into S. Such a function clearly implies that
m ≥ 2d−1 and we’ll be done. The following describes this one-to-one function. Fix an element s ∈ S
and let T = {t1, . . . , td}. Without loss of generality we may assume that s, t1, . . . , td−1 are linearly
independent.

Claim 4. For any subset P ⊂ [d − 1], there exists sP ∈ S in the interior14 of sp{{ti ∶ i ∈ P} ∪ {s}}.

Proof. We prove by induction on ∣P ∣. For ∣P ∣ = 0, define sP = s and we are done. Let’s assume
the claim is true for ∣P ∣ = k − 1. We prove it for ∣P ∣ = k. Consider any element p ∈ P and let
R = P ∖ {p}. By induction, we know there exists sR in the interior of sp{{ti ∶ i ∈ R} ∪ {s}}.
Since there is no ordinary line from any t ∈ T into S, the line sp{tp, sR} contains sP ∈ S such that
sP ∉ sp{tp} ∪ sp{sR}⇒ sP = αtp + βsR with α,β ∈ F being non-zero scalars ⇒ sP is in the interior
of sp{{ti ∶ i ∈ P} ∪ {s}} and the proof is complete.

14“interior” means that when sP is written as a linear combination of {{ti ∶ i ∈ P}∪{s}}, all coefficients are non-zero

25

We can see that the function mapping P ⊂ [d − 1] to sP ∈ S, is one-to-one since for sets
P,Q ⊂ [d− 1], which differ at some j ∈ [d− 1], exactly one of sP , sQ has a non-zero coefficient of tj ,
implying they are different. This completes the proof.

7 Acknowledgements

We would like to thank Vineet Nair for helping with organization and presentation of the paper.
He also provided multiple insights about the content which led to better presentation. We would
also like to thank Neeraj Kayal and Chandan Saha for helpful comments on an early presentation
of this work. Neeraj Kayal introduced the author to black-box reconstruction problems for depth
three circuits. The simple idea behind proof of Lemma 15, presented in this paper was shared with
the author by Neeraj Kayal during a discussion. We would also like to thank Anuja Sharan for
proofreading and helping in preparation of this paper.

References

[Ang88] Dana Angluin. Queries and concept learning. Mach. Learn., 2(4):319–342, April 1988.

[DS05] Zeev Dvir and Amir Shpilka. Locally decodable codes with 2 queries and polynomial
identity testing for depth 3 circuits. In Proceedings of the Thirty-Seventh Annual ACM
Symposium on Theory of Computing, STOC ’05, page 592–601, New York, NY, USA,
2005. Association for Computing Machinery.

[Dvi12] Zeev Dvir. Incidence theorems and their applications. Foundations and Trends® in
Theoretical Computer Science, 6(4):257–393, 2012.

[GKL12] Ankit Gupta, Neeraj Kayal, and Satyanarayana V. Lokam. Reconstruction of depth-4
multilinear circuits with top fan-in 2. In Proceedings of the 44th Symposium on Theory
of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages
625–642, 2012.

[Ier89] Douglas John Ierardi. The Complexity of Quantifier Elimination in the Theory of an
Algebraically Closed Field. PhD thesis, Cornell University, USA, 1989. AAI9001370.

[Kal91] Erich Kaltofen. Effective noether irreducibility forms and applications. In Proceedings of
the Twenty-Third Annual ACM Symposium on Theory of Computing, STOC ’91, page
54–63, New York, NY, USA, 1991. Association for Computing Machinery.

[KS03] Adam R. Klivans and Amir Shpilka. Learning arithmetic circuits via partial derivatives.
In Bernhard Schölkopf and Manfred K. Warmuth, editors, Learning Theory and Kernel
Machines, pages 463–476, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[KS09] Zohar S. Karnin and Amir Shpilka. Reconstruction of generalized depth-3 arithmetic
circuits with bounded top fan-in. In Proceedings of the 2009 24th Annual IEEE Conference
on Computational Complexity, CCC ’09, pages 274–285, Washington, DC, USA, 2009.
IEEE Computer Society.

