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Abstract

We give improved separations for the query complexity analogue of the log-approximate-rank
conjecture i.e. we show that there are a plethora of total Boolean functions on n input bits, each of
which has approximate Fourier sparsity at most O(n3) and randomized parity decision tree com-
plexity Θ(n). This improves upon the recent work of Chattopadhyay, Mande and Sherif [5] both
qualitatively (in terms of designing a large number of examples) and quantitatively (improving the
gap from quartic to cubic). We leave open the problem of proving a randomized communication
complexity lower bound for XOR compositions of our examples. A linear lower bound would lead
to new and improved refutations of the log-approximate-rank conjecture. Moreover, if any of these
compositions had even a sub-linear cost randomized communication protocol, it would demon-
strate that randomized parity decision tree complexity does not lift to randomized communication
complexity in general (with the XOR gadget).

1 Introduction
The Log-Rank Conjecture (LRC) of Lovasz and Saks asserts that two very seemingly different quanti-
ties, one the deterministic communication complexity of a total function f (denoted by D(f)) and the
other the log of the rank of its communication matrix (denoted by (Mf )) over the field of reals, are
essentially the same, i.e. within a fixed polynomial of each other. While this thirty year old conjecture
remains wide open, it’s natural to try upper-bounding the communication complexity of f by some
function of the rank of Mf . The best such known bound was obtained by Lovett [19], rather recently,
which showed that D(f) is at most the square-root of the rank of Mf , ignoring log factors.

A tempting analog of the LRC for randomized communication complexity appears in a book by Lee
and Shraibman [18] where it was named as the Log-Approximate-Rank Conjecture (LARC). Informally,
this is LRC with deterministic communication complexity replaced by bounded-error randomized com-
plexity of f , and rank replaced by the approximate rank of Mf , where the approximation is uniform
point-wise. The LARC is important for several reasons. First, it implies the LRC itself [9]. Second,
it implies several other central conjectures, like the polynomial equivalence of quantum and classi-
cal communication complexity of total functions [3]. Third, every known lower bound, until very
recently, was no larger than a small polynomial of the log of the approximate rank. Very recently,
Chattopadhyay, Mande and Sherif [5] provided a surprisingly simple counterexample to the LARC,
that exponentially separated randomized communication complexity from the log of the approximate
rank. In particular, their function f has Alice and Bob holding n bits each, the approximate rank of its
2n×2n communication matrix Mf is merely O(n2) and yet the randomized communication complexity
is Θ(

√
n).

Some questions immediately arise from the above refutation of the LARC. First, is the refuta-
tion optimal? There are two ways to measure optimality. The approximate rank and communication
complexity are separated by a 4th power. Is this separation true for all functions i.e. is randomized
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communication complexity always upper bounded by fourth-root of the approximate rank? Interest-
ingly, Gál and Syed [8] recently showed that quantum communication complexity is upper bounded by
at most square-root of the approximate rank but for randomized communication, the best upper bound
is still linear in the approximate rank. The second way to view optimality is the extent of the gap
achieved between log of the approximate rank and communication complexity. This is O(logn) vs.

√
n

for the current refutation. Can this gap be widened via other functions? This leads us to, of course, the
related problem of finding other counter-examples to LARC. Finding a richer set of counter-examples,
besides being interesting in their own right, could prove useful for understanding other central con-
jectures. A concrete example is the question of relative power of quantum and classical protocols to
solve total functions, a major open problem. If we have to find a total function with an exponential
gap between the quantum communication and randomized communication complexities (if one exists
at all), then the function should also have an exponential separation between log of approximate rank
and randomized communication complexity.1 However, it was shown by Anshu et al. [1] and Sinha
and de Wolf [23] that the function of [5] has large quantum communication complexity (hence refuting
the quantum version of LARC as well). This motivates the search for other examples refuting the
LARC.

In this work, we come up with a rich set of functions that leaves us with the following win-win
situation: either every one of these functions gives a stronger refutation of the LARC than what is
known or there is no lifting theorem for randomized communication complexity of XOR functions.
Lifting theorems, in the setting of communication complexity, lift the complexity of a function f in an
appropriate query model to the communication complexity of a problem crafted out of f naturally by
block composition with a gadget g, denoted by f ◦ g. Starting with the celebrated work of Raz and
McKenzie [22], they have enabled major progress recently in communication complexity and adjoining
areas [11, 7, 10, 4]. In all these theorems, the size of the gadget g is at least logarithmic in the input
length of the query function f . A challenging open problem is to prove lifting theorems for a constant
size gadget. A natural one is the one bit2 XOR gadget. It is not hard to verify that a (randomized)
parity decision tree (R)PDT algorithm for f of cost c readily translates into a communication protocol
of cost 2c for f ◦XOR. A lifting theorem for XOR functions would assert the converse. In other words,
a communication protocol cannot be more efficient than naively simulating the optimal RPDT. The
strongest evidence for such an assertion is the result of Hatami, Hosseini and Lovett [16] who show that
if f has deterministic PDT cost c, then f ◦ XOR has deterministic communication complexity cΩ(1).
While no general result exists for the randomized model, the community believes it to be plausible.
We state our main result informally.

Theorem 1.1 (Informal). Assuming XOR lifting theorems for randomized communication complexity,
there exists a rich class of functions f : {0, 1}n → {0, 1}, such that Mf◦XOR has approximate rank
O(n3) and R(f ◦XOR) = Θ(n).

