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Abstract

Nisan and Szegedy [18] conjectured that block sensitivity is at most polynomial
in sensitivity for any Boolean function. Until a recent breakthrough of Huang [15],
the conjecture had been wide open in the general case, and was proved only for a few
special classes of Boolean functions. Huang’s result [15] implies that block sensitivity
is at most the 4th power of sensitivity for any Boolean function. It remains open
if a tighter relationship between sensitivity and block sensitivity holds for arbitrary
Boolean functions; the largest known gap between these measures is quadratic [20, 23,
9, 12, 4, 10].

We prove tighter bounds showing that block sensitivity is at most 3rd power, and in
some cases at most square of sensitivity for subclasses of transitive functions, defined
by various properties of their DNF (or CNF) representation. Our results improve
and extend previous results regarding transitive functions. We obtain these results by
proving tight (up to constant factors) lower bounds on the smallest possible sensitivity
of functions in these classes.

In another line of research, it has also been examined what is the smallest possible
block sensitivity of transitive functions. Our results yield tight (up to constant factors)
lower bounds on the block sensitivity of the classes we consider.

1 Introduction

The sensitivity s(f) of a Boolean function f is the maximum over all inputs x of the number
of coordinate positions i such that changing the value of the i-th bit of x changes the value
of the function. The block sensitivity bs(f) of a Boolean function f is the maximum over all
inputs x of the number of disjoint blocks of positions such that changing the value of all bits
of x in any given block changes the value of the function. (See Section 2 for more formal
definitions.) Nisan and Szegedy [18] conjectured that block sensitivity is at most polynomial
in sensitivity for any Boolean function. A number of important complexity measures (such as
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CREW PRAM complexity, certificate complexity, decision tree depth in various models and
degree) are polynomially related to block sensitivity, and therefore to each other. See [8, 13]
for a survey. Until a recent breakthrough by Huang [15], the best upper bounds on any of
these measures were exponential in terms of sensitivity. The previous best upper bounds on
block sensitivity in terms of sensitivity were by Ambainis et al. [3] giving bs(f) ≤ s(f)2s(f)−1,
and by He et al. [14] who gave a constant factor improvement to this bound. Huang [15]
proved that the degree of a Boolean function f is at most s(f)2. This was further improved
to show that the degree is at most the product of the 0-sensitivity and 1-sensitivity in
[17, 1]. Huang’s result [15] implies that bs(f) ≤ s(f)4 for any Boolean function f . The best
separation between sensitivity and block sensitivity remains quadratic [20, 23, 9, 12, 4, 10].

Despite a lot of attention to the problem, until Huang’s result, the conjecture was verified
only for a few special classes of Boolean functions, including some special classes of transitive
functions, such as symmetric functions, graph properties and minterm-transitive functions.
The following questions have been raised in connection to sensitivity and block sensitivity
of transitive functions.

1. An intriguing aspect of transitive functions is that no examples of transitive functions
are known on n input bits with o(n1/3) sensitivity. Chakraborty [9] constructed a transitive
function on n variables with sensitivity Θ(n1/3). It is implicit in a paper by Sun [22] that for a
transitive function f on n variables, bs(f)·s(f)2 ≥ n. Together with Huang’s result this gives
that any transitive function f on n variables has s(f) ≥ Ω(n1/6). Previously, Chakraborty
[9] proved that every minterm-transitive function f on n variables has s(f) ≥ Ω(n1/3). It
remains open if the sensitivity of every transitive function is at least Ω(n1/3).

2. Another intriguing question is that considering transitive functions with f(0n) 6= f(1n),
we don’t even have any examples with o(n1/2) sensitivity. A remark in the survey [13] in
combination with Huang’s result [15] implies that any transitive function f on n variables
where n is a prime power and f(0n) 6= f(1n) has sensitivity s(f) ≥ Ω(

√
n). However,

this does not seem to directly imply a similar consequence for transitive functions with
f(0n) 6= f(1n) when n is not a prime power, because for a transitive function, a subfunction
obtained by fixing a subset of its bits is no longer necessarily transitive.

3. While it is still open if every transitive function has sensitivity Ω(n1/3), Sun [22] proved
that every transitive function has block sensitivity at least n1/3. This resulted in further
studies of what is the smallest possible block sensitivity of transitive functions. Drucker
[11] showed that minterm-transitive functions must have block sensitivity at least Ω(n3/7).
This bound is tight for the class of minterm-transitive functions: Amano [2] constructed
minterm-transitive functions with block sensitivity O(n3/7), improving constructions of Sun
[22] and Drucker [11] by logarithmic factors. It remains open if transitive functions with
block sensitivity o(n3/7) exist.

1.1 Our Results

In this paper we settle the above questions for some special classes of transitive functions,
significantly extending previous results about subclasses of transitive functions. For the
classes we consider, we show that for functions f on n variables s(f) ≥ Ω(n1/3) which
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implies bs(f) ≤ O(s(f)3). In addition, we prove that the block sensitivity of functions on n
variables in all the classes we consider is at least Ω(n3/7). Furthermore, under the additional
assumption that f(0n) 6= f(1n), we show that s(f) ≥ Ω(

√
n) for transitive functions f

represented by DNF (or CNF) such that the number of positive literals per term is the same
up to constant factors. Previously this was not known to hold for arbitrary values of n, even
for the special case of minterm-transitive functions.