26

[KS18] Neeraj Kayal and Chandan Saha. Reconstruction of non-degenerate homogeneous depth
three circuits. In STOC, 2018.

[KT90] Erich Kaltofen and Barry M. Trager. Computing with polynomials given by black boxes
for their evaluations: Greatest common divisors, factorization, separation of numerators
and denominators. J. Symb. Comput., 9:301–320, 1990.

[Laz01] Daniel Lazard. Solving systems of algebraic equations. SIGSAM Bull., 35(3):11–37,
September 2001.

[Sax09] Nitin Saxena. Progress on polynomial identity testing. Bulletin of the EATCS, 99:49–79,
2009.

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J.
ACM, 27(4):701–717, October 1980.

[Shp07] Amir Shpilka. Interpolation of depth-3 arithmetic circuits with two multiplication gates.
SIAM J. Comput., 38:2130–2161, 2007.

[Sin16a] Gaurav Sinha. Blackbox Reconstruction of Depth Three Circuits with Top Fan-In Two.
PhD thesis, California Institute of Technology, Pasadena, CA, USA, 2016.

[Sin16b] Gaurav Sinha. Reconstruction of real depth-3 circuits with top fan-in 2. In Proceedings of
the 31st Conference on Computational Complexity, CCC ’16, pages 31:1–31:53, Germany,
2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[SS11] Nitin Saxena and C. Seshadhri. Blackbox identity testing for bounded top fanin depth-
3 circuits: The field doesn’t matter. In Proceedings of the Forty-third Annual ACM
Symposium on Theory of Computing, STOC ’11, pages 431–440, New York, NY, USA,
2011. ACM.

[SS13] Nitin Saxena and C. Seshadhri. From sylvester-gallai configurations to rank bounds:
Improved blackbox identity test for depth-3 circuits. J. ACM, 60(5), October 2013.

[SW99] Amir Shpilka and Avi Wigderson. Depth-3 arithmetic circuits over fields of characteristic
zero. Computational Complexity, 10:1–27, 1999.

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and
open questions. Foundations and Trends® in Theoretical Computer Science, 5(3–4):207–
388, 2010.

[Wig06] Avi Wigderson. P, np and mathematics - a computational complexity perspective. Pro-
ceedings oh the International Congress of Mathematicians, Vol. 1, 2006-01-01, ISBN
978-3-03719-022-7, pags. 665-712, 1, 01 2006.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the
International Symposiumon on Symbolic and Algebraic Computation, EUROSAM ’79,
page 216–226, Berlin, Heidelberg, 1979. Springer-Verlag.

27

A Proof of Claims 1, 2 and 3

A.1 Proofs of Claims 1 and 2

In these claims we are given that Ti = αy
t
1 for some i ∈ [2], α ∈ F and linear form y1.

1. To see the proof of Claim 1, consider any linear factor ` of T1 + T2. Clearly ` ∤ T1, T2 since
gcd(T1, T2) = 1. So on restriction to {` = 0}, we get that T1∣{`=0} = −T2∣{`=0} ≠ 0. Both sides

are non-zero products of linear forms(in one less variable) and so by unique factorization we
can match factors(upto scalar multiplication). This clearly implies that dim({linear form ` ∶
` ∣ T1}) and dim({linear form ` ∶ ` ∣ T2}) cannot differ from each other by more than 1. But
since rank(f) = Ω(log3 d), this cannot happen since one of the Ti’s spans a one dimensional
space. Therefore T1 + T2 has no linear factors and we are done.

2. To see proof of Claim 2, without loss of generality assume y1 ∣ T1. Using Claim 1 we know
that

0 ≠ T2∣{y1=0}
= (T1 + T2)∣{y1=0}

= NonLin(f)∣{y1=0}

So first condition of Definition 6 is satisfied. As argued in Claim 1, rank(f) ≥ Ω(log3 d) ⇒
linear forms dividing T2, span a Ω(log3 d) dimensional space. Since T2∣{y1=0}

is non-zero, it’s

factors also span Ω(log3 d) dimensional space and so there exist two linearly independent
factors y2, y3 of T2 such that NonLin(f){y1=0,y2=0} and NonLin(f){y1=0,y3=0} are both zero,
implying that second condition of Definition 6 is also satisfied. Therefore, some scalar multiple
of y1 ∈ L(f).