Thus, conditionally, we get the following improvements over the results in [5]: (1) We narrow
the gap between approximate rank and randomized communication complexity from quartic to cubic.
(2) We expand the gap between log-approximate-rank and randomized complexity from O(logn) vs.√
n to O(logn) vs. n, thus yielding essentially the strongest possible refutation of the LARC, under

plausible assumptions. While this is a nice conceptual way to view our results, it seems proving
communication lower bounds for these functions will require new tools and techniques. On the other
hand, coming up with non-trivial communication protocol for any of these functions will rule out a
PDT to communication lifting theorem for XOR functions in the randomized model.

1.1 Main Ideas
The starting point of our work is to pursue the idea in [5] of looking for functions with small (ap-
proximate) spectral norm, i.e. functions whose sum of the magnitude of Fourier coefficients is a small
polynomial in n. The previous counterexample to the LARC used the concept of disjoint subcubes

1Since log of the approximate rank lower bounds quantum communication as well.
2the gadget size here means the number of bits held by each of the two players.
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to achieve this as every subcube has spectral norm one. This implied that a function f whose set of
ones form a union of polynomially many disjoint subcubes will have polynomial spectral norm. The
fact that polynomial spectral norm implies polynomial Fourier sparsity, yields that the approximate
rank of every such f lifted by XOR is guaranteed to be small. The randomized communication com-
plexity of one such function, SINK ◦ XOR, was shown to be large via a Corruption Bound, the proof
of which utilized Shearer’s Lemma. The randomized parity decision tree lower bound used a robust
subspace-hitting property of the subcubes instead.

In this work, we study a broader class of functions based on disjoint subspaces. The approximate
rank of their lifts by XOR is again guaranteed to be small. The main conceptual contribution of
our work is to identify a property that is sufficient for every such union of subspaces to have large
RPDT complexity. Remarkably, this property is quite well encapsulated in the concept of Subspace
Designs, a notion that has been studied in the literature in the context of error correcting codes
and pseudorandomness [14, 13, 15]. We show that Subspace Designs are hard for RPDTs. The
general philosophy of LARC like conjectures is that randomized complexity of total functions is well
captured/characterized by algebraic or analytical measures of the function like (approximate) rank.
For instance, a classical result of Nisan and Szegedy [20] confirms this idea in the world of randomized
(and quantum) query complexity where the relevant algebraic measure is approximate degree. In the
world of PDTs, the natural algebraic notion is approximate Fourier sparsity. The work of [5] refuted
this philosophy for parity decision trees via the SINK function, whose approximate Fourier sparsity is
O(n2) and RPDT complexity is Θ(

√
n). Our lower bounds for functions based on subspace designs

yields unconditionally a stronger refutation of this philosophy for the model of parity decision trees.
We state here our result in terms of random subspaces because this yields the cleanest formulation.

Theorem 1.2 (Main Result). Let m = 100n. Let V = {V1, V2, . . . , Vm} be a set of subspaces of {0, 1}n
chosen independently and uniformly at random from the set of subspaces of dimension 2n/5. Let f be
the function that outputs 1 on the set

⋃
V ∈V V . With probability 1− o(1) the following two statements

are true.

• Randomized parity decision tree complexity of f is at least Ω(n).

• The spectral norm of f (sum of absolute values of its Fourier coefficients) is upper bounded by
O(n) and its approximate Fourier sparsity is upper bounded by O(n3).

Hence there exist functions which have a merely cubic gap between approximate Fourier sparsity and
RPDT complexity.

The two properties of random subspaces appearing in such a collection that we use are the following:
each pair of them have no non-trivial intersection. They also form a (dual) subspace design. We are
not able to prove non-trivial lower bounds for the communication problems arising out of Subspace
Designs composed with the XOR gadget. However, in Section 3.2, we state concrete conjectures, that
seem to be interesting from a Fourier analytic and additive combinatorics point of view, which imply
linear lower bounds for such communication problems.

1.2 Organization and plan of the paper
Section 2 contains some basic preliminaries. In Section 3, we prove our main result, a lower bound on
the RPDT complexity of a natural class of functions arising out of subspace designs. In Section 3.2,
we state a few plausible conjectures and show that they imply a lower bound on the communication
complexity of functions arising out of subspace designs composed with the XOR gadget. Finally, we
end up with some open problems in Section 4.

2 Preliminaries
In this section, we provide some basic preliminaries needed for the paper. Section 2.1 starts off with
some notation. Then in Section 2.2, we present some basic facts about subspaces. Then we introduce
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the basics of our models of computations, parity decision trees and communication protocols in Section
2.3. Finally, in Section 2.4, we present some basic concepts from Fourier analysis.

2.1 Notation
Given a subspace S ⊆ Fn2 , we use dim(S) to denote its dimension and codim(S) to denote its codimen-
sion i.e. n− dim(S). Given the standard bilinear form 〈·, ·〉 on Fn2 , we can define the dual space of S
as the set {` ∈ Fn2 | ∀x ∈ S 〈`, x〉 = 0}. It is a subspace of dimension n− dim(S) and its dual space
is S.

Given a subspace S of dimension k, fix a basis L = {`1, . . . , `n−k} of its dual space. For every point
a ∈ Fn−k2 , we can define the set SLa = {x ∈ Fn2 | ∀i ∈ [n − k] 〈`i, x〉 = ai}. These are called affine
shifts, or cosets, of S. Sets of the kind SLa are also called affine subspaces. Each coset of S also has
size 2k. We can also define a coset map of S with respect to a basis of its dual space as

cosetLS(x) = (〈`1, x〉, . . . , 〈`n−k, x〉).

It is easy to see that the choice of basis for the dual space does not affect the set of cosets of S. It
merely affects the string a ∈ Fn−k2 that is used to refer to a specific coset. Hence we will refer to the
coset map as cosetS , and we may choose an arbitrary basis of the dual space of S in order to interpret
the coset map.