Our lower bounds on both sensitivity and block sensitivity are tight up to constant factors
for the corresponding classes.

We consider the following three subclasses of transitive functions.
Transitive Functions with Sparse DNF (or CNF) We consider transitive functions

that can be represented by DNFs with up to 2n
1
2−ε terms, or by CNFs with up to 2n

1
2−ε

clauses, for constant ε > 0. For any non-constant function f of this form we prove that
s(f) ≥ Ω(min{n1/3, n2ε}). In particular, setting ε = 1/6 gives the bound s(f) ≥ Ω(n1/3) for

transitive functions represented by DNFs (or CNFs) of size up to 2n
1/3

.
Comparing with previous results, we note that any DNF with at most t terms is also a

read-t DNF. Thus, the results of [7] imply that non-constant functions represented by DNFs

with at most n
1
3
−ε terms have sensitivity Ω(nε). Our results significantly improve this to

DNFs with up to an exponential 2n
1
2−ε number of terms, in the case of transitive functions.

Transitive Functions Represented by DNF (or CNF) with a Not-Too-Frequent
Variable We further extend these results to transitive functions represented by DNFs (or

CNFs) of arbitrary sizes, as long as there exists a variable that appears at most 2n
1
2−ε times,

for constant ε > 0. As above, setting ε = 1/6 gives s(f) ≥ Ω(n1/3).
Transitive Functions Represented by DNF (or CNF) with Approximately the

Same Number of Positive Literals per Term
Next we consider transitive functions represented by DNF (or CNF) where the number

of terms as well as the size of the terms (i.e. the width of the DNF) are arbitrary, but the
number of positive literals in each term is the same up to constant factors. We prove for
transitive functions f on n variables with this property that s(f) ≥ Ω(n1/3).

This class significantly extends the previously studied class of minterm-transitive func-
tions. Roughly speaking, minterm-transitive functions have the property that all their 1-
inputs are consistent with minterms that are equivalent to just one minterm, under permu-
tations from the invariance group of the function. Chakraborty [9] proved that minterm-
transitive functions f on n variables have s(f) ≥ Ω(n1/3), and he noted that his argument
extends to the case when the number of positive literals as well as the sizes of each term are
the same up to constant factors. Our contribution is to further extend the argument without
making any assumptions about the sizes of the terms.

Tightness of Our Bounds As noted above, Chakraborty [9] gave an example of a
transitive function on n variables with sensitivity Θ(n1/3), and Amano [2] gave an example
of a transitive function on n variables with block sensitivity Θ(n3/7). Both functions are
minterm-transitive, thus they can be represented by DNFs where each term has the same
number of positive literals. On the other hand, both functions can be represented by DNFs
with n terms, thus they also belong to the other two classes of transitive functions that we
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consider. This shows that our bounds s(f) ≥ Ω(n1/3) and bs(f) ≥ Ω(n3/7) are the best
possible for these classes, up to constant factors.

We give a simple example of a minterm-transitive function f on n variables, with sensitiv-
ity Θ(

√
n) such that f(0n) 6= f(1n). This shows that our Ω(

√
n) lower bound on sensitivity

is tight up to constant factors for the corresponding class.

1.2 Our Techniques

First, we note that our arguments are independent of Huang’s proof [15]. Instead, our results
are based on new upper bounds on the minimum certificate size, that hold for arbitrary
Boolean functions, not just transitive functions. We give two such bounds: one upper
bounds the minimum certificate size by the sensitivity of the function and by the logarithm
of the number of terms of the DNF (Lemma 5), the other relates the minimum certificate
size to the number of occurrences of any given variable and the influence of that variable
(Lemma 6). We note that relating the minimum certificate size to influence has been also
used in [6] in a different context. These upper bounds allow us to take advantage of a result
of Chakraborty [9] (see Corollary 1) which shows that for transitive functions, upper bounds
on the minimum certificate size imply lower bounds on the sensitivity of the function.

We emphasize that our upper bounds on minimum certificate size hold for arbitrary
Boolean functions, not just transitive functions. The part of our arguments that is specific to
transitive functions, is using the fact that for transitive functions, upper bounds on minimum
certificate size imply lower bounds on sensitivity, and the relationship between the influences
of different variables of transitive functions.

We also provide a new, stronger tradeoff between sensitivity and the certificate size on
two special inputs, (0n and 1n), that holds for arbitrary transitive functions (Lemma 8).
This allows us to obtain tight, Ω(

√
n) lower bounds on the sensitivity of functions f on n

variables in our third class, when f(0n) 6= f(1n).
Finally, we observe that upper bounds on the minimum certificate size also provide lower

bounds on block sensitivity of arbitrary transitive functions, (Lemma 11), with a stronger
tradeoff than what follows from tradeoffs between sensitivity and minimum certificate size.
This allows us to obtain tight, Ω(n3/7) lower bounds on the block sensitivity of functions in
all the classes we consider.

