Interplay between Graph Isomorphism and Earth Mover’s Distance in the Query and Communication Worlds

Sourav Chakraborty∗ Arijit Ghosh† Gopinath Mishra‡ Sayantan Sen§

Abstract

The graph isomorphism distance between two graphs G_u and G_k is the fraction of entries in the adjacency matrix that has to be changed to make G_u isomorphic to G_k. We study the problem of estimating, up to a constant additive factor, the graph isomorphism distance between two graphs in the query model. In other words, if G_k is a known graph and G_u is an unknown graph whose adjacency matrix has to be accessed by querying the entries, what is the query complexity for testing whether the graph isomorphism distance between G_u and G_k is less than γ_1 or more than γ_2, where γ_1 and γ_2 are two constants with $0 \leq \gamma_1 < \gamma_2 \leq 1$. It is also called the tolerant property testing of graph isomorphism in the dense graph model. The non-tolerant version (where γ_1 is 0) has been studied by Fischer and Matsliah (SICOMP’08).

In this paper, we prove a (interesting) connection between tolerant graph isomorphism testing and tolerant testing of the well studied Earth Mover’s Distance (EMD). We prove that deciding tolerant graph isomorphism is equivalent to deciding tolerant EMD testing between multi-sets in the query setting. Moreover, the reductions between tolerant graph isomorphism and tolerant EMD testing (in query setting) can also be extended directly to work in the two party Alice-Bob communication model (where Alice and Bob have one graph each and they want to solve tolerant graph isomorphism problem by communicating bits), and possibly in other sublinear models as well.

Testing tolerant EMD between two probability distributions is equivalent to testing EMD between two multi-sets, where the multiplicity of each element is taken appropriately, and we sample elements from the unknown multi-set with replacement. In this paper, our (main conceptual) contribution is to introduce the problem of (tolerant) EMD testing between multi-sets (over Hamming cube) when we get samples from the unknown multi-set without replacement and to show that this variant of tolerant testing of EMD is as hard as tolerant testing of graph isomorphism between two graphs. Thus, while testing of equivalence between distributions is at the heart of the non-tolerant testing of graph isomorphism, we are showing that the estimation of the EMD over a Hamming cube (when we are allowed to sample without replacement) is at the heart of tolerant graph isomorphism. We believe that the introduction of the problem of testing EMD between multi-sets (when we get samples without replacement) opens an entirely new direction in the world of testing properties of distributions.

∗Indian Statistical Institute, Kolkata, India. E-mail: sourav@isical.ac.in
†Indian Statistical Institute, Kolkata, India. E-mail: arijitiitkgpster@gmail.com
‡Indian Statistical Institute, Kolkata, India. E-mail: gopianjan117@gmail.com
§Indian Statistical Institute, Kolkata, India. E-mail: sayantan789@gmail.com
1 Introduction

Graph isomorphism (GI) has been one of the most celebrated problems in computer science. Roughly speaking, the graph isomorphism problem asks whether two graphs are structure-preserving. Namely, given two graphs G_u and G_k, graph isomorphism of G_u and G_k is a bijection $\psi : V(G_u) \rightarrow V(G_k)$ such that for all pair of vertices $u, v \in V(G_u)$, the edges $\{u, v\} \in E(G_u)$ if and only if $\{\psi(u), \psi(v)\} \in E(G_k)$. One central open problem in complexity theory is whether the graph isomorphism problem can be solved in polynomial time. Recently in a breakthrough result, Babai [Bab16] proved that the graph isomorphism problem could be decided in quasi-polynomial time.

For a central problem like the graph isomorphism, naturally, one would like to understand its (and related problems) computational complexity for various models of computation. While most of the focus has been on the standard time complexity in the RAM model for various classes of graphs (and hyper-graphs), other complexity measures like space complexity, parameterized complexity, and query complexity have also been studied over the past few decades (see the Dagstuhl Report [BDST15] and PhD thesis of Sun [Sun16]).

A natural extension of the GI problem is to estimate the "graph isomorphism distance" between two graphs. In other words, given two graphs G_u and G_k, what fraction of edges are necessary to add or delete to make the graphs isomorphic.

Definition 1.1. Let $G_u = (V_u, E_u)$ and $G_k = (V_k, E_k)$ be two graphs with $|V_u| = |V_k| = n$. Given a bijection $\phi : V_u \rightarrow V_k$, the distance between the graphs G_u and G_k with respect to the bijection ϕ is

$$d_\phi(G_u, G_k) := |\{(u, v) : \text{Exactly one among } (u, v) \in E_u \text{ or } (\phi(u), \phi(v)) \in E_k \text{ holds}\}|.$$

The Graph Isomorphism Distance (or GI-distance in short) between graphs G_u and G_k is defined as $\min_{\phi : V_u \rightarrow V_k} d_\phi(G_u, G_k)/n^2$, and is denoted by $\delta_{GI}(G_u, G_k)$ (we will use $d(G_u, G_k)$ to mean $n^2\delta_{GI}(G_u, G_k)$).

The problem of computing GI-distance between two graphs is known to be $\#P$-hard [Lin94]. The next natural question is:

What is the complexity for approximating (either by a constant additive or multiplicative factor) the graph isomorphism distance between two graphs?

In [Lin94], it was also proven that the problem of computing GI-distance between two graphs is APX-hard. So, approximating $\delta_{GI}(G_u, G_k)$ up to a constant multiplicative factor is NP-hard. In this paper, we study this problem of approximating (up to a constant additive factor) the GI-distance between two graphs in the query model and two party communication complexity model.

1.1 Property Testing of Graph Isomorphism

Formally speaking, the main problem is: given two graphs G_u and G_k and an approximation parameter $\zeta \in (0, 1)$, the goal is to output an estimate α such that

$$\delta_{GI}(G_u, G_k) - \zeta \leq \alpha \leq \delta_{GI}(G_u, G_k) + \zeta.$$

In the query model, the problem is equivalent (up to a constant factor) to the tolerant property testing of graph isomorphism in the dense graph model (introduced in the work of Parnas, Ron and

1In a graph G, $V(G)$ and $E(G)$ denote the sets of vertices and edges in G, respectively.
Rubinfeld [PRR06]. For $0 \leq \gamma < 1$, two graphs G_u and G_k, with n vertices, are called \(\gamma\)-close or \(\gamma\)-far to isomorphic\(^2\) if $d(G_u, G_k) \leq \gamma n^2$ or $d(G_u, G_k) \geq \gamma n^2$, respectively. In \((\gamma_1, \gamma_2)\)-tolerant GI testing, we are given two graphs G_u and G_k, and two parameters $0 \leq \gamma_1 < \gamma_2 \leq 1$, with the guarantee that either the graphs are γ_1-close or γ_2-far. One of the graphs (usually denoted as G_k) is accessed by querying the entries of its adjacency matrix. In contrast, the other graph (usually denoted as G_u) is known to the query algorithm, and no cost for accessing the entries of the adjacency matrix of G_u is incurred. The query complexity is the number of queries (to the adjacency matrix of G_u) that are required for testing, (with correctness probability at least $2/3$\(^3\)), whether G_u and G_k are γ_1-close or γ_2-far. The query algorithm is assumed to have unbounded computational power.

The non-tolerant property testing version of the graph isomorphism problem (that is, when $\gamma_1 = 0$) was first studied by Fischer and Matsliah [FM08] and subsequently, Babai and Chakraborty [BC10] studied the non-tolerant property testing version of the hypergraph isomorphism problem. Recently, the non-tolerant testing of GI has been considered in various other models (like Goldreich [Gol19] studied the problem for the bounded degree graph model of property testing and Levi and Medina [LM20] considered the problem in the distributed setting). However, the tolerant version of the problem remains elusive and it is surprising that the tolerant version of a fundamental problem like graph isomorphism (in query model) is not addressed in the literature, though the non-tolerant version of GI testing problem has been resolved more than a decade ago in [FM08] (when one graph is unknown). On a different note, there are also studies of non-tolerant version of graph isomorphism testing in the literature when both the graphs are unknown [FM08, OS18]. We will not discuss much about that case as the main focus of this paper is different.

Before proceeding further, we want to note that there is a simple algorithm with query complexity $\tilde{O}(n)$ for tolerant testing of graph isomorphism (when one of the graphs is known in advance). Basically, one goes over all possible $n!$ bijections $\phi : V_u \rightarrow V_k$ and estimates the distance between G_u and G_k with respect to the permutation. The samples may be reused\(^4\) and hence we have the following observation.

Observation 1.2. Given a known graph G_k and an unknown graph G_u and any approximation parameter $\zeta \in (0, 1)$, there is a query algorithm that makes $\tilde{O}(n)$ queries and outputs a number α such that, with probability at least $2/3$, the following holds:

$$\delta_{GI}(G_u, G_k) - \zeta \leq \alpha \leq \delta_{GI}(G_u, G_k) + \zeta.$$

But obtaining a lower bound matching (at least up to a polylog factor) the upper bound of Observation 1.2 is not at all obvious. This paper’s main contribution is to show an equivalence between tolerant testing of graph isomorphism and tolerant EMD testing between multi-sets (in the query setting).

Like many other property testing problems, the core difficulty in the testing of GI is understanding certain properties of distributions. In the case of the non-tolerant version of GI, it has been shown in [FM08] that the core problem is testing the variation distance between two distributions. Their upper bound result can be restated as: if there is a property testing algorithm, with query complexity $q(n)$ for testing equivalence between two distributions, on support size n\(^5\) then GI can be tested using $\tilde{O}(q(n))$ queries, where the tilde hides a polylogarithmic factor of n (number of vertices). And since

\(^2\)As a shorthand, rather than saying γ-close or γ-far to isomorphic, we will just say γ-close or γ-far respectively.

\(^3\)Here G_u and G_k denote the unknown and known graphs, respectively.

\(^4\)The correctness probability can be made any $1 - \delta$ by incurring a multiplicative factor of $O(\log \frac{1}{\delta})$ in the query complexity.

\(^5\)If the samples are $\Theta(\log(n!))$, then the error probability can be bounded using the union bound.

\(^6\)Testing identity between two distributions means to test if the unknown distribution (from where the samples are drawn) is identical to the known distribution or if the variation distance between them is more than ϵ.

2
1.2 Earth Mover’s Distance (EMD)

Let $H = \{0,1\}^n$ be a Hamming cube of dimension n, and p,q be two probability distributions on H. The Earth Mover’s Distance between p and q is denoted by $EMD(p, q)$ and defined as the optimum solution to the following linear program:

\[
\text{Minimize } \sum_{i,j \in H} f_{ij} d_H(i, j) \quad \text{Subject to } \sum_{j \in H} f_{ij} = p(i) \ \forall i \in H, \text{ and } \sum_{i \in H} f_{ij} = q(j) \ \forall j \in H.
\]

A standard way to think of sampling from any probability distribution is to consider it as a multi-set of elements with appropriate multiplicities, and samples are drawn with replacement from that multi-set. While estimating EMD between two multi-sets, although the most natural way to access the unknown multi-set is sampling with replacement, we introduce the problem of tolerant EMD testing over multi-sets with the access of samples without replacement.

Definition 1.3 (EMD over multi-sets while sampling with and without replacement). Let S_1 and S_2 denote two multi-sets, over n-dimensional Hamming cube $H = \{0,1\}^n$ such that $|S_1| = |S_2| = n$. Consider the two distributions p_1 and p_2 over the Hamming cube H that are naturally defined by the sets S_1 and S_2 where for all $x \in H$ probability of x in p_1 (and p_2) is the number of occurrences of x in S_1 (and S_2) divided by n. We then define the EMD between the multi-sets S_1 and S_2 as

\[
EMD(S_1, S_1) \triangleq n \cdot EMD(p_1, p_2).
\]

The problem of estimating the EMD over multi-sets while sampling with (or without) replacement means designing an algorithm, that given any two constants β_1, β_2 such that $0 \leq \beta_1 < \beta_2 \leq 1$, a known multi-set S_k and access to the unknown multi-set S_u by sampling with (or without) replacement, decides whether $EMD(S_k, S_u) \leq \beta_1 n^2$ or $EMD(S_k, S_u) \geq \beta_2 n^2$ with probability at least $2/3$. Note that estimating the EMD over multi-sets while sampling with replacement is exactly same as estimating EMD between the distributions p_u and p_k with samples drawn according to p_u.

We will denote by $QWR_{EMD}(n, \beta_1, \beta_2)$ (and $QWoR_{EMD}(n, \beta_1, \beta_2)$) the number of samples with (or without) replacement required to decide the above from the unknown multi-set S_u. For ease of presentation, we will write $QWoR_{EMD}(n)$ ($QWR_{EMD}(n)$) instead of $QWoR_{EMD}(n, \beta_1, \beta_2)$ ($QWR_{EMD}(n, \beta_1, \beta_2)$) when the proximity parameters are clear from the context.

Earth Mover’s Distance (EMD) is a fundamental metric over the space of distributions supported on a fixed metric space. Estimating EMD between two distributions, up to a multiplicative factor, has been extensively studied in mathematics and computer science. It is closely related to the embedding of the EMD metric into a ℓ_1 metric. Even the problem of estimation of EMD between distributions up to an additive factor has been well studied, for reference see [DBNN11], [SP18]. The hardness of estimating EMD between distributions depends heavily on the structure of the domain on which the distributions are supported. In [DBNN11], the authors have proved a lower bound of $\Omega((\Delta / \epsilon)^d)$ on the query complexity for estimating (up to an additive error of ϵ) EMD between two distributions supported on the real cube $[0, \Delta]^d$. At the same time, it is not hard to see that if the support has
certain structures, estimating EMD may be easy. In this paper, we focus on the estimation of EMD between two distribution when the metric space is the Hamming cube.

As noted earlier, sample access to a probability distribution is precisely the same as uniform sampling from a multi-set with replacement. Thus, from the results of Valiant and Valiant [VV11], it can be shown that the sample complexity for estimating the EMD between two distribution over the Hamming cube of dimension \(n \) is \(\Omega(n^{1/2} \log n) \). In other words, \(\text{QWREMD}(n) = \Omega(n^{1/2} \log n) \), and this is tight ignoring polynomial factor in \(\log n \) (See Theorem 3.10 of Appendix B). But what about \(\text{QWREMD}(n) \)? To the best of our knowledge, the sample complexity measure when the distributions are accessed by sampling a multi-set without replacement has never been studied before (for testing/estimating distances between distributions/multi-sets). However, it is interesting to note that, sampling without replacement model has been considered before in a different context by Raskhodnikova, Ron, Shpilka and Smith [RRSS09] for proving a lower bound of distinct elements problem. Also, recently Goldreich [Gol19] considered a similar sampling without replacement model while studying the non-tolerant graph isomorphism in the bounded degree model.

Coming back to our context, it follows that: if \(\text{QWREMD}(n) = o(\sqrt{n}) \), then \(\text{QWREMD}(n) = \Theta(n^{1/2} \log n) \) (See Proposition B.7 of Appendix B). As \(\text{QWREMD}(n) = \Omega(n^{1/2} \log n) \), we have a lower bound of \(\Omega(n^{1/2}) \) on \(\text{QWREMD}(n) \). To the best of our knowledge, there is no known better lower bound than \(\Omega(n^{1/2}) \) for \(\text{QWREMD}(n) \), although a lower bound of \(\Omega(n^{1/2} \log n) \) exists for \(\text{QWREMD}(n) \) (using observation in [DBNNR11]). We verified that the proof of [Val11] also goes through for \(\text{QWREMD}(n) \) as well (See Theorem 1.5). We now present the following conjecture:

Conjecture 1. There exist two constants \(\beta_1 \) and \(\beta_2 \) with \(0 < \beta_1 < \beta_2 < 1 \) such that in order to decide whether \(\text{EMD}(S_k, S_u) \leq \beta_1 n^2 \) or \(\text{EMD}(S_k, S_u) \geq \beta_2 n^2 \), with probability at least \(2/3 \), \(\Omega\left(\frac{n}{\text{poly}(\log n)}\right) \) samples without replacement from the unknown multi-set \(S_u \) are necessary.

One of our main contributions in this paper is introducing this complexity measure of \(\text{QWREMD}(n) \) as well as the above conjecture. In the rest of the paper, we focus on exploring the connection between \(\text{QWREMD}(n) \) and the query complexity of tolerant GI-testing. For a formal discussion on EMD over Hamming cube, please refer to Appendix B.

1.3 Our Results

Our main result of this paper is that we prove estimating GI-distance is as hard as tolerant EMD testing over multi-sets with the access of samples without replacement over the unknown multi-set \(S_u \), ignoring polynomial factors of \(\log n \).

Theorem 1.4 (Main Result). Let \(G_k \) and \(G_u \) denote the known and the unknown graphs on \(n \) vertices, respectively, and \(Q_{\text{GI}}(G_u, G_k) \) denotes the number of adjacency queries to \(G_u \), required by the best algorithm that takes two constants \(\gamma_1, \gamma_2 \) with \(0 \leq \gamma_1 < \gamma_2 \leq 1 \) and decides whether \(d(G_u, G_k) \leq \gamma_1 n^2 \) or \(d(G_u, G_k) \geq \gamma_2 n^2 \) with probability at least \(2/3 \). Then

\[
Q_{\text{GI}}(G_u, G_k) = \tilde{\Theta}(\text{QWREMD}(n))
\]

where \(\tilde{\Theta}(\cdot) \) hides polynomial factors in \(\frac{1}{\gamma_2 - \gamma_1} \) and \(\log n \).

1.3.1 Implication of Theorem 1.4 to Query Complexity of Tolerant GI

It is interesting to note that our lower bound proof is via a pure reduction from tolerant graph isomorphism to tolerant testing of \(\text{EMD} \) of multi-sets over the Hamming cube using samples without replacement. Thus our reductions also hold for other computational models such as the
communication complexity model. Regarding the lower bound on the sample complexity of tolerant EMD testing of multi-sets (in the with replacement model), using observation in [DBNNR11], we note that the tolerant EMD testing is as hard as tolerant testing of variation distance. In [Val11], they gave a lower bound of $\Omega(n^{1-o(1)})$ on the sample complexity for tolerant ℓ_1 testing. Although the proof of [Val11] uses samples with replacement (when we think of a distribution as a multi-set), it can be verified that the proof also works for samples without replacement.

Theorem 1.5 (Follows from [Val11]). For any constants $0 < \alpha < \beta < 1$, distinguishing between distribution pairs with statistical distance less than α from those with distance greater than β requires $n^{1-o(1)}$ samples without replacement.

From Theorem 1.5 a similar lower bound follows for tolerant EMD testing of multi-sets without replacement. Thus, from Theorem 1.4, we have the following corollary:

Corollary 1.6. Let G_k and G_u be the known and unknown graphs on n vertices, respectively. For any constants $0 < \gamma_1 < \gamma_2 < 1$, distinguishing between isomorphism distance of $d(G_u, G_k) \leq \gamma_1 n^2$ with $d(G_u, G_k) \geq \gamma_2 n^2$ requires $n^{1-o(1)}$ queries to the adjacency matrix of G_u.

