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Abstract

The graph isomorphism distance between two graphs Gu and Gk is the fraction of entries in
the adjacency matrix that has to be changed to make Gu isomorphic to Gk. We study the problem
of estimating, up to a constant additive factor, the graph isomorphism distance between two
graphs in the query model. In other words, if Gk is a known graph and Gu is an unknown graph
whose adjacency matrix has to be accessed by querying the entries, what is the query complexity
for testing whether the graph isomorphism distance between Gu and Gk is less than γ1 or more
than γ2, where γ1 and γ2 are two constants with 0 ≤ γ1 < γ2 ≤ 1. It is also called the tolerant
property testing of graph isomorphism in the dense graph model. The non-tolerant version
(where γ1 is 0) has been studied by Fischer and Matsliah (SICOMP’08).

In this paper, we study both the upper and lower bounds of tolerant graph isomorphism
testing. We prove an upper bound of Õ(n) for this problem. Our upper bound algorithm
crucially uses the tolerant testing of the well studied Earth Mover Distance (EMD), as the main
subroutine, in a slightly different setting from what is generally studied in property testing
literature.

Testing tolerant EMD between two probability distributions is equivalent to testing EMD
between two multi-sets, where the multiplicity of each element is taken appropriately, and
we sample elements from the unknown multi-set with replacement. In this paper, our (main
conceptual) contribution is to introduce the problem of (tolerant) EMD testing between multi-sets
(over Hamming cube) when we get samples from the unknown multi-set without replacement and to
show that this variant of tolerant testing of EMD is as hard as tolerant testing of graph isomorphism
between two graphs. Thus, while testing of equivalence between distributions is at the heart of
the non-tolerant testing of graph isomorphism, we are showing that the estimation of the EMD
over a Hamming cube (when we are allowed to sample without replacement) is at the heart of
tolerant graph isomorphism. We believe that the introduction of the problem of testing EMD
between multi-sets (when we get samples without replacement) opens an entirely new direction
in the world of testing properties of distributions.
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1 Introduction

Graph isomorphism (GI) has been one of the most celebrated problems in computer science.
Roughly speaking, the graph isomorphism problem asks whether two graphs are structure-
preserving. Namely, given two graphs Gu and Gk, graph isomorphism of Gu and Gk is a bijection
ψ : V(Gu)→ V(Gk) such that for all pair of vertices u, v ∈ V(Gu), the edges {u, v} ∈ E(Gu) if and
only if {ψ(u), ψ(v)} ∈ E(Gk)

1. One central open problem in complexity theory is whether the
graph isomorphism problem can be solved in polynomial time. Recently in a breakthrough result,
Babai [Bab16] proved that the graph isomorphism problem could be decided in quasi-polynomial
time.

For a central problem like the graph isomorphism, naturally, one would like to understand
its (and related problems) computational complexity for various models of computation. While
most of the focus has been on the standard time complexity in the RAM model for various classes
of graphs (and hyper-graphs), other complexity measures like space complexity, parameterized
complexity, and query complexity have also been studied over the past few decades (see the
Dagstuhl Report [BDST15] and PhD thesis of Sun [Sun16]).

A natural extension of the GI problem is to estimate the “graph isomorphism distance" between
two graphs. In other words, given two graphs Gu and Gk, what fraction of edges are necessary to
add or delete to make the graphs isomorphic.

Definition 1.1. Let Gu = (Vu, Eu) and Gk = (Vk, Ek) be two graphs with |Vu| = |Vk| = n. Given a
bijection φ : Vu → Vk, the distance between the graphs Gu and Gk with respect to the bijection φ is

dφ(Gu, Gk) := |{(u, v) : Exactly one among (u, v) ∈ Eu or (φ(u), φ(v)) ∈ Ek holds}| .

The GRAPH ISOMORPHISM DISTANCE (or GI-distance in short) between graphs Gu and Gk is
defined as min

φ:Vu→Vk
dφ(Gu, Gk)/n2, and is denoted by δGI(Gu, Gk) (we will use d(Gu, Gk) to mean

n2δGI(Gu, Gk)).

The problem of computing GI-distance between two graphs is known to be #P-hard [Lin94].
The next natural question is:

What is the complexity for approximating (either by a constant additive or multiplicative factor) the graph
isomorphism distance between two graphs?

In [Lin94], it was also proven that the problem of computing GI-distance between two graphs is
APX-hard. So, approximating δGI(Gu, Gk) up to a constant multiplicative factor is NP-hard. In this
paper, we study this problem of approximating (up to a constant additive factor) the GI-distance
between two graphs in the query model.

1.1 Property Testing of Graph Isomorphism

Formally speaking, the main problem is: given two graphs Gu and Gk and an approximation
parameter ζ ∈ (0, 1), the goal is to output an estimate α such that

δGI(Gu, Gk)− ζ ≤ α ≤ δGI(Gu, Gk) + ζ.

1In a graph G, V(G) and E(G) denote the sets of vertices and edges in G, respectively.
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In the query model, the problem is equivalent (up to a constant factor) to the tolerant property
testing of graph isomorphism in the dense graph model (introduced in the work of Parnas, Ron
and Rubinfeld [PRR06]). For 0 ≤ γ < 1, two graphs Gu and Gk, with n vertices, are called γ-close or
γ-far to isomorphic2 if d(Gu, Gk) ≤ γn2 or d(Gu, Gk) ≥ γn2 respectively. In (γ1, γ2)-tolerant GI testing,
we are given two graphs Gu and Gk, and two parameters 0 ≤ γ1 < γ2 ≤ 1, with the guarantee that
either the graphs are γ1-close or γ2-far. One of the graphs (usually denoted as Gu) is accessed by
querying the entries of its adjacency matrix. In contrast, the other graph (usually denoted as Gk

3)
is known to the query algorithm, and no cost for accessing the entries of the adjacency matrix of Gk
is incurred. The query complexity is the number of queries (to the adjacency matrix of Gu) that are
required for testing, (with correctness probability at least 2/3 4.), whether Gu and Gk are γ1-close or
γ2-far. The query algorithm is assumed to have unbounded computational power.

The non-tolerant property testing version of the graph isomorphism problem (that is, when γ1 =
0) was first studied by Fischer and Matsliah [FM08] and subsequently, Babai and Chakraborty [BC10]
studied the non-tolerant property testing version of the hypergraph isomorphism problem. Like
many other problems in property testing, the core difficulty in testing of GI is understanding certain
properties of distributions. In the case of the non-tolerant version of GI, it was shown in [FM08] that
the core problem is the testing the variation distance between two distributions. In fact, their upper
bound result can be restated as: if there is a property testing algorithm, with query complexity
q(n) for testing equivalence between two distributions, on support size n 5, then GI can be tested
using Õ(q(n)) queries, where the tilde hides a polylogarithmic factor of n (number of vertices).
And since the query complexity for testing equivalence of distributions (from [BFF+01]) is known
to be Õ(

√
n), the query complexity for GI-testing was Õ(

√
n). In the lower bound proof of [FM08],

there was no direct reduction of the graph isomorphism problem to the variation distance problem.
But it is important to note that lower bound proofs for both of these problems use the tightness of
the birthday paradox. So in some sense, one can say that the heart of the non-tolerant testing of GI is
in the testing of variation distance between two distributions.

In this paper, we consider both the upper and lower bound on the query complexity of the
tolerant version of the GI between a known and an unknown graph. Similar to the case of non-
tolerant testing of GI, we show that the heart of the problem of tolerant testing of GI is in testing a
certain property of distributions - but with a slight and surprising twist.

1.2 Earth Mover’s Distance (EMD)

Let H = {0, 1}n be a Hamming cube of dimension n, and p, q be two probability distributions
on H. The Earth Mover’s Distance between p and q is denoted by EMD(p, q) and defined as the
optimum solution to the following linear program:

Minimize ∑
i,j∈H

fijdH(x, y) Subject to ∑
j∈H

fij = p(i) ∀i ∈ H, and ∑
i∈H

fij = q(j) ∀j ∈ H.

A standard way to think of sampling from any probability distribution is to consider it as a

2As a shorthand, rather than saying γ-close or γ-far to isomorphic, we will just say γ-close or γ-far respectively.
3Gu and Gk denote the unknown and known graphs respectively.
4The correctness probability can be made any 1− δ by incurring a multiplicative factor of O(log 1

δ ) in the query
complexity

5Testing equivalence between two distributions means to test if the unknown distribution (from where the samples
are drawn) is identical to the known distribution or is the variation distance between them more than ε.
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multi-set of elements with appropriate multiplicities, and samples are drawn with replacement
from that multi-set. While estimating EMD between two multi-sets, although the most natural
way to access the unknown multi-set is sampling with replacement, we introduce the problem of
tolerant EMD testing over multi-sets with the access of samples without replacement.

Definition 1.2 (EMD over multi-sets while sampling with and without replacement). Let Sk and
Su denote the known and the unknown multi-sets, respectively, over n-dimensional Hamming
cube H = {0, 1}n such that |Su| = |Sk| = n. Consider the two distributions pu and pk over the
Hamming cube H that are naturally defined by the sets Su and Sk where for all x ∈ H probability
of x in pu (and pk) is the number of occurrences of x in Su (and Sk) divided by n. We then define the
EMD between the multi-sets Su and Sk as

EMD(Su, Sk) , n · EMD(pu, pk).

The problem of estimating the EMD over multi-sets while sampling with (or without) replace-
ment means designing an algorithm, that given any two constants β1, β2 such that 0 ≤ β1 < β2 ≤ 1,
and access to the unknown set Su by sampling with (or without) replacement decides whether
EMD(Sk, Su) ≤ β1n2 or EMD(Sk, Su) ≥ β2n2 with probability at least 2/3.

Note that estimating the EMD over multi-sets while sampling with replacement is exactly same
as estimating EMD between the distributions pu and pk with samples drawn according to pu.

We will denote by QWREMD(n, β1, β2) (and QWOREMD(n, β1, β2)) the number of samples
with (or without) replacement required to decide the above from the unknown multi-set Su. For
ease of presentation, we will write QWOREMD(n) (QWREMD(n)) instead of QWOREMD(n, β1, β2)
(QWREMD(n, β1, β2)) when the proximity parameters are clear from the context.

Earth Mover’s Distance (EMD) is a fundamental metric over the space of distributions supported
on a fixed metric space. Estimating EMD between two distributions, up to a multiplicative factor,
has been extensively studied in mathematics and computer science. It is closely related to the
embedding of the EMD metric into a `1 metric. Even the problem of estimation of EMD between
distributions up to an additive factor has been well studied. The hardness of estimating EMD
between distributions depends heavily on the structure of the domain on which the distributions
are supported. In [DBNNR11], the authors have proved a lower bound of Ω((∆/ε)d) on the query
complexity for estimating (up to an additive error of ε) EMD between two distributions supported
on the real cube [0, ∆]d. At the same time, it is not hard to see that if the support has certain
structures, estimating EMD may be easy. In this paper, we focus on the estimation of EMD between
two distribution when the metric space is the Hamming cube.

As noted earlier, sample access to a probability distribution is precisely the same as uniform
sampling from a multi-set with replacement. Thus from the results of Valiant and Valiant [VV11],
it can be shown that the sample complexity for estimating the EMD between two distribution over
the Hamming cube of dimension n is Ω(n/ log n). In other words, QWREMD(n) = Ω(n/ log n),
and this is tight ignoring polynomial factor in log n (See Theorem B.10 of Appendix B). But what
about QWOREMD(n)? To the best of our knowledge, the sample complexity measure when the
distributions are accessed by sampling a multi-set without replacement has never been studied
before, even for other properties of distributions. But it can be shown that: if QWOREMD(n) =
o(
√

n), then QWREMD(n) = o(
√

n) (See Proposition B.7 of Appendix B). As QWREMD(n) =
Ω(n/ log n), we have a lower bound of Ω(

√
n) on QWOREMD(n). To the best of our knowledge,

there is no technique or result that would help us obtain a better lower bound than Ω(
√

n) for
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QWOREMD(n), although a lower bound of Ω(n/ log n) exists for QWREMD(n). We present the
following conjecture:

Conjecture 1. There exist two constants β1 and β2 with 0 < β1 < β2 < 1 such that in order to decide
whether EMD(Sk, Su) ≤ β1n2 or EMD(Sk, Su) ≥ β2n2, with probability at least 2/3, Ω( n

log n ) samples
without replacement from the unknown multi-set Su are necessary.

One of our main contributions in this paper is introducing this complexity measure of QWOREMD(n)
as well as the above conjecture. In the rest of the paper, we prove the central role of this problem
plays in understanding the query complexity of tolerant GI-testing.

For a formal discussion on EMD over Hamming cube, please refer to Appendix B.

1.3 Our Results

Our main result of this paper is that we prove estimating GI-distance is as hard as tolerant EMD
testing over multi-sets with the access of samples without replacement over the unknown multi-set
Su, ignoring polynomial factors of log n.

Theorem 1.3. Let Gk and Gu denote the known and the unknown graphs on n vertices, respectively, and
QGI(Gu, Gk) denotes the number of adjacency queries to Gu, required by the best algorithm that takes two
constants γ1, γ2 with 0 ≤ γ1 < γ2 ≤ 1 and decides whether d(Gu, Gk) ≤ γ1n2 or d(Gu, Gk) ≥ γ2n2 with
probability at least 2/3. Then

QGI(Gu, Gk) = Θ̃
(
QWOREMD(n)

)
where Θ̃(·) hides polynomial factors in 1

γ2−γ1
and log n.

Note that QWOREMD(n) = O(n). As a corollary to the above theorem, we obtain an upper
bound on the query complexity of estimating GI-distance.

Corollary 1.4 (Upper bound of estimating GI-distance). Given a known graph Gk and an unknown
graph Gu and any approximation parameter ζ ∈ (0, 1), there is a query algorithm that makes Õ (n) queries
and outputs a number α such that, with probability at least 2/3, the following holds:

δGI(Gu, Gk)− ζ ≤ α ≤ δGI(Gu, Gk) + ζ.

Let us now consider the case when β1 = 0 and β2 = γ in Definition 1.2. For this set of
parameters, it can be shown that QWREMD(n) = Ω(

√
n), which follows from the result on sample

complexity of identity testing of distributions by Batu et.al [BFF+01]. This implies that for β1 = 0
and β2 = γ, QWOREMD(n) = Ω(

√
n). Following Proposition B.7 along with Theorem 1.3, we

can get an alternative proof of the following lower bound proved by Fischer and Matsliah [FM08].

Corollary 1.5 (Fischer and Matsliah [FM08]). There exists a constant ζ ∈ (0, 1) such that any query
algorithm that decides, with probability at least 2/3, if a known graph Gk and an unknown graph Gu is
isomorphic or γ-far from isomorphic, with γ ≤ ζ, must make Ω(

√
n) queries.

Although we do not have any non-trivial lower bound of tolerant EMD testing over multi-sets,
we conjecture (in Conjecture 1) that the bound is tight, ignoring polynomial factors of log n. Note
that if Conjecture 1 is true, then following Theorem 1.3, we can say that there exists a constant
ζ ∈ (0, 1) such that any query algorithm that estimates the GI-distance between a known graph Gk
and an unknown graph Gu up to an additive factor of ζ, with correctness probability at least 2/3,
must make Ω(n/ log n) queries.
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Organization of the paper. In Section 2, we discuss the proof techniques of our main results. We
present the lower bound and upper bound proofs of Theorem 1.3 in Sections 3 and 4 respectively.
We finally conclude in Section 5. Every theorem, lemma, and claim, whose proof has been moved
to the appendix, is marked with ?.