2 Preliminaries

Let f : {0, 1}n → {0, 1} be a Boolean function. For x ∈ {0, 1}n and i ∈ [n] we denote by xi

the input obtained by flipping the i-th bit of x. More generally, for S ⊆ [n] we denote by xS

the input obtained by flipping the bits of x in all coordinates in the subset S.

Definition 1. Sensitivity The sensitivity s(f, x) of a Boolean function f on input x is the
number of coordinates i ∈ [n] such that f(x) 6= f(xi). The 0-sensitivity and 1-sensitivity
of f are defined as s0(f) = max{s(f, x) : f(x) = 0} and s1(f) = max{s(f, x) : f(x) =
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1}, respectively. The sensitivity of f is defined as s(f) = max{s(f, x) : x ∈ {0, 1}n} =
max{s0(f), s1(f)}.
Definition 2. Block Sensitivity The block sensitivity bs(f, x) of a Boolean function f
on input x is the maximum number of pairwise disjoint subsets S1, . . . , Sk of [n] such that
for each i ∈ [k] f(x) 6= f(xSi). The 0-block sensitivity and 1-block sensitivity of f are
defined as bs0(f) = max{bs(f, x) : f(x) = 0} and bs1(f) = max{bs(f, x) : f(x) = 1},
respectively. The block sensitivity of f is defined as bs(f) = max{bs(f, x) : x ∈ {0, 1}n} =
max{bs0(f), bs1(f)}.

It is convenient to refer to coordinates i ∈ [n] such that f(x) 6= f(xi) as sensitive bits for
f on x. Similarly, a subset S ⊆ [n] is called a sensitive block for f on x if f(x) 6= f(xS).

Definition 3. Partial assignment Given an integer n > 0, a partial assignment α is a
function α : [n] → {0, 1, ?}. A partial assignment α corresponds naturally to a setting of
n variables (x1, x2, . . . , xn) to {0, 1, ?} where xi is set to α(i). The variables set to ? are
called unassigned or free, and we say that the variables set to 0 or 1 are fixed. We say that
x ∈ {0, 1}n agrees with α if xi = α(i) for all i such that α(i) 6= ?. The size of a partial
assignment α is defined as the number of fixed variables of α.

Definition 4. Certificate For a function f : {0, 1}n → {0, 1} and input x ∈ {0, 1}n a
partial assignment α is a certificate of f on x if x agrees with α and any input y agreeing
with α satisfies f(y) = f(x). A certificate α is a 1-certificate (resp. 0-certificate) if f(x) = 1
(resp. f(x) = 0), on inputs x that agree with α.

Definition 5. Minterms and Maxterms A certificate α is called minimal, if after chang-
ing any of its fixed variables to a free variable, the resulting partial assignment α′ is not
a certificate, that is the function is not constant on inputs agreeing with α′. A minimal
1-certificate is called a minterm, and a minimal 0-certificate is called a maxterm.

Definition 6. Size and Weight of Certificates The size of a certificate α, denoted by
size(α) is defined as the size of the partial assignment α. The weight of a certificate α,
denoted by wt(α), is the number of bits fixed to 1 by α.

Definition 7. Certificate Complexity The certificate complexity C(f, x) of a Boolean
function f on input x is the size of the smallest certificate of f on x. The 0-certificate
complexity and 1-certificate complexity of f are defined as C0(f) = max{C(f, x) : f(x) = 0}
and C1(f) = max{C(f, x) : f(x) = 1}, respectively. The certificate complexity of f is defined
as C(f) = max{C(f, x) : x ∈ {0, 1}n} = max{C0(f), C1(f)}.

It is also useful to consider the following definition of the smallest certificate size over all
inputs. Note that this can be rephrased as the co-dimension of the largest subcube of the
Boolean cube {0, 1}n where f is constant.

Definition 8. Minimum Certificate Size The minimum certificate size of a Boolean
function f : {0, 1}n → {0, 1} is defined as Cmin(f) = min{C(f, x) : x ∈ {0, 1}n}.

We will use the following lemma of Simon [21].

Lemma 1. [21](see also [5]) Let f : {0, 1}n → {0, 1} be a non-constant Boolean function.
Then |f−1(1)| ≥ 2n−s1(f) and |f−1(0)| ≥ 2n−s0(f).
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2.1 Transitive Functions

Definition 9. Invariance Group A Boolean function f : {0, 1}n → {0, 1} is invariant
under a permutation σ : [n]→ [n], if for any x ∈ {0, 1}n, f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)).
The set of all permutations under which f is invariant forms a group, called the invariance
group of f.

Definition 10. Transitive Function A Boolean function is transitive if its invariance
group Γ is transitive, that is, for each i, j ∈ [n], there is a σ ∈ Γ such that σ(i) = j.

For example, the set of all permutations on n bits, denoted by Sn is a transitive group of
permutations. Another example of a transitive group of permutations is the set of all cyclic
shifts on n bits, denoted by Shiftn = {ξ0, ξ1, . . . , ξn−1}, where the permutation ξj cyclically
shifts the string by j positions.

