
k-Forrelation Optimally Separates Quantum and Classical Query

Complexity

Nikhil Bansal∗ Makrand Sinha†

Abstract

Aaronson and Ambainis (SICOMP ‘18) showed that any partial function on N bits that can be
computed with an advantage δ over a random guess by making q quantum queries, can also be computed

classically with an advantage δ/2 by a randomized decision tree makingOq(N
1− 1

2q δ−2) queries. Moreover,
they conjectured the k-Forrelation problem — a partial function that can be computed with q = dk/2e
quantum queries — to be a suitable candidate for exhibiting such an extremal separation.

We prove their conjecture by showing a tight lower bound of Ω̃k(N1−1/k) for the randomized query

complexity of k-Forrelation, where the advantage δ = 1/polylogk(N) and Ω̃k hides polylogk(N) factors.
Our proof relies on classical Gaussian tools, in particular, Gaussian interpolation and Gaussian integration
by parts, and in fact, shows a more general statement, that to prove lower bounds for k-Forrelation
against a family of functions, it suffices to bound the `1-weight of the Fourier coefficients at levels
k, 2k, 3k, . . . , (k − 1)k for functions in the family.

∗CWI Amsterdam and TU Eindhoven, N.Bansal@cwi.nl. Supported by the NWO VICI grant 639.023.812.
†CWI Amsterdam, makrand@cwi.nl. Supported by the NWO VICI grant 639.023.812.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 127 (2020)

1 Introduction

The last couple of decades have given us ample evidence to suggest that quantum computers can be exponen-
tially more powerful in solving certain computational tasks than their classical counterparts. The black-box
or query model offers a concrete setting to provably show such exponential speedups. In this model, a
quantum algorithm has “black-box access” to the input and seeks to compute a function of the input while
minimizing the number of queries. Most well-known quantum algorithms, such as Grover’s search [Gro96],
Deutsch-Josza’s algorithm [DJ92], Bernstein-Vazirani’s algorithm [BV97], Simon’s Algorithm [Sim97] or
Shor’s period-finding algorithm [Sho97], are captured by this black-box access model. There are slightly
different models of black-box access to the input and in this work, we consider the most basic access model
where each query returns a bit of the input. In this case, the classical counterpart is also commonly known as
a randomized decision tree. There are many connections between the settings of quantum and randomized
query complexity and for more details, we refer the reader to the survey by Buhrman and de Wolf [BW02].

The above raises a natural question that was first asked by Buhrman, Fortnow, Newman and Röhrig
[BFNR08]: what is the maximal possible separation between quantum and classical query complexities?
Translating the results from slightly different query models to the setting where the queries return a bit of
the input, Simon’s problem [Sim97] and a work of Childs et al. [CCD+03] exhibited a separation of O(log2N)

quantum queries vs Ω̃(
√
N) randomized queries for partial functions on N bits, while another work of de

Beaudrap, Cleve and Watrous [BCW02] implied a 1 vs Ω(N1/4) separation. However, these works left open
the possibility of a O(1) vs Ω(N) separation, and towards answering this question, Aaronson and Ambainis
[AA18] showed that for q = O(1), any q-query quantum algorithm can be simulated by a randomized

algorithm making O(N1− 1
2q) queries, thus ruling out the possibility of a O(1) vs Ω(N) separation. In

particular, they proved the following fundamental simulation result.

Theorem 1.1 ([AA18]). Let Q be a quantum algorithm that makes q queries to an input x ∈ {±1}N . Then,

with high probability, one can estimate P[Q accepts x] up to an additive δ factor by making O(4qN1− 1
2q δ−2)

classical randomized queries to x. Moreover, these queries are also non-adaptive.

In the same paper, Aaronson and Ambainis showed that the (standard) Forrelation problem, exhibits

a 1 vs Ω̃(
√
N) separation, improving upon a 1 vs Ω(N1/4) separation shown earlier by Aaronson [Aar10]

where the standard Forrelation problem was introduced. Given the above theorem and ignoring polylog(N)
factors, this is the maximal separation possible when q = 1.

[AA18] asked if Theorem 1.1 is also tight for any q > 1. If true, this would imply an O(1) vs Ω(N1−η)
separation where η = O(1/q) could be made arbitrarily small. Towards this end, they suggested a natural
generalization of the standard Forrelation problem, that they called k-Forrelation, which we introduce next
in a slightly more general setting.

(δ, k)-Forrelation. Let H = HN denote the N × N Hadamard matrix where N = 2n for n ∈ N and H
is normalized to have orthonormal columns, and hence operator norm 1. Let k ≥ 2 be an integer and let
i = (i1, · · · , ik) ∈ [N]k, and z := (z1, · · · , zk) ∈ {±1}kN . Define the function forrk : {±1}kN → R as follows

forrk(z) =
1

N

∑
i∈[N]k

z1(i1) · Hi1,i2 · z2(i2) · Hi2,i3 · · · · zk−1(ik−1) · Hik−1,ik · zk(ik). (1.1)

Observe that this function can be written as the following quadratic form:

forrk(z) =
1

N
· z>1 (H · Z2 · H · Z3 · · · · H · Zk−1 · H)zk, (1.2)

where Zi = diag(zi) for i ∈ {2, . . . , k − 1} is the diagonal matrix with zi ∈ {±1}N on the diagonal. From
the above quadratic form description, it follows that forrk(z) ∈ [−1, 1] always, since z1/

√
N and zk/

√
N are

unit vectors, and the operator norm of the matrix appearing in the quadratic form is at most 1.

2

For a parameter 0 < δ < 1, the (δ, k)-Forrelation function is then defined in terms of forrk as the following
partial boolean function:

forrδ,k(z) =

{
1 if forrk(z) ≥ δ, and

0 if |forrk(z)| ≤ δ/2.
(1.3)

We overload the notation forr above to denote the real function forrk, as well as the partial boolean function
forrδ,k, but the reader should not have any ambiguity as to what is meant. Note that the standard Forrelation
promise problem of [AA18] is obtained by taking δ = 3/5 and k = 2.

As already observed by [AA18], there is a simple and efficient quantum circuit that makes dk/2e queries
and computes (δ, k)-Forrelation in the following manner.

Proposition 1.2 ([AA18]). There exists a quantum circuit Q that makes dk/2e queries and uses O(k logN)
gates, such that for any input z ∈ {±1}kN , it holds that P[Q accepts z] = 1

2 (1 + forrk(z)).

The above implies a δ/4 gap between the acceptance probabilities on the 1-inputs and 0-inputs for (δ, k)-
Forrelation. Standard tricks can then be used to show that with dk/2e quantum queries and a quantum
circuit of O(k logN) size, one can compute (δ, k)-Forrelation with error at most 1

2 − δ/16 on any input.
Combined with Theorem 1.1, this also shows that the (δ, k)-Forrelation function can be computed by

making O(2kN1−1/kδ−2) classical randomized queries1, even non-adaptively. For even values of k, this
exactly matches the bound in Theorem 1.1 (upto polylog(kN) factors assuming k = O(log logN)) and
Aaronson and Ambainis [AA18] proposed (δ, k)-Forrelation as a candidate for extremal separations between
classical and quantum query complexities.

On the lower bound side, as mentioned before, Aaronson and Ambainis [AA18] showed that Ω(
√
N/ logN)

classical queries are required for standard Forrelation. They also showed a slightly weaker lower bound of
Ω(
√
N/ log7/2N) for (δ, k)-Forrelation, for δ = 3/5 and k > 2. One can improve this lower bound slightly

by observing the following: in the quadratic form description (1.2) above, if we take z2, · · · , zk−1 to be the
all-one strings, and k is even, then (δ, k)-Forrelation reduces to the standard Forrelation as Hr = H if r is an
odd natural number. So the same Ω(

√
N/ logN) lower bound holds for (δ = 3/5, k)-Forrelation as well, if k

is even. Similarly, although not obvious, one can also design an input distribution achieving the same lower
bound for odd k.

Thus, the current lower bounds for (δ, k)-Forrelation do not exhibit a better than O(1) vs Ω̃(
√
N) separ-

ation, still leaving whether Theorem 1.1 is tight for q > 1 wide open.

Beyond O(1) vs. Ω̃(
√
N) separation. Recently, motivated by this question, Tal [Tal19] considered a

different variant of the (δ, k)-Forrelation problem, that he refers to as Rorrelation, to show a dk/2e vs

Ω̃(N2/3−O(1/k)) separation. In particular, Tal shows that if one replaces the Hadamard matrix H in (1.1)
and (1.3) by a random orthogonal matrix U, then to compute the resulting random partial function, one

requires Ω̃
(
N2(k−1)/(3k−1)) classical queries with high probability for parameters (δ = 2−k, k). Moreover,

any such function can still be computed with dk/2e quantum queries, giving the dk/2e vs Ω̃(N2/3−O(1/k))
separation.

While this breaks the
√
N barrier, the Rorrelation function is not explicit, and even though it is com-

putable with a small number of quantum queries, the corresponding unitaries may not be efficiently imple-
mentable as a quantum circuit. This is in contrast to (δ, k)-Forrelation, where the resulting quantum query
algorithms can also be efficiently implemented as a quantum circuit of polylogarithmic size. Tal’s proof does
not imply a better lower bound for (δ, k)-Forrelation than the Ω̃(

√
N) bound mentioned before, as it relies

on various strong properties of random orthogonal matrices that the Hadamard matrix does not satisfy.

1For even k this follows from the statement of Theorem 1.1 as dk/2e = k/2. The bound also holds for odd k as the proof
of Theorem 1.1 in fact shows that any bounded block-multilinear polynomial of degree d can be approximated up to δ additive
error with O(2dN1−1/dδ−2) randomized queries, and forrk is a degree-k block-multilinear polynomial for all k. The connection
with query complexity comes in as the acceptance probability of any q-query quantum algorithm can be written as a degree-2q
block-multilinear polynomial.

3

1.1 Our Results

In this work, we confirm the conjecture of Aaronson and Ambainis that (δ, k)-Forrelation does exhibit an
extremal separation between classical and quantum query complexities by proving the following lower bound.

Theorem 1.3. Let k ≥ 2, ε = (64k2 log(kN))−1, and set δ = εk. Then, any randomized decision tree that
computes (δ, k)-Forrelation with error at most 1

2 −
γ
2 , must make at least the following number of queries,

Ω

(
N1−1/k

k8 log(kN)
· γ2

log(1/δ)

)
.

Note that for an even k = O(1) and an advantage γ = δ/16, the above lower bound is Ω̃(N1−1/k) and
it matches the upper bound for (δ = εk, k)-Forrelation implied by Theorem 1.1, up to a polylog(kN) factor.
The bound is also tight for odd k, as mentioned before. We remark that the choice of ε = O(1/ log(kN))
is due to technical reasons. One can try to take ε = Ω(1) by a slight modification to our proof, but the
computations get quite tedious. It will be interesting to see if this could be made to work.

The previous statement gives a lower bound for randomized algorithms that have a Θ(δ) advantage,
since we wish to compare it to the advantage of the dk/2e-query quantum algorithm which has a success
probability of 1/2 + Θ(δ). If one wants a success probability of at least 2/3, then the quantum query
complexity of (δ, k)-Forrelation becomes O(k · δ−2) = polylogk(kN) by using standard amplification tricks.
This gives us that there exists an explicit partial boolean function on M = kN bits that can be computed
with error at most 1/3 by quantum circuits of polylogk(M) size, making polylogk(M) queries, but requires
M1−η randomized queries where η = Θ(1/k). If we set k = O(log logN), then η = o(1) while the number
of quantum queries and the size of the quantum circuit is quasi-polylogarithmic in M . More precisely, we
have the following.

Corollary 1.4. Let k ≥ 2, ε = (64k2 log(kN))−1 and δ = εk. Then, there exists a quantum circuit with
polylogk(kN) gates, making polylogk(kN) queries that computes (δ, k)-Forrelation with error at most 1/3.
On the other hand, any randomized decision tree that computes (δ, k)-Forrelation with error at most 1/3,

needs Ω
(

N1−1/k

k8 log(kN) log(1/δ)

)
= Ω

(
N1−1/k

k10 log2(kN)

)
queries.

We remark that our proof also works even if one replaces the Hadamard matrix H in (1.1) and (1.3) by an

arbitrary orthogonal matrix U where all entries are Õ(N−1/2) in magnitude. In particular, the lower bounds
given above also hold for Rorrelation as all entries of a random orthogonal matrix are O((N/ logN)−1/2)
with high probability.

Separation for Total Boolean Functions. Our results also imply an improved separation for total
boolean functions. Let Q(f) (resp. R(f)) denote the minimum number of queries made by a quantum (resp.
randomized) algorithm to compute a (partial or total) boolean function f with probability at least 2/3.

Then, the results of Aaronson, Ben-David and Kothari [ABK16] imply that an Mo(1) vs M1−o(1) separa-
tion between the quantum and randomized query complexity of a partial boolean function on M bits implies
the existence of a total boolean function with cubic separation between the two measures. Combined with
our results, this yields the following corollary.

Corollary 1.5. There exists a total boolean function f for which R(f) ≥ Q(f)3−o(1).

The recent work of Aaronson, Ben-David, Kothari and Tal [ABKT20] conjectures that for any total
boolean function f, it always holds that R(f) = O(Q(f)3), so if true, the above separation is optimal up to
o(1) factors in the exponent. The current best upper bound is a 4th power relationship which holds even for
deterministic query algorithms: denoting by D(f) the deterministic query complexity of f, [ABKT20] prove
that D(f) = O(Q(f)4). The above is tight for deterministic query algorithms due to an example of Ambainis
et al. [ABB+17].