From here on, we will use {0, 1} to refer to F2. The values 0 and 1 represent the additive and
multiplicative identity of F2.

2.2 Basic facts about subspaces
Here we mention two facts about subspaces that will be useful. We include their proofs in Appendix A.

Lemma 2.1 (Disjoint Subspaces). Let S be a subspace of {0, 1}n of dimension d1. Let T be a subspace
of {0, 1}n of dimension d2 chosen uniformly at random. Then PrT [S ∩ T = {0}] ≥ 1− n2d1+d2−n.

Lemma 2.2. Let V and W be affine subspaces of {0, 1}n satisfying

|V ∩W |
|W |

<
|V |
2n .

Then V ∩W = ∅.

2.3 Parity decision trees, communication complexity and the corruption
bound

We now define parity decision trees, aimed at computing functions of the form f : {0, 1}n → {0, 1}.

Definition 2.3 (Parity Decision Tree). A parity decision tree T is a binary tree rooted at a node r
satisfying the following properties.

• Each internal node is labelled with a set S ⊆ [n].

• Each internal node has two children, with one of the edges labelled with a 0 and the other labelled
with a 1.

• Each leaf has a label from {0, 1}.

A parity decision tree outputs a value a ∈ {0, 1} on given an input x ∈ {0, 1}n as follows. The
“current node” below is initialized to the root node r.

• The tree computes b = ⊕i∈Sxi, where S is the label on the current node.
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• The tree moves to the child that is reached by taking the edge labelled b. If the child is a leaf,
output the label of the leaf. Else, repeat the previous step with the child as the current node.

The cost of the parity decision tree is defined as the height of the tree.

Definition 2.4 (Randomized Parity Decision Tree). A randomized parity decision tree (RPDT) of
cost c is a distribution over deterministic parity decision trees of cost c. The output of the RPDT on
an input x is the random variable defined as the output of T on x, where T is a parity decision tree
sampled as per the distribution specified by the RPDT.

The ε-error RPDT complexity of a function f , denoted R⊕ε (f), is the minimum cost of an RPDT
T such that ∀x,Pr[f(x) = T (x)] ≥ 1− ε.

Lemma 2.5 (Corruption, RPDT version). Let f : {0, 1}n → {0, 1}. Let µ be a distribution on {0, 1}n
such that µ(f−1(0)) = 1/2. Let ε ≤ 1/8. Then an ε-error cost-c RPDT computing f implies the
existence of an affine subspace W such that

• µ(W ∩ f−1(1)) ≤ 4εµ(W ) and

• codim(W ) ≤ c.

Proof. Note that an ε-error cost-c RPDT T computing f implies that for any distribution µ over the
inputs of f , there is an RPDT whose expected error, ET,x∼µ[|T (x)− f(x)|], is at most ε. Since T is a
distribution over deterministic parity decision trees, there is a deterministic parity decision tree whose
expected error is also at most ε.

Suppose that a subspace such as the one posited in the lemma statement did not exist. Then for any
cost-c parity decision tree T , we may compute the error made as follows. Note that the set of inputs
that reach any specific leaf forms an affine subspace of codimension at most c, with each pair of such
affine subspaces being disjoint. Let L be the set of these affine subspaces corresponding to the leaves
of T that are labelled 0. Then

∑
V ∈L µ(V ) ≥ 1/2− ε, since otherwise T would be outputting 1 on more

than an ε mass of 0-inputs. But then
∑
V ∈L µ(V ∩f−1(1)) ≥

∑
V ∈L 4εµ(V ) ≥ 4ε(1/2−ε) ≥ 2ε−4ε2 > ε.

So on more than an ε mass of 1-inputs, T outputs 0. Hence the tree T is erring on a larger than ε
mass of inputs and we have a contradiction.

We now move to communication complexity. We are concerned with the number of bits that two
parties Alice and Bob need to communicate in order to compute a function F : X × Y → {0, 1}.
See [17] for a thorough introduction to the topic. We will use that a deterministic communication
protocol of cost c partitions the input space of F into at most 2c rectangles (sets of the form A×B for
A ⊆ X , B ⊆ Y), and it outputs the same value on all inputs in a rectangle. Randomized communication
is defined akin to randomized parity decision trees.

Definition 2.6 (Randomized Communication Protocol). A randomized communication protocol of
cost c is a distribution over deterministic communication protocols of cost c. The output of the ran-
domized communication protocol on an input x is the random variable defined as the output of T on
(x, y), where T is a communication protocol sampled as per the distribution specified by the randomized
communication protocol.

The ε-error randomized communication complexity of a function F is the minimum cost of an
randomized communication protocol T such that ∀x, y,Pr[F (x, y) = T (x, y)] ≥ 1− ε.

The following is a lower-bound technique for randomized communication complexity akin to the
lower bound for RPDTs given previously. This technique is well-known with roots in [24].

Lemma 2.7 (Corruption). Let F : {0, 1}n → {0, 1}. Let ν be a distribution on {0, 1}n such that
ν(F−1(0)) = 1/2. Let ε < 1/8. Then an ε-error cost-c randomized communication protocol computing
F implies the existence of a rectangle R such that

• ν(R ∩ F−1(1)) ≤ 4εν(R) and

• ν(R) ≥ 2−c−3.
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2.4 Basic notions from Fourier analysis
We now move to Fourier analysis, a particularly useful tool in analyzing Boolean functions. We define
the parity functions as follows. For each S ⊆ [n], we define a parity function χS : {0, 1}n → {−1, 1}
as χS(x) = (−1)

∑
i∈S

xi . These form an orthonormal basis for the class of functions from {0, 1}n to R
under the inner product 〈f, g〉 = 1

2n

∑
x∈{0,1}n f(x)g(x). Hence every such function f can be written

as
∑
S f̂(S)χS . The values f̂(S) are referred to as Fourier coefficients and can be computed as 〈f, χS〉.