On the other hand, for any constants $0 < \gamma_1 < \gamma_2 < 1$, distinguishing between isomorphism distance of $d(G_u, G_k) \leq \gamma_1 n^2$ with $d(G_u, G_k) \geq \gamma_2 n^2$ can be done in $O(n)$ queries.

The lower bound of [Val11] was later improved to $\Omega(\frac{n}{\log n})$ in [VV11]. However, the arguments of [VV11] are much more delicate and it is not completely clear to us whether their result of $\Omega(\frac{n}{\log n})$ can be carried over to the without replacement setting, even if we allow a loss of polylogarithmic factor. So, we propose the following conjecture:

Conjecture 2. Let G_k and G_u be the known and unknown graphs on n vertices, respectively. For any constants $0 < \gamma_1 < \gamma_2 < 1$, distinguishing between isomorphism distance of $d(G_u, G_k) \leq \gamma_1 n^2$ with $d(G_u, G_k) \geq \gamma_2 n^2$ requires $\Omega(\frac{n}{\log n})$ queries to the adjacency matrix of G_u.

Note that Conjecture 1 and Conjecture 2 are equivalent. Besides, the difference between sampling with and without replacement is much more subtle. Freedman [Fre77] has shown the difference when we sample elements with replacement from a set and that without replacement from the same set. However, when the number of samples is $o(\sqrt{n})$, the distribution of answers to the queries when samples are drawn with replacement is very close (in ℓ_1 distance) to the distribution of answers to the queries when samples are drawn without replacement. Thus, following Proposition B.7 along with Theorem 1.4, we can get an alternative proof of the following lower bound proved by Fischer and Matsliah [FM08].

Corollary 1.7 (Fischer and Matsliah [FM08]). There exists a constant $\zeta \in (0, 1)$ such that any query algorithm that decides, with probability at least $2/3$, if a known graph G_k and an unknown graph G_u is isomorphic or γ-far from isomorphic, with $\gamma \leq \zeta$, must make $\Omega(\sqrt{n})$ queries.

1.3.2 Implication of Theorem 1.4 to Communication Complexity of Tolerant GI

One of the central models of computation (particularly in the context of theoretical computer science) is the 2-player communication game introduced by Yao [Yao79] in 1979. Communication complexity is one of the most studied complexity measures and has wide-ranging applications in many different areas of computer science. But surprisingly, as far as we know, the communication complexity problem of GI (where Alice has graph G_a and Bob has graph G_b, and they want to decide if G_a and G_b are isomorphic) has never been studied. One of the main reasons may be that, in the communication setup, the standard GI problem reduces to the string equality checking problem,
and hence GI in the (randomized) communication setup is not that interesting anymore, since the randomized communication complexity, trivially, becomes $O(1)$ (see Appendix C).

But when it comes to tolerant GI testing, the communication version is not at all obvious. So, if Alice and Bob are given two graphs G_a and G_b respectively, what is the (randomized) communication complexity for checking if $d(G_a, G_b) \leq \gamma_1 n^2$ or $d(G_a, G_b) \geq \gamma_2 n^2$? While we don’t have a complete answer to this question yet, the following theorem holds from Theorem 1.2:

Theorem 1.8 (Informally stated). If Alice and Bob are given two graphs G_a and G_b with n vertices respectively and the (randomized) communication complexity for checking if the graphs are γ_1-close or γ_2-far is $c(n, \gamma_1, \gamma_2)$ then the following holds: There exists an absolute constant C such that if Alice and Bob are given two n-grained distributions over the Cn-dimension Hamming cube, then the (randomized) communication complexity of checking if the Earth Mover’s Distance between the distributions is at most $\beta_1 n$ or at least $\beta_2 n$ is $\Theta(c(n, \gamma_1', \gamma_2'))$, where γ_1' and γ_2' are constants that depend only on β_1 and β_2, and $\Theta(\cdot)$ hides multiplicative factor of poly$(\log n)$.

Theorem 1.8 says that the communication complexity of solving tolerant graph isomorphism and tolerant EMD testing are essentially the same, ignoring the polylog factor. Note that in the case of the communication setting, the distinction between with replacement and without replacement is not present. Also, it is important to point out that the lower bounds on tolerant EMD in the sampling model ([Val11] and [VV11]) does not give a lower bound in the communication setting. Though the tolerant graph isomorphism problem has not been addressed at all in the literature of communication complexity, EMD (for different metric spaces) has been considered in communication, streaming, and sketching models [KN06, AIK08, ADBIW09, AKR18]. However, the EMD problem that we have considered in this paper is different from those considered in the literature, and we believe that it will be of independent interest.

We also observe that the deterministic communication complexity of graph isomorphism is $\Omega(n^2)$ even for the non-tolerant setting.

Theorem 1.9 (⋆). Deterministic communication complexity of non-tolerant version of Graph Isomorphism testing (hence the tolerant version) is $\Theta(n^2)$.

Organization of the paper. In Section 2, we discuss the proof techniques of our main results. We prove the lower bound part (tolerant graph isomorphism is as hard as tolerant EMD testing) and upper bound part (tolerant EMD testing is as hard as tolerant graph isomorphism) of Theorem 1.4 in Sections 3 and 4 respectively. We finally conclude in Section 5. Every theorem, lemma, and claim, whose proof has been moved to the appendix, is marked with ⋆.

Notations All graphs considered here are undirected, unweighted, and have no self-loops or parallel edges. For a graph $G(V, E)$, $V(G)$ and $E(G)$ will denote the vertex set and the edge set of G, respectively. Since we are considering undirected graphs, we write an edge $(u, v) \in E(G)$ as $\{u, v\}$. The Hamming distance between two points x and y in a Hamming cube $\{0, 1\}^k$ will be denoted by $d_H(x, y)$.

7The probability of each element in the sample space is an integer multiple of $\frac{1}{n}$. 6
2 Discussion on our proof of Theorem 1.4

2.1 Reduction from tolerant EMD testing to tolerant graph isomorphism testing (Lower bound part of Theorem 1.4)

In this reduction, we crucially use the fact that the multi-sets are composed of elements from the Hamming cube. The reduction is based upon an involved gadget construction. In fact, we prove the lower bound for a slightly more powerful query model rather than the standard adjacency matrix query model. The most interesting part of our lower bound proof is that thanks to our reduction, we get to observe the importance of the model of accessing the multi-set without replacement in the context of EMD testing.

Now, we discuss the overview of our reduction. Let \(S_k\) and \(S_u\) denote the known and the unknown multi-sets, over a Hamming cube \(\{0,1\}^d\) (of dimension \(d\)) with \(d = \Theta(n)\), having \(n\) elements each. To start with, let us assume that we know both \(S_k\) and \(S_u\). We will construct two graphs \(G_k\) and \(G_u\) on \(d + n\) vertices as follows:

- The vertex set of \(G_k\) (and \(G_u\)) are partitioned into two sets \(A_k\) and \(B_k\) (and \(A_u\) and \(B_u\)) with \(|A_k| = |A_u| = n\) and \(|B_k| = |B_u| = d\).
- The graph induced by \(A_k\) is a clique, and similarly the graph induced by \(A_u\) is a clique.
- The graphs induced by \(B_k\) and \(B_u\) are copies of a special graph with certain nice properties which enable our reduction to work. The existence of such a graph is proved (in Lemma 3.3) using a probabilistic argument.
- Finally, for the cross edges between \(A_k\) and \(B_k\) (and \(A_u\) and \(B_u\)), we have: there is an edge between the \(i\)-th vertex of \(A_k\) (or \(A_u\)) and the \(j\)-th vertex of \(B_k\) (or \(B_u\)) if and only if the \(j\)-th coordinate of the \(i\)-th element of \(S_k\) (or \(S_u\)) is 1.
- Finally, a random permutation \(\pi\) is applied to the vertices of \(G_u\).

The permutation \(\pi\) is not known to the GI-tester. Note that we can construct \(G_k\) explicitly as \(S_k\) is known. However, that is not the same with \(G_u\) as \(S_u\) is unknown. But since we know the permutation \(\pi\), any query to the adjacency matrix of the graph \(G_u\) can be answered by a single query to one bit of \(S_u\). But unfortunately we don’t have query access to \(S_u\), and only have sample access to \(S_u\). To deal with this problem, it is easier to consider a slightly more powerful query. Say, the GI-tester wants to query the \((i,j)\)-th bit of the graph \(G_u\). Of course, if both \(i\) and \(j\) are in \(A_u\) or both are in \(B_u\), we can answer without even sampling from \(S_u\). But if \(i\) is in \(A_u\) and \(j\) is in \(B_u\), then what we intend to do is to give the whole neighborhood of \(i\) in \(B_u\) as the answer to the query. This would be like neighbourhood query in a bipartite graph. But the question remains: how do we intend to answer the query by sampling. The key observation here is that since the GI-tester does not know the permutation \(\pi\) that was applied to the vertices in \(G_u\), to its eye, all the vertices that have not been touched so far look same. So, every time it queries for \((i,j)\), where \(i \in A_u\) and \(j \in B_u\), either of the two cases can happen:

- Either, previously a query of the form \((i,j_1)\) was asked where \(j_1\) is also in \(B_u\), but in that case, it must have already got the answer of \((i,j)\) as we must have given all the neighbors of \(i\) in \(B_u\). So in that case, we can give back the same answer without sampling.
- Or, previously \(i\) did not participate in any query of the form \((i,j_1)\) where \(j_1\) is in \(B_u\). In this case, to the GI-tester’s eye, \(i\) is just a new vertex from \(A_u\). We can then sample without
replacement from S_u and whatever sample of the multi-set we have, we can assume that it is the element i and answer accordingly. Note that this is the exact place where sampling without replacement is crucial.

To complete our proof, we need to prove how the GI-distance between G_k and G_u is connected to the EMD between S_k and S_u. Consider the set Φ of all Special bijections from $V(G_k)$ to $V(G_u)$ that maps A_k into A_u and B_k into B_u such that the i-th vertex of B_k is mapped to the i-th vertex of B_u. Observe that $d_{\Phi}(G_k, G_u) = 2 \cdot EMD(S_k, S_u)$, where $d_{\Phi}(G_k, G_u) = \min_{\phi \in \Phi} d_{\phi}(G_k, G_u)$ (See Lemma 3.5 for a formal proof). The factor 2 is because of the way we define $d_{\phi}(G_k, G_u)$ (See Definition 1.1). This implies that tolerant isomorphism testing between G_k and G_u is at least as hard as tolerant EMD testing between S_k and S_u if we restrict the bijection from $V(G_k)$ to $V(G_u)$ to be a Special bijection. The reduction works for all possible bijections, because of the careful choice of the subgraph of G_k (and G_u) induced by B_k (and B_u), thus ensuring $d(G_k, G_u)$ is close to $d_{\Phi}(G_k, G_u)$ (See Lemma 3.6).

One can compare our proof technique to the lower bound proof of (non-tolerant) testing of GI from [FM08]. In [FM08], $\Omega(\sqrt{n})$ lower bound was proved directly (using Yao’s lemma) by constructing two distributions of YES instances and NO instances - the construction of the YES and NO instances were inspired from the tightness of the birthday paradox, which was also the core idea behind the lower bound proof of the equivalence testing of two probability distributions. But, there was no direct reduction from GI testing to equivalence testing of two probability distributions. But in our lower bound proof, we establish a direct reduction to estimating EMD of multi-sets on the Hamming cube with access to samples without replacement. This can be of much importance, mainly while considering other models of computation, like in the communication model. From our reduction, we can obtain an alternative proof of $\Omega(\sqrt{n})$ lower bound for the (non-tolerant) GI testing via the $\Omega(\sqrt{n})$ lower bound of the equivalence testing of distributions, as pointed out in Corollary 1.7.

2.2 Reduction from tolerant graph isomorphism to tolerant EMD testing (Upper bound part of Theorem 1.4)

Given a known graph G_k and query access to an unknown graph G_u (both on n vertices), we present an algorithm for tolerant testing of graph isomorphism between G_k and G_u by using a tolerant EMD tester (for distributions over H) as a blackbox. Note that this will prove the upper bound part of Theorem 1.4.

Algorithm for tolerant graph isomorphism using algorithm for tolerant EMD testing as a black box: Our testing algorithm is inspired by the algorithm of Fischer and Matsliah [FM08] for non-tolerant GI testing. But our algorithm significantly differs from that of Fischer-Matsliah in some crucial points. As we explain the high level picture of our algorithm, we will point out some of the crucial differences.

We split our algorithm into three phases. In Phase 1, we first choose a $O\left(\frac{1}{\gamma_2-\gamma_1}\right)$ size collection of random subset of vertices, i.e, coresets C_u from the unknown graph G_u where each $C_u \in C_u$ is of size $O(\log n)$. Thereafter we find all embeddings of C_u inside the known graph G_k. Let the embeddings be $\eta_1, \eta_2, \ldots, \eta_J$ where $C_u^i = \eta_i(C_u)$. Now each C_u (as well as each C_u^i) defines a label distribution of the vertices of G_u (as well as G_k). Let us denote the set of labels as X_{C_u} (and $Y_{C_u^i}$). Now we test if the EMD between X_{C_u} and $Y_{C_u^i}$ is close or far for each $i \in [J]$ (See Claim 4.2). We keep only those (C_u, η_i) for Phase 2 such that $EMD(X_{C_u}, Y_{C_u^i}) \leq (\gamma_1 + \frac{\gamma_2-\gamma_1}{2000}) n |C_u|$. Although Phase 1 of our algorithm is similar to the algorithm of [FM08], there is a striking difference. Since the authors of [FM08] were testing the non-tolerant version of graph isomorphism,
they were testing the identity of the label distributions of \(X_{C_u}\) and \(Y_{C_k}\). However, since we are solving the tolerant version of the problem, we need to allow some error among the label distributions. We need to pass only those placements of \(C_u\) that under \textit{good bijections} do not produce much error and testing of tolerant EMD fits exactly for this purpose. It is worth noting that Fischer-Matsliah uses an equivalence tester in their algorithm to identify the placements that do not produce “any” error. But, the proof of correctness of the algorithm would not go through even if we use the tolerant testing of the equivalence of distributions. The use of EMD in this phase is crucial for the proof of correctness of our algorithm to hold.

In Phase 2, we choose \(O\left(\frac{\log^2 n}{(\gamma_2 - \gamma_1)^2}\right)\) many vertices from the unknown graph \(G_u\) randomly and call it \(W\). We further find the labels of all the vertices of \(W\) under \(C_u\)-labelling by querying the corresponding entries of \(G_u\) for each \(C_u\) that has passed Phase 1. Then we try to match the vertices of \(W\) to the set of all possible labels \(\{l_1, l_2, \ldots, l_t\}\) of the vertices of \(G_k\) under \(C_k\)-labelling where \(C_k^i = \eta_i(C_u)\), for those \(\eta_i\) that have passed Phase 1. Ideally, we would like to find a mapping \(\psi : W \rightarrow \{l_1, l_2, \ldots, l_t\}\) such that the total distance between the labels of the matched vertices is not too large. If no such \(\psi\) is possible, we reject the current embedding and try some other embedding that has passed Phase 1.

In Phase 3, we construct a random partial bijection \(\hat{\phi} : W \rightarrow V(G_k)\) that maps the vertices of \(W\) to the vertices of \(G_k\) while preserving the labels according to \(\psi\). We achieve this by mapping each \(w \in W\) to one vertex of \(G_k\) randomly that has same label as determined by \(\psi\). Finally, we randomly pair the vertices of \(W\) and find the fraction of edge mismatches between the paired up vertices of \(W\) and \(\hat{\phi}(W)\). If this fraction is at most \(5\gamma_1 + \frac{3}{5}(\gamma_2 - \gamma_1)\), we accept and say that \(G_u\) and \(G_k\) are \(\gamma_1\)-close. If there is no such embedding of any \(C_u \in C_u\) that achieves this, we report that \(G_u\) and \(G_k\) are \(\gamma_2\)-far.

The proofs of completeness (See Lemma 4.15) and soundness (See Lemma 4.19) follow kind of the similar route as Fischer-Matsliah’s proof but the arguments are way more complicated. Many things that were trivial or obvious in the non-tolerant setting become major hurdles in the tolerant setting, and we overcome them with significantly difficult technical arguments.

3 Tolerant graph isomorphism is as hard as tolerant EMD testing

In this section, we prove that it is necessary to perform \(\Omega \left(\text{QWoREMD}(n)\right)\) many queries to the adjacency matrix of \(G_u\) to solve \((\gamma_1, \gamma_2)\)-tolerant GI testing of \(G_k\) and \(G_u\).

Theorem 3.1 (Restatement of the lower bound part of Theorem 1.4). Let \(G_k\) be the known and \(G_u\) be the unknown graph on \(n\) vertices, where \(n \in \mathbb{N}\) is sufficiently large. There exists a constant \(\epsilon_{\text{ISO}} \in (0,1)\) such that for any given constants \(\gamma_1, \gamma_2\) with \(0 < \gamma_1 < \gamma_2 < \epsilon_{\text{ISO}}\), any algorithm that decides whether the graphs are \(\gamma_1\)-close or \(\gamma_2\)-far, requires \(\text{QWoREMD}(n)\) adjacency queries to the unknown graph \(G_u\) where \(\text{QWoREMD}\) is as defined in Definition 1.3.

In Section 2.1 we have discussed an overview of of our idea to prove the above theorem. To prove Theorem 3.1 we show a reduction from tolerant GI testing to tolerant EMD testing over multi-sets when we have samples \textbf{without} replacement from the unknown multi-set.

Lemma 3.2. Suppose there is a constant \(\epsilon_0 \in \left(0, \frac{1}{2}\right)\) such that for all constants \(\gamma_1, \gamma_2\) with \(0 < \gamma_1 < \gamma_2 < \epsilon_0\) and any constant \(T \in \mathbb{N}\), the following holds: There exists a \((\gamma_1, \gamma_2)\)-tolerant tester for GI that, given a known graph \(G_k\) and an unknown graph \(G_u\) with \(|V(G_u)| = |V(G_k)| = (T + 1)n\), can distinguish whether \(d(G_u, G_k) \leq \gamma_1 Tn^2\) or \(d(G_u, G_k) \geq \gamma_2 Tn^2\) by performing \(Q\) adjacency queries to \(G_u\).
Then, for any constants β_1 and β_2 with $0 < \beta_1 < \beta_2 < \frac{68}{27}$, the following holds where $\kappa = \frac{\beta_2 - \beta_1}{8}$ and $T_\kappa = \left\lceil \frac{68}{\kappa(2 - \kappa)} \right\rceil$. There is a tolerant tester for EMD such that, given a known and an unknown multi-set S_k and S_u respectively, of the Hamming cube $\{0, 1\}^{T_\kappa n}$ with $|S_k| = |S_u| = n$, can distinguish whether $EMD(S_k, S_u) \leq \beta_1 T_n n^2$ or $EMD(S_k, S_u) \geq \beta_2 T_n n^2$ with Q many samples without replacement from S_u.

Remark 1. Observe that Lemma 3.2 talks about tolerant EMD testing between multi-sets with n elements over a Hamming cube of dimension $T_\kappa n$. But Theorem 3.1 states the lower bound of QWoREMD(n), that is, of tolerant EMD testing of multi-sets with n elements over a Hamming cube of dimension n. However, the query complexity of EMD testing increases with the dimension of the Hamming cube (See Proposition B.9). So, we will be done with the proof of Theorem 3.1 by proving Lemma 3.2.