4

1.2 Overview and Techniques

Our proof of Theorem 1.3 is based on classical Gaussian tools, and builds on the stochastic calculus approach
of Raz and Tal [RT19] for their breakthrough result on oracle separation between BQP and PH (see also the
simplification of the results of [RT19] by Wu [Wu20]).

In fact, the input distribution that [RT19] use is a slight variant of the distribution used for standard
Forrelation (k = 2) by [AA18]. However, as also noted by [Tal19], it is unclear how to use stochastic calculus
already for k = 3, as the hard input distribution for randomized query algorithms has a non-linear structure
involving the product of two Gaussians (we elaborate more on this later).

To get around this, our proof relies on using multilinearity of functions on the discrete cube and the
properties of the underlying input distribution in a careful way, together with additional tools such as
Gaussian interpolation and Gaussian integration by parts. In this overview, we focus on the special case of
k = 3, which already suffices to illustrate the main difficulties in extending the previous approaches to prove
lower bounds for (δ, k)-Forrelation.

The case of k = 3. In this case, for i = (i1, i2, i3) ∈ [N]3 and z = (z1, z2, z3) ∈ R3N , we have

forr3(z) =
1

N

∑
i∈[N]3

z1(i1) · Hi1,i2 · z2(i2) · Hi2,i3 · z3(i3).

It is not hard to see that the uniform distribution on {±1}3N is mostly supported on 0-inputs for forr3(z).
We will give a distribution p1(Z) on {±1}3N — a variant of the distribution considered in [RT19, Tal19] —
that is mostly supported on 1-inputs.

Given an arbitrary randomized decision tree making d queries, let f(z) be the acceptance probability of
the decision tree on input z. To prove a lower bound it suffices to show that for any such f , the distinguishing
advantage |Ep1 [f(Z)]− f(0)| is small, as f(0) is exactly the average acceptance probability under the uniform
distribution.

The distribution p1(Z). Consider the 2N×2N covariance matrix Σ = ε

(
IN HN
HN IN

)
with ε = Θ(1/ logN).

A random Gaussian vector distributed as N (0,Σ) will typically lie inside the cube [−1/2, 1/2]2N as the
variance of each coordinate is O(1/ logN), and in this overview we assume that this is always the case, to
avoid technicalities that can be dealt with truncating and bounding the error separately. Then, p1(Z) is
the following distribution: Take two independent 2N -dimensional Gaussian vectors G = (U1, V1) and B =
(U2, V2) distributed as N (0,Σ) and obtain a vector Z ∈ {±1}3N by rounding each coordinate independently
to ±1 with bias given by (U1, U2 � V1, V2) ∈ [−1/2, 1/2]3N . Here � denotes the Hadamard product2 of two
vectors. In other words, for i ∈ [N],

Ep1 [Z1(i) | G,B] = U1(i) and Ep1 [Z2(i) | G,B] = U2(i)V1(i) and Ep1 [Z3(i) | G,B] = V2(i). (1.4)

Therefore, we have

Ep1 [forr3(Z)] =
1

N

∑
i∈[N]3

E[U1(i1) ·Hi1,i2 ·V1(i2)G2(i2) ·Hi2,i3 ·V2(i3)] =
ε2

N

∑
i∈[N]3

H2
i1,i2H2

i2,i3 = Θ

(
1

log2N

)
,

as E[U1(i)V1(j)] = E[U2(i)V2(j)] = ε · Hi,j , and since each entry of H is ± 1√
N

and ε = Θ(1/ logN).

Extending f from {±1}3N to a function from R3N to R, by identifying it with its Fourier expansion, and
using the multilinearity of f and the equalities in (1.4), our task then reduces to showing that∣∣Ep1 [f(Z)]− f(0)

∣∣ =
∣∣E[f(U1, U2 � V1, V2)]− f(0)

∣∣� 1/ log2N. (1.5)

2For u, v ∈ Rm, the Hadamard product is the vector u� v ∈ Rm defined as u� v = (u(1) · v(1), · · · , u(m) · v(m)).

5

Previous approaches and their limitations. This is the starting point of all3 previous approaches to
bounding the above, which essentially proceed in the following two ways.

(a) Bounding all moments and Fourier weight of all levels. As f(z) =
∑
S⊆[3N] f̂(S)χS(z) where

{χS(z)}S⊆[3N] are Fourier characters, one can bound

∣∣E[f(U1, U2 � V1, V2)]− f(0)
∣∣ ≤ d∑

`=1

wt`(f) · max
|S|=`

∣∣E[χS(U1, U2 � V1, V2)]
∣∣ ,

writing wt`(f) =
∑
|S|=` |f̂(S)|, as the `1-weight of the Fourier coefficients at level `.

This approach needs a bound on the Fourier weight wt`(f) for all levels ` ≤ d, as well as a bound on
all the moments |E[χS(U1, U2 � V1, V2)]|, and consequently suffers from two drawbacks. First, the currently
known bounds on wt` for decision trees degrade as ` gets large — [Tal19] shows that if f is computable by a

randomized decision tree of depth d, then wt`(f) ≤ Õ(d)`/2, which becomes weaker than the trivial bound of(
d
`

)
when `�

√
d. For this reason the bound of [Tal19] for Rorrelation does not go beyond Ω̃(N2/3−O(1/k)).

Second, the moments can be very large for the Hadamard matrix (e.g. due to very large submatrices
with all 1/

√
N entries). This is not an issue if a random orthogonal matrix is used instead (which allows

[Tal19] to go beyond N1/2 for Rorrelation). Another limitation is that using a worst case bound for the mo-
ment given by each Fourier character does not exploit the non-trivial cancellations that can occur for various
terms in the sum. In fact, it is not even clear how to obtain the Ω̃(N1/2) bound for k = 2 using this approach.

(b) Stochastic Calculus/Gaussian Interpolation. The second approach is based on utilizing the special
properties of Gaussians and using tools from stochastic calculus [RT19, Wu20]. In this paper, we describe
an alternate approach using the classical method of Gaussian interpolation which can also be recovered by
stochastic (Itô) calculus. Gaussian interpolation is a way to continuously interpolate between jointly Gaus-
sian random variables with different covariance structures. By choosing a suitable path to interpolate and
controlling the derivatives along this path, one can compute functions of Gaussians with a more complicated
covariance structure in terms of an easier one. Talagrand [Tal11] dubs this the smart path method to stress
the important of choosing the right path.

In particular, let G ∈ Rm be a multivariate Gaussian and for an interpolation parameter t ∈ (0, 1), define
G(t) =

√
t · G. Then, the Gaussian interpolation formula (see Section 2.1) implies that for any reasonable

function h : Rm → R one has

E[h(G)]− h(0) =

∫ 1

0

d

dt

(
E[h(G(t)]

)
dt =

1

2

∑
ij

E[GiGj]

∫ 1

0

E [∂ijh(G(t))] dt. (1.6)

in terms of the covariance of G and the second derivatives ∂ij of h.

Note that if h is a multilinear polynomial, then ∂ijh(0) = ĥ(ij) if i 6= j while ∂iih is identically zero.
The right-hand side above involves partial derivatives at arbitrary points G(t), but these can be reduced to

derivatives at 0 (and hence level-two Fourier coefficients ĥ(ij)) by a clever random restriction. In particular,
the derivative ∂ijh(µ) at any µ ∈ [−1/2, 1/2]m can be interpreted as a Fourier coefficient with respect to a
biased product measure (details given later). Thus, this approach only requires a bound on the level-two
weight wt2(f), and works very nicely for k = 2, as in that case our function is a multilinear function of a
Gaussian.

However for k = 3, as also noted by [Tal19], it is not immediately clear how to use the interpolation
approach to bound the expression in (1.5), as it involves a product of Gaussians. In particular, the second
block of coordinates consists of products of coordinates of Gaussians U2 and V1.

3We remark that the original approach of [AA18] does not fit in this framework and it is not clear how to generalize it either
for k > 2.

6

1.2.1 Our Approach

Our main insight is that the advantage of f in (1.5) can essentially be bounded in terms of the third and sixth
level Fourier weight of f (see (1.8) for the precise statement). More generally for any k ≥ 3, the advantage
of f can be bounded in terms of the Fourier weight of f at levels k, 2k, . . . , (k − 1)k.

To show this, we use Gaussian interpolation as in (1.6). In particular, for k = 3, given that our vector
is of the form (U1, U2 � V1, V2) and f is a multilinear polynomial, we can treat the function h in (1.6) as
a function of the 4N -dimensional Gaussian vector (U1, U2, V1, V2). Similarly, for an arbitrary k, using a
suitable generalization of the distribution p1(Z), we get a function h of a 2(k − 1)N -dimensional Gaussian
vector. The resulting expression in (1.6) is then a k−1 dimensional integral, which leads to partial derivatives
of order 2k − 2 instead of ∂ij in (1.6) above. However, due to the interactions between the variables of Ui
and Vi−1 (an issue which does not arise for k = 2), the partial deriatives with respect to Ui and Vi−1 do not
necessarily correspond to derivatives of f (with respect to its coordinates), and a key technical idea is to use
Gaussian integration by parts to relate them. In particular, the order 2k − 2 derivatives of h can be related
to order k, 2k, . . . , (k − 1)k derivatives of f .

We remark that a recent work of Girish, Raz and Zhan [GRZ20] used a similar multi-dimensional
stochastic walk to prove a lower bound for a different setting: they considered the partial function ob-
tained by taking an XOR of multiple copies of the standard Forrelation problem, and their main focus was
to prove a lower bound for quasipolynomially small advantage. The analysis for this setting is closer to the
previously mentioned approaches of [RT19, Wu20] for the standard Forrelation problem. In particular, the

technical challenges that arise while trying to prove a better than Ω̃(
√
N) lower bound for k-Forrelation for

k > 2 do not arise in that case.

The case of k = 3. We explain the idea for k = 3 first, which is quite a bit simpler, and then sketch the
additional ideas needed for higher k. We will crucially leverage the multilinearity of the function f and the
specific structure of the random vector (U1, U2 � V1, V2) ∈ R3N . In particular, let S = S1 t S2 t S3 where
Sr for r ∈ [3] is the projection of the subset on the rth block of coordinates and t denotes the disjoint union
of the sets. Consider the monomial χS(z) in the multilinear representation of f . Using the multiplicativity
of the characters, we have that

χS(U1, U2 � V1, V2) = χS1(U1)χS2(U2) · χS2(V1)χS3(V2).

Our starting point is that as G = (U1, V1) and B = (U2, V2) are independent, one can interpolate them
separately, which leads to a two-dimensional integral in (1.6), and the integrand on the right side ranges over
the following derivatives

E
[

∂

∂u1(i1)∂v1(j2)
χS1(U1(t1))χS2(V1(t1))

]
E
[

∂

∂u2(i2)∂v2(j3)
χS2(U2(t2))χS3(V2(t2))

]

=E [χS1\i1(U1(t1))χS2\j2(V1(t1))] ·E [χS2\i2(U2(t2))χS3\j3(V2(t2))]

=E [χS1\i1(U1(t1))χS2\j2(V1(t1)) · χS2\i2(U2(t2))χS3\j3(V2(t2))], (1.7)

where (i1, i2) ∈ S1×S2, and (j2, j3) ∈ S2×S3, and t1, t2 ∈ (0, 1) are interpolation parameters which we will
drop from the notation henceforth.

The main difference now from the k = 2 case is that because of the presence of products U2 � V1, the
above derivatives can not be interpreted in general as derivatives ∂f

∂zA
(z) evaluated at (U1,U2 �V1,V2).

Let us consider this more closely. Suppose that i2 = j2. In this case, (1.7) becomes

E [χS1\i1(U1) · χS2\j2(U2 �V1) · χS3\j3(V2)],

which corresponds to a third derivative of χS(z) evaluated at z = (U1,U2 �V1,V2).

7

However, if i2 6= j2, then the term in (1.7) does not correspond to a derivative of f(z) with respect to z.
To handle this, we note that χS2\j2(V1) ·χS2\i2

(U2) can be written as χS2\{i2,j2}(U2�V1) ·U2(j2) ·V1(i1),
and hence (1.7) becomes

E [χS1\i1(U1)χS2\{i2,j2}(U2 �V1)χS3\j3(V2) ·U2(j2) ·V1(i1)],

In particular, the term in the expectation corresponds to the derivative of χS(U1,U2�V1,V2) with respect
to J = {i1, i2, j2, j3} times the variables U2(j2) and V1(i2). However, this exactly fits the form required to
use the Gaussian integration by parts formula (see Section 2.1). In particular, one can trade off the factors
U2(j2) and V1(i2) for one additional derivative each, giving us the sixth order derivatives for χS . Both the
cases above eventually allow us to bound the function in terms of Fourier weight of f at levels three and six.

To state the bound we obtain more formally, for µ ∈ [−1/2, 1/2]3N , consider the product measure on
{±1}3N where the i-th bit is 1 with probability (1 + µi)/2 and −1 with probability (1 − µi)/2, so that

its bias is exactly µi. Define the level-` Fourier weight with respect to bias µ as wtµ` (f) =
∑
|S|=` |f̂µ(S)|,

where f̂µ(S) is the Fourier coefficient with respect to the biased product measure above (see Section 2.2 for
a formal definition). Then, we show the following key result towards bounding (1.5).∣∣E[f(U1, U2 � V1, V2)]− f(0)

∣∣ . sup
µ∈[−1/2,1/2]3N

ε

N
· wtµ3 (f) +

ε2

N2
· wtµ6 (f). (1.8)

By a random-restriction argument similar to that in previous works, the level-` Fourier weight for a
decision tree with respect to biased measures is essentially the same as the Fourier weight with respect to
the uniform measure (see Corollary 3.5 later) and hence at most Õ(d)`/2 by the bounds in [Tal19].

