
Indistinguishability Obfuscation from
Well-Founded Assumptions

Aayush Jain* Huijia Lin† Amit Sahai‡

August 18, 2020

Abstract

In this work, we show how to construct indistinguishability obfuscation from
subexponential hardness of four well-founded assumptions. We prove:

Theorem (Informal). Let τ ∈ (0,∞), δ ∈ (0, 1), ε ∈ (0, 1) be arbitrary constants. As-
sume sub-exponential security of the following assumptions, where λ is a security
parameter, and the parameters `, k, n below are large enough polynomials in λ:

• the SXDH assumption on asymmetric bilinear groups of a prime order p =
O(2λ),

• the LWE assumption over Zp with subexponential modulus-to-noise ratio 2k
ε
,

where k is the dimension of the LWE secret,

• the LPN assumption over Zp with polynomially many LPN samples and error
rate 1/`δ, where ` is the dimension of the LPN secret,

• the existence of a Boolean PRG in NC0 with stretch n1+τ ,

Then, (subexponentially secure) indistinguishability obfuscation for all polynomial-
size circuits exists.

Further, assuming only polynomial security of the aforementioned assumptions,
there exists collusion resistant public-key functional encryption for all polynomial-
size circuits.

*UCLA, Center for Encrypted Functionalities, and NTT Research. Email: aayushjain@cs.ucla.edu.
†UW. Email: rachel@cs.washington.edu.
‡UCLA, Center for Encrypted Functionalities. Email: sahai@cs.ucla.edu.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 126 (2020)

Contents

1 Introduction 1
1.1 Assumptions in More Detail . 2
1.2 Our Ideas in a Nutshell . 3

2 Preliminaries 4

3 Definition of Structured-Seed PRG 7

4 Construction of Structured Seed PRG 8

5 Bootstrapping to Indistinguishability Obfuscation 20
5.1 Perturbation Resilient Generators . 23

6 Acknowledgements 26

7 References 27

A Partially Hiding Functional Encryption 36

B Recap of constant-depth functional encryption 37

1 Introduction

In this work, we study the notion of indistinguishability obfuscation (iO) for general
polynomial-size circuits [BGI+01a, GKR08, GGH+13b]. iO requires that for any two cir-
cuits C0 and C1 of the same size, such that C0(x) = C1(x) for all inputs x, we have that
iO(C0) is computationally indistinguishable to iO(C1). Furthermore, the obfuscator iO
should be computable in probabilistic polynomial time. The notion of iO has proven
to be very powerful, with over a hundred papers published utilizing iO to enable a re-
markable variety of applications in cryptography and complexity theory; indeed iO has
even expanded the scope of cryptography, (see, e.g. [GGH+13b, SW14, BFM14, GGG+14,
HSW13, KLW15, BPR15, CHN+16, GPS16, HJK+16]).

Despite this success, until this work, all previously known iO constructions [GGH13a,
GGH+13b, BGK+14, BR14, PST14, AGIS14, BMSZ16, CLT13, CLT15, GGH15, CHL+15,
BWZ14, CGH+15, HJ15, BGH+15, Hal15, CLR15, MF15, MSZ16, DGG+16, Lin16, LV16,
AS17, Lin17, LT17, GJK18, AJS18, Agr19, LM18, JLMS19, BIJ+20, AP20, BDGM20] required
new hardness assumptions that were postulated specifically for showing security of the
iO schemes proposed. Indeed, the process of understanding these assumptions has been
tortuous, with several of these assumptions broken by clever cryptanalysis [CHL+15,
BWZ14, CGH+15, HJ15, BGH+15, Hal15, CLR15, MF15, MSZ16, BBKK17, LV17, BHJ+19].
The remaining standing ones are based on new and novel computational problems that
are different in nature from well-studied computational problems (for instance, LWE with
leakage on noises).

As a result, there has been a lack of clarity about the state of iO security [BKM+19].
Our work aims to place iO on terra firma.

Our contribution. We show how to construct iO from subexponential hardness of four
well-founded assumptions. We prove:

Theorem 1.1. (Informal) Let τ be arbitrary constants greater than 0, and δ, ε in (0, 1). Assume
sub-exponential security of the following assumptions, where λ is the security parameter, and the
parameters `, k, n below are large enough polynomials in λ:

• the SXDH assumption on asymmetric bilinear groups of a prime order p = O(2λ),

• the LWE assumption over Zp with subexponential modulus-to-noise ratio 2k
ε , where k is the

dimension of the LWE secret,

• the LPN assumption over Zp with polynomially many LPN samples and error rate 1/`δ,
where ` is the dimension of the LPN secret,

• the existence of a Boolean PRG in NC0 with stretch n1+τ ,

Then, (subexponentially secure) indistinguishability obfuscation for all polynomial-size cir-
cuits exists.

All four assumptions are based on computational problems with a long history of
study, rooted in complexity, coding, and number theory. Further, they were introduced
for building basic cryptographic primitives (such as public key encryption), and have
been used for realizing a variety of cryptographic goals that have nothing to do with iO.

1

1.1 Assumptions in More Detail

We now describe each of these assumptions in more detail and briefly survey their history.

The SXDH Assumption: The standard SXDH assumption is stated as follows: Given an
appropriate prime p, three groups G1, G2, and GT are chosen of order p such that there
exists an efficiently computable nontrivial bilinear map e : G1 × G2 → GT . Canonical
generators, g1 for G1, and g2 for G1, are also computed. Then, the SXDH assumption
requires that the Decisional Diffie Hellman (DDH) assumption holds in both G1 and G2.
That is, it requires that the following computational indistinguishability holds:

∀b ∈ {1, 2}, {(gxb , g
y
b , g

xy
b) | x, y ← Zp} ≈c {(gxb , g

y
b , g

z
b) | x, y, z ← Zp}

This assumption was first defined in the 2005 work of Ballard et. al. [BGdMM05].
Since then, SXDH has seen extensive use in a wide variety of applications throughout
cryptography, including Identity-Based Encryption and Non-Interactive Zero Knowledge
(See, e.g. [GS08, BKKV10, BJK15, Lin17, CLL+12, JR13]). It has been a subject of extensive
cryptanalytic study (see [Ver01] for early work and [GR04] for a survey).

The LWE Assumption: The LWE assumption with respect to subexponential-size mod-
ulus p, dimension λ, sample complexity n(λ) and polynomial-expectation discrete Gaus-
sian distribution χ over integers states that the following computational indistinguisha-
bility holds:

{A, s ·A + e mod p |A← Zλ×np , s← Z1×λ
p , e← χ1×n}

≈c {A,u |A← Zλ×np , u← Z1×n
p }

This assumption was first stated in the work of [Reg05]. The version stated above is
provably hard as long as GAP-SVP. is hard to approximate to within subexponential fac-
tors in the worst case [Reg05, Pei09, GPV08, MR04, MP13]. LWE has been used extensively
to construct applications such as Leveled Fully Homomorphic Encryption [BV11, BGV12,
GSW13], Key-Homomorphic PRFs [BLMR13], Lockable Obfuscation [GKW17, WZ17],
Homomorphic Secret-Sharing [MW16, DHRW16], Constrained PRFs [BV15b], Attribute
Based Encryption [BGG+14, GVW13, GVW15] and Universal Thresholdizers [BGG+18],
to name a few.

The existence of PRGs in NC0: The assumption of the existence of a Boolean PRG in NC0

states that there exists a Boolean function G : {0, 1}n → {0, 1}m where m = n1+τ for some
constant τ > 0, and where each output bit computed by G depends on a constant number
of input bits, such that the following computational indistinguishability holds:

{G(σ) | σ ← {0, 1}n} ≈c {y | y ← {0, 1}m}

Pseudorandom generators are a fundamental primitive in their own right, and have vast
applications throughout cryptography. PRGs in NC0 are tightly connected to the funda-
mental topic of Constraint Satisfaction Problems (CSPs) in complexity theory, and were

2

first proposed for cryptographic use by Goldreich [Gol00, CM01] 20 years ago. The com-
plexity theory and cryptography communities have jointly developed a rich body of lit-
erature on the cryptanalysis and theory of constant-locality Boolean PRGs [Gol00, CM01,
MST03, ABR12, BQ12, App12, OW14, AL16, KMOW17, CDM+18].

LPN over large fields: Like LWE, the LPN assumption over finite fields Zp is also a decod-
ing problem. The standard LPN assumption with respect to subexponential-size modulus
p, dimension `, sample complexity n(`) and a noise rate r = 1/`δ for δ ∈ (0, 1) states that
the following computational indistinguishability holds:

{A, s ·A + e mod p |A← Z`×np , s← Z1×`
p , e← D1×n

r }
≈c {A,u |A← Z`×np , u← Z1×n

p }.

Above e ← Dr is a generalized Bernoulli distribution, i.e. e is sampled randomly from
Zp with probability 1/`δ and set to be 0 otherwise. Thus, the difference between LWE and
LPN is the structure of the error distribution. In LWE the error vector is a random (poly-
nomially) bounded vector. In LPN, it is a sparse random vector, but where it is nonzero,
the entries have large expectation. The origins of the LPN assumption date all the way
back to the 1950s: the works of Gilbert [Gil52] and Varshamov [Var57] showed that ran-
dom linear codes possessed remarkably strong minimum distance properties. However,
since then, almost no progress has been made in efficiently decoding random linear codes
under random errors. The LPN over fields assumption above formalizes this, and was for-
mally defined for general parameters in 2009 [IPS09], under the name “Assumption 2.”
While in [IPS09], the assumption was used when the error rate is constant, in fact, poly-
nomially low error (in fact δ = 1/2) has an even longer history in the LPN literature: it
was used by Alekhnovitch in 2003 [Ale03] to construct public-key encryption with the
field F2. The exact parameter settings that we describe above, with both general fields
and polynomially low error, was explicitly posed by [BCGI18].

This assumption was posed for the purpose of building efficient secure two-party and
multi-party protocols for arithmetic computations [IPS09, AAB15]. Earlier, LPN over bi-
nary fields was posed for the purpose of constructing identification schemes [HB01] and
public-key encryption [Ale03]. Recently, the assumption has led to a wide variety of ap-
plications (see for example, [IPS09, AAB15, BCGI18, ADI+17, DGN+17, GNN17, BLMZ19,
BCG+19]). A comprehensive review of known attacks on LPN over large fields, for the pa-
rameter settings we are interested in, was given in [BCGI18]. For our parameter setting,
the best running time of known attacks is sub-exponential, for any choice of the constant
δ ∈ (0, 1) and for any polynomial n(`)

1.2 Our Ideas in a Nutshell

Previous work [AJS18, LM18, AJL+19, JLMS19, JLS19, GJLS20] showed that to achieve
iO, it is sufficient to assume LWE, SXDH, and PRG in NC0, and one other object, that
we will encapsulate as a structured-seed PRG (sPRG) with polynomial stretch and special
efficiency properties. In an sPRG, the seed to the sPRG consists of both a public and private
part. The pseudorandomness property of the sPRG should hold even when the adversary

3

can see the public seed in addition to the output of the sPRG. Crucially, the output of
the sPRG should be computable by a degree-2 computation in the private seed (where,
say, the coefficients of this degree-2 computation are obtained through constant-degree
computations on the public seed).

Our key innovation is a simple way to leverage LPN over fields to build an sPRG.
The starting point for our construction is the following observation. Assuming LPN and
that G is an (ordinary) PRG in NC0 with stretch m(n), we immediately have the following
computational indistinguishability:{

(A, b = s ·A+ e+ σ, G(σ)) |A← Z`×np ; s← Z1×`
p ; e← D1×n

r (p); σ ← {0, 1}1×n
}

≈c
{

(A, u, w) |A← Z`×np ; u← Z1×n
p ; w ← {0, 1}1×m(n)

}
Roughly speaking, we can think of both A and b above as being public. All that

remains is to show that the computation of G(σ) can be performed using a degree-2 com-
putation in a short-enough specially-prepared secret seed. Because G is an arbitrary PRG
in NC0, it will not in general be computable by a degree-2 polynomial in σ. To accomplish
this goal, we crucially leverage the sparseness of the LPN error e, by means of a simple
pre-computation idea to “correct” for errors introduced due to this sparse error. A gentle
overview is provided in Section 4, followed by our detailed construction and analysis.

2 Preliminaries

For any distribution X , we denote by x ← X the process of sampling a value x from the
distribution X . Similarly, for a set X we denote by x← X the process of sampling x from
the uniform distribution over X . For an integer n ∈ N we denote by [n] the set {1, .., n}.
A function negl : N → R is negligible if for every constant c > 0 there exists an integer
Nc such that negl(λ) < λ−c for all λ > Nc. Throughout, when we refer to polynomials in
security parameter, we mean constant degree polynomials that take positive value on non
negative inputs. We denote by poly(λ) an arbitrary polynomial in λ satisfying the above
requirements of non-negativity. We denote vectors by bold-faced letters such as b and
u. Matrices will be denoted by capitalized bold-faced letters for such as A and M . For
any k ∈ N, we denote by the tensor product v⊗k = v ⊗ · · · ⊗ v︸ ︷︷ ︸

k

to be the standard tensor

product, but converted back into a vector. We also introduce two new notations. First, for
any vector v we refer by dim(v) the dimension of vector v. For any matrix M ∈ Zn1×n2

q ,
we denote by |M| the bit length of M. In this case, |M| = n1 · n2 · log2 q. We also overload
this operator in that, for any set S, we use |S| to denote the cardinality of S. The meaning
should be inferred from context.