We need the following notation. For a partial assignment α : [n] → {0, 1, ∗} and a
permutation σ on n bits we denote by σ(α) the partial assignment obtained by applying the
partial assignment α to the bits permuted according to σ, that is σ(α)(`) = α(σ−1(`)) for
` ∈ [n] .

Definition 11. Minterm-Transitive Function Let Γ be a transitive group of permuta-
tions. A function f : {0, 1}n → {0, 1} is minterm-transitive under Γ if there exists a minterm
α of f such that f(x) = 1 if and only if x agrees with σ(α) for some σ ∈ Γ.

A function is called minterm-transitive if it is minterm-transitive under some transitive
group of permutations.

We will use the following observations of Chakraborty about transitive functions. Recall
that Sn denotes the group of all permutations on n bits.

We use the following notation: for a set S ⊆ [n] and a permutation σ ∈ Sn we denote by
σ(S) the set {σ(i)|i ∈ S}.

Lemma 2 (4.3 in [9]). Let Γ ⊆ Sn be a transitive group of permutations on n bits. Then,
for any ∅ 6= S ⊆ [n] with |S| = k, there exists Γ̂ ⊆ Γ with |Γ̂| ≥ n

k2
such that for any two

permutations σ1, σ2 ∈ Γ̂ their images on S are disjoint, that is σ1(S) ∩ σ2(S) = ∅.

Lemma 3 (4.4 in [9]). Let f : {0, 1}n → {0, 1} be a non-constant transitive function. Let
α be a 1-certificate (resp. 0-certificate) for some x ∈ {0, 1}n, with size(α) = k > 0. Then,
s0(f) ≥ n

k2
(resp. s1(f) ≥ n

k2
).

Since this lemma is crucial for our arguments, we include its proof.

Proof. [9] Let Γ be the invariance group of f . Let S be the set of bits fixed by α, and let
Γ̂ ⊆ Γ with |Γ̂| = t ≥ n

k2
be the set of permutations guaranteed by Lemma 2. For σi ∈ Γ̂

let αi : [n]→ {0, 1, ∗} denote the partial assignment σi(α) obtained by applying the partial
assignment α to the bits permuted according to σi, that is αi(`) = α(σi(`)) for ` ∈ [n]. Then,
for 1 ≤ i 6= j ≤ t, we have that the set of bits fixed by αi is disjoint from the set of bits fixed
by αj.
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Assume that α is a 1-certificate for f (the proof for a 0-certificate is analogous). In this
case note that for each i ∈ [t], αi is a 1-certificate of f , since each σi belongs to the invariance
group of f .

Now, consider any 0-input z ∈ f−1(0). z must disagree with each 1-certificate αi in at
least one bit. Let T be the set of all bits j such that z disagrees in the bit j with some
certificate αi for i ∈ [t].

Now, let P ⊂ T be a maximal subset of T such that f(zP ) = 0. Since P is maximal,
if we flip any other bit in T\P , the value of the function will change to 1. Therefore,
s0(f) ≥ |T\P |. Also, zP must still disagree with each 1-certificate αi for i ∈ [t], since
f(zP ) = 0. Therefore, |T\P | ≥ t ≥ n

k2
, and we have s0(f) ≥ n

k2
.

Corollary 1. For a non-constant transitive function f : {0, 1}n → {0, 1} we have:

s(f)(Cmin(f))2 ≥ n .

We will also use the following observation of Sun [22].

Lemma 4. [22] Let Γ ⊆ Sn be a transitive group of permutations on n bits. For any
x, y ∈ {0, 1}n, if wt(x) · wt(y) < n, then there exists some σ ∈ Γ, such that σ(x) and y do
not have any 1-s in the same position.

3 Lower Bounds on Sensitivity of Transitive Functions

3.1 Sparse DNF (or CNF)

In this section we prove lower bounds on the sensitivity of transitive functions that can be

represented by DNFs with up to 2n
1
2−ε terms, or by CNFs with up to 2n

1
2−ε clauses, for

constant ε > 0.
We start with a lemma that holds for any Boolean function, transitivity is not required.

Lemma 5. Let f : {0, 1}n → {0, 1} be a non-constant Boolean function. If f can be
represented by a DNF with t terms, then Cmin(f) ≤ s1(f)+log t , and if f can be represented
by a CNF with t clauses, then Cmin(f) ≤ s0(f) + log t .

Proof. We prove the statement about DNFs, the proof for CNFs is analogous. Let f :
{0, 1}n → {0, 1} be a non-constant Boolean function that can be represented by a DNF
with t terms. Notice that for each term of the DNF, we get a 1-certificate by fixing the
variables that appear in the given term, to a value so that the term is satisfied, and leaving
the remaining variables free. This means that the number of variables that participate in
any given term must be at least Cmin(f). Thus, the number of different inputs that satisfy
a given term is at most 2n−Cmin(f). This means that |f−1(1)| ≤ t2n−Cmin(f) . On the other
hand, by Simon’s Lemma (see Lemma 1 in Section 2) |f−1(1)| ≥ 2n−s1(f) . Combining these
two inequalities implies the statement of the lemma.
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We obtain the following theorem.

