
Query complexity lower bounds for local list-decoding and
hard-core predicates (even for small rate and huge lists)

Noga Ron-Zewi* Ronen Shaltiel† Nithin Varma‡

University of Haifa, Israel

Abstract

A binary code Enc : {0, 1}k → {0, 1}n is (1
2 − ε, L)-list decodable if for every w ∈ {0, 1}n,

there exists a set List(w) of size at most L, containing all messages m ∈ {0, 1}k such that the relative
Hamming distance between Enc(m) and w is at most 1

2 − ε. A q-query local list-decoder is a randomized
procedure that when given oracle access to a string w, makes at most q oracle calls, and for every message
m ∈ List(w), with high probability, there exists j ∈ [L] such that for every i ∈ [k], with high probability,
Decw(i, j) = mi.

We prove lower bounds on q, that apply even if L is huge (say L = 2k
0.9

) and the rate of Enc is small
(meaning that n ≥ 2k):

• For ε = 1/kν for some constant ν > 0, we prove a lower bound of q = Ω(log(1/δ)
ε2), where δ is the

error probability of the local list-decoder. This bound is tight as there is a matching upper bound by
Goldreich and Levin (STOC 1989) of q = O(log(1/δ)

ε2) for the Hadamard code (which has n = 2k).
This bound extends an earlier work of Grinberg, Shaltiel and Viola (FOCS 2018) which only works
if n ≤ 2k

ν

and the number of coins tossed by Dec is small (and therefore does not apply to the
Hadamard code, or other codes with low rate).

• For smaller ε, we prove a lower bound of roughly q = Ω(1√
ε
). To the best of our knowledge, this is

the first lower bound on the number of queries of local list-decoders that gives q ≥ k for small ε.

Local list-decoders with small ε form the key component in the celebrated theorem of Goldreich and
Levin that extracts a hard-core predicate from a one-way function. We show that black-box proofs cannot
improve the Goldreich-Levin theorem and produce a hard-core predicate that is hard to predict with prob-
ability 1

2 + 1
`ω(1) when provided with a one-way function f : {0, 1}` → {0, 1}`, such that circuits of size

poly(`) cannot invert f with probability ρ = 1/2
√
` (or even ρ = 1/2Ω(`)). This limitation applies to any

proof by black-box reduction (even if the reduction is allowed to use nonuniformity and has oracle access
to f).

*noga@cs.haifa.ac.il
†ronen@cs.haifa.ac.il
‡nvarma@bu.edu

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 133 (2020)

1 Introduction

We prove limitations on local list-decoding algorithms and on reductions establishing hard-core predicates.

1.1 Locally list-decodable codes

List-decodable codes are a natural extension of (uniquely decodable) error-correcting codes, as it allows (list)
decoding for error regimes where unique decoding is impossible. This is an extensively studied area, see e.g.,
[Gur06] for a survey. In this paper, we will be interested in list-decoding of binary codes.

Definition 1.1 (List-decodable code). For a function Enc : {0, 1}k → {0, 1}n, and w ∈ {0, 1}n, we define

ListEnc
α (w) =

{
m ∈ {0, 1}k : dist(Enc(m), w) ≤ α

}
.1

We say that Enc is (α,L)-list-decodable if for every w ∈ {0, 1}n, |ListEnc
α (w)| ≤ L.

The task of algorithmic list-decoding is to produce the list ListEnc
α (w) on input w ∈ {0, 1}n.

Local unique decoding algorithms are algorithms that given an index i ∈ [k], make few oracle queries
to w, and reproduce the bit mi (with high probability over the choice of their random coins). This notion of
local decoding has many connections and applications in computer science and mathematics [Yek12].

We will be interested in local list-decoding algorithms that receive oracle access to a received word w ∈
{0, 1}n, as well as inputs i ∈ [k] and j ∈ [L]. We will require that for every m ∈ ListEnc

α (w), with high
probability, there exists a j ∈ [L] such that for every i ∈ [k], when Dec receives oracle access to w, and inputs
i, j, it produces mi with high probability over its choice of random coins. This motivates the next definition.

Definition 1.2 (Randomized local computation). We say that a procedure P (i, r) locally computes a string
m ∈ {0, 1}k with error δ, if for every i ∈ [k], Pr[P (i, R) = mi] ≥ 1 − δ (where the probability is over a
uniform choice of the “string of random coins” R).

The definition of local list-decoders considers an algorithmic scenario that works in two steps:

• At the first step (which can be thought of as a preprocessing step) the local list-decoder Dec is given
oracle access to w and an index j ∈ [L]. It tosses random coins (which we denote by rshared).

• At the second step, the decoder receives the additional index i ∈ [k], and tosses additional coins r.

• It is required that for every w ∈ {0, 1}n and m ∈ ListEnc
α (w), with probability 2/3 over the choice

of the shared coins rshared, there exists j ∈ [L] such that when the local list-decoder receives j, it
locally computes m (using its “non-shared” coins r). The definition uses two types of random coins
because the coins rshared are “shared” between different choices of i ∈ [k] and allow different i’s to
“coordinate”. The coins r, are chosen independently for different choices of i ∈ [k].

This is formally stated in the next definition.

Definition 1.3 (Local list-decoder). Let Enc : {0, 1}k → {0, 1}n be a function. An (α,L, q, δ)-local list-
decoder (LLD) for Enc is an oracle procedure Dec(·) that receives oracle access to a word w ∈ {0, 1}n, and
makes at most q calls to the oracle. The procedure Dec also receives inputs:

• i ∈ [k] : The index of the symbol that it needs to decode.

1For two strings x, y ∈ {0, 1}n we use dist(x, y) to denote the relative Hamming distance between x and y, namely, dist(x, y) =
| {i ∈ [n] : xi 6= yi} |/n.

1

• j ∈ [L] : An index to the list.

• Two strings rshared, r that are used as random coins.

It is required that for every w ∈ {0, 1}n, and for every m ∈ ListEnc
α (w), with probability at least 2/3 over

choosing a uniform string rshared, there exists j ∈ [L] such that the procedure

Pw,j,rshared(i, r) = Decw(i, j, rshared, r)

locally computes m with error δ. If we omit δ, then we mean δ = 1/3.

Remark 1.4 (On the generality of Definition 1.3). The goal of this paper is to prove lower bounds on local
list-decoders, and so, making local list-decoders as general as possible, makes our results stronger. We now
comment on the generality of Definition 1.3.

• In Definition 1.3 we do not require that L = |ListEnc
α (w)|, and allow the local list-decoder to use a

larger L. This means that on a given w, there may be many choices of j ∈ [L] such that the procedure
Pw,j,rshared(i, r) = Decw(i, j, rshared, r) locally computes messages m 6∈ ListEnc

α (w).

• In Definition 1.3 we do not place any restriction on the number of random coins used by the local
list-decoder, making the task of local list-decoding easier.

• We allow Dec to make adaptive queries to its oracle.

• We are only interested in the total number of queries made by the combination of the two steps. It should
be noted that w.l.o.g., a local list-decoder can defer all its queries to the second step (namely, after it
receives the input i), and so, this definition captures local list-decoding algorithms which make queries
to the oracle at both steps.

• To the best of our knowledge, all known local list-decoders in the literature are of the form presented in
Definition 1.3.

1.1.1 Lower bounds on the query complexity of local list-decoders

In this paper we prove lower bounds on the number of queries q of (1
2 − ε, L, q, δ)-local list-decoders. Our

goal is to show that the number of queries q has to be large, when ε is small. Our lower bounds apply even if
the size of the list L is huge and approaches 2k (note that a local list-decoder can trivially achieve L = 2k with
a list of all messages). Our lower bounds also apply even if the rate of the code is very small, and n ≥ 2k.

We remark that this parameter regime is very different than the one studied in lower bounds on the number
of queries of local decoders for uniquely decodable codes (that is, for L = 1). By the Plotkin bound, uniquely
decodable codes cannot have ε < 1

4 , and so, the main focus in uniquely decodable codes is to show that local
decoders for codes with “good rate” and “large” ε = Ω(1), must make many queries. In contrast, we are
interested in the case where ε is small, and want to prove lower bounds that apply to huge lists and small rate.

Lower bounds for ε ≥ 1/kΩ(1). Our first result is a tight lower bound of q = Ω(log(1/δ)
ε2

) on the number of
queries, assuming ε is sufficiently large compared to 1/k.

Theorem 1.5 (Tight lower bounds for ε ≥ 1/kΩ(1)). There exists a universal constant ν > 0 such that for
any L ≤ 2k

0.9
, ε ∈ (k−ν , 1

4), and δ ∈ (k−ν , 1
3), we have that every (1

2 − ε, L, q, δ)-local list-decoder for
Enc : {0, 1}k → {0, 1}n must have q = Ω(log(1/δ)

ε2
).

2

Theorem 1.5 is tight in the sense that the Hadamard code (which has length n = 2k) has (1
2 − ε, L =

O(1/ε2), q = O(log(1/δ)
ε2

), δ) local list-decoders [GL89]. In fact, the Hadamard code was the motivation for
this research, and is a running example in this paper.

Our results show that even if we allow list sizes L which approach 2k, it is impossible to reduce the
number of queries for the Hadamard code. Our results also show, that even if we are willing to allow very
small rate n ≥ 2k, and huge list sizes, it is impossible to have codes whose local list-decoders make fewer
queries than the local list-decoders for the Hadamard code.

Comparison to previous work. Theorem 1.5 improves and extends an earlier work by Grinberg, Shaltiel
and Viola [GSV18] that gave the same bound of q = Ω(log(1/δ)

ε2
) for a more limited parameter regime:

Specifically, in [GSV18], for the lower bound to hold, it is also required that n ≤ 2k
ν
, for some constant

ν > 0, and that the total number of coins tossed by the local list-decoder is less than kν − logL.2 We stress
that because of these two limitations, the lower bounds of [GSV18] do not apply to the Hadamard code and
other low rate codes.

Extensions to large alphabet and erasures. The scenario that we consider in Theorem 1.5 has binary
alphabet, and decoding from errors. We remark that in the case of large alphabets, or decoding from erasures,
there are local list-decoders which achieve q = O(log(1/δ)

ε) (which is smaller than what is possible for binary
alphabet and decoding from errors), as was shown for the case of Hadamard codes in [RRZV18]. Our results
extend to give a matching lower bound of q = Ω(log(1/δ)

ε) for decoding from erasures (for any alphabet size),
and also the same lower bound on decoding from errors for any alphabet size. The exact details are deferred
to the final version.

Lower bounds for ε < 1/k. The best bound on q that Theorem 1.5 (as well as the aforementioned lower
bounds of [GSV18]) can give is q ≥ kΩ(1). The next theorem shows that even for small ε � 1/k, we can
obtain a lower bound on q which is polynomial in 1/ε.

Theorem 1.6 (Lower bounds for small ε). There exist universal constants β, c1, c2 > 0 such that for every
L ≤ β · 2k, δ < 1

3 and ε ≥ β√
n

we have that every (1
2 − ε, L, q, δ)-local list-decoder for Enc : {0, 1}k →

{0, 1}n must have q ≥ 1
c1 log(k)·

√
ε
− c2 logL.

Note that for sufficiently small ε = 1/(log k)ω(1), we get q = Ω(1
ε1/2−o(1)). It follows that together,

Theorems 1.5 and Theorem 1.6 give a lower bound of q = Ω(1
ε1/2−o(1)) that applies to every choice of

ε ≥ Ω(1√
n

). To the best of our knowledge, Theorem 1.6 is the first lower bound on local list-decoders that

is able to prove a lower bound of q ≥ k (and note that this is what we should expect when ε < 1
k). We also

remark that the requirement that ε is not too small compared to n (as is made in Theorem 1.6) is required (as
we cannot prove lower bounds on the number of queries in case ε < 1

n).
Goldreich and Levin [GL89] showed that locally list-decodable codes with small ε� 1/k can be used to

give constructions of hard-core predicates. We explain this connection in the next section.

1.2 Hard-core predicates

The celebrated Goldreich-Levin theorem [GL89] considers the following scenario: There is a computational
task where the required output is non-Boolean and is hard to compute on average. We would like to obtain a

2The work of [GSV18] is concerned with proving lower bounds on the number of queries of “nonuniform reductions for hardness
amplification” [Vio06, SV10, AS11, GSV18]. As explained in [Vio06, SV10, AS11, GSV18] such lower bounds translate into lower
bounds on local list-decoders, by “trading” the random coins of a local list-decoder for “nonuniform advice” for the reduction, and
proving a lower bound on the number of queries made by the reduction.

3

hard-core predicate, which is a Boolean value that is hard to compute on average.
The Goldreich-Levin theorem gives a solution to this problem, and in retrospect, the theorem can also be

viewed as a (1
2 − ε, L

Had = O(1
ε2

), qHad = O(k
ε2

), δ = 1
2k)-local list-decoder for the Hadamard code, defined

by: EncHad : {0, 1}k → {0, 1}n=2k , where for every r ∈ {0, 1}k,

EncHad(x)r =

∑
i∈[k]

xi · ri

 mod 2.

In retrospect, the Goldreich-Levin theorem can also be seen as showing that any locally list-decodable code
with suitable parameters can be used to produce hard-core predicates.

We consider two scenarios for the Goldreich-Levin theorem depending on whether we want to extract a
hard-core bit from a function g : {0, 1}` → {0, 1}` that is hard to compute on a random input, or to extract a
hard-core bit from a one-way function f : {0, 1}` → {0, 1}` that is hard to invert on a random output.

1.2.1 Functions that are hard to compute

Here the goal is to transform a non-Boolean function g that is hard to compute on a random input, into a
predicate gpred that is hard to compute on a random input. More precisely:

• Assumption: There is a non-Boolean function that is hard to compute with probability ρ.

Namely, a function g : {0, 1}` → {0, 1}` such that for every circuit C of size s,

Pr
x←U`

[C(x) = g(x)] ≤ ρ.3

• Conclusion: There is a predicate gpred : {0, 1}`′ → {0, 1} that is hard to compute with probability
1
2 + ε.

Namely, for every circuit C ′ of size s′,

Pr
x←U`′

[C ′(x) = gpred(x)] ≤ 1

2
+ ε.

• Requirements: The goal is to show that for every g, there exists a function gpred with as small an ε as
possible, without significant losses in the other parameters (meaning that s′ is not much smaller than s,
and `′ is not much larger than `).

The Goldreich-Levin theorem for this setting can be expressed as follows.

Theorem 1.7 (Goldreich-Levin for functions that are hard to compute [GL89]). For every function g :
{0, 1}` → {0, 1}`, define gpred : {0, 1}`′=2` → {0, 1} by gpred(x, r) = EncHad(x)r, and ρ = ε

2·LHad =
poly(ε). If for every circuit C of size s,

Pr
x←U`

[C(x) = g(x)] ≤ ρ,

then for every circuit C ′ of size s′ = s
qHad·poly(`)

= s · poly(ε`),

Pr
x←U2`

[C ′(x) = gpred(x)] ≤ 1

2
+ ε.

3We use U` to denote the uniform distribution on ` bits.

4

The Hadamard code can be replaced by any locally list-decodable code with list size L for decoding from
radius 1

2 − ε, with q queries for δ = 1/(2k). For such a code (assuming also that the local list-decoder can be
computed efficiently) one gets the same behavior. Specifically, if the initial function is sufficiently hard and
ρ = ε

2L , then the Boolean target function is hard to compute, up to 1
2 + ε for circuits of size roughly s′ = s/q.

Is it possible to improve the Goldreich-Levin theorem for ρ� 1/s? Suppose that we are given a function
g : {0, 1}` → {0, 1}` that is hard to compute for circuits of size s = poly(`), with success say ρ = 1/2

√
`.

When applying Theorem 1.7, we gain nothing compared to the case that ρ = 1/poly(`). In both cases, we
can obtain ε = 1/poly(`), but not smaller! (Since otherwise s′ = s ·poly(ε/`) is smaller than 1 and the result
is meaningless).

This is disappointing, as we may have expected to obtain ε ≈ ρ = 1/2
√
`, or at least, to gain over the

much weaker assumption that ρ = 1/poly(`). This leads to the following open problem:

Open problem 1.8 (Improve Goldreich-Levin for functions that are hard to compute). Suppose we are given
a function g : {0, 1}` → {0, 1}` such that circuits C of size s = poly(`) cannot compute g with success
ρ = 1/2

√
`. Is it possible to convert g into a predicate with hardness 1

2 + ε for ε = 1/`ω(1)?

This is not possible to achieve using the Hadamard code, because the number of queries is q ≥ 1/ε, and
Theorem 1.7 requires s ≥ s′ · q ≥ q ≥ 1/ε, which dictates that ε ≥ 1/s.

Note that when ρ is small, we can afford list-decodable codes with huge list sizes of L ≈ 1/ρ. Motivated
by this observation, we can ask the following question:

Is it possible to solve this open problem by substituting the Hadamard code with a better code?
Specifically, is it possible for local list-decoders to have q = 1

εo(1) if allowed to use huge lists of

size say 2
√
k, approaching the trivial bound 2k? (Note that in the Hadamard code, the list size

used is poly(1/ε) = poly(k) which is exponentially smaller).