3.1 Tolerant GI to Tolerant EMD testing: Proof of Lemma 3.2

To define the necessary reduction for the proof of Lemma 3.2, we need to show the existence of a graph G_p satisfying some unique properties.

Lemma 3.3 (*). Let $\kappa \in (0, 1)$ and $s \geq 3$ be given constants. Then for $C_{\kappa, s} = \left\lceil \frac{68}{\kappa(2 - \kappa)} \right\rceil$ and sufficiently large $n \in \mathbb{N}$, there exists a graph G_p with $C_{\kappa, s} n$ many vertices such that the following conditions hold.

(i) The degree of each vertex in G_p is at least $((1 - \kappa)C_{\kappa, s} + 1)n - 1$.

(ii) The cardinality of symmetric difference between the sets of neighbors of any two (distinct) vertices in G_p is at least $sn - 2$.

The proof of Lemma 3.3 uses probabilistic method and is presented in the Appendix D.1.

Let $ALG(\gamma_1, \gamma_2, T)$ be the algorithm that takes γ_1 and γ_2 with $0 < \gamma_1 < \gamma_2 < \epsilon_0$ as input and decides whether $d(G_k, G_u) \leq \gamma_1 T_n n^2$ or $d(G_k, G_u) \geq \gamma_2 T_n n^2$, where $|V(G_k)| = |V(G_u)| = (T + 1)n$. Now we show that for any two constants β_1 and β_2 with $0 < \beta_1 < \beta_2 < \frac{68}{27}$, $\kappa = \frac{\beta_2 - \beta_1}{8}$ and $T_\kappa = \left\lceil \frac{68}{\kappa(2 - \kappa)} \right\rceil$, there exists an algorithm $A(\beta_1, \beta_2, \kappa, T_\kappa)$ that can test whether two multi-sets S_k and S_u over the $T_\kappa n$-dimensional Hamming cube have EMD less than $T_\kappa \beta_1 n^2$ or more than $T_\kappa \beta_2 n^2$ with Q many queries to the multi-set S_u. To be specific, algorithm $A(\beta_1, \beta_2, \kappa, T_\kappa)$ for EMD testing will use algorithm $ALG(\gamma_1, \gamma_2, T)$ for (γ_1, γ_2)-tolerant GI such that $\gamma_1 = 2\beta_1$, $\gamma_2 = 2\beta_2 - 2\kappa$ and $T = T_\kappa$. Note that, as $0 < \beta_1 < \beta_2 < \frac{68}{27}$ and $\kappa = \frac{\beta_2 - \beta_1}{8}$, $0 < \gamma_1 < \gamma_2 < \epsilon_0$ holds. The details of the reduction, that is, algorithm A is described below.

Description of the reduction

Input: A known multi-set $S_k = \{k_1, \ldots, k_n\}$ over $H_{T_\kappa n} = \{0, 1\}^{T_\kappa n}$ and query access to an unknown multi-set $S_u = \{u_1, \ldots, u_n\}$ over $H_{T_\kappa n}$.

Goal: To decide whether $EMD(S_k, S_u) \leq T_\kappa \beta_1 n^2$ or $EMD(S_k, S_u) \geq T_\kappa \beta_2 n^2$.

Construction of G_k and G_u from S_k and S_u: Let us first construct the graph G_k from S_k. G_k has $(T_\kappa + 1)n$ vertices partitioned into two parts $A_k = \{a_1, \ldots, a_n\}$ and $B_k = \{b_1, \ldots, b_{T_\kappa n}\}$. Now the edges of G_k are described as follows:

- $G_k[A_k]$ is a clique with n vertices.

*The lower bound of n is a constant that depends on κ and s.
• $G_k[B_k]$ is a copy of the graph $G_p(V_p, E_p)$ on $T_\kappa n$ vertices as stated in Lemma 3.3 with parameters $s = 5, \kappa = \frac{\beta_2 - \beta_1}{8}$ and $T_\kappa = C_{n,5}$.

• For the cross edges between the vertices in A_k and B_k, we add the edge (a_i, b_j) to $E(G_k)$ if and only if the j-th coordinate of k_i is 1 for all $i \in [n]$ and $j \in [T_\kappa n]$.

Note that the graph G_k constructed above is unique for a given multi-set S_k. The graph G_u with the vertex sets $A_u = \{a_1', \ldots, a_n'\}$ and $B_u = \{b_1', \ldots, b_{T_\kappa n}'\}$ is constructed from the multi-set S_u in a similar fashion, but at the end, the vertices of A_u are permuted using a random permutation. So,

• $G_u[A_u]$ is a clique with n vertices.

• $G_u[B_u]$ is a copy of the graph $G_p(V_p, E_p)$ on $T_\kappa n$ vertices as stated in Lemma 3.3 with parameters $s = 5, \kappa = \frac{\beta_2 - \beta_1}{8}$ and $T_\kappa = C_{n,5}$.

Let us first pick a random permutation π on $[n]$. For the cross edges between the vertices in A_u and B_u, we add the edge $(a_{\pi(i)}', b_j)$ to $E(G_u)$ if and only if the j-th coordinate of u_i is 1 for all $i \in [n]$ and $j \in [T_\kappa n]$.

Note that our final objective is to prove a lower bound on the query complexity for tolerant testing of GI, that is, when we have an adjacency query access to G_u. We will instead show that the lower bound holds even if we have the following query access, named as A_u-neighborhood-query: the tester can choose a vertex $a_i' \in A_u$ and in one go obtain the information about the entire neighborhood of a_i' in B_u.

Observe that the only part of G_u that is not known to the tester is the cross edges between A_u and B_u. So, in this case, the A_u-neighborhood query is way more stronger than the standard queries to G_u, and a lower bound for the A_u-neighborhood query would imply a lower bound on adjacency query.

Simulating Queries to G_u using samples drawn from S_u without replacement

Following the above discussion, we will only have to show how to simulate A_u-neighborhood queries using samples drawn from S_u without replacement. So, we can assume that the queries are of the form: what are the neighbors of a_i' in B_u? And since in each query the entire neighborhood of a_i' is obtained, the tester would pick different a_i' for every query. Note that in G_u, by construction, the vertices of A_u were permuted using a random permutation. So, from the point of view of the tester, the a_i' are just randomly drawn from A_u minus the set of a_i' already queried. In other word, the a_i' are just randomly drawn from A_u without replacement. Now because of the way the edges between A_u and B_u are constructed, the neighborhood of a random a_i' drawn from A_u without replacement is same as obtaining random samples from S_u without replacement.

It is also important to note that because of the randomness, the queries made by the tester are actually non-adaptive.

Description of algorithm A for testing $EMD(S_k, S_u)$

Run ALG on G_k and G_u with parameters $\gamma_1 = 2\beta_1$ and $\gamma_2 = 2\beta_2 - 2\kappa$. If ALG reports $d(G_k, G_u) \leq T_\kappa \gamma_1 n^2$, output that $EMD(S_k, S_u) \leq T_\kappa \beta_1 n^2$. Similarly, if ALG reports that $d(G_k, G_u) \geq T_\kappa \gamma_2 n^2$, then output $EMD(S_k, S_u) \geq T_\kappa \beta_2 n^2$.
Proof of Correctness of the reduction

To prove the correctness of the above reduction, let us first consider the following definition of special bijection and its connection with $\text{EMD}(S_k, S_u)$.

Definition 3.4 (Special bijections). A bijection ϕ from $V(G_k)$ to $V(G_u)$ is said to be special if $\phi(A_k) = A_u$, $\phi(B_k) = B_u$ and $\phi(b_i) = b'_i$ for all $b_i \in B_k$. The set of all special bijections from $V(G_k)$ to $V(G_u)$ will be denoted by Φ, and $d_\phi(G_k, G_u) := \min_{\phi \in \Phi} d_\phi(G_k, G_u)$.

Lemma 3.5. Let S_k, S_u be the known and unknown multi-sets, respectively. Then $d_\phi(G_k, G_u) = 2 \cdot \text{EMD}(S_k, S_u)$.

Proof. We will first prove that $d_\phi(G_k, G_u) \leq 2 \cdot \text{EMD}(S_k, S_u)$.

Recall that $S_k = \{k_1, \ldots, k_m\}$ and $S_u = \{u_1, \ldots, u_n\}$ be the known and unknown multi-sets over the Hamming cube $H_{T_k,n} = \{0,1\}^{T_k n}$. Also, note that G_u and G_k are the unknown and known graphs with vertex bipartitions A_u, B_u and A_k, B_k respectively as discussed earlier. Let $\psi : S_k \rightarrow S_u$ be an optimal bijection that realizes $\text{EMD}(S_k, S_u)$. Now, we will construct another bijection $\psi' \in \Phi$ such that $d_\psi'(G_k, G_u) = 2 \cdot \text{EMD}(S_k, S_u)$.

We construct the bijection $\psi' \in \Phi$ from $V(G_k)$ to $V(G_u)$ as follows: for each $i, j \in [n]$, $\psi'(a_i) = a_j'$ if and only if $\psi(k_i) = u_j$; for each $\ell \in [T_k n], \psi'(b_{\ell}) = b'_{\ell}$. From the definition of ψ' and by the definition of $d_\psi'(G_k, G_u)$ (See Definition 3.4), it is clear that $d_\psi'(G_k, G_u) = 2 \cdot \text{EMD}(S_k, S_u)$.

Since $d_\phi(G_k, G_u) = \min_{\phi \in \Phi} d_\phi(G_k, G_u)$, we can say $d_\phi(G_k, G_u) \leq d_\psi'(G_k, G_u) = 2 \cdot \text{EMD}(S_k, S_u)$.

Now we will prove the other way around, that is, we will show that $\text{EMD}(S_k, S_u) \leq \frac{d_\phi(G_k, G_u)}{2}$ holds as well. Let $\psi \in \Phi$ be a bijection from $V(G_k) \rightarrow V(G_u)$ that realizes $d_\phi(G_k, G_u)$.

By definition of Φ, we can assume that $\psi(b_i) = b'_i$ for all $i \in [T_k n]$. Now, let us consider a bijection ψ' from the multi-set S_k to S_u defined as follows: $\psi'(k_i) = u_j$ if and only if $\psi(a_i) = a_j'$ for all $i, j \in [n]$. Observe that

$$\sum_{i \in [n]} d_H(k_i, \psi'(k_i)) = \frac{d_\psi(G_k, G_u)}{2}.$$

Thus, $\text{EMD}(S_k, S_u) \leq \sum_{i \in [n]} d_H(k_i, \psi'(k_i)) = \frac{d_\psi(G_k, G_u)}{2} = \frac{d_\phi(G_k, G_u)}{2}$. Putting everything together, we have $d_\phi(G_k, G_u) = 2 \cdot \text{EMD}(S_k, S_u)$.

Now, using the following lemma, we will show how $d_\phi(G_k, G_u)$ is related to $d(G_k, G_u)$, where Φ is the set of all special bijections.

Lemma 3.6. Let Φ be the set of all special bijections from $V(G_k)$ to $V(G_u)$. Also, let $d_\phi(G_k, G_u) = \min_{\phi \in \Phi} d_\phi(G_k, G_u)$. Then $d_\phi(G_k, G_u) - 2 \kappa T_k n^2 \leq d(G_k, G_u) \leq d_\phi(G_k, G_u)$.

Proof. Note that $d(G_k, G_u) \leq d_\phi(G_k, G_u)$ follows from their definitions.

For the proof of the other side of the inequality, let us consider a bijection $\psi : V(G_k) \rightarrow V(G_u)$ that realizes $d(G_k, G_u)$, that is, $d(G_k, G_u) = d_\psi(G_k, G_u)$. If ψ is a bijection such that $\psi \in \Phi$, then $d_\phi(G_k, G_u) - 2 \kappa T_k n^2 \leq d(G_k, G_u)$ holds. So, let us assume that $\psi \notin \Phi$. Then we will show that there exists a bijection $\phi \in \Phi$ such that $d_\phi(G_k, G_u) \leq d_\psi(G_k, G_u) + 2 \kappa T_k n^2$, which will imply $d_\phi(G_k, G_u) \leq d_\psi(G_k, G_u) + 2 \kappa T_k n^2$, that is, $d_\phi(G_k, G_u) - 2 \kappa T_k n^2 \leq d(G_k, G_u)$.

We will now present the construction of $\phi \in \Phi$ from ψ. Let us first partition the vertices of B_k; with respect to ψ, into three parts: $B_k = B_{HI} \sqcup B_{BN} \sqcup B_A$; for each $b_i \in B_{HI}, \psi (b_i) = b'_i$; for each $b_i \in B_{BN}, \psi (b_i) \in B_A$ but $\psi (b_i) \neq b'_i$; for each $b_i \in B_A, \psi (b_i) \in A_u$. Also, we partition the vertices of A_k into two parts: $A_k = A_A \sqcup A_B$; for each $a_i \in A_A, \psi (a_i) \in A_u$; for each $a_i \in A_B, \psi (a_i) \in B_u$. Let $|B_A| = |A_B| = x$ and $|B_{BN}| = y$, where $0 \leq x \leq n$ and $0 \leq y \leq T_k n$. Now, we will construct

\[\text{Note that this relation does not hold in general. However this is true for the graphs } G_k \text{ and } G_u \text{ constructed in the reduction.}\]
the bijection $\phi \in \Phi$ (from ψ) by performing the following three steps in that order. Note that the construction of ϕ is not a part of our reduction. This is used for analysis purpose only.

Step (i) $\phi(u) = \psi(u)$ for all vertices $u \in B_{BI} \cup A_A$.

Step (ii) For each $a_i \in A_B$, $\phi(a_i) \in A_u \setminus \psi(A_A)$. Also, for each $b_i \in B_A$, $\phi(b_i) = b'_i \in B_u \setminus \psi(B_{BI})$.

Step (iii) For each $b_i \in B_{BN}$, $\phi(b_i) = b'_i$.

Observe that $\phi(A_k) = A_u$, $\phi(B_k) = B_u$ and $\phi(b_i) = b'_i$ for all $b_i \in B_k$, that is, ϕ is a SPECIAL bijection. It remains to show that

$$d_\phi(G_k,G_u) \leq d_\psi(G_k,G_u) + 2\kappa T_n n^2. \quad (1)$$

Recall that the graphs $G_k[B_k]$ and $G_u[B_u]$ are the same copies of $G_p(V_p,E_p)$, where $|V_p| = T_n n$. Observe that

- From Lemma 3.3 the graphs $G_k[B_k]$ and $G_u[B_u]$ satisfy the following property10 cardinality of symmetric difference between the sets of neighbors of any two distinct vertices is at least $5n - 2$.
- Since $G_k[A_k]$ and $G_u[A_u]$ are cliques, the degree of each vertex in graphs $G_k[A_k]$ and $G_u[A_u]$ is exactly $n - 1$.

To prove $d_\phi(G_k,G_u) \leq d_\psi(G_k,G_u) + 2\kappa T_n n^2$, it will be sufficient to show that

$$d_\phi(G_u,G_k) \leq d_\psi(G_u,G_k) + 4x(|A_k|+1) + 2xy + x(x-1) + 2y |A_k| - y(5n-2). \quad (2)$$

From Equation 2 we will be done with the proof of Inequality 1 as

$$d_\phi(G_u,G_k) \leq d_\psi(G_u,G_k) + 4x |A_k| + 4x + 2xy + x(x-1) + 2y |A_k| - y(5n-2)$$

$$= d_\psi(G_k,G_u) + 4xn + 4x + 2xy + n(n-1) + 2ny - y(5n-2)$$

$$\leq d_\psi(G_k,G_u) + 4n^2 + 4n + 2ny + 2ny - y(5n-2)$$

$$\leq d_\psi(G_k,G_u) + 8n^2$$

$$\leq d_\psi(G_k,G_u) + 2\kappa T_n n^2.$$

The last but one inequality follows from the fact that $0 \leq x \leq n$ and the last inequality follows from the fact that $T_k = \lceil \frac{30}{\kappa(2 - \kappa)} \rceil$. We present the proof of Inequality 2 in Appendix D.2.

The following lemma completes the proof of Lemma 3.2.

Lemma 3.7. The described algorithm A for EMD, that uses Algorithm ALG on G_k and G_u with parameters γ_1 and γ_2 as a subroutine, determines whether $EMD(S_k,S_u) \leq \beta_1 T_n n^2$ or $EMD(S_k,S_u) \geq \beta_2 T_n n^2$ with probability at least $2/3$, where $\gamma_1 = 2\beta_1$, $\gamma_2 = 2\beta_2 - 2\kappa$.

Proof. By the assumption of the existence of algorithm ALG that decides whether $d(G_k,G_u) \leq T_\gamma \gamma_1 n^2$ or $d(G_k,G_u) \geq T_\gamma \gamma_2 n^2$, we will be done with the proof by showing the followings.

(i) If $EMD(S_k,S_u) \leq T_\gamma \gamma_1 n^2$, then $d(G_k,G_u) \leq T_\gamma \gamma_1 n^2$.

(ii) If $EMD(S_k,S_u) \geq T_\gamma \gamma_2 n^2$, then $d(G_k,G_u) \geq T_\gamma \gamma_2 n^2$.

10Note that we are using Lemma 3.3 with parameters $s = 5$, $\kappa = \frac{\beta_2 - \beta_1}{8}$ and $T_\kappa = G_{\kappa,5}$.

13
We will first prove (i). From Lemma 3.5, we have \(d_\Phi(G_k, G_u) = 2 \cdot EMD(S_k, S_u) \), where \(\Phi \) is the set of all special bijections from \(V(G_k) \) to \(V(G_u) \). So, \(EMD(S_k, S_u) \leq T_\kappa \beta_1 n^2 \) implies \(d_\Phi(G_k, G_u) \leq 2T_\kappa \beta_1 n^2 = T_\kappa \gamma_1 n^2 \). Now, following the definition of special bijections (Definition 3.4) and Lemma 3.6, we can say that \(d(G_k, G_u) \leq d_\Phi(G_k, G_u) \leq T_\kappa \gamma_1 n^2 \).

Now, for the proof of (ii), considering the fact that \(d_\Phi(G_k, G_u) = 2 \cdot EMD(S_k, S_u) \) as above, we can say that \(EMD(S_k, S_u) \geq T_\kappa \beta_2 n^2 \) implies \(d_\Phi(G_k, G_u) \geq 2T_\kappa \beta_2 n^2 \). From Lemma 3.6, it follows that \(d_\Phi(G_k, G_u) - 2\kappa T_\kappa n^2 \leq d(G_k, G_u) \). Thus, \(d(G_k, G_u) \geq T_\kappa (2\beta_2 - 2\kappa) n^2 = T_\kappa \gamma_2 n^2 \).

4 Tolerant EMD testing is as hard as tolerant graph isomorphism testing

In this section, we prove the following theorem, that discusses about algorithm for tolerant graph isomorphism testing with a blackbox access to tolerant EMD testing over multi-sets.