For any two polynomials a(λ, n), b(λ, n) : N× N→ R≥0, we say that a is polynomially
smaller than b, denoted as a� b, if there exists an ε ∈ (0, 1) and a constant c > 0 such that
a < b1−ε · λc for all large enough n, λ ∈ N. The intuition behind this definition is to think
of n as being a sufficiently large polynomial in λ

4

Multilinear Representation of Polynomials and Representation over Zp. In this work
we will consider multivariate polynomials p ∈ Z[x = (x1, . . . , xn)] mapping {0, 1}n to
{0, 1}. For any such polynomial there is a unique multilinear polynomial p′ (obtained by
setting x2i = xi) such that p′ ∈ Z[x] and p′(x) = p(x) for all x ∈ {0, 1}n. Further, such
a polynomial can have a maximum degree of n. At times, we will consider polynomials
g ∈ Zp[x] such that for every x ∈ {0, 1}n, g(x) mod p = p(x). Such a polynomial g
can be constructed simply as follows. Let p′(x) =

∑
S⊆[n] cS Πi∈Sxi. We can construct

g(x) =
∑

S⊆[n](cS mod p)Πi∈Sxi. Note that g has degree at most the degree of p′ over Z.
For polynomials of degree d, both the process described above can take O(nd) time. In
this work, we consider polynomials representing pseudorandom generators in NC0. Such
polynomials depend only on a constant number of input bits, and thus their multilinear
representations (and their field representations) are also constant degree polynomials. In
this scenario, these conversions take polynomial time.

Definition 2.1 ((T, ε)-indistinguishability). We say that two ensembles X = {Xλ}λ∈N and
Y = {Yλ}λ∈N are (T, ε)-indistinguishable where T : N → N and ε : N → [0, 1] if for every
non-negative polynomial poly(·, ·) and any adversary A running in time bounded by T poly(λ) it
holds that: For every sufficiently large λ ∈ N,∣∣∣∣ Pr

x←Xλ
[A(1λ, x) = 1]− Pr

y←Yλ
[A(1λ, y) = 1]

∣∣∣∣ ≤ ε(λ).

We say that two ensembles are ε-indistinguishable if it is (λ, ε)-indistinguishable, and is subex-
ponentially ε-indistinguishable if it is (T, ε)-indistinguishable for T (λ) = 2λ

c for some positive
constant c. It is indistinguishable if it is 1

λc
-pseudorandom for every positive constant c, and

subexponentially indistinguishable if (T, 1/T)-indistinguishable for T (λ) = 2λ
c for some positive

constant c.

Below if the security a primitive or the hardness of an assumption are defined through
indistinguishability, we say the primitive or assumption is (T, ε) secure, hard, or indis-
tinguishable, or (subexponentially) secure, hard, or indistinguishable if the appropriate
(T, ε)-indistinguishability or (subexponentially) indistinguishability holds.

Indistinguishability Obfuscation. We now define our object of interest, Indistinguisha-
bility Obfuscation (iO). The notion of indistinguishability obfuscation (iO), first con-
ceived by Barak et al. [BGI+01b], guarantees that the obfuscation of two circuits are com-
putationally indistinguishable as long as they both are equivalent circuits, i.e., the output
of both the circuits are the same on every input. Formally,

Definition 2.2 (Indistinguishability Obfuscator (iO) for Circuits). A uniform PPT algorithm
iO is called a (T, γ)-secure indistinguishability obfuscator for polynomial-sized circuits if the fol-
lowing holds:

• Completeness: For every λ ∈ N, every circuit C with input length n, every input x ∈
{0, 1}n, we have that

Pr
[
C ′(x) = C(x) : C ′ ← iO(1λ, C)

]
= 1 .

5

• (T, γ)-Indistinguishability: For every two ensembles {C0,λ} {C1,λ} of polynomial-sized
circuits that have the same size, input length, and output length, and are functionally equiv-
alent, that is, ∀λ, C0,λ(x) = C1,λ(x) for every input x, the following distributions are (T, γ)-
indistinguishable.

{iO(1λ, C0,λ)} {iO(1λ, C1,λ)}

LPN over Fields Assumption. In this work, we use the LPN assumption over a large
field. This assumption has been used in a various works (see for example, [IPS09, AAB15,
BCGI18, ADI+17, DGN+17, GNN17, BLMZ19, BCG+19]). We adopt the following defini-
tion from [BCGI18].

We set up some notation for the definition below. Let p be any prime modulus. We
define the distribution Dr(p) as the distribution that outputs 0 with probability 1− r and
a random element from Zp with the remaining probability.

Definition 2.3 (LPN(`, n, r, p)-Assumption, [IPS09, AAB15, BCGI18]). Let λ be the security
parameter. For an efficiently computable prime modulus p(λ), dimension `(λ), sample complex-
ity n(`), and noise rate r(n) we say that the LPN(`, n, r, p) assumption is (T, γ)-secure / hard /
indistinguishable if the following two distributions are (T, γ)-indistinguishable:{

(A, b = s ·A+ e) |A← Z`×np , s← Z1×`
p , e← D1×n

r (p)
}

{
(A,u) |A← Z`×np , u← Z1×n

p

}
We will set ` to be a large enough polynomial in λ, set r = `−δ, for a constant δ ∈ (0, 1),

and set the number of samples n = `c for some constant c > 1. Note that this setting
of parameters was considered in detail in the work of [BCGI18]. We refer the reader
to [BCGI18] for a comprehensive discussion of the history and security of this assumption.

Leakage Lemma. We will use the following theorem in our security proofs.

Theorem 2.1 (Imported Theorem [CCL18]). Let n, ` ∈ N, ε > 0, and Cleak be a family of
distinguisher circuits from {0, 1}n × {0, 1}` → {0, 1} of size s(n). Then, for every distribution
(X,W) over {0, 1}n × {0, 1}`, there exists a simulator h such that:

1. h is computable by circuits of size bounded by s′ = O(s2`ε−2), and maps {0, 1}n×{0, 1}s′ →
{0, 1}`. We denote by U the uniform distribution over {0, 1}s′ .

2. (X,W) and (X, h(X,U)) are ε-indistinguishable by Cleak. That is, for every C ∈ Cleak,∣∣∣∣ Pr
(x,w)←(X,W)

[C(x,w) = 1]− Pr
x←X,u←U

[C(x, h(x, u)) = 1]

∣∣∣∣ ≤ ε

6

3 Definition of Structured-Seed PRG

Definition 3.1 (Syntax of Structured-Seed Pseudo-Random Generators (sPRG)). Let τ be a
positive constant. A structured-seed Boolean PRG, sPRG, with stretch τ that maps (n · poly(λ))-
bit binary strings into (m = nτ)-bit strings, where poly is a fixed polynomial, is defined by the
following PPT algorithms:

• IdSamp(1λ, 1n) samples a function index I .

• SdSamp(I) jointly samples two binary strings, a public seed and a private seed, sd = (P, S).
The combined length of these strings is n · poly(λ).

• Eval(I, sd) computes a string in {0, 1}m.

Remark 3.1 (Polynomial Stretch.). We denote an sPRG to have polynomial stretch if τ > 1
for some constant τ .

Remark 3.2 (On poly(λ) multiplicative factor in the seed length.). As opposed to a stan-
dard Boolean PRG definition where the length of the output is set to be nτ where n is
the seed length, we allow the length of the seed to increase multiplicatively by a fixed
polynomial poly in a parameter λ. Looking ahead, one should view n as an arbitrary large
polynomial in λ, and hence sPRG will be expanding in length.

Definition 3.2 (Security of sPRG). A structured-seed Boolean PRG, sPRG, satisfies

(T (λ), γ(λ))-pseudorandomness: the following distributions are (T, γ) indistinguishable.

{I, P, Eval(I, P) | I ← IdSamp(1λ, 1n), sd← SdSamp(I)}
{I, P, r | I ← IdSamp(1λ, 1n), sd← SdSamp(I), r ← {0, 1}m(n)}

Definition 3.3 (Complexity and degree of sPRG). Let d ∈ N, let λ ∈ N and n = n(λ) be
arbitrary positive polynomial in λ, and p = p(λ) denote a prime modulus which is an efficiently
computable function in λ. Let C be a complexity class. A sPRG has complexity C in the public seed
and degree d in private seed over Zp, denoted as, sPRG ∈ (C, deg d), if for every I in the support
of IdSamp(1λ, 1n), there exists an algorithm ProcessI in C and an m(n)-tuple of polynomials QI

that can be efficiently generated from I , such that for all sd in the support of SdSamp(I), it holds
that:

Eval(I, sd) = QI(P , S) over Zp , P = ProcessI(P) ,

where QI has degree 1 in P and degree d in S.

We remark that the above definition generalizes the standard notion of families of
PRGs in two aspects: 1) the seed consists of a public part and a private part, and 2) the
seed may not be uniform. Therefore, we obtain the standard notion as a special case.

7

Definition 3.4 (Pseudo-Random Generators, degree, and locality). A (uniform-seed) Boolean
PRG (PRG) is an sPRG with a seed sampling algorithm SdSamp(I) that outputs a public seed P
that is an empty string and a uniformly random private seed S ← {0, 1}n, where the polynomial
poly is fixed to be 1.

Let d, c ∈ N. The PRG has multilinear degree d if for every I in the support of IdSamp(1n),
we have that Eval(I, sd) can be written as an m(n)-tuple of degree-d polynomials over Z in S. It
has constant locality c if for every n ∈ N and I in the support of IdSamp(1n), every output bit of
Eval(I, sd) depends on at most c bits of S.

4 Construction of Structured Seed PRG

In this section, we construct a family of structured-seed PRGs whose evaluation has de-
gree 2 in the private seed, and constant degree in the public seed; the latter ensures that
the computation on the public seed lies in arith-NC0 (which is exactly the class of functions
computed by constant-degree polynomials).

Theorem 4.1. Let λ be the security parameter. Let d ∈ N, δ > 0, τ > 1 be arbitrary constants
and n = poly(λ) be an arbitrary positive non-constant polynomial.

Then, assuming the following:

• the existence of a constant locality Boolean PRG with stretch τ > 1 and multilinear degree
d over Z, and,

• LPN(`, n, r, p)-assumption holds with respect to dimension ` = n1/d d
2
e, error rate r = `−δ,

there exists an sPRG with polynomial stretch in (arith-NC0, deg 2) that is γ-pseudorandom for
every constant γ > 0. Additionally, if both assumptions are secure against 2λ

ν time adversaries
for some constant ν > 0, then, sPRG is subexponentially γ-pseudorandom for every constant
γ > 0.

Technical Overview. Let PRG = (IdSamp,Eval) be the Boolean PRG with multilinear
degree d and stretch τ . Our sPRG will simply evaluate PRG on an input σ ∈ {0, 1}n and
return its output y ∈ {0, 1}m where m = nτ . The challenge stems from the fact that the
evaluation algorithm EvalI(σ) of PRG has degree d in its private seed σ, but the evaluation
algorithm Eval′I(P, S) of sPRG can only have degree 2 in the private seed S. To resolve this,
we pre-process σ into appropriate public and private seeds (P, S) and leverage the LPN
assumption over Zp to show that the seed is hidden.

Towards this, sPRG “encrypts” the seed σ using LPN samples over Zp as follows:

Sample: A← Z`×np , s← Z1×`
p , e← D1×n

r (p)

Add to the function index I ′: A
Add to public seed P : b = sA+ e+ σ

It follows directly from the LPN over Zp assumption that (A, b) is pseudorandom and
hides σ. Furthermore, due to the sparsity of LPN noises, the vector σ + e differs from σ

8

only at a r = `−δ fraction of components – thus it is a sparsely erroneous version of the
seed.

Given such “encryption”, by applying previous techniques [AJL+19, JLMS19, JLS19,
GJLS20] that work essentially by “replacing monomials” – previous works replace mono-
mials in the PRG seed with polynomials in the LWE secret, and we here replace the mono-
mials in the erroneous seed with polynomials in the LPN secret – we can compute PRG
on the erroneous seed σ + e via a polynomial G(1) (that depends on A) that has degree d
on the public component b and only degree 2 on all possible degree dd

2
e monomials in s.

