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Abstract

The determinantal complexity of a polynomial P ∈ F[x1, . . . , xn] over a field F is the di-
mension of the smallest matrix M whose entries are affine functions in F[x1, . . . , xn] such that
P = Det(M). We prove that the determinantal complexity of the polynomial

∑n
i=1 x

n
i is at

least 1.5n− 3.
For every n-variate polynomial of degree d, the determinantal complexity is trivially at least

d, and it is a long standing open problem to prove a lower bound which is super linear in
max{n, d}. Our result is the first lower bound for any explicit polynomial which is bigger by a
constant factor than max{n, d}, and improves upon the prior best bound of n + 1, proved by
Alper, Bogart and Velasco [ABV17] for the same polynomial.

1 Introduction

1.1 Computing with Determinants
The determinantal complexity of a polynomial f ∈ F[x1, . . . , xn], denoted dc(f), is the minimal
integer m such that there exists an affine map L : Fn → Fm×m such that f(x) = Det(L(x)),
where for every square matrix M , Det(M) denotes the determinant of M .

This notion was first implicitly defined by Valiant [Val79], and it is tightly related to the VP
vs. VNP problem, the algebraic analog of the P vs. NP problem. The essence of the VP vs. VNP
problem is showing that some explicit polynomials are hard to compute. By defining natural
notions of reductions and completeness, Valiant showed that this problem is in fact equivalent
to showing that, for fields of characteristic different than two, the determinantal complexity of
the permanent polynomial,

Permn(X) =
∑
σ∈Sn

n∏
i=1

xi,σ(i),

doesn’t grow like a polynomial function in n.1
This fact is a consequence of the completeness property of the determinant: Valiant showed

that if f has an algebraic formula of size s, then the determinantal complexity of f is at most
s. This remains true even if f has an algebraic branching program (ABP) of size s: ABPs are a
natural and more powerful model of computation than formulas. We refer to [SY10] and [Sap15]
for more background on algebraic complexity theory and for proofs of these statements.

Thus, Valiant also established en passant the non-obvious fact that the determinantal com-
plexity of every polynomial is finite, and it’s at most roughly

(
n+d
n

)
for every n-variate polynomial
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1Strictly speaking, the VP vs. VNP question is equivalent to showing that the determinantal complexity of the

Permn is at least nω(logn), but we skip over this fine grained detail for now.
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of degree d. Standard counting arguments also show that this estimate is close to being tight
for almost every such polynomial.

The benefit of this reformulation of the VP vs. VNP problem is that it appears to strip
away altogether the notion of “computation”: indeed, this problem can be stated without even
defining a computational model in any standard sense of the word, and thus it can potentially
be proved without having to argue about the topology or structure of every possible arithmetic
computation.

In practice, however, proving lower bounds on determinantal complexity is (unsurprisingly)
difficult. Currently, for n-variate polynomials, there are no known lower bounds which are
super-linear in n (see Section 1.2 for more details on previous work). Due to the completeness
property mentioned above, a lower bound of s on the determinantal complexity of f will imply
the same lower bound for algebraic formulas and even algebraic branching programs. However,
super-linear lower bounds for formulas are well-known for decades [Kal85], and super-linear
lower bounds for ABPs were recently established in [CKSV19], so there doesn’t seem to be any
major complexity-theoretic barrier for proving such lower bounds for determinantal complexity:
the main obstacle is seemingly lack of techniques for reasoning about computations using deter-
minants, and hence it is important to study this model and to develop techniques to understand
it and to prove lower bounds, for the permanent as well as for other explicit polynomials.

Even for the purpose of separating VP and VNP, one need not necessarily prove a lower
bound on the determinantal complexity of the permanent; the same conclusion will hold if the
lower bound on determinantal complexity is shown for any “explicit” polynomial (formally, in
the class VNP, which we don’t define here) in lieu of the permanent.

Before we describe the previous work concerning determinantal complexity, we provide a brief
remark about the notion of a “trivial” lower bound in this context which is worth remembering
when evaluating the previous results (and our result). Unlike most standard computational
models, observe that for an n-variate polynomial of degree d, even a lower bound of n is non-
trivial for determinantal complexity. This is because every coordinate of the affine map L can
depend on all n variables. Nevertheless, since the determinant of an m×m matrix is a degree m
polynomial, and thus Det(L(x)) is a degree m polynomial for every affine map L, the degree d is
a trivial lower bound on the determinantal complexity of f . Therefore, it is natural to consider
polynomial families in which d ≤ n or alternatively to hope to prove lower bounds stronger than
max{n, d}.