Theorem 4.1. (Restatement of the upper bound part of Theorem 1.4) Let \(G_k \) and \(G_u \) be the known and unknown graphs, respectively. There exists an algorithm that takes parameters \(\gamma_1 \) and \(\gamma_2 \) as input such that \(0 \leq \gamma_1 < \gamma_2 \leq 1 \), performs \(\tilde{O}(\text{QWoR}_\text{EMD}(n)) \) many queries to the adjacency matrix of \(G_u \) for appropriate \(\beta_1 \) and \(\beta_2 \) depending on \(\gamma_1 \) and \(\gamma_2 \), and decides whether \(d(G_u, G_k) \leq \gamma_1 n^2 \) or \(d(G_u, G_k) \geq \gamma_2 n^2 \), with probability at least \(2/3 \). Here \(\tilde{O}(\cdot) \) hides a polynomial factor in \(\frac{1}{\beta_2 - \beta_1} \) and \(\log n \).

Remark 2. The theorem stated above works for any \(\gamma_1, \gamma_2 \) such that \(0 \leq \gamma_1 < \gamma_2 \leq 1 \). However, for simplicity of representation, we have assumed \(\gamma_2 \geq 11\gamma_1 \).

Remark 3. Note that Theorem 4.1 can also be stated in terms of \(\text{QWR}_\text{EMD}(n) \) as \(\text{QWR}_\text{EMD}(n) \leq \text{QWR}_\text{EMD}(n) \) as we can simulate samples with replacement when we have query access to samples without replacement (See Proposition 3.5).

Our algorithm for tolerant GI testing, as stated in Theorem 4.1, uses a special kind of tolerant EMD tester over multi-sets: we know \(t \) many multi-sets, one multi-set is unknown and two parameters \(\epsilon_1 \) and \(\epsilon_2 \) are given; the objective is to test tolerant \(EMD \) of each known multi-set with the unknown one. The following theorem gives us the special EMD tester.

Theorem 4.2. Let \(H = \{0, 1\}^n \) be a \(n \)-dimensional Hamming cube. Let \(\{S_k^i : i \in [t]\} \cup \{S_u\} \) denote the multi-sets with \(n \) elements from \(H \) where \(\{S_k^i : i \in [t]\} \) denote the set of \(t \) many known multi-sets and \(S_u \) denotes the unknown multi-set. There exists an algorithm \(\text{ALG-EMD} \) that takes two proximity parameters \(\epsilon_1, \epsilon_2 \) with \(0 \leq \epsilon_1 < \epsilon_2 \leq 1 \) and a \(\delta \in (0, 1) \) as input and decides whether \(EMD(S_u, S_k^i) \leq \epsilon_1 n^2 \) or \(EMD(S_u, S_k^i) \geq \epsilon_2 n^2 \), with probability at least \(1 - \delta \), for each \(i \in [t] \).

Moreover, \(\text{ALG-EMD} \) uses \(\text{QWR}_\text{EMD}(n) \cdot O(\log \frac{t}{\delta}) \) many samples without replacement from \(S_u \).

The above theorem follows from the definition of \(\text{QWR}_\text{EMD}(n) \) (See Definition 1.3) along with union bound and standard argument for amplifying the success probability.

Remark 4. The algorithm of Theorem 4.1 to be discussed in Section 4.1 formulates a tolerant \(EMD \) instance of multi-sets having \(n \) elements in \(H = \{0, 1\}^d \), where \(d = O(\log n/(\gamma_2 - \gamma_1)) \). But \(\text{ALG-EMD} \) is an algorithm for tolerant \(EMD \) testing between two multi-sets having \(n \) elements in \(\{0, 1\}^n \). This is not a problem as the query complexity of \(EMD \) is an increasing function in
First we sample a collection \(\mathcal{C} \). Moreover, the algorithm in Section 4.1 calls ALG-EMD with parameters \(\epsilon_1 = (\gamma_1 + \frac{\gamma_2 - \gamma_1}{2000}) \), \(\epsilon_2 = \frac{\gamma_2}{5} \), \(t = 2^{O(\log^2 n/|C_u|)} \) and \(\delta \) is a suitable constant depending upon \(\gamma_1 \) and \(\gamma_2 \), where \(\gamma_1 \) and \(\gamma_2 \) are parameters as stated in Theorem 4.1. So, each call to ALG-EMD, in our context, makes \(\tilde{O} \left(\text{QWoR}_{\text{EMD}}(n) \right) \) many queries.

4.1 Algorithm for tolerant graph isomorphism testing

For our algorithm, we need the following definitions of label and embedding.

Definition 4.3. (Label of a vertex) Given a graph \(G \) and \(C \subseteq V(G) = \{c_1, \ldots, c_{|C|}\} \), the \(C \)-labelling of \(V(G) \) is a function \(L_C : V(G) \to \{0, 1\}^{|C|} \) such that the \(i \)-th entry of \(L_C(v) \) is 1 if and only if \(v \) is a neighbor of \(c_i \in C \). Also, \(L_C(v) \) is referred as the label of \(v \) under \(C \)-labelling of \(V(G) \).

Definition 4.4. (Embedding of a Vertex Set into another Vertex Set) Let \(G_u \) and \(G_k \) be two graphs. Consider \(A \subseteq V(G_u) \) and \(B \subseteq V(G_k) \) such that \(|A| \leq |B| \). An injective mapping \(\eta \) from \(A \) to \(B \) is referred as an embedding of \(A \) into \(B \).

Now we present our query algorithm \(\text{TolerantGI}(G_u, G_k, \gamma_1, \gamma_2) \) that comprises three phases. He technical overview of the algorithm is already presented in Section 2.2.

Formal Description of TolerantGI(\(G_u, G_k, \gamma_1, \gamma_2 \)):

The three phases of our algorithm are as follows:

4.1.1 Phase 1

The first phase of our algorithm consists of the following three steps.

Step 1 First we sample a collection \(\mathcal{C} \) of \(\tilde{O}(\log n) \) sized random subsets of \(V(G_u) \) with \(|\mathcal{C}| = \tilde{O}(\frac{1}{\gamma_2 - \gamma_1}) \). We perform Step 2 and Step 3 for each \(C_u \in \mathcal{C} \).

Step 2 We determine all possible embeddings, that is, \(\eta_1, \ldots, \eta_J \), of \(C_u \) into \(V(G_k) \), where \(J = \left(\frac{n}{\tilde{O}(\log n)} \right) \leq 2^{O(\log^2 n)} \). For each \(i \in [J] \), let \(C_k^i \) be the set of images of \(C_u \) under the \(i \)-th embedding of \(C_u \) into \(V(G_k) \), that is, \(C_k^i = \eta_i(C_u) \). For all \(i \in [J] \), we construct the multi-set \(Y_{C_k^i} \) that contains \(C_k^i \)-labellings of all the vertices of \(G_k \).

Step 3 Now for each vertex \(v \in V(G_u) \), there is a \(C_u \)-labelling of \(v \). Let \(X_{C_u} \) be the multi-set of \(C_u \)-labellings of all the vertices in \(V(G_u) \). However, \(X_{C_u} \) is unknown to the algorithm. We call ALG-EMD (as stated in Theorem 4.2) by setting parameters as described in Remark 3 to decide whether \(EMD(X_{C_u}, Y_{C_k^i}) \leq (\gamma_1 + \frac{\gamma_2 - \gamma_1}{2000}) n |C_u| \) or \(EMD(X_{C_u}, Y_{C_k^i}) \geq \gamma_2 n |C_u| / 5 \), for each \(i \in [J] \). Let us pair up \(C_u \)'s and their accepted embeddings into \(G_k \) and call the set \(\Gamma \) that is,

\[
\Gamma = \left\{ (C_u, \eta_i) \mid \text{ALG-EMD decides } EMD(X_{C_u}, Y_{C_k^i}) \leq (\gamma_1 + \frac{\gamma_2 - \gamma_1}{2000}) n |C_u| \right\}.
\]

Note that, at the end of the **Phase 1**, we have \(|\Gamma| \leq |\mathcal{C}| \cdot 2^{O(\log^2 n)} = \tilde{O} \left(2^{(\log^2 n)} \right) \). By the description of **Step 3** above, **Phase 1** of our algorithm calls ALG-EMD \(O(|\mathcal{C}|) \) times, once for each \(C_u \in \mathcal{C} \). So, setting \(\delta = \frac{1}{9|\Gamma|} \) in Theorem 4.2, we obtain the following observation about \(\Gamma \) that will be used to prove the soundness of our algorithm.
Observation 4.5. Consider Γ, the set of accepted embeddings that have passed Phase 1 paired with corresponding C_u, as defined above. Then

$$\mathbb{P}\left(\forall (C_u, \eta_i) \in \Gamma, \text{EMD}(X_{C_u}, Y_{C_u}) \leq \gamma_2 n |C_u| / 5 \right) \geq \frac{8}{9}.$$

4.1.2 Phase 2

In the second phase, the algorithm performs the following two steps.

Step 1 We sample a subset W of $\mathcal{O}(\log^2 n / (\gamma_2 - \gamma_1)^3)$ vertices randomly from G_u.

Step 2 For each $(C_u, \eta_i) \in \Gamma$ that has passed Phase 1, we perform the following steps:

(i) We find the $C_k^i = \eta_i(C_u)$-labelling of the vertices of G_k. Let l_1, \ldots, l_t be the labels of the vertices where $t = 2|C_k^i|$ and $V_j \subseteq V(G_k)$ be the set of vertices with label l_j.

(ii) We define a matrix M of size $|W| \times 2|C_k^i|$ where each row represents the label of a vertex $w \in W$ and each column represents one of the possible C_k^i-labelling of $V(G_k)$.

The (i, j)-th entry of M is defined as: $M_{ij} = d_H(L_{C_k^i}(w_i), l_j)$.

(iii) We choose a function $\psi : W \rightarrow \{l_1, \ldots, l_t\}$ randomly satisfying

$$\sum_{w \in W} d_H(L_{C_k^i}(w), \psi(w)) \leq \frac{2\gamma_2}{5} |C_k^i| |W| \quad \text{and} \quad |\{w : \psi(w) = l_j\}| \leq |V_j| \forall j \in [t]. \quad (3)$$

Let Γ_W be the set of tuples such that

$$\Gamma_W = \{(C_u, \eta_i, \psi) : (C_u, \eta_i) \in \Gamma \text{ and } \psi \text{ satisfies Equation (3)} \}.$$

Like Observation 4.5, the following observation about the set Γ_W will be used to prove the soundness of our algorithm.

Observation 4.6. $|\Gamma_W| \leq |\Gamma| \leq 2^{O(\log^2 n)}$. Moreover, any (C_u, η_i, ψ) that has passed this phase satisfies Equation (3).

4.1.3 Phase 3

The third phase of our algorithm comprises the following four steps.

Step 1 We randomly pair up the vertices of W. Let $\{(a_1, b_1), \ldots, (a_p, b_p)\}$ be the pairs of the vertices, where $p = \mathcal{O}(\log^2 n / (\gamma_2 - \gamma_1)^3)$. We now determine which (a_i, b_i) pairs form edges in G_u by querying the corresponding entries of the adjacency matrix of G_u.

Step 2 For each $(C_u, \eta_i, \psi) \in \Gamma_W$ that has passed Phase 2, we perform Step 3 and Step 4 as follows.

\[\text{\footnote{Let } C_u = \{x_1, \ldots, x_{\mathcal{O}(\log n / (\gamma_2 - \gamma_1))}\}. \text{ Note that for each } w_i \in W, L_{C_k^i}(w_i) \in \{0, 1\}^{\mathcal{O}(\log n / (\gamma_2 - \gamma_1))} \text{ such that the } j\text{-th coordinate is } 1 \text{ if and only if } w_i \text{ is a neighbour of } x_j, \text{ where } i \in [\mathcal{O}(\log^2 n / (\gamma_2 - \gamma_1)^3)] \text{ and } j \in [\mathcal{O}(\log n / (\gamma_2 - \gamma_1))]. \text{ Similarly, } l_j \in \{0, 1\}^{\mathcal{O}(\log n / (\gamma_2 - \gamma_1))} \text{ such that the } i\text{-th coordinate of } l_j \text{ is } 1 \text{ if and only if } \eta(x_i) \text{ is a neighbour of } v \in V_j, \text{ where } j \in [2^{|C_k^i|}].}\]
Step 3 We choose an embedding $\hat{\phi} : W \rightarrow V(G_k)$ randomly, satisfying $\hat{\phi}(w) \in V_j$ if and only if $\psi(w) = l_j$ and modulo permutation of the vertices in V_j for all $j \in [t]$. In other words, we map each $w \in W$ to a vertex in G_k randomly having $\psi(w) = l_j$ as its $C^\hat{\phi}_k$-labelling in G_k.

Step 4 We find the fraction $\zeta(C_u, \eta, \psi, \hat{\phi}) = |\{(a_i, b_i) : \psi(a_i, b_i) = 1\}| / p$, where $\psi(a_i, b_i) = 1$ if exactly one among $(a_i, b_i) \in E(G_u)$ and $(\phi(a_i), \hat{\phi}(b_i)) \in E(G_k)$ holds. If $\zeta(C_u, \eta, \psi, \hat{\phi}) \leq 5\gamma_1 + 3\gamma_2 - \gamma_1$, then HALT and REPORT that G_u and G_k are γ_1-close.

While executing **Step 3** and **Step 4** for each tuple in Γ_W, if we did not HALT, then we HALT now and REPORT that G_u and G_k are γ_2-far.

Observation 4.7. (i) The number of times our algorithm executes **Step 2**, **Step 3** and **Step 4** is at most $|\Gamma_W| \leq 2^{O(\log^2 n)}$.

(ii) If there exists a (C_u, η, ψ) such that $\zeta(C_u, \eta, \psi, \hat{\phi}) \leq 5\gamma_1 + 3\gamma_2 - \gamma_1$, then our algorithm reports that G_u and G_k are γ_1-close. Otherwise, G_u and G_k are reported to be γ_2-far.

4.2 Proof of Correctness

To prove the correctness of our algorithm, we need to show the following three properties:

Completeness Property If G_u and G_k are γ_1-close to isomorphic, then our algorithm reports the same with probability at least 2/3.

Soundness Property If G_u and G_k are γ_2-far from isomorphic, then the algorithm reports the same with probability at least 2/3.

Query Complexity The query complexity of our algorithm is $O(n)$.

4.2.1 Proof of Completeness Property

In order to prove the completeness property as described above, we will first prove some claims. Finally, combining the claims, we would conclude the completeness property of our algorithm.

We will first prove that there exists a $C_u \in C_u$ considered in **Step 1** of **Phase 1** of the algorithm and a corresponding embedding $\eta_i : C_u \rightarrow V(G_k)$ in **Step 2** of **Phase 1** such that $\text{EMD}(X_{C_u}, Y_{C^\hat{\phi}_k}) \leq (\gamma_1 + \frac{3\gamma_2 - \gamma_1}{2000})n |C_u|$ holds with probability at least 20/21, where $C^\hat{\phi}_k = \eta_i(C_u)$.

Claim 4.8. Let $\phi : V(G_u) \rightarrow V(G_k)$ be a bijection such that $d_{\phi}(G_u, G_k) \leq \gamma_1 n^2$. Then there exists a $C_u \in C_u$ and an embedding $\eta_i : C_u \rightarrow V(G_k)$ such that the following hold with probability at least 20/21.

- $\forall v \in C_u$, we have $\eta_i(v) = \phi(v)$, and
- $\text{EMD}(X_{C_u}, Y_{C^\hat{\phi}_k}) \leq (\gamma_1 + \frac{3\gamma_2 - \gamma_1}{2000})n |C_u|$

Note that $C^\hat{\phi}_k = \eta_i(C_u)$ and $Y_{C^\hat{\phi}_k}$ is set of $C^\hat{\phi}_k$-labelling of $V(G_k)$.

12$C^\hat{\phi}_k$ and $Y_{C^\hat{\phi}_k}$ are defined in **Step 2** of **Phase 1**.
Proof. Consider a particular $C_u \in \mathcal{C}_u$ and an embedding $\eta_i : C_u \rightarrow V(G_k)$ such that $\eta_i(v) = \phi(v)$ for all $v \in C_u$. Note that this embedding η_i is considered in Step 2 of Phase 1 of the algorithm. Now we will show that $\text{EMD}\left(X_{C_u}, Y_{C_k}\right) \leq (\gamma_1 + \frac{\gamma_2 - 21}{2000})n \cdot |C_u|$ holds with probability at least a constant, to be specified later, that depends upon γ_1 and γ_2, where $C_k^i = \eta_i(C_u)$.

We know that $d_\phi(G_u, G_k) \leq \gamma_1 n^2$ and by Definition A.2 we have

$$\sum_{x \in V(G_u)} |\text{DECIDER}_\phi(x)| \leq \gamma_1 n^2.$$

Thus,

$$\mathbb{E}\left[\sum_{x \in V(G_u)} |\text{DECIDER}_\phi(x) \cap C_u|\right] \leq \gamma_1 n |C_u|.$$ \hspace{1cm} (4)

From Definition A.2 we can say that

$$\text{EMD}\left(X_{C_u}, Y_{C_k}\right) = \min_{f : V(G_u) \rightarrow V(G_k)} \sum_{x \in V(G_u)} |\text{DECIDER}_f(x) \cap C_u|$$

$$\leq \sum_{x \in V(G_u)} |\text{DECIDER}_\phi(x) \cap C_u|$$

Therefore,

$$\mathbb{E}\left[\text{EMD}\left(X_{C_u}, Y_{C_k}\right)\right] \leq \mathbb{E}\left[\sum_{x \in V(G_u)} |\text{DECIDER}_\phi(x) \cap C_u|\right]$$

$$\leq \gamma_1 n |C_u| \hspace{1cm} \text{(From Equation 4)}$$

Using Markov inequality, we can say that

$$\mathbb{P}\left(\text{EMD}\left(X_{C_u}, Y_{C_k}\right) \leq (\gamma_1 + \frac{\gamma_2 - 21}{2000})n |C_u|\right) \geq 1 - \frac{\gamma_1}{\gamma_1 + \frac{\gamma_2 - 21}{2000}}.$$

Note that $|\mathcal{C}_u| = \mathcal{O}(\frac{1}{\gamma_2 - \gamma_1})$ and we have been arguing for a particular $C_u \in \mathcal{C}_u$. So, taking $|\mathcal{C}_u|$ suitably, we get a C_u and an embedding $\eta_i : C_u \rightarrow V(G_k)$ satisfying the properties mentioned in the statement of this claim with probability at least $20/21$. \hfill \square

The above claim discusses about the existence of a $C_u \in \mathcal{C}_u$ and its embeddings satisfying above mentioned desired properties. Now we discuss how our algorithm determines all $C_u \in \mathcal{C}_u$ that satisfy the properties. Note that Step 3 of Phase 1 of our algorithm calls ALG-EMD. Following the correctness of ALG-EMD (Theorem 4.2), we determine all embeddings $\eta_i : C_u \rightarrow V(G_k)$ such that $\text{EMD}\left(X_{C_u}, Y_{C_k}\right) \leq (\gamma_1 + \frac{\gamma_2 - 21}{2000})n |C_u|$ holds with probability at least $20/21$. The discussion in this paragraph is formalized in the following claim.