Theorem 1. Let ε > 0 and let f : {0, 1}n → {0, 1} be a non-constant transitive function

that can be represented by a DNF with up to 2n
1
2−ε terms, or by a CNF with up to 2n

1
2−ε

clauses. Then s(f) ≥ Ω(min{n1/3, n2ε}).

Proof. We prove the statement about DNFs, the proof for CNFs is analogous.
First note that it is enough to prove the statement for 0 < ε ≤ 1/6, since this will imply

that s(f) ≥ Ω(n1/3) whenever ε ≥ 1/6.

Next, notice that if s1(f) ≥ n
1
2
−ε, and ε ≤ 1/6, then the statement obviously holds.

Assume that s1(f) < n
1
2
−ε. Then, by Lemma 5 Cmin(f) ≤ 2n

1
2
−ε, and Corollary 1 implies

that s(f) ≥ Ω(n2ε).

Remark 1. Setting ε = 1/6 gives s(f) ≥ Ω(n1/3) for transitive functions represented by

DNFs (or CNFs) of size up to 2n
1/3

.

3.2 DNF (or CNF) with a Not-Too-Frequent Variable

In this section we further extend the results of the previous section. We show that the
same lower bounds for sensitivity hold for transitive functions represented by DNFs with an
arbitrary number of terms, as long as there exists a variable that appears in no more than

2n
1
2−ε terms, for constant ε > 0. An analogous result holds considering CNFs.
We once again start with an observation that holds for arbitrary Boolean functions, not

just transitive functions.
For a Boolean function f : {0, 1}n → {0, 1}, the influence of the i-th variable, denoted by

Infi(f) is defined as: Infi(f) = Prx[f(x) 6= f(xi)] where the probability is taken over the
uniform distribution on {0, 1}n.

Lemma 6. Let f : {0, 1}n → {0, 1} be a Boolean function that can be represented by a
DNF (or CNF) such that its i-th variable appears in at most k terms (resp. clauses) of the
formula, for some i ∈ [n]. Then we have: Cmin(f) ≤ log k + 1− log Infi(f)

Proof. We prove the statement about DNFs, the proof for CNFs is analogous.
As we noted in the proof of Lemma 5, for each term of the DNF, we get a 1-certificate

by fixing the variables that appear in the given term, to a value so that the term is satisfied,
and leaving the remaining variables free. This means that the number of variables that
participate in any given term must be at least Cmin(f). Thus, the number of different inputs
that satisfy a given term is at most 2n−Cmin(f).

Consider only those k terms that include the variable xi. The number of inputs satisfying
at least one of these terms is at most k2n−Cmin(f). Also, notice that each of the 1-inputs that
are sensitive to the i-th bit must satisfy one of the terms that include the variable xi. (Each
1-input must satisfy at least one term, and an input that is sensitive to xi cannot satisfy
a term that does not depend on xi.) Therefore, the number of 1-inputs that are sensitive
to the i-th bit is at most k2n−Cmin(f). On the other hand, the number of 1-inputs that are
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sensitive to the i-th bit equals Infi(f) ·2n−1. Thus, we get Infi(f) ·2n−1 ≤ k2n−Cmin(f) , and
this gives the statement of the lemma.

We are ready to prove the following theorem for transitive functions.

Theorem 2. Let ε > 0 and let f : {0, 1}n → {0, 1} be a non-constant transitive function
that can be represented by a DNF (or CNF) such that one of its variables appears in at most

2n
1
2−ε terms (resp. clauses) of the formula. Then s(f) ≥ Ω(min{n1/3, n2ε}).

Proof. We prove the statement about DNFs, the proof for CNFs is analogous. As before, it
is enough to prove the statement for 0 < ε ≤ 1/6, since this will imply that s(f) ≥ Ω(n1/3)
whenever ε ≥ 1/6.

Let xi be a variable that appears in at most k = 2n
1
2−ε terms of the DNF. It is known

(see e.g. [19]) that for transitive f , Infi(f) = Infj(f) for any j ∈ [n], and thus Infi(f) =
maxj∈[n] Infj(f). By a theorem of Kahn, Kalai and Linial [16], maxj∈[n] Infj(f) ≥ Ω(p(1−
p) log n/n) , where p is the probability that the function f equals 1. Then, by Lemma 6 we
get Cmin(f) ≤ log k + 1− log Infi(f) ≤ O(log k + 1 + log n+ log 1

p(1−p)) .

Notice that 1
p(1−p) ≥ 2n

1
2−ε implies that min{|f−1(1)|, |f−1(0)|} ≤ 2n+1−n

1
2−ε . Then by

Lemma 1, s(f) ≥ Ω(n
1
2
−ε), which is at least Ω(n2ε) when ε ≤ 1/6.

Otherwise, 1
p(1−p) < 2n

1
2−ε , and we get Cmin(f) ≤ O(n

1
2
−ε) . Then, Corollary 1 implies

that s(f) ≥ Ω(n2ε).