Notations All graphs considered here are undirected, unweighted, and have no self-loops or
parallel edges. For a graph G(V, E), V(G) and E(G) will denote the vertex set and the edge set
of G, respectively. Since we are considering undirected graphs, we write an edge (u, v) ∈ E(G)
as {u, v}. The Hamming distance between two points x and y in a Hamming cube {0, 1}k will be
denoted by dH(x, y).

2 Discussion on our Proofs

2.1 Discussion on the lower bound proof for query complexity

For the lower bound part of our Theorem 1.3, we give a reduction from estimating EMD of
multi-sets over the Hamming cube without replacement to estimating the GI-distance between
two graphs.

In this reduction, we have crucially used the fact that the multi-sets are composed of elements
from the Hamming cube. The reduction is kind of a clever but somewhat involved gadget construc-
tion. In fact we show the lower bound for a slightly more powerful query rather than the standard
adjacency matrix query that is commonly used in the dense graph model of property testing. The
most interesting part of our lower bound proof is that thanks to our reduction, we get to observe
the importance of the model of accessing the multi-set without replacement in the context of EMD
testing. We are not aware of any previous work in property testing where this model of accessing a
set by sampling without replacement has been studied.

One might compare our proof technique to the lower bound proof of (non-tolerant) testing
of GI from [FM08]. In [FM08], Ω

(√
n
)

lower bound was proved directly (using Yao’s lemma) by
constructing two distributions of YES instances and NO instances - the construction of the YES
and NO instances were inspired from the tightness of the birthday paradox, which was also the
core idea behind the lower bound proof of the equivalence testing of two probability distributions.
But, there was no direct reduction from equivalence testing of two probability distributions to
GI testing. But in our lower bound proof, we establish a direct reduction to estimating EMD of
multi-sets on the Hamming cube without replacement. This can be of much importance, mainly
while considering other models of computation, like in the communication model. From our
reduction, we can obtain an alternative proof of Ω(

√
n) lower bound for the (non-tolerant) GI

testing via the Ω(
√

n) lower bound of the equivalence testing of distributions, as pointed out in
Corollary 1.5.

2.2 Discussion on the upper bound proof for query complexity

The upper bound part of Theorem 1.3 is the main technical contribution of this paper. For the
upper bound proof of the tolerant GI testing, our query algorithm is inspired by the algorithm
of Fischer and Matsliah [FM08] for non-tolerant GI testing, but at the same time, our algorithm
and its analysis are very different from that of [FM08] and is way more complicated and involved.
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Fischer-Matsliah’s algorithm is very much tuned for the non-tolerant version of GI testing. They
essentially use the fact that if Gu and Gk are isomorphic, then there is a mapping between the
vertex sets that makes the edge sets identical. Their algorithm tries to find whether such a mapping
exists by cleverly querying induced subgraphs of Gu and checking if there exists a mapping of the
queried vertices into the vertex set of Gk that can be extended to the whole of the vertex set. So, if for
a mapping, there is an edge in Gu but not in Gk (or vice versa), it is rejected immediately. Let us
first recollect Fischer-Matsliah’s algorithm (FM-ALG).

FM-ALG has two phases. In the first phase, they query an induced subgraph (on O(log2 n)
vertices) of Gu. The set of vertices of the induced graph is called the “core" set of vertices. They
identify all the possible placements of the core set in the known graph Gk. Since they were only
interested in the non-tolerant setting, a possible placement is a mapping of the vertices in the
core set into the vertices of Gk such that the edge sets are not conflicting. The core set of vertices
defines a label for each vertex in Gu: label of vertex v is the vector representing its neighbors in
the core set. The collection of labels of vertices in Gu can be thought of as a distribution µu on
the set of all possible labels. Similarly, for each placement c, of the core set into Gk, the labels
of the vertices in Gk gives the distribution µc

k. Finally, in Phase 1, they test a “global property"
of the graph by testing if for a particular placement c, the variation distance between µc

k and µu
is zero or more than ε. This can be done simultaneously for all possible placements with query
complexity Õ(

√
n), using (non-tolerant) testing algorithm for equivalence of distributions from

[BFF+01]. Only those placements that pass the test are kept as “possible placements". In Phase
2, a newly induced subgraph of Gu (on O(log4 n) vertices) is queried along with the labels of all
the newly selected vertices. If there exists a possible placement that can be extended to a suitable
placement of the new vertices, the tester outputs that Gu is isomorphic to Gk.

FM-ALG cannot be adapted to tolerant GI testing. To start with, if Gu and Gk are close, every
possible mapping of the core set into vertices of Gk can be extended into a mapping of the whole
vertex set such that the edge sets of Gu and Gk are close (but not necessarily identical). So, no
placement can be ruled out easily. Likewise, if Gu and Gk are close, the distribution µu and µc

k
may be close in variation distance (but not necessarily identical). So, one possible option is to
use tolerant testing of distributions for µu and µc

k. But, the proof of correctness of the algorithm
would not go through even with the tolerant testing of the equivalence of distributions. The central
innovation in our upper bound result is that we use Earth Mover’s Distance instead of variation
distance between the distributions µu and µc

k for testing the “global property". In order to handle all
these technical hurdles, our algorithm and its analysis become much more delicate and involved.

3 Lower Bound Results

In this section, we prove that it is necessary to perform Ω
(
QWOREMD(n)

)
many queries to

the adjacency matrix of Gu to solve (γ1, γ2)-tolerant GI testing of Gk and Gu.

Theorem 3.1 (Restatement of the lower bound part of Theorem 1.3). Let Gk be the known and Gu be
the unknown graph on n vertices, where n ∈ N is sufficiently large. There exists a constant εISO ∈ (0, 1)
such that for any given constants γ1, γ2 with 0 < γ1 < γ2 < εISO, any algorithm that decides whether the
graphs are γ1-close or γ2-far, requires QWOREMD(n) adjacency queries to the unknown graph Gu where
QWOREMD is as defined in Definition 1.2.
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To prove Theorem 3.1, we show a reduction from tolerant GI testing to tolerant EMD testing
over multi-sets when we have samples without replacement from the unknown multi-set.

Lemma 3.2. Suppose there is a constant ε0 ∈
(
0, 1

2

)
such that for all constants γ1, γ2 with 0 < γ1 <

γ2 < ε0 and any constant T ∈ N, the following holds. There exists a (γ1, γ2)-tolerant tester for GI that,
given a known graph Gk and an unknown graph Gu with |V(Gu)| = |V(Gk)| = (T + 1)n, can distinguish
whether d(Gu, Gk) ≤ γ1Tn2 or d(Gu, Gk) ≥ γ2Tn2 by performing Q adjacency queries to Gu.

Then, for any constants β1 and β2 with 0 < β1 < β2 < ε0
2 , the following holds where κ = β2−β1

8 and
Tκ = d 18

κ(2−κ)
e. There is a tolerant tester for EMD such that, given a known and an unknown multi-set

Sk and Su respectively, of the Hamming cube {0, 1}Tκn with |Sk| = |Su| = n, can distinguish whether
EMD(Sk, Su) ≤ β1Tκn2 or EMD(Sk, Su) ≥ β2Tκn2 with Q many samples without replacement from Su.

Remark 1. Observe that Lemma 3.2 talks about tolerant EMD testing between multi-sets with n
elements over a Hamming cube of dimension Tκn. But Theorem 3.1 states the lower bound of
QWOREMD(n), that is, of tolerant EMD testing of multi-sets with n elements over a Hamming
cube of dimension n. However, the query complexity of EMD testing increases with the dimension
of the Hamming cube (See Proposition B.9). So, we will be done with the proof of Theorem 3.1 by
proving Lemma 3.2.

3.1 Tolerant GI to Tolerant EMD testing: Proof of Lemma 3.2

To define the necessary reduction for the proof of Lemma 3.2, we need to show the existence of
a graph Gp satisfying some unique properties.

Lemma 3.3 (?). Let κ ∈ (0, 1) and s ≥ 3 be given constants. Then for Cκ,s = d 6s
κ(2−κ)

e and sufficiently

large n ∈N 6, there exists a graph Gp with Cκ,sn many vertices such that the following conditions hold.

(i) The degree of each vertex in Gp is at least ((1− κ)Cκ,s + 1)n− 1.

(ii) The cardinality of symmetric difference between the sets of neighbors of any two (distinct) vertices in Gp
is at least sn− 2.

The proof of Lemma 3.3 uses probabilistic method and is presented in the Appendix C.1.
Let ALG(γ1, γ2, T) be the algorithm that takes γ1 and γ2 with 0 < γ1 < γ2 < ε0 as input and

decides whether d(Gk, Gu) ≤ γ1Tn2 or d(Gk, Gu) ≥ γ2Tn2, where |V(Gk)| = |V(Gu)| = (T + 1)n.
Now we show that for any two constants β1 and β2 with 0 < β1 < β2 < ε0

2 , κ = β2−β1
8 and

Tκ = d 6s
κ(2−κ)

e, there exists an algorithm A(β1, β2, κ, Tκ) that can test whether two multi-sets Sk

and Su over the Tκn-dimensional Hamming cube have EMD less than Tκ β1n2 or more than Tκ β2n2

with Q many queries to the multi-set Su. To be specific, algorithm A(β1, β2, κ, Tκ) for EMD testing
will use algorithm ALG(γ1, γ2, T) for (γ1, γ2)-tolerant GI such that γ1 = 2β1, γ2 = 2β2 − 2κ and
T = Tκ. Note that, as 0 < β1 < β2 < ε0

2 and κ = β2−β1
8 , 0 < γ1 < γ2 < ε0 holds. The details of the

reduction, that is, algorithm A is described below.

6The lower bound of n is a constant that depends on κ and s.
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Description of the reduction

Input: A known multi-set Sk = {k1, . . . , kn} over HTκn = {0, 1}Tκn and query access to an unknown
multi-set Su = {u1, . . . , un} over HTκn.

Goal: To decide whether EMD(Sk, Su) ≤ Tκ β1n2 or EMD(Sk, Su) ≥ Tκ β2n2.

Construction of Gk and Gu from Sk and Su: Let us first construct the graph Gk from Sk. Gk has
(Tκ + 1)n vertices partitioned into two parts Ak = {a1, . . . , an} and Bk = {b1, . . . , bTκn}. Now
the edges of Gk are described as follows:

• Gk[Ak] is a clique with n vertices.

• Gk[Bk] is a copy of the graph Gp(Vp, Ep) on Tκn vertices as stated in Lemma 3.3 with
parameters s = 3, κ = β2−β1

8 and Tκ = Cκ,3.

• For the cross edges between the vertices in Ak and Bk, we add the edge (ai, bj) to E(Gk)
if and only if the j-th coordinate of ki is 1 for all i ∈ [n] and j ∈ [Tκn].

Note that the graph Gk constructed above is unique for a given multi-set Sk. The graph Gu with
the vertex sets Au = {a′1, . . . , a′n} and Bu = {b′1, . . . , b′Tκn} is constructed from the multi-set Su in a
similar fashion, but at the end, the vertices of Au are permuted using a random permutation. So,

• Gu[Au] is a clique with n vertices.

• Gu[Bu] is a copy of the graph Gp(Vp, Ep) on Tκn vertices as stated in Lemma 3.3, with parame-
ters s = 3, κ = β2−β1

8 and Tκ = Cκ,3.

• Let us first pick a random permutation π on [n]. For the cross edges between the vertices in
Au and Bu, we add the edge (a′π(i), bj) to E(Gu) if and only if the j-th coordinate of ui is 1 for
all i ∈ [n] and j ∈ [Tκn].

Note that our final objective is to prove a lower bound on the query complexity for tolerant
testing of GI, that is, when we have an adjacency query access to Gu. We will instead show that the
lower bound holds even if we have the following query access, named as Au-neighborhood-query:
the tester can choose a vertex a′i ∈ Au and in one go obtain the information about the entire
neighborhood of a′i in Bu.

Observe that the only part of Gu that is not known to the tester is the cross edges between Au
and Bu. So, in this case, the Au-neighborhood query is way more stronger than the standard queries
to Gu, and a lower bound for the Au-neighborhood query would imply a lower bound on adjacency
query.

Simulating Queries to Gu using samples drawn from Su without replacement

Following the above discussion, we will only have to show how to simulate Au-neighborhood
queries using samples drawn from Su without replacement. So, we can assume that the queries are
of the form: what are the neighbors of a′i in Bu? And since in each query the entire neighborhood of
a′i is obtained, the tester would pick different a′i for every query. Note that in Gu, by construction,
the vertices of Au were permuted using a random permutation. So, from the point of view of the
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tester, the a′i are just randomly drawn from Au minus the set of a′i already queried. In other word,
the a′i are just randomly drawn from Au without replacement. Now because of the way the edges
between Au and Bu are constructed, the neighborhood of a random a′i drawn from Au without
replacement is same as obtaining random samples from Su without replacement.

It is also important to note that because of the randomness, the queries made by the tester are
actually non-adaptive.

Description of algorithm A for testing EMD(Sk, Su)

Run ALG on Gk and Gu with parameters γ1 = 2β1 and γ2 = 2β2 − 2κ. If ALG reports
d(Gk, Gu) ≤ Tκγ1n2, output that EMD(Sk, Su) ≤ Tκ β1n2. Similarly, if ALG reports that d(Gk, Gu) ≥
Tκγ2n2, then output EMD(Sk, Su) ≥ Tκ β2n2.

Proof of Correctness of the reduction

To prove the correctness of the above reduction, let us first consider the following definition of
SPECIAL bijection and its connection with EMD(Sk, Su).

Definition 3.4 (Special bijections). A bijection φ from V(Gk) to V(Gu) is said to be SPECIAL if
φ(Ak) = Au, φ(Bk) = Bu and φ(bi) = b′i for all bi ∈ Bk. The set of all special bijections from V(Gk)
to V(Gu) will be denoted by Φ, and dΦ(Gk, Gu) := min

φ∈Φ
dφ(Gk, Gu).

Lemma 3.5. Let Sk, Su be the known and unknown multi-sets, respectively. Then dΦ(Gk, Gu) = 2 ·
EMD(Sk, Su).

Proof. We will first prove that dΦ(Gk, Gu) ≤ 2 · EMD(Sk, Su).
Recall that Sk = {k1, . . . , kn} and Su = {u1, . . . , un} be the known and unknown multi-sets

over the Hamming cube HTκn = {0, 1}Tκn. Also, note that Gu and Gk are the unknown and known
graphs with vertex bipartitions Au, Bu and Ak, Bk respectively as discussed earlier. Let ψ : Sk → Su
be an optimal bijection that realizes EMD(Sk, Su). Now, we will construct another bijection ψ′ ∈ Φ
such that dψ′(Gk, Gu) = 2 · EMD(Sk, Su).

We construct the bijection ψ′ ∈ Φ from V(Gk) to V(Gu) as follows: for each i, j ∈ [n], ψ′(ai)
= a′j if and only if ψ(ki) = uj; for each ` ∈ [Tκn], ψ′(b`) = b′`. From the construction of ψ′ and by
the definition of dψ′(Gk, Gu) (See Definition 1.1), it is clear that dψ′(Gk, Gu) = 2 · EMD(Sk, Su). Since
dΦ(Gk, Gu) = min

φ∈Φ
dφ(Gk, Gu), we can say dΦ(Gk, Gu) ≤ dψ′(Gk, Gu) = 2 · EMD(Sk, Su).