Claim 4.9. Let $C_u \in \mathcal{C}_u$ and η_1, \ldots, η_J be the all possible embeddings of C_u into $V(G_k)$. Then Step 3 of Phase 1 can determine the set $\Gamma = \{(C_u, \eta_i) \mid \text{EMD}(X_{C_u}, Y_{C_k}) \leq (\gamma_1 + \frac{\gamma_2 - 21}{2000})n |C_u|\}$ with probability at least $20/21$. Note that $C_k^i = \eta_i(C_u)$, X_{C_u} is the set of C_u-labelling of $V(G_u)$ and Y_{C_k} is set of C_k^i-labelling of $V(G_k)$.

18
As we are considering the case that G_u and G_k are γ_1-close to being isomorphic, from Claim 4.8 we can assume that there is an appropriate $(C_u, \eta_i) \in \Gamma$ such that $\text{EMD} \left(X_{C_u}, Y_{C_k} \right) \leq (\gamma_1 + \frac{\gamma_2 - \gamma_1}{2000}) n |C_u|$. Now we will prove that there exists a function $\psi : W \rightarrow \{l_1, \ldots, l_t\}$ as considered in Step 2 (iii) in Phase 2 of our algorithm such that Equation [3] holds with probability at least $20/21$.

Claim 4.10. Let us assume that $\phi : V(G_u) \rightarrow V(G_k)$ be a bijection such that $d_{\phi}(G_u, G_k) \leq \gamma_1 n^2$ and $(C_u, \eta_i) \in \Gamma$ where $C_u \in C_u$ and $\eta_i : C_u \rightarrow V(G_k)$ be an embedding such that

- $\forall v \in C_u$ we have $\eta_i(v) = \phi(v)$, and
- $\text{EMD} \left(X_{C_u}, Y_{C_k} \right) \leq (\gamma_1 + \frac{\gamma_2 - \gamma_1}{2000}) n |C_u|$ where $C_k^i = \eta_i(C_u)$.

Also, let $\{\ell_1, \ldots, \ell_t\}$ be the all possible C_k^i-labellings of $V(G_k)$, where $t = \left[2^{\left|C_k^i\right|}\right]$. Then there exists a mapping $\psi : W \rightarrow \{l_1, \ldots, l_t\}$ such that the following hold with probability at least $20/21$.

1. $\sum_{w \in W} d_H(\mathcal{L}_{C_u}(w), \psi(w)) \leq \frac{2\gamma_2}{9} |C_u| |W|$, and
2. $\forall j \in [t]$, we have $|\{w : \psi(w) = l_j\}| \leq |V_j|$.

Proof. From the conditions given in the statement of the claim, we can say that there exists $f : V(G_u) \rightarrow V(G_k)$ such that $f(v) = \eta_i(v) = \phi(v)$ for all $v \in C_u$ and $\sum_{x \in V(G_u)} |\text{DECIDER}_f(x) \cap C_u| \leq (\gamma_1 + \frac{\gamma_2 - \gamma_1}{2000}) n |C_u|$. Since $|\text{DECIDER}_f(x) \cap C_u| = d_H(\mathcal{L}_{C_u}(x), \mathcal{L}_{C_k^i}(f(x)))$, we have

$$\sum_{x \in V(G_u)} d_H(\mathcal{L}_{C_u}(x), \mathcal{L}_{C_k^i}(f(x))) \leq (\gamma_1 + \frac{\gamma_2 - \gamma_1}{2000}) n |C_u|$$

Since we are taking the vertices in W uniformly at random from G_u, we can say that

$$\mathbb{E} \left[\sum_{w \in W} d_H(\mathcal{L}_{C_u}(w), \mathcal{L}_{C_k^i}(f(w))) \right] \leq (\gamma_1 + \frac{\gamma_2 - \gamma_1}{2000}) |C_u| |W|$$

Using Hoeffding’s inequality, we have

$$\mathbb{P} \left(\sum_{w \in W} d_H(\mathcal{L}_{C_u}(w), \mathcal{L}_{C_k^i}(f(w))) \leq \frac{2\gamma_2}{9} |C_u| |W| \right) \geq 1 - e^{-\Theta(|W|)}$$

Now, we define $\psi : W \rightarrow \{l_1, \ldots, l_t\}$ such that $\psi(w) = \mathcal{L}_{C_k^i}(f(w))$. In other words, the C_k^i-labelling of $f(w)$ is same as the labelling of $\psi(w)$ for each $w \in W$. Thus, the ψ defined here satisfies the Condition (i) of this claim, that is, $\sum_{w \in W} d_H(\mathcal{L}_{C_u}(w), \psi(w)) \leq \frac{2\gamma_2}{9} |C_u| |W|$.

Observe that

$$|\{w \in W : \mathcal{L}_{C_k^i}(f(w)) = l_j\}| \leq |\{v \in V(G_k) : \mathcal{L}_{C_k^i}(v) = l_j\}| \leq |V_j|.$$

So, by the definition of ψ, $|\{w \in W : \psi(w) = l_j\}| \leq |V_j|$. Hence ψ considered above also satisfies Condition (ii) of the claim. □
Now consider the situation when the algorithm is at \textbf{Step 1 of Phase 3}. If \(G_u\) and \(G_k\) are \(\gamma_1\)-close, that is, there exists a bijection \(\phi\) from \(V(G_u)\) to \(V(G_k)\) such that \(d_\phi(G_u,G_k) \leq \gamma_1 n^2\), then there exists \(C_u \in C_u, \eta_i : C_u \rightarrow V(G_k)\), and \(\psi\) satisfying the conditions given in Claims \(4.8\) and \(4.10\). However, we do not know \(\phi\). If we construct, though inefficiently, a bijection \(\phi'\) that is same as \(\phi\) with respect to the same \(C_u \in C_u, \eta_i : C_u \rightarrow V(G_k)\) and \(\psi\) (conditions given in Claims \(4.8\) and \(4.10\)), then the following claim says that the difference between \(d_\phi'(G_u,G_k)\) and \(d_\phi(G_u,G_k)\) is not too large.

Claim 4.11. Let us assume that \(\phi : V(G_u) \rightarrow V(G_k)\) be a bijection such that \(d_\phi(G_u,G_k) \leq \gamma_1 n^2\), and \((C_u,\eta_i) \in \Gamma\) where \(C_u \in C_u\) and \(\eta_i : C_u \rightarrow V(G_k)\) be the mapping considered in Step 1 of Phase 2 and \(\psi : W \rightarrow \{\ell_1,\ldots,\ell_t\}\) be the mapping considered in Step 2 (iii) in Phase 2 such that

\[
\begin{align*}
&\forall v \in C_u \text{ we have } \eta_i(v) = \phi(v), \text{ and} \\
&\text{EMD} \left(X_{C_u}, Y_{C_u} \right) \leq (\gamma_1 + \frac{\gamma_2 - \gamma_1}{2000}) n |C_u| \text{ where } C_u^k = \eta_i(C_u).
\end{align*}
\]

Let \(\{\ell_1,\ldots,\ell_t\}\) be the all possible \(C_k\)-labellings of the vertices of \(G_k\) where \(t = \left| 2^{|C_1|} \right|\), and \(W\) be the set of vertices of \(G_u\) sampled at random in \textbf{Step 1 of Phase 2} and \(\psi : W \rightarrow \{\ell_1,\ldots,\ell_t\}\) be the mapping considered in \textbf{Step 2 (iii)} in \textbf{Phase 2} such that

\[
\begin{align*}
&\sum_{w \in W} d_H(C_u(w),\psi(w)) \leq \frac{2\gamma_2}{n} |C_u||W|, \text{ and} \\
&\forall j \in [t], \text{ we have } |\{w : \psi(w) = \ell_j\}| \leq |V_j|.
\end{align*}
\]

Then, with probability at least \(18/21\), there exists a bijection \(\phi' : V(G_u) \rightarrow V(G_k)\), with \(\phi'(x) = \phi(x) = \eta_i(x)\) for each \(x \in C_u\) and \(\phi'(w) = \hat{\phi}(w)\) for each \(w \in W\) such that

\[
d_\phi'(G_u,G_k) \leq d_\phi(G_u,G_k) + (4\gamma_1 + \frac{\gamma_2 - \gamma_1}{2}) n^2.
\]

Proof. We will prove the claim by contradiction. Suppose that

\[
d_\phi'(G_u,G_k) > d_\phi(G_u,G_k) + (4\gamma_1 + \frac{\gamma_2 - \gamma_1}{2}) n^2
\]

By using Definition \(A.2\), we write the above equation as

\[
\sum_{x \in V(G_u)} |\text{DECIDER}_{\phi'}(x)| > \sum_{x \in V(G_u)} |\text{DECIDER}_{\phi}(x)| + (4\gamma_1 + \frac{\gamma_2 - \gamma_1}{2}) n^2
\]

So,

\[
\sum_{x \in V(G_u)} |\text{DECIDER}_{\phi'}(x)\Delta\text{DECIDER}_{\phi}(x)| > (4\gamma_1 + \frac{\gamma_2 - \gamma_1}{2}) n^2
\]

Let us denote \(\text{DECIDER}_{\phi'}(x)\Delta\text{DECIDER}_{\phi}(x) = \text{Symm}_{\phi'}(x)\). Dividing the sum in the left hand side with respect to the values of \(|\text{DECIDER}_{\phi'}(x)\Delta\text{DECIDER}_{\phi}(x)|\)'s, that is, \(|\text{Symm}_{\phi'}(x)|\)'s, we get

\[
\sum_{x \in V(G_u) : |\text{Symm}_{\phi'}(x)| \geq \frac{(\gamma_2 - \gamma_1)n}{1000}} |\text{Symm}_{\phi'}(x)| + \sum_{x \in V(G_u) : |\text{Symm}_{\phi'}(x)| < \frac{(\gamma_2 - \gamma_1)n}{1000}} |\text{Symm}_{\phi'}(x)| > (4\gamma_1 + \frac{\gamma_2 - \gamma_1}{2}) n^2
\]

Note that the second sum of the left hand side is at most \(\frac{n\gamma_2 - \gamma_1}{1000} n^2\). Therefore,

\[
\sum_{x \in V(G_u) : |\text{Symm}_{\phi'}(x)| \geq \frac{(\gamma_2 - \gamma_1)n}{1000}} |\text{Symm}_{\phi'}(x)| > (4\gamma_1 + \frac{\gamma_2 - \gamma_1}{2}) n^2 - \frac{\gamma_2 - \gamma_1}{1000} n^2
\]

Before proceeding further, consider the following observation, which we will prove in Appendix \(E.1\).
Observation 4.12 (*). If $|\text{Symm}_{\phi'}(x)| \geq \frac{(2\gamma - \gamma_1)n}{1000}$, then

$$
\mathbb{P}\left(|\text{Symm}_{\phi'}(x) \cap C_u| \geq (1 - \frac{1}{50}) \frac{|C_u|}{n} \right) \leq e^{-O(|C_u|)}.
$$

This implies that the following holds with probability at least $1 - ne^{-O(|C_u|)}$.

$$
\sum_{x \in V(G_u); |\text{Symm}_{\phi'}(x)| \geq \frac{(2\gamma - \gamma_1)n}{1000}} |\text{Symm}_{\phi'}(x) \cap C_u| \geq \left(1 - \frac{1}{50}\right) \frac{|C_u|}{n} \sum_{x \in V(G_u); |\text{Symm}_{\phi'}(x)| \geq \frac{(2\gamma - \gamma_1)n}{1000}} |\text{Symm}_{\phi'}(x)|
$$

$$
= \frac{49}{50} \left(4\gamma_1 + \frac{499(2\gamma - \gamma_1)}{1000}\right) n |C_u|.
$$

Hence, with probability at least $1 - ne^{-O(|C_u|)}$, the following event holds.

$$
\sum_{x \in V(G_u)} |\text{Symm}_{\phi'}(x) \cap C_u| \geq \frac{49}{50} \left(4\gamma_1 + \frac{499(2\gamma - \gamma_1)}{1000}\right) n |C_u|.
$$

Assuming Equation (7) holds and using the fact that $W \subset V(G_u)$ is taken uniformly at random, we can say that

$$
\mathbb{E}\left[\sum_{w \in W} |\text{Symm}_{\phi'}(w) \cap C_u| \right] > \frac{49}{50} \left(4\gamma_1 + \frac{499(2\gamma - \gamma_1)}{1000}\right) |C_u| |W|
$$

Using Hoeffding’s inequality (See Lemma F.3), we get

$$
\mathbb{P}\left(\sum_{w \in W} |\text{Symm}_{\phi'}(w) \cap C_u| \leq (3\gamma_1 + \frac{11(2\gamma - \gamma_1)}{24}) |C_u| |W| \right) \leq e^{-O\left(\frac{|C_u|^2|W|^2}{|W||C_u|^2}\right)} = e^{-O(|W|)}
$$

As the above equation holds in the conditional space that Equation (7) holds, we have

$$
\mathbb{P}\left(\sum_{w \in W} |\text{Symm}_{\phi'}(w) \cap C_u| > (3\gamma_1 + \frac{11(2\gamma - \gamma_1)}{24}) |C_u| |W| \right) \geq 1 - ne^{-O(|C_u|)} - e^{-O(|W|)}.
$$

Note that Equation (5) implies Equation (8). However, till now, we have not used any information given in the statement of Claim 4.11 except that C_u and W are taken uniformly at random. By using the fact that the sum of label differences of the vertices of W under C_u-labelling and that of ψ is bounded, we will deduce that

$$
\mathbb{P}\left(\sum_{w \in W} |\text{Symm}_{\phi'}(w) \cap C_u| \leq (2\gamma_1 + \frac{9(2\gamma - \gamma_1)}{20}) |C_u| |W| \right) \geq 1 - ne^{-O(|C_u|)} - e^{-O(|W|)}.
$$

As Equation (5) implies Equation (6), and Equations (8) and (9) together implies that Equation (5) does not hold with probability at least $1 - 4ne^{-O(|C_u|)} - e^{-O(|W|)}$. Hence, we are done with the proof of Claim 4.11 except that we need to show Equation (9).

By the definition of the bijection ϕ, we have

$$
\sum_{x \in V(G_u)} |\text{DECIDER}_{\phi}(x) | \leq \gamma_1 n^2.
$$

This implies

$$
\sum_{x \in V(G_u)} |\text{DECIDER}_{\phi}(x) | \leq \gamma_1 n^2
$$

To proceed further, we need the following observation.
Observation 4.13 (*).

(i) If $|\text{DECIDER}_\phi(x)| \geq \left(\frac{122-\gamma_1}{1000}\right)n$, then

$$
\mathbb{P}\left(|\text{DECIDER}_\phi(x) \cap C_u| \geq (1 + \frac{1}{50}) |\text{DECIDER}_\phi(x)| \frac{|C_u|}{n}\right) \leq e^{-\Theta(|C_u|)}.
$$

(ii) If $|\text{DECIDER}_\phi(x)| < \left(\frac{122-\gamma_1}{1000}\right)n$, then $\mathbb{P}\left(|\text{DECIDER}_\phi(x) \cap C_u| \geq \frac{(\gamma_2 - \gamma_1)n|C_u|}{750}\right) \leq e^{-\Theta(|C_u|)}$.

The above observation follows from Chernoff bound (See Lemma F.1) and is presented in Appendix E.2 and it implies that the following holds with probability at least $1 - ne^{-\Theta(|C_u|)}$.

$$
\sum_{x \in V(G_u)} |\text{DECIDER}_\phi(x) \cap C_u|
= \sum_{x \in V(G_u): |\text{DECIDER}_\phi(x)| \geq \left(\frac{122-\gamma_1}{1000}\right)n} |\text{DECIDER}_\phi(x) \cap C_u| + \sum_{x \in V(G_u): |\text{DECIDER}_\phi(x)| < \left(\frac{122-\gamma_1}{1000}\right)n} |\text{DECIDER}_\phi(x) \cap C_u|
\leq \left(1 + \frac{1}{50}\right) \sum_{x \in V(G_u): |\text{DECIDER}_\phi(x)| \geq \left(\frac{122-\gamma_1}{1000}\right)n} |\text{DECIDER}_\phi(x)| \frac{|C_u|}{n} + \frac{(\gamma_2 - \gamma_1)n|C_u|}{750}
\leq \frac{51}{50}\gamma_1 n |C_u| + \frac{(\gamma_2 - \gamma_1)n|C_u|}{750}.
$$

Note that the last inequality follows from Equation (10). Summarizing the above calculation, we get that the following event occurs with probability at least $1 - ne^{-\Theta(|C_u|)}$.

$$
\sum_{x \in V(G_u)} |\text{DECIDER}_\phi(x) \cap C_u| \leq \frac{51}{50}\gamma_1 n |C_u| + \frac{(\gamma_2 - \gamma_1)n|C_u|}{750}. \tag{11}
$$

Let us assume Equation (11) holds. Since we are taking the vertices of W uniformly at random from $V(G_u)$, we have

$$
\mathbb{E}\left[\sum_{w \in W} |\text{DECIDER}_\phi(w) \cap C_u|\right] = \mathbb{E}\left[\sum_{w \in W} d_H(\mathcal{L}_{C_u}(w), \mathcal{L}_{C_k}^{\prime}(\phi(w)))\right],
\leq \frac{51}{50}\gamma_1 |C_u| |W| + \frac{(\gamma_2 - \gamma_1)|C_u||W|}{750}.
$$

Similarly from Step 2 (iii) of Phase 2, we have

$$
\sum_{w \in W} |\text{DECIDER}_{\phi'}(w) \cap C_u| = \sum_{w \in W} d_H(\mathcal{L}_{C_u}(w), \mathcal{L}_{C_k}^{\prime}(\phi'(w)))
\leq \frac{2\gamma_2}{5} |C_u| |W|.
$$

Recall that $\text{Symm}_{\phi\phi'}(x) = \text{DECIDER}_{\phi'}(x) \Delta \text{DECIDER}_\phi(x)$. Therefore,

$$
\mathbb{E}\left[\sum_{w \in W} |\text{Symm}_{\phi\phi'}(x) \cap C_u|\right] \leq \mathbb{E}\left[\sum_{w \in W} |\text{DECIDER}_{\phi'}(w) \cap C_u|\right] + \sum_{w \in W} |\text{DECIDER}_\phi(w) \cap C_u|
\leq \left(\frac{764}{750}\gamma_1 + \frac{301(\gamma_2 - \gamma_1)}{750}\right) |C_u||W|.
$$
Using Hoeffding’s inequality (see Lemma F.3), we can say that

\[
P\left(\sum_{w \in W} |\text{Symm}_{\phi'}(w) \cap C_u| > (2\gamma_1 + \frac{9(\gamma_2 - \gamma_1)}{20}) |C_u| |W| \right) \leq e^{-\Theta(|C_u|^2 |W|^2)} = e^{-\Theta(|W|)}.
\]

Note that the above equation holds on the conditional space that Equation (11) holds. Hence,

\[
P\left(\sum_{w \in W} |\text{Symm}_{\phi'}(w) \cap C_u| \leq (2\gamma_1 + \frac{9(\gamma_2 - \gamma_1)}{20}) |C_u| |W| \right) \geq 1 - ne^{-\Theta(|C_u|)} - e^{-\Theta(|W|)}.
\]

\[\square\]

If we had constructed a bijection \(\phi'\) as stated in the above claim, we could easily test by sampling suitable many random edges from \(G_u\) and checking the corresponding edges in \(G_k\). It is important to note that it is not possible to construct \(\phi'\) efficiently. However, without constructing the bijection \(\phi'\), if we can test for presence of some randomly chosen edges in \(G_u\) and their corresponding edges in \(G_k\), we are done. In order to achieve this, we choose \(W\) randomly in Step 1 of Phase 2 and pair up the vertices of \(W\) in Step 1 of Phase 3. Using Step 2 (iii) of Phase 2 and Step 3 of Phase 3, we check if \(\hat{\phi}(w) = \phi'(w)\) for each \(w \in W\). Note that \(\hat{\phi} : W \to V(G_k)\) is the map constructed in Step 3 of Phase 3 and \(\phi' : V(G_u) \to V(G_k)\) is the bijection as stated in Claim 4.11. Then we check the edge mismatches between the paired up vertices of \(W\) in \(G_u\) and their corresponding mapped vertices in \(G_k\) in Step 4 of Phase 3, which is possible as we have constructed the mappings of the vertices in \(W\) in Step 2 (iii) of Phase 2.