Plugging these bounds in (1.8) above, yields that for a depth-d randomized decision tree, the advantage
is at most ∣∣E[f(U1, U2 � V1, V2)]− f(0)

∣∣ ≤ ε

N
· Õ(d)3/2 +

(ε
N
· Õ(d)3/2

)2
,

which is small for d� N2/3. This gives the optimal bound for (δ, k = 3)-Forrelation, where δ = Θ(1/ log2N).

Arbitrary k. For k > 3, there is an additional complication that is not apparent in the case of k = 3.
In this case, a suitable generalization of the distribution p1(Z) involves k − 1 independent 2N -dimensional
Gaussian vectors (Uκ, Vκ), for κ ∈ [k−1] distributed as N (0,Σ). Moreover, there are k−2 blocks of the form
Uκ � Vκ−1 for κ ∈ {2, . . . , k − 1} (see Section 3 for the exact form). Due to this, when we apply Gaussian
integration by parts to trade off the (unmatched) factors Uκ(i) and Vκ(j) with extra derivatives, this can
lead to several more additional factors.

For example, suppose we apply Gaussian integration by parts to remove the factor U2(i), then since U2(i)
is correlated with various V2(j) and each V2(j) appears together with a U3(j) in V2�U3, upon differentiating
with respect to variables in V2, this leads to multiple new terms with factors U3(j). Apriori, it is not
obvious if applying Gaussian integration by parts leads to any progress. However, viewing this dynamics
as a branching process and exploiting the multilinearity of the function f and the specific structure of the
distribution p1(Z), we can show using a careful counting argument, that this process eventually terminates
without giving too many higher order derivative terms.

In particular, even though the initial terms after the Gaussian interpolation step involve derivatives of
order at most 2k− 2, we show that the final derivatives obtained after applying all the Gaussian integration
by parts steps are of order k, 2k, . . . , (k − 1)k. This allows us to show an overall bound on the advantage of
f , in terms of the Fourier weight of f at levels k, 2k, 3k, . . . , (k − 1)k where the relative contribution of the
higher level weights gets progressively smaller. In the end, plugging in the bounds on the Fourier weight, we
show that for an arbitrary k, the advantage a randomized depth-d decision tree has is at most∣∣Ep1 [f(Z)]− f(0)

∣∣ ≤ k−1∑
m=1

(ε
N

)m(k−1)/2
· Õ(d)mk/2 =

k−1∑
m=1

((ε
N

)1−1/k
· Õ(d)

)mk/2
,

which is negligible if d� N1−1/k. This gives the result for general k.

8

1.2.2 Organization

The rest of the paper is organized as follows. We introduce the notation and basic preliminaries in Section 2.
Section 3 gives the input distribution, shows that the chosen input distribution has a large support on the
1 and 0 inputs of (δ, k)-Forrelation, and also gives a formal outline of the main proof. Section 4 shows that
one can switch between the continuous and the discrete settings up to a small error. Section 5 contains the
proof of the lower bound on randomized query algorithms.

2 Preliminaries

Notation. Throughout this paper, log denotes the natural logarithm unless the base is explicitly mentioned.
We use [k] to denote the set {1, 2, . . . , k}. For a singleton set {x}, we sometimes write x for brevity. The set
of natural numbers including zero is denoted by N0. Matrices are denoted by capital serif fonts (e.g. A).

For a random vector (or bit-string) z in Rn, we will use zi or z(i) to denote the i-th coordinate of z,
depending on whether we need to use the subscript for another index. If z ∈ Rkn, then we will write z =
(z1, . . . , zk) where (zκ)κ∈[k] are vectors in Rn to denote the projections on the coordinates {(κ−1)n, . . . , κn}
— in this case, we will explicitly mention that (zκ)κ∈[k] are vectors so that there is no ambiguity that zκ
refers to a coordinate of z. The operator and Frobenius norms of a matrix M are denoted by ‖M‖op and
‖M‖F .

Random variables are denoted by capital letters (e.g. A) and values they attain are denoted by lower-case
letters possibly with subscripts and superscripts (e.g. a, a1, a

′, etc.). Events in a probability space will be
denoted by script letters (e.g. B). We use 1B or 1[B] to denote the indicator random variable for the event
B. Given a random variable X in a probability space p, we write p(X) to denote the distribution of X in the
probability space. For random variables X,Y , we write p(X,Y) to denote the joint distribution and p(X)
to denote the marginal distribution. We write p(B) to denote the probability of the event B. For λ ∈ [0, 1],
we use λp(X) + (1− λ)p′(X) to denote the convex combination of the two distributions, where the random
variable X is sampled from p(X) with probability λ, and from p′(X) with probability 1− λ.

For a real valued function f , we write Ep[f(X)] to denote the expectation of the random variable f(X)
where X is in the probability space p. Similarly, Ep[f(X) | Y] denotes the conditional expectation of
f(X) with respect to Y . If the probability space p is clear from the context, we simply write E[f(X)] and
E[f(X) | Y]. We use N (0, σ2) to denote a Gaussian random variable in R with mean zero and variance σ2.
For a positive semi-definite matrix Σ ∈ Rm×m, we write N (0,Σ) to denote a centered (mean-zero) Gaussian
random variable in Rm with covariance Σ. We call an m-dimensional Gaussian standard, if Σ is the identity
matrix Im.

2.1 Gaussian Tools

Let us denote the density and cumulative distribution function for the standard Gaussian N (0, 1) by

γ(s) =
1√
2π
e−s

2/2 and Φ(s) =

∫ s

−∞
γ(t)dt.

The following estimate is standard.

Proposition 2.1 (Gaussian Concentration). For any a > 0, we have 1−Φ(a) ≤ e−a2/2. In particular, if G
is N (0, σ2), then its density at s is σ−1γ(s/σ), and so for all a > 0,

P[|G| ≥ a] = 2

∫ ∞
a

σ−1γ(s/σ)ds = 2

∫ ∞
a/σ

γ(t)dt = 2(1− Φ(a/σ)) ≤ 2e−a
2/2σ2

.

Proposition 2.2. For any a > 0, it holds that
∫∞
a
s2γ(s)ds = aγ(a) + (1− Φ(a)) ≤ (a+ 1)e−a

2/2.

9

Proof. Since γ′(s) = −sγ(s), integrating by parts, and using the proposition above∫ ∞
a

s2γ(s)ds =

∫ ∞
a

−sγ′(s)ds = −sγ(s)
∣∣∣∞
a

+

∫ ∞
a

γ(s)ds = aγ(a) + (1− Φ(a)) ≤ (a+ 1)e−a
2/2. �

Gaussian Interpolation and the Smart Path Method. We refer to Talagrand’s book [Tal11] for a
nice exposition, and in particular, §1.3 and Appendix A.4 there, for proofs of the lemmas given below.

Let f : Rn → R be an infinitely differentiable function. We say that f is of moderate growth if all partial
derivatives of f satisfy the following

lim
‖x‖→∞

∣∣∂if(x)
∣∣ e−a‖x‖2 = 0 for every i = (i1, · · · , in) ∈ Nn0 and a ∈ R>0, (2.1)

where ∂i denotes the partial derivative
∂

∂xi11
· · · ∂

∂xinn
and ‖ · ‖ is the Euclidean norm. We remark that

throughout this paper, we will only work with multilinear polynomials, which are always of moderate growth.

Let f : Rn → R be of moderate growth and consider two centered jointly Gaussian random vectors G
and B in Rn. Let us define G(t) = (Gi(t))i≤n where

Gi(t) =
√
t Gi +

√
1− t Bi, (2.2)

so that G = G(1) and B = G(0) and consider the function

ϕ(t) = E[f(G(t))]. (2.3)

For clarity, we will use boldface font to refer to the interpolating Gaussian.

Lemma 2.3 (Gaussian Interpolation). For 0 < t < 1 we have

ϕ′(t) =
1

2

∑
ij

(
E[GiGj]−E[BiBj]

)
E
[

∂f

∂xi∂xj
(G(t))

]
.

Choosing the covariance of B to be the all zero matrix, we have that G(t) =
√
t G, and the following

useful identity follows from the previous lemma by the fundamental theorem of calculus

E[f(G)]− f(0) =

∫ 1

0

ϕ′(t)dt =
1

2

∑
ij

E[GiGj]

∫ 1

0

E
[

∂f

∂xi∂xj
(G(t))

]
dt.

We remark that one can derive the same formula using Itô calculus.
Another important tool that we repeatedly use is the multivariate Gaussian integration by parts formula.

Lemma 2.4 (Gaussian Integration by Parts). If B,G1, . . . , Gn are real-valued random variables that are
jointly Gaussian and f : Rn → R is of moderate growth, then

E[B · f(G1, . . . , Gn)] =

n∑
i=1

E[BGi] E
[
∂f

∂xi
(G1, . . . , Gn)

]
.

Note that this formula replaces the expectation of the product of a Gaussian random variable with the
function f , with a weighted sum of expectation of the derivatives of f .

The Gaussian integration by parts formula can be used to prove Lemma 2.3 and it turns out that it also
uniquely characterizes the multivariate Gaussian distribution.

10

2.2 Fourier Analysis on the Discrete Cube

We give some facts from Fourier analysis on the discrete cube that we will need, and for more details we
refer to the book [O’D14]. Every boolean function f : {±1}m → R can be written uniquely as a sum of
monomials χS(x) =

∏
i∈S xi,

f(x) =
∑
S⊆[m]

f̂(S)χS(x), (2.4)

where f̂(S) = Ep[f(X)χS(X)] is the Fourier coefficient with respect to the uniform measure p on {±1}m.
The monomials χS(x) =

∏
i∈S xi form an orthonormal basis for real-valued functions on {±1}m, called the

Fourier basis.
Any function on {±1}m can be extended to Rm by identifying it with the multilinear polynomial given by

(2.4), which is also called the harmonic extension of f and is unique. We will denote the harmonic extension
of f also by f and in general, we have the following identity by interpolating the values of f on the vertices
of the discrete hypercube.

f(x) =
∑

y∈{±1}m
wx(y)f(y), where wx(y) =

m∏
i=1

1 + xiyi
2

for any x ∈ Rm. (2.5)

The above implies that for a boolean function f : {±1}m → [−1, 1], the harmonic extension of f also satisfies
maxx∈[1,1]m |f(x)| ≤ 1.

The discrete derivative of a function on the hypercube {±1}m is given by

∂if(x) =
1

2
(f(xi→1)− f(xi→−1)),

where xi→b is the same as x except that the i-th coordinate is set to b. It is easily checked that the harmonic
extension of ∂if(x) is the real partial derivative ∂

∂xi
of the harmonic extension of f and we will identify

it as such. Furthermore, for a boolean function f : {±1}m → [−1, 1], the discrete derivative at any point
x ∈ {±1}m also satisfies |∂if(x)| ≤ 1 and hence (2.5) implies that maxx∈[1,1]m |∂Af(x)| ≤ 1 for any A ⊆ [m]
identifying ∂Af as the harmonic extension of the real partial derivative of f . Moreover, from (2.4), it also
follows that

∂Af(x) =
∑

S:S⊇A

f̂(S)χS\A(x) (2.6)

for any subset A ⊆ [m]. The above also implies that ∂Af(0) = f̂(A).

The level-` Fourier weight of f is defined as wt`(f) =
∑
|S|=` |f̂(S)|.

For a function f(x1, . . . , xm), a restriction ρ ∈ {−1, 1, ?}m gives a partial assignment to the variables
(xi)i≤m. We denote the set of coordinates of ρ whose value is ? as free(ρ) while the set of coordinates that are
fixed to ±1 is denoted by fix(ρ). We use fρ to denote the function obtained from f by setting the variables
in fix(ρ) to the values given by ρ.

Fourier basis for biased measures. For a proofs of the results below, see Chapter 8 in [O’D14]. Given
any µ ∈ (−1, 1)m, let pµ(X) be the biased product distribution over {±1}m such that each coordinate
of X ∈ {±1}m is sampled independently so that Xi = 1 with probability (1 + µi)/2 and Xi = −1 with
probability (1− µi)/2. So the expectation and the variance of Xi are

Epµ [Xi] = µi, and Epµ [(Xi − µi)2] = 1− µ2
i .

Then, the Fourier basis with respect to the biased product measure pµ is given by the following functions
indexed by subsets S ⊆ [n]:

φµS(x) =
∏
i∈S

φµi (x), where φµi (x) =
xi − µi
σi

,

11

with σi = (1− µ2
i)

1/2 being the standard deviation of the biased random bit Xi. Note that

Epµ [φµS(X)2] =
∏
i∈S

Epµ [φµi (X)2] =
∏
i∈S

1

σ2
i

·Epµ [(Xi − µi)2] = 1,

and that Epµ [φµS(X)φµT (X)] = 0 if S 6= T . So the functions φµS(x) form an orthonormal basis for real-valued
functions on {±1}m with respect to the inner product obtained by taking expectation under pµ. The Fourier
expansion with respect to the biased product measure pµ is given by

f(x) =
∑
S⊆[n]

f̂µ(S)φµS(x), (2.7)

where f̂µ(S) = Epµ(x)[f(x)φµS(x)] are the Fourier coefficients with respect to pµ.
The discrete derivative with respect to φµi is defined as

∂µi f(x) :=
f(xi→1)− f(xi→−1)

φµi (1)− φµi (−1)
= σi ·

f(xi→1)− f(xi→−1)

2
= σi · ∂if(x), (2.8)

where ∂if(x) is the discrete derivative with respect to the standard Fourier basis (with respect to the uniform
measure over {±1}m).