Now we will prove the other way around, that is, we will show that EMD(Sk, Su) ≤ dΦ(Gk ,Gu)
2

holds as well. Let ψ ∈ Φ be a bijection from V(Gk)→ V(Gu) that realizes dΦ(Gk, Gu). By definition
of Φ, we can assume that ψ(bi) = b′i for each i ∈ [Tκn]. Now, let us consider a bijection ψ′ from the
multi-set Sk to Su defined as follows: ψ′(ki) = uj if and only if ψ(ai) = a′j for all i, j ∈ [n]. Observe

that ∑
i∈[n]

dH(ki, ψ′(ki)) =
dψ(Gk ,Gu)

2 . Thus, EMD(Sk, Su) ≤ ∑
i∈[n]

dH(ki, ψ′(ki)) =
dψ(Gk ,Gu)

2 = dΦ(Gk ,Gu)
2 .

Putting everything together, we have dΦ(Gk, Gu) = 2 · EMD(Sk, Su).

Now, using the following lemma, we will show how dΦ(Gk, Gu) is related to d(Gu, Gk), where
Φ is the set of all SPECIAL bijections.
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Lemma 3.6. Let Φ be the set of all SPECIAL bijections from V(Gk) to V(Gu). Also, let dΦ(Gk, Gu) =
min
φ∈Φ

dφ(Gk, Gu). Then dΦ(Gk, Gu)− 2κTκn2 ≤ d(Gk, Gu) ≤ dΦ(Gk, Gu). 7

Proof. Note that d(Gk, Gu) ≤ dΦ(Gk, Gu) follows from their definitions.
For the proof of the other side of the inequality, let us consider a bijection ψ : V(Gk)→ V(Gu)

that realizes d(Gk, Gu), that is, d(Gk, Gu) = dψ(Gk, Gu). If ψ is a bijection such that ψ ∈ Φ, then
dΦ(Gk, Gu) − 2κTκn2 ≤ d(Gk, Gu) holds. So, let us assume that ψ /∈ Φ. Then we will show
that there exists a bijection φ ∈ Φ such that dφ(Gk, Gu) ≤ dψ(Gk, Gu) + 2κTκn2, which will imply
dΦ(Gk, Gu) ≤ dψ(Gk, Gu) + 2κTκn2, that is, dΦ(Gk, Gu)− 2κTκn2 ≤ d(Gk, Gu).

We will now present the construction of φ ∈ Φ from ψ. Let us first partition the vertices of
Bk, with respect to ψ, into three parts: Bk = BBI t BBN t BA; for each bi ∈ BBI , ψ(bi) = b′i ; for each
bi ∈ BBN , ψ(bi) ∈ Bu but ψ(bi) 6= b′i ; for each bi ∈ BA, ψ(bi) ∈ Au. Also, we partition the vertices of
Ak into two parts: Ak = AA t AB; for each ai ∈ AA, ψ(ai) ∈ Au; for each ai ∈ AB, ψ(ai) ∈ Bu. Let
|BA| = |AB| = x and |BBN | = y, where 0 ≤ x ≤ n and 0 ≤ x + y ≤ Tκn. Now, we will construct
the bijection φ ∈ Φ (from ψ) by performing the following three steps in that order. Note that the
construction of φ is not a part of our reduction. This is used for analysis purpose only.

Step (i) φ(u) = ψ(u) for all vertices u ∈ BBI ∪ AA.

Step (ii) For each ai ∈ AB, φ(ai) ∈ Au \ ψ(AA). Also, for each bi ∈ BA, φ(bi) = b′i ∈ Bu \ ψ(BBI).

Step (iii) For each bi ∈ BBN , φ(bi) = b′i .

Observe that φ(Ak) = Au, φ(Bk) = Bu and φ(bi) = b′i for all bi ∈ Bk, that is, φ is a SPECIAL bijection.
It remains to show that

dΦ(Gk, Gu) ≤ dψ(Gk, Gu) + 2κTκn2. (1)

Recall that the graphs Gk[Bk] and Gu[Bu] are the same copies of Gp(Vp, Ep), where
∣∣Vp
∣∣ = Tκn.

Observe that

• From Lemma 3.3, the graphs Gk[Bk] and Gu[Bu] satisfy the following property8: cardinality
of symmetric difference between the sets of neighbors of any two distinct vertices is at least
3n− 2.

• Since Gk[Ak] and Gu[Au] are cliques, the degree of each vertex in graphs Gk[Ak] and Gu[Au]
is exactly n− 1.

To prove dΦ(Gk, Gu) ≤ dψ(Gk, Gu) + 2κTκn2, it will be sufficient to show that

dφ(Gk, Gu) ≤ dψ(Gk, Gu) + 4x |Ak|+ 4x + 2y |Ak| − y(3n− 2). (2)

From Equation 2, we will be done with the proof of Inequality 1 as

dψ(Gk, Gu) + 4x |Ak|+ 4x + 2y |Ak| − y (3n− 2) = dψ(Gk, Gu) + 4xn + 4x− y(n− 2)

≤ dψ(Gk, Gu) + 8n2 ≤ dψ(Gk, Gu) + 2κTκn2.

The last but one inequality follows from the fact that 0 ≤ x ≤ n and the last inequality follows from
the fact that Tκ = d 18

κ(2−κ)
e. We present the proof of Inequality 2 in Appendix C.2.

The following lemma completes the proof of Lemma 3.2.
7Note that this relation does not hold in general. However this is true for the graphs Gk and Gu constructed in the

reduction.
8Note that we are using Lemma 3.3 with parameters s = 3, κ =

β2−β1
8 and Tκ = Cκ,3.
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Lemma 3.7. The described algorithmA for EMD, that uses Algorithm ALG on Gk and Gu with parameters
γ1 and γ2 as a subroutine, determines whether EMD(Sk, Su) ≤ β1Tκn2 or EMD(Sk, Su) ≥ β2Tκn2 with
probability at least 2/3, where γ1 = 2β1, γ2 = 2β2 − 2κ.

Proof. By the assumption of the existence of algorithm ALG that decides whether d(Gk, Gu) ≤
Tκγ1n2 or d(Gk, Gu) ≥ Tκγ2n2, we will be done with the proof by showing the followings.

(i) If EMD(Sk, Su) ≤ Tκ β1n2, then d(Gk, Gu) ≤ Tκγ1n2,

(ii) If EMD(Sk, Su) ≥ Tκ β2n2, then d(Gk, Gu) ≥ Tκγ2n2.

We will first prove (i). From Lemma 3.5, we have dΦ(Gk, Gu) = 2 · EMD(Sk, Su), where Φ is the
set of all SPECIAL bijections from V(Gk) to V(Gu). So, EMD(Sk, Su) ≤ Tκ β1n2 implies dΦ(Gk, Gu) ≤
2Tκ β1n2 = Tκγ1n2. Now, following the definition of SPECIAL bijections (Definition 3.4) and
Lemma 3.6, we can say that d(Gk, Gu) ≤ dΦ(Gk, Gu) ≤ Tκγ1n2.

Now, for the proof of (ii), considering the fact that dΦ(Gk, Gu) = 2 · EMD(Sk, Su) as above, we
can say that EMD(Sk, Su) ≥ Tκ β2n2 implies dΦ(Gk, Gu) ≥ 2Tκ β2n2. From Lemma 3.6, it follows
that dΦ(Gk, Gu)− 2κTκn2 ≤ d(Gk, Gu). Thus, d(Gk, Gu) ≥ Tκ(2β2 − 2κ)n2 = Tκγ2n2.

4 Query Algorithm for Tolerant Graph Isomorphism Testing

In this section, we prove the following theorem.

Theorem 4.1. (Restatement of the upper bound part of Theorem 1.3) Let Gk and Gu be the known and
unknown graphs, respectively. There exists an algorithm that takes parameters γ1 and γ2 as input such
that 0 ≤ γ1 < γ2 ≤ 1, performs Õ

(
QWOREMD(n)

)
many queries to the adjacency matrix of Gu for

appropriate β1 and β2 depending on γ1 and γ2, and decides whether d(Gu, Gk) ≤ γ1n2 or d(Gu, Gk) ≥
γ2n2, with probability at least 2/3. Here Õ(·) hides a polynomial factor in 1

β2−β1
and log n.

Remark 2. The theorem stated above works for any γ1, γ2 such that 0 ≤ γ1 < γ2 ≤ 1. However,
for simplicity of representation, we have assumed γ2 ≥ 11γ1.

Remark 3. Note that Theorem 4.1 can also be stated in terms of QWREMD(n) as QWOREMD(n) ≤
QWREMD(n) as we can simulate samples with replacement when we have query access to sam-
ples without replacement (See Proposition B.5).

Our algorithm for tolerant GI testing, as stated in Theorem 4.1, uses a special kind of tolerant
EMD tester over multi-sets: we know t many multi-sets, one multi-set is unknown and two
parameters ε1 and ε2 are given; the objective is to test tolerant EMD of each known multi-set with
the unknown one. The following theorem gives us the special EMD tester.

Theorem 4.2. Let H = {0, 1}n be a n-dimensional Hamming cube. Let {Si
k : i ∈ [t]} ∪ {Su} denote the

multi-sets with n elements from H where {Si
k : i ∈ [t]} denote the set of t many known multi-sets and Su

denotes the unknown multi-set. There exists an algorithm ALG-EMD that takes two proximity parameters
ε1, ε2 with 0 ≤ ε1 < ε2 ≤ 1 and a δ ∈ (0, 1) as input and decides whether EMD(Su, Si

k) ≤ ε1n2

or EMD(Su, Si
k) ≥ ε2n2, with probability at least 1− δ, for each i ∈ [t]. Moreover, ALG-EMD uses

QWOREMD(n) · O
(
log t

δ

)
many samples without replacement from Su.
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The above theorem follows from the definition of QWOREMD(n) (See Definition 1.2) along
with union bound and standard argument for amplifying the success probability.

Remark 4. The algorithm of Theorem 4.1, to be discussed in Section 4.1, formulates a tolerant
EMD instance of multi-sets having n elements in H = {0, 1}d, where d = O (log n/(γ2 − γ1)). But
ALG-EMD is an algorithm for tolerant EMD testing between two multi-sets having n elements
in {0, 1}n. This is not a problem as the query complexity of EMD is an increasing function in
dimension (See Proposition B.9 in Appendix B). Moreover, the algorithm in Section 4.1 calls ALG-
EMD with parameters ε1 = (γ1 +

γ2−γ1
2000 ), ε2 = γ2/5, t = 2O(log2 n/(γ2−γ1)) and δ is a suitable

constant depending upon γ1 and γ2, where γ1 and γ2 are parameters as stated in Theorem 4.1. So,
each call to ALG-EMD, in our context, makes Õ

(
QWOREMD(n)

)
many queries.

4.1 Query Algorithm for Tolerant Graph Isomorphism

For our algorithm, we need the following definitions of label and embedding.

Definition 4.3. (Label of a vertex) Given a graph G and C ⊂ V(G) = {c1, . . . c|C|}, the C-labelling
of V(G) is a function LC : V(G)→ {0, 1}|C| such that the i-th entry of LC(v) is 1 if and only if v is
a neighbor of ci ∈ C. Also, LC(v) is referred as the label of v under C-labelling of V(G).

Definition 4.4. (Embedding of a Vertex Set into another Vertex Set) Let Gu and Gk be two graphs.
Consider A ⊆ V(Gu) and B ⊆ V(Gk) such that |A| ≤ |B|. An injective mapping η from A to B is
referred as an embedding of A into B.

Now we present our query algorithm TolerantGI(Gu, Gk, γ1, γ2) that comprises three phases.
Before proceeding to the formal description, we first give technical overview to get a flow of our
algorithm.

Technical Overview

In Phase 1, we first choose a O( 1
γ2−γ1

) size collection of random subset of vertices, i.e, coresets

Cu from the unknown graph Gu where each Cu ∈ Cu is of size O( log n
γ2−γ1

). Thereafter we find
all embeddings of Cu inside the known graph Gk. Let the embeddings be η1, η2, . . . , ηJ where
Ci

k = ηi(Cu). Now each Cu (as well as each Ci
k) defines a label distribution of the vertices of Gu (as

well as Gk). Let us denote the set of labels as XCu (and YCi
k
). Now we test if the EMD between XCu

and YCi
k

is close or far for each i ∈ [J]. We keep only those (Cu, ηi) for Phase 2 such that EMD(XCu ,

YCi
k
) ≤ (γ1 +

γ2−γ1
2000 )n |Cu|.

Although Phase 1 of our algorithm is similar to the algorithm of [FM08], there is a striking
difference. Since the authors of [FM08] were testing the non-tolerant version of graph isomorphism,
they were testing the identity of the label distributions of XCu and YCi

k
. However, since we are solv-

ing the tolerant version of the problem, we need to allow some error among the label distributions.
We need to pass only those placements of Cu that under good bijections do not produce much error
and testing of tolerant EMD fits exactly for this purpose.

In Phase 2, we choose O
(

log2 n
(γ2−γ1)3

)
many vertices from the unknown graph Gu randomly

and call it W. We further find the labels of all the vertices of W under Cu-labelling by querying
the corresponding entries of Gu for each Cu that has passed Phase 1. Then, we try to match the
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vertices of W to the set of possible labels {l1, l2, . . . , lt} of the vertices of Gk under Ci
k-labelling

where Ci
k = ηi(Cu), for those ηi that have passed Phase 1. Ideally, we would like to find a mapping

ψ : W → {l1, l2, . . . , lt} such that the total distance between the labels of the matched vertices is not
too large. If no such ψ is possible, we reject the current embedding and try some other embedding
that has passed Phase 1.

In Phase 3, we construct a random partial bijection φ̂ : W → V(Gk) that maps the vertices of W
to the vertices of Gk while preserving the labels according to ψ. We achieve this by mapping each
w ∈W to one vertex of Gk randomly that has same label as determined by ψ. Finally, we randomly
pair the vertices of W and find the fraction of edge mismatches between the paired up vertices of
W and φ̂(W). If this fraction is less than 5γ1 +

3
5 (γ2 − γ1), we accept and say that Gu and Gk are

γ1-close. If there is no such embedding of any Cu ∈ Cu that achieves this, we report that Gu and Gk
are γ2-far.

Formal Description of TolerantGI(Gu, Gk, γ1, γ2):

The three phases of our algorithm are as follows:

4.1.1 Phase 1

The first phase of our algorithm consists of the following three steps.

Step 1 First we sample a collection Cu of O
(

log n
γ2−γ1

)
sized random subsets of V(Gu) with |Cu| =

O( 1
γ2−γ1

). We perform Step 2 and Step 3 for each Cu ∈ Cu.

Step 2 We determine all possible embeddings, that is, η1, . . . , ηJ , of Cu into V(Gk), where J =

( n
O(log n/(γ2−γ1))

) ≤ 2O(log2 n/(γ2−γ1)). For each i ∈ [J], let Ci
k be the set of images of Cu under

the i-th embedding of Cu into V(Gk), that is, Ci
k = ηi(Cu). For all i ∈ [J], we construct the

multi-set YCi
k

that contains Ci
k-labellings of all the vertices of Gk.