The following claim proves that if \(G_u\) and \(G_k\) are \(\gamma_1\)-close, then \(\zeta(C_u, \eta_i, \psi, \hat{\phi}) \leq 5\gamma_1 + \frac{3}{5}(\gamma_2 - \gamma_1)\), as considered in Step 4 of Phase 3 holds with probability at least 20/21.

Claim 4.14. Let us assume that \(\phi : V(G_u) \to V(G_k)\) be a bijection such that \(d_{\phi}(G_u, G_k) \leq \gamma_1 n^2\), and \((C_u, \eta_i) \in \Gamma\) where \(C_u \in C_u\), and \(\eta_i : C_u \to V(G_k)\) be an embedding of \(C_u\) such that

- \(\forall v \in C_u\) we have \(\eta_i(v) = \phi(v)\), and
- \(\text{EMD}\left(X_{C_u}, Y_{C_k^i}\right) \leq (\gamma_1 + \frac{2\gamma_1}{2000}) n |C_u|\) where \(C_k^i = \eta_i(C_u)\).

Let \(\{\ell_1, \ldots, \ell_l\}\) be the all possible \(C_k^i\)-labellings of \(G_k\) where \(t = \left|2^{|G_k|}\right|\), \(W\) be the set of vertices of \(G_u\) sampled at random in Step 1 of Phase 2, and \(\psi : W \to \{\ell_1, \ldots, \ell_l\}\) be the mapping considered in Step 2 (iii) of Phase 2 such that

- \(\sum_{w \in W} d_H(L_{C_u}(w), \psi(w)) \leq \frac{2n}{5} |C_u| |W|\), and
- \(\forall j \in [t]\), we have \(|\{w : \psi(w) = \ell_j\}| \leq |V_j|\).

If we take an embedding \(\hat{\phi} : W \to V(G_k)\) such that \(\hat{\phi}(w) \in V_j\) if and only if \(\psi(w) = \ell_j\), then

\[\zeta(C_u, \eta_i, \psi, \hat{\phi}) \leq 5\gamma_1 + \frac{3}{5}(\gamma_2 - \gamma_1)\]

holds with probability at least 20/21, where \(\zeta(C_u, \eta_i, \psi, \hat{\phi})\) is as defined in Step 3 of Phase 3.
Proof. Recall that \(W \) is a subset of \(V(G_u) \) taken uniformly at random in Step 1 of Phase 2 and we paired up the vertices of \(W \) randomly in Step 1 of Phase 3 respectively. Also, we are checking the edge mismatches of the paired up vertices of \(W \) and their corresponding mapped vertices in \(G_k \) according to the mapping \(\hat{\phi} : W \rightarrow V(G_k) \) in Step 4 of Phase 3 to compute \(\zeta(C_u, \eta_i, \psi, \hat{\phi}) \). Considering the conditions given in the statement of this claim and Claim 4.11, one can think that we are checking the presence of \(n \) many randomly chosen edges in \(G_u \) and the corresponding edges in \(G_k \) according to some bijection \(\phi' : V(G_u) \rightarrow V(G_k) \), where \(\phi' \) is a bijection with \(d_{\phi'}(G_u, G_k) \leq (5\gamma_1 + \frac{2\gamma_2 - \gamma_1}{2})n^2 \).

So, \(\mathbb{E}[\zeta(C_u, \eta_i, \psi, \hat{\phi})] \leq (5\gamma_1 + \frac{2\gamma_2 - \gamma_1}{2}) \). Now, applying Hoeffding’s inequality (Lemma F.3) and taking \(|W| = C' \frac{\log^2 n}{(\gamma_2 - \gamma_1)^3} \) for suitably large constant \(C' \), we have

\[
\mathbb{P} \left(\zeta(C_u, \eta_i, \psi, \hat{\phi}) > 5\gamma_1 + \frac{3}{5}(\gamma_2 - \gamma_1) \right) = \mathbb{P} \left(\zeta(C_u, \eta_i, \psi, \hat{\phi}) |W| > (5\gamma_1 + \frac{3}{5}(\gamma_2 - \gamma_1)) |W| \right) \leq e^{-O(|W|)} \leq \frac{1}{21}.
\]

Now we are ready to prove the completeness property using Claims 4.8 4.10 4.11 4.14 and Theorem 4.2.

Lemma 4.15 (Completeness Lemma). If \(G_u \) and \(G_k \) are \(\gamma_1 \)-close to isomorphic, then our algorithm reports the same with probability at least 2/3.

Proof. Observe that from Claim 4.8 we know that, with probability at least 20/21, there exists a \(C_u \in C_u \) and an embedding \(\eta_i : C_u \rightarrow V(G_k) \) such that \(\text{EMD} \left(X_{C_u}, Y_{C_k} \right) \leq (\gamma_1 + \frac{2\gamma_2 - \gamma_1}{2000}) n |C_u| \) where \(C_k^i = \eta_i(C_u) \). Similarly, from Theorem 4.2 we can say that, with probability at least 20/21, the algorithm ALG-EMD returns all embeddings \(\eta_i \) such that \(\text{EMD} \left(X_{C_u}, Y_{C_k} \right) \leq (\gamma_1 + \frac{2\gamma_2 - \gamma_1}{2000}) n |C_u| \). Now from Claim 4.10 we know that, with probability at least 20/21, conditions of Equation (3) hold. Again, from Claim 4.11 we can say that constructing partial bijection at Step 3 of Phase 3 does not change isomorphism distance by more than \((4\gamma_1 + \frac{2\gamma_2 - \gamma_1}{2000})n^2 \) with probability at least 18/21. Finally, from Claim 4.14 we can say that the algorithm will correctly detect the distance at Step 4 of Phase 3 by testing \(\zeta(C_u, \eta_i, \psi, \hat{\phi}) \leq 5\gamma_1 + \frac{3}{5}(\gamma_2 - \gamma_1) \) with probability at least 20/21. Thus, using union bound, we can say that when \(G_k \) and \(G_u \) are \(\gamma_1 \)-close to being isomorphic, TolerantGI\((G_u, G_k, \gamma_1, \gamma_2)\) reports the same with probability at least 2/3. \(\square \)

4.2.2 Proof of Soundness Property

Similarly for the soundness property of our algorithm, let us consider the case when \(G_u \) and \(G_k \) are \(\gamma_2 \)-far from being isomorphic. Then we will show that the algorithm will output the correct answer with probability at least 2/3.

Recall the definition of the set \(\Gamma_W \) with which we started Phase 3 of our algorithm.

\[
\Gamma_W = \{ (C_u, \eta_i, \psi) : (C_u, \eta_i) \in \Gamma \text{ such that Equation (3) holds} \}.
\]

By Observation 4.5, we have

\[
\mathbb{P} \left(\forall (C_u, \eta_i, \psi) \in \Gamma_W, \text{EMD}(X_{C_u}, Y_{C_k}) \leq \frac{\gamma_2}{5} |C_u| n \right) \geq \frac{8}{9},
\]

(12)
From now on, we work on the conditional space where $EMD(X_{C_u}, Y_{C_k}) \leq \frac{2|G_k|}{C_u}$ holds. By Observation 4.17(i), we know that $|\Gamma_W| \leq 2^{O(|\log^2 n/|\gamma_2 - \gamma_1|)}$. So, the following claim about any $(C_u, \eta, \psi) \in \Gamma_W$ along with union bound over all the elements in Γ_W, we will be done with the proof of soundness property.

Claim 4.16. Let $(C_u, \eta, \psi) \in \Gamma_W$ and $\hat{\phi}$ be the embedding of W into G_k constructed while executing Step 3 of Phase 3 for (C_u, η, ψ). Also, let $EMD(X_{C_u}, Y_{C_k}) \leq \frac{2|G_k|}{C_u}$, where $C_k = \eta_k(C_u)$. Then the following holds with probability at most $\frac{2}{9|\Gamma_W|}$:

$$
\zeta(C_u, \eta, \hat{\phi}) \leq 5\gamma_1 + \frac{3}{5}(\gamma_2 - \gamma_1).
$$

Proof. Let $\Phi(C_u, C_k)$ be the class of all bijections such that the following hold for each $\phi \in \Phi(C_u, C_k)$.

- $\phi(x) = \eta(x)$ for each $x \in C_u$, and
- $\sum_{w \in \text{DECIDER}_\phi(v) \cap C_u} |\text{DECIDER}_\phi(v) \cap C_u| \leq \frac{2|G_k|}{5} |C_u|$.

Consider the following observation, about the bijections in Φ, that we will prove later.

Observation 4.17. Let ϕ be a bijection in Φ. Then $\sum_{w \in \text{DECIDER}_\phi(w) \cap C_u} |\text{DECIDER}_\phi(w) \cap C_u| \leq \frac{2\gamma_2}{5} |C_u| |W|$ holds with probability at least $1 - \frac{1}{9|\Gamma_W|}$.

Our algorithm constructs $\psi : W \to \{\ell_1, \ldots, \ell_t\}$ in Step 2 of Phase 2 satisfying

- $\sum_{w \in W} d_H(L_{C_u}(w), \psi(w)) \leq \frac{2\gamma_2}{5} |C_u| |W|$, and
- $\forall j \in [t]$, we have $|\{w : \psi(w) = \ell_j\}| \leq |V_j|$.

Note that $\sum_{w \in W} d_H(L_{C_u}(w), \psi(w)) = \sum_{w \in W} |\text{DECIDER}_\phi(w) \cap C_u|$, where ϕ is some bijection in Φ. After getting ψ, we construct a partial bijection $\hat{\phi} : W \to V(G_k)$ that satisfies the above two conditions. So, one can think of W is taken uniformly at random from the set of all W’s satisfying $\sum_{w \in W} |\text{DECIDER}_\phi(w) \cap C_u| \leq \frac{2\gamma_2}{5} |C_u| |W|$. Now, from Observation 4.17, we have the following observation.

Observation 4.18. $\hat{\phi}$ is a random restriction of a random bijection $\phi \in \Phi(C_u, C_k)$ by the set W with probability at least $1 - \frac{1}{9|\Gamma_W|}$.

Proof. Let us consider a ϕ such that $\phi|_W = \hat{\phi}$. Let $W = \{\hat{\phi}_X = \phi|_X : X \subset V(G_u) \text{ and } |X| = |W|\}$, and $W' \subseteq W$ is defined as:

$$
W' = \left\{ \hat{\phi}_X \in W : \sum_{w \in X} |\text{DECIDER}_\phi(w) \cap C_u| \leq \frac{2\gamma_2}{5} |C_u| |W| \right\}
$$

Observe that $\hat{\phi} = \hat{\phi}_W \in W$. By Observation 4.17, we know that if we take a set $X \subset V(G_u)$ (i.e, a $\hat{\phi}_X$ uniformly at random from W), then the probability that $\hat{\phi}_X \in W'$, is at least $1 - \frac{1}{9|\Gamma_W|}$. So, $|W'| \geq \left(1 - \frac{1}{9|\Gamma_W|}\right) |W|$.

Observe that the partial bijection $\hat{\phi}$, constructed by our algorithm, is same as that of $\hat{\phi}_W$, and $\hat{\phi}$ is in W'. Now, using the fact that $|W'\geq \left(1 - \frac{1}{9|\Gamma_W|}\right) |W|$, the observation follows.
Recall that W is a subset of $V(G_u)$ taken uniformly at random in **Step 1 of Phase 2** and we paired up the vertices of W randomly in **Step 1 of Phase 3** respectively. Also, we are checking the edge mismatches of the paired up vertices of W and their corresponding mapped vertices in G_k according to the mapping $\phi : W \rightarrow V(G_k)$ in **Step 4 of Phase 3** to compute $\zeta(C_u, \eta_i, \psi, \phi)$. Considering the discussion here, one can think of that, we are checking the presence of many randomly chosen edges in G_u and the corresponding edges in G_k according to some bijection $\phi \in \Phi$.

Note that $d_\phi(G_u, G_k) \geq \gamma_2n^2$. Thus, $\mathbb{E}\left[\zeta(C_u, \eta_i, \psi, \phi)\right] \geq \gamma_2|W|$. Now we can deduce the following.\(^\text{13}\)

\[
\mathbb{P}\left(\zeta(C_u, \eta_i, \psi, \phi) \leq 5\gamma_1 + \frac{3}{5}(\gamma_2 - \gamma_1)\right) = \mathbb{P}\left(\zeta(C_u, \eta_i, \psi, \phi) |W| \leq (5\gamma_1 + \frac{3}{5}(\gamma_2 - \gamma_1)) |W|\right)
\leq e^{-\mathcal{O}(|W|)}
\leq \frac{1}{9|\Gamma_W|}
\]

Note that we were deriving the above bound on $\mathbb{P}\left(\zeta(C_u, \eta_i, \psi, \phi) \leq 5\gamma_1 + \frac{3}{5}(\gamma_2 - \gamma_1)\right)$ assuming that ϕ is a random restriction of a random $\phi \in \Phi$. Hence, combining Observation 4.17 with the above bound on $\mathbb{P}\left(\zeta(C_u, \eta_i, \psi, \phi) \leq 5\gamma_1 + \frac{3}{5}(\gamma_2 - \gamma_1)\right)$ (when $\dot{\phi}$ is a random restriction of a random $\phi \in \Phi$), we get

\[
\mathbb{P}\left(\zeta(C_u, \eta_i, \psi, \phi) \leq 5\gamma_1 + \frac{3}{5}(\gamma_2 - \gamma_1)\right) \leq \frac{2}{9|\Gamma_W|}.
\]

\[\square\]

Proof of Observation 4.17. Since W is taken uniformly at random,

\[
\mathbb{E}\left[\sum_{w \in W} |\text{DECIDER}_\phi(w) \cap C_u|\right] \leq \frac{\gamma_2}{5} |C_u||W|
\]

Using Hoeffding’s inequality, we get

\[
\mathbb{P}\left(\sum_{w \in W} |\text{DECIDER}_\phi(w) \cap C_u| \geq \frac{2\gamma_2}{5} |C_u||W|\right) \leq e^{-\mathcal{O}(|W|)} \leq \frac{1}{9|\Gamma_W|}.
\]

\[\square\]

Now we are ready to prove the soundness property of our algorithm.

Lemma 4.19 (Soundness Lemma). If G_u and G_k are γ_2-far from isomorphic, then the algorithm reports the same with probability at least $2/3$.

Proof. From Observation 4.7 (i), we know that $|\Gamma_W|$ is at most $2\gamma_1\log^2 n$. In Claim 4.16, we are proving that $\zeta(C_u, \eta_i, \psi, \phi) \leq 5\gamma_1 + \frac{3}{5}(\gamma_2 - \gamma_1)$ holds with probability at most $\frac{2}{9|\Gamma_W|}$ for any particular $(C_u, \eta_i, \psi) \in \Gamma_W$ with $\text{EMD}(X_{C_u}, Y_{C_k}) \leq \frac{\gamma_2}{5} |C_u|n$. So, by the union bound, the probability that there

\[^{13}\text{Here we are assuming } \gamma_2 \geq 11\gamma_1.\]
We will prove the query complexity property in the next section when we prove the final theorem.

TolerantGI

where

Cost

with probability at least

Putting everything together, the probability that the algorithm reports that \(G_u \) and \(G_k \) are \(\gamma_2 \)-far, is at least 2/3.

Till now we have proved the completeness and soundness property of our algorithm TolerantGI. We will prove the query complexity property in the next section when we prove the final theorem.

4.3 Proof of Theorem 4.1

Proof. From the Completeness Lemma (Lemma 4.15) and Soundness Lemma (Lemma 4.19), we can say that our algorithm TolerantGI correctly decides whether \(d(G_u, G_k) \leq \gamma_1 n^2 \) or \(d(G_u, G_k) \geq \gamma_2 n^2 \) with probability at least 2/3.

Now, we calculate the query complexity of our algorithm. Note that Step 1 and Step 2 of Phase 1, Step 1 and Step 3 of Phase 2, Step 1, Step 2 and Step 3 of Phase 3, of the algorithm TolerantGI, do not require any query to the adjacency matrix of \(G_u \). Let \(\text{Cost}_{C_u} \) denote the query complexity corresponding to a particular \(C_u \in C_u \). So, the total query complexity of the algorithm TolerantGI is

\[
\sum_{C_u \in C_u} \text{Cost}_{C_u}.
\]

Observe that

\[
\text{Cost}_{C_u} = \text{Query Complexity of algorithm ALG-EMD} + \text{Cost}_{C_u, W}
\]

where \(\text{Cost}_{C_u, W} \) denotes the query complexity of Step 1 of Phase 2 corresponding to \(W \) and \(C_u \in C_u \).

Note that ALG-EMD is the algorithm corresponding to Theorem 4.2 In Step 3 of Phase 1 of our algorithm, for each \(C_u \in C_u \), we call ALG-EMD with parameters \(d = O(\log n), t = 2^{O(\log^2 n)}, \epsilon_1 = (\gamma_1 + \frac{\gamma_2 - \gamma_1}{2000}), \epsilon_2 = \frac{\gamma_2}{2} \) and \(\delta = \Theta(1) \). So, the query complexity of each call, to ALG-EMD from our algorithm, is \(O(\min\{n, 2^d\}) = \tilde{O}(n) \).

Further note that, from the description Step 1 of Phase 2, \(\text{Cost}_{C_u, W} = O(\log^2 n) \). Since \(|C_u| = O\left(\frac{1}{\gamma_2 - \gamma_1}\right) \), the total query complexity of our algorithm is \(\tilde{O}(n) \).

5 Conclusion

In this paper, we proved that the query complexity of tolerant GI testing between a known graph \(G_k \) and an unknown graph \(G_u \) is the same as (up to polylogarithmic factor) tolerant testing of EMD between a known multi-set \(S_k \) and an unknown multi-set \(S_u \) when we have samples without replacement from \(S_u \). In Lemma 3.10, we have shown that the sample complexity of testing of EMD between a known multi-set \(S_k \) and an unknown multi-set \(S_u \) when we have samples with replacement from \(S_u \) is \(\Omega(n/\log n) \). Thus the natural open question is

What is the query complexity of tolerant EMD testing when we have samples without replacement from the unknown multi-set?