We show, in Theorem 1.6, that it is impossible to solve the open problem by replacing the Hadamard code
with a different locally list-decodable code.

The natural next question is whether we can use other techniques (not necessarily local list-decoding) to
achieve the goal stated above. In this paper, we show that this cannot be done by black-box techniques:

Informal Theorem 1.9 (Black-box impossibility result for functions that are hard to compute). If ρ ≥ 1
2`/3

,
s = 2o(`) is larger than some fixed polynomial in `, and ε = 1

sω(1) , then there does not exist a map that
converts a function g into a function gpred together with a black-box reduction showing that gpred is a hard-
core predicate for g.

The parameters achieved in Theorem 1.9 rule out black-box proofs in which ε = 1
sω(1) , not only for

s = poly(`) and ρ = 2−
√
` (as in Open problem 1.8) but also for ρ = 2−Ω(`), and allowing much larger s as

long as s = 2o(`).
The precise statement of Theorem 1.9 is stated in Theorem 4.2, and the precise model is explained in

Section 4.1.
To the best of our knowledge, this is the first result of this kind, that shows black-box impossibility

results for Open problem 1.8. Moreover, we believe that the model that we introduce in Section 4.1 is very
general and captures all known black-box techniques. In particular, our model (which we view as a conceptual
contribution) allows the reduction to introduce nonuniformity when converting an adversary C ′ that breaks
gpred into an adversary C that breaks g.

5

1.2.2 Functions that are hard to invert

Here the goal is to transform a one-way function f into a new one-way function fnewOWF and a predicate
fpred such that it is hard to compute fpred(x) given fnewOWF(x). More precisely:

• Assumption: There is a one-way function that is hard to invert with probability ρ.

Namely, a function f : {0, 1}` → {0, 1}` such that for every circuit C of size s,

Pr
x←U`

[C(f(x)) ∈ f−1(f(x))] ≤ ρ.

• Conclusion: There is a one-way function fnewOWF : {0, 1}`′ → {0, 1}`′ , and a predicate fpred :
{0, 1}`′ → {0, 1}, such that it is hard to predict fpred(x) with advantage 1

2 + ε, when given access to
fnewOWF(x).

Namely, for every circuit C ′ of size s′,

Pr
x←U`′

[C ′(fnewOWF(x)) = fpred(x)] ≤ 1

2
+ ε.

• The goal is to show that for every f , there exist functions fnewOWF, fpred with as small ε as possible,
without significant losses in the other parameters (meaning that: s′ is not much smaller than s, and `′ is
not much larger than `).

The Goldreich-Levin theorem for this setting can be expressed as follows.

Theorem 1.10 (Goldreich-Levin for functions that are hard to invert). For a function f : {0, 1}` → {0, 1}`,
define fnewOWF : {0, 1}2` → {0, 1}2` by fnewOWF(x, r) = (f(x), r), fpred : {0, 1}2` → {0, 1} by
fpred(x, r) = EncHad(x)r, and ρ = ε

2·LHad = poly(ε). If for every circuit C of size s,

Pr
x←U`

[C(f(x)) ∈ f−1(f(x))] ≤ ρ,

then for every circuit C ′ of size s′ = s
qHad·poly(`)

= s · poly(ε`),

Pr
x←U2`

[C ′((fnewOWF(x))) = fpred(x)] ≤ 1

2
+ ε.

Remark 1.11. The problem of obtaining a hard-core predicate for one-way functions, is interesting only if an
unbounded adversary φ : {0, 1}`′ → {0, 1} can predict fpred(x) when given fnewOWF(x) as input. If this is
not required, then one can take `′ = `+ 1, fpred(x) = x1, and fnewOWF(x1, . . . , xn+1) = f(x2, . . . , xn+1).
However, this is trivial, and is not useful in applications. Therefore, when considering this problem, we will
assume that there exists such a φ : {0, 1}`′ → {0, 1}.

A natural example is the case where the original one-way function f and the constructed function fnewOWF

are one-way permutations. In fact, in the case that f, fnewOWF(x) are permutations, the setup of “functions
that are hard to invert” can be seen as a special case of the setup of functions that are “hard to compute” by
taking g = f−1, and gpred(y) = fpred((fnewOWF)−1(y)).

We point out that, in this setting, the circuit C ′ that is trying to invert f (that is, to compute g) has an
advantage over its counterpart in the setup of “functions that are hard to compute”: It can use the efficient
algorithm that computes the “forward direction” of f , when trying to invert f . In terms of g, this means that
the circuit C ′ can compute g−1 for free. This distinction is explained in Section 4.2.

6

Is it possible to improve the Goldreich-Levin theorem for ρ� 1/s? The same problem that we saw with
functions that are hard to compute, also shows up in the setup of functions that are hard to invert. Suppose
that we are given a function f : {0, 1}` → {0, 1}` that is hard to invert for circuits of size s = poly(`)

with success, say, ρ = 1/2
√
`. When applying Theorem 1.10, we gain nothing compared to the case that

ρ = 1/poly(`). In both cases, we can obtain ε = 1/poly(`), but not smaller! This is expressed in the next
open problem:

Open problem 1.12 (Improve Goldreich-Levin for functions that are hard to invert). If we are given a one-
way function f : {0, 1}` → {0, 1}` such that circuits C of size s = poly(`) cannot invert f with success
ρ = 1/2

√
`. Is it possible to obtain a hard-core predicate fpred with hardness 1

2 + ε for ε = 1/`ω(1) for some
choice of one-way function fnewOWF?

In this paper, we show that this cannot be done by black-box techniques. The formulation of Theorem
1.13 below, is very similar to that of Theorem 1.9 with some small modification in the parameters.

Informal Theorem 1.13 (Black-box impossibility result for functions that are hard to invert). If ρ ≥ 2−`/5,
s = 2o(`) is larger than some fixed polynomial in `, and ε = 1

sω(1) then there does not exist a map that
converts a function f into functions fnewOWF, fpred together with a black-box reduction showing that fpred

is a hard-core predicate for fnewOWF.

The precise statement of Theorem 1.13 is stated in Theorem 4.12, and the precise model is explained in
Section 4.2.

To the best of our knowledge, this is the first result of this kind, that shows black-box impossibility
results for open problem 1.12. Moreover, we believe that the model that we introduce in Section 4.2 is
very general, and captures all known black-box techniques. In particular, our model (which we view as a
conceptual contribution) allows the reduction to compute the easy direction of the function f , and to introduce
nonuniformity when converting an adversary C ′ that breaks fpred into an adversary C that breaks f .

1.3 Techniques

Our approach builds on earlier work for proving lower bounds on the number of queries of reductions for
hardness amplification [Vio06, SV10, GSV18]. In this section, we give a high level overview of the arguments
used to prove our main theorems.

1.3.1 Local list-decoders on random noisy codewords

Following [Vio06, SV10, GSV18], we will consider a scenario which we refer to as “random noisy code-
words” in which a uniformly chosen message m is encoded, and the encoding is corrupted by a binary sym-
metric channel.

Definition 1.14 (Binary symmetric channels). Let BSCn
p be the experiment in which a string Z ∈ {0, 1}n is

sampled, where Z = Z1, . . . , Zn is composed of i.i.d. bits, such that for every i ∈ [n], Pr[Zi = 1] = p.

Definition 1.15 (Random noisy codewords). Given a function Enc : {0, 1}k → {0, 1}n and p > 0 we
consider the following experiment (which we denote by RNSYEnc

p):

• A message m← {0, 1}k is chosen uniformly.

• A noise string z ← BSCn
p is chosen from a binary symmetric channel.

• We define w = Enc(m)⊕ z.

7

We use (m, z,w)← RNSYEnc
p to denote m, z,w which are sampled by this experiment. We omit Enc if it is

clear from the context.

Our goal is to prove lower bounds on the number of queries q of a (1
2 − ε, L, q, δ)-local list-decoder Dec

for a code Enc : {0, 1}k → {0, 1}n. For this purpose, we will consider the experiment RNSYp for the values
p = 1

2 − 2ε and p = 1
2 .

For p = 1
2−2ε, and (m, z,w)← RNSY 1

2
−ε, by a Chernoff bound, the Hamming weight of z is, with very

high probability, less than 1
2 − ε. This implies that dist(w,Enc(m)) ≤ 1

2 − ε, meaning that m ∈ ListEnc
1
2
−ε(w).

It follows that there must exist j ∈ [L] such that when given input j, and oracle access to w, Dec recovers the
message m.

For p = 1
2 , and (m, z,w) ← RNSY 1

2
, the string z is uniformly distributed and independent of m. This

means that w = Enc(m) ⊕ z is uniformly distributed and independent of m. Consequently, when Dec is
given oracle access to w, there is no information in w about the message m, and so, for every j ∈ [L], the
probability that Dec recovers m when given input j and oracle access to w is exponentially small.

Loosely speaking, this means that Dec can be used to distinguish BSCn
1
2
−2ε

from BSCn
1
2

. It is known that
distinguishing these two distributions requires many queries. We state this informally below, and a formal
statement appears in Lemma 2.2.

Informal Theorem 1.16. Any function T : {0, 1}q → {0, 1} that distinguishes BSCq
1
2
−2ε

from BSCq
1
2

with

advantage δ, must have q = Ω(log(1/δ)
ε2

).

Thus, in order to prove a tight lower bound of q = Ω(log(1/δ)
ε2

), it is sufficient to show how to convert
a (1

2 − ε, L, q, δ)-local list-decoder Dec, into a function T that distinguishes BSCq
1
2
−2ε

from BSCq
1
2

with

advantage δ. Note that we can allow T to be a “randomized procedure” that tosses coins, as by an averaging
argument, such a randomized procedure can be turned into a deterministic procedure.

1.3.2 Warmup: the case of unique decoding

Let us consider the case that L = 1 (that is unique decoding). We stress that this case is uninteresting, as by
the Plotkin bound, it is impossible for nontrivial codes to be uniquely decodable for ε < 1

4 , and so, there are
no local decoders for L = 1 and ε < 1

4 , regardless of the number of queries. Nevertheless, this case will serve
as a warmup for the approach we use later.

Our goal is to convert Dec into a randomized procedure T : {0, 1}q → {0, 1} that distinguishes BSCq
1
2
−2ε

from BSCq
1
2

. The procedure T will work as follows: On input x ← {0, 1}q, we choose m ← {0, 1}k, and

i ← [k]. We then run Dec on input i, and when Dec makes its t’th query `t ∈ [n] to the oracle, we answer it
by Enc(m)`t⊕xt. That is, we answer as if Dec is run with input i and oracle access to w = Enc(m)⊕z, for z
chosen from a binary symmetric channel. The final output of T is whether Dec reproducedmi. This procedure
T simulates Decw(i), and therefore distinguishes BSCq

1
2
−2ε

from BSCq
1
2

, implying the desired lower bound.

Both Theorem 1.5 and Theorem 1.6 will follow by modifying the basic approach to handle L > 1. In
the remainder of this section, we give a high level overview of the methods that we use. The formal section
of this paper does not build on this high level overview, and readers can skip this high level overview and go
directly to the formal section if they wish.

8

1.3.3 Reducing to the coin problem for AC0

We start with explaining the approach of proving Theorem 1.6. Consider a randomized procedure C that on
input z ∈ {0, 1}n, chooses m ← {0, 1}k and prepares w = Enc(m) ⊕ z. The procedure then computes
Decw(i, j) for all choices of i ∈ [k] and j ∈ [L] and accepts if there exists a j ∈ [L] such that with index
j, Decw recovers m. By the same rationale as in Section 1.3.2, C distinguishes BSCn

1
2
−2ε

from BSCn
1
2

. This
does not seem helpful, because C receives n input bits, and we cannot use Theorem 1.16 to get a lower bound
on q.

Inspired by a lower bound on the size of nondeterministic reductions for hardness amplification due to
Applebaum et al. [AASY16], we make the following observation: The procedure C can be seen as k · L
computations (one for each choice of i ∈ [k] and j ∈ [L]) such that:

• These k · L computations can be run in parallel.

• Once these computations are made, the final answer C(z) is computed by a constant-depth circuit.

• Each of the k ·L computations makes q queries into z, and therefore can be simulated by a sizeO(q ·2q)
circuit of depth 2.

Overall, this means that we can implement C by a circuit of size s = poly(k, L, 2q) and constant depth. (In
fact, a careful implementation gives depth 3).

This is useful because there are lower bounds showing that small constant-depth circuits cannot solve the
“coin problem”. Specifically, by the results of Cohen, Ganor and Raz [CGR14] circuits of size s and depth d
cannot distinguish BSCn

1
2
−2ε

from BSCn
1
2

with constant advantage, unless s ≥ exp(Ω(1
εd−1)).4 This gives the

bound stated in Theorem 1.6.
We find it surprising that an information theoretic lower bound on the number of queries of local list-

decoders is proven by considering concepts like constant-depth circuits from circuit complexity.

Extending the argument to lower bounds on hard-core predicates. It turns out that this argument is quite
versatile, and this is the approach that we use to prove Theorems 1.9 and 1.13. Loosely speaking, in these
theorems, we want to prove a lower bound on the number of queries made by a reduction that, when receiving
oracle access to an adversary that breaks the hard-core predicate, is able to compute (or invert) the original
function too well. Such lower bounds imply that such reductions do not produce small circuits when used in
black-box proofs for hard-core predicates.

We will prove such lower bounds by showing that a reduction that makes q queries can be used to construct
a circuit of size s ≈ 2q and constant depth that solves the coin problem. Interestingly, this argument crucially
relies on the fact that constant-depth circuits can distinguish BSCn

ε from BSCn
2ε with size poly(n/ε) which

follows from the classical results of Ajtai on constant depth circuits for approximate majority [Ajt83].5

1.3.4 Conditioning on a good j

A disadvantage of the approach based on the coin problem is that at best, it can give lower bounds of q =

Ω(1/
√
ε), and cannot give tight lower bounds of the form q = Ω(log(1/δ)

ε2
). In order to achieve such a bound

4These results of [CGR14] improve upon earlier work of Shaltiel and Viola [SV10] that gave slightly worse bound. These results
are tight as shown by Limaye et al. [LSS+19] (that also extended the lower bound to hold for circuits that are also allowed to use
parity gates).

5The proof of Theorem 1.13 uses an additional versatility of the argument (which we express in the terminology of codes): The
argument works even if the individual procedures that are run in parallel are allowed to have some limited access to the messagem, as
long as this does not enable them to recover m. This property is used to handle reductions in a cryptographic setup, where reductions
have access to the easy direction of a one-way function.

9

(as is the case in Theorem 1.5) we will try to reduce to Theorem 1.16 which does give a tight bound in case ε
is not too small.

Our approach builds on the earlier work of Grinberg, Shaltiel and Viola [GSV18] that we surveyed in
Section 1.1.1. When given a (1

2 − ε, L, q, δ)-local list-decoder Dec, we say that an index j ∈ [L] is decoding,
if in the experiment (m, z,w) ∈ RNSY 1

2
−2ε, when Dec is given oracle access to w and input j, then with

probability 1− 10δ over i ∈ [k], we have that Decw(i, j) recovers mi.
We use a careful averaging argument to show that there exists an index j′ ∈ [L], and a fixed choice of the

random coins of Dec, such that j′ is decoding with probability at least Ω(1/L). We then consider the experi-
ment RNSY′1

2
−2ε

in which we choose (m, z,w)← RNSY 1
2
−2ε conditioned on the event {j′ is decoding}.

We have made progress, because in the experiment RNSY′1
2
−2ε

there exists a unique j′ that is decoding,

and so, when we implement the strategy explained in Section 1.3.2 we only need to consider this single j′,
which intuitively means that our scenario is similar to the warmup scenario of unique decoding described in
Section 1.3.2.

The catch is that when choosing (m, z,w) ← RNSY′1
2
−2ε

, we no longer have that z is distributed like

BSCn
1
2
−2ε

(as the distribution of z may be skewed by conditioning on the event that j′ is decoding).
Shaltiel and Viola [SV10] (and later work [GSV18, Sha20]) developed tools to handle this scenario.

Loosely speaking, using these tools, it is possible to show that a large number of messages m are “useful” in
the sense that there exists an event Am such that if we consider (m, z,w) that are chosen from RNSY′1

2
−2ε

conditioned on Am, then there exists a subset B(m) ⊆ [n] of small size b, such that zB(m) is fixed, and
z[n]\B(m) is distributed like BSCn−b

1
2
−2ε

.

If the number of possible choices for sets B(m) is small, then by the pigeon-hole principle, there exists a
fixed choiceB that is good for a large number of useful messagesm. This can be used to imitate the argument
we used in the warmup, and prove a lower bound.6

Extending the argument to the case of small rate. A difficulty, that prevented [GSV18] from allowing
length as large as n = 2k, is that B(m) is a subset of [n], and so, even if b = |B| = 1, the number of possible
choices for such sets is at least n. For the pigeon-hole principle argument above, we need that the number
of messages (that is 2k) is much larger than the number of possible choices for B(m) (which is at least n).
This means that one can only handle n which is sufficiently smaller than 2k, and this approach cannot apply
to codes with small rate (such as the Hadamard code).