Remark 2. Setting ε = 1/6 gives s(f) ≥ Ω(n1/3) for transitive functions represented by

DNFs (or CNFs) such that one of the variables appears no more than 2n
1/3

times.

3.3 DNF (or CNF) with Approximately the Same Number of Pos-
itive Literals per Term

In this section we consider transitive functions represented by DNFs where the number of
terms as well as the size of the terms (i.e. the width of the DNF) are arbitrary, but the
number of positive literals in each term is approximately the same. In other words, we
consider transitive functions f such that the 1-inputs of f can be covered by subcubes that
correspond to minterms with approximately equal weights.

Note that minterm-transitive functions have this property, since all their minterms have
exactly the same weight. However, a minterm-transitive function f must have a single
minterm α such that every 1-input of f agrees with either α or σ(α) for some σ in the
invariance group of f . Our condition allows f to have a set Λ = {α1, α2, . . .} of an arbitrary
number of different minterms, as long as they have approximately the same weight, and
every 1-input of f agrees with some αi ∈ Λ.
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Note also that we allow the different minterms in Λ to have different sizes, we only
require that they have approximately equal weight. That is, we require that they each set
approximately the same number of bits to 1 but they can set different numbers of bits to 0.

Remark 3. Our arguments would also work if we require the number of bits fixed to 0 to be
approximately the same in each minterm. Analogous results hold for maxterms and CNFs
as well.

First we prove a simple lemma that holds for arbitrary Boolean functions, not just for
transitive functions.

Lemma 7. Let f : {0, 1}n → {0, 1} be a non-constant Boolean function. Let Λ = {α1, α2, . . .}
be a set of minterms of f such that every 1-input of f agrees with some αi ∈ Λ. Let λ1 denote
the smallest number of 1-s fixed by any αi ∈ Λ, and let λ0 denote the smallest number of 0-s
fixed by any αi ∈ Λ. Then, s1(f) ≥ max{λ1, λ0}.

Proof. First note that although f may have minterms that are not included in the set Λ,
every minterm of f must fix at least λ1 bits to 1, and at least λ0 bits to 0. This follows
because every 1-input of f must agree with some minterm from Λ. This also means that
every 1-input x ∈ {0, 1}n must have at least λ1 of its bits equal to 1 and at least λ0 of its
bits equal to 0. Let β1 ∈ Λ be the minterm that fixes exactly λ1 bits to 1. Let y ∈ {0, 1}n
be the input that agrees with β1 on the bits fixed by β1, and is 0 on every free bit of β1.
Then, f(y) = 1, but changing any 1 bit of y we obtain a 0-input of f . Thus, s(f, y) ≥ λ1.
Similarly, let β0 ∈ Λ be the minterm that fixes exactly λ0 bits to 0. Let z ∈ {0, 1}n be the
input that agrees with β0 on the bits fixed by β0, and is 1 on every free bit of β0. Then,
f(z) = 1, but changing any 0 bit of z, we obtain a 0-input of f . Thus, s(f, z) ≥ λ0. This
implies the statement.

Note that the number of minterms in the set Λ can be arbitrarily large. An analogous
statement considering sets of maxterms covering the 0-inputs of f gives a lower bound on
s0(f).

We obtain the following theorem.

Theorem 3. Let f : {0, 1}n → {0, 1} be a non-constant transitive function. Assume that
there is a set Λ = {α1, α2, . . .} of minterms of f such that every 1-input of f agrees with
some αi ∈ Λ. Let w be the weight of the smallest weight minterm in Λ, and assume that for
some constant c, wt(αi) ≤ c · w for all αi ∈ Λ. Then s(f) = Ω(n1/3).

Proof. Let α ∈ Λ be a minterm of f that fixes the smallest number of bits to 0 among the
minterms in Λ. Note that if size(α) ≤ n1/3 then by Corollary 1, we have: s(f) ≥ n

n2/3 ≥ n1/3.

Thus, we can assume that size(α) > n1/3.
Let u denote the number of bits fixed to 0 by α. We consider two cases.

Case 1. u ≥ size(α)
2

. Then, by Lemma 7, s1(f) ≥ u ≥ size(α)
2

> n1/3

2
and we are done.

Case 2. u < size(α)
2

, and thus wt(α) ≥ size(α)
2

. Then we have n1/3 < size(α) ≤ 2 · wt(α) ≤
2cw. By Lemma 7 this gives s(f) = Ω(n1/3).
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A Stronger Tradeoff between Certificate Size and Sensitivity
Our bounds in the previous sections are based on using the tradeoff between minimum
certificate size and sensitivity proved by Chakraborty (see Corollary 1). Next we observe
that considering the certificate size of a transitive function on either the all 0 or all 1 string,
one can obtain a stronger tradeoff between certificate size and sensitivity. More precisely,
we prove the following lemma.

Lemma 8. For a non-constant transitive function f : {0, 1}n → {0, 1},

C(f, 0n) · s(f) ≥ n and C(f, 1n) · s(f) ≥ n .