More precisely,

y′ = EvalI
(
σ + e

)
= G1

(
b , (s⊗d

d
2
e)
)
, s = s||1 (1)

where v⊗k denotes tensoring the vector v with itself k times, yielding a vector of di-
mension dim(v)k. In particular, observe that by setting the dimension ` of secret s to be
sufficiently small, the polynomial G(1) can be expanding; this is done by setting param-
eters `(n) so that

(
`d

d
2
e + n

)
� m(n). The reasoning behind comparing the the number

of output bits m = nτ with the number of field elements in the seed of sPRG is that if
m � dim((b, s⊗d

d
2
e)), then, we have polynomial expansion because the the length of the

modulus p is at most λ bits which is asymptotically smaller than the parameter n.
However, the new problem is that even though the degree fits, G(1) only evaluates

an erroneous output y′ = EvalI(σ + e), but we want to obtain the correct output y =
EvalI(σ). To correct errors, we further modify the polynomial and include more pre-
processed information in the private seeds. Our key observation is the following: Because
LPN noises are sparse, and because EvalI has only constant locality, only a few outputs
depend on erroneous seed locations. We refer to them as bad outputs and let BAD denote
the set of their indices. By a simple Markov argument, the number of bad outputs is
bounded by T = mr log n = m logn

`δ
with probability 1 − o(1). Leveraging this sparsity,

sPRG corrects bad outputs using the method described below. In the low probability event
where there are too many bad outputs (greater than T), it simply outputs 0.

We describe a sequence of ideas that lead to the final correction method, starting with
two wrong ideas that illustrate the difficulties we will overcome.

• The first wrong idea is correcting by adding the difference Corr = y − y′ between
the correct and erroneous outputs, y = EvalI(σ) and y′ = EvalI(σ + e); refer to
Corr as the correction vector. To obtain the correct output, evaluation can compute
the following polynomial G(1)

(
b , (s⊗d

d
2
e)
)

+ Corr. The problem is that Corr must be
included in the seed, but it is as long as the output and would kill expansion.

• To fix expansion, the second wrong idea is adding correction only for bad outputs,
so that the seed only stores non-zero entries in Corr, which is short (bounded by T
elements). More precisely, the j’th output can be computed as G(1)

j

(
b , (s⊗d

d
2
e)
)

+
Corrj if output j is bad and without adding Corrj otherwise. This fixes expansion,
but now the evaluation polynomial depends on the location of bad outputs, which
in turn leaks information of the location of LPN noises, and jeopardizes security.

9

The two wrong ideas illustrate the tension between the expansion and security of
sPRG. Our construction takes care of both, by compressing the correction vector Corr to
be polynomially shorter than the output and stored in the seed, and expanding it back
during evaluation in a way that is oblivious of the location of bad output bits. This is pos-
sible thanks to the sparsity of the correction vector and the allowed degree 2 computation
on the private seed. Let’s first illustrate our ideas in two simple cases.

Simple Case 1: Much fewer than
√
m bad outputs. Suppose hypothetically that the num-

ber of bad outputs is bounded by z which is much smaller than
√
m. Thus, if we

convert Corr into a
√
m ×

√
m matrix1, it has low rank z. We can then factorize Corr

into two matrixes U and V of dimensions
√
m × z and z ×

√
m respectively, such

that Corr = UV, and compute the correct output as follows:

∀j ∈ [m], G
(2)
j

(
b , (s⊗d

d
2
e, U,V)

)
= G

(1)
j

(
b , (s⊗d

d
2
e)
)

+ (UV)kj ,lj ,

where (kj, lj) is the corresponding index of the output bit j, in the
√
m×
√
m matrix.

When z �
√
m, the matrices U,V have 2z

√
m field elements, which is polynomially

smaller than m = nτ . As such, G(2) is expanding.

Moreover, observe that G(2) has only degree 2 in the private seed and is completely
oblivious of where the bad outputs are.

Simple Case 2: Evenly spread bad outputs. The above method however cannot handle
more than

√
m bad outputs, whereas the actual number of bad outputs can be up

to T = m(log n)/`δ, which can be much larger than
√
m since δ is an arbitrar-

ily small constant. Consider another hypothetical case where the bad outputs are
evenly spread in the following sense: If we divide the matrix Corr into m

`δ
blocks,

each of dimension `δ/2 × `δ/2, there are at most log n bad outputs in each block. In
this case, we can “compress” each block of Corr separately using the idea from case
1. More specifically, for every block i ∈ [m

`δ
], we factor it into UiVi, with dimensions

`δ/2 × log n and log n× `δ/2 respectively, and correct bad outputs as follows:

∀j ∈ [m], G
(2)
j

(
b ,
(
s⊗d

d
2
e, (Ui,Vi)i∈[m

`δ
]

))
= G

(1)
j

(
b , (s⊗d

d
2
e)
)

+ (UijVij)kj ,lj ,

where ij is the block that output j belongs to, and (kj, lj) ∈ [`δ/2] × [`δ/2] is its index
within this block. We observe that G(2) is expanding, since each matrix Ui or Vi has
`δ/2 log n field elements, and the total number of elements is `δ/2 log n · m

`δ
which is

polynomially smaller than m as long as δ is positive. Moreover, G(2) is oblivious of
the location of bad outputs just as in case 1.

At this point, it is tempting to wish that bad outputs must be evenly spread given that
the LPN noises occur at random locations. This is, however, not true because the input-
output dependency graph of PRG is arbitrary, and the location of bad outputs are corre-
lated. Consider the example that every output bit of PRG depends on the first seed bit.
With probability 1

`δ
it is erroneous and so are all outputs.

1Any injective mapping from a vector to a matrix that is efficient to compute and invert will do.

10

To overcome this, our final idea is to “force” the even spreading of the bad outputs,
by assigning them randomly into B buckets, and then compress the correction vector
corresponding to each bucket.

Step 1: Randomly assign outputs. We assign the outputs into B buckets, via a random
mapping φbkt : [m] → [B]. The number of buckets is set to B = mt

`δ
where t is a

slack parameter set to λ. By a Chernoff-style argument, we can show that each bucket
contains at most t2`δ output bits, and at most t of them are bad, except with negligible
probability in t, which is also negligible in λ. As such, bad outputs are evenly spread
among a small number of not-so-large buckets.

Step 2: Compress the buckets. Next, we organize each bucket i into a matrix Mi of di-
mension t`δ/2 × t`δ/2 and then compute its factorization Mi = UiVi with respect to
matrices of dimensions t`δ/2 × t and t × t`δ/2 respectively. To form matrix Mi, we
use another mapping φind : [m] → [t`δ/2] × [t`δ/2] to assign each output bit j to an
index (kj, lj) in the matrix of the bucket ij it is assigned to. This assignment must
guarantee that no two output bits in the same bucket (assigned according to φbkt)
have the same index; other than that, it can be arbitrary. (Mi)k,l is set to Corrj if there
is j such that φbkt(j) = i and φind(j) = (k, l), and set to 0 if no such j exists. Since
every matrix Mi has at most t non-zero entries, we can factor them and compute the
correct output as:

∀j ∈ [m], G
(2)
j

(
b ,
(
s⊗d

d
2
e, (Ui,Vi)i∈[B]

)
︸ ︷︷ ︸

S

)
= G

(1)
j

(
b , (s⊗d

d
2
e)
)

+ (Uφbkt(j) ·Vφbkt(j))φind(j) ,

G(2) is expanding, because the number of field elements in Ui’s and Vi’s are much
smaller than m, namely: 2t2`δ/2B = O(mλ

3

`δ/2
) � m. Note that it is important that the

assignments φbkt and φind are not included in the seed as their description is as long
as the output. Fortunately, they are reusable and can be included in the function
index I ′ = (I,A, φbkt, φind).

Step 3: Zeroize if uneven buckets. Finally, to deal with the low probability event that
some bucket is assigned more than t2`δ outputs or contains more than t bad outputs,
we introduce a new variable called flag. If either of the conditions above occur, our
sPRG sets flag = 0 and outputs zero. We then include flag in the public seed and
augment the evaluation polynomial as follow:

∀j ∈ [m], G
(3)
j

(
(b, flag)︸ ︷︷ ︸

P

, S
)

= flag ·G(2)
j (b, S) .

This is our final evaluation polynomial. It has constant degree d + 1 in the public
seed P , degree 2 in the private seed S, and expansion similar to that of G(2). For
security, observe that the polynomial G(3) is independent of the location of LPN
noises, while the public seed leaks 1-bit of information through flag, which can be
simulated efficiently via leakage simulation. Therefore, by the LPN over Zp assump-
tion, the seed σ of PRG is hidden and the security of PRG ensures that the output is
pseudorandom when it is not zeroized. We now proceed to the formal construction
and proof.

11

Construction. We now formally describe our scheme. Assume the premise of the the-
orem. Let (IdSamp,Eval) be the function index sampling algorithm and evaluation algo-
rithm for the PRG. Recall that its seed consists of only a private seed sampled uniformly
and randomly.

We first introduce and recall some notation. The construction is parameterized by

• λ is the security parameter,

• n input length to the PRG. n is arbitrary polynomial in λ,

• the stretch τ and degree d of PRG. Set m = nτ ,

• the LPN secret dimension ` = n1/dd/2e, modulus p be a λ bit prime modulus,

• a threshold T = m·logn
`δ

of the number of bad outputs that can be tolerated,

• a slack parameter t used for bounding the capacity of and number of bad outputs in
each bucket, set to t = λ.

• a parameter B = m·t
`δ

that indicates the number of buckets used.

• a parameter c = t2`δ that indicates the capacity of each bucket.

I ′ ← IdSamp′(1λ, 1n
′
): (Note that the PRG seed length n below is an efficiently computable

polynomial in n′, and can be inferred from the next seed sampling algorithm. See
Claim 4.1 for the exact relationship between n and n′.)
Sample I ← IdSamp(1λ, 1n) and A ← Z`×np . Prepare two functions φ = (φbkt, φind) as
follows:

• Sample a random function φbkt : [m] → [B] mapping every output location to
one of B buckets. Let φ−1bkt(i) for i ∈ [B] denote the set of preimages of i through
φbkt. This set contains all outputs assigned to the bucket i.

• Prepare φind : [m]→ [
√
c]× [

√
c] in two cases:

– If some bucket exceeds capacity, that is, there exists i ∈ [B] such that |φ−1bkt(i)| >
c, set φind to be a constant function always outputting (1, 1).

– Otherwise if all buckets are under capacity, for every index j ∈ [m], φind maps
j to a pair of indexes (kj, lj) ∈ [

√
c] × [

√
c], under the constraint that two

distinct output bits j1 6= j2 that are mapped into the same bucket φbkt(j1) =
φbkt(j2) must have distinct pairs of indices φind(j1) 6= φind(j2).

Output I ′ = (I,φ,A).

sd← SdSamp′(I ′): Generate the seed as follows:

• Sample a PRG seed σ ← {0, 1}n.

• Prepare samples of LPN over Zp: Sample s← Z1×`
p , e← D1×n

r (p), and set

b = sA+ σ + e .

12

• Find indices i ∈ [n] of seed bits where σ + e and σ differ, which are exactly
these indices where e is not 0, and define:

ERR = {i | σi + ei 6= σi} = {i | ei 6= 0} .

We say a seed index i is erroneous if i ∈ ERR. Since LPN noise is sparse, errors
are sparse.

• Find indices j ∈ [m] of outputs that depend on one or more erroneous seed
indices. Let Varsj denote the indices of seed bits that the j’th output of EvalI
depends on. Define:

BAD = {j | |Varsj ∩ ERR| ≥ 1} .

We say an output index j is bad if j ∈ BAD, and good otherwise.

• Set flag = 0 if

1. Too many bad output bits: |BAD| > T ,
2. or Some bucket exceeds capacity: ∃i ∈ [B], |φ−1bkt(i)| > c,
3. or Some bucket contains too many bad outputs: ∃i ∈ [B], |φ−1bkt(i) ∩ BAD| > t.

Otherwise, set flag = 1.

• Compute the outputs of PRG on input the correct seed and the erroneous seed,
y = EvalI(σ) and y′ = EvalI(σ + e). Set the correction vector Corr = y − y′.

• Construct matrices M1, . . . ,MB, by setting

∀j ∈ [m],
(
Mφbkt(j)

)
φind(j)

= Corrj

Every other entry is set to 0.

• “Compress” matrices M1, . . . ,MB as follows:

– If flag = 1, for every i ∈ [B] compute factorization

Mi = UiVi, Ui ∈ Z
√
c×t

p , Vi ∈ Zt×
√
c

p

This factorization exists because when flag = 1, condition 3 above implies
that each Mi has at most t nonzero entries, and hence rank at most t.

– If flag = 0, for every i ∈ [B], set Ui and Vi to be 0 matrices.

• Set the public seed to

P = (b, flag) .

• Prepare the private seed S as follows. Let s = s||1.

S =
(
s⊗d

d
2
e, {Ui,Vi}i∈[B]

)
(2)

Output sd = (P, S) as Zp elements.

13

y → Eval′(I ′, sd): Compute y ← Eval(I,σ), and output z = flag · y. This computation is
done via a polynomial G(3)

I′ described below that has constant degree d + 1 in the
public seed and only degree 2 in the private seed, that is,

Eval′(I ′, sd) = flag · y = flag · EvalI(σ) = G
(3)
I′ (P, S) .