A.2 Proof of Claim 3

Recall definition of sets,

Lgood = {` ∈ L(f) ∶ ` ∣ T1 × T2}, Lbad = L(f) ∖Lgood,

Lothers = {` ∣ T1 × T2 ∶ sp(`) ∩L(f) = φ} and Lfactors = {` ∶ ` ∣ T1 + T2}

For all sets, we keep linear forms upto scalar multiplication and therefore treat them as proper sets
(Definition 7). Below we prove all parts of Claim 3.

1. dim(sp(Lfactors)) ≤ log d+2: By definition Lfactors is the set of all factors of T1+T2. Consider
any linearly independent subset B ⊂ Lfactors and let ` ∈ B. Restricting T1 + T2 to {` = 0}
gives T1∣{`=0} = −T2∣{`=0} ≠ 0. So for every linear form `1 ∣ T1 there exists `2 ∣ T2 such that

`2 ∈ sp{`, `1}. Since `2 ∉ sp{`}∪ sp{`1}, this means that sp{`, `1} is not an ordinary line from
` into the proper set L containing linear factors of T1, T2. This set has size ≤ 2d. Since ` was
arbitrary in B, there are no ordinary lines from B into L. So using Lemma 15 we get that
∣B∣ ≤ log ∣L∣ + 1 = log d + 2, completing the proof.

2. dim(sp(Lgood)) ≥ rank(f) − 2 and Lothers ≤ 2: Recall definition Vi = {linear form ` ∶ ` ∣ Ti}.
We break the proof into two cases. Note that linear forms dividing T1, T2 clearly satisfy first
condition of Definition 6. So whenever we are trying to show that they belong to L(f), we
only prove that they satisfy second condition of Definition 6.

28

(a) First we discuss the case dim(Vi) ≥ log d+5 for all i ∈ [2]. Let H be such that T1+T2 =H×

NonLin(f). On restricting to {` = 0}, we see that T2∣{`1=0}
=H∣{`1=0}

×NonLin(f)∣{`1=0}
≠

0. Dimension of span of linear factors of T2∣{`1=0}
is at least log d + 4 by assumption in

this case. By previous part, dim(sp(Lfactors)) ≤ log d + 2 ⇒ NonLin(f)∣{`1=0}
has two

independent linear factors. Using these we can satisfy second condition of Definition
6 for `1 ⇒ some scalar multiple of `1 ∈ L(f). The same argument can be repeated
for a linear factor `2 ∣ T2. Thus all linear factors of T1 × T2 are in L(f) (upto scalar
multiplication) ⇒ dim(Lgood) = rank(f). This also implies that dim(Lothers) = 0.

(b) In the case when dim(Vi) ≤ log d+4 for some i ∈ [2], we know that dim(V3−i) = Ω(log3 d)
and therefore by an argument similar to the one given in proof of Claim 1, NonLin(f) =
T1 + T2. Consider any basis {`1, . . . , `r} of V1 + V2. If dim(Vi) ≥ 3 for all i ∈ [2], then
using a similar argument as before, we can show that all `i satisfy second condition in
Definition 6 ⇒ dim(Lgood) = rank(f) ⇒ dim(Lothers) = 0. In case for some i ∈ [2],
dim(Vi) = 2 (recall we have assumed dim(Vi) ≥ 2 in the statement of Claim 3), then all
linear forms dividing T3−i are not contained in Vi and hence satisfy second condition of
Definition 6. Thus dim(Lgood) ≥ rank(f) − 2 and dim(Lothers) ≤ 2.