Step 3 Now for each vertex v ∈ V(Gu), there is a Cu-labelling of v. Let XCu be the multi-set of
Cu-labellings of all the vertices in V(Gu). However, XCu is unknown to the algorithm. We
call ALG-EMD (as stated in Theorem 4.2) by setting parameters as described in Remark 4
to decide whether EMD(XCu , YCi

k
) ≤ (γ1 +

γ2−γ1
2000 )n |Cu| or EMD(XCu , YCi

k
) ≥ γ2n |Cu| /5, for

each i ∈ [J]. Let us pair up Cu’s and their accepted embeddings into Gk and call the set Γ, that
is,

Γ =

{
(Cu, ηi) |ALG-EMD decides EMD(XCu , YCi

k
) ≤ (γ1 +

γ2 − γ1

2000
)n |Cu|

}
.

Note that, at the end of the Phase 1, we have Γ with |Γ| ≤ |Cu| · 2O(log2 n/(γ2−γ1) = O
(

2(log2 n/(γ2−γ1))
)

.
By the description of Step 3 above, Phase 1 of our algorithm calls ALG-EMD O(|Cu|) times, once
for each Cu ∈ Cu. So, setting δ = 1

9|Γ| in Theorem 4.2, we obtain the following observation about Γ
that will be used to prove the soundness of our algorithm.

Observation 4.5. Consider Γ, the set of accepted embeddings that have passed Phase 1 paired with
corresponding Cu, as defined above. Then

P
(
∀ (Cu, ηi) ∈ Γ, EMD(XCu , YCi

k
) ≤ γ2n |Cu| /5

)
≥ 8

9
.
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4.1.2 Phase 2

In the second phase, the algorithm performs the following two steps.

Step 1 We sample a subset W of O(log2 n/(γ2 − γ1)
3) vertices randomly from Gu.

Step 2 For each (Cu, ηi) ∈ Γ that has passed Phase 1, we perform the following steps:

(i) We find the Ci
k = ηi(Cu)-labelling of the vertices of Gk. Let l1, . . . , lt be the labels of the

vertices where t = 2|Ci
k| and Vj ⊆ V(Gk) be the set of vertices with label lj.

(ii) We define a matrix M of size |W| × 2|Ci
k| where each row represents the label of a vertex

w ∈ W and each column represents one of the possible Ci
k-labelling of V(Gk)

9. The
(i, j)-th entry of M is defined as: Mij = dH(LCu(wi), lj).

(iii) We choose a function ψ : W → {l1, . . . lt} randomly satisfying

∑
w∈W

dH(LCu(w), ψ(w)) ≤ 2γ2

5
|Cu| |W| and

∣∣{w : ψ(w) = lj}
∣∣ ≤ ∣∣Vj

∣∣ ∀ j ∈ [t]. (3)

Let ΓW be the set of tuples such that

ΓW = {(Cu, ηi, ψ) : (Cu, ηi) ∈ Γ and ψ satisfies Equation (3)} .

Like Observation 4.5, the following observation about the set ΓW will be used to prove the
soundness of our algorithm.

Observation 4.6. |ΓW | ≤ |Γ| ≤ 2O(log2 n/(γ2−γ1)). Moreover, any (Cu, ηi, ψ) that has passed this
phase satisfies Equation (3).

4.1.3 Phase 3

The third phase of our algorithm comprises the following four steps.

Step 1 We randomly pair up the vertices of W. Let {(a1, b1), . . . , (ap, bp)} be the pairs of the vertices,

where p = O(log2 n/(γ2 − γ1)
3). We now determine which (ai, bi) pairs form edges in Gu by

querying the corresponding entries of the adjacency matrix of Gu.

Step 2 For each (Cu, ηi, ψ) ∈ ΓW that has passed Phase 2, we perform Step 3 and Step 4 as follows.

Step 3 We choose an embedding φ̂ : W → V(Gk) randomly, satisfying φ̂(w) ∈ Vj if and only if
ψ(w) = lj and modulo permutation of the vertices in Vj for all j ∈ [t]. In other words, we
map each w ∈W to a vertex in Gk randomly having ψ(w) = lj as its Ci

k-labelling in Gk.

9Let Cu =
{

x1, . . . , xO(log n/(γ2−γ1))

}
. Note that for each wi ∈ W, LCu (wi) ∈ {0, 1}O(log n/(γ2−γ1)) such that the j-th

coordinate is 1 if and only if wi is a neighbour of xj, where i ∈
[
O(log2 n/(γ2 − γ1)

3)
]

and j ∈ [O (log n/(γ2 − γ1))].

Similarly, lj ∈ {0, 1}O(log n/(γ2−γ1)) such that the i-th coordinate of lj is 1 if and only if η(xi) is a neighbour of v ∈ Vj,

where j ∈
[
2|C

i
k|
]
.
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Step 4 We find the fraction ζ(Cu, ηi, ψ, φ̂) =
∣∣∣{(ai, bi) : 1(ai ,bi) = 1}

∣∣∣ /p, where 1(ai ,bi) = 1 if

exactly one among (ai, bi) ∈ E(Gu) and (φ̂(ai), φ̂(bi)) ∈ E(Gk) holds. If ζ(Cu, ηi, ψ, φ̂) ≤
5γ1 +

3
5 (γ2 − γ1), then HALT and REPORT that Gu and Gk are γ1-close.

While executing Step 3 and Step 4 for each tuple in ΓW , if we did not HALT, then we HALT
now and REPORT that Gu and Gk are γ2-far.

Observation 4.7. (i) The number of times our algorithm executes Step 2, Step 3 and Step 4 is at
most |ΓW | ≤ 2O(log2 n/(γ2−γ1)).

(ii) If there exists a (Cu, ηi, ψ) such that ζ(Cu, ηi, ψ, φ̂) ≤ 5γ1 +
3
5 (γ2 − γ1), then our algorithm

reports that Gu and Gk are γ1-close. Otherwise, Gu and Gk are reported to be γ2-far.

4.2 Proof of Correctness

To prove the correctness of our algorithm, we need to show the following three properties:

Completeness Property If Gu and Gk are γ1-close to isomorphic, then our algorithm reports the
same with probability at least 2/3.

Soundness Property If Gu and Gk are γ2-far from isomorphic, then the algorithm reports the same
with probability at least 2/3.

Query Complexity The query complexity of our algorithm is Õ(n).

4.2.1 Proof of Completeness Property

In order to prove the completeness property as described above, we will first prove some claims.
Finally, combining the claims, we would conclude the completeness property of our algorithm.

We will first prove that there exists a Cu ∈ Cu considered in Step 1 of Phase 1 of the algorithm
and a corresponding embedding ηi : Cu → V(Gk) in Step 2 of Phase 1 such that EMD

(
XCu , YCi

k

)
≤

(γ1 +
γ2−γ1
2000 )n |Cu| holds with probability at least 20/21, where Ci

k = ηi(Cu).

Claim 4.8. Let φ : V(Gu) → V(Gk) be a bijection such that dφ(Gu, Gk) ≤ γ1n2. Then there exists a
Cu ∈ Cu and an embedding ηi : Cu → V(Gk) such that the following hold with probability at least 20/21.

• ∀v ∈ Cu, we have ηi(v) = φ(v), and

• EMD
(

XCu , YCi
k

)
≤ (γ1 +

γ2−γ1
2000 )n |Cu|

Note that Ci
k = ηi(Cu) and YCi

k
is set of Ci

k-labelling of V(Gk).10

Proof. Consider a particular Cu ∈ Cu and an embedding ηi : Cu → V(Gk) such that ηi(v) = φ(v) for
all v ∈ Cu. Note that this embedding ηi is considered in Step 2 of Phase 1 of the algorithm. Now
we will show that EMD

(
XCu , YCi

k

)
≤ (γ1 +

γ2−γ1
2000 )n |Cu| holds with probability at least a constant,

to be specified later, that depends upon γ1 and γ2, where Ci
k = ηi(Cu).

10Ci
k and YCi

k
are defined in Step 2 of Phase 1.
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We know that dφ(Gu, Gk) ≤ γ1n2 and by Definition A.2, we have

∑
x∈V(Gu)

∣∣DECIDERφ(x)
∣∣ ≤ γ1n2.

Thus,

E

[
∑

x∈V(Gu)

∣∣DECIDERφ(x) ∩ Cu
∣∣] ≤ γ1n |Cu| . (4)

From Definition A.2, we can say that

EMD
(

XCu , YCi
k

)
= min

f :V(Gu)→V(Gk)
∑

x∈V(Gu)

∣∣DECIDER f (x) ∩ Cu
∣∣

≤ ∑
x∈V(Gu)

∣∣DECIDERφ(x) ∩ Cu
∣∣

Therefore,

E
[

EMD
(

XCu , YCi
k

)]
≤ E

[
∑

x∈V(Gu)

∣∣DECIDERφ(x) ∩ Cu
∣∣]

≤ γ1n |Cu| (From Equation 4)

Using Markov inequality, we can say that

P

(
EMD

(
XCu , YCi

k

)
≤ (γ1 +

γ2 − γ1

2000
)n |Cu|

)
≥ 1− γ1

γ1 +
γ2−γ1
2000

.

Note that |Cu| = O( 1
γ2−γ1

) and we have been arguing for a particular Cu ∈ Cu. So, taking |Cu|
suitably, we get a Cu and an embedding ηi : Cu → V(Gk) satisfying the properties mentioned in
the statement of this claim with probability at least 20/21.

The above claim discusses about the existence of a Cu ∈ Cu and its embeddings satisfying above
mentioned desired properties. Now we discuss how our algorithm determines all Cu ∈ Cu that
satisfy the properties. Note that Step 3 of Phase 1 of our algorithm calls ALG-EMD. Following the
correctness of ALG-EMD (Theorem 4.2), we determine all embeddings ηi : Cu → V(Gk) such that
EMD

(
XCu , YCi

k

)
≤ (γ1 +

γ2−γ1
2000 )n |Cu| holds with probability at least 20/21. The discussion in this

paragraph is formalized in the following claim.

Claim 4.9. Let Cu ∈ Cu and η1, . . . , ηJ be the all possible embeddings of Cu into V(Gk). Then Step 3 of
Phase 1 can determine the set Γ = {(Cu, ηi) | EMD(XCu , YCi

k
) ≤ (γ1 +

γ2−γ1
2000 )n |Cu|} with probability at

least 20/21. Note that Ci
k = ηi(Cu), XCu is the set of Cu-labelling of V(Gu) and YCi

k
is set of Ci

k-labelling of
V(Gk).

As we are considering the case that Gu and Gk are γ1-close to being isomorphic, from Claim 4.8,
we can assume that there is an appropriate (Cu, ηi) ∈ Γ such that EMD

(
XCu , YCi

k

)
≤ (γ1 +

γ2−γ1
2000 )n |Cu|. Now we will prove that there exists a function ψ : W → {l1, . . . , lt} as considered in

Step 2 (iii) in Phase 2 of our algorithm such that Equation (3) holds with probability at least 20/21.
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Claim 4.10. Let us assume that φ : V(Gu) → V(Gk) be a bijection such that dφ(Gu, Gk) ≤ γ1n2 and
(Cu, ηi) ∈ Γ where Cu ∈ Cu and ηi : Cu → V(Gk) be an embedding such that

• ∀v ∈ Cu we have ηi(v) = φ(v), and

• EMD
(

XCu , YCi
k

)
≤ (γ1 +

γ2−γ1
2000 )n |Cu| where Ci

k = ηi(Cu).

Also, let {`1, . . . , `t} be the all possible Ci
k-labellings of V(Gk), where t =

[
2|Ci

k|
]
. Then there exists a

mapping ψ : W → {l1, . . . , lt} such that the following hold with probability at least 20/21.

(i) ∑
w∈W

dH(LCu(w), ψ(w)) ≤ 2γ2
5 |Cu| |W|, and

(ii) ∀ j ∈ [t], we have
∣∣{w : ψ(w) = lj

}∣∣ ≤ ∣∣Vj
∣∣.

Proof. From the conditions given in the statement of the claim, we can say that there exists f :
V(Gu) → V(Gk) such that f (v) = ηi(v) = φ(v) for all v ∈ Cu and ∑

x∈V(Gu)

∣∣DECIDER f (x) ∩ Cu
∣∣ ≤

(γ1 +
γ2−γ1
2000 )n |Cu|

Since
∣∣DECIDER f (x) ∩ Cu

∣∣ = dH(LCu(x),LCi
k
( f (x))), we have

∑
x∈V(Gu)

dH(LCu(x),LCi
k
( f (x))) ≤ (γ1 +

γ2 − γ1

2000
)n |Cu|

Since we are taking the vertices in W uniformly at random from Gu, we can say that

E

[
∑

w∈W
dH(LCu(w),LCi

k
( f (w)))

]
≤ (γ1 +

γ2 − γ1

2000
) |Cu| |W|

Using Hoeffding’s inequality, we have

P

(
∑

w∈W
dH(LCu(w),LCi

k
( f (w))) ≤ 2γ2

5
|Cu| |W|

)
≥ 1− e−O(|W|)

Now, we define ψ : W → {`1, . . . , `t} such that ψ(w) = LCi
k
( f (w)). In other words, the Ci

k-
labelling of f (w) is same as the labelling of ψ(w) for each w ∈W. Thus, the ψ defined here satisfies
the Condition (i) of this claim, that is, ∑

w∈W
dH(LCu(w), ψ(w)) ≤ 2γ2

5 |Cu| |W|.

Observe that∣∣∣{w ∈W : LCi
k
( f (w)) = lj}

∣∣∣ ≤ ∣∣∣{v ∈ V(Gk) : LC i
k
(v) = lj}

∣∣∣ ≤ ∣∣Vj
∣∣ .

So, by the definition of ψ,
∣∣{w ∈W : ψ(w) = lj}

∣∣ ≤ ∣∣Vj
∣∣. Hence ψ considered above also satisfies

Condition (ii) of the claim.

Now consider the situation when the algorithm is at Step 1 of Phase 3. If Gu and Gk are γ1-close,
that is, there exists a bijection φ from V(Gu) to V(Gk) such that dφ(Gu, Gk) ≤ γ1n2, then there exists
Cu ∈ Cu, ηi : Cu → V(Gk), and ψ satisfying the conditions given in Claims 4.8 and 4.10. However,
we do not know φ. If we construct, though inefficiently, a bijection φ′ that is same as φ with respect
to the same Cu ∈ Cu, ηi : Cu → V(Gk) and ψ (conditions given in Claims 4.8 and 4.10), then the
following claim says that the difference between dφ′(Gu, Gk) and dφ(Gu, Gk) is not too large.
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Claim 4.11. Let us assume that φ : V(Gu) → V(Gk) be a bijection such that dφ(Gu, Gk) ≤ γ1n2, and
(Cu, ηi) ∈ Γ where Cu ∈ Cu and ηi : Cu → V(Gk) be an embedding such that

• ∀ v ∈ Cu we have ηi(v) = φ(v), and

• EMD
(

XCu , YCi
k

)
≤ (γ1 +

γ2−γ1
2000 )n |Cu| where Ci

k = ηi(Cu).

Let {`1, . . . , `t} be the all possible Ci
k-labellings of the vertices of Gk where t =

[
2|Ci

k|
]
, and W be the set

of vertices of Gu sampled at random in Step 1 of Phase 2 and ψ : W → {`1, . . . , `t} be the mapping
considered in Step 2 (iii) in Phase 2 such that

• ∑
w∈W

dH(LCu(w), ψ(w)) ≤ 2γ2
5 |Cu| |W|, and

• ∀j ∈ [t], we have
∣∣{w : ψ(w) = lj}

∣∣ ≤ ∣∣Vj
∣∣.