We next define G(3)
I′ using intermediate polynomials G(1)

I′ and G
(2)
I′ . For simplicity of

notation, we suppress subscript I ′ below.

• Every output bit of Eval is a linear combination of degree dmonomials (without
loss of generality, assume that all monomials have exactly degree d which can
be done by including 1 in the seed σ).

Notation Let us introduce some notation for monomials. A monomial h on a
vector a is represented by the set of indices h = {i1, i2, . . . , ik} of variables used
in it. h evaluated on a is

∏
i∈h ai if h 6= ∅ and 1 otherwise. We will use the

notation ah =
∏

i∈h ai. We abuse notation to also use a polynomial g to denote
the set of monomials involved in its computation; hence h ∈ g says monomial
h has a nonzero coefficient in g.

With the above notation, we can write Eval as

∀j ∈ [m], yj = Evalj(σ) = Lj((σh)h∈Evalj) , for a linear Lj .

• (A, b = sA + x) in the public seed encodes x = σ + e. Therefore, we can
compute every monomial xv as follows:

xi = 〈ci, s〉 ci = −aT
i ||bi, ai is the ith column ofA

xv = 〈⊗i∈vci, ⊗i∈vs〉

(Recall that ⊗i∈vzi = zi1 ⊗ · · · ⊗ zik if v = {i1, . . . , ik} and is not empty; other-
wise, it equals 1.) Combining with the previous step, we obtain a polynomial
G(1)(b, S) that computes Eval(σ + e):

G
(1)
j (b, S) := Lj

(
(〈⊗i∈vci, ⊗i∈vs〉)v∈Evalj

)
. (3)

Note that G(1), by which we mean G
(1)
I′ , implicitly depends on A contained in

I ′. Since all relevant monomials v have degree d, we have that G(1) has degree
at most d in P , and degree 2 in S. The latter follows from the fact that S contains
s⊗d

d
2
e (see Equation (1)), and hence S ⊗ S contains all monomials in s of total

degrees d.
Since only bad outputs depend on erroneous seed bits such that σi+ei 6= σi, we
have that the output of G(1) agrees with the correct output y = Eval(σ) on all
good output bits.

∀j 6∈ BAD, Evalj(σ) = G
(1)
j (b, S) .

14

• To further correct bad output bits, we add to G(1) all the expanded correction
vectors as follows:

G
(2)
j (P, S) := G

(1)
j (b, S) +

(
Uφbkt(j)Vφbkt(j)

)
φind(j)

= G
(1)
j (b, S) +

(
Mφbkt(j)

)
φind(j)

.

We have that G(2) agrees with the correct output y = Eval(σ) if flag = 1. This is
because under the three conditions for flag = 1, every entry j in the correction
vector Corrj is placed at entry

(
Mφbkt(j)

)
φind(j)

. Adding it back as above produces
the correct output.
Observe that the function is quadratic in S and degree d in the public compo-
nent of the seed P .

• When flag = 0, however, sPRG needs to output all zero. This can be done by
simply multiplying flag to the output of G(2), giving the final polynomial

G(3)(P, S) = flag ·G(2)(P, S) . (4)

At last, G(3) has degree d+1 in the public seed, and only degree 2 in the private
seed, as desired.

Analysis of Stretch. We derive a set of constraints, under which sPRG has polynomial
stretch. Recall that PRG output length is m = nτ , degree d, LPN secret dimension ` =
n1/dd/2e, modulus p = O(2λ), and the slack parameter t = λ.

Claim 4.1. For the parameters as set in the Construction, sPRG has stretch of τ ′ for some constant
τ ′ > 1.

Proof. Let’s start by analyzing the length of the public and private seeds.

• The public seed contains P = (b, flag) and has bit length

|P | = O(n log p) = O(n · λ) .

• The private seed S contains S1, S2 as follows:

S1 = s⊗d
d
2
e, S2 = {Ui,Vi}i∈[B] .

The bit-lengths are:

|S1| =(`+ 1)dd/2e log p

=O
(
n

1
dd/2e

)dd/2e
log p = O(n · λ) by ` = ndd/2e, log p = λ

|S2| =2B · t ·
√
c · log p

=
2mt

`δ
· t · t`δ/2 · log p =

2mt3 log p

`δ/2
by B =

mt

`δ
, c = t2`δ

=
2mλ4

`δ/2
by t = λ

15

Because `δ/2 = n
δ

2d d2 e and m = nτ , we have:

|sd| = |P |+ |S1|+ |S2| = O((n+ n
τ− δ

2d d2 e) · λ4)

We set n′ = O(n + n
τ− δ

2d d2 e), therefore m = n′τ
′

for some τ ′ > 1. This concludes the
proof.

Proof of Pseudorandomness We prove the following proposition which implies that
sPRG is γ-pseudorandom for any constant γ.

Proposition 4.1. Let `, n, r, p be defined as above. For any running time T = T (λ) ∈ N, if

• LPN(`, n, r, p) is (T, εLPN)-indistinguishable for advantage εLPN = o(1), and

• PRG is (T, εPRG)-pseudorandom for advantage εPRG = o(1),

sPRG satisfies that for every constant γ ∈ (0, 1), the following two distributions are (T, γ)-
indistinguishable.{

(I,φ,A, b, flag, z) : (I, φ, A)← IdSamp′(1n
′
), (P, S)← SdSamp′(I ′), z ← Eval′(I, sd)

}
{

(I,φ,A, b, flag, r) : (I, φ, A)← IdSamp′(1n
′
), (P, S)← SdSamp′(I ′), r ← {0, 1}m

}
,

(Recall that P = (b, flag).)

We start with some intuition behind the proposition. Observe first that if flag is re-
moved, the above two distributions becomes truly indistinguishable. This follows from
the facts that i) I andφ are completely independent of (A, b, z) or (A, b, r), and ii) (A, b, z)
and (A, b, r) are indistinguishable following from the LPN over Zp assumption and the
pseudorandomness of PRG. The latter indistinguishability is the heart of the security of
sPRG, and is captured in Lemma 4.1 below. Towards the proposition, we need to addi-
tional show that publishing flag does not completely destroy the indistinguishability. This
follows from the facts that i) flag is only 0 with sub-constant probability, and ii) it can be
viewed as a single bit leakage of the randomness used for sampling the rest of the distri-
butions, and can be simulated efficiently by the leakage simulation lemma, Theorem 2.1.
The formal proof of the proposition below presents the details.

Lemma 4.1. Let G : {0, 1}1×n → {0, 1}1×m(n) be a (T, εPRG)-secure pseudorandom genera-
tor. Assume that LPN(`, n, r, p) is (T, εLPN)-secure. Then the following two distributions are
(T, εLPN + εPRG)-indistinguishable:

D1 =
{

(A, b = s ·A+ e+ σ, G(σ)) : A← Z`×np ; s← Z1×`
p ; e← D1×n

r (p); σ ← {0, 1}1×n
}

D2 =
{

(A, u, w) : A← Z`×np ; u← Z1×n
p ; w ← {0, 1}1×m(n)

}

16

Proof. We introduce one intermediate distribution D′ defined as follows:

D′ =
{

(A, u, G(σ)) : A← Z`×np ; u← Z1×n
p ; σ ← {0, 1}n

}
Now observe that D′ is (T, εLPN)-indistinguishable to D1 following immediately from the
(T, εLPN)-indistinguishability of the LPN(`, n, r, p) assumption. Finally, observe that D′
is (T, εPRG)-indistinguishable to D2 due to (T, εPRG)-security of G. Therefore, the lemma
holds.

Proof of Proposition 4.1. We now list a few hybrids H0,H1,H2,H3, where the first one cor-
responds to the first distribution in the proposition, and the last one corresponds to the
second distribution in the proposition. We abuse notation to also use Hi to denote the
output distribution of the hybrid. Let γ be the claimed advantage of the adversary A,
running in time Tq(λ) for a polynomial q. Let Dφ,I denote the the distribution that sam-
ples the functions φ.

Hybrid H0 samples (I ′, P,y) honestly as in the first distribution, that is,

Sample: A← Z`×np , s← Z1×`
p , e← D1×n

r (p), σ ← {0, 1}n

I ← IdSamp(1λ, 1n), y = EvalI(σ), φ← Dφ,I
Output: I, φ, A, b = sA+ e+ σ, flag · y

where flag = 1 iff:
1) |BAD| ≤ T and,
2) ∀i ∈ [B], |φ−1bkt(i) ∩ BAD| ≤ t and,

3) ∀i ∈ [B], |φ−1bkt(i)| ≤ `δ · t2.

Note that the value of flag is correlated with that of (I,φ,A, b,y). Therefore, flag can
be viewed as a single-bit leakage of the randomness used for sampling (I,φ,A, b,y).

Hybrid H1 instead of generating flag honestly, first samples X = (I,φ,A, b,y) honestly,
and then invokes the leakage simulation lemma, Lemma 2.1, to simulate flag using
X , for Tq(λ) + poly(λ) time adversaries with at most γ

3
advantage. Let Sim be the

simulator given by Theorem 2.1.

Sample: A← Z`×np , s← Z1×`
p , e← D1×n

r (p), σ ← {0, 1}n,
I ← IdSamp(1λ, 1n), y = EvalI(σ), φ← Dφ,I

Output: I, φ, A, b = sA+ e+ σ, flag · y
where flag = Sim(I,φ,A, b,y)

The leakage simulation lemma guarantees that the running time of Sim is bounded
by O((Tq(λ) + poly(λ)) · 9

γ2
· 21) = Tq′(λ)) for a fixed polynomial q′, and A cannot

distinguish H0 from H1 with advantage more than γ
3
.

Claim 4.2. For any adversary A running in time Tq(n) for some polynomial q,

|Pr[A(H0) = 1]− Pr[A(H1) = 1]| ≤ γ

3
.

Furthermore, the running time of Sim is Tq′(λ) for some polynomial q′.

17

This claim is immediate from Lemma 2.1.

Hybrid H2 samplesA, b and y uniformly and randomly.

Sample: A← Z`×np , b← Z1×n
p

I ← IdSamp(1λ, 1n), y ← {0, 1}m, φ← Dφ,I
Output: I, φ, A, b, flag · y

where flag = Sim(I,φ,A, b,y)

Lemma 4.1 shows that (A, b,y) generated honestly as in H1 and (A, b,y) sampled all
at random as in H2 are indistinguishable, due to the LPN assumption and the pseu-
dorandomness of PRG. Here the adversary A runs in time Tq(λ) and the simulator
Sim runs in time Tq′(λ) time, for polynomials q, q′. Thus, we get

Claim 4.3. For any adversary A, running in time T , if LPN(`, n, r, p) is (T, εLPN)-secure
and PRG satisfies (T, εPRG)-pseudorandomness, then,

|Pr[A(H1) = 1]− Pr[A(H2) = 1]| ≤ εPRG + εLPN

This claim follows immediately from Lemma 4.1.

Hybrid H3 no longer generates flag and simply outputs the random string y instead of
flag · y.

Sample: A← Z`×np , b← Z1×n
p

I ← IdSamp(1λ, 1n), y ← {0, 1}m, φ← Dφ,I
Output: I,φ, A, b,y

Observe that H2 and H3 are only distinguishable when flag = 0 in H2. By bounding
the probability of flag = 0 in H2, we can show that

Claim 4.4. For any adversary A,

|Pr[A(H2) = 1]− Pr[A(H3) = 1]| ≤ γ

2

The formal proof of this lemma is provided below.

Combining the hybrids above, we conclude that A cannot distinguish H0 and H3 with
advantage more than 5·γ

6
+ εPRG + εLPN < γ, which gives a contradiction. Therefore, the

indistinguishability stated in the proposition holds. We now complete the final remaining
piece – the proof of Claim 4.4.

Proof of Claim 4.4. This indistinguishability is statistical. We start with showing that the
probability that flag = 0 in H0 is O(1

logn
). Towards this, we bound probability of all three

conditions for setting flag = 0 and then apply the union bound.

18

• Pr[|BAD| > T] ≤ O(1
logn

). Observe that by the fact that EvalI has constant locality in

σ, the probability that any single output bit j ∈ [m] is bad is bounded byO(r) = O(1)
`δ

,
where r is the rate of LPN noises. Therefore, the expected number of bad output bits
is

E[|BAD|] =
O(1)m

`δ

Thus by Markov’s inequality,

Pr[|BAD| > T] ≤ 1

T
· O(1)m

`δ · T
=
O(1)

log n
.

The last equality follows from the fact that T = m·logn
`δ

.