Let f̂ denote the vector (f̂(S))S⊆[n] ∈ R2n , known as the Fourier spectrum. We define the following
measures of f .

• The sparsity of f is ‖f̂‖0.

• The spectral norm of f is
∥∥∥f̂∥∥∥

1
.

• The ε-approximate sparsity of f , ‖f̂‖0,ε, is ming:∀x |g(x)−f(x)|≤ε ‖ĝ‖0.

• The ε-approximate spectral norm of f ,
∥∥∥f̂∥∥∥

1,ε
, is ming:∀x |g(x)−f(x)|≤ε ‖ĝ‖1.

The Fourier spectrum of a subspace is easy to compute. (See, for instance, [21].) It follows from
the spectrum that any subspace V ⊆ {0, 1}n, the function 1V satisfies

∥∥∥1̂V ∥∥∥
1

= 1.
For a function f : {0, 1}n → R its composition with XOR, denoted f ◦ XOR, is a function F :

{0, 1}n × {0, 1}n → R defined as F (x, y) = f(x⊕ y) where x⊕ y is the bitwise XOR of x and y.
It is a well known fact that for a function F := f ◦ XOR, the rank of the communication matrix

of F , denoted rank(F ), is equal to ‖f̂‖0. The ε-approximate rank of F is at most the ε-approximate
sparsity of f .

We note a theorem useful in showing that a function has small approximate sparsity.

Theorem 2.8 (Grolmusz’s Theorem [2, 12, 25, 5]). For any f : {0, 1}n → {0, 1} and δ > ε ≥ 0,

‖f̂‖0,δ ≤ O
(∥∥∥f̂∥∥∥2

1,ε
n/(δ − ε)2

)
.

We conclude the preliminaries with the useful notion of entropy.

Definition 2.9 (Entropy). Let X be a discrete random variable. The entropy H(X) is defined as

H(X) :=
∑

s∈supp(X)

Pr[X = s] log
(

1
Pr[X = s]

)
.

Fact 2.10 (Folklore). |supp(X)| = k =⇒ H(X) ≤ log k, with equality if and only if X is uniform.

3 The RPDT Complexity of Dual Subspace Designs
In this section, we prove a lower bound on the RPDT complexity of a natural class of functions
arising from subspace designs. A subspace design is a set of subspaces such that any small dimensional
subspace non-trivially intersects only a few members of the set. (These are referred to as weak subspace
designs in [13].)

Definition 3.1 (Subspace Design). An n-dimensional (s, h)-subspace design is a set of subspaces
{S1, S2, · · · , Sm} of {0, 1}n such that for all subspaces T of dimension at most s, at most h of the m
subspaces intersect T non-trivially.

We call a set of subspaces {V1, V2, · · · , Vm} of {0, 1}n an n-dimensional (s, h)-dual subspace design
if their duals form an (s, h)-subspace design. Dual subspace designs have an alternate characterization
based on the notion of independent subspaces.
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Definition 3.2 (Independent Subspaces). Subspaces S, T ⊆ {0, 1}n are independent if their coset
maps are independent. That is, let LS and LT be arbitrary bases for the dual spaces of S and T . For
a variable x chosen uniformly at random from {0, 1}n, consider the random variables cosetS(x) and
cosetT (x). For every a ∈ Fcodim(S)

2 , b ∈ Fcodim(T )
2 , we want that Pr[cosetS(x) = a|cosetT (x) = b] =

Pr[cosetS(x) = a] = 2−codim(S).
In particular this implies that every coset of S intersects with every coset of T .

We now state the alternate characterization of dual subspace designs.

Claim 3.3. The set {V1, V2, · · · , Vm} of {0, 1}n is an n-dimensional (s, h)-dual subspace design if and
only if for all subspaces W of codimension at most s, at least m−h of the m subspaces are independent
from W .

This claim follows from the following lemma relating trivial subspace intersections and independent
subspaces.

Lemma 3.4 (Independent Subspaces). Subspaces S and T of Fn2 are independent if and only if the
dual space of S and the dual space of T intersect trivially (i.e. only at the point 0 ∈ Fn2 ).

Proof. Let V and W be the dual spaces of S and T respectively. If V and W intersected at a non-zero
point ` ∈ Fn2 , then consider bases LS and LT for V and W respectively, wherein ` is the first element
of LS and also the first element of LT . The coset maps of S and T with this choice of LS and LT
cannot be independent since for all x ∈ Fn2 , the first entries of cosetLS

S (x) and cosetLT

T (x) will always
agree.

For the other direction, let LS and LT be arbitrary bases for V and W respectively. We will
show that if V and W intersect trivially, then the coset maps are independent. Assuming V and
W intersect trivially, this means that span(LS) ∩ span(LT ) = {0}. Hence L = LS ∪ LT is an inde-
pendent set of size dim(V ) + dim(W ). Consider the subspace X with basis L, and let R be its dual
subspace. The cosets of R each have size 2n−dim(V )−dim(W ). For any a ∈ Fcodim(S)

2 , b ∈ Fcodim(T )
2 , the

set {x | cosetLS

S (x) = a∧ cosetLT

T (x) = b} is a coset of R. Hence Pr[cosetLS

S (x) = a|cosetLT

T (x) = b] =
2−dim(V )−dim(W )/2−dim(W ) = 2−dim(V )

A useful corollary of Claim 3.3 is that an (s, h)-dual subspace design also forms a hitting set for
the set of all affine subspaces of codimension at most s. We will use this fact to lower bound the
randomized parity decision tree complexity of unions of subspaces.