Since ∂if can be viewed as the real partial derivative of the harmonic extension of f , using the chain

rule for taking derivatives,
∂f

∂φµi
= σi · ∂if , so one can identify ∂µi f as the real partial derivative

∂f

∂φµi
for the

harmonic extension of f . Moreover, from (2.7), it also follows that ∂µSf(µ) = f̂µ(S) for any subset S ⊆ [n],
so µ acts as the origin with respect to the biased measure.

The level-` Fourier weight of f with respect to bias µ is defined as wtµ` (f) =
∑
|S|=` |f̂µ(S)|.

3 Input Distribution and the Proof Outline

We now give a formal outline of the proof. We first give an input distribution for which (δ, k)-Forrelation is
easy to compute using quantum queries, but hard for classical queries. Our distribution is a variant of those
used in [RT19, Tal19].

To define the distribution we first introduce some notation. Let trnc : R → [−1/2, 1/2] denote the
following function,

trnc(s) =

{
min{1/2, s} if s ≥ 0,

max{−1/2, s} if s ≤ 0.

For notational convenience, we will write trnc(s1, . . . , sm) to denote (trnc(s1), . . . , trnc(sm)). Let us also
introduce the following block shifted Hadamard product of two vectors: given vectors x := (x1, · · · , xk−1) ∈
R(k−1)N and y := (y1, · · · , yk−1) ∈ R(k−1)N , we define x � y to be the following vector in RkN ,

x � y = (x1, · · · , xk−1,1)� (1, y1, · · · , yk−1) = (x1, y1 � x2, y2 � x3, . . . , yk−2 � xk−1, yk−1), (3.1)

where 1 is the all ones vector in RN and � is the Hadamard product of two vectors. The above product will
allow a natural generalization of the input distribution described in Section 1.2 to the case of arbitrary k.
To see some examples, for k = 2 and vectors x, y ∈ Rn, we have that x � y = (x, y); while for k = 3, we have
that x � y = (x1, y1 � x2, y2) = (x1, x2 � y1, y2) reminiscent of the expression appearing in (1.5).

We can now describe the input distribution. Recall that ε = 1/(64k2 log(kN)) and δ = εk and let

Σ = ε

(
IN HN
HN IN

)
. Then, our input distribution p(Z) = 1

2p0(Z) + 1
2p1(Z) where p0(Z) and p1(Z) are

defined in Figure 1.
We now show that pb(Z) for b ∈ {0, 1} has a large support on b-inputs for (δ, k)-Forrelation.

12

Distribution p0(Z): Z is uniform over {±1}kN .

Distribution p1(Z): Let (Uκ, Vκ)κ∈[k−1] be independent random variables in R2N that are distributed as
N (0,Σ). Write U = (Uκ)κ∈[k−1] and V = (Vκ)κ∈[k−1] and define W = trnc(U) � trnc(V) where

W ∈ [−1/2, 1/2]kN . Let Z = (Z1, . . . , Zk) ∈ {±1}kN be obtained by rounding each coordinate of the
vector W independently to ±1 by interpreting them as means, i.e., for each coordinate i ∈ [kN], we
have E[Z(i) | U, V] = W (i).

Figure 1: Input Distributions p0(Z) and p1(Z)

Theorem 3.1. For the input distribution defined in Figure 1,

p0(forrδ,k outputs 0) ≥ 1− 4

δ2N
and p1(forrδ,k outputs 1) ≥ 6δ.

Proof. We first consider p0. Since p0(z) is uniform on {±1}kN and forrk(z) is a multilinear and homogeneous
polynomial, clearly Ep0(z)[forrk(z)] = 0. Next, we claim that Ep0 [forrk(Z)2] ≤ 1/N . To see this, we use the
quadratic form description (1.2). Fix any values z2, . . . , zk−1, and let A = H · diag(z2) · · · · H · diag(zk−1) · H
be the matrix appearing in the quadratic form which satisfies ‖A‖op ≤ 1. Then, we have

Ep0 [forrk(Z)2] =
1

N2
Ep0 [(Z>1 AZk)2] =

1

N2

∑
ij,rs

Ep0 [AijArs · Z1(i)Zk(j)Z1(r)Zk(s)]

=
1

N2

∑
ij

A2
ij =

‖A‖2F
N2

≤
N‖A‖2op
N2

≤ 1

N
.

By Chebshev’s inequality, it follows that p0(forrδ,k(Z) outputs 1) ≤ p0(|forrk(Z)| ≥ δ/2) ≤ (4/δ2N).

We now consider p1. As forrk(z) is a multilinear polynomial, from the description of p1(Z), we have that
Ep1 [forrk(z) | U, V] = forrk(trnc(U)� trnc(V)). Using Lemma 4.1, which shows that truncating the Gaussians

has negligible effect in expectation, i.e. |Ep1 [f(trnc(U) � trnc(V))]− Ep1 [f(U, V)]| ≤ N−3k2 , we have that

Ep1 [forrk(Z)] +N−3k
2

≥ Ep1 [forrk(U � V)]

=
1

N

∑
i

E[U1(i1) · Hi1,i2 · V1(i2)U2(i2) · Hi2,i3 · · ·Hik−2,ik−1
· Vk−2(ik−1)Uk−1(ik) · Hik−1,ik · Vk−1(ik)]

=
1

N

∑
i

E[U1(i1) · Hi1,i2 · V1(i2)] ·E[U2(i2) · Hi2,i3 · V2(i3)] · · ·E[Uk−1(ik) · Hik−1,ik · Vk−1(ik)]

=
1

N

∑
i

εk−1 · H2
i1,i2 · · ·H

2
ik−1,ik

=
1

N

∑
i

εk−1 · 1

Nk−1 = εk−1,

where the second equality used that (Uκ, Vκ) are independent Gaussians for different values of κ, the third
equality follows since E[Uκ(i)Vκ(j)] = ε · Hij , and the fourth equality follows since each entry of H is ± 1√

N

and the sum if over Nk indices. It thus follows that Ep1 [forrk(Z)] ≥ εk−1 −N−3k2 ≥ 10εk = 10δ.
Let α = p1(forrk(Z) ≥ δ). Recalling (1.2), we have that |forrk(z)| ≤ 1 for z ∈ [−1, 1]kN . So, the above

gives that α+ (1− α)δ ≥ 10δ and hence in particular that α ≥ 6δ, as δ � 1. �

To prove a lower bound for classical query algorithms (decision trees), we show that the advantage of any
bounded real-valued function on {±1}kN can be computed in terms of the low-level Fourier weight of the
function f with respect to biased measures, as mentioned in Section 1.2. In particular, for µ ∈ [−1/2, 1/2]kN ,

13

consider the product measure pµ induced on Z ∈ {±1}kN by sampling each bit independently so that
Epµ [Zi] = µi. Then, we prove the following which is the main contribution of this work.

Theorem 3.2. Let f : {±1}kN → [0, 1]. Then,

∣∣Ep1 [f(Z)]−Ep0 [f(Z)]
∣∣ ≤ sup

µ∈[− 1
2 ,

1
2]
kN

k−1∑
m=1

(
ε√
N

)m(k−1)

· (8k)4mk · wtµmk(f) +N−k.

Note that in the previous work of [RT19] for the standard Forrelation problem (k = 2), one only gets an
upper bound in terms of the level-2 weight of the function f , but here we have an upper bound in terms of
level ` weights where ` ∈ {mk | m ∈ [k − 1]}. We stress that the weight of the higher level mk can be much
larger than the level-k weight, but the extra ε/

√
N factors in the above theorem takes care of it.

To bound the level-` Fourier weight with respect to biased measures, we use the following bound proven
in [Tal19] for Fourier weights under the uniform measure.

Theorem 3.3 ([Tal19]). Let f : {±1}m → [0, 1] be the acceptance probability function of a randomized
depth-d decision tree. Then, for any ` ≤ d, the following holds for a universal constant c,

wt`(f) ≤
(
(cd)` log`−1m

)1/2
,

where the Fourier weight wt`(f) is with respect to the uniform measure on {±1}m.

We prove the following general statement showing that if a function and all its restrictions have a small
Fourier weight on level-` with respect to the uniform measure, then the Fourier weight with respect to an
arbitrary bias µ ∈ [−1/2, 1/2]m is also small.

Theorem 3.4. Let f : {±1}m → R and ` ∈ [m]. Let w be such that for any restriction ρ ∈ {−1, 1, ?}m,
we have wt`(fρ) ≤ w where the Fourier weight is with respect to the uniform measure. Then, for any
µ ∈ [−1/2, 1/2]m, we have wtµ` (f) ≤ 4`w.

Since depth-d decision trees are closed under restrictions, combining Theorem 3.4 with Theorem 3.3 gives
us that the level-` weight of depth-d decision trees with an arbitrary bias µ ∈ [−1/2, 1/2]m is also bounded

by
(
(cd)` log`−1(m)

)1/2
.

Corollary 3.5. Let f : {±1}m → [0, 1] be the acceptance probability function of a randomized depth-d

decision tree. Then, for any µ ∈ [−1/2, 1/2]m and ` ≤ d, we have wtµ` (f) ≤
(
(cd)` log`−1m

)1/2
for a

universal constant c.

Combined with Theorem 3.2, the above implies that if the depth d of the decision tree satisfies d �
N1−1/k, then the advantage of f would be much smaller than δ.

4 Bounding the Truncation Error

To prove our results, it will be much more convenient to ignore the truncation and work with Gaussians.
We show in this section that this can be done with a small error. In particular, let f : {±1}kN → R be a
function on the hypercube, then identifying f with its harmonic extension, the definition of the distribution
p1(Z) implies that

Ep1 [f(Z)] = Ep1 [f(trnc(U) � trnc(V))], (4.1)

where (Uκ, Vκ)κ∈[k−1] are independent multivariate Gaussians. The equality follows since f is multilinear
and each bit of Z is independently chosen so that E[Z | U, V] = trnc(U) � trnc(V).

The next lemma shows that up to a small error, one can replace the truncated Gaussian with the Gaussian.

14

Lemma 4.1. Let f : {±1}kN → [−1, 1]. Then, identifying f with its harmonic extension,

Ep1 [f(trnc(U) � trnc(V))] = Ep1 [f(U � V)] + err,

where |err| ≤ N−3k2 .

Proof. Let Uκ and Vκ respectively be the events that Xκ 6= Uκ and Yκ 6= Vκ. Let us also define bad events
Bκ = (Uκ ∪ Vκ) and B = ∪κBκ. Then, using (4.1), it suffices to bound

err := E[1Bf(trnc(U) � trnc(V))]−E[1Bf(U � V)], (4.2)

since otherwise the values taken by f are the same.
To bound the above, we first claim that since |f | is bounded by 1 inside the hypercube [−1, 1]kN , one

can bound the value of |f | at any point by the following claim.

Claim 4.2. For any z ∈ RkN , we have |f(z)| ≤
∏
j∈[k] h(zj), where h : RN → [0,∞) is the function defined

as h(x) =
∏N
i=1 max {1, |x(i)|}.

Given the above claim, which we shall prove later, we can proceed as follows. For a, b ∈ R, it holds that
max{1, |ab|} ≤ max{1, |a|} ·max{1, |b|}, so using Claim 4.2,

|err| ≤ E[1B] + E
[
1B ·

∏
κ∈[k−1]

h(Uκ) · h(Vκ)

]
. (4.3)

Note that the marginal distribution on each coordinate of Uκ is N (0, ε), so from a union bound and Gaussian

concentration (Proposition 2.1), it follows that E[1B] ≤ 4kNe−1/(8ε) ≤ N−4k
2

. To bound the second term,
we shall prove that

Claim 4.3. For any κ ∈ [k − 1], we have E[1Bκ · h(Uκ) · h(Vκ)] ≤ N−6k2 .

We first finish the proof of Lemma 4.1 assuming the above. First, notice that (Uκ, Vκ) are independent
for different values of κ, and when Bk does not occur, then h(Uκ) · h(Vκ) ≤ 1. Therefore, decomposing the
event B into further sub-events and using Claim 4.3, we can bound

E
[
1B ·

∏
κ∈[k−1]

h(Uκ) · h(Vκ)

]
≤

∑
T⊆[k−1]
T 6=∅

∏
κ∈T

E [1Bκ · h(Uκ) · h(Vκ)] ≤ 2kN−6k
2

.

Altogether, we get that |err| ≤ N−3k2 for large enough N . This finishes the proof of Lemma 4.1 assuming
Claim 4.2 and Claim 4.3 which we prove next. �

Proof of Claim 4.2. The harmonic extension of f is explicitly given by (2.5) using interpolation on the
vertices of the hypercube [−1, 1]kN . Thus, for any z = (z1, . . . , zκ) ∈ RkN , we have

|f(z)| ≤
∑

y∈{±1}kN
|f(y)| ·

∣∣∣∣ kN∏
i=1

1 + z(i)y(i)

2

∣∣∣∣
≤

∑
y∈{±1}kN

kN∏
i=1

|1 + z(i)y(i)|
2

=

kN∏
i=1

(
|1 + z(i)|

2
+
|1− z(i)|

2

)
=

kN∏
i=1

max{1, |z(i)|} =
∏
j∈[k]

h(zj) �

Proof of Claim 4.3. Recall that Bκ = Uκ ∪Vκ and when Uκ (resp. Vκ) does not occur then h(Uκ) ≤ 1 (resp.
h(Vκ) ≤ 1). Therefore,

E[1Bκ · h(Uκ) · h(Vκ)] ≤ E[1Uκ · h(Uκ)] + E[1Vκ · h(Vκ)] + E[1Uκh(Uκ) · 1Vκh(Vκ)]

≤ E[1Uκ · h2(Uκ)] + E[1Vκ · h2(Vκ)] +
√
E[1Uκ · h2(Uκ)] ·E[1Vκ · h2(Vκ)], (4.4)

15

where the second inequality follows as |h(x)| ≤ h2(x) for all x ∈ RN , and applying the Cauchy-Schwarz
inequality.