• For any i ∈ [B], Prφbkt
[
|φ−1bkt(i) ∩ BAD| > t | |BAD| ≤ T

]
≤ negl(n). Suppose |BAD| =

T ′ where T ′ ≤ T , and since φbkt : [m]→ [B] is a random function, we have:

Pr
φbkt

[
|φ−1bkt(i) ∩ BAD| > t | |BAD| = T ′

]
≤
(
T ′

t

)
· 1

Bt

≤
(
e · T ′

t

)t
· 1

Bt
by Stirling’s approximation

≤
(e
t

)t
≤ e−t by T ′ < T < B

= negl(λ) by t = λ

• For any i ∈ B, Prφbkt [|φ−1bkt(i)| > `δ · t2] ≤ negl(λ). Since φbkt is a random function,

Pr
φbkt

[
|φ−1bkt(i)| > t2 · `δ

]
≤
(

m

`δ · t2

)
·
(

1

B

)`δ·t2
≤
(e ·m
`δ · t2

)`δ·t2
·
(

1

B

)`δ·t2
by Stirling’s approximation

=
(e ·m
B · `δ · t2

)`δ·t2
≤
(

1

t2

)`δ·t2
by B =

mt

`δ
>
em

`δ

≤ t−2t
2

= negl(λ) by `δ > 1 and t = λ

Applying the three observations above, from a union bound it follows that Pr[flag =
0] = O(1

logn
).

Next, for adversaries of run time Tq(λ), Claim 4.2 shows that H0 and H1 cannot be
distinguished with advantage more than γ

3
, and Claim 4.3 shows that H1 and H2 cannot

be distinguished with advantage more than εPRG + εLPN, which is sub-constant. Therefore,
the probability that flag = 0 in H2 is upper bounded by

Pr[flag = 0 in H2] ≤
O(1)

log n
+
γ

3
+ εPRG + εLPN ≤

γ

2
.

19

Finally, we upper bound the statistical distance between H2 and H3, which is

SD(H2,H3) =
1

2
·

∑
(I,φ,A,b,y)

∣∣∣Pr[H2 = (I,φ,A, b,y)]− Pr[H3 = (I,φ,A, b,y)]
∣∣∣ .

For b ∈ {0, 1}, let Fb be the set of tuples (I,A, b,y) that generate flag = b through Sim,

Fb = {(I,φ,A, b,y) | Sim((I,φ,A, b,y) = b} .

Then, we have:

SD(H2,H3) =
1

2
·

∑
(I,φ,A,b,y)∈F0

∣∣∣Pr[H2 = (I,φ,A, b,y)]− Pr[H3 = (I,φ,A, b,y)]
∣∣∣

+
1

2
·

∑
(I,φ,A,b,y)∈F1

∣∣∣Pr[H2 = (I,φ,A, b,y)]− Pr[H3 = (I,φ,A, b,y)]
∣∣∣

=
1

2
·

∑
(I,φ,A,b,y)∈F0

∣∣∣Pr[H2 = (I,φ,A, b,y)]− Pr[H3 = (I,φ,A, b,y)]
∣∣∣

≤ Pr[flag = 0 in H2] ≤
γ

2

where the second equality follows from the fact that in H2 and H3 the probability of out-
puting a tuple (I ′,φ,A, b,y) that belongs to F1, or equivalently generates flag = 1 via Sim,
is the same. This concludes the claim.

5 Bootstrapping to Indistinguishability Obfuscation

We now describe a pathway to iO and FE for all circuits.

From Structured-Seed PRG to Perturbation Resilient Generator. Starting from structured-
seed PRG, we show how to construct perturbation resilient generators, denoted as ∆RG.
∆RG is the key ingredient in several recent iO constructions [AJL+19, JLMS19, JLS19].
Roughly speaking, they have the same syntax as structured-seed PRGs with the notable
difference that it has integer outputs y of polynomial magnitude; further, they only sat-
isfy weak pseudorandomness called perturbation resilience guaranteeing that y + β for
arbitrary adversarially chosen small integer vector β is weakly indistinguishable from y
itself. The formal definition of ∆RG is provided in Definition 5.1 in Section 5.1.

Theorem 5.1 (sPRG to ∆RG, proven in Section 5.1). Let λ ∈ N be the security parameter,
γ ∈ (0, 1), and τ > 1. Assume the existence of a (subexponentially) γ-pseudorandom sPRG
in (C, deg d) with stretch τ . For any constant 0 < τ ′ < τ , there exists a (subexponentially)
(2γ +O(1

λ
))-perturbation resilient ∆RG in (C, deg d) with a stretch τ ′.

20

From Perturbation Resilient Generator to Weak FE for NC0. It was shown in [AJL+19,
JLMS19, JLS19] that ∆RG, along with SXDH, LWE and PRG in NC0, can be used to construct
a secret-key functional encryption scheme for NC0 circuits. The FE scheme supports only
a single secret key for a function with multiple output bits, has weak indistinguishability
security, and has ciphertexts whose sizes grow sublinearly in the circuit size and linearly
in the input length. Formal definitions of functional encryption schemes are provided
in B.

Theorem 5.2 ([AJL+19, JLMS19, JLS19]). Let γ ∈ (0, 1), ε > 0, and D ∈ N be arbitrary
constants. Let λ be a security parameter, p be an efficiently samplable λ bit prime, and k = k(λ)
be a large enough positive polynomial in λ. Assume (subexponential) hardness of

• the SXDH assumption with respect to a bilinear groups of order p,

• the LWE assumption with modulus-to-noise ratio 2k
ε where k = k(λ) is the dimension of

the secret,

• the existence of γ-secure perturbation resilient generators ∆RG ∈ (arith-NC0, deg 2) over
Zp with polynomial stretch.

There exists a secret-key functional encryption scheme for NC0 circuits with multilinear degree D
over Z, having

• 1-key, weakly selective, (subexponential) (γ + negl)-indistinguishability-security, and

• sublinearly compact ciphertext with linear dependency on input length, that is, ci-
phertext size is |ct| = poly(λ)(l + S1−σ), where l is the input length, S the maximum size
of the circuits supported, σ is some constant in (0, 1), and poly depends on D.

For convenient reference, the construction is recalled in Section B.

From weak FE for NC0 to Full-Fledged FE for All Polynomial Size Circuits Starting
from the above weak version of secret key functional encryption scheme – weak function
class NC0, weak security, and weak compactness – we apply known transformations to
obtain a full-fledged public key FE scheme for polynomial size circuits, satisfying adaptive
collusion resistant security, and having full compactness.

Theorem 5.3 (Strengthening FE). Let γ ∈ (0, 1). Let λ ∈ N be a security parameter and k(λ)
be a large enough positive polynomial. Assume the (subexponential) hardness of

• the LWE assumption with modulus-to-noise ratio 2k
ε where k = k(λ) is the dimension of

the secret, and

• the existence of Boolean PRGs in NC0 with polynomial stretch and multilinear degree d ∈ N
over Z.

There are the following transformations:

21

1. STARTING POINT.

Suppose there is a secret-key functional encryption scheme for NC0 circuits with multilinear
degree (3d+2) over Z, having 1-key, weakly selective, (subexponential) γ-indistinguishability
security, and sublinearly compact ciphertext and linear dependency on input length.

2. LIFTING FUNCTION CLASS [AJS15, LV16, LIN16].

There exists a secret-key functional encryption scheme for polynomial size circuits, having
1-key, weakly selective, (subexponential) (γ + negl)-indistinguishability security, and sub-
linearly compact ciphertexts, that is, |ct| = poly(λ, l)S1−σ.

3. SECURITY AMPLIFICATION [AJS18, AJL+19, JKMS20].

There exists a secret-key functional encryption scheme for polynomial-size circuits, having
1-key, weakly selective, (subexponentially) (negl-)indistinguishability security, and sublin-
early compact ciphertexts.

4. SECRET KEY TO PUBLIC KEY, AND SUBLINEAR CIPHERTEXT TO SUBLINEAR EN-
CRYPTION TIME [BNPW16, LPST16, GKP+13].

There exists a public-key functional encryption scheme for polynomial size circuits, hav-
ing 1-key, weakly selective, (subexponentially) indistinguishability security, and sublinear
encryption time, TEnc = poly(λ, l)S1−σ.

5. 1-KEY TO COLLUSION RESISTANCE [GS16, LM16, KNT18]

There exists a public-key functional encryption scheme for polynomial-size circuits, having
collusion resistant, adaptive, (subexponentially) indistinguishability security, and encryp-
tion time poly(λ, l).

FE to IO Transformation Finally, we rely on the FE to IO transformation to obtain iO.

Theorem 5.4 ([AJ15, BV15a]). Assume the existence of a public-key functional encryption scheme
for polynomial-size circuits, having 1-key, weakly selective, subexponentially indistinguishability
security, and sublinear encryption time. Then, (subexponentially secure) iO for polynomial size
circuits exists.

Putting Pieces Together Combining Theorem 4.1, Theorem 5.1, Theorem 5.2, Theorem
5.3, and Theorem 5.4, we get our main result:

Theorem 5.5. Let τ > 1, ε, δ ∈ (0, 1), and d ∈ N be arbitrary constants. Let λ ∈ N be a security
parameter, p be an efficiently samplable λ bit prime, and n = n(λ) and k = k(λ) be large enough
positive polynomials in the security parameter. Assume sub-exponential hardness of the following
assumptions:

• the LWE assumption with modulus-to-noise ratio 2k
ε where k is the dimension of the secret,

• the SXDH assumption with respect to bilinear groups of prime order p,

22

• the existence of a Boolean PRG in NC0 with polynomial stretch and multilinear degree d over
Z, and

• the LPN(`, n, `−δ, p) where ` = n
1

d d2 e .

Then, (subexponentially secure) indistinguishability obfuscation for all polynomial-size circuits
exists. Further, assuming only polynomial security of these assumptions, there exists collusion
resistant, adaptive, and compact public-key functional encryption for all circuits.

5.1 Perturbation Resilient Generators

We recall the definition of perturbation resilient generators from [AJL+19, JLMS19, JLS19].

Definition 5.1 (Syntax of Perturbation Resilient Generators (∆RG) [AJL+19, JLMS19,
JLS19]). Let τ be a positive constant. A perturbation resilient generator ∆RG with stretch τ
is defined by the following PPT algorithms:

• SetupPoly(1λ, 1n, 1B) : takes as input the security parameter λ, a seed length parameter n,
and a bound B, samples a function index I .

• SetupSeed(I) : samples two binary strings, a public seed and a private seed, sd = (P, S).
The combined length of these strings is n · poly(λ, logB).

• Eval(I, sd) : takes as input the index I and the seed sd and computes a string in Zm ∩
[− poly(n,B, λ), poly(n,B, λ)]m for some fixed polynomial poly.

Remark 5.1. Similar to an sPRG, we say that ∆RG has polynomial stretch if above τ > 1
for some constant τ .

Remark 5.2. Note that in the definition proposed by [JLMS19, JLS19], the SetupSeed algo-
rithm was not given as input I , however, their results still hold even if SetupSeed is given
I as input.

Definition 5.2 (Security of ∆RG [AJL+19, JLMS19, JLS19]). A perturbation resilient genera-
tor ∆RG satisfies

(T, γ)-perturbation resilience: For every n = n(λ) a positive non-constant polynomial in the
security parameter λ, and B = B(λ, n) a positive non-constant polynomial in λ and n, and
every sequence {β = βλ}, where β ∈ Zm ∩ [−B,B]m, we require that the following two
distributions are (T (λ), γ(λ))-indistinguishable:

{(I, P, Eval(I, sd, B)) | I ← SetupPoly(1λ, 1n, 1B), sd = (S, P)← SetupSeed(I)}
{(I, P, Eval(I, sd, B) + β) | I ← SetupPoly(1λ, 1n, 1B), sd = (S, P)← SetupSeed(I)}

Definition 5.3 (Complexity and degree of ∆RG). Let d ∈ N, let λ ∈ N and n = n(λ) be
arbitrary positive non-constant polynomial in λ, and p = p(λ) denote a prime modulus which is
an efficiently computable function in λ. Let C be a complexity class. A ∆RG has complexity C
in the public seed and degree d in private seed over Zp, denoted as, ∆RG ∈ (C, deg d), if for any

23

polynomial B(n, λ) and every I in the support of SetupPoly(1λ, 1n, 1B), there exists an algorithm
ProcessI in C and an m(n)-tuple of polynomials QI that can be efficiently generated from I , such
that for all sd in the support of SetupSeed(I), it holds that:

Eval(I, sd) = QI(P , S) over Zp , P = ProcessI(P) ,

where QI has degree 1 in P and degree d in S.

We now prove the following proposition, which immediately implies Theorem 5.1.

Proposition 5.1. Assume the existence of a (T, γ)-pseudorandom structured seed PRG, sPRG, in
(C, deg d) with a stretch of τ > 0. Then for any constant 0 < τ ′ < τ , there exists a (T, 2·γ+O(1

λ
))-

perturbation resilient generator, ∆RG in (C, deg d) with a stretch τ ′.

Proof. Let sPRG be the given structured-seed PRG with stretch τ . The construction of ∆RG
is as follows.

• ∆RG.SetupPoly(1λ, 1n, 1B) : Run sPRG.IdSamp(1λ, 1n)→ I ′, and output I = (I ′, B, λ, n).

• ∆RG.SetupSeed(I) : Run sPRG.SdSamp(I ′)→ (P, S) and output sd = (P, S).

• ∆RG.Eval(I, sd) : Compute z ← sPRG.Eval(I ′, sd) where z ∈ {0, 1}nτ . Let m′ = nτ
′

and t = dlog2(λ · nτ
′ ·B)e.