We show how to solve this problem, and prove lower bounds for small rate codes. From a high level, our
approach can be explained as follows: We consider the distribution of B(m) = {Y1(m) < . . . < Yb(m)} for
a uniformly chosen useful m. We first show that if all the Yj’s have large min-entropy, then it is possible to
prove a lower bound on q by reducing to Theorem 1.16 (the details of this are explained in the actual proof).

If on the other hand, one of the Yj’s has low min-entropy, then we will restrict our attention to a subset of
useful messages on which Yj is fixed. Loosely speaking, this reduces b by one, while not reducing the number
of useful messages by too much (because the low min-entropy condition says that the amount of information
that Yj carries on m is small). In this trench warfare, in every iteration, we lose a fraction of useful messages,
for the sake of decreasing b by one. Thus, eventually, we either reach the situation that all the Yj’s have large
min-entropy, in which case we are done, or we reach the situation where B is fixed for all messages which we
can also handle by the above.

We can withstand the losses and eventually win if ε is sufficiently larger than 1/
√
k.

6Loosely speaking, this is because for good messages, in the conditioned experiment, z is distributed like BSC 1
2
−2ε (except that

some bits of z are fixed as a function of m). Furthermore, as there are many good messages, the local list-decoder does not have
enough information to correctly recover the message when given oracle access to Enc(m)⊕ BSCn1

2
= BSCn1

2
.

10

1.4 More related work

Lower bounds on the number of queries of local decoders for uniquely decodable codes. In this paper,
we prove lower bounds on the number of queries of local list-decoders. There is a long line of work that is
concerned with proving lower bounds on the number of queries of uniquely decodable codes. As we have
explained in Section 1.1.1, the parameter regime considered in the setting of uniquely decodable codes is very
different than the parameter regime we consider here [Yek12].

Lower bounds on nonuniform black-box reductions for hardness amplification. A problem that is
closely related to proving lower bounds on the number of queries of local list-decoders is the problem of
proving lower bounds on the number of queries of nonuniform black-box reductions for hardness amplifica-
tion. We have already discussed this line of work [Vio06, SV10, AS11, GSV18, Sha20] in Section 1.1.1.

Lower bounds on such reductions can be translated to lower bounds on local list-decoders (as long as
the number of coins tossed by the local list-decoders is small). We remark that for the purpose of hardness
amplification, it does not make sense to take codes with small rate (namely, codes with n = 2k

Ω(1)
). The focus

of Theorem 1.5 is to handle such codes.
Additionally, when using codes for hardness amplification, it does not make sense to take ε < 1/k (or

even ε < 1/
√
k). In contrast, the parameter regime considered in Theorem 1.6 focuses on small ε.

Other improvements of the Goldreich-Levin theorem. In this paper, we are interested in whether the
Goldreich-Levin theorem can be improved. Specifically, we are interested in improvements where, when
the original function has hardness ρ = 2−Ω(`) for polynomial size circuits, then the hard-core predicate has
hardness 1

2 + ε for ε = `−ω(1). We remark that there are other aspects of the Goldreich-Levin theorem that
one may want to improve.

• When given an initial non-Boolean function on ` bits, the Goldreich-Levin theorem produces a hard-
core predicate on `′ = 2` bits. It is possible to make `′ smaller (specifically, `′ = ` + O(log(1/ε)) by
using other locally list-decodable codes instead of Hadamard. Our limitations apply to any construction
(even one that is not based on codes) and in particular also for such improvements.

• It is sometimes desirable to produce many hard-core bits (instead of the single hard-core bit) that is
obtained by a hard-core predicate. This can be achieved by using “extractor codes” with a suitable local
list-decoding algorithm. The reader is referred to [TZ04] for more details. Once again, our limitations
obviously apply also for the case of producing many hard-core bits.

Organization of the paper

Our results on local list-decoders (and the proofs of Theorem 1.5 and Theorem 1.6) are presented in Section
3. Our results on hard-core predicates appear in Section 4 (which includes a precise description of the model
and formal restatements of Theorem 1.9 and Theorem 1.13).

2 Preliminaries

Relative Hamming weight and distance: For a string x ∈ {0, 1}n, we use weight(x) to denote the relative
Hamming weight of x, namely weight(x) = | {i : xi = 1} |.

For two strings x, y ∈ {0, 1}n we use dist(x, y) to denote the relative Hamming distance between x and
y, namely dist(x, y) = | {i ∈ [n] : xi 6= yi} |/n.

11

2.1 Random variables

Notation for random variables: We use Un to denote the uniform distribution on {0, 1}n. Given a dis-
tribution D, we use x ← D to denote the experiment in which x is chosen according to D. For a set S
we also use x ← S to denote the experiment in which x is chosen uniformly from S. When we write
x1 ← D1, x2 ← D2 we mean that the two experiments x1 ← D1 and x2 ← D2 are independent. If X is
a random variable, and D is a distribution, then expressions of the form Pry←D[·] where the event involves
both X and y, are in a probability space where the experiments producing X and y ← D are independent.

Min-entropy: For a discrete random variable X over {0, 1}n we define:

H∞(X) = min
x∈{0,1}n

1

log Pr[X = x]
.

We will also use the following lemma.

Lemma 2.1. Suppose that M is a distribution over {0, 1}k that is uniform over a subset S of size 2r for
r ≥ k − k0.99. If k is sufficiently large, then for every function D : [k]→ {0, 1}, we have that:

Pr
m←M,i←[k]

[D(i) = mi] ≤ 0.5001.

The proof of Lemma 2.1 appears in Appendix A.

2.2 The number of queries needed to distinguish BSCn
1
2
−ε from BSCn

1
2

The following lemma by Shaltiel and Viola [SV10] is a formal restatement of Informal Theorem 1.16.

Lemma 2.2 ([Vio06, SV10]). For every ε, δ > 0, such that δ < 0.4, if T : {0, 1}q → {0, 1} satisfies:

• Pr[T (BSCq
1
2
−ε) = 1] ≥ 1− δ.

• Pr[T (BSCq
1
2

) = 1] ≤ 0.51.

Then, q = Ω
(

log 1
δ

ε2

)
.

2.3 Constant depth circuits, approximate majority, and the coin problem

As is standard in complexity theory, when discussing circuits, we consider circuits over the standard set of
gates {AND,OR,NOT}. We use the convention that the size of a circuit is the the number of gates and wires.
With this convention, a circuit C that on input x ∈ {0, 1}n, outputs x1, has size O(1). If we mention the
depth of the circuit, then we mean that AND,OR gates have unbounded fan-in, and otherwise these gates
have fan-in 2.

Constant depth circuits for approximate majority: We use the following classical result by Ajtai showing
that constant depth circuits can compute approximate majority:

Theorem 2.3 ([Ajt83]). There exists a constant c such that for every two constants 0 ≤ p < P < 1, and
every sufficiently large n, there exists a circuit C of size nc and depth c such that for every x ∈ {0, 1}n:

• If weight(x) ≥ P then C(x) = 1.

• if weight(x) ≤ p then C(x) = 0.

12

Lower bounds for the coin problem: We use lower bounds on the size of constant depth circuits for the
“coin problem”. A sequence of works by [SV10, Aar10, CGR14, LSS+19] gives such lower bounds, and
the statement below is due to Aaronson [Aar10] and Cohen, Ganor and Raz [CGR14] (and was improved by
Limaye et al. [LSS+19] to also hold for circuits that are allowed to use PARITY gates of unbounded fan-in).

Theorem 2.4 ([Aar10, CGR14, LSS+19]). Suppose C : {0, 1}n → {0, 1} is a circuit of depth d satisfying:

• Prz←BSCn1
2−ε

[C(z) = 1] ≥ 0.9,

• Prz←BSCn1
2 +ε

[C(z) = 0] ≤ 0.1.

Then, C must have size at least exp(Ω
(
d · (1/ε)

1
d−1

)
).

For our purposes, we prefer to replace the distributions BSCn
1
2
−ε and BSCn

1
2

+ε
, by BSCn

1
2
−ε and BSCn

1
2

(as
is the case in Lemma 2.2). The next corollary shows that the results of Theorem 2.4 imply a similar bound
when comparing BSCn

1
2
−ε to BSCn

1
2

.7

Corollary 2.5. Suppose C : {0, 1}n → {0, 1} is a circuit of depth d satisfying:

• Prz←BSCn1
2−ε

[C(z) = 1] ≥ 0.99,

• Prz←BSCn1
2

[C(z) = 0] ≤ 0.01.

Then, C must have size at least exp(Ω
(
d · (1/ε)

1
d−1

)
).

For completeness, we show that Corollary 2.5 follows from Theorem 2.4 in Appendix B.

3 Query complexity lower bounds for local list-decoding

In this section we prove Theorem 1.5 and Theorem 1.6 and provide lower bounds on the query complexity
of local list-decoders. In Section 3.1, we introduce a relaxed concept that we call “approximate local list-
decoders on noisy random codewords” (ARLLD) in which the local list-decoder is only required to recover
a random message that was corrupted by a binary symmetric channel (meaning that the original message
appears in the list of messages that are locally computed by the local list-decoder).

We then use a careful averaging argument to show that any local list-decoder (LLD) can be converted into
an ARLLD with roughly the same parameters, and furthermore, the obtained ARLLD is deterministic.

This means that when proving Theorem 1.5 and Theorem 1.6 it is sufficient to consider ARLLDs, and
these proofs appear in Sections 3.2 and 3.3 respectively.

3.1 Definition of approximate local list-decoders on noisy random codewords

Our goal is to prove lower bounds on the number of queries q of (1
2 − ε, L, q, δ)-local list-decoders. We will

show that it is sufficient to consider local list-decoders that need to perform an easier task. More specifically,
we relax the task of a local list-decoder in the following ways:

7We remark that bounds for the latter choice of distributions were proven by Shaltiel and Viola [SV10], but we prefer to rely on
the subsequent bounds of [Aar10, CGR14, LSS+19], which are tighter and lead to a larger constant in the exponent of 1

ε
in Theorem

1.6.

13

• The local list-decoder does not need to succeed on every w ∈ {0, 1}n, but only with not too small
probability over a “random noisy codeword” which is sampled by encoding a uniformly chosen message
m, and hitting Enc(m) with the noise generated by a binary symmetric channel, to obtain a word w. It
is required that with not too small probability over the choice of the message m and the random noise,
there exists a j such that the local decoder with oracle access to w, and input j, recovers m.

• The local decoder is approximate and is not required to recover mi correctly on every i ∈ [k]. Instead,
it is allowed to err on a δ fraction of i’s.

This makes the task of the decoder easier. It turns out that with this relaxation, random coins are not very
helpful to the local list-decoder, and so, it is sufficient to consider deterministic local list-decoders (which do
not have access to random coins). This is captured in the following definition.

Definition 3.1 (Approximate local list-decoder on noisy random codewords). Let Enc : {0, 1}k → {0, 1}n
be a function, and ε < 1

4 . A (1
2 − ε, L, q, δ)-approximate RNSY local list-decoder (ARLLD) for Enc is a

deterministic oracle procedure Dec(·) that receives oracle access to a word w ∈ {0, 1}n, and makes at most
q calls to the oracle. The procedure Dec also receives inputs:

• i ∈ [k] : The index of the symbol that it needs to decode.

• j ∈ [L] : An index to the list.

It is required that, with probability at least 1/3 over choosing (m, z,w) ← RNSYEnc
1
2
−2ε

, there exists j ∈ [L]

such that
Pr
i←[k]

[Decw(i, j) = mi] ≥ 1− δ,

We stress again that Dec is deterministic and the probability in Definition 3.1 is taken over the choice of
a uniform random coordinate i ∈ [k].

The following proposition shows that in order to prove lower bounds on local list-decoders (LLDs, Defi-
nition 1.3), it is sufficient to prove lower bounds on approximate RNSY local list-decoders (ARLLDs, Defi-
nition 3.1).

Proposition 3.2 (LLD implies ARLLD). There exists a universal constant a > 1 such that for every a ·
√

1
n ≤

ε < 1
4 , if there exists an (1

2 − ε, L, q, δ)-local list-decoder for a function Enc : {0, 1}k → {0, 1}n then there
also exists an (1

2 − ε, L, q, 10 · δ)-approximate RNSY local list-decoder for Enc.

Proof. Within this proof, in order to avoid clutter, we use RNSY to denote RNSYEnc
1
2
−2ε

. Let Dec denote an

LLD for Enc. For (m, z,w) ← RNSY, by a Chernoff bound, for γ = 2−Ω(ε2·n), with probability 1 − γ, we
have that dist(Enc(m), w) ≤ 1

2 − ε, meaning that m ∈ ListEnc
1
2
−ε(w). By the definition of LLD, this gives that

whenever this occurs, with probability at least 2/3 over the choice of rshared, there exists j ∈ [L] such that
the procedure Pw,j,rshared(i, r) = Decw(i, j, rshared, r) locally computes m with error δ.

Let E1 be the experiment in which (m, z,w)← RNSY and let rshared be an independent uniform string.
It follows that:

Pr
E1

[∃j ∈ [L] : Pw,j,rshared locally computes m with error δ] ≥ 2

3
− γ.

By averaging, there exists a fixed string r̂shared such that:

Pr
RNSY

[∃j ∈ [L] : Pw,j,r̂shared locally computes m with error δ] ≥ 2

3
− γ.

14

Let S denote the set of triplets (m, z,w) in the support of RNSY for which the event above occurs. For
every such triplet, we have that there exists a j ∈ [L] for which Pw,j,r̂shared locally computes m with error δ.
Let f be a mapping that given a triplet (m, z,w) ∈ S, produces such a j ∈ [L]. This means that:

Pr
RNSY

[Pw,f((m,z,w)),r̂shared locally computes m with error δ] ≥ 2

3
− γ.

Let RNSY′ be the experiment in which (m, z,w) ← RNSY |(m, z,w) ∈ S. Namely, we choose
(m, z,w) from the experiment RNSY, conditioned on the event that (m, z,w) ∈ S.

Let E2 be the experiment in which we choose independently a random string r, i← [k] and (m, z,w)←
RNSY′. We obtain that:

Pr
E2

[Decw(i, f((m, z,w)), r̂shared, r) = mi] ≥ 1− δ,

since Pw,f((m,z,w)),r̂shared computes correctly each coordinate mi with probability at least 1 − δ over the
choice of r.

By averaging, there exists a fixed string r̂ such that:

Pr
(m,z,w)←RNSY′,i←[k]

[Decw(i, f((m, z,w)), r̂shared, r̂) = mi] ≥ 1− δ.

By Markov’s inequality:

Pr
(m,z,w)←RNSY′

[
Pr
i←[k]

[Decw(i, f((m, z,w)), r̂shared, r̂) 6= mi] ≥ 10δ

]
≤ 1

10
.

Let Dec
w

(i, j) = Decw(i, j, r̂shared, r̂). We obtain that:

Pr
(m,z,w)←RNSY′

[Pr
i←[k]

[Dec
w

(i, f((m, z,w))) = mi] > 1− 10δ] >
9

10
.

Which gives that:

Pr
(m,z,w)←RNSY

[
Pr
i←[k]

[Dec
w

(i, f((m, z,w))) = mi] > 1− 10δ

]
>

(
2

3
− γ
)
· 9

10
≥ 1

3
,

where the second inequality follows because by our requirements on ε, we can choose a so that 2/3− γ > 1
2 .

Thus, the oracle procedure Dec
(·) is a (1

2 − ε, L, q, 10 · δ)-ARLLD as required.

By Proposition 3.2 in order to prove our main theorems on local list-decoders, it is sufficient to prove
them for approximate local list-decoders.

3.2 Proof of Theorem 1.5

We use the following definition.

Definition 3.3. Given a string w ∈ {0, 1}n, a subset of coordinates B = {h1 < . . . < hb} ⊆ [n] of size b,
and a string v ∈ {0, 1}B , we let FixB→v(w) ∈ {0, 1}n denote the string that is obtained from w by fixing the
bits in B to the corresponding values in v. That is,

(FixB→v(w))` =

{
v(hi), ∃i s.t. ` = hi
w`, ` 6∈ B

15

The lower bound will follow from the following lemma.

Lemma 3.4. There exists a universal constant ν > 0 such that the following holds for any L ≤ 2k
0.9

,
ε, δ ≥ k−ν , and q ≤ log(1/δ)

ε2
. Let Dec be a (1

2 − ε, q, L, δ)-ARLLD for Enc : {0, 1}k → {0, 1}n. Then there
exist m′ ∈ {0, 1}k, i′ ∈ [k], j′ ∈ [L], a subset B ⊆ [n], and a string v ∈ {0, 1}B such that:

1. Prz←BSCn1
2−2ε

[
DecFixB→v(Enc(m′)⊕z)(i′, j′) = m′i′

]
≥ 1− 200δ.

2. Prz←BSCn1
2

[
DecFixB→v(Enc(m′)⊕z)(i′, j′) = m′i′

]
≤ 0.51.