1.2 Previous work
The early work on determinantal complexity mostly focused on proving lower bounds for the
permanent. Recall that the n × n permanent, Permn, is a degree n polynomial, so the trivial
lower bound is dc(Permn) ≥ n. Since over characteristic 2 the permanent and determinant
coincide, the results described here hold for characteristic not equal to 2.

Already in 1913, Szegő [Sze13], answering a question of Pólya [Pól13], showed that there’s
no way to generalize the 2× 2 identity

Perm

(
x1,1 x1,2
x2,1 x2,2

)
= Det

(
x1,1 x1,2
−x2,1 x2,2

)
by affixing ± signs to an n× n matrix of variables for n ≥ 3.

Marcus and Minc [MM61] strengthened this result by showing that for every n, dc(Permn) >
n. Subsequent work by von zur Gathen [vzG87], Babai and Seress (see [vzG87]), Cai [Cai90]
and Meshulam [Mes89] obtained the slightly stronger lower bound dc(Permn) ≥

√
2n.

Mignon and Ressayre [MR04] greatly improved the lower bound by proving dc(Permn) ≥
n2/2, over the complex numbers. Cai, Chen and Li [CCL10] extended this lower bound to fields
of positive characteristic different than two, and Landsberg, Manivel and Ressayre [LMR13]
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extended this result to the border version of determinantal complexity, that is, they showed
that the permanent is not even in the closure of polynomials with determinantal complexity less
than n2/2. Finally, Yabe [Yab15] obtained an improved lower bound of (n − 1)2 + 1 over the
real numbers.

However, while these lower bounds are quadratic in the degree, Permn is a polynomial with n2
many variables, and notably none of these lower bounds is larger than the number of variables.
In particular, these results don’t even recover a weak form of the n3 formula lower bound of
Kalorkoti for Permn [Kal85].

Landsberg and Ressayre [LR17] considered determinantal representations that respect cer-
tain symmetries (which they called equivariant determinantal complexity and denoted edc), and
proved that edc(Permn) is exponential in n. It’s unclear how stringent the symmetry require-
ment is; Ladnsberg and Ressayre put forward the ambitious conjecture that edc and dc are
polynomially related, which, if true, would imply VP 6= VNP. To the best of our knowledge, this
conjecture remains open, but it’s worth mentioning that in the context of regular determinantal
complexity, another notion defined and studied by [LR17], it can be shown unconditionally that
requiring symmetry may result in a super-polynomial blow-up.2

The question of lower bounds for other explicit polynomial was also considered: Mignon and
Ressayre [MR04] proved that the determinantal complexity of quadratic polynomials of rank r
is exactly d(r + 1)/2e (this, of course, cannot give a lower bound beyond d(n + 1)/2e). Chen,
Kayal and Wigderson [CKW11] observed that the technique of Mignon and Ressayre implies an
n/2 lower bound on the determinantal complexity of the elementary symmetric polynomial of
degree 2,

∑
1≤i<j≤n xixj . Kumar [Kum19] used a different technique to prove a similar lower

bound for the power symmetric polynomials
∑
i x

d
i for d ≥ 2 over C.

The last lower bound was improved in a recent work of Alper, Bogart and Velasco [ABV17]:
an immediate corollary of their main theorem is that dc

(∑
i x

d
i

)
≥ n+ 1, for every d ≥ 2. Note

that this lower bound is (only slightly) larger than the number of variables n, and until this
work, this is the only lower bound we’re aware of that has this feature. The results of Alper
et al. are more general, and are stated as a function of the co-dimension of the singular locus
of the polynomial, a notion we use as well (see Section 3). In particular they are able to prove
that dc(Perm3) = 7, but their main statement can’t imply any lower bound stronger than n+ 1
for an n-variate polynomial.

1.3 Our result
Our main result is the following theorem.

Theorem 1.1. For every natural number n ≥ 6, the determinantal complexity of the polynomial∑n
i=1 x

n
i over the field of complex numbers is at least 1.5n− 3.