Corollary 3.5. Let {V1, V2, · · · , Vm} be an n-dimensional (s, h)-dual subspace design. For all affine
subspaces W of codimension at most s, at least m− h of the m subspaces intersect with W .

Proof. This follows from Claim 3.3 and the fact that if two subspaces S and T are independent, then
S will intersect any affine shift of T non-trivially.

We are now ready to prove the main theorem of the section.

Theorem 3.6. Let V be an n-dimensional (s, h)-dual subspace design of size m.
Let f be the function defined as f−1(1) =

⋃
V ∈V V . We now show that R⊕ε (f) ≥ s as long as

ε < m−h
8m

|f−1(0)|
2n .

Proof. Consider the distribution µ defined over the inputs of f as follows.

• Sample z ∼unif {0, 1}.

• If z = 0, output a uniformly random input from f−1(0).

• Otherwise, sample V ∼unif V.

• Output a uniformly random input from V .
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Assuming that f is computed by an ε-error cost c RPDT, Lemma 2.5 implies the existence of a
subspace W such that

• µ(W ∩ f−1(1)) ≤ 4εµ(W ) and

• codim(W ) ≤ c.

Assume we have a W such that µ(W ∩ f−1(1)) ≤ 4εµ(W ). This means that µ(W ∩ f−1(1)) ≤
4ε

1−4εµ(W ∩ f−1(0)). We also know the following from the definition of µ.

µ(W ∩ f−1(1)) = 1/2 · 1
|V|

∑
V ∈V

|W ∩ V |
|V |

µ(W ∩ f−1(0)) = 1/2 · |W ∩ f
−1(0)|

|f−1(0)| ≤ 1/2 · |W |
|f−1(0)|

Putting these together, we get that

1
|V|

∑
V ∈V

|W ∩ V |
|V |

≤ 4ε
1− 4ε

|W |
|f−1(0)| .

Now if ε < m−h
8m

|f−1(0)|
2n ≤ 1

8 , then 4ε
1−4ε <

m−h
m
|f−1(0)|

2n . This implies that less than m−h subspaces
of V can satisfy |W∩V ||V | ≥

|W |
2n , and hence more than h of them must satisfy |W∩V ||V | < |W |

2n . This means
that W ∩ V = ∅ (Lemma 2.2). In other words, W is an affine subspace that managed to evade more
than h subspaces of V. But by Corollary 3.5, if W is of codimension at most s, then it is disjoint from
at most h subspaces of V. So W must be of codimension more than s.

Hence the codimension of W , and thereby the cost of the RPDT, is at least s.

Remark 3.7. The above proof would also work for any union of affine subspaces which forms a hitting
set for the set of all large affine subspaces the way that the dual subspace design does.

3.1 Narrowing the gap between RPDT complexity and approximate spar-
sity to cubic

In this section, we instantiate Theorem 3.6 with random subspaces to get a mere cubic gap between
RPDT complexity and approximate sparsity. It is known that there are efficient probabilistic con-
structions of subspace designs. We go through such a construction here, and use it to show our main
theorem.

Theorem 3.8. Let m = 100n. Let V1, V2, . . . , Vm be subspaces of {0, 1}n chosen independently and
uniformly at random from the set of subspaces of dimension 2n/5. With probability 1 − o(1) the
following two statements are true.

• V = {V1, . . . , Vm} forms an (n/5,m/10)-dual subspace design.

• Every pair of subspaces in V intersects trivially.

Proof. Let W be a fixed affine subspace of {0, 1}n of dimension 4n/5. Let V = {V1, V2, · · · , Vm}
be subspaces of {0, 1}n chosen independently and uniformly at random from the set of subspaces of
dimension 2n/5.

Since the duals of W and V1 have dimension 3n/5 and n/5 respectively, the probability that W
and V1 are independent is at least 1−n2−n/5 (Lemma 2.1). This is independently true of W and each
V ∈ V. The probability that W is not independent with at least m/10 of the m subspaces is at most(

m
m/10

)
(n2−n/5)m/10.

Since the number of subspaces of dimension 4n/5 is at most (2n)4n/5 = 24n2/5, the probability that
there exists such a subspace W that is not independent with at least m/10 of the subspaces in V is at
most 24n2/5( m

m/10
)
(n2−n/5)m/10.
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Setting m = 100n, this upper bound is at most 2.8n2+100n+10n logn−2n2 = o(1).
Hence with high probability, V is an (n/5,m/10)-dual subspace design.
Let f be defined as in the theorem statement. Note that since V1 and V2 are random subspaces of

dimension 2n/5, the probability that they intersect only at 0 is at least 1 − n2−n/5. The probability
that any two subspaces in V intersect at more than just 0 is at most

(
m
2
)
n2−n/5 = o(1).

Theorem 1.2 (Main Result). Let m = 100n. Let V = {V1, V2, . . . , Vm} be a set of subspaces of {0, 1}n
chosen independently and uniformly at random from the set of subspaces of dimension 2n/5. Let f be
the function that outputs 1 on the set

⋃
V ∈V V . With probability 1− o(1) the following two statements

are true.

• Randomized parity decision tree complexity of f is at least Ω(n).

• The spectral norm of f (sum of absolute values of its Fourier coefficients) is upper bounded by
O(n) and its approximate Fourier sparsity is upper bounded by O(n3).

Hence there exist functions which have a merely cubic gap between approximate Fourier sparsity and
RPDT complexity.