Proof of Theorem 1.5. Consider a (1
2 − ε, L, q, δ)-LLD for Enc : {0, 1}k → {0, 1}n. By assumption that

δ < 1
3 , we can further assume that δ < 0.0002, since, if otherwise, we can get to the desired error probability

by amplification, at the loss of only a constant factor in the query complexity. We may further assume that
q ≤ log(1/δ)

ε2
, otherwise we are done.

Applying Proposition 3.2, we get that there exists a (1
2 − ε, L, q, δ

′)-ARLLD for Enc, where δ′ < 0.002.
Applying Lemma 3.4 to this decoder, we can see that Dec, when given oracle access to FixB→v(Enc(m′)⊕z)
and inputs i′, j′ makes q queries and outputsmi′ , (1) with probability at least 1−200δ′ = 0.6 if z ← BSCn

1
2
−2ε

and (2) with probability at most 0.51 if z ← BSCn
1
2

. Finally, applying Lemma 2.2 here, completes the proof
of Theorem 1.5.

We will prove Lemma 3.4 using the probabilistic method. The main technical part of the proof is the
following lemma.

Lemma 3.5. There exists a universal constant ν > 0 such that the following holds for any L ≤ 2k
0.9

,
ε, δ ≥ k−ν , and q ≤ log(1/δ)

ε2
. Suppose that Dec is a (1

2 − ε, q, L, δ)-ARLLD for Enc : {0, 1}k → {0, 1}n.
Then there exist:

• j′ ∈ [L],

• Functions B, v that given m ∈ {0, 1}k produce a set B(m) ⊆ [n] of size b = O(q·logL
δ) and v(m) ∈

{0, 1}B(m), respectively,

• A distribution MU over {0, 1}k,

such that if we use WBVp to denote the experiment in which:

• A message m ∈ {0, 1}k is chosen by m← MU.

• A noise string z is chosen by z ← BSCn
p .

• A word w is obtained by FixB(m)→v(m)(Enc(m)⊕ z).

We have that:

1. Pr(m,z,w)←WBV 1
2−2ε

,i←[k][Decw(i, j′) = mi] ≥ 1− 2δ.

2. Pr(m,z,w)←WBV 1
2
,i←[k][Decw(i, j′) = mi] ≤ 0.501.

Lemma 3.4 follows from Lemma 3.5 by a Markov argument as follows.

16

Proof of Lemma 3.4. By applying Markov’s inequality to the first and second conditions in Lemma 3.5, we
have:

Pr
m←MU,i←[k]

 Pr
z←BSCn1

2−2ε

[DecFixB(m)→v(m)(Enc(m)⊕z)(i, j′) 6= mi] > 200δ

 < 1

100
,

and

Pr
m←MU,i←[k]

 Pr
z←BSCn1

2

[DecFixB(m)→v(m)(Enc(m)⊕z)(i, j′) = mi] > 0.51

 < 0.501

0.51
< 0.985.

Hence, by the union bound, it follows that there exists m′ ∈ {0, 1}k, i′ ∈ [k] such that:

Pr
z←BSCn1

2−2ε

[DecFixB(m′)→v(m′)(Enc(m′)⊕z)(i′, j′) = m′i′] ≥ 1− 200δ,

Pr
z←BSCn1

2

[DecFixB(m′)→v(m′)(Enc(m′)⊕z)(i′, j′) = m′i′] ≤ 0.51.

Lemma 3.4 follows.

3.2.1 Proof of the first item of Lemma 3.5

We are given a (1
2 − ε, q, L, δ)-ARLLD Dec for Enc : {0, 1}k → {0, 1}n. To avoid clutter, we will omit Enc

in RNSYEnc
p in this section. We start with a couple of useful definitions.

Definition 3.6. We say that an element j ∈ [L] is decoding for m,w if

Pr
i←[k]

[Decw(i, j) = mi] ≥ 1− δ.

The definition of ARLLD says that with probability at least 1/3 over choosing (m, z,w)← RNSY 1
2
−2ε,

there exists a j ∈ [L] that is decoding for m,w. By averaging over the L choices of j, it follows that, there
exists a j′ ∈ [L] such that with probability 1/(3L) over choosing (m, z,w) ← RNSY 1

2
−2ε, this fixed j′ is

decoding for m,w. This is stated in the next claim.

Claim 3.7. There exists j′ ∈ [L] such that with probability at least 1/(3L) over choosing (m, z,w) ←
RNSY 1

2
−2ε, j

′ is decoding for m,w.

Definition 3.8. We say that a message m ∈ {0, 1}k is useful if

Pr
z←BSCn1

2−2ε

[j′ is decoding for m,Enc(m)⊕ z] ≥ 1

6L
.

It follows that:

Claim 3.9. There are at least 2k/(6L) useful messages.

17

Proof. Otherwise, when choosing m← {0, 1}k, z ← BSCn
1
2
−2ε

and setting w = Enc(m)⊕ z (as is done for

(m, z,w)← RNSY 1
2
−2ε):

Pr[j′ is decoding for m,w] ≤ Pr[m is useful] + Pr[j′ is decoding for m,w|m is not useful]

<
1

6L
+

1

6L
=

1

3L
,

which contradicts Claim 3.7.

Definition 3.10. Given a string w ∈ {0, 1}n and a set B ⊆ [n], we denote by w(B) ∈ {0, 1}B , the substring
of w restricted to the coordinates in B.

Definition 3.11. For a random variable W over {0, 1}n, a set B ⊆ [n] and v ∈ {0, 1}B , such that Pr[Wh =
v(h) ∀h ∈ B] > 0, we define the probability distribution CondB→v(W) to be (W |Wh = v(h) ∀h ∈ B).

Remark 3.12. For a random variable W over {0, 1}n, it is important to distinguish FixB→v(W) from
CondB→v(W). The former means that we sample w ← W and replace the content of w in the indices
in B by the corresponding values taken from v. The latter is only defined if W is a random variable for which
the event {Wh = v(h) ∀h ∈ B} can occur, and for such a variable, CondB→v(W) is obtained by condition-
ing the random variable W on the event {Wh = v(h) ∀h ∈ B}. In particular, this conditioning may mean
that when restricting CondB→v(W) and W to indices that are not in B, we may get different distributions.
This is in contrast to FixB→v(W) where by definition, restricting FixB→v(W) and W to indices that are not
in B, gives the same distribution.

A useful observation is that if W is a sequence of n independent bit variables, then for every B, v,
CondB→v(W) = FixB→v(W).

We shall use the following lemma from [Sha20], which improves a similar lemma (with more conditions)
that was proven in [GSV18].

Lemma 3.13 ([Sha20]). Let W be a probability distribution over {0, 1}n, let A ⊆ {0, 1}n be an event such
that Pr[W ∈ A] ≥ 2−a, and let W ′ = (W |W ∈ A). For every η > 0, there exists a set B ⊆ [n] of size
b = O(qa/η), and v ∈ {0, 1}B such that for every oracle procedure D· that makes q queries:

|Pr[DCondB→v(W) = 1]− Pr[DCondB→v(W ′) = 1]| ≤ η.

We now explain why this lemma is useful. Note that if we start with some distribution W over {0, 1}n,
then after conditioning on the event {W ∈ A}, the bits in the obtained distribution W ′ = (W ∈ A) may
become correlated. The Lemma says that there exists a set B ⊆ [n] and v ∈ {0, 1}B such that if we further
condition bothW andW ′ on the event {(W |Wh = v(h) ∀h ∈ B)}, to obtain the distributions CondB→v(W)
and CondB→v(W

′), then these two distributions are “similar” in the sense that a procedure D that makes few
oracle calls, cannot significantly distinguish between them.

This is useful because ifW = BSCn
p , thenW is a sequence of independent bits, and so, CondB→v(W) =

FixB→v(W). Namely, a distribution in which the bits inB are fixed, and the bits outside ofB are independent
and distributed like BSCn−b

p . Loosely speaking, this means that as long as we do not mind to condition on the
event {(W |Wh = v(h) ∀h ∈ B)}, then in order to understand how D behaves when given oracle to W ′ it is
sufficient to understand how it behaves when given oracle access to W .

Definition 3.14. For a message m we denote by NSY(m) the distribution over {0, 1}n obtained by choosing
z ← BSCn

1
2
−2ε

, and setting w = Enc(m) ⊕ z. We use NSY′(m) to denote the distribution in which w ←
NSY(m) conditioned on the event {j′ is decoding for m,w}.

18

Using the above Lemma 3.13 we obtain the following.

Claim 3.15. For every useful m ∈ {0, 1}k there exist a set B(m) ⊆ [n] of size b = O(q · (logL)/δ), and
v(m) ∈ {0, 1}B(m) such that for every i ∈ [k]:

|Pr[DecCondB(m)→v(m)(NSY(m))(i, j′) = 1]− Pr[DecCondB(m)→v(m)(NSY′(m))(i, j′) = 1]| ≤ δ.

Proof. Apply Lemma 3.13 with W being the distribution NSY(m), A being the event that j′ is decoding for
m,w, where w ← NSY(m), and D = Dec(·)(i, j′), for any i ∈ [k]. Note that indeed, under this setting we
have that

Pr[W ∈ A] = Pr
z←BSCn1

2−2ε

[j′ is decoding for m,Enc(m)⊕ z] ≥ 1

6L
,

by assumption that m is useful, and W ′ = NSY′(m).

Next observe that by the definition of usefulness, we have that:

Claim 3.16. For every useful m ∈ {0, 1}k,

Pr
i←[k]

[DecCondB(m)→v(m)(NSY′(m))(i, j′) = mi] ≥ 1− δ.

By Claim 3.15 for every fixed i, Dec(·)(i, j′) cannot distinguish between the oracles in Claim 3.15 with
advantage larger than δ. It follows that it cannot do this when i← [k] is chosen at random, which gives:

Claim 3.17. For every useful m ∈ {0, 1}k,

Pr
i←[k]

[DecCondB(m)→v(m)(NSY(m))(i, j′) = mi] ≥ 1− 2 · δ.

Moreover, by definition NSY(m) is composed of n independent bit random variables, and so,

CondB(m)→v(m)(NSY(m)) = FixB(m)→v(m)(NSY(m)).

As Claim 3.17 is true for every useful m, it is also true for every probability distribution MU over useful
messages m. This is stated below.

Claim 3.18. For any distribution MU over useful messages,

Pr
m←MU,i←[k]

[DecFixB(m)→v(m)(NSY(M))(i, j′) = Mi] ≥ 1− 2 · δ.

Let MU denote the uniform distribution over useful messages. Note that for any choice of distribution
MU, the experiment in which we choose (m, z,w)←WBV 1

2
−2ε and consider the pair (m,w) is by definition

identical to the experiment in which we choose m← MU and set w = FixB(m)→v(m)(NSY(m)).
It follows that for our choices of j′, B(·), v(·), every distribution MU over useful messages satisfies the

first item of Lemma 3.5. This is summarized in the claim below.

Claim 3.19. There exist:

• j′ ∈ [L],

• Functions B, v that given m ∈ {0, 1}k produce a set B(m) ⊆ [n] of size b = O(q·logL
δ) and v(m) ∈

{0, 1}B(m), respectively,

such that for every distribution MU over useful messages,

Pr
(m,z,w)←WBV 1

2−2ε
,i←[k]

[Decw(i, j′) = mi] ≥ 1− 2δ.

19

3.2.2 Proof of the second item of Lemma 3.5

Let j′, b, B(·), v(·) be as in Claim 3.19. In order to complete the proof of Lemma 3.5 we need to show that
for these choices, there exists a distribution MU over useful messages such that:

Pr
(m,z,w)←WBV 1

2
,i←[k]

[Decw(i, j′) = mi] ≤ 0.501.

For p = 1
2 , BSCn

p is a uniformly chosen string of length n. It follows that for every m ∈ {0, 1}k, the
distributions Enc(m)⊕ BSCn

1
2

and BSCn
1
2

are identical (as the uniform string BSCn
1
2

masks out Enc(m)).

This means that for every choice of distribution MU, the pair (m,w)←WBV 1
2

is distributed exactly like
a pair (m,FixB(m)→v(m)(z)) where m← MU, z ← BSCn

1
2

. It follows that in order to complete the proof of
Lemma 3.5 it is sufficient to prove the following lemma:

Lemma 3.20. There exists a universal constant ν > 0 such that the following holds for any L ≤ 2k
0.9

,
ε, δ ≥ k−ν , and q ≤ log(1/δ)

ε2
. There exists a distribution MU over useful messages such that for every oracle

procedure D(·)(i) that makes at most q queries to its oracle it holds that:

Pr
m←MU,z←BSCn1

2
,i←[k]

[DFixB(m)→v(m)(z)(i) = mi] ≤ 0.501.

Lemma 3.20 implies Lemma 3.5 by setting D(·) to be Dec(·, j′).
We will denote the elements of B(m) by:

B(m) = {h1(m) < . . . < hb(m)} .

In order to prove Lemma 3.20, we will prove the following claim.

Claim 3.21. Let S be a subset of useful messages, such that |S| ≥ 2k−k
0.99

, and let MD be the uniform
distribution over S. Let b be an integer, and let B, v be functions that given m ∈ S produce a set B(m) ⊆ [n]
of size b and v(m) ∈ {0, 1}B(m), respectively. If there exists an oracle procedure D(·) that makes at most q
queries such that:

Pr
m←MD,z←BSCn1

2
,i←[k]

[DFixB(m)→v(m)(z)(i) = mi] > 0.501,

then there exist:

• A subset S̄ ⊆ S such that |S̄||S| ≥ 2−(t+1), where t = 11 + log b+ log q.

• An index j ∈ [b], a codeword index h′ ∈ [n], and a value v′ ∈ {0, 1} such that for every message
m ∈ S̄, the j-th codeword index in B(m) is hj(m) = h′ and the value of the corresponding coordinate
in v is (v(m))(h′) = v′.

We first show that Claim 3.21 implies Lemma 3.20.

Proof of Lemma 3.20. Our goal is to find a distribution MU over useful messages so that

Pr
m←MU,z←BSCn1

2
,i←[k]

[DFixB(m)→v(m)(z)(i) = mi] ≤ 0.501 (1)

for every q-query oracle procedure D(·)(i).

20

To this end, we observe that if it is the case thatB(m) = B(m′) and v(m) = v(m′) for allm,m′ ← MU,
then FixB(m)→v(m)(z) does not convey any information on m ← MU. Thus, if MU satisfies this property,
and is uniform over a set of size at least 2k−k

0.99
, then by Lemma 2.1, any oracle algorithm D does not

satisfy (1), irrespective of the number of queries that D makes. To use this observation, we apply Claim 3.21
repeatedly till we either reach a distribution MU that satisfies (1), in which case we are done, or we reach a
distribution MU which satisfies that B(m) = B(m′) and v(m) = v(m′) for all m,m′ ← MU.

More specifically, we initialize MU with the uniform distribution on the set of all useful messages. While
there exist a q-query oracle procedure D which does not satisfy (1) and m,m′ ← MU such that B(m) 6=
B(m′) or v(m) 6= v(m′), then by Claim 3.21, assuming that MU is supported on a set of size at least 2k−k

0.99
,

there exist a subset S̄ ⊆ S such that |S̄||S| ≥ 2−(t+1), and an index j ∈ [b], a codeword index h′ ∈ [n], and
a value v′ ∈ {0, 1} such that for every message m ∈ S̄, the j-th codeword index in B(m) is hj(m) = h′

and the value of the corresponding coordinate in v is (v(m))(h′) = v′. We thus set MU to be the uniform
distribution over the messages in S̄, which fixes one of the positions in B(·) and the corresponding value in
v(·) for all messages sampled from MU.

Repeatedly applying the above argument, we eventually either reach a distribution MU which satisfies (1)
for any q-query oracle procedureD, or we reach a distribution MU so thatB(m) = B(m′) and v(m) = v(m′)
for allm,m′ ← MU. In the former case we are clearly done, while in the latter case, by Lemma 2.1, it suffices
to show that when the process terminates, MU is distributed uniformly over a set of size at least 2k−k

0.99
(as

in this case (1) holds for any oracle procedure D, irrespective of the number of queries it makes).
To see that the above condition holds, note that the total number of iterations is at most b, since in each

iteration at least one of the b indices in B(·) is fixed. Also recall that by Claim 3.9, there are at least 2k/(6L)
useful messages. Consequently, when the process terminates, the number of messages in the support of MU
is at least

2k

6L
· 2−(t+1)b =

2k

6L
·
(
212 · b · q

)−b
≥ 2k

L
·
(

δ

q logL

)O(q(logL)/δ)

≥ 2k

L
·
(

εδ

logL

)O(log(1/δ)(logL)/(δε2))

= 2k · exp (−(logL log logL) · poly(1/δ, 1/ε)) ,

where the first equality follows recalling that t = 11 + log b + log q by Claim 3.21, the second inequality
follows recalling that b = O(q · (logL)/δ) by Claim 3.19, and the third inequality follows by assumption
that q ≤ log(1/δ)/ε2. Finally, note that by choosing a sufficiently small constant ν > 0, and recalling our
assumption that L ≤ 2k

0.9
and ε, δ ≥ k−ν , we can guarantee that the above expression is at least 2k−k

0.99
.