Then, with probability at least 18/21, there exists a bijection φ′ : V(Gu) → V(Gk), with φ′(x) =
φ(x) = ηi(x) for each x ∈ Cu and φ′(w) = φ̂(w) for each w ∈W such that

dφ′(Gu, Gk) ≤ dφ(Gu, Gk) + (4γ1 +
γ2 − γ1

2
)n2.

Proof. We will prove the claim by contradiction. Suppose that

dφ′(Gu, Gk) > dφ(Gu, Gk) + (4γ1 +
γ2 − γ1

2
)n2 (5)

By using Definition A.2, we write the above equation as

∑
x∈V(Gu)

∣∣DECIDERφ′(x)
∣∣ > ∑

x∈V(Gu)

∣∣DECIDERφ(x)
∣∣+ (4γ1 +

γ2 − γ1

2
)n2

So,

∑
x∈V(Gu)

∣∣DECIDERφ′(x)∆DECIDERφ(x)
∣∣ > (4γ1 +

γ2 − γ1

2
)n2

Let us denote DECIDERφ′(x)∆DECIDERφ(x) = Symmφφ′(x). Dividing the sum in the left hand side

with respect to the values of
∣∣DECIDERφ′(x)∆DECIDERφ(x)

∣∣’s, that is,
∣∣∣Symmφφ′(x)

∣∣∣’s, we get

∑
x∈V(Gu)∣∣∣Symm
φφ′ (x)

∣∣∣≥ (γ2−γ1)n
1000

∣∣∣Symmφφ′(x)
∣∣∣+ ∑

x∈V(Gu)∣∣∣Symm
φφ′ (x)

∣∣∣< (γ2−γ1)n
1000

∣∣∣Symmφφ′(x)
∣∣∣ > (4γ1 +

γ2 − γ1

2
)n2

Note that the second sum of the left hand side is at most γ2−γ1
1000 n2. Therefore,

∑
x∈V(Gu):∣∣∣Symm

φφ′ (x)
∣∣∣≥ (γ2−γ1)n

1000

∣∣∣Symmφφ′(x)
∣∣∣ > (4γ1 +

γ2 − γ1

2
)n2 − γ2 − γ1

1000
n2 (6)

Before proceeding further, consider the following observation, which we will prove in Ap-
pendix D.1.
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Observation 4.12 (?). If
∣∣∣Symmφφ′(x)

∣∣∣ ≥ (γ2−γ1)n
1000 , then

P

(∣∣∣Symmφφ′(x) ∩ Cu

∣∣∣ ≥ (1− 1
50

)
∣∣∣Symmφφ′(x)

∣∣∣ |Cu|
n

)
≤ e−O(|Cu|).

This implies that the following holds with probability at least 1− ne−O(|Cu|).

∑
x∈V(Gu):∣∣∣Symm

φφ′ (x)
∣∣∣≥ (γ2−γ1)n

1000

∣∣∣Symmφφ′(x) ∩ Cu

∣∣∣ ≥ (
1− 1

50

)
|Cu|

n ∑
x∈V(Gu):∣∣∣Symm

φφ′ (x)
∣∣∣≥ (γ2−γ1)n

1000

∣∣∣Symmφφ′(x)
∣∣∣

=
49
50

(
4γ1 +

499(γ2 − γ1)

1000

)
n |Cu| . (∵ By Equation 6)

Hence, with probability at least 1− ne−O(|Cu|), the following event holds.

∑
x∈V(Gu)

∣∣∣Symmφφ′(x) ∩ Cu

∣∣∣ ≥ 49
50

(
4γ1 +

499(γ2 − γ1)

1000

)
n |Cu| . (7)

Assuming Equation (7) holds and using the fact that W ⊂ V(Gu) is taken uniformly at random, we
can say that

E

[
∑

w∈W

∣∣∣Symmφφ′(x) ∩ Cu

∣∣∣] >
49
50

(4γ1 +
499(γ2 − γ1)

1000
) |Cu| |W|

Using Hoeffding’s inequality (See Lemma E.3), we get

P

(
∑

w∈W

∣∣∣Symmφφ′(w) ∩ Cu)
∣∣∣ ≤ (3γ1 +

11(γ2 − γ1)

24
) |Cu| |W|

)
≤ e

−O( |Cu |2 |W|2

|W||Cu |2
)
= e−O(|W|)

As the above equation holds in the conditional space that Equation (7) holds, we have

P

(
∑

w∈W

∣∣∣Symmφφ′ ∩ Cu)
∣∣∣ > (3γ1 +

11(γ2 − γ1)

24
) |Cu| |W|

)
≥ 1− ne−O(|Cu|) − e−O(|W|). (8)

Note that Equation (5) implies Equation (8). However, till now, we have not used any information
given in the statement of Claim 4.11, except that Cu and W are taken uniformly at random. By
using the fact that the sum of label differences of the vertices of W under Cu-labelling and that of ψ
is bounded, we will deduce that

P

(
∑

w∈W

∣∣∣Symmφφ′(w) ∩ Cu

∣∣∣ ≤ (2γ1 +
9(γ2 − γ1)

20
) |Cu| |W|

)
≥ 1− ne−O(|Cu|) − e−O(|W|). (9)

As Equation (5) implies Equation (8), and Equations (8) and (9) together implies that Equation (5)
does not hold with probability at least 1− 4ne−O(|Cu|) − e−O(|W|). Hence, we are done with the
proof of Claim 4.11 except that we need to show Equation (9).
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By the definition of the bijection φ, we have ∑
x∈V(Gu)

∣∣DECIDERφ(x)
∣∣ ≤ γ1n2. This implies

∑
x∈V(Gu)

|DECIDERφ(x)|≥ (γ2−γ1)n
1000

∣∣DECIDERφ(x)
∣∣ ≤ γ1n2 (10)

To proceed further, we need the following observation.

Observation 4.13 (?). (i) If
∣∣DECIDERφ(x)

∣∣ ≥ (γ2−γ1)n
1000 , then

P

(∣∣DECIDERφ(x) ∩ Cu
∣∣ ≥ (1 +

1
50

)
∣∣(DECIDERφ(x)

∣∣ |Cu|
n

)
≤ e−O(|Cu|).

(ii) If
∣∣DECIDERφ(x)

∣∣ < (γ2−γ1)n
1000 , then P

(∣∣DECIDERφ(x) ∩ Cu
∣∣ ≥ γ2−γ1

750 |Cu|
)
≤ e−O(|Cu|).

The above observation follows from Chernoff bound (See Lemma E.1) and is presented in
Appendix D.2, and it implies that the following holds with probability at least 1− ne−O(|Cu|).

∑
x∈V(Gu)

∣∣DECIDERφ(x) ∩ Cu
∣∣

= ∑
x∈V(Gu):

|DECIDERφ(x)|≥ (γ2−γ1)n
1000

∣∣DECIDERφ(x) ∩ Cu
∣∣+ ∑

x∈V(Gu):

|DECIDERφ(x)|< (γ2−γ1)n
1000

∣∣DECIDERφ(x) ∩ Cu
∣∣

≤
(

1 +
1
50

)
∑

x∈V(Gu):

|DECIDERφ(x)|≥ (γ2−γ1)n
1000

∣∣DECIDERφ(x)
∣∣ |Cu|

n
+

(γ2 − γ1)n |Cu|
750

≤ 51
50

γ1n |Cu|+
(γ2 − γ1)n |Cu|

750

Note that the last inequality follows from Equation (10). Summarizing the above calculation, we
get that the following event occurs with probability at least 1− ne−O(|Cu|).

∑
x∈V(Gu)

∣∣DECIDERφ(x) ∩ Cu
∣∣ ≤ 51

50
γ1n |Cu|+

(γ2 − γ1)n |Cu|
750

. (11)

Let us assume Equation (11) holds. Since we are taking the vertices of W uniformly at random from
V(Gu), we have

E

[
∑

w∈W

∣∣DECIDERφ(w) ∩ Cu
∣∣] = E

[
∑

w∈W
dH(LCu(w),LCi

k
(φ(w))

]

≤ 51
50

γ1 |Cu| |W|+
(γ2 − γ1) |Cu| |W|

750
.

Similarly from Step 2 (iii) of Phase 2, we have
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∑
w∈W

∣∣DECIDERφ′(w) ∩ Cu
∣∣ = ∑

w∈W
dH(LCu(w),LCi

k
(φ′(w)))

≤ 2γ2

5
|Cu| |W|

Recall that Symmφφ′(x) = DECIDERφ′(x)∆DECIDERφ(x). Therefore,

E

[
∑

w∈W

∣∣∣Symmφφ′(x) ∩ Cu

∣∣∣] ≤ E

[
∑

w∈W

∣∣DECIDERφ′(w) ∩ Cu
∣∣]+ ∑

w∈W

∣∣DECIDERφ(w) ∩ Cu
∣∣

≤ (
764
750

γ1 +
301(γ2 − γ1)

750
) |Cu| |W|

Using Hoeffding’s inequality (see Lemma E.3), we can say that

P

(
∑

w∈W

∣∣∣Symmφφ′(w) ∩ Cu

∣∣∣ > (2γ1 +
9(γ2 − γ1)

20
) |Cu| |W|

)
≤ e

−O( |Cu |2 |W|2

|W||Cu |2
)
= e−O(|W|).

Note that the above equation holds on the conditional space that Equation (11) holds. Hence,

P

(
∑

w∈W

∣∣∣Symmφφ′(w) ∩ Cu

∣∣∣ ≤ (2γ1 +
9(γ2 − γ1)

20
) |Cu| |W|

)
≥ 1− ne−O(|Cu|) − e−O(|W|).

If we had constructed a bijection φ′ as stated in the above claim, we could easily test by sampling
suitable many random edges from Gu and checking the corresponding edges in Gk. It is important
to note that, it is not possible to construct φ′ efficiently. However, without constructing the bijection
φ′, if we can test for presence of some randomly chosen edges in Gu and their corresponding edges
in Gk, we are done. In order to achieve this, we choose W randomly in Step 1 of Phase 2 and pair
up the vertices of W in Step 1 of Phase 3. Using Step 2 (iii) of Phase 2 and Step 3 of Phase 3, we
check if φ̂(w) = φ′(w) for each w ∈W. Note that φ̂ : W → V(Gk) is the map constructed in Step 3
of Phase 3 and φ′ : V(Gu)→ V(Gk) is the bijection as stated in Claim 4.11. Then we check the edge
mismatches between the paired up vertices of W in Gu and their corresponding mapped vertices in
Gk in Step 4 of Phase 3, which is possible as we have constructed the mappings of the vertices in
W in Step 2 (iii) of Phase 2.

The following claim proves that if Gu and Gk are γ1-close, then ζ(Cu, ηi, ψ, φ̂) ≤ 5γ1 +
3
5 (γ2−γ1),

as considered in Step 4 of Phase 3 holds with probability at least 20/21.

Claim 4.14. Let us assume that φ : V(Gu) → V(Gk) be a bijection such that dφ(Gu, Gk) ≤ γ1n2, and
(Cu, ηi) ∈ Γ where Cu ∈ Cu, and ηi : Cu → V(Gk) be an embedding of Cu such that

• ∀ v ∈ Cu we have ηi(v) = φ(v), and

• EMD
(

XCu , YCi
k

)
≤ (γ1 +

γ2−γ1
2000 )n |Cu| where Ci

k = ηi(Cu).
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Let {`1, . . . , `t} be the all possible Ci
k-labellings of Gk where t =

[
2|Ci

k|
]
, W be the set of vertices of Gu

sampled at random in Step 1 of Phase 2, and ψ : W → {`1, . . . , `t} be the mapping considered in
Step 2 (iii) of Phase 2 such that

• ∑
w∈W

dH(LCu(w), ψ(w)) ≤ 2γ2
5 |Cu| |W|, and

• ∀j ∈ [t], we have
∣∣{w : ψ(w) = lj}

∣∣ ≤ ∣∣Vj
∣∣.

If we take an embedding φ̂ : W → V(Gk) such that φ̂(w) ∈ Vj if and only if ψ(w) = `j, then

ζ(Cu, ηi, ψ, φ̂) ≤ 5γ1 +
3
5
(γ2 − γ1)

holds with probability at least 20/21, where ζ(Cu, ηi, ψ, φ̂) is as defined in Step 3 of Phase 3.

Proof. Recall that W is a subset of V(Gu) taken uniformly at random in Step 1 of Phase 2 and we
paired up the vertices of W randomly in Step 1 of Phase 3 respectively. Also, we are checking
the edge mismatches of the paired up vertices of W and their corresponding mapped vertices
in Gk according to the mapping φ̂ : W → V(Gk) in Step 4 of Phase 3 to compute ζ(Cu, ηi, ψ, φ̂).
Considering the conditions given in the statement of this claim and Claim 4.11, one can think that we
are checking the presence of |W|2 many randomly chosen edges in Gu and the corresponding edges
in Gk according to some bijection φ′ : V(Gu)→ V(Gk), where φ′ is a bijection with dφ′(Gu, Gk) ≤
(5γ1 +

γ2−γ1
2 )n2.

So, E
[
ζ(Cu, ηi, ψ, φ̂)

]
≤ (5γ1 +

γ2−γ1
2 ). Now, applying Hoeffding’s inequality (Lemma E.3) and

taking |W| = C′ log2 n
(γ2−γ1)3 for suitably large constant C′, we have

P

(
ζ(Cu, ηi, ψ, φ̂) > 5γ1 +

3
5
(γ2 − γ1)

)
= P

(
ζ(Cu, ηi, ψ, φ̂) |W| >

(
5γ1 +

3
5
(γ2 − γ1)

)
|W|

)
≤ e−O(|W|) ≤ 1

21

Now we are ready to prove the completeness property using Claims 4.8, 4.10, 4.11, 4.14 and
Theorem 4.2.

Lemma 4.15 (Completeness Lemma). If Gu and Gk are γ1-close to isomorphic, then our algorithm reports
the same with probability at least 2/3.

Proof. Observe that from Claim 4.8, we know that, with probability at least 20/21, there exists
a Cu ∈ Cu and an embedding ηi : Cu → V(Gk) such that EMD

(
XCu , YCi

k

)
≤
(

γ1 +
γ2−γ1
2000

)
n |Cu|

where Ci
k = ηi(Cu). Similarly, from Theorem 4.2, we can say that, with probability at least 20/21, the

algorithm ALG-EMD returns all embeddings ηi such that EMD
(

XCu , YCi
k

)
≤
(

γ1 +
γ2−γ1
2000

)
n |Cu|.

Now from Claim 4.10, we know that, with probability at least 20/21, conditions of Equation (3) hold.
Again, from Claim 4.11, we can say that constructing partial bijection at Step 3 of Phase 3 does
not change isomorphism distance by more than (4γ1 +

γ2−γ1
2 )n2 with probability at least 18/21.
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Finally, from Claim 4.14, we can say that the algorithm will correctly detect the distance at Step 4
of Phase 3 by testing ζ(Cu, ηi, ψ, φ̂) ≤ 5γ1 +

3
5 (γ2 − γ1) with probability at least 20/21. Thus, using

union bound, we can say that when Gk and Gu are γ1-close to being isomorphic, TolerantGI(Gu,
Gk, γ1, γ2) reports the same with probability at least 2/3.