Proof. We prove the first statement, the proof of the second statement is analogous. Let B
be a minimal block such that f(0n) 6= f((0n)B). Since B is minimal, s(f) ≥ |B|.

Let α be a certificate of f on the all zero input 0n. If size(α) · |B| < n, then, we apply
Lemma 4 to the characteristic vectors of the set of bits that α fixes and the set B. This
gives that there is a σ ∈ Γ where Γ is the invariance group of f , such that σ(α) and B do
not have any indices in common. But this gives a contradiction, since every certificate of f
on 0n must intersect B. Thus, size(α) · |B| ≥ n, which implies the statement.

Lower Bound on Sensitivity when f(0n) 6= f(1n)
We use Lemma 8 to obtain stronger lower bounds on the sensitivity of transitive functions

with approximately equal weight minterms in their DNF representation, under the additional
condition that f(0n) 6= f(1n).

Theorem 4. Let f : {0, 1}n → {0, 1} be a non-constant transitive function, such that
f(0n) 6= f(1n). Assume that there is a set Λ = {α1, α2, . . .} of minterms of f such that every
1-input of f agrees with some αi ∈ Λ. Let w be the weight of the smallest weight minterm in
Λ, and assume that for some constant c, wt(αi) ≤ c ·w for all αi ∈ Λ. Then s(f) = Ω(

√
n).

Proof. First we consider the case when f(0n) = 0. Then, f(1n) = 1, and any DNF repre-
senting f must include a term with only positive literals. For a given DNF representing f ,
let w denote the smallest number of positive literals in any term. Then, by the condition of
the Theorem, C(f, 1n) ≤ c · w for some constant c, and combining Lemma 8 with Lemma 7
we get that s(f) ≥ Ω(

√
n).

In the case when f(0n) = 1, any DNF for f must include a term with only negative
literals, and then our condition implies that the DNF uses only negative literals. That is, in
this case the function must be anti-monotone, which implies that s(f, x) = bs(f, x) = C(f, x)
for every input x. Thus, s(f) ≥ C(f, 0n). Since f(1n) 6= f(0n), f is not constant, and we
can apply Lemma 8, which now directly gives s(f) ≥

√
n.

An example with sensitivity Θ(
√
n) when f(0n) 6= f (1n)

We give a simple example of a minterm-transitive function f on n variables, with sensitiv-
ity Θ(

√
n) such that f(0n) 6= f(1n). This shows that our Ω(

√
n) lower bound on sensitivity

in Theorem 4 is tight up to constant factors for the corresponding class.
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Define f : {0, 1}n → {0, 1} to be a monotone function, with n m interms α1, . . . , αn, each
fixing

√
n bits to 1 as follows. The minterm α1 fixes the first consecutive

√
n bits to 1, and

αi for i ∈ [n] is obtained by cyclically shifting α1 by i− 1 positions.
Note that f(0n) = 0 and f(1n) = 1.
We now show that s(f) = Θ(

√
n).

1. s1(f) =
√
n: Any 1-input is consistent with a minterm of size

√
n, fixing a set of

√
n

bits to 1. Therefore, C1(f) =
√
n = s1(f), since f is monotone.

2. 2
√
n− 4 ≤ s0(f) ≤ 2

√
n: Note that for any 0-input x, the sensitive bits of x must be

0-bits (because f is monotone).

Any sensitive 0-bit must be surrounded by a block of at least (
√
n − 1) consecutive

1s, that is, for any sensitive 0, if the number of consecutive 1’s on its left is a and the
number of consecutive 1s on its right is b, then a+ b ≥

√
n− 1. So for every sensitive

0-bit, there are
√
n− 1 1-bits around it that ar e not sensitive.

Moreover, any 1-bit can only contribute to surrounding at most 2 sensitive 0-bits.
Thus, denoting the number of sensitive 0-bits by n0 we have n0(

√
n− 1) ≤ 2(n− n0),

which gives that s0(f) is at most 2
√
n.

On the other hand, let x = (1(
√
n
2

)01(
√
n
2

)0 . . .). Then, f(x) = 0 and s0(f) ≥ s(f, x) =
2
√
n− 4.

4 Lower Bounds on Block Sensitivity of Transitive Func-

tions

We start with two Lemmas that follow from Drucker’s work [11].

Lemma 9. (Implicit in Lemma 4 in [11]) Let Γ ⊆ Sn be a transitive group of permutations
on n bits and let 5 ≤ r ≤ 15 be an integer.
Then, for any ∅ 6= S ⊆ [n] with |S| ≤ n3/r, there exists Γ̂ ⊆ Γ with |Γ̂| ≥ (16−r)

12
· n(1− 4

r
) such

that for each i ∈ [n], there are at most 3 permutations σj ∈ Γ̂ for which i ∈ σj(S).

Lemma 10. (Implicit in the proof of Theorem 2 in [11]) For any non-constant function
f : {0, 1}n → {0, 1}, if f has a set of 1-certificates Λ = {α1, . . . αt} such that for any index
i ∈ [n], there exist at most three 1-certificates from Λ fixing i, then bs(f) ≥ t

4
.