This concludes the proof of the lemma.

Claim 3.21 will follow from the next two claims:

Claim 3.22. Suppose that MD is a uniform distribution over a set S of size at least 2k−k
0.99

, and that for
every j ∈ [b], H∞(hj(MD)) ≥ t for t = 11 + log b+ log q. Then

Pr
m←MD,z←BSCn1

2
,i←[k]

[
DFixB(m)→v(m)(z)(i) = mi

]
≤ 0.501.

21

Proof. Let EB denote the event that DFixB(m)→v(m)(z)(i) makes a query into B(m), and let ẼB denote the
event that Dz(i) makes a query into B(m). Then we have that when choosing m ← MD,z ← BSCn

1
2

, and

i← [k],

Pr
[
DFixB(m)→v(m)(z)(i) = mi

]
≤ Pr

[(
DFixB(m)→v(m)(z)(i) = mi

)
∩ ¬EB

]
+ Pr[EB].

To bound the right-hand term, we first claim that Pr[EB] = Pr[ẼB]. To see this, note that for any fixed
m, i, the set of strings z on which DFixB(m)→v(m)(z)(i) makes a query into B(m) is identical the set of strings
z on which Dz(i) makes a query into B(m), since the location of the queries made before the first query to
B(m) are the same for the oracles FixB(m)→v(m)(z) and z. Thus, to bound the right-hand term, it suffices to
bound the probability of the event ẼB .

To bound the probability that ẼB occurs, we this time fix the string z and the index i, and note that this
determines the query pattern of Dz(i). Next we recall our assumption that for m ← MD, H∞(hj(m)) ≥ t
for all j ∈ [b]. Thus the probability, over m← MD (noting that this choice of m is independent of the fixing
of z, i), that a specific query ofDz(i) is to a particular point inB(m) is at most 2−t. Hence, by a union bound,
the probability that the event ẼB occurs is at most q · b · 2−t. Finally, by our setting of t = 11 + log b+ log q,
we have that this probability is at most 2−11. We conclude that the right-hand term satisfies

Pr[EB] ≤ 2−11.

To bound the left-hand term, we once more claim that

Pr
[(
DFixB(m)→v(m)(z)(i) = mi

)
∩ ¬EB

]
= Pr

[
(Dz(i) = mi) ∩ ¬ẼB

]
.

Once more, this follows since when fixing m, i, the set of strings z on which DFixB(m)→v(m)(z)(i) does not
make a query into B(m) is identical the set of strings z on which Dz(i) does not make a query into B(m),
and fixing each such string z induces the same query pattern and values for bothDz(i) and FixB(m)→v(m)(z).

Thus we conclude that for fixedm, i, the set of strings z which lead to the event
(
DFixB(m)→v(m)(z)(i) = mi

)
∩

¬EB is identical to the set of strings z that lead to the event (Dz(i) = mi) ∩ ¬ẼB , and so the probabilities
are the same. It thus suffices to bound the probability of the event (Dz(i) = mi) ∩ ¬ẼB.

To bound the probability that (Dz(i) = mi) ∩ ¬ẼB occurs, we note that it is at most the probability that
Dz(i) = mi occurs. Recalling our assumption that MD is uniform over a set of size 2k−k

0.99
, by Lemma 2.1,

this latter probability is at most 0.5001. So the left-hand term satisfies that

Pr
[(
DFixB(m)→v(m)(z)(i) = mi

)
∩ ¬EB

]
≤ 0.5001.

Summing up the two probabilities, we get that

Pr
m←MD,z←BSCn1

2
,i←[k]

[
DFixB(m)→v(m)(z)(i) = mi

]
≤ 0.5001 + 2−11 ≤ 0.501,

which concludes the proof of the claim.

Claim 3.23. If there exists j ∈ [b], such that H∞(hj(MD)) < t then there exist:

• A subset S̄ ⊆ S such that |S̄||S| ≥ 2−(t+1).

22

• A codeword index h′ ∈ [n] and a value v′ ∈ {0, 1} such that for every message m ∈ S̄, the j-th index
in B(m) is hj(m) = h′ and the value of the corresponding coordinate in v is (v(m))(h′) = v′.

Proof. SinceH∞(hj(MD)) < t, there must exist h′ ∈ [n] such that Pr[hj(MD) = h′] ≥ 2−t. Let v′ ∈ {0, 1}
be such that Pr[(v(MD))(h′) = v′|hj(MD) = h′] ≥ 1/2. In other words, v′ is the more probable value taken
by v(m) at the index h′, conditioned on m ← MD satisfying that the j-th index in B(m) is hj(m) = h′. So
we get that with probability at least 2−(t+1), both events hj(MD) = h′ and v(MD)(h′) = v′ hold. This event
can be thought of in turn as a subset S̄ of messages of density at least 2−(t+1) inside S.

3.3 Proof of Theorem 1.6

In this section we prove Theorem 1.6. The Theorem will follow by from next lemma.

Lemma 3.24. There exist universal constants β > 0 and c > 1 such that if If Dec is a (1
2 − ε, q, L, 1/2k)-

ARLLD for Enc : {0, 1}k → {0, 1}n, and L ≤ β · 2k, then setting n′ = cn, there exists a circuit C :
{0, 1}n′ → {0, 1} of size O(L · k · 22q) and depth 3, such that:

• Pr
z←BSCn

′
1
2−2ε

[C(z) = 1] ≥ 0.99.

• Pr
z←BSCn

′
1
2

[C(z) = 1] ≤ 0.01.

We first prove that Lemma 3.24 implies Theorem 1.6.

Proof of Theorem 1.6. Consider a (1
2 − ε, q, L, δ)-LLD Dec for Enc : {0, 1}k → {0, 1}n, where δ ≤ 1/3. It

is possible to amplify the error probability δ from 1/3 to 1/20k as follows: After choosing the random string
rshared, we choose e = O(log k) independent uniform strings r1, . . . , re, and apply Dec(·)(i, j, r`, r

shared) for
all choices of ` ∈ [e]. We then output the majority vote of the individual e outputs. It is standard that this
gives a (1

2 − ε, q
′ = O(q log k), L, 1/20k)-LLD for Enc : {0, 1}k → {0, 1}n.

By our requirements on ε, we can use Proposition 3.2 to show that there exists a (1
2 − ε, q′, L, 1/2k)-

ARLLD for Enc : {0, 1}k → {0, 1}n. By Lemma 3.24, there exists a circuit C of of size

s = O(L · k · 22·q′) = L · k · 2O(q log k)

and depth 3 that distinguishes BSCn′
1
2
−2ε

from BSCn′
1
2

. By Corollary 2.5 such a circuit must have size:

s ≥ exp(Ω
(

(1/ε)1/2
)

).

This implies that

q ≥
Ω
(
(1/ε)1/2

)
− logL− log k

O(log k)
.

In the remainder of this section we prove Lemma 3.24. Let Dec be a (1
2 − ε, q, L, 1/2k)-ARLLD for

Enc : {0, 1}k → {0, 1}n. We will construct the circuit C in the following sequence of claims:

Definition 3.25. For every i ∈ [k] and j ∈ [L], let Ai,j : {0, 1}n → {0, 1} be defined by: Ai,j(w) =
Decw(i, j).

23

Claim 3.26. For every i ∈ [k] and j ∈ [L], there exist CNF circuits ATi,j : {0, 1}n → {0, 1} and AFi,j :

{0, 1}n → {0, 1} of size O(q · 2q) such that for every w ∈ {0, 1}n, ATi,j(w) = Ai,j(w), and AFi,j(w) =
1−Ai,j(w).

Proof. For fixed i, j, we can view the computations Ai,j(w) = Decw(i, j) as a depth q decision tree that
makes queries to w. Such a decision tree can be simulated by a size O(q · 2q) DNF, which is a disjunction
over the at most 2q accepting paths of the tree, where each path is a conjunction of q literals. This can also
gives a CNF of the same size for 1− Ai,j . The same argument can be repeated for 1− Ai,j giving a CNF of
the same size for Ai,j .

Definition 3.27. For every m ∈ {0, 1}k we define the circuit Cm : {0, 1}n → {0, 1} that is hardwired with
the messagem ∈ {0, 1}k, and the encoding Enc(m). Given input z ∈ {0, 1}n, the circuit Cm acts as follows:

• Prepare w = Enc(m)⊕ z.

• For every i ∈ [k] and j ∈ [L] compute Ai,j(w), and compute bi,j ∈ {0, 1} which answers whether
Ai,j(w) = mi.

• For every j, compute bj which is the conjunction of b1,j , . . . , bk,j .

• Compute the disjunction of b1, . . . , bL and output it.

Claim 3.28. For every m ∈ {0, 1}k the circuit Cm can be implemented in size O(k · L · 22q) and depth 3.
Furthermore, for every m ∈ {0, 1}k, and z ∈ {0, 1}n, Cm(z) = 1 iff there exists j ∈ [L] such that for every
i ∈ [k], DecEnc(m)⊕z(i, j) = mi.

Proof. It is immediate that the circuit Cm performs the task described in the claim. We now explain how to
implement the circuit in small size and depth.

The stringm is of length k. We note that when using Enc(m) to prepare w, we only need to have Enc(m)
at coordinates ` such that there exists i, j such that Ai,j(w) depends on the `’th input. As each circuit ATi,j is
a circuit of size O(q · 2q) it depends on at most O(q · 2q) input bits. Thus, Cm only requires O(k · L · q · 2q)
bits of Enc(m). Overall, the size of the advice of Cm is O(k · L · q · 2q).

Computing every bit of w amounts to at most one negation gate, and does not increase the depth. For
every i ∈ [k] and j ∈ [L], we want to compute the bit bi,j which is one iff Ai,j(w) = mi. Note that if mi = 1
then bi,j = ATi,j(w) and if mi = 0 then bi,j = AFi,j(w). As mi is a fixed constant, this gives that for every
i ∈ [k] and j ∈ [L], bi,j can be computed by a CNF of size O(q · 2q) that is applied on the input z. For every
j ∈ [L], computing bj is done using a single AND gate, and, since the top gate of the CNF computing bi is
also an AND gate, this does not increase the depth. Finally, computing the output adds a top OR gate. overall,
the depth is 3 and the size is bounded by:

O(k · L · q · 2q) ≤ O(k · L · 22q).

The definition of ARLLD immediately gives that:

Claim 3.29. Prm←{0,1}k,z←BSCn1
2−2ε

[Cm(z) = 1] ≥ 1
6 .

On the other hand, we can show that:

Claim 3.30. Prm←{0,1}k,z←BSCn1
2

[Cm(z) = 1] ≤ L · 2−k.

24

Proof. The first step of Cm(z) is to prepare w = Enc(m) ⊕ z. However, for p = 1
2 , and z ← BSCn

p , we
have that w = Enc(m)⊕ z is uniformly chosen, and independent of m. This means that the bits Ai,j(w) for
i ∈ [k] and j ∈ [L] are independent of m. Consequently, for every j ∈ [L], we have that:

Pr
m←{0,1}k,z←BSCn1

2
,w=Enc(m)⊕z

[m = A1,j(w) ◦ . . . ◦Ak,j(w)] ≤ Pr
m←{0,1}k,w←{0,1}n

[m = A1,j(w) ◦ . . . ◦Ak,j(w)]

≤ 2−k

By a union bound over all choices of j ∈ [L], we have that:

Pr
m←{0,1}k,z←BSCn1

2
,w=Enc(m)⊕z

[∃j : s.t. m = A1,j(w) ◦ . . . ◦Ak,j(w)] ≤ L · 2−k

It follows that:
Pr

m←{0,1}k,z←BSCn1
2

[Cm(z) = 1] ≤ L · 2−k,

as required.

We are finally ready to prove Lemma 3.24.

Proof of Lemma 3.24. By our choices, we have that 0 < L · 2−k ≤ β < 1. By applying Markov’s inequality
to Claims 3.29 and 3.30, we can see that:

Pr
m←{0,1}k

 Pr
z←BSCn1

2−2ε

[Cm(z) 6= 1] >
9

10

 < 5/6

9/10
≤ 95

100
.

Pr
m←{0,1}k

 Pr
z←BSCn1

2

[Cm(z) = 1] >
√
β

 <√β.
Therefore, for a sufficiently small constant β > 0, by a union bound, we get that there exists m ∈ {0, 1}k
satisfying both:

Pr
z←BSCn1

2−2ε

[Cm(z) = 1] ≥ 1

10
,

Pr
z←BSCn1

2

[Cm(z) = 1] ≤
√
β,

It is possible to amplify these thresholds to 0.99 and 0.01 as follows: Let c be a constant that we choose later,
and let n′ = cn. Consider a circuit C : {0, 1}n′ → {0, 1} that when receiving input x ∈ {0, 1}n′ , treats it as
c strings x1, . . . , xc ∈ {0, 1}n. C will apply Cm on each of the c strings, and the final output is the OR of the
results. As the top gate of Cm is an OR gate, adding an additional OR gate, does not increase the depth of the
circuit. The size of the circuit increases by a constant factor.

We can view z ← BSCn′
p as obtained by concatenating c strings z1, . . . , zc, where each of them is

sampled uniformly and independently at random from BSCn
p . Hence, the event C(z) = 1 is identical to∨

`∈[c]Cm(z`) = 1. Therefore,

Pr
z←BSCn

′
1
2−2ε

[C(z) = 1] ≥ 1− (
9

10
)c,

25

and
Pr

z←BSCn
′

1
2

[C(z) = 1] ≤ c ·
√
β.

By choosing c to be sufficiently large, we can see that 1 − (9
10)c ≥ 0.99. By choosing β to be sufficiently

small, we also have that c
√
β ≤ 0.01.

4 Limitations on black-box proofs for hard-core predicates

In this section, we present our results regarding the limitations on black-box proofs for hard-core predicate
theorems. In Section 4.1, we state our results for functions that are hard to compute, give a formal restatement
of Theorem 1.9, and prove the theorem. In Section 4.2, we state our results for functions that are hard to
invert, give a formal restatement of Theorem 1.13, and prove the theorem.

4.1 The case of functions that are hard to compute

4.1.1 The model for black-box proofs

In this section, we state and explain our model for black-box proofs for hard core predicates, in the setting
of functions that are hard to compute. The formal definition is given in Definition 4.1. Below, we provide a
detailed explanation for the considerations made while coming up with the formal definition. The reader can
skip directly to the formal definition if he wishes.

Explanation of the model: Recall that (as explained in Section 1.2.1) the Goldreich-Levin theorem (stated
precisely in Theorem 1.7) has the following form:

• We are given an arbitrary hard function g : {0, 1}` → {0, 1}`. (Intuitively, it is assumed that it is hard
to compute g with success probability ρ).

• There is a specified construction that transforms g into a predicate gpred : {0, 1}`′ → {0, 1} for some `′

related to `. (Intuitively, we will want to argue that gpred is a hard-core predicate that is hard to compute
with success 1

2 + ε).

We will model this construction as a map Con, which, given g produces gpred. We place no limitations
on the map Con (and, in particular, do not require that gpred can be efficiently computed if g is). This
only makes our results stronger.

In the case of Theorem 1.7, we have that: Con(g) = gpred where `′ = 2` and we think of the `′-bit long
input of gpred as two strings x, r ∈ {0, 1}`, setting:

gpred(x, r) = EncHad(g(x))r = (
∑
i∈[`]

g(x)i · ri) mod 2.

• We model the proof showing that gpred is a hard-core predicate in the following way: The proof is
a pair (Con,Red) where Red(·) is an oracle procedure, such that when Red(·) receives oracle access
to an “adversary” h : {0, 1}`′ → {0, 1} that breaks the security of gpred, we have that Redh breaks
the security of g. More precisely, we require that: for every g : {0, 1}` → {0, 1}` and for every
h : {0, 1}`′ → {0, 1} such that:

Pr
x←U`′

[h(x) = gpred(x)] ≥ 1

2
+ ε,

26

it holds that:
Pr
x←U`

[Redh(x) = g(x)] ≥ ρ.

• In the actual definition, we will allow the reduction to have more power (which only makes our results
stronger). As we are aiming to prove a result on circuits (which are allowed to use nonuniform advice)
we will allow the reduction to receive an advice string α of length t, where, this advice string can
depend on g and h. This leads to the following strengthening of the requirement above. Namely, we
will require that: for every g : {0, 1}` → {0, 1}` and for every h : {0, 1}`′ → {0, 1}, that:

Pr
x←U`′

[h(x) = gpred(x)] ≥ 1

2
+ ε,

there exists α ∈ {0, 1}t such that:

Pr
x←U`

[Redh(x, α) = g(x)] ≥ ρ.

We remark that in many related settings (for example, “hardness amplification”; see [SV10, GSV18], for
a discussion) known proofs by reduction critically make use of the ability to introduce nonuniformity,
and so, we feel that when ruling out black-box proofs in scenarios involving circuits, it is necessary to
consider nonuniform black-box reductions.

• We make no restrictions on the complexity of the procedure Red(·), except for requiring that it makes
at most q queries to its oracle (for some parameter q). Our black-box impossibility results will follow
from proving lower bounds on q.

Formal definition: We now give a formal definition of our model for black-box proofs for hard-core predi-
cates.