As Uκ and Vκ are marginally distributed as the N -dimensional Gaussian N (0, ε · IN), it follows that the
right hand side in (4.4) is 3 · E[1Uκ · h2(Uκ)]. Therefore, decomposing the event Bk into further sub-events
that correspond to a single coordinate taking value larger than 1/2, we have

E[1Bκ · h(Uκ) · h(Vκ)] ≤ 3 ·
N∑
t=1

(
N

t

)
· αt = 3

(
(1 + α)N − 1

)
, (4.5)

where α = E
[
1|G|≥1/2 ·max{1, G2}

]
for G ∈ R drawn from N (0, ε). A direct computation using Proposi-

tion 2.2 shows that

α =
2√
ε

∫ 1

1/2

γ

(
s√
ε

)
ds +

2√
ε

∫ ∞
1

s2γ

(
s√
ε

)
ds

≤ 2√
ε
· e− 1

8ε + 2ε

∫ ∞
1/
√
ε

s2γ(s)ds ≤ 4√
ε
· e− 1

8ε ≤ N−6k
2

.

Plugging it back in (4.5), we get that

E[1Bκ · h(Uκ) · h(Vκ)] ≤ 3
(
(1 + α)N − 1

)
≤ 6αN ≤ N−4k

2

,

where we used that (1+r)N ≤ 1+rN+(rN)2 ≤ 1+2rN holds for r ≤ 1/N2, by Taylor series expansion. �

5 Lower Bound for Decision Trees

We first prove Theorem 3.2 that bounds the advantage of the randomized decision tree in terms of biased
Fourier weights. Following that, we show how to bound the Fourier weight of a function under a biased
measure (Theorem 3.4) by using a random restriction argument. We assemble all the pieces together to
prove Theorem 1.3 and Corollary 1.4 following that.

5.1 Advantage in terms of Fourier weight: Proof of Theorem 3.2

Using Lemma 4.1 we have that

Ep1 [f(Z)]− f(0) = Ep1 [f(U � V)]− f(0) + err, (5.1)

where |err| ≤ N−3k2 .
To evaluate the first term on the right hand side, we will use Gaussian interpolation. Recall that

(Uκ, Vκ)κ∈[k−1] are independent multivariate Gaussians. We will interpolate them separately. In particular,
for each κ ∈ [k] and tκ ∈ (0, 1), we define

(Uκ(tκ),Vκ(tκ)) =
√
tκ · (Uκ, Vκ).

We will refer to the interpolation parameter t = (t1, · · · , tk−1) as time and we will drop the time index and
just write U and so on, if there is no ambiguity. We remind the reader of our convention that bold fonts will
always refer to the interpolated Gaussian.

To use Gaussian interpolation, we consider the function ϕ : (0, 1)k−1 → R defined as

ϕ(t) = E[f(U(t) �V(t))].

For any fixed values of t1, · · · , tk−2, by the fundamental theorem of calculus we have that

E[f(U(t1, · · · , tk−2, 1) �V(t1, · · · , tk−2, 1))]−E[f(U(t1, · · · , tk−2, 0) �V(t1, · · · , tk−2, 0))]

=

∫ 1

0

∂ϕ

∂tk−1
(t)dtk−1.

16

Repeating the above and fixing each index of the time parameter one by one, we obtain

E[f(U � V)]− f(0) = E[f(U(1) �V(1)]−E[f(U(0) �V(0)]

=

∫
· · ·
∫

[0,1]k−1

∂ϕ

∂t1 · · · ∂tk−1
(t)dtk−1 · · · dt1, (5.2)

where 1 is the all ones vector in Rk−1.
To bound the value of the above partial derivative (taken with respect to the time parameters) at any

point, we will use Lemma 2.3. Since f(z) is a multilinear polynomial, it suffices to compute the derivative of
a character and towards this end, we show the following key lemma in terms of derivatives ∂Jf = ∂f

∂zJ
where

the order of the derivative |J | is always between k and k(k − 1).

Lemma 5.1. Let t ∈ (0, 1)k−1 and S ⊆ [kN]. Defining ϕS(t) = E[χS(U(t) �V(t))], the following holds

∂ϕS
∂t1 · · · ∂tk−1

(t) =
1

2k−1

k−1∑
m=1

(
ε√
N

)m(k−1)

·
∑
J⊆S
|J|=mk

θJ(t) ·E[χS\J(U(t) �V(t))],

where θJ(t) = θJ(t1, · · · , tk−1) is a polynomial that only depends on J (and not on S) and the sum of the
absolute value of all the coefficients of θJ is bounded by (4k)4|J|.

We first finish the proof of Theorem 3.2 and then prove the above lemma. Given Lemma 5.1, since
ϕ(t) =

∑
S⊆[kN] f̂(S)ϕS(t), by linearity of expectation and exchanging the order of summation, it follows

that for a given time t,

∂ϕ

∂t1 · · · ∂tk−1
(t) =

1

2k−1

k−1∑
m=1

(
ε√
N

)m(k−1)

·E
[∑
J⊆[kN]
|J|=mk

θJ(t) ·
∑
S:S⊇J

f̂(S)χS\J(U �V)

]

=
1

2k−1

k−1∑
m=1

(
ε√
N

)m(k−1)

·E
[∑
J⊆[kN]
|J|=mk

θJ(t) · ∂Jf(U �V)

]
,

where the second equality uses (2.6).
To proceed, we want to relate the derivatives above to the Fourier coefficients under a biased measure

but the coordinates of U �V can be large with a small probability. This is however not a problem, since
we can use Lemma 4.1 once again to go back to the truncated Gaussians with a small error. In particular,
since for each subset J ⊆ [kN], the derivative ∂J(f) is bounded by one on the hypercube {±1}kN , we can
apply Lemma 4.1 (the statement still holds for the interpolated Gaussians by following the same proof), to
get that

∂ϕ

∂t1 · · · ∂tk−1
(t) =

1

2k−1

k−1∑
m=1

(
ε√
N

)m(k−1)

·E
[∑
J⊆[kN]
|J|=mk

θJ(t) · ∂Jf(trnc(U) � trnc(V))

]
+ err, (5.3)

where we replaced U �V with trnc(U) � trnc(V) at the expense of a real number err satisfying

|err| ≤ 1

2k−1

k−1∑
m=1

(
ε√
N

)m(k−1)

· (4k)4mk · (kN)mk ·N−3k
2

≤ N−k,

for large enough N . The (kN)mk term above comes from the number of possible choices of sets J of size mk,
and for t ∈ (0, 1)k−1, we used that |θJ(t)| ≤ (4k)4mk upper bounding it by the sum of the absolute value of
all the coefficients.

17

Next, we express the derivatives in (5.3) as biased Fourier coefficients. For any fixed value µ ∈ [−1/2, 1/2]kN

taken by trnc(U(t)) � trnc(V(t)) and recalling the identity (2.8), we see that ∂Jf(z) = σ−1J f̂µ(J) where

σJ =
∏
i∈J σi with σi =

√
1− µ2

i ≥ 1/2. Furthermore, as |θJ(t)| ≤ (4k)4mk, equation (5.3) gives us that the

following holds for any t ∈ (0, 1)k−1,∣∣∣∣ ∂ϕ

∂t1 · · · ∂tk−1
(t)

∣∣∣∣ ≤ sup
µ∈[−1/2,1/2]kN

k−1∑
m=1

(
ε√
N

)m(k−1) ∑
J⊆[kN]
|J|=mk

|θJ(t)| · σ−1J · |f̂
µ(J)|+N−k.

≤ sup
µ∈[−1/2,1/2]kN

k−1∑
m=1

(
ε√
N

)m(k−1)

· (8k)4mk · wtµmk(f) +N−k.

Finally, using (5.2) and (5.1), the above implies that

|Ep1 [f(Z)]− f(0)| ≤ sup
µ∈[−1/2,1/2]kN

k−1∑
m=1

(
ε√
N

)m(k−1)

· (8k)4mk · wtµmk(f) +N−k,

completing the proof of Theorem 3.2 given Lemma 5.1, which we prove next.

5.2 Proof of Lemma 5.1

For ease of exposition we first give the proof for the simpler case of k = 3. The application of Gaussian
integration by parts is much easier here, as it does not recursively lead to other terms. For larger values of
k, we need more technical care and additional ideas in the form of a careful counting argument.

Proof for the k = 3 Case

In this case, we shall prove that

4 · ∂ϕ

∂t1∂t2
(t) =

∑
J⊆S
|J|=3

(
ε√
N

)2

· θJ(t) ·E[χS\J(U �V)] +
∑
J⊆S
|J|=6

(
ε√
N

)4

· θJ(t) ·E[χS\J(U �V)], (5.4)

where θJ(t) = θJ(t1, t2) is a polynomial for which the sum of absolute value of all the coefficients is at most
124|J| and θJ only depends on J and not on S.

Let S = S1tS2tS3 where S1 ⊆ [N], S2 ⊆ {N +1, . . . , 2N} and S3 ⊆ {2N +1, . . . , 3N}. We first observe
that because of the multiplicativity of the characters χS and the definition of block-shifted Hadamard
product, we have that for any u, v ∈ R2N ,

χS(u � v) = χS1
(u1)χS2

(v1) · χS2
(u2)χS3

(v2). (5.5)

We will treat χS1
(u1)χS2

(v1) and χS2
(u2)χS3

(v2) as function in the variables u1 = (u1(i))i∈S1
, v1 =

(v1(j))j∈S2
and u2 = (u2(i))i∈S2

, v2 = (v2(j))j∈S3
respectively and write ∂

∂u1(i)
, ∂
∂v1(j)

to denote the cor-

responding partial derivatives. To prevent any confusion, we clarify that ∂i = ∂
∂zi

will always denote the
derivative with respect to z.

Now, since (U1, V1) and (U2, V2) are independent Gaussians and they are being interpolated separately,
we can apply the Gaussian interpolation formula separately to the functions of (U1, V1) and (U2, V2) appear-
ing in (5.5). Since these functions are multilinear in the variables (u1, v1) and (u2, v2), any second order
derivative with respect to the same variable is zero, so to apply Lemma 2.3, we only need to worry about the
covariance between pairs of coordinates which are different. Moreover because of the covariance structure,

18

E[Uκ(i)Uκ(j)] = E[Vκ(i)Vκ(j)] = 0 for i 6= j, while E[Uκ(i)Vκ(j)] = εHij for i, j ∈ [N] and κ ∈ [2]. Therefore,
applying Lemma 2.3 and using linearity of expectation, we have

4 · ∂ϕ

∂t1 · · · ∂t2
(t)

=
∑
i,j

(εHi1,j2) · (εHi2,j3) ·E
[

∂

∂u1(i1)∂v1(j2)
χS1

(U1)χS2
(V1)

]
·E
[

∂

∂u2(i2)∂v2(j3)
χS2

(U2)χS3
(V2)

]
=
∑
i,j

(εHi1,j2) · (εHi2,j3) ·E[χS1\i1(U1)χS2\j2(V1)] ·E[χS2\i2(U2)χS3\j3(V2)], (5.6)

writing i = (i1, i2) ∈ S1 × S2 and j = (j2, j3) ∈ S2 × S3. Note that the indices are shifted for j to clarify
that they lie in the corresponding set Sr and we will keep using this indexing convention.

We can classify the terms in (5.6) into two types: terms where i2 = j2 and where i2 6= j2. These behave
very differently, and we bound their contributions separately.

(a) Terms where i2 = j2: In this case, defining i3 = j3, extending the tuple i = (i1, i2, i3), the
corresponding terms in (5.6) are given by

(εHi1,i2)·(εHi2,i3) ·E[χS1\i1(U1)χS2\i2(V1 �U2)χS3\i3(V2)]

= (εHi1,i2) · (εHi2,i3) ·E[χS\{i1,i2,i3}(U �V)] = θi ·
(

ε√
N

)2

·E[χS\{i1,i2,i3}(U �V)],

where θi = sign(Hi1,i2 · Hi2,i3). Viewing the tuple i as a set J ⊆ S of size 3, this gives us that the sum of all
the terms in (5.6) where i2 = j2 is exactly∑

J⊆S
|J|=3

θJ ·
(

ε√
N

)2

·E[χS\J(U �V)], (5.7)

where θJ is a constant satisfying |θJ | ≤ 1.