Although for simplicity we state our results for the complex numbers, all the results in this
paper also hold for algebraically closed fields of positive characteristic p, as long as p doesn’t
divide n. This assumption is not only an artifact of the proof. For example, when n = pk, and

2The regular determinantal complexity of a polynomial f is the smallest integer m such that there is an m ×m
matrix M(x) of linear forms such that f(x) = Det(M(x)) and rank(M(0)) = m − 1. This definition is motivated
by the fact that for the permanent and for many other polynomials, every determinantal representation is regular,
without loss of generality (see Lemma 3.5). The regular determinantal complexity of every polynomial f with size
s formula is at most s + 1, as can be witnessed by the reductions in Exercise 13.2 of [CKW11] or Section 3.3.1 of
[Sap15], which satisfy the regularity property. Since the determinant polynomial Detn has a formula of size nO(logn),
this implies a similar upper bound on its regular determinantal complexity, while Landsberg and Ressayre [LR17]
proved that the equivariant regular determinantal complexity of Detn is exponential.
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over characteristic p,
pk∑
i=1

xp
k

i =

 pk∑
i=1

xi

pk

has determinantal complexity at most n = pk; it is also a polynomial of degree n, so its deter-
minantal complexity is at least, and hence equals, n.

As discussed in Section 1.2, this is the first non-trivial3 lower bound of the form (1 + ε)n, for
any ε > 0 for any explicit n variate polynomial family, and improves the previous best bound
of n+ 1 by Alper, Bogart and Velasco [ABV17] by a constant factor.

This result, of course, is not fully satisfactory. The best upper bound we’re aware of for
dc(
∑n
i=1 x

n
i ) is O(n2), which follows from converting the natural algebraic formula or ABP

computing this polynomial to a determinantal expression. We suspect that the true complexity
might be Ω(n2) or at the very least ω(n).

Quantitatively, the situation here is somewhat similar to the case of lower bounds on the
rank of 3-dimensional tensors, where the best lower bounds are only a constant factor away
from the trivial lower bound, and proving super-linear lower bounds remains a challenging open
problem (cf. [AFT11, BD80, Blä99, Shp01], among others).

We now give an outline of the main ideas in our proof.

1.4 Overview of the proof
Let M ∈ F[x1, x2, . . . , xn]m×m matrix of affine functions such that

∑n
i=1 x

n
i = Det(M(x)).

Theorem 1.1 shows a lower bound of 1.5n−3 on m. There are essentially three main ingredients
to the proof of Theorem 1.1, and we now discuss them in some more detail.

Converting the matrix M into a normal form

Let M0 ∈ Fm×m be the constant part of the matrix M , i.e. M0 = M(0). As a first step of
our proof, we show (in Lemma 3.2) that without loss of generality, M0 can be assumed to be a
diagonal matrix of rank equal to m− 1. We a say that a matrix M is in normal form if it has
this additional structure.

Is is quite easy to observe that the rank of M0 is at most m − 1. However, for technical
reasons, we actually need the lower bound on the rank as well, and this fact is a consequence of
comparing the dimensions (as algebraic varieties) of the singular locus (which is just the the set of
zeroes of a polynomial of multiplicity at least two) of the determinant and that of the polynomial∑n
i=1 x

n
i . Observations of this nature have been used in the context of determinantal complexity

lower bounds before, and indeed, we crucially rely on a well known lemma of von zur Gathen
(see Fact 3.4) for the proof. The details can be found in Section 3.1.

Determinantal complexity of higher degree polynomial maps

As the key ingredient of our proof, we show that for any matrix M(x) ∈ F[x]m×m where the
entries of M are polynomials of degree at most n− 1 and M is in normal form, if Det(M(x)) =∑n
i=1 x

n
i , then m ≥ n/2. Moreover, roughly the same lower bound continues to hold as long as

det(M) = (
∑n
i=1 x

n
i ) (1 +Q) for any polynomial Q, with Q(0) = 0.

Thus, this is a significant generalization of the n/2 lower bound on the standard notion
determinantal complexity (where the entries of M are affine functions) of

∑n
i=1 x

n
i as shown in

[Kum19]: this shows that roughly the same lower bound continues to hold even when the entries

3This means that the degree of the polynomials is at most the number of variables.
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of the matrix are arbitrary polynomials of degree as high as n − 1 and the determinant of the
matrix equals an arbitrary multiple of

∑n
i=1 x

n
i with a non-zero constant term.