Definition 4.1 (Nonuniform black-box proofs for hard-core predicates for hard-to-compute functions). A pair
(Con,Red) is a nonuniform black-box proof for hard-core predicates for hard-to-compute functions
with parameters `, `′, ρ, ε, that uses q queries, and t bits of advice if:

• Con is a construction map which given a function g : {0, 1}` → {0, 1}`, produces a function Con(g) =
gpred, where gpred : {0, 1}`′ → {0, 1}.

• Red(·) is a reduction, that is an oracle procedure that, given oracle access to a function h : {0, 1}`′ →
{0, 1}, makes at most q queries to its oracle.

Furthermore, for every functions g : {0, 1}` → {0, 1}` and h : {0, 1}`′ → {0, 1} such that:

Pr
x←U`′

[h(x) = gpred(x)] ≥ 1

2
+ ε,

there exists α ∈ {0, 1}t, such that:

Pr
x←U`

[Redh(x, α) = g(x)] ≥ ρ.

27

The role of the number of queries, and black-box impossibility results: We now explain the role of the
parameter q (that measures the number of queries made by Red) and why lower bounds on q translate into
black-box impossibility results.

For this purpose, it is illustrative to examine the argument showing that nonuniform black-box proofs
yield hard-core predicates: When given a pair (Con,Red) that is a nonuniform black-box proof for hard-core
predicates for hard-to-compute functions with parameters `, `′, ρ, ε, that uses q queries, and t bits of advice,
we obtain that for any function g : {0, 1}` → {0, 1}`, if there exists a circuit C ′ : {0, 1}`′ → {0, 1} of size s′

such that:
Pr

x←U`′
[C ′(x) = gpred(x)] ≥ 1

2
+ ε,

then there exists α ∈ {0, 1}t, such that:

Pr
x←U`

[RedC
′
(x, α) = g(x)] ≥ ρ.

Note that if the reduction Red can be implemented by a circuit of size r, then the circuit C(x) = RedC
′
(x, α)

is a circuit of size:
s = r + t+ q · s′

that computes g with success probability ρ.
It follows that in a black-box proof, with q queries, and t bits of advice, we get a hard-core theorem that

needs to assume that the original function g has hardness against circuits of size s, for:

s ≥ q + t.

4.1.2 Precise statements of limitations

Our main result on black-box proofs for hard-core predicates in the setting of functions that are hard to
compute is the following theorem.

Theorem 4.2. There exists a universal constant β > 0 such that for every sufficiently large ` and `′ we have
that if (Con,Red) is a nonuniform black-box proof for hard-core predicates for hard-to-compute functions
with parameters `, `′, ρ, ε, that uses q queries, and t bits of advice, and furthermore ε ≥ 1

2`
′/3 , t ≤ 2`/3 and

ρ ≥ 1
2`/3

, then

q ≥ Ω(
1

εβ
)−O(t+ `).

We now explain why Theorem 4.2 implies the informal statement made in Theorem 1.9. Recall that in
Section 4.1.1 we explained that when using a nonuniform black-box proof to obtain a hard-core predicate, we
get a hard-core predicate theorem in which s ≥ q + t.

Theorem 4.2 implies that for s > `2/β it is impossible for such a proof to establish ε = 1/s
2
β (even if ρ is

very small). This follows as otherwise, using the fact that s ≥ q + t ≥ t, we get that:

q ≥ Ω(
1

εβ
)−O(t+ `) ≥ Ω(s2)−O(t) > s,

which is a contradiction to s ≥ q + t ≥ q. In particular, the parameter setting considered in Theorem 1.9, in
which s = 2o(`) and ε = 1

sω(1) , is impossible to achieve.

28

4.1.3 Proof of Theorem 4.2

Theorem 4.2 will follow from the next lemma, showing that a proof with small q can be transformed into a
small constant depth circuit for the coin problem.

Lemma 4.3. There exists a universal constant d such that for every sufficiently large ` and `′ we have that
if (Con,Red) is a nonuniform black-box proof for hard-core predicates for hard-to-compute functions with
parameters `, `′, ρ, ε, that uses q queries, and t bits of advice, and furthermore ε ≥ 1

2`
′/3 , t ≤ 2`/3 and

ρ ≥ 1
2`/3

then there exists a circuit C of size s = poly(2q, 2`, 2t) and depth d such that:

• Prz←BSCn1
2−2ε

[C(z) = 1] ≥ 0.99.

• Prz←BSCn1
2

[C(z) = 1] ≤ 0.01.

We first show that Theorem 4.2 follows from Lemma 4.3.

Proof of Theorem 4.2. The theorem follows directly from Lemma 4.3 and Corollary 2.5, which give that:

s = poly(2q, 2`, 2t) ≥ exp(Ω(d · (1/ε)1/(d−1))),

The statement of Theorem 4.2 follows by taking the logarithm on both sides and setting β = 1/(d− 1).

In the remainder of this section we prove Lemma 4.3. Let (Con,Red) be a nonuniform black-box proof
for hard-core predicates for hard-to-compute functions with parameters `, `′, ρ, ε, that uses q queries, and t
bits of advice. Throughout this section we assume that the requirements made in Lemma 4.3 are met.

We will identify functions h : {0, 1}` → {0, 1} with strings h ∈ {0, 1}2` . More precisely, we fix some
ordering on strings x ∈ {0, 1}` and then, the value of string h at position x is the function h applied on x. We
will use h to denote these two objects (both the function and the string) and this means that a function h can
be given as an argument to a function that receives strings of length 2`.

High level description of the proof of Lemma 4.3. The proof will use the same structure as the proof of
Lemma 3.24, which was the main technical lemma in the proof of Theorem 1.6. Loosely speaking, the reduc-
tion Red plays the role of a local list-decoder, the function g plays the role of the message, the construction
map Con plays the role of the encoder, so that the function gpred (viewed as a 2`

′
bit long string) plays the

role of the encoding of the message.
Imitating the approach used in the proof of Lemma 3.24, we will consider the function (or string) h ∈

{0, 1}2`
′

defined by h = gpred ⊕ z where z ← BSC2`
′

p for p = 1
2 and p = 1

2 − 2ε. We will try to show that
when the function g is chosen uniformly, then for p = 1

2 − 2ε, Redh has to succeed, and for p = 1
2 , Redh

cannot succeed. We will then leverage this difference to produce a constant depth circuit of size roughly 2q

that distinguishes BSC2`
′

1
2
−2ε

from BSC2`
′

1
2

.

However, there are some complications. When the reduction Redh succeeds for p = 1
2 −2ε, we only have

that there exists an α with which it computes g with success ρ (which is extremely small) and is not much
larger than the success probability of Redh for p = 1

2 (which we will show is less than ρ/10).
At first glance, this seems like a problem, as in general, in order to distinguish success probability a+ρ/10

from a+ρ for an arbitrary value of a ∈ [0, 1], constant depth circuits need to have size that is 2(1/ρ)Ω(1)
which

is much too large for our purposes. Fortunately, for a = 0 (that is for the task of distinguishing success
probability ρ/10 from ρ) it is possible to distinguish with circuits of size poly(1/ρ). The formal statement of
this is given in Lemma 4.4.

We now return to the formal proof, starting with the following lemma.

29

Lemma 4.4. There exists a universal constant d, such that every n, ρ there exists a circuit Dn
ρ : {0, 1}n →

{0, 1} of size poly(n/ρ) and depth d, such that for every x ∈ {0, 1}n:

• If weight(x) ≥ ρ then Dn
ρ (x) = 1.

• If weight(x) ≤ ρ/10 then Dn
ρ (x) = 0.

We note that by the lower bound of Razborov and Smolensky [Raz87, Smo87] small constant-depth
circuits cannot compute the majority function. Nevertheless, by the results of Ajtai [Ajt83] (stated in Theorem
2.3) small constant-depth circuits can compute approximate majority. That is, they can distinguish between
strings with relative Hamming weight ≥ P from strings with relative Hamming weight ≤ p whenever p < P
are constants. The proof of the lemma uses circuits for approximate majority.

Proof of Lemma 4.4. We first construct a distribution over circuits that achieves the goal. Let a > 1 be a
constant that we choose later. Let n′ = a

ρ . Let us consider the experiment E1 in which a uniform multi-set
S of [n] of size n′ is chosen uniformly. (That is i1, . . . , in′ are chosen independently and uniformly from [n]
and S is the multi-set {i1, . . . , in′}). Note that for every x ∈ {0, 1}n,

• If weight(x) ≥ ρ then ES←E1 [
∑

i∈S xi] ≥ a.

• If weight(x) ≤ ρ/10 then ES←E1 [
∑

i∈S xi] ≤ a/10.

For every multi-set S ⊆ [n] of size n′ we consider the circuit CS : {0, 1}n → {0, 1} that works as follows:

• For every choice of a/5 elements j1, . . . , ja/5 in S, compute the disjunction of xj1 , . . . , xja/5 .

• Compute the conjunction of the (n′)a/5 bits from the previous item.

This gives that there exists a constant c, that depends on a such that CS is a circuit of size poly(1/ρ) and
depth 2. Furthermore CS(x) answers one iff

∑
i∈S xi ≥ a/5.

By a (multiplicative) Chernoff bound,8 it follows that there exists a universal constant η > 0 such that for
a sufficiently large constant a, for every x ∈ {0, 1}n:

• If weight(x) ≥ ρ then PrS←E1 [1
n′ ·
∑

i∈S xi ≤ a/5] ≤ 2−ηa ≤ 1/3 which implies PrS←E1 [CS(x) =
1] ≥ 2/3.

• If weight(x) ≤ ρ/10 then PrS←E1 [1
n′ ·
∑

i∈S xi ≥ a/5] ≤ 2−ηa ≤ 1/3 which implies PrS←E1 [CS(x) =
1] ≤ 1/3.

By taking t = O(n) independent copies of CS and computing approximate majority, we can reduce
the error probability from 1/3 to 2−2n, and apply Adleman’s argument to obtain a single circuit of size
n · poly(1/ρ) and constant depth. Details follow:

For t = O(n) multi-sets S1, . . . , St ⊆ [n] of size n′, we consider the circuit CS1,...,St(x) which for every
i ∈ [t] computes bi = CSi(x) and then computes approximate majority (with parameters p = 0.49 and
P = 0.51) on the string b = b1, . . . , bt. Note that each such circuit has constant depth and size poly(n/ρ).
Let E2 denote the experiment in which the t sets S1, . . . , St are chosen independently, where each Si ⊆ [n]
is a uniformly chosen multi-set of size n′. By a Chernoff bound, it follows that for every x ∈ {0, 1}n:

• If weight(x) ≥ ρ then PrS1,...,St←E2 [CS1,...,St(x) = 1] ≥ 1− 2−2n.

• If weight(x) ≤ ρ/10 then PrS1,...,St←E2 [CS1,...,St(x) = 1] ≤ 2−2n.

8Specifically, we mean the following version of the Chernoff bound: If X is the sum of n independent variables X1, . . . , Xn ∈
[0, 1], and E(X) = µ then for every 0 ≤ δ ≤ 1, Pr[|X − µ| ≥ δµ] ≤ 2e−

δ2·µ
3 .

30

By a union bound over all 2n choices of x ∈ {0, 1}n we obtain that there exist sets S′1, . . . , S
′
t such that setting

Dρ
n = CS′1,...,S′t , we obtain the circuit guaranteed in the statement of the theorem.

We will prove Lemma 4.3 using the following sequence of claims. The overall structure of the argument
is similar to the proof of Lemma 3.4.

Claim 4.5. For every x ∈ {0, 1}` and every α ∈ {0, 1}t, there exists a circuit of size ` · q · 2q and depth 2,

Ax,α : {0, 1}2`
′
→ {0, 1}` such that for every h : {0, 1}`′ → {0, 1},

Ax,α(h) = Redh(x, α).

Proof. For every x ∈ {0, 1}` and every α ∈ {0, 1}t, the function Ax,α(h) can be computed by a depth q
decision tree, that has outputs of length ` bits. Each output bit of this function can be computed by a DNF of
size O(q · 2q) and overall, the function can be computed by a depth 2 circuit of size ` · q · 2q as required.

Claim 4.6. There exists a universal constant d such that for every g : {0, 1}` → {0, 1}`, there exists a

circuit Cg : {0, 1}2`
′
→ {0, 1} of size poly(2q, 2`, 2t) and depth d such that the following holds for every

z ∈ {0, 1}2`
′
:

• If there exists α ∈ {0, 1}t such that Prx←U` [Redg
pred⊕z(x, α) = g(x)] ≥ ρ then Cg(z) = 1.

• If for all α ∈ {0, 1}t, Prx←U` [Redg
pred⊕z(x, α) = g(x)] ≤ ρ/10 then Cg(z) = 0.

Proof. The circuit Cg will be hardwired with g and gpred = Con(g). Upon receiving an input z ∈ {0, 1}2`
′

it
will act as follows:

• Prepare w = gpred ⊕ z. (Here we think of gpred, w, z as a strings in {0, 1}2`
′
.

• For every x ∈ {0, 1}` and α ∈ {0, 1}t compute Ax,α(w), and compute: bx,α ∈ {0, 1} defined by:

bx,α =

{
0 Ax,α(w) 6= g(x)
1 Ax,α(w) = g(x)

• For every α ∈ {0, 1}t, let vα denote the 2` bit long concatenation of all bits (bx,α)x∈{0,1}` (fixing some
order on x ∈ {0, 1}`), and compute

bα = D2`

ρ (vα),

where D2`
ρ is the circuit guaranteed in Lemma 4.4.

• Compute the disjunction of the 2t bits (bα)α∈{0,1}t and output it.

It is immediate that the circuitCg performs the task specified in the lemma. We now explain how to implement
the circuit in small size and depth.

The function g can be described using ` · 2` bits. We note that when using the string gpred to prepare w,
we only need to have gpred at coordinates y ∈ {0, 1}`′ such that there exists x, α such that Ax,α(w) depends
on wy. As each circuit Ax,α is a circuit of size O(` · q · 2q) it depends on at most O(` · q · 2q) input bits. Thus,
going over all choices of x ∈ {0, 1}` and α ∈ {0, 1}t, Cg only requires O(2t · 2` · ` · q · 2q) bits of gpred.
Overall, the size of the advice of Cg is O(2t · 22` · 22q). The circuit Cg is constant depth by construction, and
its size is indeed:

poly(2q, 2`, 2t, 1/ρ) = poly(2q, 2`, 2t),

since, by the requirement on ρ we have that ρ ≥ 2−`.

31

We will consider the case where g : {0, 1}` → {0, 1}` is a uniformly chosen function, and will analyze

the behavior of Cg on z ← BSC2`
′

1
2
−2ε

and on z ← BSC2`
′

1
2

.

Definition 4.7. Let F` denote the set of all functions g : {0, 1}` → {0, 1}`.

Claim 4.8. Pr
g←F`,z←BSC2`

′
1
2−2ε

[Cg(z) = 1] ≥ 0.999.

Proof. Imagine that g ← F` is already chosen and fixed, and let gpred = Con(g). By a Chernoff bound, with

probability 1− 2−
1
3
·ε2·2`′ over z ← BSC2`

′

1
2
−2ε

, we have that the Hamming weight of z is at most 1
2 − ε. This

probability is larger than 0.999 by the requirement that ε ≥ 1
2`
′/3 and that `′ is sufficiently large. Whenever

this event occurs, we have that for h = gpred ⊕ z, it holds that:

Pr
x←U`′

[h(x) = gpred(x)] ≥ 1

2
+ ε.

Therefore, by Definition 4.1 there exists α ∈ {0, 1}t, such that:

Pr
x←U`

[Redh(x, α) = g(x)] ≥ ρ.

By Claim 4.6 it follows that when whenever this occurs, Cg(z) = 1, and the claim follows.

On the other hand, we can show that:

Claim 4.9. Pr
g←F`,z←BSC2`

′
1
2

[Cg(z) = 1] ≤ 0.001.

Proof. The first step of Cg(z) is to prepare w = gpred ⊕ z. However, for p = 1
2 , and g ← F`, z ← BSC2`

′

1
2

,

we have that w = gpred ⊕ z is uniformly chosen, and independent of g. This means that the bits Ax,α(w) for
x ∈ {0, 1}` and α ∈ {0, 1}t are independent of g. It follows that for every α ∈ {0, 1}t, we have that when
choosing g ← F`, w ← {0, 1}2

`′
, and considering the function vα ∈ F` defined by vα(x) = (Ax,α(w)), we

have that vα is independent of g. Therefore, the probability that vα agrees with g in a ρ′ = ρ/10 fraction of
inputs x ∈ {0, 1}` is at most:(

2`

ρ′ · 2`

)
· 1

2ρ′·`·2`
≤
(
e

ρ

)ρ′·2`
·
(

1

2`

)ρ′·2`
≤ 1

2`/2
,

where the first inequality follows from
(
n
k

)
≤ (enk)k and the second inequality follows by our requirements on

ρ ≥ 2−`/3.
For fixed w ∈ {0, 1}2`

′
, the condition that vα agrees with g in a ρ/10 fraction of inputs x ∈ {0, 1}`, can

also be phrased as:
Pr
x←U`

[Redw(x, α) = g(x)] ≥ ρ/10.