– If m < m′t, there are not enough bits in the output of sPRG. Set y = 01×m′

– Otherwise, for every i ∈ [m′], set yi =
∑

j∈[t] 2
j−1 · z(i−1)·t+j .

Output y.

Stretch: The output length is exactly m′ = nτ
′ , while the seed length is identical to that

of sPRG, namely n poly(λ), as desired.
Further, observe that the output of ∆RG is set to 0 when there are not enough bits

in the output of sPRG, namely m < m′t. It is easy to see that for arbitrary non-constant
positive polynomials n = n(λ) and B = B(λ, n), it holds that t = O(log λ) and hence for
any 0 < τ ′ < τ , m = nτ ≥ m′t = nτ

′
t for sufficiently large λ. In this case, the output of

∆RG is formed by the output of sPRG.

Complexity: We note that ∆RG is in (C, deg d). In the case that m ≥ m′t, ∆RG.Eval(I, sd)
outputs y where yi =

∑
j∈[t] 2

j−1 · z(i−1)·t+j , and z = sPRG.Eval(I ′, sd). Since each yi is a
linear function of z and each zi is degree d in S, y is also degree d in S. Further since each
zi is linear in P = ProcessI(P) and ProcessI ∈ C, y is also linear in P = ProcessI(P). In the
other case that m < m′t, the output y = 01×m′ and had degree 0 in both P and S. Overall,
∆RG ∈ (C, deg d).

24

(T, 2 · γ + O(1
λ
))-perturbation resilience: Fix a sufficiently large λ ∈ N, positive non-

constant polynomials n = n(λ),B(λ, n)and β = βλ ∈ Zm∩[−B,B]m, and t = log2(λ·nτ
′ ·B).

We now show the perturbation resilience of ∆RG through a sequence of hybrids.

Hybrid H0: In this hybrid, we give to the adversary,

∀i ∈ [m′], yi =
∑
j∈[t]

2j−1 · z(i−1)·t+j + βi , z = sPRG.Eval(I ′, sd) ,

along with the public index I and the public part of the seed P . As observed above,
when n and B are positive non-constant polynomials, and λ is sufficiently large, it
always holds that m ≥ m′t and the output of ∆RG is non-zero and formed as above.
Thus, this hybrid corresponds to the first challenge distribution in the security defi-
nition of ∆RG (Definition 5.2).

Hybrid H1: In this hybrid, we change y to

yi =
∑
j∈[t]

2j−1 · r(i−1)·t+j + βi , r ← {0, 1}nτ .

This hybrid is (T, γ)-indistinguishable to hybrid H0 by the (T, γ)-pseudorandomness
of sPRG.

Hybrid H2: In this hybrid, we change y to

yi = ui + βi , ui ← [0, 2t − 1] .

This hybrid is identical to hybrid H1.

Hybrid H3: In this hybrid, we change y to

yi = ui , ui ← [0, 2t − 1] .

This hybrid is statistically close to hybrid H2 with the statistical distance bounded
by O(m′ · B

2t−1) = O(1
n
). This is because each ui is uniform between [0, 2t − 1] and

|βi| ≤ B.

Hybrid H4: In this hybrid, we change y to

yi =
∑
j∈[t]

2j−1 · r(i−1)·t+j , r ← {0, 1}nτ .

The hybrid above is identical to hybrid H3.

Hybrid H5: In this hybrid, we give to the adversary,

yi =
∑
j∈[t]

2j−1 · z(i−1)·t+j , z = sPRG.Eval(I ′, sd) .

This hybrid is (T, γ)-indistinguishable to hybrid H4 by the (T, γ)-pseudorandomness
of sPRG. By the same argument as in hybrid H0, we have m ≥ m′t and the output
of ∆RG is non-zero and exactly as above. Thus, this corresponds to the second
challenge distribution in Definition 5.2.

25

By a hybrid argument, we get that the total advantage in distinguishing the two challenge
distributions in the security definition of ∆RG is bounded by 2 · γ +O(1

λ
). This concludes

the proof.

6 Acknowledgements

We would like to thank Stefano Tessaro and James Bartusek for helpful discussions. We
would also like to thank the Simons Institute for the Theory of Computing, for hosting
all three authors during the program entitled “Lattices: Algorithms, Complexity, and
Cryptography”.

Aayush Jain was partially supported by grants listed under Amit Sahai, a Google PhD
fellowship and a DIMACS award. This work was partly carried out while the author
was an intern at NTT Research. This work was partly carried out during a research visit
conducted with support from DIMACS in association with its Special Focus on Cryptog-
raphy.

Huijia Lin was supported by NSF grants CNS-1528178, CNS-1929901, CNS-1936825 (CA-
REER), the Defense Advanced Research Projects Agency (DARPA) and Army Research
Office (ARO) under Contract No. W911NF-15-C-0236, and a subcontract No. 2017-002
through Galois.

Amit Sahai was supported in part from DARPA SAFEWARE and SIEVE awards, NTT
Research, NSF Frontier Award 1413955, and NSF grant 1619348, BSF grant 2012378, a
Xerox Faculty Research Award, a Google Faculty Research Award, an equipment grant
from Intel, and an Okawa Foundation Research Grant. This material is based upon
work supported by the Defense Advanced Research Projects Agency through Award
HR00112020024 and the ARL under Contract W911NF-15-C- 0205. Amit Sahai is also
grateful for the contributions of the LADWP to this effort.

The views expressed are those of the authors and do not reflect the official policy or
position of the Department of Defense, DARPA, ARO, Simons, Intel, Okawa Foundation,
ODNI, IARPA, DIMACS, BSF, Xerox, the National Science Foundation, NTT Research,
Google, or the U.S. Government.

26

7 References
[AAB15] Benny Applebaum, Jonathan Avron, and Christina Brzuska. Arithmetic cryptog-

raphy: Extended abstract. In Tim Roughgarden, editor, ITCS 2015, pages 143–151.
ACM, January 2015.

[ABR12] Benny Applebaum, Andrej Bogdanov, and Alon Rosen. A dichotomy for local small-
bias generators. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages
600–617. Springer, Heidelberg, March 2012.

[ADI+17] Benny Applebaum, Ivan Damgård, Yuval Ishai, Michael Nielsen, and Lior Zichron.
Secure arithmetic computation with constant computational overhead. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS,
pages 223–254. Springer, Heidelberg, August 2017.

[AGIS14] Prabhanjan Ananth, Divya Gupta, Yuval Ishai, and Amit Sahai. Optimizing obfus-
cation: Avoiding Barrington’s theorem. In ACM CCS, pages 646–658, 2014.

[Agr19] Shweta Agrawal. Indistinguishability obfuscation without multilinear maps: New
methods for bootstrapping and instantiation. In Yuval Ishai and Vincent Rijmen,
editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 191–225. Springer,
Heidelberg, May 2019.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from com-
pact functional encryption. In Advances in Cryptology–CRYPTO 2015, pages 308–326.
Springer, 2015.

[AJL+19] Prabhanjan Ananth, Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. Indis-
tinguishability obfuscation without multilinear maps: New paradigms via low de-
gree weak pseudorandomness and security amplification. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS,
pages 284–332. Springer, Heidelberg, August 2019.

[AJS15] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Indistinguishability obfusca-
tion from functional encryption for simple functions. Eprint, 730:2015, 2015.

[AJS18] Prabhanjan Ananth, Aayush Jain, and Amit Sahai. Indistinguishability obfuscation
without multilinear maps: io from lwe, bilinear maps, and weak pseudorandom-
ness. IACR Cryptology ePrint Archive, 2018:615, 2018.

[AL16] Benny Applebaum and Shachar Lovett. Algebraic attacks against random local func-
tions and their countermeasures. In Daniel Wichs and Yishay Mansour, editors, 48th
ACM STOC, pages 1087–1100. ACM Press, June 2016.

[Ale03] Michael Alekhnovich. More on average case vs approximation complexity. In 44th
FOCS, pages 298–307. IEEE Computer Society Press, October 2003.

[AP20] Shweta Agrawal and Alice Pellet-Mary. Indistinguishability obfuscation without
maps: Attacks and fixes for noisy linear FE. In Vincent Rijmen and Yuval Ishai,
editors, EUROCRYPT 2020, Part I, LNCS, pages 110–140. Springer, Heidelberg, May
2020.

27

[App12] Benny Applebaum. Pseudorandom generators with long stretch and low locality
from random local one-way functions. In Howard J. Karloff and Toniann Pitassi,
editors, 44th ACM STOC, pages 805–816. ACM Press, May 2012.

[AS17] Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional encryption and
indistinguishability obfuscation from degree-5 multilinear maps. In Jean-Sébastien
Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of
LNCS, pages 152–181. Springer, Heidelberg, April / May 2017.

[BBKK17] Boaz Barak, Zvika Brakerski, Ilan Komargodski, and Pravesh Kothari. Limits on
low-degree pseudorandom generators (or: Sum-of-squares meets program obfusca-
tion). Electronic Colloquium on Computational Complexity (ECCC), 24:60, 2017.

[BCG+19] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal,
and Peter Scholl. Efficient two-round OT extension and silent non-interactive secure
computation. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz, editors, ACM CCS 2019, pages 291–308. ACM Press, November 2019.

[BCGI18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector
OLE. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang,
editors, ACM CCS 2018, pages 896–912. ACM Press, October 2018.

[BDGM20] Zvika Brakerski, Nico Dottling, Sanjam Garg, and Guilio Malavolta. Candidate io
from homomorphic encryption schemes. In EUROCRYPT, 2020.

[BFM14] Christina Brzuska, Pooya Farshim, and Arno Mittelbach. Indistinguishability ob-
fuscation and UCEs: The case of computationally unpredictable sources. In Juan A.
Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS,
pages 188–205. Springer, Heidelberg, August 2014.

[BGdMM05] Lucas Ballard, Matthew Green, Breno de Medeiros, and Fabian Monrose.
Correlation-resistant storage via keyword-searchable encryption. IACR Cryptol.
ePrint Arch., 2005:417, 2005.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In
Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology - EURO-
CRYPT 2014 - 33rd Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, volume
8441 of Lecture Notes in Computer Science, pages 533–556. Springer, 2014.

[BGG+18] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Peter M. R.
Rasmussen, and Amit Sahai. Threshold cryptosystems from threshold fully homo-
morphic encryption. In Hovav Shacham and Alexandra Boldyreva, editors, Ad-
vances in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part I, volume 10991 of Lec-
ture Notes in Computer Science, pages 565–596. Springer, 2018.

[BGH+15] Zvika Brakerski, Craig Gentry, Shai Halevi, Tancrede Lepoint, Amit Sahai, and
Mehdi Tibouchi. Cryptanalysis of the quadratic zero-testing of GGH. Cryptology
ePrint Archive, Report 2015/845, 2015. http://eprint.iacr.org/.

28

http://eprint.iacr.org/

[BGI+01a] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In
Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer, Hei-
delberg, August 2001.

[BGI+01b] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In
Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryptology Confer-
ence, Santa Barbara, California, USA, August 19-23, 2001, Proceedings, pages 1–18, 2001.

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Pro-
tecting obfuscation against algebraic attacks. In Phong Q. Nguyen and Elisabeth
Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 221–238. Springer,
Heidelberg, May 2014.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homo-
morphic encryption without bootstrapping. In Shafi Goldwasser, editor, ITCS 2012,
pages 309–325. ACM, January 2012.

[BHJ+19] Boaz Barak, Samuel B. Hopkins, Aayush Jain, Pravesh Kothari, and Amit Sahai.
Sum-of-squares meets program obfuscation, revisited. In Yuval Ishai and Vincent
Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 226–250.
Springer, Heidelberg, May 2019.

[BIJ+20] James Bartusek, Yuval Ishai, Aayush Jain, Fermi Ma, Amit Sahai, and Mark Zhandry.
Affine determinant programs: A framework for obfuscation and witness encryption.
In Thomas Vidick, editor, ITCS 2020, volume 151, pages 82:1–82:39. LIPIcs, January
2020.

[BJK15] Allison Bishop, Abhishek Jain, and Lucas Kowalczyk. Function-hiding inner prod-
uct encryption. In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015,
Part I, volume 9452 of LNCS, pages 470–491. Springer, Heidelberg, November / De-
cember 2015.

[BKKV10] Zvika Brakerski, Yael Tauman Kalai, Jonathan Katz, and Vinod Vaikuntanathan.
Overcoming the hole in the bucket: Public-key cryptography resilient to contin-
ual memory leakage. In 51st FOCS, pages 501–510. IEEE Computer Society Press,
October 2010.

[BKM+19] Allison Bishop, Lucas Kowalczyk, Tal Malkin, Valerio Pastro, Mariana Raykova, and
Kevin Shi. In pursuit of clarity in obfuscation. IACR Cryptol. ePrint Arch., 2019:463,
2019.

[BLMR13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key
homomorphic PRFs and their applications. In Ran Canetti and Juan A. Garay, edi-
tors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 410–428. Springer, Heidel-
berg, August 2013.