The proof of the lemma relies on the observation that the polynomial
∑n
i=1 x

n
i does not

vanish with multiplicity at least two very often. This seemingly simple observation has been
previously used in the context of lower bounds on algebraic branching programs computing this
polynomial [Kum19, CKSV19] in a crucial way. See Section 3.2 for further details.

Trading dimension of the matrix for degree
As the final ingredient of our proof, we use a well known property of determinants (Lemma 3.8)
to show that if there is an m ×m matrix M whose entries are affine functions and Det(M) =∑n
i=1 x

n
i , then there is an (m − n + 2) × (m − n + 2) matrix N whose entries are polynomials

of degree at most n− 1 and Det(N) = (
∑n
i=1 x

n
i )(1 +Q) for a polynomial Q which vanishes at

zero. Moreover, if the matrixM is in normal form, then the matrix N continues to be in normal
form.

Thus, we are in a setup where we can invoke the lower bound in Lemma 3.9 discussed earlier
and we get that the dimension of N which equals m− n+ 2 must be at least n/2− 1, thereby
implying that m is at least 1.5n− 3. The details of this step can be found in Section 3.3.

2 Preliminaries
In this paper F always denotes an algebraically closed field. We use x to denote a tuple of n
variables x1, . . . , xn, where n is understood from the context (or is otherwise explicitly men-
tioned).

We consider polynomial maps M : Fn → Fm×m given by m2 polynomials (Mi,j)i,j∈[m]. The
same object can be thought of as a matrix of polynomials M(x) ∈ F[x]m×m and we use both
points of view interchangeably. The degree of M is the maximum degree of its coordinates, i.e.,
degM = maxi,j degMi,j .

Each M(x) ∈ F[x]m×m can be uniquely written as M(x) = M ′(x) +M0, where M0 ∈ Fm×m
and in all m2 coordinates of M ′, the constant term is zero. We then call M0 the constant
part of the map. A polynomial in which the constant term is zero is called constant free, and
a polynomial map is called constant free if all of its coordinates are constant free, i.e., in the
above decomposition, M0 = 0.

We denote the determinant polynomial by Det. In cases where it is important to emphasize
the dimension of the matrices in question we write it in the subscript, so for example the m×m
determinant polynomial is denoted by Detm.

Determinantal Complexity
We now formally define the notion of determinantal complexity, which is the focus of this paper.

Definition 2.1 (Determinantal Complexity). The determinantal complexity of a polynomial
P ∈ F[x] is defined as the minimum m ∈ N such that there is a m×m matrix M ∈ F[x] whose
entries are polynomials of degree at most one such that

P = Det(M) . ♦

Remark 2.2. The above definition naturally generalizes to a family of polynomials in the fol-
lowing sense. A family {Pn}n∈N of polynomials is said to have determinantal complexity at most
f(n) : N→ N if there exists an n0 ∈ N, such that for every n ≥ n0, the determinantal complexity
of Pn is at most f(n). ♦
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3 A lower bound on determinantal complexity
This section will be devoted for a proof of Theorem 1.1. We begin with the following lemma,
which was instrumental in the recent proofs of lower bounds for algebraic formulas and algebraic
branching programs.

Lemma 3.1 ([CKSV19, Kum19]). Let d ≥ 2 be a natural number. Let P1, P2, . . . , Pt, Q1, . . . , Qt,
R ∈ C[x] be polynomials such that deg(R) < d, P1, . . . , Pt, Q1, . . . , Qt have a common zero and

n∑
i=1

xdi = R+

t∑
j=1

Pj(x)Qj(x) .

Then, t ≥ n/2.

We now show that without loss of generality, the constant part of every polynomial map M
such that

∑n
i=1 x

d
i = Detm(M(x)) has a very special form: is it an m×m diagonal matrix with

0 in the (1, 1) coordinate and 1 in all diagonal entries.

3.1 Reducing the matrix M to a normal form
This claim is not entirely new and very similar statements were proved, for example, in [MR04,
ABV17]. For completeness, and since the exact statement we need is slightly more general, we
provide a proof.