As mentioned before, it is interesting to note that our lower bound proof is via a pure reduction from tolerant graph isomorphism to tolerant testing of EMD of multi-sets over the Hamming cube using samples without replacement. Using our lower bound technique (and Proposition 3.7), we can
get an alternative proof of Fischer and Matsliah’s lower bound result for testing non-tolerant graph isomorphism \cite{FM08}. Our upper bound proof is also a pure reduction from tolerant testing of EMD of multi-sets over the Hamming cube to tolerant graph isomorphism problem. Thus our reductions also hold for other computational models such as the communication complexity model. So, in the communication model (that is, when Alice and Bob have graphs \(G_a\) and \(G_b\) respectively and they want to estimate the GI-distance between them), the amount of bits of communication is same (up to a polylogarithmic factors) to the problem of estimating the EMD between two distributions over Hamming cube, where Alice and Bob have access to one distribution each. The question we would like to pose is:

\[
\text{What is the randomized communication complexity of testing tolerant graph isomorphism problem?}
\]

Fischer and Matsliah \cite{FM08} studied the non-tolerant version of the graph isomorphism problem in two scenarios: (i) one graph is known and the other graph is unknown, (ii) both the graphs are unknown. They resolved the query complexity of (i), whereas Onak and Sun \cite{OS18} resolved (ii). With this paper, we initiate the study of tolerant graph isomorphism problem in the query and communication world. So, another natural open question to look for is:

\[
\text{What is the query complexity of tolerant graph isomorphism when both the graphs are unknown?}
\]

6 Acknowledgement

The authors would like to thank the anonymous reviewer for pointing out a mistake in an earlier version of this paper, as well as the reviewers of RANDOM for various suggestions that improved the presentation of the paper.

References

A Preliminaries

All graphs considered here are undirected, unweighted and have no self-loops or parallel edges. For a graph $G(V, E)$, $V(G)$ and $E(G)$ will denote the vertex set and the edge set of G, respectively. Since we are considering undirected graphs, we write an edge $(u, v) \in E(G)$ as $\{u, v\}$. The Hamming distance between two points x and y in a Hamming cube $\{0, 1\}^k$ will be denoted by $d_H(x, y)$.

A.1 Notion of distance between two graphs

First let us define the notion of DECIDER of a vertex and then the notion of distance between two graphs, using decider of vertices, that is conceptually same as that of GRAPH ISOMORPHISM DISTANCE defined in Definition 1.1.

Definition A.1. (DECIDER of a vertex) Given two graphs G_k and G_u and a bijection $\phi : V(G_u) \rightarrow V(G_k)$, DECIDER of a vertex $x \in V(G_u)$ with respect to ϕ is defined as the set of vertices of G_u that create the edge difference in x and $\phi(x)$’s neighbourhood in G_u and G_k, respectively. Formally,

$$\text{DECIDER}_\phi(x) := \{y \in V(G_u) : \text{one of the edges } \{x, y\} \text{ and } \{\phi(x), \phi(y)\} \text{ is not present}\}$$

Definition A.2. (Distance between two graphs) Let G_u and G_k be two graphs and $\phi : V(G_u) \rightarrow V(G_k)$ be a bijection from the vertex set of G_u to that of G_k. The distance between G_u and G_k under ϕ is defined as the sum of the sizes of the deciders of all the vertices in G_u, that is,

$$d_{\phi}(G_u, G_k) := \sum_{x \in V(G_u)} |\text{DECIDER}_\phi(x)|$$
The distance between two graphs G_u and G_k is the minimum distance under all possible bijections ϕ from $V(G_u)$ to $V(G_k)$, that is, $d(G_u, G_k) := \min_{\phi} d_{\phi}(G_u, G_k)$.

Remark 5. Recall the definition of $\delta_{GI}(G_u, G_k)$, **Graph Isomorphism Distance** between G_u and G_k, that is given in Definition A.1. Observe that $d(G_u, G_k) = 2\binom{n}{2}\delta_{GI}(G_u, G_k)$. Though, $d(G_u, G_k)$ and $\delta_{GI}(G_u, G_k)$ represent the same thing, conceptually, we will do our calculations by using $d(G_u, G_k)$ for simplicity of presentation.

Next we define the concept of closeness between two graphs.

Definition A.3. (Close and Far) For $\gamma \in (0, 1)$, two graphs G_u and G_k with n vertices are γ-close to isomorphic if $d(G_u, G_k) \leq \gamma n^2$. Otherwise, we say G_u and G_k are γ-far from being isomorphic. \(^{[14]}\)

A.2 Property Testing of Distribution Properties

Understanding different properties of probability distributions have been an active area of research in property testing (For reference, see Can20). The authors studied these problems assuming random sample access from the unknown distributions. Considering the relation between the distributions and their corresponding representative multi-sets, we can say that all these results hold for multi-sets along with access over sampling with replacement.

Although it seems that the change of query model from sample with replacement to sample without replacement does not make much difference, following the work of Freedman [Fre77], we know that the variation distance between probability distributions when accessed via samples with and without replacement, becomes arbitrary close to 1/2 when the number of samples is $\Omega(\sqrt{n})$. Because of this reason, many techniques developed for sampling with replacement for various problems no longer work anymore. Most importantly, proving any lower bound better than $\Omega(\sqrt{n})$ is often nontrivial.

B Earth Mover’s Distance (EMD) over Hamming Cube

In this section, we study some properties of **Earth Mover’s distance (EMD)** over probability distributions and multi-sets, which are crucial in the context of both our lower and upper bound. Before proceeding to the discussion on EMD, let us first recall the definition of ℓ_1 distance between two distributions.

Definition B.1 (ℓ_1 distance between two distributions). Let p and q be two probability distributions over $[n]$. The ℓ_1 distance between p and q is defined as

$$d_{\ell_1}(p, q) = \sum_{i=1}^{n} |p(i) - q(i)|$$

Definition B.2 (EMD between two probability distributions). Let $H = \{0, 1\}^d$ be a Hamming cube of dimension d, and p, q be two probability distributions on H. The EMD between p and q is denoted by $EMD(p, q)$ and defined as the optimum solution to the following linear program:

Minimize $\sum_{x, y \in H} f_{xy}d_H(x, y)$

Subject to $\sum_{y \in H} f_{xy} = p(x) \ \forall x \in H$, and $\sum_{x \in H} f_{xy} = q(y) \ \forall y \in H$.

\(^{[14]}\)By abuse of notation, we will say G_u and G_k are γ-far when $d(G_u, G_k) \geq \gamma n^2$.

31
Now we define EMD between two multi-sets.

Definition B.3 (EMD between two multi-sets). Let S_1, S_2 be two multi-sets on a Hamming cube $H = \{0, 1\}^d$ of dimension d with $|S_1| = |S_2|$. The EMD between S_1 and S_2 is denoted by $EMD(S_1, S_2)$ and defined as $EMD(S_1, S_2) = \min_{\phi: S_1 \to S_2} \sum_{x \in S_1} d_H(x, \phi(x))$ where ϕ is a bijection from S_1 to S_2.

Note that an unknown distribution p is accessed by taking samples from p. However, a multi-set is accessed as follows:

Definition B.4 (Query accesses to multi-sets). A multi-set S of n elements is accessed in one of the following ways:

Sample Access with replacement: Each element of S is reported uniformly at random independent of all previous queries.

Sample Access without replacement: Let us assume we make Q queries to S, where $Q \leq n$.

The answer to the first query, say s_1, is an element from S chosen uniformly at random. For any $2 \leq i \leq Q$, the answer of the i-th query is an element chosen uniformly at random from $S \setminus \{s_1, \ldots, s_{i-1}\}$. Here $s_j, 1 \leq j \leq Q$, denotes the answer to the j-th query.

Although sampling with replacement is more natural query model, we need sampling without replacement for our lower bound proof. We now show that we can simulate samples with replacement when we have samples without replacement.

Proposition B.5 (Simulating samples with replacement from samples without replacement). Given Q many samples without replacement from an unknown multi-set S_u with n elements, we can simulate Q many samples with replacement from S_u where $Q \leq n$.

Proof. Consider the following procedure to get Q many samples with replacement (say x_1, \ldots, x_Q) when we have Q many samples without replacement (s_1, \ldots, s_Q) from the unknown multi-set S_u with $Q \leq n$.

We first set $x_1 = s_1$. For each i with $2 \leq i \leq Q$, we set x_i as follows: with probability $1 - \frac{i-1}{n}$, we select one of the element from $\{s_1, \ldots, s_{i-1}\}$ uniformly at random as x_i; with probability $\frac{i-1}{n}$, we set $x_i = s_i$. From the description of procedure to generate x_i’s, we have $\mathbb{P}(x_i = s_i) = \frac{1}{n}$.

Thus we can simulate Q many samples with replacement from Q many samples without replacement from the unknown multi-set S_u. \qed

The following observation connects the EMD between two probability distributions with that of between two multi-sets.

Observation B.6. Let p, q be two K-grained probability distributions on a n dimensional Hamming cube $H = \{0, 1\}^n$. Then p and q induces two multi-sets S_1 and S_2 on H, respectively, as follows. S_1 (S_2) is the multi-set containing $x \in H$ with multiplicity $p(x)K$ ($q(x)K$) for each $x \in H$. Moreover, $EMD(p, q) = \frac{EMD(S_1, S_2)}{K}$.

Proof. Recall the definitions of EMD between two distributions and two multi-sets given in Definition B.2 and B.3 respectively. We will be done with the proof by showing $EMD(S_1, S_2) \leq K \cdot EMD(p, q)$ and $K \cdot EMD(p, q) \leq EMD(S_1, S_2)$, separately.

\[15\]The probability of each element in the sample space is an integer multiple of $\frac{1}{K}$.

32
For $EMD(S_1, S_2) \leq K \cdot EMD(p, q)$, let $\{f_{ij} : i, j \in H\}$ be the set of variables that realizes $EMD(p, q)$, that is, $EMD(p, q) = \sum_{i,j \in H} f_{ij} d_H(i, j)$. Consider a bijection ϕ from S_1 to S_2 where $\phi(i) = j$ for g_{ij} many i’s. Hence, by Definition B.3

$$EMD(S_1, S_2) \leq \sum_{x \in S_1} d_H(x, \phi(x)) = \sum_{i,j \in H} K \cdot f_{ij} d_H(i, j) = K \cdot EMD(p, q).$$

Now, we show $K \cdot EMD(p, q) \leq EMD(S_1, S_2)$. Let ϕ^* be a bijection from S_1 to S_2 that realizes $EMD(S_1, S_2)$, that is, $EMD(S_1, S_2) = \sum_{x \in S_1} d_H(x, \phi^*(x)).$ For any $x, y \in H$, let f_{xy} be the number of elements, of the form (x, y) in $S_1 \times S_2$ such that x is mapped to y under ϕ, divided by K^2. Observe that $f_{xy} \geq 0$. Also, $f_{xy} > 0$ if and only if $(x, y) \in S_1 \times S_2$. More over, $\{f_{ij} : i, j \in H\}$ satisfies $\sum_{i \in H} f_{ij} = p(j)$ $\forall j \in H$ and $\sum_{j \in H} f_{ij} = q(i) \forall i \in H$. Hence, by Definition B.2

$$K \cdot EMD(p, q) \leq K \sum_{x,y \in H} f_{xy} d_H(x, y) = \sum_{(x,y) \in S_1 \times S_2} K \cdot f_{xy} d_H(x, y) = \sum_{x \in S_1} d_H(x, \phi^*(x)) = EMD(S_1, S_2).$$

Remark 6. Note that sample access from a probability distribution is exactly same as uniform sampling from a multi-set with replacement.

Proposition B.7. Let \mathcal{D} be the set of all multi-sets of size n over a universe $[m]$; let S_k and S_u in \mathcal{D} denote the known and unknown multi-sets over $[n]$; and $\text{PROP} : \mathcal{D} \times \mathcal{D} \to \{0, 1\}$ be a boolean function. Then the following holds:

If there exists an algorithm that determines PROP by Q many samples without replacement from S_u with probability at least $2/3$, then there exists an algorithm that determines PROP by $\min\{Q, $\sqrt{\min\{n, m\}}\}$ many samples with replacement from S_u with probability at least $2/3 - o(1)$.

This follows from the fact that when $Q = o(\sqrt{n})$ and $D_{WR} (D_{WoR})$ be the probability distribution over all the subsets having Q elements from $[n]$ with (without) replacement, the ℓ_1 distance between D_{WR} and D_{WoR} is $o(1)$.

Definition B.8 (EMD over multi-sets while sampling with and without replacement). Let S_k and S_u denote the known and the unknown multi-sets, respectively, over n-dimensional Hamming cube $H = \{0, 1\}^n$ such that $|S_u| = |S_k| = n$. Consider the two distributions p_u and p_k over the Hamming cube H that are naturally defined by the sets S_u and S_k where for all $x \in H$ probability of x in p_u (and p_k) is the number of occurrences of x in S_u (and S_k) divided by n. We then define the EMD between the multi-sets S_u and S_k as

$$EMD(S_u, S_k) \triangleq n \cdot EMD(p_u, p_k).$$

The problem of estimating the EMD over multi-sets while sampling with (or without) replacement means designing an algorithm, that given any two constants β_1, β_2 such that $0 \leq \beta_1 < \beta_2 \leq 1$, and access to the unknown set S_u by sampling with (or without) replacement decides whether $EMD(S_k, S_u) \leq \beta_1 n^2$ or $EMD(S_k, S_u) \geq \beta_2 n^2$ with probability at least $2/3$.

Note that estimating the EMD over multi-sets while sampling with replacement is exactly same as estimating EMD between the distributions p_u and p_k with samples drawn according to p_u.

33
Let $QWR_{EMD}(n, d, \beta_1, \beta_2)$ ($QWoR_{EMD}(n, d, \beta_1, \beta_2)$) denote the number of samples with (without) replacement required to decide the above from the unknown multi-set S_u. For ease of presentation, we write $QWoR_{EMD}(n, d)$ ($QWR_{EMD}(n, d)$) instead of $QWoR_{EMD}(n, d)$ ($QWR_{EMD}(n, \beta_1, \beta_2)$) when the proximity parameters are clear from the context.

Proposition B.9 (Query complexity of EMD increases with number of points as well as dimension). Let $n, n_1, n_2, d, d_1, d_2 \in \mathbb{N}$ be such that $d_1 \leq d_2$ and $n_1 \leq n_2$. Then

(i) $QWR_{EMD}(n_1, d) \leq QWR_{EMD}(n_2, d)$ and $QWoR_{EMD}(n_1, d) \leq QWoR_{EMD}(n_2, d)$;

(ii) $QWR_{EMD}(n, d_1) \leq QWR_{EMD}(n, d_2)$ and $QWoR_{EMD}(n, d_1) \leq QWoR_{EMD}(n, d_2)$.

Remark 7. For $d = n$ (as considered in Definition 1.3), $QWoR_{EMD}(n, d)$ ($QWR_{EMD}(n, n)$) are denoted as $QWoR_{EMD}(n)$ ($QWR_{EMD}(n)$).

Now let us state the lower bound of $QWR_{EMD}(n)$.

Theorem B.10. $QWR_{EMD}(n) = \Omega\left(\frac{n}{\log n}\right)$.

Thus following Proposition B.7 we have

Theorem B.11. $QWoR_{EMD}(n) = \Omega(\sqrt{n})$.

Note that an upper bound of $QWoR_{EMD}(n) = \tilde{O}(n)$ is trivial. In the rest of the section, we focus on proving Theorem B.10 that states the lower bound on $QWR_{EMD}(n)$. We also provide an upper bound for $QWR_{EMD}(n)$ at Lemma B.16 that shows that $\tilde{O}(n)$ many samples with replacement from S_u to estimate $QWR_{EMD}(n)$. Note that by Remark 6 it is enough to show the following lemma that states the lower bound for tolerant EMD testing between two distributions.

Lemma B.12. Let S be a subset of a Hamming cube $H = \{0, 1\}^n$ such that the minimum distance between any pair of points in S is at least $\frac{n}{2}$. Also, let p and q be two known and unknown distributions, respectively, supported over a subset of S. Then there exists a constant ε_{EMD} such that the following holds. Given two constants β_1, β_2 with $0 < \beta_1 < \beta_2 < \varepsilon_{EMD}(\varepsilon)$, $\Omega\left(\frac{n}{\log n}\right)$ samples from the distribution q are necessary in order to decide whether $EMD(p, q) \leq \beta_1 n$ or $EMD(p, q) \geq \beta_2 n$. Moreover, $\varepsilon_{EMD} = 1 - \epsilon_{\ell_1}$, where ϵ_{ℓ_1} is the constant that is mentioned in Theorem B.14.

To prove the above lower bound, let us first consider the following lower bound for tolerant ℓ_1 testing between two probability distributions.

Theorem B.13 (Valiant and Valiant [VV11]). Let p and q be two known and unknown probability distributions respectively over $[n]$. There is an absolute constant ε such that in order to decide whether $\|p - q\|_1 \leq \varepsilon$ or $\|p - q\|_1 \geq 1 - \varepsilon$, $\Omega\left(\frac{n}{\log n}\right)$ samples, from the distribution q, are necessary.\(^{16}\)

Now, we restate the above result for our purpose.

Theorem B.14. Let p and q be two known and unknown probability distributions, having support size n, over a Hamming cube $H = \{0, 1\}^n$. There is an absolute constant ε_{ℓ_1} such that in order to decide whether $\|p - q\|_1 \leq \alpha_1$ or $\|p - q\|_1 \geq \alpha_2$ with $0 < \alpha_1 < \alpha_2 \leq 1 - \varepsilon_{\ell_1}$, $\Omega\left(\frac{n}{\log n}\right)$ samples, from the distribution q, are necessary.

\(^{16}\)Note that this is rephrasing of the result proved in [VV11]. For reference, see Chapter 5 of the survey by Canonne [Can20].
As noted earlier, we will prove Theorem \[\text{B.10}\] by using Lemma \[\text{B.14}\]. However, Theorem \[\text{B.10}\] is regarding EMD between two distributions whereas Lemma \[\text{B.14}\] is regarding \(\ell_1\) distance between two distributions. The following observation (from \[\text{DBNNR11}\]) gives a connection between EMD between two distributions with the \(\ell_1\) distance between them, which will be required in lower bound proof.

Proposition B.15 (\[\text{DBNNR11}\]). Let \((M, D)\) be a finite metric space and \(p\) and \(q\) be two probability distributions on \(M\). Minimum distance between any two points of \(M\) is \(\Delta_{\text{min}}\) and diameter of \(M\) is \(\Delta_{\text{max}}\). Then the following condition holds:

\[
\|p - q\|_1 \Delta_{\text{min}} \leq \text{EMD}(p, q) \leq \|p - q\|_1 \Delta_{\text{max}}.
\]

Note that the above proposition gives interesting result when \(\frac{\Delta_{\text{max}}}{\Delta_{\text{min}}}\) is bounded by a constant.