It follows that for every α ∈ {0, 1}t, we have that with probability 1− 2−`/2 over the choice of g ← F`, z ←
BSC2`

′

1
2

we have that:

Pr
x←U`

[Redg
pred⊕z(x, α) = g(x)] < ρ/10,

32

By a union bound over all 2t choices of α ∈ {0, 1}t, we have that with probability 1 − 2t · 2−`/2 over the

choice of g ← F`, z ← BSC2`
′

1
2

we have that for all α ∈ {0, 1}t,

Pr
x←U`

[Redg
pred⊕z(x, α) = g(x)] < ρ/10,

which by Claim 4.6 implies that Cg(z) = 0. Consequently, in order to complete the proof of the claim, it
remains to verify that:

2t · 2−`/3 ≤ 0.001.

This follows by the requirements that t ≤ 2`/3.

We are finally ready to prove Lemma 4.3.

Proof of Lemma 4.3. From Claims 4.8 and 4.9, it follows that:

Pr
g←F`

 Pr
z←BSC2`

′
1
2−2ε

[Cg(z) = 0] > 0.01

 ≤ 0.1,

Pr
g←F`

 Pr
z←BSC2`

′
1
2

[Cg(z) = 1] > 0.01

 ≤ 0.1.

Thus, by a union bound, there exists g : {0, 1}` → {0, 1}` such that

Pr
z←BSC2`

′
1
2−2ε

[Cg(z) = 1] ≥ 0.99,

Pr
z←BSC2`

′
1
2

[Cg(z) = 1] ≤ 0.01.

This completes the proof of the lemma, as Cg satisfies all the other requirements as well.

4.2 The case of functions that are hard to invert

4.2.1 The model for black-box proofs

In this section we state and explain our model for black-box proofs for hard core predicates, in the setting
of functions that are hard to invert. The precise formal definition is given in concise form in Definition 4.10.
Below, we provide a detailed explanation for the considerations made in the formal definition. The reader can
skip directly to the formal definition if he wishes.

This setting is very similar to the case of functions that are hard to compute, but there are several key
differences that we explain below.

Explanation of the model: Recall that (as explained in Section 1.2.2) the Goldreich-Levin theorem (stated
precisely in Theorem 1.10) has the following form:

• We are given an arbitrary function f : {0, 1}` → {0, 1}`. (Intuitively, it is assumed that f is a one-way
function, meaning that it is hard to invert f with success probability ρ)

33

• There is a specified construction that transforms f into two functions: A “new one-way function”
fnewOWF : {0, 1}`′ → {0, 1}`′ and a predicate fpred : {0, 1}`′ → {0, 1} for some `′ related to `.
(Intuitively, we will want to argue that fpred is a hard-core predicate such that for x← U`′ , fpred(x) is
hard to compute with success 1

2 + ε when given fnewOWF(x)).

We will model this construction as a map Con which given f produces a pair of functions (fnewOWF, fpred).
Once again, we place no limitations on the map Con (and in particular do not require that fnewOWF, fpred

can be efficiently computed if f is). This only makes our results stronger.

In the case of Theorem 1.10, we have that: Con(f) = (fnewOWF, fpred) where `′ = 2` and we think
of `′ bit long the input of gpred as two strings x, r ∈ {0, 1}`, setting:

fnewOWF(x, r) = (f(x), r), and

fpred(x, r) = EncHad(x)r = (
∑
i∈[`]

xi · ri) mod 2.

• We model the proof showing that fpred is a hard-core predicate, in the following way: The proof is a
pair (Con,Red) where Red(·) is an oracle procedure, such that when Red(·) receives oracle access to
an “adversary” h : {0, 1}`′ → {0, 1} that breaks the security of fpred, we have that Redh breaks the
security of f .

It is illustrative to consider the case where f, fnewOWF are permutations, and with this choice, the
model we have introduced so far is identical to the one considered in Section 4.1 if we set g = f−1.

In the setup of functions that are hard to invert, a reduction Red can potentially want to compute the
function f (as we are implicitly assuming that f is efficiently computable). Many reductions in the
cryptographic literature (e.g. from one-way functions to pseudorandom generators) critically rely on
this ability, and so, if we want to handle a general case, we should allow the reduction Red to also
receive oracle access to f , allowing it to compute f on chosen values, if it wants to.

This means that in the actual definition, Red(·,·) is an oracle procedure with two oracles: It receives
oracle access both to h and to f . More precisely, we require that: for every f : {0, 1}` → {0, 1}` and
for every h : {0, 1}`′ → {0, 1}, that:

Pr
x←U`′

[h(fnewOWF(x)) = fpred(x)] ≥ 1

2
+ ε,

It holds that:
Pr
x←U`

[Redh,f (f(x)) ∈ f−1(f(x))] ≥ ρ.9

Note that this means that even in the case that f, fnewOWF are permutations, reductions (in the setting
for functions that are hard to invert) are more powerful then reductions (in the setting of functions that
are hard to compute) for the function g = f−1, and indeed, it is more difficult to prove impossibility
results for the case of functions that are hard to invert.

• As explained in the case of functions that are hard to compute, we are once again aiming to prove a result
for circuits (which are allowed to use nonuniform advice) and as in the case of functions that are hard to
compute, we will allow the reduction to receive an advice string α of length t. (Intuitively, this advice

9In fact, we should also allow h to be an oracle procedure h(·) that receives oracle access to f . However, as we want to prove
lower bounds on black-box proofs, we choose not to do that, as the lower bounds that we prove obviously also rule out this case. This
can be interpretted as saying that the choice of h that we use in our lower bound, does not make calls to f .

34

string can depend on f and h). This leads to the following strengthening of the requirement above.
Namely, we will require that: for every f : {0, 1}` → {0, 1}` and for every h : {0, 1}`′ → {0, 1}, that:

Pr
x←U`′

[h(fnewOWF(x)) = fpred(x)] ≥ 1

2
+ ε,

there exists α ∈ {0, 1}t such that:

Pr
x←U`

[Redh,f (f(x)) ∈ f−1(f(x))] ≥ ρ.

• Once again, we make no restrictions on the complexity of the procedure Red(·,·) except for requiring
that it makes at most q queries to each of its two oracles (for some parameter q). Our black-box
impossibility results will follow from proving lower bounds on q.

Formal definition: Following this discussion, we now give a formal definition.

Definition 4.10 (nonuniform black-box proof for hard-core predicates for hard to invert functions). A pair
(Con,Red) is a nonuniform black-box proof for hard-core predicates for hard to invert functions with
parameters `, `′, ρ, ε, that uses q queries, and t bits of advice if:

• Con is a construction map which given a function f : {0, 1}` → {0, 1}`, produces two functions
Con(f) = (fnewOWF, fpred) such that fnewOWF : {0, 1}`′ → {0, 1}`′ and fpred : {0, 1}`′ → {0, 1}.

• Red(·,·) is a reduction, that is an oracle procedure that given oracle access to functions h : {0, 1}`′ →
{0, 1}, and f : {0, 1}` → {0, 1}, makes at most q queries to each of its two oracles.

Furthermore, for every functions f : {0, 1}` → {0, 1}` and h : {0, 1}`′ → {0, 1} such that:

Pr
x←U`′

[h(fnewOWF(x)) = fpred(x)] ≥ 1

2
+ ε,

there exists α ∈ {0, 1}t, such that:

Pr
x←U`

[Redh,f (f(x), α) ∈ f−1(f(x))] ≥ ρ.

Avoiding trivial constructions: We now explain that it is possible to have black-box proofs that are trivial
and provide hard-core predicates that are hard because of trivial reasons. We need to avoid such trivial
constructions if we want to prove interesting limitations.

Specifically, it is easy to obtain hard-core predicates that are hard because information on fpred(x) is not
present in fnewOWF(x). Indeed, consider the construction Con(f) = (fnewOWF, fpred) with:

fpred(x) = x1, and

fnewOWF(x) = x2, . . . , x`.

In this case, fpred is a hardcore-predicate, because it is impossible (even for unbounded adversaries) to com-
pute fpred(x) when given fnewOWF(x). This means that for this construction map, there is a reduction that
makes q = 0 queries. Consequently, in order to prove lower bounds, we need to avoid such trivial (and unin-
teresting) construction maps, and require that for every f , there exists a function φf : {0, 1}`′ → {0, 1} such
that for every x ∈ {0, 1}`′ , φf (fnewOWF(x)) = fpred(x), meaning that there is information on fpred(x) in
fnewOWF(x).

35

An additional case of a trivial construction that we want to avoid, is the case in which

H∞(fnewOWF(U`′)) < log(1/ρ).

Such a construction is uninteresting, because in such a case, if we define the function ψf : {0, 1}`′ → {0, 1}`′

to output the constant x ∈ {0, 1}` such that

Pr[fnewOWF(U`′) = fnewOWF(x)] ≥ ρ,

(and note that such an x exists ifH∞(fnewOWF(U`′)) < log(1/ρ)) then we get that there is a constant function
ψf such that ψf inverts the function fnewOWF with probability ρ. Such a construction is uninteresting because
in that case fnewOWF is obviously not a one-way function.

This leads to the following characterization of nontrivial construction maps, in which we require that Con
avoids these two trivial examples.

Definition 4.11 (nontrivial construction map). We say that a construction map Con(f) = (fnewOWF, fpred)
is ρ-trivial if it satisfies the following two requirements:

• For every f , the functions (fnewOWF, fpred) produced by Con(f) are such that there exists a function
φf : {0, 1}`′ → {0, 1} such that for every x ∈ {0, 1}`′ , φf (fnewOWF(x)) = fpred(x).

• H∞(fnewOWF(U`′)) ≥ log(1/ρ).

We say that a pair (Con,Red) is ρ-nontrivial, if Con is not trivial.

The role of the number of queries, and black-box impossibility results: We now explain the role of
the parameter q (that measures the number of queries made by Red) and why lower bounds on q translate
into black-box impossibility results. This explanation is similar to the one given in Section 4.1 (with the
modifications explained above).

For this purpose, it is illustrative to examine the argument showing that nonuniform black-box proofs
yield hard-core predicates: When given a pair (Con,Red) that is a nonuniform black-box proof for hard-core
predicates for hard to invert functions with parameters `, `′, ρ, ε, that uses q queries, and t bits of advice, we
obtain that for any function f : {0, 1}` → {0, 1}`, if there exists a circuit C ′ : {0, 1}`′ → {0, 1} of size s′

such that:
Pr

x←U`′
[C ′(fnewOWF(x)) = fpred(x)] ≥ 1

2
+ ε,

then there exists α ∈ {0, 1}t, such that:

Pr
x←U`

[RedC
′,f (f(x), α) ∈ f−1(f((x))] ≥ ρ.

Note that if the reduction Red can be implemented by a circuit of size r, and the function f can be computed
by a circuit of size m, then the circuit C(y) = RedC

′,f (y, α) is a circuit of size:

s = r + t+ q ·m+ q · s′

that inverts f with success probability ρ.
It follows that in a black-box proof, with q queries, and t bits of advice, we get a hard-core theorem that

needs to assume that the original function f cannot be inverted by circuits of size s, for:

s ≥ q + t.

36

4.2.2 Precise statements of limitations

Our main result on black-box proofs for hard-core predicates in the setting of functions that are hard to invert
is the following theorem.

Theorem 4.12. There exists a universal constant β > 0 such that for every sufficiently large ` and `′ we
have that if (Con,Red) is a ρ-nontrivial nonuniform black-box proof for hard-core predicates for hard to
invert functions with parameters `, `′, ρ, ε, that uses q queries, and t bits of advice, and furthermore t ≤ 2`/5,
ρ ≥ 1

2`/5
and ρ ≤ β · ε2, then

q ≥ Ω(
1

εβ
)−O(t+ `).

We now explain why Theorem 4.12 implies the informal statement made in Theorem 1.13. This explana-
tion is essentially identical to the one following Theorem 4.12

Recall that in Section 4.2.1 we explained that when using a nonuniform black-box proof to obtain hard-
core predicates, we get a hard-core predicate theorem in which s ≥ q + t.

Theorem 4.12 implies that for s > `2/β it is impossible for such a proof to establish ε = 1/s
2
β (even if ρ

is very small). This follows as otherwise, using the fact that s ≥ q + t ≥ t, we get that:

q ≥ Ω(
1

εβ
)−O(t+ `) ≥ Ω(s2)−O(t) > s,

which is a contradiction to s ≥ q + t ≥ q. In particular, the parameter setting considered in Theorem 1.13, in
which s = 2o(`) and ε = 1

sω(1) , is impossible to achieve.

4.2.3 Proof of Theorem 4.12

The proof of Theorem 4.12 is similar in structure to the proof of Theorem 4.2 with three main differences:

• Rather than choosing the initial function uniformly from F` (the set of all functions from ` bits to ` bits)
we will restrict the choice to permutations. This is helpful because for a permutation f , the function
f−1 is well defined, and inverting f (that is producing an element in f−1(f(x)) when given f(x)) can
be thought of as computing f−1 that is producing x on input f(x).

• A more significant difference, is that as explained in detail in Section 4.2.1, in the setup of functions
that are hard to invert, the reduction Red has oracle access to f (in addition to oracle access to h).
This means that it is no longer the case that the answer of the reduction on inputs x, α and oracle h is
determined by h, x, α (as the answer depends on f). Therefore, it is not the case that there exists circuits
Ax,α(h) that simulate the reduction (as we argued in Claim 4.5) and we need to be more careful when
showing that for every function f , there exists a circuit Cf (z) that is analogous to the circuit guaranteed
in Claim 4.6.

Furthermore, as Red gets oracle access to f , we can no longer claim that when h is independent of
f , then Red has no information on f . Instead, use results by Gennaro and Trevisan [GT00] showing
that an oracle circuit that makes a subexponential number of queries to a random permutation f , cannot
invert f with high probability.

• Unlike the case of Section 4.1, the distribution that is given as input to h is not necessarily uniform.
More precisely, The distribution of fnewOWF(U`′) (on which h needs to predict the hard-core predicate)
is not necessarily uniform. By the nontriviality condition in Definition 4.11 we have that this distribution
has high min-entropy, and we need to adjust the argument to hold with this weaker requirement.

37

Theorem 4.12 will follow from the next lemma.

Lemma 4.13. There exists a universal constant d, such that for every sufficiently large ` and `′ we have that if
(Con,Red) is a ρ-nontrivial nonuniform black-box proof for hard-core predicates for hard to invert functions
with parameters `, `′, ρ, ε, that uses q queries, and t bits of advice, and furthermore t ≤ 2`/5, ρ ≥ 1

2`/5
and

ρ ≤ ε2

d , then there exists a circuit C of size s = poly(2q, 2`, 2t) and depth d such that:

• Prz←BSCn1
2−2ε

[C(z) = 1] ≥ 0.99.

• Prz←BSCn1
2

[C(z) = 1] ≤ 0.01.

Once again, just like in the previous section, by reduction to the coin problem, Theorem 4.12 follows from
Lemma 4.13.

Proof of Theorem 4.12. The theorem follows directly from Lemma 4.13 and Corollary 2.5, which give that:

s = poly(2q, 2`, 2t) ≥ exp(Ω(d · (1/ε)1/(d−1))),

The statement of Theorem 4.2 follows by taking the logarithm on both sides and setting β = 1/(d− 1).

In the remainder of this section we prove Lemma 4.13. Let (Con,Red) be a nontrivial nonuniform black-
box proof for hard-core predicates for hard to invert functions with parameters `, `′, ρ, ε, that uses q queries,
and t bits of advice. Throughout this section we assume that the requirements made in Lemma 4.13 are met.

We will prove Lemma 4.13 using the following sequence of claims. The proof uses the same structure as
the proof of Lemma 4.3 however, the reduction is now more powerful as it has oracle access to the function
f , and the setting is more general as the distribution fnewOWF(U`) (on which the oracle is judged) is not
necessarily uniform. In this setting, there is no direct analog Claim 4.5, and instead we prove an analog of
Claim 4.14 directly.

Claim 4.14. There exists a universal constant d such that for every permutation f : {0, 1}` → {0, 1}`, there

exists a circuit Cf : {0, 1}2`
′
→ {0, 1} of size poly(2q, 2`, 2t) and depth d such that the following holds for

every z ∈ {0, 1}2`
′
:

• If there exists α ∈ {0, 1}t such that Prx←U` [Redφf⊕z,f (f(x), α) = x] ≥ ρ then Cf (z) = 1.

• If for all α ∈ {0, 1}t, Prx←U` [Redφf⊕z,f (f(x), α) = x] ≤ ρ/10 then Cf (z) = 0.

Proof. The circuit Cf will be hardwired with f and φf (where φf is the function whose existence is guaran-

teed for f by the nontriviality condition in Definition 4.11). Upon receiving an input z ∈ {0, 1}2`
′

it will act
as follows:

• Prepare w = φf ⊕ z. (Here we think of φf , z, w as a string in {0, 1}2`
′
.