Lemma 3.2. Let d ≥ 2 be a natural number and let M(x) ∈ F[x]m×m be a polynomial map
such that

Detm(M(x)) =

n∑
i=1

xdi .

Then, there exists a matrix M̃(x) ∈ F[x]m×m with deg(M̃) ≤ deg(M),

Detm(M̃(x)) =

n∑
i=1

xdi ,

and the constant part of M̃ is a diagonalm×m matrix M̃0 such that (M̃0)1,1 = 0 and (M̃0)i,i = 1,
for 2 ≤ i ≤ m.

To prove Lemma 3.2 we require a few preliminaries. We begin with the definition of a
singular locus of a polynomial (or a hypersurface).
Definition 3.3. Let f ∈ F[x] be a polynomial. The singular locus of f , denoted Sing(f), is the
variety defined by

Sing(f) =

{
a :

∂f

∂xi
(a) = 0, 1 ≤ i ≤ n

}
. ♦

The singular locus of the determinant was studied by von zur Gathen, who proved the
following fact.

Fact 3.4 ([vzG87]). Let F be an algebraically closed field and let Detm denote the m × m
determinant polynomial. Then Sing(Detm) ⊆ Fm×m is precisely the set of matrices of rank at
most m− 2, and dim Sing(Detm) = m2 − 4.

The following is a slight generalization of a lemma of von zur Gathen (cf. also [ABV17]).

Lemma 3.5. Let f ∈ F[x] be a polynomial, and let M : Fn → Fm×m be a polynomial map
such that f(x) = Detm(M(x)). Suppose further that dim(Sing(f)) < n − 4. Then Im(M) ∩
Sing(Detm) = ∅. Furthermore, all matrices in Im(M) have rank at least m− 1.
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Proof. Let yi,j denote the coordinates of Fm×m and write M = (Mi,j)i,j∈[m]. Using the chain
rule, we compute

∂f

∂xk
=

∑
i,j∈[m]

∂Detm
∂yi,j

(M(x)) · ∂Mi,j

∂xk
(x), k ∈ [n]. (3.6)

Suppose A ∈ Im(M) ∩ Sing(Detm), and let B be such that A = M(B). By definition of
Sing(Detm), ∂Detm

∂yi,j
(M(B)) = 0 for all i, j ∈ [m], and by (3.6) we get that B ∈ Sing(f). Thus

M−1(Sing(Detm)) ⊆ Sing(f), and dim(M−1(Sing(Detm))) ≤ dim Sing(f) < n−4. On the other
hand, using a standard lower bound on the dimension of pre-images of polynomial maps (see
Theorem 17.24 of [Har95]), if Im(M) and Sing(Detm) aren’t disjoint,

dim(M−1(Sing(Detm))) ≥ n+ (m2 − 4)−m2 = n− 4.

This contradiction implies that Im(M)∩Sing(Detm) = ∅. The “furthermore” part of the theorem
follows from Fact 3.4.

We will also need the following easy fact which shows that
∑n
i=1 x

d
i satisfies that assumption

of Lemma 3.5.

Fact 3.7 ([Kum19, CKSV19]). For every d ≥ 2, dim(Sing(
∑n
i=1 x

d
i )) = 0.

We are now ready to prove Lemma 3.2.

Proof of Lemma 3.2. Let f =
∑n
i=1 x

d
i and letM : Fn → Fm×m be a polynomial map such that

f(x) = Detm(M(x)), and write M = M ′ +M0 where M0 is the constant part of M .
First, observe that

0 = f(0) = Detm(M(0)) = Detm(M0),

which implies that rank(M0) < m. By Lemma 3.5 and Fact 3.7, we also know that rank(M0) =
rank(M(0)) ≥ m− 1, so rank(M0) = m− 1.

By performing Gaussian elimination on the rows and on the columns, we can find two m×m
matrices G1, G2 such that det(Gi) = ±1 for i = 1, 2 and N0 := G1M0G2 is a diagonal matrix
such that (N0)1,1 = 0 and (N0)i,i 6= 0 for 2 ≤ i ≤ m.

Now define a diagonal m×m matrix ∆ such that ∆i,i = 1/(N0)i,i for 2 ≤ i ≤ m, and

∆1,1 = Det(G1) · Det(G2) ·
m∏
i=2

(N0)i,i.