Proof. We know from Theorem 3.8 that with probability 1 − o(1) the set V forms an (n/5,m/10)-
dual subspace design. We also can trivially lower bound |f−1(0)|/2n by 1 −m2−3n/5. Since V is an
(n/5,m/10)-dual subspace design, we can conclude from Theorem 3.6 that for ε ≤ 1/10, R⊕ε (f) ≥ n/5.

We also know from Theorem 3.8 that with probability 1 − o(1), every pair of subspaces from V
intersects trivially. When this event holds, f can be represented as

∑
V ∈V 1V − (m − 1)1V0 where

V0 = {0} is the trivial subspace of dimension 0. Since the spectral norm of a subspace is equal to 1,
the spectral norm of f is upper bounded by m + m − 1 < 2m. Using Theorem 2.8, this also implies
that ‖f̂‖0,ε ≤ O(m2n/ε2) = O(n3) for any constant ε.

This concludes the proof of the merely cubic gap.

3.2 On Extending this to Communication
In this section, we state a plausible conjecture that would imply a lower bound on the randomized
communication complexity of XOR compositions of our functions. The proof of this implication is in
Appendix B.

In the RPDT lower bound, we showed that in order for an affine subspace to avoid most of the
subspaces of a dual subspace design, the codimension of the affine subspace needs to be large. We
could hope for a similar statement in the communication world: For a rectangle to put very little mass
on most of the subspaces making up a dual subspace design (i.e., puts very little mass on inputs (x, y)
such that x ⊕ y lies in the subspaces), the mass of the rectangle must be 2−Ω(n). One particularly
neat conjecture that would imply that statement is the following, in which Uk denotes the uniform
distribution over k elements.

Conjecture 3.9. There exist constants 0 < α < 1, β > 0 and k ≥ 1 such that the following holds.
Let V = {V1, . . . , Vm} be an n-dimensional (s, h)-dual subspace design. Let Bi be the coset map of Vi.
Let X be a random variable over {0, 1}n such that ‖Bi(X)− U2codim(Vi)‖1 ≥ α for more than kh values
of i ∈ [m]. Then H(X) ≤ n− βs.

The merely cubic gap in the RPDT world used random subspaces. So for extending it to commu-
nication, it would be okay for us to bypass dual subspace designs and prove the theorem for random
subspaces instead.

Conjecture 3.10. There exists a constant 0 < α < 1, β > 0 such that the following holds. Let m =
100n. Let V1, V2, . . . , Vm be random subspaces of {0, 1}n of dimension 2n/5, and let B1, B2, · · · , Bm
be their coset maps. Let X be a random variable over {0, 1}n such that ‖Bi(X)− U23n/5‖1 ≥ α for at
least m/3 values of i ∈ [m]. Then with high probability, H(X) ≤ n− βn.
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First of all note that the conjectures are true when X is the uniform distribution over an affine
subspace. To see this, suppose X is the uniform distribution over an affine subspace W . H(X) ≥ n−s
is the same as saying that codim(W ) ≤ s. Then by Claim 3.3, for at least m − h of the subspaces
V1, . . . , Vm, Vi and the dual space of W are independent, which implies that Bi(X) will be exactly
uniform (U2codim(Vi)).

We discuss now why the Conjectures 3.9 and 3.10 appear to be a bit tricky to prove. While the
conjectures are true for affine subspaces, the number of distributions (or even the number of subsets
of {0, 1}n) are much larger (doubly exponential in n), so the conjectures are a leap of faith in this
sense. But we haven’t been able to come up with counterexamples and it would be very interesting
to do so. The conceptual way to view the conjectures, e.g. Conjecture 3.10 to be concrete, is that if
a random variable X has the property that when projected down to 2n/5 bits in various ways it loses
Ω(1) bits of entropy, then X overall loses Ω(n) bits of entropy. Shearer’s lemma talks about these kind
of statements. While in Shearer’s lemma, the projections are onto subcubes, there are generalizations
called Brascamp-Lieb inequalities which talk about more general projections (e.g. see [6]). However,
the Brascamp-Lieb inequalities can at best guarantee an Ω(n/k)-bit entropy loss in X if there is an
Ω(1)-bit entropy loss while projecting X to k bits in various ways. What we want is much stronger.
This is one difficulty.

The other difficulty is that a Fourier type approach doesn’t seem to work either. One can control
‖Bi(X)−U2codim(Vi)‖1 by bounding the `2 distance and then trying to bound the Fourier coefficients of
the distribution of X on the dual space of Vi. But this doesn’t give any meaningful bound (if done in
a naive way at least).

We now state the lower bound on the randomized communication complexity of a dual subspace
design composed with XOR that we get assuming Conjecture 3.9. For a set of subspaces in n dimensions
V = {V1, V2, . . . , Vm}, let fV be the function on n bits that outputs 1 on inputs in ∪V ∈VV .

Theorem 3.11. [Proof in Appendix B] Let us assume Conjecture 3.9 holds with constants α, β and k.
Let V = {V1, V2, . . . , Vm} be an n-dimensional (s, h)-dual subspace design and define γ so that | ∪V ∈V
V | = γ2n. Let F = fV ◦ XOR. For ε < (1−α)2

4
m−2kh

8m (1 − γ), the ε-error randomized communication
complexity of F is at least βs+ log(1− γ).

Given this lower bound, we would want to apply it to get a merely cubic gap between randomized
communication complexity and approximate rank along the lines of Theorem 3.8.

Corollary 3.12. Let V = {V1, V2, . . . , Vm} be an (n/5,m/20k)-dual subspace design with (1) m =
200kn, (2) each subspace having dimension 2n/5 and (3) every pair of subspaces intersecting trivially.
Let F = fV ◦ XOR. Then assuming Conjecture 3.9,

• The 1/10-error randomized communication complexity of F is Ω(n).