Combining the above two lemmas, we obtain the following tradeoff between the minimum
certificate size and the block sensitivity of transitive functions.

Lemma 11. For any non-constant transitive function f : {0, 1}n → {0, 1}, and an integer

5 ≤ r ≤ 15, if Cmin(f) ≤ O(n3/r), then bs(f) ≥ Ω(n1− 4
r ).

12



Proof. Let α be a 1-certificate of f of size at most n3/r, and let Sα be the set of bits fixed by
α. By Lemma 9, there exists Γ̂ ⊂ Γ with |Γ̂| ≥ Ω(n1− 4

r ), such that for each i ∈ [n], there are
at most 3 permutations σj ∈ Γ̂ for which i ∈ σj(Sα). Also notice that for every permutation

σj ∈ Γ̂ ⊂ Γ, σj(α) is a 1-certificate of f . The set of 1-certificates {σj(α)|σj ∈ Γ̂} satisfies the

condition of Lemma 10 and thus we have that bs(f) ≥ Ω(n1− 4
r ).

Combining Lemma 11 with our arguments in the previous sections, we prove Ω(n3/7) lower
bounds on the block sensitivity of functions on n bits in each of the classes we considered.

Theorem 5. Let f : {0, 1}n → {0, 1} be a non-constant transitive function. If f can be

represented by a DNF with at most 2n
3/7

terms, or with a CNF with at most 2n
3/7

clauses,
then bs(f) ≥ Ω(n3/7).

Proof. Let f : {0, 1}n → {0, 1} be represented by a DNF with at most 2
n3/7

2 terms.
We now have two cases:
Case 1: Cmin(f) < n3/7. In this case, we use Lemma 11 with r = 7 to give bs(f) ≥

Ω(n3/7).

Case 2: Cmin(f) ≥ n3/7. By Lemma 5, we have: Cmin(f) ≤ s1(f) + n3/7

2
. Thus we have

bs(f) ≥ s1(f) ≥ n3/7

2
and we are done.

As before, we can extend this theorem to DNFs (or CNFs) with an arbitrary number
of terms (resp. clauses) as long as there is at least one variable that is not used too many
times.

Theorem 6. Let f : {0, 1}n → {0, 1} be a transitive function that can be represented by a

DNF (or CNF) such that its i-th variable appears in at most 2n
3/7

terms (resp. clauses) of
the formula, for some i ∈ [n]. Then we have: bs(f) ≥ Ω(n3/7)

Proof. We prove the statement about DNFs, the proof for CNFs is analogous. Let xi be a

variable that appears in at most k = 2
n3/7

3 terms of the DNF.
As noted before (see e.g. [19]), for transitive f , Infi(f) = Infj(f) for any j ∈ [n], and

thus Infi(f) = maxj∈[n] Infj(f).
Recall that by a theorem of Kahn, Kalai and Linial [16],

max
j∈[n]

Infj(f) ≥ Ω(p(1− p) log n/n) ,

where p is the probability that the function f equals 1.
Then, by Lemma 6, for large enough n we get

Cmin(f) ≤ log k + 1− log Infi(f) ≤ log k + 1 + log n+ log
1

p(1− p)
.

Notice that if 1
p(1−p) ≥ 2

n3/7

3 , that implies that min{|f−1(1)|, |f−1(0)|} ≤ 2n+1−n
3/7

3 . Then

by Lemma 1, bs(f) ≥ s(f) ≥ Ω(n3/7).

13



Otherwise, 1
p(1−p) < 2

n3/7

3 , and, for large enough n, we get Cmin(f) ≤ n3/7. Then, using

Lemma 11 with r = 7 gives bs(f) ≥ Ω(n3/7).

Finally, we consider the class of transitive functions represented by DNFs (or CNFs)
where the number of positive literals in each term (resp. clause) is approximately equal.

Theorem 7. Let f : {0, 1}n → {0, 1} be a non-constant transitive function. Assume that
there is a set Λ = {α1, α2, . . .} of minterms of f such that every 1-input of f agrees with
some αi ∈ Λ. Let w be the weight of the smallest weight minterm in Λ, and assume that for
some constant c, wt(αi) ≤ c · w for all αi ∈ Λ. Then bs(f) = Ω(n3/7).

Proof. Let α ∈ Λ be a minterm of f that fixes the smallest number of bits to 0 among the
minterms in Λ. Note that if size(α) ≤ n3/7 then by Lemma 11, we have: bs(f) ≥ Ω(n3/7).
Thus, we can assume that size(α) > n3/7.

Let u denote the number of bits fixed to 0 by α. We consider two cases.
Case 1. u ≥ size(α)

2
. Then, by Lemma 7, bs(f) ≥ s1(f) ≥ u ≥ size(α)

2
> n3/7

2
and we are

done.
Case 2. u < size(α)

2
, and thus wt(α) ≥ size(α)

2
. Then we have n3/7 < size(α) ≤ 2 · wt(α) ≤

2cw. By Lemma 7 this gives bs(f) ≥ s(f) = Ω(n3/7).
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