It readily follows that Det(∆) = Det(G1) · Det(G2), and that M̃0 := (G1M0G2)∆ is a diagonal
matrix such that (M̃0)1,1 = 0 and (M̃0)i,i = 1 for all 2 ≤ i ≤ m.

Finally, define M̃ = G1MG2∆. We verify that indeed

Det(M̃(x)) = Det(G1) · Det(M(x)) · Det(G2) · Det(∆)

= Det(M(x)) · (Det(G1) · Det(G2))2 = Det(M(x)) = f(x).

We also have that

M̃ = G1(M ′ +M0)G2∆ = G1M
′G2D +G1M0G2∆ = G1M

′G2∆ + M̃0.

Since G1, G2,∆ ∈ Fm×m, it also holds that M̃ ′ := G1M
′G2∆ is a matrix of constant-free

polynomials, and that deg M̃ ≤ degM .

We will also use the following simple and well known property of the determinant of a block
matrix.
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Lemma 3.8. Let M ∈ Fm×m be a matrix, and let A ∈ Ft×t, B ∈ Ft×m−t, C ∈ Fm−t×t, D ∈
Fm−t×m−t be its submatrices as follows:

M =

(
A B
C D

)
If D is invertible, then

Det(M) = Det(A−BD−1C) · Det(D) .

Proof. Follows directly from the decomposition(
A B
C D

)
=

(
A−BD−1C BD−1

0 Im−t

)
·
(
It 0
C D

)
and the multiplicativity of the determinant.

3.2 Determinantal complexity of higher degree polynomial maps
In the following lemma we prove a lower bound of n/2 on the determinantal complexity in a more
general model than the standard model. This is a generalization with respect to two properties.
First, the entries of the matrix are no longer constrained to be polynomials of degree at most
1, and can have degree as high as d − 1, while computing the degree d polynomial

(∑n
i=1 x

d
i

)
.

Moreover, the determinant of the matrix M does not even have to compute the candidate hard
polynomial

(∑n
i=1 x

d
i

)
exactly. It suffices if the determinant is equal to a polynomial of the form(∑n

i=1 x
d
i

)
· (β + Q) where β is a non-zero field constant and Q is an arbitrary polynomial (of

potentially very high degree!) which is constant free, i.e. Q(0) = 0.

Lemma 3.9. Let d ≥ 2 be a natural number and letM(x) ∈ F[x]m×m such that deg(M) ≤ d−1,
and the constant part of M is a diagonal matrix M0 such that (M0)1,1 = 0 and (M0)i,i = 1 for
2 ≤ i ≤ m. Suppose that

Det(M) =

(
n∑
i=1

xdi

)
· (β +Q) ,

where β ∈ F is non-zero and Q is a constant free polynomial. Then m ≥ n/2− 1.

Proof. Using the Laplace expansion of Det(M) along the first row, we get

Det(M) =

m∑
j=1

(−1)(j+1)M1,j · Det(N1,j) ,

where Ni,j is the submatrix of M obtained by deleting the i-th row and the j-th column. For
every j ∈ [m], j > 1, we claim that Det(N1,j) is a constant free polynomial, i.e.

Det(N1,j)(0) = Det (N1,j(0)) = 0 .

To see this, we observe that for every j ∈ [m]\{1}, N1,j(0) is a (m−1)× (m−1) matrix, which
has at most m − 2 non-zero entries. This follows since M0 has at most m − 1 non-zero entries
and in obtaining N1,j from M , we drop the entry Mj,j , which is one of the (m− 1) entries of M
with a non-zero constant term, and hence one of the (m− 1) non-zero entries of M0. However,
we note that N1,1(0) is the (m− 1)× (m− 1) identity matrix, so the constant term of Det(N1,1)
is 1, and we write Det(N1,1) = 1 + P (x) where P is constant free. Therefore, we have(

n∑
i=1

xdi

)
· (β +Q) = Det(M) = M1,1(1 + P ) +

m∑
j=2

(−1)(j+1)M1,j · Det(N1,j)
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In other words,(
n∑
i=1

xdi

)
· (β +Q) = Det(M) = M1,1 +M1,1 · P +

m∑
j=2

(−1)(j+1)M1,j · Det(N1,j)

Slightly rearranging (and using β 6= 0), we get

n∑
i=1

xdi =
1

β

−( n∑
i=1

xdi

)
·Q+M1,1 +M1,1 · P +

m∑
j=2

(−1)(j+1)M1,j · Det(N1,j)


Since, deg(M1,1) < d and M1,1, P,M1,2,Det(N1,2), . . . ,M1,k,Det(N1,k), Q are all constant free
(and hence share a common zero, namely 0), we have from Lemma 3.1 that m ≥ n/2− 1.