• rank1/10(F ) = O(n3).

Proof. The size of F−1(1) would be at most 2n
∑
V ∈V |V | ≤ 2n+2n/5m = o(22n). We can then use

Theorem 3.11 to get a lower bound of βn/5 when ε < (1−α)2

4
m−2kh

8m
|F−1(0)|

22n , which is a constant. Since
we can use error reduction to go from error 1/10 to any small constant error with only a constant
blow-up in cost, the 1/10-error randomized communication complexity is also Ω(n).

The ε-approximate rank of f ◦ XOR is known to be at most the ε-approximate sparsity of f . As
analyzed in Theorem 3.8,

∥∥∥f̂V∥∥∥
1
≤ 2m and ‖f̂V‖0,1/10 ≤ O(m2n) = O(n3) and hence rank1/10(F ) ≤

O(n3).

The existence of a dual subspace design as required in the previous corollary follows by changing
Theorem 3.8 to set m = 200kn. The proof of the modified statement is syntactically identical to the
proof of the original statement.
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4 Conclusion and open problems
We come up with new and improved refutations of the query complexity analogue of the log-approximate-
rank conjecture, following the work of Chattopadhyay, Mande and Sherif [5]. Our examples are derived
from subspace designs, a concept which has previously found applications in coding theory and pseu-
dorandomness [14, 13, 15]. A lot of interesting open problems arise from our work, some of which we
mention below.

1. (Communication complexity of XOR composed subspace designs). What is the ran-
domized communication complexity of dual subspace designs composed with XOR (as studied in
Section 3.2)? A lower bound would follow from Conjecture 3.9. If Conjecture 3.9 is false, is there
an alternate way to prove the communication lower bound? Since we already have an RPDT
lower bound for dual subspace designs, these functions provide a interesting class of functions to
study randomized XOR lifting. Currently we cannot even prove that this class of functions do
not have large monochromatic rectangles.

2. (Communication complexity of XOR composed random subspaces). What is the ran-
domized communication complexity of random subspaces composed with XOR? A lower bound
would follow from Conjecture 3.10 which follows from Conjecture 3.9. Even if Conjecture 3.9
is false, Conjecture 3.10 could still be true or perhaps easier to prove. If even Conjecture 3.10
is false, is there an alternate way to prove the communication lower bound, perhaps adapting
the technique of [16] to the randomized communication setting? Here also we cannot prove that
there are no large monochromatic rectangles.

3. (Quantum communication complexity of XOR composed subspace designs). What is
the quantum communication complexity of dual subspace designs composed with XOR? Is there
a function in this class which has polylogarithmic quantum communication complexity?

4. (RPDT and approximate sparsity). What is the optimal gap between RPDT complexity
and approximate sparsity? We give examples where the RPDT complexity is at least cube root of
the approximate sparsity and also RPDT complexity is easily seen to be at most the approximate
sparsity.
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A Facts About Subspaces
Lemma 2.1 (Disjoint Subspaces). Let S be a subspace of {0, 1}n of dimension d1. Let T be a subspace
of {0, 1}n of dimension d2 chosen uniformly at random. Then PrT [S ∩ T = {0}] ≥ 1− n2d1+d2−n.

Proof. Let us generate T by choosing d2 vectors {v1, . . . , vd2}, each vector independent of the previous
ones, in order to form a basis for T . The subspace S intersects T trivially if and only if for all i ∈ [d2],
vi 6∈ span({vj}j<i ∪ S). We call these events E1, . . . , Ed2 . When choosing vi to add to the basis for T ,
there are 2n − 2i−1 choices, since |span({vj}j<i)| = 2i−1. Conditioned on E1, . . . , Ei−1, we also know
that |span({vj}j<i ∪ S)| = 2i−1+d1 . The probability of Ei occurring is

| ({0, 1}n \ span({vj}j<i)) \ span({vj}j<i ∪ S)|
|{0, 1}n \ span({vj}j<i)|

= |{0, 1}
n \ span({vj}j<i ∪ S)|

|{0, 1}n \ span({vj}j<i)|
.

We can then calculate the probability of S ∩ T = ∅ as

Pr

 ⋂
i∈[d2]

Ei

 =
d2∏
i=1

Pr [Ei | E1, · · · , Ei−1] =
d2∏
i=1

2n − 2d1+i−1

2n − 2i−1

≥
(

1− 2d1+d2

2n

)d2

≥ 1− d2

2n−d1−d2
.

Lemma 2.2. Let V and W be affine subspaces of {0, 1}n satisfying

|V ∩W |
|W |

<
|V |
2n .

Then V ∩W = ∅.

Proof. Let {〈vi, x〉 = ai}i∈[k] be the constraints defining the affine subspace W . Let W0,W1, · · · ,Wk be
the affine spaces defined as follows. The constraints for Wj are {〈vi, x〉 = ai}i∈[j]. Clearly W0 = {0, 1}n
and Wk = W .

Now let us assume that |V ∩Wi| 6= 0 and is hence an affine subspace. The set V ∩Wi+1 is the
same affine subspace with the added constraint 〈vi+1, x〉 = ai+1.

• If this constraint was already implied by the constraints in V ∩Wi, then |V ∩Wi+1| = |V ∩Wi|.

• If this constraint is incompatible with the constraints in V ∩Wi, then |V ∩Wi+1| = 0.

• If this constraint was independent of the constraints in V ∩Wi, then |V ∩Wi+1| = |V ∩Wi|/2.
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Hence |V ∩Wk| is either 0 or is at least |V ∩W0|/2k. On the other hand, |W |/2n = 1/2k. Since
V ∩Wk = V ∩W and V ∩W0 = V , we can rewrite this as

V ∩W 6= ∅ =⇒ |V ∩W |
|V |

≥ |W |2n .