4.2.2 Proof of Soundness Property

Similarly for the soundness property of our algorithm, let us consider the case when Gu and Gk
are γ2-far from being isomorphic. Then we will show that the algorithm will output the correct
answer with probability at least 2/3.

Recall the definition of the set ΓW with which we started Phase 3 of our algorithm.

ΓW = {(Cu, ηi, ψ) : (Cu, ηi) ∈ Γ such that Equation 3 holds}.

By Observation 4.5, we have

Pr
(
∀ (Cu, ηi, ψ) ∈ ΓW , EMD(XCu , YCi

k
) ≤ γ2

5
|Cu|n

)
≥ 8

9
. (12)

From now on, we work on the conditional space where EMD(XCu , YCi
k
) ≤ γ2

5 |Cu|n ∀ (Cu, ηi, ψ)

holds. By Observation 4.7 (i), we know that |ΓW | ≤ 2O(log2 n/(γ2−γ1)). So, the following claim about
any (Cu, ηi, ψ) ∈ ΓW along with union bound over all the elements in ΓW , we will be done with the
proof of soundness property.

Claim 4.16. Let (Cu, ηi, ψ) ∈ ΓW and φ̂ be the embedding of W into Gk constructed while executing Step
3 of Phase 3 for (Cu, ηi, ψ). Also, let EMD(XCu , YCi

k
) ≤ γ2

5 |Cu|n, where Ci
k = ηi(Cu). Then the following

holds with probability at most 2
9|ΓW | :

ζ(Cu, ηi, ψ, φ̂) ≤ 5γ1 +
3
5
(γ2 − γ1).

Proof. Let Φ(Cu, Ci
k) be the class of all bijections such that the following hold for each φ ∈ Φ(Cu, Ck).

• φ(x) = ηi(x) for each x ∈ Cu, and

• ∑
v∈V(Gu)

∣∣DECIDERφ(v) ∩ Cu
∣∣ ≤ γ2

5 n |Cu|.

Consider the following observation, about the bijections in Φ, that we will prove later.

Observation 4.17. Let φ be a bijection in Φ. Then ∑
w∈W

∣∣DECIDERφ(w) ∩ Cu
∣∣ ≤ 2γ2

5 |Cu| |W| holds

with probability at least 1− 1
9|ΓW | .

Our algorithm constructs ψ : W → {`1, . . . , `t} in Step 2 of Phase 2 satisfying

• ∑
w∈W

dH(LCu(w), ψ(w)) ≤ 2γ2
5 |Cu| |W|, and

• ∀j ∈ [t], we have
∣∣{w : ψ(w) = lj

}∣∣ ≤ ∣∣Vj
∣∣.
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Note that ∑
w∈W

dH(LCu(w), ψ(w)) = ∑
w∈W

∣∣DECIDERφ(w) ∩ Cu
∣∣, where φ is some bijection in

Φ. After getting ψ, we construct a partial bijection φ̂ : W → V(Gk) that satisfies the above two
conditions. So, one can think of W is taken uniformly at random from the set of all W’s satisfying

∑
w∈W

∣∣DECIDERφ(w) ∩ Cu
∣∣ ≤ 2γ2

5 |Cu| |W|. Now, from Observation 4.17, we have the following

observation.

Observation 4.18. φ̂ is a random restriction of a random bijection φ ∈ Φ(Cu, Ck) by the set W with
probability at least 1− 1

9|ΓW | .

Proof. Let us consider a φ such that φ|W = φ̂. LetW = {φ̂X = φ|X : X ⊂ V(Gu) and |X| = |W|},
andW ′ ⊆ W is defined as:

W ′ =
{

φ̂X ∈ W : ∑
w∈X

∣∣DECIDERφ(w) ∩ Cu
∣∣ ≤ 2γ2

5
|Cu| |W|

}

Observe that φ̂ = φ̂W ∈ W . By Observation 4.17, we know that if we take a set X ⊂ V(Gu) (i.e,
a φ̂X uniformly at random fromW), then the probability that φ̂X ∈ W ′, is at least 1− 1

9|ΓW | . So,

|W ′| ≥
(

1− 1
9|ΓW |

)
|W|.

Observe that the partial bijection φ̂, constructed by our algorithm, is same as that of φ̂W , and φ̂

is inW ′. Now, using the fact that |W ′| ≥
(

1− 1
9|ΓW |

)
|W|, the observation follows.

Recall that W is a subset of V(Gu) taken uniformly at random in Step 1 of Phase 2 and we
paired up the vertices of W randomly in Step 1 of Phase 3 respectively. Also, we are checking
the edge mismatches of the paired up vertices of W and their corresponding mapped vertices
in Gk according to the mapping φ̂ : W → V(Gk) in Step 4 of Phase 3 to compute ζ(Cu, ηi, ψ, φ̂).
Considering the discussion here, one can think of that, we are checking the presence of |W|2 many
randomly chosen edges in Gu and the corresponding edges in Gk according to some bijection φ ∈ Φ.

Note that dφ(Gu, Gk) ≥ γ2n2. Thus, E
[
ζ(Cu, ηi, ψ, φ̂)

]
≥ γ2|W|. Now we can deduce the

following. 11

P

(
ζ(Cu, ηi, ψ, φ̂) ≤ 5γ1 +

3
5
(γ2 − γ1)

)
= P

(
ζ(Cu, ηi, ψ, φ̂) |W| ≤ (5γ1 +

3
5
(γ2 − γ1)) |W|

)
≤ e−O(|W|)

≤ 1
9 |ΓW |

Note that we were deriving the above bound on P
(
ζ(Cu, ηi, ψ, φ̂) ≤ 5γ1 +

3
5 (γ2 − γ1)

)
assuming

that φ̂ is a random restriction of a random φ ∈ Φ. Hence, combining Observation 4.18 with the
above bound on P

(
ζ(Cu, ηi, ψ, φ̂) ≤ 5γ1 +

3
5 (γ2 − γ1)

)
(when φ̂ is a random restriction of a random

φ ∈ Φ), we get

P

(
ζ(Cu, ηi, ψ, φ̂) ≤ 5γ1 +

3
5
(γ2 − γ1)

)
≤ 2

9 |ΓW |
.

11Here we are assuming γ2 ≥ 11γ1.
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Proof of Observation 4.17. . Since W is taken uniformly at random,

E

[
∑

w∈W

∣∣DECIDERφ(w) ∩ Cu
∣∣] ≤ γ2

5
|Cu| |W|

Using Hoeffding’s inequality, we get

P

(
∑

w∈W

∣∣DECIDERφ(w) ∩ Cu
∣∣ ≥ 2γ2

5
|Cu| |W|

)
≤ e−O(|W|) ≤ 1

9 |ΓW |
.

Now we are ready to prove the soundness property of our algorithm.

Lemma 4.19 (Soundness Lemma). If Gu and Gk are γ2-far from isomorphic, then the algorithm reports
the same with probability at least 2/3.

Proof. From Observation 4.7 (i), we know that |ΓW | is at most 2C1
log2 n
γ2−γ1 . In Claim 4.16, we are proving

that ζ(Cu, ηi, ψ, φ̂) ≤ 5γ1 +
3
5 (γ2 − γ1) holds with probability at most 2

9|ΓW | for any particular
(Cu, ηi, ψ) ∈ ΓW with EMD(XCu , YCi

k
) ≤ γ2

5 |Cu|n. So, by the union bound, the probability that there

exists a (Cu, ηi, ψ) ∈ ΓW with EMD(XCu , YCi
k
) ≤ γ2

5 |Cu|n such that ζ(Cu, ηi, ψ, φ̂) ≤ 5γ1 +
3
5 (γ2 −

γ1), is at most 2
9 . Now From Equation 12,

Pr
(
∀ (Cu, ηi, ψ, φ̂) ∈ ΓW , EMD(XCu , YCi

k
) ≤ γ2

5
|Cu|n

)
≥ 8

9

Putting everything together, the probability that the algorithm reports that Gu and Gk are γ2-far, is
at least 2/3.

Till now we have proved the completeness and soundness property of our algorithm TolerantGI.
We will prove the query complexity property in the next section when we prove the final theorem.

4.3 Proof of Theorem 4.1

Proof. From the Completeness Lemma (Lemma 4.15) and Soundness Lemma (Lemma 4.19), we can say
that our algorithm TolerantGI correctly decides whether d(Gu, Gk) ≤ γ1n2 or d(Gu, Gk) ≥ γ2n2

with probability at least 2/3.
Now, we calculate the query complexity of our algorithm. Note that Step 1 and Step 2 of Phase

1, Step 1 and Step 3 of Phase 2, Step 1, Step 2 and Step 3 of Phase 3, of the algorithm TolerantGI,
do not require any query to the adjacency matrix of Gu. Let COSTCu denote the query complexity
corresponding to a particular Cu ∈ Cu. So, the total query complexity of the algorithm TolerantGI
is ∑

Cu∈Cu

COSTCu . Observe that

COSTCu = Query Complexity of algorithm ALG-EMD + COSTCu,W
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where COSTCu,W denotes the query complexity of Step 1 of Phase 2 corresponding to W and
Cu ∈ Cu.

Note that ALG-EMD is the algorithm corresponding to Theorem 4.2. In Step 3 of Phase 1 of our

algorithm, for each Cu ∈ Cu, we call ALG-EMD with parameters d = O
(

log n
γ2−γ1

)
, t = 2

O
(

log2 n
γ2−γ1

)
,

ε1 =
(

γ1 +
γ2−γ1
2000

)
, ε2 = γ2

5 and δ = Θ(1). So, the query complexity of each call, to ALG-EMD

from our algorithm, is Õ
(
min{n, 2d}

)
= Õ(n).

Further note that, from the description Step 1 of Phase 2, COSTCu,W = O
(

log2 n
γ2−γ1

)
. Since

|Cu| = O
(

1
γ2−γ1

)
, the total query complexity of our algorithm is Õ(n).

5 Conclusion

In this paper, we proved that the query complexity of tolerant GI testing between a known
graph Gk and an unknown graph Gu is the same as (up to polylogarithmic factor) testing of EMD
between a known multi-set Sk and an unknown multi-set Su when we have samples without
replacement from Su. In Lemma B.10, we have shown that the sample complexity of testing of
EMD between a known multi-set Sk and an unknown multi-set Su when we have samples with
replacement from Su is Ω(n/ log n). Thus the natural open question is

What is the query complexity of tolerant EMD testing when we have samples without
replacement from the unknown multi-set?

It is also interesting to note that our lower bound proof is via a pure reduction from graph
isomorphism to testing EMD of multi-sets over the Hamming cube using samples without replace-
ment. Using our lower bound technique (and Proposition B.7), we can get an alternative proof of
Fischer and Matsliah’s lower bound result for testing non-tolerant graph isomorphism [FM08]. Our
upper bound proof is also a pure reduction from testing EMD of multi-sets over the Hamming cube
to tolerant graph isomorphism problem. Thus our reductions also hold for other computational
models such as the communication complexity model. So, in the communication model (that is,
when Alice and Bob have graphs GA and GB respectively and they want to estimate the GI-distance
between them), the amount of bits of communication is same (up to a polylogarithmic factors)
to the problem of estimating the EMD distance between two distributions over Hamming cube,
where Alice and Bob have access to one distribution each. The question we would like to pose is:

What is the randomized communication complexity of testing tolerant
graph isomorphism problem?

Fischer and Matsliah [FM08] studied the non-tolerant version of the graph isomorphism prob-
lem in two scenarios: (i) one graph is known and the other graph is unknown, (ii) both the graphs
are unknown. They resolved the query complexity of (i), whereas Onak and Sun [OS18] resolved
(ii). With this paper, we initiate the study of tolerant graph isomorphism problem in the query
world and settled the question completely when one graph is unknown, and the other graph is
known. So, another natural open question to look for is:

What is the query complexity of tolerant graph isomorphism
when both the graphs are unknown?
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A Preliminaries

All graphs considered here are undirected, unweighted and have no self-loops or parallel
edges. For a graph G(V, E), V(G) and E(G) will denote the vertex set and the edge set of G,
respectively. Since we are considering undirected graphs, we write an edge (u, v) ∈ E(G) as {u, v}.
The Hamming distance between two points x and y in a Hamming cube {0, 1}k will be denoted by
dH(x, y).

A.1 Notion of distance between two graphs

First let us define the notion of DECIDER of a vertex and then the notion of distance between
two graphs, using decider of vertices, that is conceptually same as that of GRAPH ISOMORPHISM

DISTANCE defined in Definition 1.1.

Definition A.1. (DECIDER of a vertex) Given two graphs Gk and Gu and a bijection φ : V(Gu)→
V(Gk), DECIDER of a vertex x ∈ V(Gu) with respect to φ is defined as the set of vertices of Gu that
create the edge difference in x and φ(x)’s neighbourhood in Gu and Gk, respectively. Formally,

DECIDERφ(x) := {y ∈ V(Gu) : one of the edges {x, y} and {φ(x), φ(y)} is not present}

Definition A.2. (DISTANCE between two graphs) Let Gu and Gk be two graphs and φ : V(Gu)→
V(Gk) be a bijection from the vertex set of Gu to that of Gk. The distance between Gu and Gk under
φ is defined as the sum of the sizes of the deciders of all the vertices in Gu, that is,

dφ(Gu, Gk) := ∑
x∈V(Gu)

∣∣DECIDERφ(x)
∣∣ .

The distance between two graphs Gu and Gk is the minimum distance under all possible bijections φ
from V(Gu) to V(Gk), that is, d(Gu, Gk) := min

φ
dφ(Gu, Gk).

Remark 5. Recall the definition of δGI(Gu, Gk), GRAPH ISOMORPHISM DISTANCE between Gu and
Gk, that is given in Definition 1.1. Observe that d(Gu, Gk) = 2(n

2)δGI(Gu, Gk). Though, d(Gu, Gk) and
δGI(Gu, Gk) represent the same thing, conceptually, we will do our calculations by using d(Gu, Gk)
for simplicity of presentation.

Next we define the concept of closeness between two graphs.
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Definition A.3. (CLOSE and FAR) For γ ∈ [0, 1), two graphs Gu and Gk with n vertices are γ-close
to isomorphic if d(Gu, Gk) ≤ γn2. Otherwise, we say Gu and Gk are γ-far from being isomorphic. 12

A.2 Property Testing of Distribution Properties

Understanding different properties of probability distributions have been an active area of
research in property testing (For reference, see [Can15]). The authors studied these problems
assuming random sample access from the unknown distributions. Considering the relation between
the distributions and their corresponding representative multi-sets, we can say that all these results
hold for multi-sets along with access over sampling with replacement.

Although it seems that the change of query model from sample with replacement to sample
without replacement does not make much difference, following the work of Freedman [Fre77], we
know that the variation distance between probability distributions when accessed via samples with
and without replacement, becomes arbitrary close to 1/2 when the number of samples is Ω(

√
n).

Because of this reason, many techniques developed for sampling with replacement for various
problems no longer work anymore. Most importantly, proving any lower bound better than Ω(

√
n)

is often nontrivial.

B Earth Mover’s Distance (EMD) over Hamming Cube

In this section, we study some properties of Earth Mover’s distance (EMD) over probability
distributions and multi-sets, which are crucial in the context of both our lower and upper bound.
Before proceeding to the discussion on EMD, let us first recall the definition of `1 distance between
two distributions.