3.3 Completing the proof of Theorem 1.1
We are now ready to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Let M be a m×m matrix with deg(M) ≤ 1 such that

n∑
i=1

xni = Det(M) .

From Lemma 3.2, we can assume without loss of generality that the constant part M0 of M is a
diagonal matrix such that (M0)1,1 = 0 and (M0)i,i = 1 for 2 ≤ i ≤ m. In particular, all the off
diagonal entries of M and M1,1 are homogeneous linear forms or zero, and Mj,j 6= 0 for j > 1.

Observe that for every t ≤ m−1, the principle minor Dt of M which is obtained by deleting
the first m− t rows and columns of M are all invertible over the field of rational functions F(x).
To see this, observe that the matrix Dt(0) is the identity matrix, which implies that Det(Dt)
is a non-zero polynomial. Moreover, since every entry of M has degree at most 1, and Det(M)
has degree n, we know that m ≥ n. So, we conclude that the principle minor D := D(n−2) of
M is invertible over F(x). Thus, if B and C are respectively the submatrices of M defined as

M =

(
A B
C D

)
then by Lemma 3.8 we have

Det(M) = Det(A−BD−1C) · Det(D) . (3.10)

Since D−1 = adj(D)/ det(D), where adj(D) is the adjugate matrix of D, the entries of D−1 can
be written as as a ratio of two polynomials, where the numerator has degree at most n− 3 and
the denominator, which is equal to Det(D), has degree at most n − 2. Moreover, as discussed
earlier in the proof, the constant part of D is the identity matrix, so there is a constant free
polynomial Q ∈ F[x] such that

Det(D) = 1 +Q .

Thus, every entry of the (m − n + 2) × (m − n + 2) matrix A − BD−1C can be written as a
ratio of two polynomials with the numerator being a polynomial of degree at most n − 1 and
the denominator being equal to Det(D) = 1 +Q. Therefore, by clearing the denominators and
using (3.10), we get that

Det(M) · (1 +Q)m−n+2 = Det(N) · (1 +Q) ,

9



where N is the matrix with polynomial entries of degree at most n− 1 obtained by multiplying
every entry of A−BD−1C by 1 +Q. Simplifying further, we get(

n∑
i=1

xni

)
· (1 +Q)m−n+1 = Det(M) · (1 +Q)m−n+1 = Det(N) .

We are almost ready to invoke Lemma 3.9 to obtain a lower bound on the size of N (and hence
M), but to do that we need to ensure that the constant part of N , N0, is a diagonal matrix
with (N0)1,1 = 0 and (N0)i,i = 1 for 2 ≤ i ≤ m− n + 2. We now verify that this is indeed the
case.

Recall that by the structure of the constant partM0 ofM , all the entries of B and C and the
(1, 1) entry of A are constant free, and the constant term of Ai,i is 1 for 2 ≤ i ≤ m−n+2. Thus,
every entry of the matrix BD−1C is a rational function with a constant free numerator, and
hence all the off-diagonal entries in A−BD−1C as well as its (1, 1) entry are rational functions
with a constant free numerator. Moreover, the denominator of all the entries

(
A−BD−1C

)
equals Det(D) = 1 + Q, for a constant free polynomial Q. So, expressing each element of
A−BD−1C as a quotient of polynomials, the constant term of each numerator on the diagonal
is 1 except for the (1, 1) entry, which has a constant free numerator. Finally, observe that
eliminating the denominator of the entries of

(
A−BD−1C

)
by multiplying every entry by

(1 +Q) gives us the matrix N .
Thus the matrix N satisfies the hypothesis of Lemma 3.9, and hence (m−n+ 2) ≥ n/2− 1.

This gives us m ≥ 1.5n− 3 and completes the proof of Theorem 1.1.
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