B Randomized Communication Lower Bound Assuming the
Conjecture

In the following lower bound, we assume Conjecture 3.9 to hold with α = 1/2. After the proof we
discuss how to modify it to hold for other values of α.

Theorem B.1. Let us assume Conjecture 3.9 holds with α = 1/2 and some constants β, k. Let V =
{V1, V2, . . . , Vm} be an n-dimensional (s, h)-dual subspace design and define γ so that |∪V ∈V V | = γ2n.
Let F = fV ◦ XOR. For ε < m−2kh

128m (1− γ), the ε-error randomized communication complexity of F is
at least βs+ log(1− γ).

Proof. For any V ∈ V, let SV = {(x, y) ∈ {0, 1}n × {0, 1}n | x⊕ y ∈ V }. Note that |SV | = 2n|V | and
F−1(1) = ∪V ∈VSV . Consider the distribution ν defined over the inputs of F as follows.

• Sample z ∼unif {0, 1}.

• If z = 0, output a uniformly random input from F−1(0).

• Otherwise, sample V ∼unif V.

• Output a uniformly random input from SV .

Assuming F is computed by an ε-error cost c communication protocol, Lemma 2.7 implies the
existence of a rectangle R such that

• ν(R ∩ F−1(1)) ≤ 4εν(R) and

• ν(R) ≥ 2−c−3.

Assume we have an R such that ν(R ∩ F−1(1)) ≤ 4εν(R). This means that ν(R ∩ F−1(1)) ≤
4ε

1−4εν(R ∩ F−1(0)). We also know the following from the definition of ν.

ν(R ∩ F−1(1)) = 1/2 · 1
|V|

∑
V ∈V

|R ∩ SV |
|SV |

ν(R ∩ F−1(0)) = 1/2 · |R ∩ F
−1(0)|

|F−1(0)| ≤ 1/2 · |R|
|F−1(0)|

Putting these together, we get that

1
|V|

∑
V ∈V

|R ∩ SV |
|SV |

≤ 4ε
1− 4ε

|R|
|F−1(0)| .

Now if ε < m−2kh
128m

|F−1(0)|
22n < 1/8, then 4ε

1−4ε <
m−2kh

16m
|F−1(0)|

22n . This implies that less than m− 2kh
subspaces of V can satisfy |R∩SV |

|SV | ≥
|R|

16·22n , and hence more than 2kh of them must satisfy |R∩SV |
|SV | <

|R|
16·22n . Let us fix such a V .

Let cosetV denote the function cosetLV

V for some fixed basis LV of the dual space of V . Let
R = A×B. Then |R∩SV |

|R| is the probability that, when x and y are sampled uniformly at random from
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A and B, cosetV (x) = cosetV (y). Let AV be the distribution of cosetV (x) and BV be the distribution
of cosetV (y). The condition |R∩SV |

|R| < |SV |
16·22n can be rewritten as

Pr
x′∼AV ,y′∼BV

[x′ = y′] < |SV |
16 · 22n = 1

16 · 2codim(V ) .

It follows that AV (S) < 1/4 where S = {y′ | BV (y′) ≥ 1
4·2codimV }. However, BV (S) must be at least

3/4, since BV (S) ≤ 1/4.
Hence AV and BV have total variational distance at least 1/2, and ‖AV −BV ‖1 ≥ 1. By the triangle

inequality, max{‖AV − U2codim(V )‖1, ‖BV − U2codim(V )‖1} ≥ 1/2.
Hence, either there are more than kh subspaces that satisfy ‖AV − U2codim(V )‖ ≥ 1/2 or there are

more than kh subspaces that satisfy ‖BV −U‖ ≥ 1/2. Without loss of generality we assume the former.
Now we use our conjecture. The conjecture implies that H(A) ≤ n− βs. Hence |R|22n ≤ 2−βs.

We now want to move from |R| being small under the uniform distribution to R being small under
ν. We know that ν(R∩F−1(1)) ≤ 4εν(R) < ν(R)/2, so ν(R∩F−1(0)) ≥ ν(R)/2. We also know from
the definition of ν that

ν(R ∩ F−1(0)) = |R ∩ F
−1(0)|

2|F−1(0)| ≤
|R|

2 · 22n ·
22n

|F−1(0)| ≤ 2−βs−1 · 1
1− γ .

So ν(R) ≤ 2ν(R ∩ F−1(0)) ≤ 2−βs−1−log(1−γ). Hence the cost of the protocol is at least βs+ log(1−
γ)− 3.

We now explain how to modify the proof assuming the conjecture were true for other values of α.
Then the theorem statement would be modified, setting ε < (1−α)2

4
m−2kh

8m (1− γ). The proof would go
through as it does above, analyzing a rectangle R = A×B.

• We would find more than 2kh subspaces V such that Pr[AV = BV ] < (1−α)2

4
|SV |
22n as is done in

the above proof.

• We would then set S = {y′ | BV (y′) ≥ 1−α
2·2codim(V ) }. This would mean that AV (S) ≤ 1−α

2
and BV (S) ≥ 1 − 1−α

2 . Hence ‖AV − BV ‖1 ≥ 2α, and one of A or B (wlog, A) satisfies
‖AV − U2codim(V )‖1 ≥ α for at least kh subspaces from the dual subspace design.

• The proof would continue as it does above, using the conjecture to conclude that the cost of the
protocol would be at least βs+ log(1− γ)− 3, which is Ω(s) for constant γ.
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