(b) Terms where i2 6= j2: To bound these terms, we use Gaussian integration by parts to reduce them to
sixth order derivatives. Consider a fixed term where i2 6= j2. Then, the corresponding expectation term in
(5.6) is

E[χS1\i1(U1)χS2\j2(V1)] ·E[χS2\i2(U2)χS3\j3(V2)]. (5.8)

As i2 6= j2, the first expectation involving (U1,V1) still depends on the random variable V1(i2) (while
χS2\i2(U2) does not). Since eventually we need a function of U2 �V1, we pull out V1(i2) and write,

E[χS1\i1
(U1)χS2\j2(V1)] = E

[
V1(i2) · χS1\i1(U1)χS2\{i2,j2}(V1)

]
=
∑
q1∈S1,
q1 6=i1

(εHq1,i2t1) ·E
[

∂

∂u1(q1)
χS1\i1(U1)χS2\{i2,j2}(V1)

]

=
∑
q1∈S1,
q1 6=i1

(εHq1,i2t1) ·E[χS1\{i1,q1}(U1)χS2\{j2,i2}(V1)] (5.9)

where the second equality follows from Lemma 2.4 since E[U1(i)V1(j)] = εHi,jt1.
Analogously, the second expectation involving U2,V2 in (5.8) still depends on the random variable U2(j2)

(while χS2\j2(V1) does not), and applying Gaussian integration by parts, one gets

E[χS2\i2
(U2)χS3\j3(V2)] =

∑
q3∈S3,
q3 6=j3

(εHj2,q3t2) ·E[χS2\{j2,i2}(U2)χS3\{j3,q3}(V2)] (5.10)

19

Combining (5.9) and (5.10), we get the sum of all the terms in (5.6) where i2 6= j2. In particular, defining
new tuples α = (i1, j2, q3) ∈ S1 × S2 × S3 and β = (q1, i2, j3) ∈ S1 × S2 × S3, we get that the sum of the
terms in (5.6) where i2 6= j2 equals∑

α,β

(
ε√
N

)4

θα,β · t1t2 ·E[χS1\{i1,q1}(U1) · χS2\{j2,i2}(V1) · χS2\{j2,i2}(U2) · χS3\{j3,q3}(V2)]

=
∑
α,β

(
ε√
N

)4

θα,β · t1t2 ·E[χS1\{i1,q1}(U1) · χS2\{j2,i2}(V1 �U2) · χS3\{j3,q3}(V2)]

=
∑
α,β

(
ε√
N

)4

θα,β · t1t2 ·E[χS\{i1,q1,i2,j2,j3,q3}(U �V)], (5.11)

where θα,β = sign(Hi1,j2Hj2,q3Hq1,i2Hi2,j3) and the sum ranges over all possible tuples α, β where α(r) 6= β(r)

for r ∈ [3]. Note that there are exactly 8 possible tuples α, β that give rise to the set J = {i1, q1, i2, j2, j3, q3}.
It follows that the sum in (5.11) is exactly∑

J⊆S
|J|=6

(
ε√
N

)4

· θJ(t1, t2) ·E[χS\J(U �V)], (5.12)

where θJ(t) is a polynomial for which the sum of the absolute values of all the coefficients is at most 8 and
it only depends on J .

Then, plugging in the bounds from (5.7) and (5.11) for the two cases in (5.6), we get (5.4).

Proof for Arbitrary k

Let S = S1 t S2 t · · · t Sk where Sj ⊆ {(j − 1)N + 1, . . . , jN} for r ∈ [k]. As before, we first observe that
because of the multiplicativity of the characters χS and the definition of block-shifted Hadamard product,
we have that for any u, v ∈ R(k−1)N ,

χS(u � v) =
∏

κ∈[k−1]

χSκ(uκ)χSκ+1
(vκ),

so it decomposes as a product of the k − 1 functions from R2N to R where the κth function is evaluated at
(uκ, vκ). Let us treat them as functions in the variables uκ = (uκ(i))i∈Sκ and vκ = (vκ(j))j∈Sκ+1

and write

the derivatives as ∂
∂uκ(i)

, ∂
∂vκ(j)

.

Now, since (Uκ, Vκ) are independent Gaussians for different values of κ and they are being interpol-
ated separately, we can apply the Gaussian interpolation formula separately to the functions of (Uκ, Vκ)
appearing in (5.5). Since these functions are multilinear in the variables (uκ, vκ), any second order deriv-
ative with respect to the same variable is zero, so to apply Lemma 2.3, we only need to worry about the
covariance between pairs of coordinates which are different. Moreover because of the covariance structure,
E[Uκ(i)Uκ(j)] = E[Vκ(i)Vκ(j)] = 0 for i 6= j, while E[Uκ(i)Vκ(j)] = εHij for i, j ∈ [N] and κ ∈ [k − 1].
Therefore, applying Lemma 2.3 and using linearity of expectation, we have

2k−1 · ∂ϕ

∂t1 · · · ∂tk−1
(t) =

∑
i,j

∏
κ∈[k−1]

εHiκ,jκ+1 ·E
[

∂

∂uκ(iκ)∂vκ(jκ+1)

(
χSκ(Uκ)χSκ+1(Vκ)

)]
,

=
∑
i,j

∏
κ∈[k−1]

εHiκ,jκ+1
·E[χSκ\iκ(Uκ)χSκ+1\jκ+1

(Vκ)], (5.13)

where i = (i1, · · · , ik−1) ∈ S1 × · · · × Sk−1 and j = (j2, · · · , jk) ∈ S2 × · · · × Sk are tuples. As before, the
indices are shifted for j to clarify that they lie in the corresponding set Sr.

20

Unlike the case of k = 3, there are many types of terms in the above summation. Some of them correspond
to derivatives ∂J of χS(z) where ∂J is of order k, and others which do not correspond to any such derivative.

Terms that correspond to derivatives with respect to z. Observe that when tuples i and j satisfy
i` = j` for 2 ≤ ` ≤ k − 2, then defining ik := jk (this extends the (k − 1)-tuple i to a k-tuple), the
corresponding term in (5.13) is∏

κ∈[k−1]
εHiκ,iκ+1

E[χSκ\iκ(Uκ)χSκ+1\iκ+1
(Vκ)]

=
(∏

κ
εHiκ,iκ+1

)
·E[χS1\i1(U1)χS2\i2(V1) · χS2\i2(U2)χS3\i3(V2) · · · · χSk−1\ik−1

(Uk−1)χSk\ik(Vk−1)]

=
(∏

κ
εHiκ,iκ+1

)
·E[χS1\i1(U1)χS2\i2(V1 �U2) · χS3\i3(V2 �U3) · · · · χSk\ik(Vk−1)]

=
(∏

κ
εHiκ,iκ+1

)
·E[χS\{i1,...,ik}(U �V),] (5.14)

by the definition of the � product. This corresponds to taking the partial derivative ∂JχS(U � V) =
χS\J(U �V) for J = {i1, · · · , ik}. However, the other terms in (5.13) can not be written as such a partial
derivative. We will give a process that reduces such terms to a higher order derivative by repeated application
of the Gaussian integration by parts identity.

Setup to apply Gaussian integration by parts. To describe the process, we will need some additional
notation. Let us consider the terms appearing in (5.13) and drop the

∏
κ∈[k−1] εHiκ,jκ+1

scaling factor for

notational convenience. By the independence of (Ur,Vr) for different r, any term∏
r∈[k−1]

E[χSr\ir (Ur) · χSr+1\jr+1
(Vr)] = E

[∏
r∈[k−1]

χSr\ir (Ur) · χSr+1\jr+1
(Vr)

]
.

Define the sets A1, . . . , Ak and B1, . . . , Bk, where Ar, Br ⊆ Sr as follows:

Ar = {ir}, Br+1 = {jr+1} for r ∈ [k − 1] and Ak = ∅, B1 = ∅. (5.15)

Let us also define V0 = Uk = 1 where 1 is the all ones vector in RN . Then the above can be written as

E
[∏
r∈[k−1]

χSr\Ar (Ur) · χSr+1\Br+1
(Vr)

]
(5.16)

= E
[
χS1\A1

(U1 �V0)

(k−1∏
r=2

χSr\Ar (Ur) · χSr\Br (Vr−1)

)
· χSk\Bk(Uk �Vk−1)

]
.

Let us write the middle term in the above expectation in a different way as follows,

(k−1∏
r=2

χSr\Ar (Ur) · χSr\Br (Vr−1)
)

=

k−1∏
r=2

χSr\(Ar∪Br)(Ur �Vr−1) · χBr\Ar (Ur) · χAr\Br (Vr−1).

Writing A = (A1, . . . , Ak) and B = (B1, . . . , Bk), let us call (A,B) a configuration. We will always
require a configuration to have Ak = ∅ and B1 = ∅ and we call such configurations valid. For notational
convenience, let us write A ∪ B to denote (A1 ∪ B1) ∪ . . . ∪ (Ak ∪ Bk) for a configuration (A,B). Then, as
Ak = ∅, B1 = ∅, the expression in (5.16) can be written as

Γ(S,A,B) := E
[
χS\(A∪B)(U �V) ·

k−1∏
r=2

(
χBr\Ar (Ur) · χAr\Br (Vr−1)

)]
.

21

Note that for r ∈ {2, . . . , k−1}, the sets Br \Ar (resp. Ar \Br) keep track of the excess Ur (resp. Vr−1)
variables that can not be absorbed in χS\(A∪B)(U �V).

For terminology, let us call a configuration active if there is some r ∈ {2, . . . , k − 1} such that either
Br \ Ar 6= ∅ or Ar \ Br 6= ∅. Any configuration that is not active, is referred to as being inactive. Note
that the Γ value of any inactive configuration has the form E[χS\J(U �V)] for some J ⊆ S. In particular,
inactive configurations correspond to derivatives ∂JχS(z) evaluated at U�V, for instance, the case of (5.14)
corresponds to the inactive configuration with J = {i1, i2, . . . , ik}.

A Branching Process from Gaussian integration by parts. Given an initial active configuration
(A,B), to compute Γ(S,A,B), we will apply Gaussian integration by parts. Doing so will lead to several
other terms of the same type with different configurations (A′, B′), and we recursively continue this way until
all resulting configurations are inactive. This can be viewed as a branching process, where starting from the
configuration (A,B), we get a tree, where the leaves correspond to inactive configurations, and Γ(S,A,B) is
a weighted sum of the Γ values of the leaf configurations.

Below, we first describe the branching process and how the Γ values of the child nodes produced by one
step of the process are related to the Γ value of the parent. After that, we will describe the properties of the
leaf configurations generated by the process and relate it to the left hand side of (5.13).

(a) The branching process. Fix the set S, and consider an active configuration (A,B). Suppose that
Bq \Aq 6= ∅ for some q ∈ {2, . . . , k− 1}. Consider some arbitrary iq ∈ Bq \Aq. Then, we have the following
key lemma.

Lemma 5.2. For any q ∈ {2, . . . , k − 1} and for any iq ∈ Bq \Aq, we have that

Γ(S,A,B) =
∑

jq+1∈Sq+1\Bq+1

εHiq,jq+1
tq · Γ(S,A ∪ {iq}, B ∪ {jq+1})

where A ∪ {iq} is obtained from A by setting Aq = Aq ∪ {iq}, and B ∪ {jq+1} from B by setting Bq+1 =
Bq+1 ∪ {jq+1}.

Before giving a proof, we remark that it may be useful to interpret the above lemma in the following
way: any configuration (A′, B′) = (A∪ {iq}, B ∪ {jq+1}) that appears on the right hand side above, absorbs
excess variables Uq(iq) and Vq(jq+1) into the χS\(A′∪B′)(U � V) term, but might add an excess variable
Uq+1(jq+1) in the χBq+1\Aq+1

(Uq+1) term depending on whether jq+1 ∈ Aq+1 or not. If an excess variable
is not added (when jq+1 ∈ Aq+1), we call it a type I transition, otherwise (when jq+1 /∈ Aq+1) we call it a
type II transition.

Proof of Lemma 5.2. Writing χBq\Aq (Uq) = Uq(iq) · χBq\(Aq∪{iq})(Uq) and applying Gaussian integration
by parts (Lemma 2.4) gives that

Γ(S,A,B) = E
[
χS\(A∪B)(U �V) ·

k−1∏
r=2

(
χBr\Ar (Ur) · χAr\Br (Vr−1)

)]
(5.17)

=
∑

jq+1∈Sq+1\Bq+1

E[Uq(iq)Vq(jq+1)] ·E
[

∂

∂vq(jq+1)

(
χS\(A′∪B)(U �V) ·

k−1∏
r=2

(
χBr\A′r (Ur) · χA′r\Br (Vr−1)

))]

where we denote A′ = A ∪ {iq}. In the summation above, we only need to consider jq+1 ∈ Sq+1 as Uq(iq)
has non-zero correlation only with coordinates of Vq and with Uq(iq). However, the E[Uq(iq)

2] term does
not contribute to the above sum as the partial derivative with respect to uq(iq) is identically zero as uq(iq)
does not appear in

χS\(A′∪B)(u � v) =

k∏
r=1

χSr\(A′r∪Br)(ur � vr−1)

22

or in χBq\A′q (Uq) as iq ∈ A′q. Furthermore, we can further restrict jq+1 ∈ Sq+1 \ Bq+1 in the summation

(5.17) above, since for jq+1 ∈ Bq+1, the derivative with respect to vq(jq+1) is identically zero as vq(jq+1)
does not appear in either χA′q+1\Bq+1

(vq) or χS\(A′∪B)(u � v).

Simplifying further, we have E[Uq(iq)Vq(jq+1)] = εHiq,jq+1
tq. Next, the expectation containing the

derivative simplifies as follows.

Claim 5.3. For jq+1 ∈ Sq+1 \Bq+1, we have that

E
[

∂

∂vq(jq+1)

(
χS\(A′∪B)(U �V) ·

k−1∏
r=2

(
χBr\A′r (Ur) · χA′r\Br (Vr−1)

))]
= Γ(S,A′, B ∪ {jq+1}).

The statement of Lemma 5.2 follows from the claim above and (5.17). We now prove Claim 5.3.