Definition B.1 (`1 distance between two distributions). Let p and q be two probability distributions
over [n]. The `1 distance between p and q is defined as

dl1(p, q) =
n

∑
i=1
|p(i)− q(i)|

Definition B.2 (EMD between two probability distributions). Let H = {0, 1}d be a Hamming cube
of dimension d, and p, q be two probability distributions on H. The EMD between p and q is
denoted by EMD(p, q) and defined as the optimum solution to the following linear program:

Minimize ∑
x,y∈H

fxydH(x, y)

Subject to ∑
y∈H

fxy = p(x) ∀x ∈ H, and ∑
x∈H

fxy = q(y) ∀y ∈ H.

Now we define EMD between two multi-sets.

Definition B.3 (EMD between two multi-sets). Let S1, S2 be two multi-sets on a Hamming cube
H = {0, 1}d of dimension d with |S1| = |S2|. The EMD between S1 and S2 is denoted by
EMD(S1, S2) and defined as EMD(S1, S2) = min

φ:S1→S2
∑

x∈S1

dH(x, φ(x)) where φ is a bijection from S1

to S2.
12By abuse of notation, we will say Gu and Gk are γ-far when d(Gu, Gk) ≥ γn2.
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Note that an unknown distribution p is accessed by taking samples from p. However, a multi-set
is accessed as follows:

Definition B.4 (Query accesses to multi-sets). A multi-set S of n elements is accessed in one of the
following ways:

Sample Access with replacement: Each element of S is reported uniformly at random indepen-
dent of all previous queries.

Sample Access without replacement: Let us assume we make Q queries to S, where Q ≤ n. The
answer to the first query, say s1, is an element from S chosen uniformly at random. For any
2 ≤ i ≤ Q, the answer of the i-th query is an element chosen uniformly at random from
S \ {s1, . . . , si−1}. Here sj, 1 ≤ j ≤ Q, denotes the answer to the j-th query.

Although sampling with replacement is more natural query model, we need sampling with-
out replacement for our lower bound proof. We now show that we can simulate samples with
replacement when we have samples without replacement.

Proposition B.5 (Simulating samples with replacement from samples without replacement). Given
Q many samples without replacement from an unknown multi-set Su with n elements, we can simulate Q
many samples with replacement from Su where Q ≤ n.

Proof. Consider the following procedure to get Q many samples with replacement (say x1, . . . , xQ)
when we have Q many samples without replacement (s1, . . . , sQ) from the unknown multi-set Su
with Q ≤ n.

We first set x1 = s1. For each i with 2 ≤ i ≤ Q, we set xi as follows: with probability 1− i−1
n , we

select one of the element from {s1, . . . , si−1} uniformly at random as xi; with probability i−1
n , we set

xi = si. From the description of procedure to generate xi’s, we have P (xi = si) =
1
n .

Thus we can simulate Q many samples with replacement from Q many samples without
replacement from the unknown multi-set Su.

The following observation connects the EMD between two probability distributions with that
of between two multi-sets.

Observation B.6. Let p, q be two probability distributions, having support size K, on a n di-
mensional Hamming cube H = {0, 1}n. Then p and q induces two multi-sets S1 and S2 on H,
respectively, as follows. S1 (S2) is the multi-set containing x ∈ H with multiplicity p(x)K (q(x)K)
for each x ∈ H. Moreover, EMD(p, q) = EMD(S1,S2)

K .

Proof. Recall the definitions of EMD between two distributions and two multi-sets given in Def-
inition B.2 and B.3, respectively. We will be done with the proof by showing EMD(S1, S2) ≤
K · EMD(p, q) and K · EMD(p, q) ≤ EMD(S1, S2), separately.

For EMD(S1, S2) ≤ K · EMD(p, q), let { f ∗ij : i, j ∈ H} be the set of variables that realizes
EMD(p, q), that is, EMD(p, q) = ∑

i,j∈H
f ∗ijdH(i, j). Consider a bijection φ from S1 to S2 where

φ(i) = j for gij many i’s. Hence, by Definition B.3,

EMD(S1, S2) ≤ ∑
x∈S1

dH(x, φ(x)) = ∑
i,j∈H

K · f ∗ijdH(i, j) = K · EMD(p, q).
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Now, we show K · EMD(p, q) ≤ EMD(S1, S2). Let φ∗ be a bijection from S1 to S2 that realizes
EMD(S1, S2), that is, EMD(S1, S2) = ∑

x∈S1

dH(x, φ∗(x)). For any x, y ∈ H, let fxy be the number of

elements, of the form (x, y) in S1 × S2 such that x is mapped to y under φ, divided by K2. Observe
that fxy ≥ 0. Also, fxy > 0 if and only if (x, y) ∈ S1 × S2. More over, { fij : i, j ∈ H} satisfies
∑

i∈H
fij = p(j) ∀j ∈ H and ∑

j∈H
fij = q(i) ∀i ∈ H. Hence, by Definition B.2,

K · EMD(p, q) ≤ K ∑
x,y∈H

fxydH(x, y) = ∑
(x,y)∈S1×S2

K · fxydH(x, y)

= ∑
x∈S1

dH(x, φ∗(x)) = EMD(S1, S2).

Remark 6. Note that sample access from a probability distribution is exactly same as uniform
sampling from a multi-set with replacement.

Proposition B.7. Let D be the set of all multi-sets of size n over a universe [m]; let Sk and Su in D denote
the known and unknown multi-sets over [n]; and PROP : D ×D → {0, 1} be a boolean function. Then the
following holds:

If there exists an algorithm that determines PROP by Q many samples without replacement from Su with
probability at least 2/3, then there exists an algorithm that determines PROP by min{Q,

√
min{n, m}}

many samples with replacement from Su with probability at least 2/3− o(1).

This follows from the fact that when Q = o(
√

n) and DWR (DWoR) be the probability distribution
over all the subsets having Q elements from [n] with (without) replacement, the `1 distance between
DWR and DWoR is o(1).

Definition B.8 (EMD over multi-sets while sampling with and without replacement). Let Sk and
Su denote the known and the unknown multi-sets, respectively, over n-dimensional Hamming
cube H = {0, 1}n such that |Su| = |Sk| = n. Consider the two distributions pu and pk over the
Hamming cube H that are naturally defined by the sets Su and Sk where for all x ∈ H probability
of x in pu (and pk) is the number of occurrences of x in Su (and Sk) divided by n. We then define the
EMD between the multi-sets Su and Sk as

EMD(Su, Sk) , n · EMD(pu, pk).

The problem of estimating the EMD over multi-sets while sampling with (or without) replace-
ment means designing an algorithm, that given any two constants β1, β2 such that 0 ≤ β1 < β2 ≤ 1,
and access to the unknown set Su by sampling with (or without) replacement decides whether
EMD(Sk, Su) ≤ β1n2 or EMD(Sk, Su) ≥ β2n2 with probability at least 2/3.

Note that estimating the EMD over multi-sets while sampling with replacement is exactly same
as estimating EMD between the distributions pu and pk with samples drawn according to pu.

Let QWREMD(n, d, β1, β2) (QWOREMD(n, d, β1, β2)) denote the number of samples with
(without) replacement required to decide the above from the unknown multi-set Su. For ease of pre-
sentation, we write QWOREMD(n, d) (QWREMD(n, d)) instead of QWOREMD(n, d) (QWREMD(n, β1, β2))
when the proximity parameters are clear from the context.
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Proposition B.9 (Query complexity of EMD increases with number of points as well as dimension).
Let n, n1, n2, d, d1, d2 ∈N be such that d1 ≤ d2 and n1 ≤ n2. Then

(i) QWREMD(n1, d) ≤ QWREMD(n2, d) and QWOREMD(n1, d) ≤ QWOREMD(n2, d);

(ii) QWREMD(n, d1) ≤ QWREMD(n, d2) and QWOREMD(n, d1) ≤ QWOREMD(n, d2).

Remark 7. For d = n (as considered in Definition 1.2), QWOREMD(n, d) (QWREMD(n, d)) are
denoted as QWOREMD(n) (QWREMD(n)).

Now let us state the lower bound of QWREMD(n).

Theorem B.10. QWREMD(n) = Ω( n
log n ).

Thus following Proposition B.7, we have

Theorem B.11. QWOREMD(n) = Ω(
√

n).

Note that an upper bound of QWOREMD(n) = Õ(n) is trivial. In the rest of the section, we
focus on proving Theorem B.10 that states the lower bound on QWREMD(n). We also provide
an upper bound for QWREMD(n) at Lemma B.16 that shows that Õ(n) many samples with
replacement from Su to estimate QWREMD(n). Note that by Remark 6, it is enough to show the
following lemma that states the lower bound for tolerant EMD testing between two distributions.

Lemma B.12. Let p and q be two known and unknown distributions, respectively, supported over a subset
S of a Hamming cube H = {0, 1}n with |S| = n. Then there exists a constant εEMD such that the
following holds. Given two constants β1, β2 with 0 < β1 < β2 < εEMD(c), Ω

(
n

log n

)
samples from the

distribution q are necessary in order to decide whether EMD(p, q) ≤ β1n or EMD(p, q) ≥ β2n. More
over, εEMD =

1−ε`1
4 , where ε`1 is the constant that is mentioned in Theorem B.14.

To prove the above lower bound, let us first consider the following lower bound for tolerant `1
testing between two probability distributions.

Theorem B.13 (Valiant and Valiant [VV11]). Let p and q be two known and unknown probability
distributions respectively over [n]. There is an absolute constant ε such that in order to decide whether
‖p− q‖1 ≤ ε or ‖p− q‖1 ≥ 1− ε, Ω( n

log n ) samples, from the distribution q, are necessary. 13

Now, we restate the above result for our purpose.

Theorem B.14. Let p and q be two known and unknown probability distributions, having support size n,
over a Hamming cube H = {0, 1}n. There is an absolute constant ε`1 such that in order to decide whether
‖p− q‖1 ≤ α1 or ‖p− q‖1 ≥ α2 with 0 < α1 < α2 ≤ 1− ε`1 , Ω( n

log n ) samples, from the distribution q,
are necessary.

As noted earlier, we will prove Theorem B.10 by using Lemma B.14. However, Theorem B.10 is
regarding EMD between two distributions whereas Lemma B.14 is regarding `1 distance between
two distributions. The following observation (from [DBNNR11]) gives a connection between EMD
between two distributions with the `1 distance between them, which will be required in lower
bound proof.

13Note that this is rephrasing of the result proved in [VV11]. For reference, see Chapter 3 of the survey by
Canonne [Can15].
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Proposition B.15 ( [DBNNR11]). Let (M, D) be a finite metric space and p and q be two probability
distributions on M. Minimum distance between any two points of M is ∆min and diameter of M is ∆max.
Then the following condition holds:

‖p− q‖1∆min

2
≤ EMD(p, q) ≤ ‖p− q‖1∆max

2
.

Note that the above observation is useful when ∆max
∆min

is bounded above by a constant. So, in
Lemma B.12, we consider S ⊂ H = {0, 1}n to be such that the pairwise Hamming distance between
any two elements in S is at least n

2 , to have ∆max
∆min
≤ 2 in our context. It is well known that, there

exists such a S with |S| = Ω(n).

Proof of Lemma B.12. We will show that if there exists an algorithmA that decides EMD(p, q) ≤ β1n
or EMD(p, q) ≥ β2n by using t samples from q, then there exists an algorithm P that decides
whether ‖p− q‖1 ≤ α1 or ‖p− q‖1 ≥ α2 by using t samples from q, where α1 = 2β1 and α2 = 4β2.

Note that we have 0 < β1 < β2 <
1−ε`1

4 . So, 0 < α1 < α2 < 1− ε`1 , which satisfies the requirement
of Theorem B.14.

Algorithm P :

(1) First run algorithm A.

(2) If the output of algorithm A is EMD(p, q) ≤ β1n, algorithm P returns ‖p− q‖1 ≤ α1.

(3) If the output of algorithm A is EMD(p, q) ≥ β2n, algorithm P returns ‖p− q‖1 ≥ α2.

To complete the proof, we only need to show that P gives desired output with probability at
least 2/3. The result then follows from Theorem B.14.

Let us first consider the case ‖p − q‖1 ≤ α1. Then by Observation B.15, we can say that
EMD(p, q) ≤ α1n

2 = β1n. Therefore algorithm A will output that EMD(p, q) ≤ β1n. This implies
that the algorithm P will output ‖p− q‖1 ≤ α1.

Now, let us consider the case ‖p− q‖1 ≥ α2. Using the fact that any pair elements in S ⊂ H is
at least n

2 along with Observation B.15, we get EMD(p, q) ≥ α2n
4 = β2n. This implies P will output

‖p− q‖1 ≥ α2.

Till now, we were discussing the proof of Lemma B.12 that states QWREMD(n) = Ω( n
log n ).

The lower bound is almost tight, up to a polynomial factor of log n. The upper bound is stated in
the following observation.

Observation B.16. QWREMD(n) = Õ(n), where Õ(·) hides a polynomial factor in 1
β2−β1

and
log n.

Instead of proving the above observation, we prove the following lemma that states the upper
bound of tolerant EMD testing between two distributions when we know one distribution and
have sample access to the unknown distribution. By Remark 6, we will be done with the proof of
Observation B.16.
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Lemma B.17. Let H = {0, 1}n be a n-dimensional Hamming cube, and let p and q denote two known and
unknown n-grained distribution over H. There exists an algorithm that takes two parameters β1, β2 with
0 ≤ β1 < β2 ≤ 1 and a δ ∈ (0, 1) as input and decides whether EMD(p, q) ≤ β1n or EMD(p, q) ≥ β2n
with probability at least 1− δ. Moreover, the algorithm ALG-EMD queries for Õ(n) many samples from q,
where Õ(·) hides a polynomial factor in 1

β2−β1
and log n.

Proof. Let ε be a constant less than (β2 − β1). We construct a probability distribution q′ such that
the `1 distance between q and q′ will be at most ε, that is, ∑

i∈[L]
|q(i)− q′(i)| ≤ ε. Note that such a q′

can be constructed with probability at least 1− δ by querying for Õ (n) many samples of q which
follows from [DL12]. Then, we find EMD(p, q′). Observe that |EMD(p, q)− EMD(p, q′)| ≤ εn

2 .
This is because∣∣EMD(p, q)− EMD(p, q′)

∣∣ ≤ ∣∣EMD(p, q′) + EMD(q′, q)− EMD(p, q′)
∣∣

≤ EMD(q, q′)

≤ εd
2

(By Proposition B.15)

As EMD(p, q) ≤ β1n or EMD(p, q) ≥ β2n, by the above observation, we will get either
EMD(p, q′) ≤

(
β1 +

ε
2

)
n or EMD(p, q′) ≥

(
β1 +

ε
2

)
n, respectively. By our choice of ε < β2 − β1,

we can decide EMD(p, q) ≤ β1n or EMD(p, q) ≥ β2n from the value of EMD(p, q′).

C Missing proofs of Section 3

C.1 Proof of Lemma 3.3

Lemma C.1 (Lemma 3.3 restated). Let κ ∈ (0, 1) and s ≥ 3 be given constants. Then for Cκ,s = d 6s
κ(2−κ)

e
and sufficiently large n ∈N 14, there exists a graph Gp with Cκ,sn many vertices such that the following
conditions hold.