• For every x ∈ {0, 1}` and α ∈ {0, 1}t compute Redw,f (f(x), α), and compute bx,α ∈ {0, 1} defined
by:

bx,α =

{
0 Redw,f (f(x), α)) 6= x

1 Redw,f (f(x), α)) = x

• For every α ∈ {0, 1}t, let vα denote the 2` bit long concatenation of all bits (bx,α)x∈{0,1}` (fixing some
order on x ∈ {0, 1}`), and compute

bα = D2`

ρ (vα),

where D2`
ρ is the circuit guaranteed in Lemma 4.4.

38

• Compute the disjunction of the 2t bits (bα)α∈{0,1}t and output it.

It is immediate that the circuitCf performs the task specified in the lemma. We now explain how to implement
the circuit in small size and depth.

The string f can be described by ` · 2` bits. We note that when using the string φf to prepare w, we only
need to have gpred at coordinates y ∈ {0, 1}`′ such that there exists x, α such that Redw,f f(x), α depends
on wy. As on every pair (f(x), α) the reduction Redw,f f(x), α makes at most q queries to its oracle, it can
depend on at most 2q choices of y ∈ {0, 1}`′ . Thus, going over all choices of x ∈ {0, 1}` and α ∈ {0, 1}t,
Cg only requires O(2t · 2` · 2q) bits of φf . Note that any query that the reduction makes to its oracle f , is
a constant that Cf has hardwired (because Cf is hardwired with f). Overall, the size of the advice of Cf is
O(2t · 2` · 2q). The circuit Cf is constant depth by construction, and its size is indeed:

poly(2q, 2`, 2t, 1/ρ) = poly(2q, 2`, 2t),

by the requirement that ρ ≥ 2−`.

We will consider the case where f : {0, 1}` → {0, 1}` is a uniformly chosen permutation, and will

analyze the behavior of Cf on z ← BSC2`
′

1
2
−2ε

and on z ← BSC2`
′

1
2

.

Definition 4.15. Let Π` denote the set of all permutations f : {0, 1}` → {0, 1}`.

Claim 4.16. Pr
f←Π`,z←BSC2`

′
1
2−2ε

[Cf (z) = 1] ≥ 0.999.

Proof. Imagine that f ← Π` is already chosen and fixed. Let (fnewOWF, fpred) = Con(f), and let φf :
{0, 1}`′ → {0, 1} be the function guaranteed by the fact that Con is nontrivial. We now consider the additional

experiment of choosing z ← BSC2`
′

1
2
−2ε

. Let h : {0, 1}`′ → {0, 1} be defined by h = φf ⊕ z. Our goal is to

show that with probability at least 0.999 over choosing z ← BSC2`
′

1
2
−2ε

, we have that:

Pr
x←U`′

[h(fnewOWF(x)) = fpred(x)] ≥ 1

2
+ ε. (2)

This is because whenever f, z satisfy the condition above, then by the properties of Red, we have that there
exists α ∈ {0, 1}t such that:

Pr
x←U`

[Redh,f (f(x), α) = x] ≥ ρ.

which in turn by Claim 4.14 implies that Cf (z) = 1.
By definition, for every x ∈ {0, 1}`′ , φf (fnewOWF(x)) = fpred(x). Consequently, the event{

h(fnewOWF(x)) = fpred(x)
}

that appears in (2) can be expressed as{
h(fnewOWF(x)) = φf (fnewOWF(x))

}
.

As h = φf ⊕ z, this event can also be expressed as{
z(fnewOWF(x)) = 0

}
.

39

Thus, in order to prove the claim, it is sufficient to prove that with probability at least 0.999 over choosing
z ← BSC2`

′

1
2
−2ε

, we have that:

Pr
x←U`′

[z(fnewOWF(x)) = 0] ≥ 1

2
+ ε.

Note that Y = fnewOWF(U`′) is not necessarily uniform. For every y ∈ {0, 1}`′ , we define py = Pr[Y = y].
By the nontriviality of Con we have that H∞(Y) ≥ log(1/ρ), which means that for every y ∈ {0, 1}`′ ,
py ≤ ρ. Thus, in order to conclude the proof, it is sufficient to show that:

Pr
z←BSC2`

′
1
2−2ε

[
∑

y∈{0,1}`′
py · zy <

1

2
− ε] ≥ 0.999.

(This can be thought of as a “weighted version” of Hamming weight in which the py are not all the same).

When z ← BSC2`
′

1
2
−2ε

, the random 2`
′

random variables xy = py · zy (one for each choice of y ∈ {0, 1}`′) are

independent, and lie in the interval [0, ρ]. We have that:

E
z←BSC2`

′
1
2−2ε

[
∑

y∈{0,1}`′
py · zy] =

1

2
− 2ε.

We can apply a Chernoff bound to bound the probability of deviation from the expectation and obtain that:

Pr
z←BSC2`

′
1
2−2ε

[
∑

y∈{0,1}`′
py · zy <

1

2
− ε] ≤ e−Ω(ε

2

ρ
)
,

where the last equality uses ε < 1
4 which we can assume w.l.o.g. By our requirement that ρ is sufficiently

smaller than ε2/100, we get that the probability is indeed larger than 0.999.

On the other hand, we can show that:

Claim 4.17. Pr
f←Π`,z←BSC2`

′
1
2

[Cf (z) = 1] ≤ 0.001.

In order to prove Claim 4.17 we will use the following result by Gennaro and Trevisan [GT00]:10

Theorem 4.18 ([GT00]). For sufficiently large `, for every oracle procedure P (·) that makes at most 2`/5

queries to its oracle, and accepts inputs x ∈ {0, 1}` and α ∈ {0, 1}t for t ≤ 2`/5, it holds that:

Pr
f←Π`

[∃α ∈ {0, 1}t : Pr
x←U`

[P f (f(x), α) = x] ≥ 2−`/5] ≤ 2−2`/2

We now prove Claim 4.17

Proof. (of Claim 4.17) The first step of Cf (z) is to prepare w = φf ⊕ z. However, for p = 1
2 , and f ←

Π`, z ← BSC2`
′

1
2

, we have that w = φf ⊕ z is uniformly chosen, and independent of f .

10In [GT00] the theorem is stated for P which is an oracle circuit of size s = 2`/5 which implies the statement that we give as the
number of circuits of size s is larger than 2t ≤ 22`/5 .

40

Therefore, for any choice of advice α ∈ {0, 1}t oracle access to w does not help the reduction Red(·, α)
to invert f . More precisely, Let P (·)(x, α) be an implementation of Red(·,·) where whenever Red makes a
query to its first oracle h, the query is answered by a fresh uniform random bit. We have that:

Pr
f←Π`,z←BSC2`

′
1
2

[Cf (z) = 1]

≤ Pr
f←Π`,z←BSC2`

′
1
2

[∃α ∈ {0, 1}t : Pr
x←U`

[Redφf⊕z,f (f(x), α) = x] ≥ 2−`/5]

≤ Pr
f←Π`,w←BSC2`

′
1
2

[∃α ∈ {0, 1}t : Pr
x←U`

[Redw,f (f(x), α) = x] ≥ 2−`/5]

≤ Pr
f←Π`

[∃α ∈ {0, 1}t : Pr
x←U`

[P f (f(x), α) = x] ≥ 2−`/5]

≤ 2−2`/2 ≤ 0.001,

where the first inequality follows from Claim 4.14 and where penultimate inequality follows from Theorem
4.18.

The proof of Lemma 4.13 now follows in exactly from Claims 4.16 and 4.17 in exactly the same way as
in the end of the previous section. Specifically:

Proof of Lemma 4.13. From Claims 4.16 and 4.17, it follows that:

Pr
f←Π`

 Pr
z←BSC2`

′
1
2−2ε

[Cf (z) = 0] > 0.01

 ≤ 0.1,

Pr
f←Π`

 Pr
z←BSC2`

′
1
2

[Cf (z) = 1] > 0.01

 ≤ 0.1.

Thus, by a union bound, there exists f : {0, 1}` → {0, 1}` such that

Pr
z←BSC2`

′
1
2−2ε

[Cf (z) = 1] ≥ 0.99,

Pr
z←BSC2`

′
1
2

[Cf (z) = 1] ≤ 0.01.

This completes the proof of the lemma, as Cf satisfies all the other requirements as well.

Conclusion and open problems

Unlike Theorem 1.5 (that handles large ε), Theorem 1.6 (that handles small ε) does not achieve a bound of
q = Ω(log(1/δ)

ε2
), and only achieves a bound of Ω(1√

ε
). A natural open problem is to improve the bound on q

for small ε to match the bound for large ε.

41

In the case of large ε, Theorem 1.5 can be extended to handle local list-decoding from erasures, and gives
a lower bound of q = Ω(log(1/δ)

ε) on the number of queries of local list-decoders that decode from a 1 − ε
fraction of erasures. We do not see how to extend the proof of Theorem 1.6 to erasures.

The model of black-box proofs that we introduce in Section 4 is quite general, and to the best of our
knowledge, covers all known proofs in the literature on hard-core predicates for general one-way functions.
Is it possible to circumvent the black-box limitations and answer open problems 1.8 and 1.12 for specific
candidates for one-way functions?

More generally, is it possible to come up with non-black-box techniques that circumvent the limitations?

Acknowledgment

We are grateful to Ilan Newman for participating in early stages of this research and for many helpful discus-
sions.

Noga Ron-Zewi was partially supported by ISF grant 735/20. Ronen Shaltiel was partially supported by
ISF grant 1628/17. Nithin Varma was partially supported by ISF grant 497/17, and Israel PBC Fellowship for
Outstanding Postdoctoral Researchers from India and China.

References

[Aar10] Scott Aaronson. BQP and the polynomial hierarchy. In Leonard J. Schulman, editor, Proceedings
of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts,
USA, 5-8 June 2010, pages 141–150. ACM, 2010.

[AASY16] Benny Applebaum, Sergei Artemenko, Ronen Shaltiel, and Guang Yang. Incompressible func-
tions, relative-error extractors, and the power of nondeterministic reductions. Comput. Complex.,
25(2):349–418, 2016.

[Ajt83] Miklós Ajtai. Σ1
1-formulae on finite structures. Annals of Pure and Applied Logic, 24(1):1–48,

1983.

[AS11] Sergei Artemenko and Ronen Shaltiel. Lower bounds on the query complexity of non-uniform
and adaptive reductions showing hardness amplification. In Leslie Ann Goldberg, Klaus Jansen,
R. Ravi, and José D. P. Rolim, editors, Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques - 14th International Workshop, APPROX 2011, and 15th
International Workshop, RANDOM 2011, Princeton, NJ, USA, August 17-19, 2011. Proceedings,
volume 6845 of Lecture Notes in Computer Science, pages 377–388. Springer, 2011.

[CGR14] Gil Cohen, Anat Ganor, and Ran Raz. Two sides of the coin problem. In Klaus Jansen, José D. P.
Rolim, Nikhil R. Devanur, and Cristopher Moore, editors, Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2014, September
4-6, 2014, Barcelona, Spain, volume 28 of LIPIcs, pages 618–629. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2014.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In
David S. Johnson, editor, Proceedings of the 21st Annual ACM Symposium on Theory of Comput-
ing, May 14-17, 1989, Seattle, Washigton, USA, pages 25–32. ACM, 1989.

42

[GSV18] Aryeh Grinberg, Ronen Shaltiel, and Emanuele Viola. Indistinguishability by adaptive proce-
dures with advice, and lower bounds on hardness amplification proofs. In Mikkel Thorup, editor,
59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France,
October 7-9, 2018, pages 956–966. IEEE Computer Society, 2018.

[GT00] Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of generic cryptographic
constructions. In 41st Annual Symposium on Foundations of Computer Science, FOCS 2000, 12-
14 November 2000, Redondo Beach, California, USA, pages 305–313. IEEE Computer Society,
2000.

[Gur06] Venkatesan Guruswami. Algorithmic results in list decoding. Foundations and Trends in Theo-
retical Computer Science, 2(2), 2006.

[LSS+19] Nutan Limaye, Karteek Sreenivasaiah, Srikanth Srinivasan, Utkarsh Tripathi, and S. Venkitesh.
A fixed-depth size-hierarchy theorem for AC0[⊕] via the coin problem. In Moses Charikar and
Edith Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 442–453. ACM, 2019.

[Raz87] Alexander Razborov. Lower bounds on the dimension of schemes of bounded depth in a complete
basis containing the logical addition function. Akademiya Nauk SSSR. Matematicheskie Zametki,
41(4):598–607, 1987. English translation in Mathematical Notes of the Academy of Sci. of the
USSR, 41(4):333-338, 1987.

[RRZV18] Sofya Raskhodnikova, Noga Ron-Zewi, and Nithin Varma. Erasures versus errors in local decod-
ing and property testing. Electronic Colloquium on Computational Complexity (ECCC), 25:195,
2018.

[Sha20] Ronen Shaltiel. Is it possible to improve Yao’s XOR lemma using reductions that exploit the
efficiency of their oracle? In Jaroslaw Byrka and Raghu Meka, editors, Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM
2020, August 17-19, 2020, Virtual Conference, volume 176 of LIPIcs, pages 10:1–10:20. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit com-
plexity. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing, pages
77–82, 1987.

[SV10] Ronen Shaltiel and Emanuele Viola. Hardness amplification proofs require majority. SIAM J.
Comput., 39(7):3122–3154, 2010.

[TZ04] Amnon Ta-Shma and David Zuckerman. Extractor codes. IEEE Trans. Inf. Theory, 50(12):3015–
3025, 2004.

[Vio06] Emanuele Viola. The complexity of hardness amplification and derandomization, 2006.

[Yek12] Sergey Yekhanin. Locally decodable codes. Found. Trends Theor. Comput. Sci., 6(3):139–255,
2012.

43

A Proof of Lemma 2.1

In this proof we use the following notation. For two distributions X,Y over the {0, 1}n we say that they are
ε-close if for every event A ⊆ {0, 1}n, |Pr[X ∈ A] − Pr[Y ∈ A]| ≤ ε. We will also use Shannon’s entropy
which we denote by H(X), and the following statement of Pinsker’s lemma:

Lemma A.1 (Pinsker’s lemma). If X is a distribution over {0, 1}n and H(X) ≥ n − ε then, X is
√
ε-close

to Un.

Proof of lemma 2.1. By the requirements on M , we have that H(M) ≥ k − k0.99. The Shannon entropy
function satisfies H(M1) + . . .+H(Mk) ≥ H(M1, . . . ,Mk) and therefore:

H(M1) + . . .+H(Mk) ≥ k − k0.99

It follows that:
Ei←[k]H(Mi) = 1− k−0.01.

By Markov’s inequality, for every c, the fraction of i ∈ [k] such that H(Mi) < 1− c · k−0.01 is less than 1/c.
By Pinsker’s lemma, for every i such that H(Mi) ≥ 1 − c · k−0.01, we have that Mi is

√
c · k−0.01-close to

U1. Therefore,

Pr
m←M,i←[k]

[D(i) = mi] ≤
1

2
+
√
c · k−0.01 + 1/c ≤ 0.5001,

for a sufficiently large constant c.

B Proof of Corollary 2.5

The proof is by reduction to Theorem 2.4.

of Corollary 2.5. For ε′ = Θ(ε), given a circuit C that satisfies:

• Prz←BSCn1
2−ε
′
[C(z) = 1] ≥ 0.99,

• Prz←BSCn1
2

[C(z) = 0] ≤ 0.01.

We will show the existence of a circuit C ′ that satisfies:

• Prz←BSCn1
2−ε

[C ′(z) = 1] ≥ 0.9,

• Prz←BSCn1
2 +ε

[C ′(z) = 0] ≤ 0.1.

We will start by constructing a randomized circuit C ′ which upon receiving input x ∈ {0, 1}n, for every
i ∈ [n] independently, C ′ replaces input bit xi by zero with probability p = 2ε

1+2ε , let x′i denote the obtained
bit, and let C ′(x) = C(x′). The choice of p is made so that for every i:

• If x← BSCn
1
2

+ε
then x′ ← BSCn

1
2

.

• if x← BSCn
1
2
−ε then x′ ← BSCn

1
2
−ε′ for ε′ = ε+ ε · 1−2ε

1+2ε = Θ(ε).

It follows that if C distinguishes between BSCn
1
2
−ε′ and BSCn

1
2

then C ′ satisfies:

• Prz←BSCn1
2−ε

[C ′(z) = 1] ≥ 0.99,

44

• Prz←BSCn1
2 +ε

[C ′(z) = 0] ≤ 0.01.

This gives that:
Pr

z←BSCn1
2−ε

[C ′(z) = 1]− Pr
z←BSCn1

2 +ε

[C ′(z) = 0] ≥ 0.98,

where the probability in the expressions above is also over the randomness of C ′. Therefore, there exists a
fixing of the random coins of C ′ which achieves this gap of 0.98 and, hence, satisfies the requirements on C ′

(this follows because for numbers 0 ≤ p ≤ P < 1 that satisfy P − p ≥ 0.98, it holds that: P ≥ 0.9 and
p ≤ 0.1). We note that the size and depth of C ′ are bounded by the size and depth of C respectively, and the
corollary follows.

45
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