Proof of Claim 5.3. We have two cases, depending on whether vq(jq+1) appears in χA′q+1\Bq+1
(vq), which

happens if jq+1 ∈ A′q+1, or whether vq(jq+1) appears in χS\(A′∪B)(u � v), which happens if jq+1 /∈ A′q+1.
Suppose first that jq+1 ∈ A′q+1. As vq(jq+1) appears in χA′a+1\Bq+1

(vq), upon taking the derivative

this term becomes χA′q+1\(Bq+1∪{jq+1})(vq). Upon setting B′ = B ∪ {jq+1}, note that the other terms

χS\(A′∪B′)(u � v) and χB′q+1\A′q+1
(uq) remain unchanged as jq+1 ∈ A′q+1. It follows that

E
[

∂

∂vq(jq+1)

(
χS\(A′∪B)(U �V) ·

k−1∏
r=2

(
χBr\A′r (Ur) · χA′r\Br (Vr−1)

))]
(5.18)

= E
[
χS\(A′∪B′)(U �V) ·

k−1∏
r=2

(
χB′r\A′r (Ur) · χA′r\B′r (Vr−1)

)]
= Γ(S,A′, B′) = Γ(S,A′, B ∪ {jq+1}).

Now we consider the more interesting case where vq(jq+1) appears in the term

χS\(A′∪B)(u � v) = χSq+1\(A′q+1∪Bq+1)(uq+1 � vq) ·
∏
r∈[k]
r 6=q+1

χSr\(A′r∪Br)(ur � vr−1).

Consider the term χSq+1\(A′q+1∪Bq+1)(uq+1 � vq) appearing in the above expression. Upon taking the

derivative ∂
∂vq(jq+1)

this becomes

uq+1(jq+1) · χSq+1\(A′q+1∪Bq+1∪{jq+1})(uq+1 � vq),

which has the extra factor uq+1(jq+1). However, setting B′ = B∪{jq+1}, this uq+1(jq+1) factor is absorbed in
χB′q+1\A′q+1

(uq+1) as jq+1 /∈ A′q+1 by our assumption. Finally, note that this does not affect χA′q+1\B′q+1
(vq).

It follows that (5.18) holds in this case as well. �

This completes the proof of Lemma 5.2. �

A completely analogous lemma holds if iq ∈ Aq \ Bq, and Gaussian integration by parts is applied with
respect to the variable Vq−1(iq). In particular we have the following.

Lemma 5.4. For any q ∈ {2, . . . , k − 1} and for any iq ∈ Aq \Bq, we have that

Γ(S,A,B) =
∑

jq−1∈Sq−1\Aq−1

εHiq,jq−1
tq−1 · Γ(S,A ∪ {jq−1}, B ∪ {iq})

where A ∪ {jq−1} is obtained from A by setting Aq−1 = Aq−1 ∪ {jq−1}, and B ∪ {iq} from B by setting
Bq = Bq ∪ {iq}.

23

Similar to Lemma 5.2, it may be useful to interpret the above lemma as follows: any configuration
(A′, B′) = (A ∪ {jq−1}, B ∪ {iq}) that appears on the right hand side above, absorbs excess variables
Uq−1(jq−1) and Vq−1(iq) into the χS\(A′∪B′)(U �V) term, but might add an excess variable Vq−1(jq−1) in
the χAq−1\Bq−1

(Vq−1) term depending on whether jq−1 ∈ Bq−1 or not. If an excess variable is not added
(when jq−1 ∈ Bq−1), we call it a type I transition, otherwise (when jq−1 /∈ Bq−1) we call it a type II
transition.

Also, we remark that in both Lemma 5.2 and Lemma 5.4 above, the resulting configurations A′, B′ still
satisfy A′k = B′1 = ∅ and hence are valid. In particular, as q ∈ {2, . . . , k − 1}, neither Ak or B1 are ever
updated in either of the lemmas.

Finally, note that Lemma 5.2 and Lemma 5.4 take different actions — Lemma 5.2 chooses an iq ∈ Bq \Aq
and uses an application of Gaussian integration by parts using the variable Uq(iq); on the other hand,
Lemma 5.4 chooses an iq ∈ Aq \ Bq and applies Gaussian integration by parts using the variable Vq−1(iq).
However, both Lemma 5.2 and Lemma 5.4 allow us to express the value Γ(S,A,B) for a configuration (A,B)
as a weighted sum of Γ values of other configurations. Hence, given a starting configuration (A,B) and
applying Lemma 5.2 and Lemma 5.4 alternately gives the claimed branching process. Note that a branch of
the process terminates at a leaf configuration which is inactive. We remark that the same configuration may
appear multiple times as different nodes of the branching tree, but we will treat each node of the branching
tree as a separate configuration.

(b) Properties of the leaf configurations. We next show some properties of the configurations that
arise in the branching process where each initial configuration is given by (5.15). Note that an initial
configuration (A,B) corresponds uniquely to a tuple i, j appearing in (5.13). We define the weight of an
initial configuration (A,B) that corresponds to the tuple i, j as

wt(S,A,B) :=
∏

κ∈[k−1]

εHiκ,jκ+1
.

Note that left hand side of (5.13) equals the weighted sum of Γ values of all the initial configurations
where the weights are given by the wt values. For each initial configuration, we will start a separate branching
process in parallel, and we will always maintain the invariant that the left hand side of (5.13) always equals
the weighted sum of the Γ values of all the configurations generated at any intermediate step. To do
this we define the weight of each node in one such branching tree in the following way: if a configuration
(A ∪ {iq}, B ∪ {jq+1}) is a child of (A,B) in the branching tree, then the weight of (A ∪ {iq}, B ∪ {jq+1}) is
defined as

wt(S,A ∪ {iq}, B ∪ {jq+1}) = εHiq,jq+1
tq · wt(S,A,B),

where εHiq,jq+1
tq is the factor appearing in front of Γ(S,A ∪ {iq}, B ∪ {jq+1}) in Lemma 5.2 or Lemma 5.4.

Note that the weight of a node in the branching tree depends on the path from the initial configuration to
that node in the tree.

The following proposition is an immediate consequence of the definition of weight and of Lemma 5.2 and
Lemma 5.4.

Proposition 5.5. Let L(S) denote the collection of all the leaf configurations generated by all parallel
branching processes (viewed as a multiset). Then the left hand side of (5.13) equals∑

(A,B)∈L(S)

wt(S,A,B) · Γ(S,A,B).

Recall that for any final inactive leaf configuration (A,B), we have that Γ(S,A,B) = E[χS\J(U � V)]
where J = A∪B. This is exactly the derivative ∂JχS(z) evaluated at U�V. Next, towards bounding (5.13),
we compute the contribution of each leaf configuration (A,B) in terms of these derivatives. Note that the
same J may correspond to multiple leaf configurations (A,B) appearing with potentially different weights.

24

Contribution of a Leaf Configuration. Given a fixed S, let (A(0), B(0)) denote some initial configur-
ation, and consider some path in the branching tree starting from (A(0), B(0)) and ending in (A(T), B(T)).
Consider a step on this path where the configuration changes from (A(τ), B(τ)) to (A(τ+1), B(τ+1)) and also
recall that in either application of Lemma 5.2 or Lemma 5.4 at each step, there are two types of transitions
— either of type I or type II. We note that if (A(τ+1), B(τ+1)) is derived from a type I transition, then
|A(τ+1) ∪ B(τ+1)| = |A(τ) ∪ B(τ)| while if it is derived from a type II transition, then |A(τ+1) ∪ B(τ+1)| =
|A(τ) ∪B(τ)|+ 1.

The following lemma shows that each leaf configuration corresponds to a derivative of order mk where
m ∈ [k − 1] and also gives a bound on the contribution of each leaf configuration towards (5.13).

Lemma 5.6. Consider the branching tree started at the initial configuration (A(0), B(0)). For any inactive
leaf configuration (A(T), B(T)) in this branching tree, we have that |A(T) ∪ B(T)| = mk where m ∈ [k − 1].
Moreover, in this case T = (m − 1)(k − 1) and there exists a sign θ ∈ {±1} and a monomial ζ(t) =
ζ(t1, . . . , tk−1) =

∏
κ∈[k−1] t

ακ
κ of total degree T such that

wt(S,A(T), B(T)) = θ · ζ(t1, . . . , tk−1) ·
(

ε√
N

)m(k−1)

,

where θ and ζ depend only on the path from (A(0), B(0)) to (A(T), B(T)) in the branching tree.

We remark that the monomial ζ(t1, . . . , tk−1) can be taken to be
∏
κ∈[k−1] t

m−1
κ by a more careful analysis.

Since, it is not needed, we do not prove the statement with the exact form of ζ.

Proof of Lemma 5.6. In the initial configuration (A(0), B(0)), recall that |A(0)
r | = |B(0)

r+1| = 1 for r ∈ [k − 1]

and |A(0)
k | = |B

(0)
1 | = 0. Let β denote the number of blocks r ∈ {2, . . . , k− 1} for which |A(0)

r \B(0)
r | = 0 (or

equivalently |A(0)
r ∪B(0)

r | = 1.
For a configuration (A,B), consider the following potential which nicely captures many properties of the

dynamics of the configurations generated by the branching process.

Φ(A,B) = |A ∪B|+
k−1∑
r=2

(k − r)|Br \Ar|+
k−1∑
r=2

(r − 1)|Ar \Br|.

Claim 5.7. For an initial configuration, Φ(A(0), B(0)) = k(k − 1− β).

Proof. We compute each of the terms in the potential. First

|A(0) ∪B(0)| = 1 + 2(k − 2− β) + β + 1 = 2k − 2− β

as |A(0)
1 ∪B

(0)
1 | = |A

(0)
k ∪B

(0)
k | = 1, and for r ∈ {2, . . . , k − 1}, we have |A(0)

r ∪B(0)
r | = 1 for β indices and 2

for the remaining k − 2− β indices.
We now consider the terms (k − r)|Br \ Ar| + (r − 1)|Ar \ Br| for r ∈ {2, . . . , k − 1}. This contributes

exactly (k− r) + (r− 1) = k− 1 whenever B
(0)
r 6= A

(0)
r , which happens for k− 2− β indices, and contributes

0 for all other indices. This gives

Φ(A(0), B(0)) = 2k − 2− β + (k − 2− β)(k − 1) = k(k − 1− β). �

Next, we show how Φ evolves along any edge of the branching tree.

Claim 5.8. Consider any transition (A(τ), B(τ)) to (A(τ+1), B(τ+1)). If this is type I transition then the
potential decreases by exactly k, otherwise for a type II transition the potential remains unchanged.

25

Proof. We first consider the type I transition, and consider the setting of Lemma 5.2, where iq ∈ Bq \ Aq.
Then, |A(τ) ∪ B(τ)| does not change and |Bq \ Aq| and |Aq+1 \ Bq+1| both decrease by exactly 1 (as iq is
added to Aq and jq+1 to Bq+1 where jq+1 ∈ Aq+1). Thus the potential change is

Φ(A(τ+1), B(τ+1))− Φ(A(τ), B(τ)) = −(k − q)− (q + 1− 1) = −k

An exactly analogous argument works for type I transition corresponding to the setting of Lemma 5.4.
For type II transition, again consider the setting of Lemma 5.2. Then |A(τ+1)∪B(τ+1)| = |A(τ)∪B(τ)|+1.

As jq+1 is added to B
(τ)
q+1 (and jq+1 is not in A

(τ)
q+1), the quantity |B(τ)

q+1 \ A
(τ)
q+1| increases by 1, and as iq is

added to A
(τ)
q (and iq is in B

(τ)
q \A(τ)

q before it is added to A
(τ)
q) the quantity |B(τ)

q+1 \A
(τ)
q+1| decreases by 1.

As the coefficient of these terms in the potential is k − (q + 1) and k − q respectively, overall we have that

Φ(A(τ+1), B(τ+1))− Φ(A(τ), B(τ)) = 1 + (k − (q + 1))− (k − q) = 0

The setting of Lemma 5.4 is exactly analogous. �

Finally, for an inactive configuration as |Ar \ Br| = |Br \ Ar| = 0 for r ∈ {2, . . . , k − 1}, and hence, the
value of the potential is exactly |A ∪B|.

We can now prove the first result in the statement of the lemma. Consider some path from (A(0), B(0))
to (A(T), B(T)), and let λ1 denote the number of type I transitions. Then by the properties above,

|A(T) ∪B(T)| = Φ(A(T), B(T)) = Φ(A(0), B(0))− λ1k = k(k − 1− β)− λ1k = k(k − 1− β − λ1) = mk

where m = k − 1− β − λ1 is a positive integer as the potential Φ is always non-negative.
Next we express T in terms of other parameters and show that T = (m − 1)(k − 1). For this, we note

that |A∪B| rises by 1 exactly for T −λ1 steps (at type II transitions). As |A(0)∪B(0)| = 2k−2−β initially,
we have that T − λ1 = mk − (2k − 2 − β). Therefore, since m = k − 1 − β − λ1 from the first part of the
lemma, we can express

T = k(k − 1− β − λ1)− (2k − 2− β) + λ1 = (k − 1)(k − 2− β − λ1) = (k − 1)(m− 1).