[BLMZ19] James Bartusek, Tancrède Lepoint, Fermi Ma, and Mark Zhandry. New techniques
for obfuscating conjunctions. In Yuval Ishai and Vincent Rijmen, editors, EURO-
CRYPT 2019, Part III, volume 11478 of LNCS, pages 636–666. Springer, Heidelberg,
May 2019.

29

[BMSZ16] Saikrishna Badrinarayanan, Eric Miles, Amit Sahai, and Mark Zhandry. Post-
zeroizing obfuscation: New mathematical tools, and the case of evasive circuits. In
Advances in Cryptology - EUROCRYPT, pages 764–791, 2016.

[BNPW16] Nir Bitansky, Ryo Nishimaki, Alain Passelègue, and Daniel Wichs. From crypto-
mania to obfustopia through secret-key functional encryption. Cryptology ePrint
Archive, Report 2016/558, 2016. http://eprint.iacr.org/2016/558.

[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of
finding a Nash equilibrium. In Venkatesan Guruswami, editor, 56th FOCS, pages
1480–1498. IEEE Computer Society Press, October 2015.

[BQ12] Andrej Bogdanov and Youming Qiao. On the security of goldreich’s one-way func-
tion. Comput. Complex., 21(1):83–127, 2012.

[BR14] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits
via generic graded encoding. In TCC, pages 1–25, 2014.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryp-
tion from (standard) LWE. In Rafail Ostrovsky, editor, 52nd FOCS, pages 97–106.
IEEE Computer Society Press, October 2011.

[BV15a] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from
functional encryption. In FOCS. IEEE, 2015.

[BV15b] Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic PRFs
from standard lattice assumptions - or: How to secretly embed a circuit in your PRF.
In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II, volume 9015
of LNCS, pages 1–30. Springer, Heidelberg, March 2015.

[BWZ14] Dan Boneh, David J. Wu, and Joe Zimmerman. Immunizing multilinear maps
against zeroizing attacks. Cryptology ePrint Archive, Report 2014/930, 2014.

[CCL18] Yi-Hsiu Chen, Kai-Min Chung, and Jyun-Jie Liao. On the complexity of simulating
auxiliary input. In EUROCRYPT, Cham, 2018.

[CDM+18] Geoffroy Couteau, Aurélien Dupin, Pierrick Méaux, Mélissa Rossi, and Yann
Rotella. On the concrete security of Goldreich’s pseudorandom generator. In
Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part II, volume
11273 of LNCS, pages 96–124. Springer, Heidelberg, December 2018.

[CGH+15] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint, Hemanta K.
Maji, Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing
without low-level zeroes: New MMAP attacks and their limitations. In CRYPTO,
2015.

[CHL+15] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé.
Cryptanalysis of the multilinear map over the integers. In EUROCRYPT, 2015.

[CHN+16] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and Daniel
Wichs. Watermarking cryptographic capabilities. In STOC, 2016.

30

http://eprint.iacr.org/2016/558

[CLL+12] Jie Chen, Hoon Wei Lim, San Ling, Huaxiong Wang, and Hoeteck Wee. Shorter IBE
and signatures via asymmetric pairings. In Michel Abdalla and Tanja Lange, edi-
tors, Pairing-Based Cryptography - Pairing 2012 - 5th International Conference, Cologne,
Germany, May 16-18, 2012, Revised Selected Papers, volume 7708 of Lecture Notes in
Computer Science, pages 122–140. Springer, 2012.

[CLR15] Jung Hee Cheon, Changmin Lee, and Hansol Ryu. Cryptanalysis of the new clt
multilinear maps. Cryptology ePrint Archive, Report 2015/934, 2015. http://
eprint.iacr.org/.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear
maps over the integers. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part I, volume 8042 of LNCS, pages 476–493. Springer, Heidelberg, August 2013.

[CLT15] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. New multilinear
maps over the integers. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part I, volume 9215 of LNCS, pages 267–286. Springer, Heidelberg,
August 2015.

[CM01] Mary Cryan and Peter Bro Miltersen. On pseudorandom generators in NC. In Jiri
Sgall, Ales Pultr, and Petr Kolman, editors, Mathematical Foundations of Computer Sci-
ence 2001, 26th International Symposium, MFCS 2001 Marianske Lazne, Czech Republic,
August 27-31, 2001, Proceedings, volume 2136 of Lecture Notes in Computer Science,
pages 272–284. Springer, 2001.

[DGG+16] Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Pratyay Mukher-
jee. Obfuscation from low noise multilinear maps. IACR Cryptology ePrint Archive,
2016:599, 2016.

[DGN+17] Nico Döttling, Satrajit Ghosh, Jesper Buus Nielsen, Tobias Nilges, and Roberto Tri-
filetti. TinyOLE: Efficient actively secure two-party computation from oblivious lin-
ear function evaluation. In Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, ACM CCS 2017, pages 2263–2276. ACM Press, Octo-
ber / November 2017.

[DHRW16] Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky en-
cryption and its applications. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part III, volume 9816 of LNCS, pages 93–122. Springer, Heidelberg,
August 2016.

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-
Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional
encryption. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014,
volume 8441 of LNCS, pages 578–602. Springer, Heidelberg, May 2014.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013,
volume 7881 of LNCS, pages 1–17. Springer, Heidelberg, May 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th FOCS, pages 40–49. IEEE Computer Society Press, October 2013.

31

http://eprint.iacr.org/
http://eprint.iacr.org/

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps
from lattices. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II,
volume 9015 of LNCS, pages 498–527. Springer, Heidelberg, March 2015.

[Gil52] E. N. Gilbert. A comparison of signalling alphabets. The Bell System Technical Journal,
31(3):504–522, 1952.

[GJK18] Craig Gentry, Charanjit S. Jutla, and Daniel Kane. Obfuscation using tensor prod-
ucts. Electronic Colloquium on Computational Complexity (ECCC), 25:149, 2018.

[GJLS20] Romain Gay, Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfus-
cation from simple-to-state hard problems: New assumptions, new techniques, and
simplification. IACR Cryptol. ePrint Arch., 2020:764, 2020.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryption. In
Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, Symposium on Theory
of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 555–564.
ACM, 2013.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-time pro-
grams. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 39–56.
Springer, Heidelberg, August 2008.

[GKW17] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In Chris
Umans, editor, 58th FOCS, pages 612–621. IEEE Computer Society Press, October
2017.

[GNN17] Satrajit Ghosh, Jesper Buus Nielsen, and Tobias Nilges. Maliciously secure oblivious
linear function evaluation with constant overhead. In Tsuyoshi Takagi and Thomas
Peyrin, editors, ASIACRYPT 2017, Part I, volume 10624 of LNCS, pages 629–659.
Springer, Heidelberg, December 2017.

[Gol00] Oded Goldreich. Candidate one-way functions based on expander graphs. Electronic
Colloquium on Computational Complexity (ECCC), 7(90), 2000.

[GPS16] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting the crypto-
graphic hardness of finding a nash equilibrium. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part II, volume 9815 of LNCS, pages 579–604. Springer,
Heidelberg, August 2016.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Richard E. Ladner and Cynthia Dwork,
editors, 40th ACM STOC, pages 197–206. ACM Press, May 2008.

[GR04] Steven D. Galbraith and Victor Rotger. Easy decision-diffie-hellman groups. IACR
Cryptol. ePrint Arch., 2004:70, 2004.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear
groups. In Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages
415–432. Springer, Heidelberg, April 2008.

32

[GS16] Sanjam Garg and Akshayaram Srinivasan. Single-key to multi-key functional
encryption with polynomial loss. In Martin Hirt and Adam D. Smith, editors,
TCC 2016-B, Part II, volume 9986 of LNCS, pages 419–442. Springer, Heidelberg,
October / November 2016.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran
Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS,
pages 75–92. Springer, Heidelberg, August 2013.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryp-
tion with bounded collusions via multi-party computation. In Reihaneh Safavi-
Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 162–179.
Springer, Heidelberg, August 2012.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based en-
cryption for circuits. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, edi-
tors, 45th ACM STOC, pages 545–554. ACM Press, June 2013.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption
for circuits from LWE. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 503–523. Springer, Heidelberg,
August 2015.

[Hal15] Shai Halevi. Graded encoding, variations on a scheme. IACR Cryptology ePrint
Archive, 2015:866, 2015.

[HB01] Nicholas J. Hopper and Manuel Blum. Secure human identification protocols. In
Colin Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 52–66. Springer,
Heidelberg, December 2001.

[HJ15] Yupu Hu and Huiwen Jia. Cryptanalysis of GGH map. IACR Cryptology ePrint
Archive, 2015:301, 2015.

[HJK+16] Dennis Hofheinz, Tibor Jager, Dakshita Khurana, Amit Sahai, Brent Waters, and
Mark Zhandry. How to generate and use universal samplers. In Jung Hee Cheon and
Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages
715–744. Springer, Heidelberg, December 2016.

[HSW13] Susan Hohenberger, Amit Sahai, and Brent Waters. Full domain hash from (lev-
eled) multilinear maps and identity-based aggregate signatures. In Ran Canetti and
Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 494–512.
Springer, Heidelberg, August 2013.

[IPS09] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic computation
with no honest majority. In TCC Conference, TCC 2009, San Francisco, CA, USA, March
15-17, 2009. Proceedings, pages 294–314, 2009.

[JKMS20] Aayush Jain, Alexis Korb, Nathan Manohar, and Amit Sahai. Amplifying functional
encryption, unconditionally. CRYPTO, 2020, 2020.

33

[JLMS19] Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. How to leverage hardness
of constant-degree expanding polynomials overa R to build iO. In Yuval Ishai and
Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages
251–281. Springer, Heidelberg, May 2019.

[JLS19] Aayush Jain, Huijia Lin, and Amit Sahai. Simplifying constructions and assump-
tions for iO. IACR Cryptol. ePrint Arch., 2019:1252, 2019.

[JR13] Charanjit S. Jutla and Arnab Roy. Shorter quasi-adaptive NIZK proofs for linear sub-
spaces. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part I, volume
8269 of LNCS, pages 1–20. Springer, Heidelberg, December 2013.

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability
obfuscation for turing machines with unbounded memory. In STOC, 2015.

[KMOW17] Pravesh K. Kothari, Ryuhei Mori, Ryan O’Donnell, and David Witmer. Sum of
squares lower bounds for refuting any CSP. In Hamed Hatami, Pierre McKenzie,
and Valerie King, editors, 49th ACM STOC, pages 132–145. ACM Press, June 2017.

[KNT18] Fuyuki Kitagawa, Ryo Nishimaki, and Keisuke Tanaka. Obfustopia built on secret-
key functional encryption. In Jesper Buus Nielsen and Vincent Rijmen, editors, EU-
ROCRYPT 2018, Part II, volume 10821 of LNCS, pages 603–648. Springer, Heidelberg,
April / May 2018.

[Lin16] Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding
schemes. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part I, volume 9665 of LNCS, pages 28–57. Springer, Heidelberg, May 2016.

[Lin17] Huijia Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and
locality-5 PRGs. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017,
Part I, volume 10401 of LNCS, pages 599–629. Springer, Heidelberg, August 2017.

[LM16] Baiyu Li and Daniele Micciancio. Compactness vs collusion resistance in functional
encryption. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume
9986 of LNCS, pages 443–468. Springer, Heidelberg, October / November 2016.

[LM18] Huijia Lin and Christian Matt. Pseudo flawed-smudging generators and their appli-
cation to indistinguishability obfuscation. IACR Cryptology ePrint Archive, 2018:646,
2018.

[LPST16] Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability ob-
fuscation with non-trivial efficiency. In IACR International Workshop on Public Key
Cryptography, pages 447–462. Springer, 2016.

[LT17] Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilinear
maps and block-wise local PRGs. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part I, volume 10401 of LNCS, pages 630–660. Springer, Heidelberg,
August 2017.

[LV16] Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from DDH-
like assumptions on constant-degree graded encodings. In Irit Dinur, editor, 57th
FOCS, pages 11–20. IEEE Computer Society Press, October 2016.

34

[LV17] Alex Lombardi and Vinod Vaikuntanathan. Limits on the locality of pseudorandom
generators and applications to indistinguishability obfuscation. In Yael Kalai and
Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS, pages 119–137.
Springer, Heidelberg, November 2017.

[MF15] Brice Minaud and Pierre-Alain Fouque. Cryptanalysis of the new multilinear map
over the integers. Cryptology ePrint Archive, Report 2015/941, 2015. http://
eprint.iacr.org/.

[MP13] Daniele Micciancio and Chris Peikert. Hardness of SIS and LWE with small param-
eters. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042
of LNCS, pages 21–39. Springer, Heidelberg, August 2013.

[MR04] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based
on Gaussian measures. In 45th FOCS, pages 372–381. IEEE Computer Society Press,
October 2004.

[MST03] Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On e-biased generators in NC0.
In 44th FOCS, pages 136–145. IEEE Computer Society Press, October 2003.