3. dim(sp(Lbad)) ≤ log d+2: Assume dim(Lbad) ≥ log d+3. Consider the proper set L containing
all linear factors of T1, T2 ⇒ ∣L∣ ≤ 2d ⇒ ∣Lbad∣ ≥ log ∣L∣ + 2. Let T ⊂ Lbad be a linearly
independent set of size log ∣L∣ + 2. Then by Lemma 1, there exists t ∈ T such that ordinary

lines from t into L span a space of dimension ≥
dim(sp(L))
log ∣L∣+2 ≥

rank(f)
log d+3 = Ω(log2 d). Since t ∈ Lbad,

restricting T1 + T2 to {t = 0} gives some non-zero product of linear factors, say H.

T1∣{t=0} + T2∣{t=0} −H = 0

This gives an identically zero ΣΠΣ(3, n, d,F) circuit. Since t ∈ Lbad, it does not divide T1, T2 ⇒
the above circuit is minimal (Definition 1.2 in [SS13]). After cancelling common linear forms
from the three gates T1∣{t=0} , T2∣{t=0} ,H, we have a simple and minimal (Definition 1.2 in

[SS13]), identically zero ΣΠΣ(3, n, d,F) circuit. It’s easy to see that the Ω(log2 d) ordinary
lines from t into L imply that after cancelling the common linear forms, the simple minimal
circuit has rank Ω(log2 d) which is a contradiction to Lemma 5. Thus we conclude that
dim(sp(Lbad)) ≤ log d + 2.

B Proof of Lemma 13

Let Ti =
m

∏
j=1

`i,j where `i,j are linear forms. Consider W = {`1 = 0, `2 = 0}15 such that

m

∏
j=1

`1,j ∣W = −
m

∏
j=1

`2,j ∣W ≠ 0.

Note that `i,j ∣W can be thought of as linear forms over F in n − 2 variables, and by using unique
factorization of polynomials over F, without loss of generality we can assume `1,j ∣W = βj`2,j ∣W for

15`1, `2 are linear forms in F[x]

29

some 0 ≠ βj ∈ F. This implies Uj = sp{`1,j , `2,j}
16 intersects U = sp{`1, `2} non-trivially. Since

`i,j ∣W ≠ 0, we know that U ≠ Uj ⇒ U ∩Uj is 1 dimensional17. We split the proof into two cases:

• There exist two distinct spaces, say Ui, Uj such that U ∩ Ui = U ∩ Uj : This implies
U∩Ui ⊂ Ui∩Uj . The space Ui∩Uj is 1 dimensional since Ui, Uj are distinct, say Ui∩Uj = sp{`}.
Both sides of the containment U ∩Ui ⊂ Ui ∩Uj are 1 dimensional implying Ui ∩Uj = U ∩Ui ⊂

U = sp{`1, `2}. This further implies that ` ∈ U ⇒W ⊂ {` = 0} = V . There are ≤ d4 choices for
such Ui, Uj and therefore d4 possibilities for such V .

• For all distinct Ui, Uj, U ∩Ui ≠ U ∩Uj : It’s easy to see that U ∩Ui+U ∩Uj is 2 dimensional,
since it is a sum of disjoint 1 dimensional spaces. U is also 2 dimensional⇒ U = U∩Ui+U∩Uj ⊂

Ui +Uj . Using statement of Theorem 3, we know that

5 ≤ rank(f) = dim(sp{`i,j}) = dim(
m

∑
j=1

Uj) ≤
m

∑
j=1

dim(Uj).

dim(Ui + Uj) ≤ 4, thus there exists Uk such that Uk /⊂ Ui + Uj . Note that this would imply
that Uk ∩ (Ui +Uj) has dimension ≤ 1. Since U ⊂ Ui +Uj , we get that Uk ∩U ⊂ Uk ∩ (Ui +Uj).
Both sides are 1 dimensional. Writing Uk ∩ (Ui + Uj) = sp{`} ⇒ ` ∈ U ⇒ W ⊂ {` = 0} = V .
There are ≤ d6 choices for Ui, Uj , Uk and so ≤ d6 possibilities for such V .

A is collection of all V ’s obtained above. Clearly ∣A∣ ≤ d4+d6 and A satisfies the required conditions.

16`1,j , `2,j are linearly independent since gcd(T1, T2) = 1
17since both U,Uj are 2 dimensional

30

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