(i) The degree of each vertex in Gp is at least ((1− κ)Cκ,s + 1)n− 1.

(ii) The cardinality of symmetric difference between the sets of neighbors of any two (distinct) vertices in Gp
is at least sn− 2.

Proof. To prove the claim, we use probabilistic method to show the existence of a graph G′p, with
V(G′p) = Cκ,sn, that can have (possible) self loops and satisfy the followings.

(i) The degree of each vertex in G′p is at least ((1− κ)Cκ,s + 1)n.

(ii) The cardinality of symmetric difference between the sets of neighbors of any two (distinct)
vertices in G′p is at least sn.

Let us construct a random graph having the vertex set V(G′p) such that each pair {u, v}, with
u, v ∈ V(G′p) , is an edge with probability 1− κ

2 independent of other pairs.

14The lower bound of n is a constant that depends on κ and s.
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Now we compute the probability that the degree of a vertex v ∈ G(V ′p), that is degG′p
(v), is at

most ((1− κ)Cκ,s + 1) n. For each v′ ∈ V(G′p), let Xv′ be the indicator random variable that takes
value 1 if and only if {v, v′} ∈ E(G′p). Note that degG′p

(v) = ∑
v′∈V(G′p)

Xv′ . Also, P(Xv′ = 1) = 1− κ
2 .

So, the expected value of degG′p
(v) is

(
1− κ

2

)
Cκ,sn. By using Chernoff bound E.1, we have

P
(

degG′p
(v) ≤ ((1− κ)Cκ,s + 1) n

)
= P

(
degG′p

(v) ≤ (1− ε)
(

1− κ

2

)
Cκ,sn

) (
where ε =

κCκ,s − 2
(2− κ)Cκ,s

< 1
)

≤ e−
ε2(2−κ)Cκ,sn

6

Let E1 be the event that there exists a vertex v ∈ V(G′p) such that the degree of v in G′p is at

most ((1− κ)Cκ,s + 1)n. Using union bound, we can say that P(E1) ≤
∣∣∣V(G′p)

∣∣∣ e−
ε2(2−κ)Cκ,sn

6 ≤ Cκ,sn ·

e−
ε2(2−κ)Cκ,sn

6 . Let E2 be the event that there exists two (distinct) vertices u, v with
∣∣∣NG′p(u)∆NG′p(v)

∣∣∣ ≥
sn, where NG′p(u) denotes the set of neighbors of u in G′p. Our goal is to show that G′p exists which
satisfies the required conditions. Observe that, G′p satisfies the required conditions if and only if
P(E c

1 ∩ E c
2) > 0. The rest of the work in this proof is to show P(E c

1 ∩ E c
2) > 0.

To bound P(E2), consider two distinct vertices u and v. For w ∈ V(G′p), let Yw be the
indicator random variable that takes value 1 if and only if w ∈ NG′p(u)∆NG′p(v). Note that∣∣∣NG′p(u)∆NG′p(v)

∣∣∣ = ∑
w∈V(G′p)

Yw and P(Yw = 1) = 2 · κ
2

(
1− κ

2

)
. So, the expected value of

∣∣∣NG′p(u)∆NG′p(v)
∣∣∣,

that is,
E
[∣∣∣NG′p(u)∆NG′p(v)

∣∣∣] = 2 · κ

2

(
1− κ

2

)
Cκ,sn.

As Cκ,s = d 6s
κ(2−κ)

e, E
[∣∣∣NG′p(u) ∆ NG′p(v)

∣∣∣] ≥ 3sn. Using Chernoff bound E.1, we have

P
(∣∣∣NG′p(u) ∆ NG′p(v)

∣∣∣ ≤ sn
)
≤ e−

4sn
9

Now, by using union bound, we can say that P(E2) ≤
∣∣∣V(G′p)

∣∣∣2 e−
4sn
9 = C2

κ,sn2e−
4sn
9 . Finally using

union bound one more time and the fact that n is sufficiently large, we have

P(E1 ∪ E2) ≤ Cκ,sn · e−
ε2(2−κ)Cκ,sn

6 + C2
κ,sn

2e−
4sn
9 < 1.

Hence, P(E c
1 ∩ E c

2) > 0.

C.2 Proof of Inequality 2 of Lemma 3.6

Here we prove that

dφ(Gk, Gu) ≤ dψ(Gk, Gu) + 4x |Ak|+ 4x + 2y |Ak| − y(3n− 2). (13)
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To obtain Inequality (13), let us first consider the case when x = 1 and y = 0. So, let us assume
that ai ∈ Ak, a′j ∈ Au, bs ∈ Bk and b′s ∈ Bu be such that the following holds: ψ(ai) = b′s and
ψ(bs) = a′j, ψ(x) ∈ Au for each x ∈ Ak \ {ai}, and φ(bt) = b′t ∈ Bu for each bt ∈ Bk \ {bs}. By the
description of Steps (i), (ii) and (iii) of generating φ from ψ, as discussed in Lemma 3.6, we have the
following observation.

Observation C.2. For x = 1 and y = 0, we have ψ(ai) = b′s and ψ(bs) = a′j; φ(ai) = a′j and
φ(bs) = b′s; For any x ∈ (Ak ∪ Bk) \ {ai, bs}, φ(x) = ψ(x).

We can think of φ is generated by performing a swap operation, that means, the mappings of ai
and bs are swapped while generating φ from ψ. Now we show (for the special case of x = 1 and
y = 0) that:

dφ(Gk, Gu) ≤ dψ(Gk, Gu) + 4(|Ak|+ 1). (14)

By Observation C.2, φ(x) = ψ(x) for all vertices x ∈ (Ak ∪ Bk) \ {ai, bs}. So, any pair of
vertices in (Ak ∪ Bk) \ {ai, bs} has no effect on dφ(Gu, Gk)− dψ(Gu, Gk). Following Definition 1.1
and Definition A.2, we can say that

dφ(Gu, Gk)− dψ(Gu, Gk) ≤ 2
[∣∣DECIDERφ(ai)

∣∣− ∣∣DECIDERψ(ai)
∣∣+ ∣∣DECIDERφ(bs)

∣∣− ∣∣DECIDERψ(bs)
∣∣]

Note that the first term above can be written as DECIDERφ(ai) = (DECIDERφ(ai) ∩ (Ak ∪ {bs})) ∪
(DECIDERφ(ai) ∩ (Bk \ {bs})). Breaking other terms in the above expression similarly, we have

dφ(Gu, Gk)− dψ(Gu, Gk)

≤ 2[2 (|Ak|+ 1) +
∣∣DECIDERφ(ai) ∩ (Bk \ {bs})

∣∣− ∣∣DECIDERψ(ai) ∩ (Bk \ {bs})
∣∣

+
∣∣DECIDERφ(bs) ∩ (Bk \ {bs})

∣∣− ∣∣DECIDERψ(bs) ∩ (Bk \ {bs})
∣∣]

= 4 |Ak|+ 4 + 2Z, where
Z =

∣∣DECIDERφ(ai) ∩ (Bk \ {bs})
∣∣− ∣∣DECIDERψ(ai) ∩ (Bk \ {bs})

∣∣
+
∣∣DECIDERφ(bs) ∩ (Bk \ {bs})

∣∣− ∣∣DECIDERψ(bs) ∩ (Bk \ {bs})
∣∣

By showing Z ≤ 0, we will be done with the proof of Inequality (14). Observe that we can say
DECIDERφ(ai) ∩ (Bk \ {bs}) = φ (NBk(ai))∆NBu\{b′s}(φ(ai)). Also, writing the other terms in the
expression of Z in the similar fashion, we get

Z ≤
∣∣φ(NBk\{bs}(ai))∆

(
NBu\{b′s}(φ(ai))

)∣∣− ∣∣ψ (NBk\{bs}(ai)
)

∆
(

NBu\{b′s}(ψ(ai))
)∣∣

+
∣∣φ (NBk\{bs}(bs)

)
∆
(

NBu\{b′s}(φ(bs))
)∣∣− ∣∣ψ (NBk\{bs}(bs)

)
∆
(

NBu\{b′s}(ψ(bs))
)∣∣

Once again, from Observation C.2,

φ(NBk\{bs}(ai)) = ψ(NBk\{bs}(ai)) (Say I1)

NBu\{b′s}(φ(ai)) = NBu\{b′s}(ψ(bs)) (Say I2)

φ(NBk\{bs}(bs)) = φ
(

NBk\{bs}(bs)
)
(Say I3)

NBu\{b′s}(ψ(ai)) = NBu\{b′s}(φ(bs)) (Say I4)

Hence, the upper bound on Z can be expressed as follows:

Z ≤ |I1∆I2| − |I1∆I4|+ |I3∆I4| − |I3∆I2|
≤ (|I1∆I4|+ |I2∆I4|)− |I1∆I4|+ |I3∆I4| − |I3∆I2|
≤ 0
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Here the first two inequalities follow from the triangle inequality.
Note that we were discussing the proof of Inequality (14), which is a special case of Inequal-

ity (13) when x = 1 and y = 0. Observe that, the proof of Inequality (14) does not use any structure
of the subgraphs induced by Ak and Bk that changes while performing the swap operation. To
prove Inequality (13), we can think of generating φ from ψ, by first performing x many swap
operations, to generate an intermediate bijection φ1 such that

dφ1(Gk, Gu) ≤ dψ(Gk, Gu) + 4x(|Ak|+ 1).

Observe that φ1(Ak) = Au and φ1(Bk) = Bu. Then we generate φ from φ1, such that φ is a
SPECIAL bijection, that is, φ(bi) = b′i for each bi ∈ Bk along with φ1(Ak) = Au and φ1(Bk) = Bu
as follows. The process of generation of φ from φ1, can be thought of, as if, we are performing
y many swap operation between mappings of the vertices in BBN . The difference between, the
distance between Gu and Gk w.r.t. the bijections after and before each of the above swaps, is
at most 2|Ak| − (3n − 2). The term 3n − 2 comes from the structure of G[Bk] and G[Bu]. Since
|BBN | = y, dφ1(Gk, Gu) − dφ(Gk, Gu) is at most 2y|Ak| − y(3n − 2). Also, we have argued that
dφ1(Gk, Gu) ≤ dψ(Gk, Gu) + 4x(|Ak|+ 1). Hence, we can finally say that

dφ(Gk, Gu) ≤ dψ(Gk, Gu) + 4x(|Ak|+ 1) + 2y |Ak| − y(3n− 2).

D Missing Proofs of Section 4

D.1 Proof of Observation 4.12

Observation D.1 (Observation 4.12 restated). If
∣∣∣Symmφφ′(x)

∣∣∣ ≥ γ2−γ1
1000 n, then

P

(∣∣∣Symmφφ′(x) ∩ Cu

∣∣∣ ≥ (1− 1
50

)
∣∣∣Symmφφ′(x)

∣∣∣ |Cu|
n

)
≤ e−O(|Cu|).

Proof. Since Cu is taken uniformly at random, we can say that

E
[∣∣(DECIDERφ′(x)∆DECIDERφ(x)) ∩ Cu

∣∣] = ∣∣DECIDERφ′(x)∆DECIDERφ(x)
∣∣ |Cu|

n

So, using the Chernoff bound mentioned in Lemma E.1, we can say that

P

(∣∣(DECIDERφ′(x)∆DECIDERφ(x)) ∩ Cu
∣∣ ≥ 49

50

∣∣DECIDERφ′(x)∆DECIDERφ(x)
∣∣ |Cu|

n

)
≤ e−O(|Cu|)

D.2 Proof of Observation 4.13

Observation D.2 (Observation 4.13 restated). (i) If
∣∣DECIDERφ(x)

∣∣ ≥ γ2−γ1
1000 n, then

P

(∣∣DECIDERφ(x) ∩ Cu
∣∣ ≥ (1 +

1
50

)
∣∣(DECIDERφ(x)

∣∣ |Cu|
n

)
≤ e−O(|Cu|).
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(ii) If
∣∣DECIDERφ(x)

∣∣ < γ2−γ1
1000 n, then P

(∣∣DECIDERφ(x) ∩ Cu
∣∣ ≥ γ2−γ1

750 |Cu|
)
≤ e−O(|Cu|).

Proof. (i) Since Cu is taken uniformly at random, we have

E
[∣∣(DECIDERφ(x) ∩ Cu

∣∣] = ∣∣DECIDERφ(x)
∣∣ |Cu|

n
.

So, using the Chernoff bound mentioned in Lemma E.1, we have

P

(∣∣DECIDERφ(x)
∣∣ ≥ 51

50

∣∣DECIDERφ(x)
∣∣ |Cu|

n

)
≤ e−O(|Cu|)

(ii) Since Cu is taken uniformly at random, we have

E
[∣∣(DECIDERφ(x) ∩ Cu

∣∣] ≤ (γ2 − γ1

1000

)
|Cu| .

So, using the Chernoff bound mentioned in Lemma E.1, we have

P

(∣∣DECIDERφ(x) ∩ Cu
∣∣ ≥ (γ2 − γ1

750

)
|Cu|

)
≤ e−O(|Cu|)

E Some probability results

Lemma E.1 (Chernoff-Hoeffding bound, see [DP09]). Let X1, . . . , Xn be independent random variables

such that Xi ∈ [0, 1]. For X =
n
∑

i=1
Xi and µ = E[X], the following holds for all 0 ≤ δ ≤ 1

P (|X− µ| ≥ δµ) ≤ 2 exp
(
−µδ2

3

)
.

Lemma E.2 (Chernoff-Hoeffding bound, see [DP09]). Let X1, . . . , Xn be independent random variables

such that Xi ∈ [0, 1]. For X =
n
∑

i=1
Xi and µl ≤ E[X] ≤ µh, the followings hold for any δ > 0.

(i) P (X ≥ µh + δ) ≤ exp
(
−2δ2

n

)
.

(ii) P (X ≤ µl − δ) ≤ exp
(
−2δ2

n

)
.

Lemma E.3 (Hoeffding’s Inequality). Let X1, . . . , Xn be independent random variables such that ai ≤
Xi ≤ bi and X =

n
∑

i=1
Xi. Then, for all δ > 0,

P (|X−E[X]| ≥ δ) ≤ 2 exp

 −2δ2

n
∑

i=1
(bi − ai)2


.
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Lemma E.4 (Theorem 3.2 in [DP09]). Let X1, . . . , Xn be random variables such that ai ≤ Xi ≤ bi

and X =
n
∑

i=1
Xi. Let D be the dependent graph, with vertex set V(D) = {X1, . . . , Xn} and edge set

E(D) =
{
(Xi, Xj) : Xi and Xj are dependent

}
. Then, for all δ > 0,

P (|X−E[X]| ≥ δ) ≤ 2 exp

 −2δ2

χ∗(D)
n
∑

i=1
(bi − ai)2

 ,

where χ∗(D) denotes the fractional chromatic number of D.

The following lemma directly follows from Lemma E.4.

Lemma E.5 (Chernoff bound for bounded dependency). Let X1, . . . , Xn be indicator random variables

such that there are at most d many Xj’s on which an Xi depends . For X =
n
∑

i=1
Xi and µl ≤ E[X] ≤ µh, the

followings hold for any δ > 0.

(i) P (X ≥ µh + δ) ≤ exp
(
−2δ2

(d+1)n

)
,

(ii) P (X ≤ µ` − δ) ≤ exp
(
−2δ2

(d+1)n

)
.
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