[MSZ16] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear
maps: Cryptanalysis of indistinguishability obfuscation over GGH13. In Advances
in Cryptology - CRYPTO, 2016.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-
key FHE. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 735–763. Springer, Heidelberg, May 2016.

[OW14] Ryan O’Donnell and David Witmer. Goldreich’s PRG: evidence for near-optimal
polynomial stretch. In IEEE 29th Conference on Computational Complexity, CCC 2014,
Vancouver, BC, Canada, June 11-13, 2014, pages 1–12. IEEE Computer Society, 2014.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector prob-
lem: extended abstract. In Michael Mitzenmacher, editor, Proceedings of the 41st An-
nual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May
31 - June 2, 2009, pages 333–342. ACM, 2009.

[PST14] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from
semantically-secure multilinear encodings. In Advances in Cryptology - CRYPTO 2014
- 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Pro-
ceedings, Part I, pages 500–517, 2014.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptogra-
phy. In STOC, pages 84–93, 2005.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, STOC, pages 475–484. ACM,
2014.

[Var57] Rom Varshamov. Estimate of the number of signals in error correcting codes. Dokl.
Akad. Nauk SSSR, 1957.

35

http://eprint.iacr.org/
http://eprint.iacr.org/

[Ver01] Eric R. Verheul. Evidence that XTR is more secure than supersingular elliptic curve
cryptosystems. In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of
LNCS, pages 195–210. Springer, Heidelberg, May 2001.

[WZ17] Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs
under LWE. In Chris Umans, editor, 58th FOCS, pages 600–611. IEEE Computer
Society Press, October 2017.

A Partially Hiding Functional Encryption

We recall the notion of Partially-hiding Functional Encryption (PHFE) schemes; some
of the text in this section is taken verbatim from [GJLS20]. PHFE involves functional
secret keys, each of which is associated with some 2-ary function f , and decryption of a
ciphertext encrypting (x,y) with such a key reveals f(x,y), x, f , and nothing more about
y. Since only the input y is hidden, such an FE scheme is called partially-hiding FE. FE
can be viewed as a special case of PHFE where the public input is the empty string. The
notion was originally introduced by [GVW12] and a similar notion of partially-hiding
predicate encryption was proposed and constructed by [GVW15].

We denote functionality by F : X × Y → Z . The functionality ensemble F as well as
the message ensembles X and Y are indexed by two parameters: n and λ (for example
Fn,λ), where λ is the security parameter and n is a length parameter and can be viewed as
a function of λ.

Definition A.1. (Syntax of a PHFE/FE Scheme.) A secret key partially hiding functional en-
cryption scheme, PHFE, for the functionalityF : X ×Y → Z consists of the following polynomial
time algorithms:

• PPGen(1λ, 1n) : The public parameter generation algorithm is a randomized algorithm that
takes as input n and λ and outputs a string crs.

• Setup(crs): The setup algorithm is a randomized algorithm that on input crs, returns a
master secret key msk.

• Enc(msk, (x, y) ∈ Xn,λ × Yn,λ): The encryption algorithm is a randomized algorithm that
takes in a master secret key and a message (x, y) and returns the ciphertext ct along with the
input x. x is referred to as the public input whereas y is called the private input.

• KeyGen(msk, f ∈ Fn,λ): The key generation algorithm is a randomized algorithms that
takes in a description of a function f ∈ Fn,λ and returns skf , a decryption key for f .

• Dec(skf , (x, ct)): The decryption algorithm is a deterministic algorithm that returns a value
z in Z , or ⊥ if it fails.

A functional encryption scheme is a partially hiding functional encryption scheme, where
Xn,λ = ∅ for all n, λ.

Define three levels of efficiency: let S = S(λ, n) be the maximum size of functions in Fλ,n;
ciphertext ct produced by running PPGen, Setup,Enc honestly as above has the following sizes
with respect to some arbitrary constant ε ∈ (0, 1].

36

• Sublinear compactness: poly(λ, n)S1−ε

• Sublinear compactness and linear dependency on input length: poly(λ)(n+ S1−ε)

• Linear Efficiency: poly(λ)n

We surpress the public input in notation in the case of functional encryption.

Definition A.2. (Correctness of a PHFE/FE scheme.) A secret key partially hiding functional
encryption scheme, PHFE, for the functionality F : X × Y → Z is correct if for every λ ∈ N and
every polynomial n(λ) ∈ N, for every (x, y) ∈ Xn,λ × Yn,λ and every f ∈ Fn,λ, we have:

Pr

Dec(skf , x, ct)) = f(x, y)

∣∣∣∣∣
PPGen(1λ, 1n)→ crs
Setup(crs)→ msk
Enc(msk, (x, y))→ (x, ct)
KeyGen(msk, f)→ skf

 = 1

Definition A.3 (Simulation security). A secret-key partially hiding functional encryption scheme
PHFE for functionality F : X × Y → Z is (weakly selective) (T, ε)-SIM secure, if for every posi-
tive polynomials n = n(λ), Qct = Qct(λ), Qsk = Qsk(λ), ensembles {(x, y)}, {{(xi, yi)}i∈[Qct]} in
Xλ,n × Yλ,n and {{fj}j∈[Qsk]} in Fλ,n, the following distributions are (T, ε)-indistinguishable.

(
crs, ct, {cti}i∈[Qct], {skj}j∈[Qsk]

) ∣∣∣∣∣
crs← PPGen(1λ, 1n), msk← Setup(crs)
ct← Enc(msk, (x, y))
∀i ∈ [Qct], cti ← Enc(msk, (xi, yi))
∀j ∈ [Qsk], skj ← KeyGen(msk, fj)

(

crs, c̃t, {c̃ti}i∈[Qct], {s̃kj}j∈[Qsk]

) ∣∣∣∣∣
crs← PPGen(1λ, 1n), m̃sk← S̃etup(crs)

c̃t← Ẽnc1(m̃sk, x)

∀i ∈ [Qct], c̃ti ← Ẽnc2(m̃sk, (xi, yi))

∀j ∈ [Qsk], s̃kj ← KeyGen(m̃sk, fj, fj(x, y))

Definition A.4 (Indistinguishability security). A secret-key functional encryption scheme FE
for functionality F : X → Z is (weakly selective) (T, ε)-IND secure, if for every positive poly-
nomials n = n(λ), Qct = Qct(λ), Qsk = Qsk(λ), ensembles {{xi,0, xi,0}i∈[Qct]} in Xλ,n and
{{fj}j∈[Qsk]} in Fλ,n, the following distributions for b ∈ {0, 1} are (T, ε)-indistinguishable.(crs, {cti}i∈[Qct], {skj}j∈[Qsk]

) ∣∣∣∣∣
crs← PPGen(1λ, 1n), msk← Setup(crs)
∀i ∈ [Qct], cti ← Enc(msk, xi,b)
∀j ∈ [Qsk], skj ← KeyGen(msk, fj)

B Recap of constant-depth functional encryption

We give a self-contained description of a construction of 1-key secret-key FE for NC0 sat-
isfying sublinear compactness with linear dependency on input length, which can be trans-
formed to iO as described in Section 5. We emphasize that the construction of FE for NC0

recalled here was given by prior works [AJL+19, JLMS19, LV16, Lin16]. The purpose of

37

this appendix is providing a clean and self-contained description of the construction for
convenient lookup, and we omit the security proof.

Consider the class of NC0 functions g : {0, 1}l → {0, 1}m. Such functions can be com-
puted by a multilinear polynomial with 1/-1 coefficient of some constant degree D. We
now describe the FE scheme for computing such functions, which uses the following in-
gredients.

Ingredients. Let λ be the security parameter and p = p(λ) = O(2λ) an efficiently com-
putable prime modulus.

• LWE over Zp with subexponential modulus to noise ratio 2k
ε where k is the dimen-

sion of LWE secret and ε is some arbitrary constant in (0, 1).

Related parameters are set to:

– We use polynomially large noises: Let χα,B be the truncated discrete gaussian
distribution with parameter α and support [−B,B] ∩ Z, where α ≤ B are set
appropriately and of magnitude poly(λ). As such, the modulus-to-noise ratio
is p/ poly(λ).

– Set the LWE dimension k appropriately k = Θ(λ1/ε) such that the modulus-to-
noise ratio p/ poly(λ) is upper bounded by 2k

ε .

We will use the basic homomorphic encryption scheme by [BV11] based on LWE.
An encryption of a Boolean string x has form A, b = sA + 2e + x over Zp and
supports homomorphic evaluation of constant degree polynomials over Zp (without
relinearization).

• A perturbation resilient generator ∆RG = (SetupPoly, SetupSeed,Eval) with stretch
τ > 1 and complexity (arith-NC1, deg 2) over Zp. Such a ∆RG was constructed in
Section 5, based on Boolean PRGs in NC0 the LPN assumption over Zp.
Related parameters are set to:

– The bound on the noises to be smudged is set to be BD · lD · λ.

– The output length of ∆RG is m, matching the output length of the NC0 compu-
tation.

– The seed length is then n poly(λ) for n = m1/τ .

• A SIM-secure collusion-resistant secret-key scheme for (arith-NC1, deg 2), PHFE =
(PHFE.PPGen,PHFE.Setup,PHFE.Enc,PHFE.KeyGen,PHFE.Dec). This can be built from
the SXDH assumption over asymmetric bilinear groups of order p as presented in
[JLS19].

Related parameters are set to:

– The input length parameter n′ is an efficiently computable function depending
on n, k,D set implicitly in the Enc algorithm below.

38

Construction: The NC0-FE scheme FE = (PPGen, Setup,Enc,KeyGen,Dec) is as follows:

crs← PPGen(1λ, 1l): SampleA← Zk×lp , crsPHFE ← PHFE.PPGen(1λ, 1n
′
),

and I ← ∆RG.SetupPoly(1λ, 1n, 1B
D·lD·λ). Output crs = (crsPHFE, I,A).

msk← Setup(crs): Sample mskPHFE ← PHFE.Setup(crsPHFE) and output msk = (mskPHFE, crs).

ct← Enc(msk,x ∈ {0, 1}l):

• Sample (P, S) ← ∆RG.SetupSeed(I). Note that the seed has length |P | + |S| =
n poly(λ).

• Encrypt x as follows: Sample a secret s ← Zkp and noise vector e ← χlα,B, and
compute b = sA+ 2e+ x.

• Let s = (1‖s) and compute s⊗d
D
2
e.

• Set public inputX = (P, b) and private input Y = (S, s⊗d
D
2
e), and encrypt them

using PHFE, ct← PHFE.Enc(msk, (X, Y)).

Output ct.

sk← KeyGen(msk, g): Output a PHFE key skPHFE ← PHFE.KeyGen(msk, G) for the follow-
ing function G.

Function G takes public input X and private input Y and does the following:

• Compute f(x) + 2e′ via a polynomial G(1) that has degree D in X and degree 2
in Y .
Function G(1) is defined as follows: Since f is a degree D multilinear polyno-
mial with 1/-1 coefficients, we have (using the same notation as in Section 4)

∀j ∈ [m], fj(x) = Lj((xv)v∈fj) for some linear Lj with 1/-1 coefficients .

The decryption equation for b is

∀i ∈ [l], xi + 2ei = 〈ci, s〉 ci = −aT
i ||bi, ai is the ith column ofA .

Thus, we have

∀ degree D monomial v, xv + 2ev = 〈⊗i∈vci, ⊗i∈vs〉

∀j ∈ [m], fj(x) + 2e′j = Lj

(
(〈⊗i∈vci, ⊗i∈vs〉)v∈fj

)
e′j = Lj((ev)v∈fj) has poly(λ) magnitude

Define G(1) to be the polynomial that computes f(x) + 2e′

G(1)(X, Y) = f(x) + 2e′ ,

with degree D in X (containing b) and degree 2 in Y (containing s⊗d
D
2
e). G(1)

also depends onA.

39

• Compute r ← ∆RG.Eval(I, sd).

• Output y′ = y + 2ef + 2r.

Observe that because of the complexity of G(1) and ∆RG, G is in (arith-NC1,deg 2).

Dec(sk, ct): Decrypt the PHFE ciphertext y + 2e′ = G(X, Y) ← PHFE.Dec(skPHFE, ctPHFE),
which reveals y mod 2.

More precisely, the decryption of PHFE built from bilinear groups produces g
(yj+2e′j)

T

for every j ∈ [m], where gT is the generator of the target group. Thus, decryption
needs to first extracts yj + 2e′j by brute force discrete logarithm, which is efficient as
e′j has poly(λ) magnitude.

Sublinear Compactness with Linear Dependency on Input Length Observe that the
ciphertext ct produced above has size poly(λ, l)S1−ε = poly(λ, l)m1−ε for some ε ∈ (0, 1),
following from the following facts:

• By the linear efficiency of PHFE, |ct| = poly(λ)(|X|+ |Y |).

• The seed P, S of ∆RG has length m1/τ for τ > 1.

• |b| = k log p = O(kλ).

• s⊗d
D
2
e has size kd

D
2
e log p = O(λ(d

D
2
e/ε)+1) = poly(λ).

40
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