Finally, we bound the weight of the leaf configuration. Note the weight of the initial configuration
(A(0), B(0)) consists of a product of k − 1 terms of the form εHiκ,jκ+1

where κ ∈ [k − 1]. By the definition
of weight of a child node, at each step of the branching process, we gain exactly one εHiq,jq+1tq factor in the

weight. It follows that the weight of the leaf configuration (A(T), B(T)) equals

wt(A(T), B(T)) = θ · ζ(t1, . . . , tk−1) ·
(

ε√
N

)T+(k−1)

, (5.19)

where θ is the sign of corresponding products of Hadamard entries and ζ(t) = ζ(t1, . . . , tk−1) =
∏
κ∈[k−1] t

ακ
κ

is a monomial of total degree T .
Plugging in the value of T in (5.19) gives us the statement of the lemma regarding the weight. �

Bounding the Total Contribution. For any leaf configuration (A,B), we have that Γ(S,A,B) =
E[χS\J(U � V)] where J = A ∪ B. Therefore, using Proposition 5.5 and Lemma 5.6, we get that the
left hand side in (5.13) equals

k−1∑
m=1

(
ε√
N

)m(k−1)

·
∑
J⊆S
|J|=mk

θS,J(t) ·E[χS\J(U(t) �V(t))], (5.20)

where θS,J(t) = θS,J(t1, · · · , tk−1) is a polynomial which is determined by the collection of paths in all the
branching trees that lead to a leaf configuration (A,B) ∈ L(S) satisfying A ∪B = J . Moreover, the sum of
the absolute value of all the coefficients of θS,J(t) is bounded by the number of such paths.

To finish the proof, we argue that θS,J only depends on J and we also bound how many leaf configurations
correspond to the set J via an encoding argument.

26

Lemma 5.9. θS,J(t) depends only on J and not on S. Moreover, there are at most (4k)4|J| leaf configurations
(A,B) in the multiset L(S) for which A∪B = J and hence, the sum of the absolute value of all the coefficients
of θJ(t) := θS,J(t) is at most (4k)4|J|.

Proof. Let us write J = J1 t J2 t . . . t Jk where Jr ⊆ Sr for each r ∈ [k]. First, we note that the branching
process only adds elements to the configuration and never removes them. Therefore, all the paths that
lead to leaf configurations (A,B) satisfying A∪B = J can only contain intermediate configurations (A′, B′)
where the sets A′r, B

′
r ⊆ Jr. Moreover, since there is a branching tree for all initial configurations (A(0), B(0))

satisfying |A(0)
r | = |B(0)

r+1| = 1 for r ∈ [k − 1] and |A(0)
k | = |B(0)

1 | = 0 where Ar, Br ∈ Sr, it follows that
to determine the collection of paths that lead to a leaf configuration (A,B) ∈ L(S) satisfying A ∪ B = J ,
we can assume without any loss of generality that Sr = Jr for every r ∈ [k]. This proves that θS,J(t) only
depends on J and not on S as it is determined by this collection of paths.

Next, we bound the number of paths in this collection. We will describe an encoding that stores at
most log2((4k)4|J|) bits and uniquely determines the entire path of the branching process from the initial
configuration (A(0), B(0)) to the final leaf configuration (A(T), B(T)) for which A(T) ∪B(T) = J . From this,
it follows that the number of leaf configurations (A,B) for which A ∪B = J is at most (4k)4|J|.

For the encoding, we initialize a bit-string of length 2|J | to the indicator vectors of the initial configuration

(A(0), B(0)). We only need 2|J | = 2
∑k
r=1 |Jr| bits as we only need to store subsets of each Jr. This bit-string

will be updated at every step of the branching process, along with some auxiliary information.
At time τ ∈ [T], the configuration is updated from (A(τ−1), B(τ−1)) to (A(τ), B(τ)) using either Lemma 5.2

or Lemma 5.4. In each case, for exactly one r ∈ {2, · · · , k − 1}, Ar is updated to Ar ∪ {ir} and Br+1 is
updated to Br+1 ∪ {jr+1}. To reconstruct this information, we store the following:

• We update the two |J |-length bit-strings to store the indicator vectors of the configuration A(τ), B(τ)

at time τ . This requires changing a zero bit to a one bit in each of the two bit-strings as we only ever
add elements to the sets.

• We also store the indices of the two locations where the above bit-strings were updated. This requires
exactly 2dlog2 |J |e bits. Note that which set Ar or Br′ was updated is also determined by the indices.
Moreover, we record the 2dlog2 |J |e indices in order, so the exact time τ when the bits were written is
also determined by this information.

Overall, given the above information, one can uniquely determine the exact path from (A(0), B(0)) to
(A(T), B(T)). The total number of bits of information is at most 2|J |+ T (2 + 2dlog2 Je).

Now, from Lemma 5.6, it follows that |J | = mk where m ∈ [k− 1] and also T = (m− 1)(k− 1) ≤ |J |, so
the total number of bits information is at most

2|J | log2 |J |+ 6|J | ≤ 4|J | log2 k + 6|J | = log2(26|J|k4|J|) ≤ log2((4k)4|J|). �

Using the above lemma in conjunction with (5.20) completes the proof of Lemma 5.1 for an arbitrary k.

5.3 Fourier Weight of Decision Trees under Biased Measures

We use a random restriction argument to prove Theorem 3.4. Recall the basic notation about random
restrictions introduced in Section 2.2.

Theorem 3.4. Let f : {±1}m → R and ` ∈ [m]. Let w be such that for any restriction ρ ∈ {−1, 1, ?}m,
we have wt`(fρ) ≤ w where the Fourier weight is with respect to the uniform measure. Then, for any
µ ∈ [−1/2, 1/2]m, we have wtµ` (f) ≤ 4`w.

Proof. Define the following product distribution over restrictions ρ ∈ {−1, 1, ?}m,

ρi =


? with probability (1− µ2

i)/2 = σ2
i /2,

1 with probability (1 + µi)
2/4,

−1 with probability (1− µi)2/4.

27

For notational convenience, let us abbreviate σW =
∏
i∈W σi and µW =

∏
i∈W µi for W ⊆ [m]. Then, the

Fourier coefficient of fρ under the uniform measure and of f under the bias µ are related by the following
claim.

Claim 5.10. Let S ⊆ [m]. Then, we have E[f̂ρ(S)] = 2−|S|σS · f̂µ(S) where the expectation is taken over ρ.

Given the above claim, we can finish the proof of Corollary 3.5 as follows. Let us define wtµ` (f, θ) :=∑
|S|=` θS f̂

µ(S) for any sequence of signs θ := (θS)|S|=`. Then, using Claim 5.10 and taking expectation
over ρ, we obtain

wtµ` (f, ε) =
∑
|S|=`

θS · 2`σ−1S ·E[f̂ρ(S)] = E
[∑
|S|=`

θS · 2`σ−1S · f̂ρ(S)

]

≤ E
[∑
|S|=`

2`σ−1S · |f̂ρ(S)|
]
≤ 4` ·E[wt`(fρ)] ≤ 4`w.

The second last inequality above follows since σi =
√

1− µ2
i ≥ 1/2 as µ ∈ [−1/2, 1/2]m, and the last

inequality uses our assumption on the Fourier weight of the restricted function fρ under the uniform measure.
Since the above is true for an arbitrary sequence of signs θ, it follows that

wtµ` (f) ≤ 4`w.

This finishes the proof assuming Claim 5.10 which we prove next. �

Proof of Claim 5.10. We note that for any subset S ⊆ [m],

f̂ρ(S) =
∑

T :T⊇S

f̂(T) · 1[S ⊆ free(ρ) and T \ S ⊆ fix(ρ)] · χT\S(ρ).

Taking expectation over the random restriction ρ, we get that

E[f̂ρ(S)] =
∑

T :T⊇S

f̂(T) ·
∏
i∈S

σ2
i

2
·
∏

i∈T\S

((1 + µi)
2

4
− (1− µi)2

4

)
=

∑
T :T⊇S

f̂(T) · 2−|S|σ2
S · µT\S . (5.21)

Next, recalling that the Fourier basis with respect to bias µ is given by φS(x) =
∏
i∈S

(xi−µi)
σi

, we have

f̂µ(S) = Epµ [f(X)φS(X)] =
∑
T⊆[m]

f̂(T) · σ−1S ·Epµ
[
χT (X) ·

∏
i∈S

(Xi − µi)
]
.

Since Epµ [Xi] = µi, it follows that all the terms above where S \ T is not the empty set are zero. Moreover,
Epµ [Xi(Xi − µi)] = 1− µ2

i = σ2
i . Therefore,

f̂µ(S) =
∑

T :T⊇S

f̂(T) · σS · µT\S . (5.22)

Comparing (5.21) and (5.22) gives us the claim. �

5.4 Proof of Main Lower Bound: Theorem 1.3 and Corollary 1.4

Given Corollary 3.5 and Theorem 3.2, the proof is straightforward.

Proof of Theorem 1.3. Given a randomized decision tree of depth d that has advantage γ, we first amplify
the success probability of the decision tree to 1 − δ, by making τ = Θ(γ−2 log(1/δ)) repetitions and taking

28

the majority vote. Since the error of this randomized decision of Θ(dτ) depth is at most δ on each valid
input, we have that for large enough N ,

∣∣Ep1 [f(Z)]− f(0)
∣∣ ≥ 6δ − δ2

4N
− 2δ ≥ δ, (5.23)

because of Theorem 3.1.

Next, we will show a contradiction to the above statement if the depth d was too small. In particular,
applying Theorem 3.2 and Corollary 3.5 to the decision tree of depth d1 = Θ(dτ), we obtain

∣∣Ep1 [f(Z)]− f(0)
∣∣−N−k ≤ sup

µ∈[−1/2,1/2]kN

k−1∑
m=1

(
ε√
N

)m(k−1)

· (8k)4mk · wtµmk(f)

≤
k−1∑
m=1

(
ε√
N

)m(k−1)

· (8k)4mk ·
√
dmk1 logkm−1(kN)

≤
k−1∑
m=1

(
cd1k

8 ·
(
ε2 log(kN)

N

)1−1/k)mk/2
,

for a universal constant c. Thus, if

d1 < c1 ·
ε1/k

k8
·
(

N

log(kN)

)1−1/k

< C · N1−1/k

k8 log(kN)
,

for suitable constants c1 and C, where the second inequality holds by our choice of ε = 1
64k2 log(kN) , then the

advantage of the decision tree on the input distribution p(Z) is at most εk/4 = δ/4 which contradicts (5.23).

This gives us that d must be at least Ω
(

N1−1/k

τk8 log(kN)

)
giving us the bound in the statement of the theorem

after substituting the value of τ . �

Corollary 1.4 can be obtained analogous to the above.

Acknowledgements

We thank Ronald de Wolf for discussions throughout the course of this work and for providing helpful
feedback on the writing. We also thank Avishay Tal for very useful comments.

References

[AA18] Scott Aaronson and Andris Ambainis. Forrelation: A problem that optimally separates quantum from
classical computing. SIAM J. Comput., 47(3):982–1038, 2018.

[Aar10] Scott Aaronson. BQP and the Polynomial Hierarchy. STOC ’10, page 141–150, New York, NY, USA,
2010.

[ABB+17] Andris Ambainis, Kaspars Balodis, Aleksandrs Belovs, Troy Lee, Miklos Santha, and Juris Smotrovs.
Separations in query complexity based on pointer functions. J. ACM, 64(5), September 2017.

[ABK16] Scott Aaronson, Shalev Ben-David, and Robin Kothari. Separations in query complexity using cheat
sheets. In Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing, page
863–876, 2016.

[ABKT20] Scott Aaronson, Shalev Ben-David, Robin Kothari, and Avishay Tal. Quantum implications of huang’s
sensitivity theorem. Electronic Colloquium on Computational Complexity (ECCC), 27:66, 2020.

29

[BCW02] J. Niel de Beaudrap, Richard Cleve, and John Watrous. Sharp Quantum versus Classical Query Com-
plexity Separations. Algorithmica, 34(4):449–461, 2002.

[BFNR08] Harry Buhrman, Lance Fortnow, Ilan Newman, and Hein Röhrig. Quantum property testing. SIAM
Journal on Computing, 37(5):1387–1400, 2008.

[BV97] Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. SIAM Journal on Computing,
26(5):1411–1473, 1997.

[BW02] Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity: a survey.
Theoretical Computer Science, 288(1):21 – 43, 2002. Complexity and Logic.

[CCD+03] Andrew M. Childs, Richard Cleve, Enrico Deotto, Edward Farhi, Sam Gutmann, and Daniel A. Spielman.
Exponential algorithmic speedup by a quantum walk. STOC ’03, page 59–68, 2003.

[DJ92] David Deutsch and Richard Jozsa. Rapid solution of problems by quantum computation. Proceedings of
the Royal Society of London. Series A: Mathematical and Physical Sciences, 439(1907):553–558, 1992.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search. STOC ’96, page 212–219,
1996.

[GRZ20] Uma Girish, Ran Raz, and Wei Zhan. Lower Bounds for XOR of Forrelations. CoRR, abs/2007.03631,
2020.

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.

[RT19] Ran Raz and Avishay Tal. Oracle separation of BQP and PH. In Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2019, pages 13–23. ACM, 2019.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer. SIAM J. Comput., 26(5):1484–1509, October 1997.

[Sim97] Daniel R. Simon. On the power of quantum computation. SIAM J. Comput., 26(5):1474–1483, October
1997.

[Tal11] Michel Talagrand. Mean Field Models for Spin Glasses, Volume I: Basic Examples. Springer-Verlag Berlin
Heidelberg, 2011.

[Tal19] Avishay Tal. Towards optimal separations between quantum and randomized query complexities. CoRR,
abs/1912.12561, 2019. To appear in FOCS ’20.

[Wu20] Xinyu Wu. A stochastic calculus approach to the oracle separation of BQP and PH. CoRR,
abs/2007.02431, 2020.

30

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