Note that \(S \subset \{0, 1\}^n\) satisfies \(\frac{\Delta_{\text{max}}}{\Delta_{\text{min}}} \leq 2\).

Proof of Lemma B.12 In \(S \subset H = \{0, 1\}^n\), the pairwise Hamming distance between any two elements in \(S\) is at least \(\frac{1}{2}n\), to have \(\frac{\Delta_{\text{max}}}{\Delta_{\text{min}}} \leq 2\) in our context. It is well known that \(|S| = \Omega(n)\). We will show that if there exists an algorithm \(A\) that decides \(\text{EMD}(p, q) \leq \beta_1 n\) or \(\text{EMD}(p, q) \geq \beta_2 n\) by using \(t\) samples from \(q\), then there exists an algorithm \(P\) that decides whether \(\|p - q\|_1 \leq \alpha_1\) or \(\|p - q\|_1 \geq \alpha_2\) by using \(t\) samples from \(q\), where \(\alpha_1 = 2\beta_1\) and \(\alpha_2 = 4\beta_2\). Note that we have \(0 < \beta_1 < \beta_2 < \frac{1 - \epsilon_{\ell_1}}{4}\). So, \(0 < \alpha_1 < \alpha_2 < 1 - \epsilon_{\ell_1}\), which satisfies the requirement of Theorem \[\text{B.14}\].

Algorithm \(P\):

1. First run algorithm \(A\).

2. If the output of algorithm \(A\) is \(\text{EMD}(p, q) \leq \beta_1 n\), algorithm \(P\) returns \(\|p - q\|_1 \leq \alpha_1\).

3. If the output of algorithm \(A\) is \(\text{EMD}(p, q) \geq \beta_2 n\), algorithm \(P\) returns \(\|p - q\|_1 \geq \alpha_2\).

To complete the proof, we only need to show that \(P\) gives desired output with probability at least \(2/3\). The result then follows from Theorem \[\text{B.14}\].

Let us first consider the case \(\|p - q\|_1 \leq \alpha_1\). Then by Observation \[\text{B.15}\] we can say that \(\text{EMD}(p, q) \leq \frac{\Delta_{\text{max}}}{\Delta_{\text{min}}} = \beta_1 n\). Therefore algorithm \(A\) will output that \(\text{EMD}(p, q) \leq \beta_1 n\). This implies that the algorithm \(P\) will output \(\|p - q\|_1 \leq \alpha_1\).

Now, let us consider the case \(\|p - q\|_1 \geq \alpha_2\). Using the fact that any pair elements in \(S \subset H\) is at least \(\frac{n}{2}\) along with Observation \[\text{B.15}\] we get \(\text{EMD}(p, q) \geq \frac{\Delta_{\text{max}}}{\Delta_{\text{min}}} = \beta_2 n\). This implies \(P\) will output \(\|p - q\|_1 \geq \alpha_2\). \(\square\)

Till now, we were discussing the proof of Lemma \[\text{B.12}\] that states \(\text{QWR}_{\text{EMD}}(n) = \Omega(\frac{n}{\log n})\). The lower bound is almost tight, up to a polynomial factor of \(\log n\). The upper bound is stated in the following observation.

Observation B.16. \(\text{QWR}_{\text{EMD}}(n) = \tilde{O}(n)\), where \(\tilde{O}(\cdot)\) hides a polynomial factor in \(\frac{1}{\beta_2 - \beta_1}\) and \(\log n\).

Instead of proving the above observation, we prove the following lemma that states the upper bound of tolerant EMD testing between two distributions when we know one distribution and have sample access to the unknown distribution. By Remark \[\text{B.6}\] we will be done with the proof of Observation \[\text{B.16}\].

35
Lemma B.17. Let $H = \{0, 1\}^n$ be a n-dimensional Hamming cube, and let p and q denote two known and unknown n-grained distribution over H. There exists an algorithm that takes two parameters β_1, β_2 with $0 \leq \beta_1 < \beta_2 \leq 1$ and a $\delta \in (0, 1)$ as input and decides whether $EMD(p, q) \leq \beta_1 n$ or $EMD(p, q) \geq \beta_2 n$ with probability at least $1 - \delta$. Moreover, the algorithm Alg-EMD queries for $\tilde{O}(n)$ many samples from q, where $\tilde{O}(\cdot)$ hides a polynomial factor in $\frac{1}{\beta_2 - \beta_1}$ and $\log n$.

Proof. Let ϵ be a constant less than $(\beta_2 - \beta_1)$. We construct a probability distribution q' such that the ℓ_1 distance between q and q' will be at most ϵ, that is, $\sum_{i \in [L]} |q(i) - q'(i)| \leq \epsilon$. Note that such a q' can be constructed with probability at least $1 - \delta$ by querying for $\tilde{O}(n)$ many samples of q which follows from [DL12]. Then, we find $EMD(p, q')$. Observe that $|EMD(p, q) - EMD(p, q')| \leq \frac{\epsilon n}{2}$. This is because

\[
|EMD(p, q) - EMD(p, q')| \leq |EMD(p, q') + EMD(q', q) - EMD(p, q')| \leq EMD(q, q') \leq \frac{\epsilon d}{2} \text{ (By Proposition B.15)}
\]

As $EMD(p, q) \leq \beta_1 n$ or $EMD(p, q) \geq \beta_2 n$, by the above observation, we will get either $EMD(p, q') \leq (\beta_1 + \frac{\epsilon}{2}) n$ or $EMD(p, q') \geq (\beta_1 + \frac{\epsilon}{2}) n$, respectively. By our choice of $\epsilon < \beta_2 - \beta_1$, we can decide $EMD(p, q) \leq \beta_1 n$ or $EMD(p, q) \geq \beta_2 n$ from the value of $EMD(p, q')$.

\[\square\]

C Communication Complexity Landscape of GI

Two players Alice and Bob have two graphs G_a and G_b (on n vertices) respectively. They would like to communicate among themselves to decide about the following problems:

1. **Non-tolerant Graph Isomorphism:** If G_a and G_b are isomorphic or ϵ-far from isomorphic where $\epsilon \in (0, 1]$ is a proximity parameter.

2. **Tolerant Graph Isomorphism:** If G_a and G_b are ϵ_1-close to being isomorphic or ϵ_2-far from being isomorphic where ϵ_1, ϵ_2 are two proximity parameters such that $0 \leq \epsilon_1 < \epsilon_2 \leq 1$.

In this section, we study these two problems in both deterministic as well as randomized setting. We show that the deterministic communication complexity for both these problems is $\Theta(n^2)$. We also prove that the randomized communication complexity for the Non-tolerant graph isomorphism problem is $O(1)$ (with shared randomness). The communication complexity for the tolerant graph isomorphism remains open. We showed in this paper (Theorem 1.8) that the randomized communication complexity of the Tolerant Graph Isomorphism is same as the randomized communication complexity of the Tolerant EMD problem on the Hamming cube.

The results are summarized in the following table:

<table>
<thead>
<tr>
<th></th>
<th>Non-tolerant Graph Isomorphism</th>
<th>Tolerant Graph Isomorphism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deterministic Protocol</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^2)$</td>
</tr>
<tr>
<td>Randomized Protocol</td>
<td>$\Theta(1)$</td>
<td>OPEN!</td>
</tr>
</tbody>
</table>
C.1 Deterministic Communication Complexity of Graph Isomorphism

Theorem C.1. Deterministic communication complexity of both the tolerant graph isomorphism and non-tolerant graph isomorphism is \(\Theta(n^2) \).

Proof. Note that the upper bound protocol (with \(O(n^2) \) bits of communication) is trivial for the problems. So, we only prove the lower bound of \(\Omega(n^2) \) on the communication complexity of the problems. Since the non-tolerant graph isomorphism problem is a special case of the tolerant graph isomorphism Problem, it is enough to show that the lower bound for the non-tolerant graph isomorphism Problem.

Note that the non-tolerant graph isomorphism problem is basically checking if the GI-distance is less than \(2n \). We will prove the lower bound using a reduction. In the work of Ambainis, Gasarch, Srinavasan and Utis [AGSU15], the authors showed that the Hamming distance problem - where Alice and Bob has two strings of length \(m \) and they want to check if the Hamming distance between the strings is less than \(A \), for a given \(1 \leq A \leq m - 1 \) - has communication complexity \(\Omega(m) \). We will show that the communication problem of checking if the two graphs have GI-distance less than \(A \) is as hard as testing if the Hamming distance between two strings is less than \(A \).

Let Alice and Bob have two strings \(X \) and \(Y \) respectively, with \(|X| = |Y| = \binom{n}{2} \). So, we can think of \(X \) and \(Y \) to represent two graph \(G_X \) and \(G_Y \) respectively on vertex set of size \(n \). Let us construct two graph \(G_a \) and \(G_b \) as follows:

- \(G_a \) and \(G_b \) are two graphs on vertex set of size \(100n \). Let the vertices be \(\{v_1, \ldots, v_{100n}\} \).
- The induced graphs on the first \(n \) vertices is \(G_X \) and \(G_Y \) respectively. That is, \(G_a \) and \(G_b \) restricted to vertices \(\{v_1, \ldots, v_n\} \) is \(G_X \) and \(G_Y \) respectively.
- For all other pairs of vertices (that is, \((v_i, v_j) \) where at least one of \(i \) and \(j \) is greater than \(n \), we flip an unbiased coin. If the coin turns HEAD, we put the edge \((v_i, v_j) \) in \(G_a \) and also in \(G_b \), and if the the coin turns TAIL, we do not put the edge \((v_i, v_j) \) in \(G_a \) and also not in \(G_b \).

So, \(G_a \) and \(G_b \) are probabilistic construction of two graphs. Using simple probabilistic method technique, we will now show that there exists graphs \(G_a \) and \(G_b \) such that \(d(G_a, G_b) \geq d_H(X, Y) \), where \(d_H(X, Y) \) is the Hamming distance between the strings \(X \) and \(Y \). This would conclude the reduction and the lower bound would follow.

Recall from Definition [A.2] the distance between two graphs under a particular permutation \(\sigma \) on the vertices of the graph. If \(G_a \) and \(G_b \) are two graphs and \(P \) be a set of pairs of vertices, then we extend the notation to \(d_\sigma(G_a, G_b)|P \) to denote the number of mismatches in entries corresponding to \(P \) of the adjacency matrices of \(\sigma(G_a) \) and \(G_b \). Given a permutation \(\sigma \) of the vertices of a graph, let the support of \(\sigma \) be defined as the set of vertices moved by the permutation. So the support of \(\sigma \) acting on the vertex set \(\{v_1, \ldots, v_{100n}\} \) is the set \(\{v_i : \sigma(v_i) \neq v_i\} \).

Note that the permutation \(\sigma \) induces a permutation on the pair of vertices. Let us denote the permutation to be \(\sigma_P \). Let \(P_1 \) be the set of pairs of vertices where both the vertices are from the set \(\{v_1, \ldots, v_n\} \). Let \(P_2 = P \setminus P_1 \), where \(P \) is the set of all pairs of vertices.

Let \(\sigma \) be a permutation of the vertices of \(G_a \) with support size \(k \). Some useful observations (which we believe follows easily and need no explanation) are presented as follows:

- The number of elements in \(P_1 \) that are moved by \(\sigma_P \) is at most \(kn \).
- The number of elements \((v_i, v_j) \in P_2 \) such that at least one of \(\sigma(v_i) \) and \(\sigma(v_j) \) is not in \(\{v_1, \ldots, v_n\} \) is at least \(99nk \).
• There are at least $99nk/3 = 33nk$ pair of disjoint edges from the set P_2 such that the first element of the pair is mapped to the second element of the pair by σ_P.

• Now, since the edges in P_2 were put uniformly and independently at random, if (v_i, v_j) and $(\sigma(v_i), \sigma(v_j))$ is one such pair (as described in the previous bullet) then probability that $(v_i, v_j) \in E(G_a)$ iff $(v_i, v_j) \in E(G_b)$ is $1/2$. So, we have

$$\Pr(d_\sigma(G_a, G_b) \leq k \cdot n) \leq \left(\frac{33nk}{nk}\right) \cdot \frac{1}{2^{33nk-nk}} \tag{13}$$

From Equation \[13\] and using union bound, we can say that

$$\Pr(\forall \sigma, \text{ with support size } k, d_\phi(G_a, G_b) \mid P \leq k \cdot n) \leq \frac{1}{2^{25nk}} \tag{14}$$

Now note that, since we know that an σ with support size k touches at most kn elements in P_1 and P_1 corresponds to the indices of the strings X and Y, so from Equation \[14\] we have that

$$\Pr(\forall \sigma, \text{ with support size } k, d_\phi(G_a, G_b) \leq d_H(X, Y)) \leq \frac{1}{2^{25nk}} \tag{15}$$

By summing up over all possible values of $k \in [1, 100n]$, we can say that

$$\Pr(\forall \sigma, d_\phi(G_a, G_b) \leq d_H(X, Y)) < 1 \tag{16}$$

Thus, there exists a pair of graphs G_a and G_b (as constructed earlier) such that for any permutation of the vertices, the distance increases. So, $d(G_a, G_b) \geq d_H(X, Y)$. This concludes the proof.

\[\square\]

C.2 Randomized Communication Complexity of Non-tolerant Graph Isomorphism

Once again we study the non-tolerant graph isomorphism problem. However, unlike above, Alice and Bob can now determine their messages not only from their inputs and previous messages but also with the help of a shared random string.

Theorem C.2. Randomized communication complexity of non-tolerant graph isomorphism is $\Theta(1)$ in shared randomness model.

Proof. Given the graph G_a, Alice will first apply all $n!$ permutations on the vertices of G_a and keep this collection of permutated graphs in a set X_{G_a}. She will then represent each graph of this collection as a string of $O(n^2)$ length with $\{0, 1\}$ entries. Once she has this collection of permutated copies of G_a represented as a collection of string over $\{0, 1\}$, she defines a lexicographic ordering over these strings of X_{G_a}.

Similarly, Bob also performs the steps mentioned above and obtains a collection of strings Y_{G_b} of the permutated copies of his graph G_b ordered in lexicographic manner.

Now, they check whether the first strings of the collection of graphs X_{G_a} and Y_{G_b} are equal or not. If they are equal, they decide that G_a and G_b are isomorphic. Otherwise, they say that G_a and G_b are ϵ far from isomorphic.

Note that equality of two strings can be decided by $\Theta(1)$ bits of communication in shared randomness model. For correctness of this protocol, note that if the two graphs G_a and G_b are isomorphic, the first strings in the lexicographic ordered sets X_{G_a} and Y_{G_b} will be equal. Since we do not care about the case when the distance is in between 0 and ϵn^2, we can safely say that G_a and G_b are ϵ far when the two strings are not equal. \[\square\]
Note that, in the above lemma, we considered the case that the two players Alice and Bob are using shared random bits. However, if they use private random bits, from the seminal result of Newman [New91], we can say that the total amount of communication can only be increased by $O(\log n)$ bits.

D Missing proofs of Section 3

D.1 Proof of Lemma 3.3

Lemma D.1 (Lemma 3.3 restated). Let $\kappa \in (0, 1)$ and $s \geq 3$ be given constants. Then for $C_{\kappa,s} = \left\lceil \frac{6s}{\kappa(2-\kappa)} \right\rceil$ and sufficiently large $n \in \mathbb{N}$ there exists a graph G_p with $C_{\kappa,s}n$ many vertices such that the following conditions hold.

(i) The degree of each vertex in G_p is at least $(1-\kappa)C_{\kappa,s} + 1)n - 1$.

(ii) The cardinality of symmetric difference between the sets of neighbors of any two (distinct) vertices in G_p is at least $sn - 2$.

Proof. To prove the claim, we use probabilistic method to show the existence of a graph G_p', with $V(G_p') = C_{\kappa,s}n$, that can have (possible) self loops and satisfy the followings.

(i) The degree of each vertex in G_p' is at least $(1-\kappa)C_{\kappa,s} + 1)n$.

(ii) The cardinality of symmetric difference between the sets of neighbors of any two (distinct) vertices in G_p' is at least sn.

Let us construct a random graph having the vertex set $V(G_p')$, such that each pair $\{u,v\}$, with $u,v \in V(G_p')$, is an edge with probability $1-\frac{\epsilon}{2}$ independent of other pairs.

Now we compute the probability that the degree of a vertex $v \in V(G_p')$, that is $\deg_{G_p'}(v)$, is at most $(1-\kappa)C_{\kappa,s} + 1)n$. For each $v' \in V(G_p')$, let $X_{v'}$ be the indicator random variable that takes value 1 if and only if $\{v,v'\} \in E(G_p')$. Note that $\deg_{G_p'}(v) = \sum_{v' \in V(G_p')} X_{v'}$. Also, $\mathbb{P}(X_{v'} = 1) = 1 - \frac{\epsilon}{2}$.

So, the expected value of $\deg_{G_p'}(v)$ is $(1-\frac{\epsilon}{2})C_{\kappa,s}n$. By using Chernoff bound F.1 we have

$$\mathbb{P}\left(\deg_{G_p'}(v) \leq (1-\kappa)C_{\kappa,s} + 1)n\right)$$

$$= \mathbb{P}\left(\deg_{G_p'}(v) \leq (1-\epsilon)(1-\frac{\kappa}{2})C_{\kappa,s}n\right) \quad \text{where } \epsilon = \frac{\kappa C_{\kappa,s} - 2}{(2-\kappa)C_{\kappa,s}} < 1$$

$$\leq e^{-\frac{\epsilon^2(2-\kappa)C_{\kappa,s}n}{6}}$$

Let \mathcal{E}_1 be the event that there exists a vertex $v \in V(G_p')$ such that the degree of v in G_p' is at most $(1-\kappa)C_{\kappa,s} + 1)n$. Using union bound, we can say that $\mathbb{P}(\mathcal{E}_1) \leq |V(G_p')| e^{-\frac{\epsilon^2(2-\kappa)C_{\kappa,s}n}{6}} \leq C_{\kappa,s}n \cdot e^{-\frac{\epsilon^2(2-\kappa)C_{\kappa,s}n}{6}}$. Let \mathcal{E}_2 be the event that there exists two (distinct) vertices u,v with $|N_{G_p'}(u) \Delta N_{G_p'}(v)| < sn$, where $N_{G_p'}(u)$ denotes the set of neighbors of u in G_p'. Our goal is to show that G_p' exists which satisfies the required conditions. Observe that, G_p' satisfies the required conditions if and only if $\mathbb{P}(\mathcal{E}_1 \cap \mathcal{E}_2) > 0$. The rest of the work in this proof is to show $\mathbb{P}(\mathcal{E}_1 \cap \mathcal{E}_2) > 0$.

\footnote{The lower bound of n is a constant that depends on κ and s.}
To bound $\mathbb{P}(\mathcal{E}_2)$, consider two distinct vertices u and v. For $w \in V(G'_p)$, let Y_w be the indicator random variable that takes value 1 if and only if $w \in N_{G_p}(u)\Delta N_{G_p}(v)$. Note that $|N_{G_p}(u)\Delta N_{G_p}(v)| = \sum_{w \in V(G'_p)} Y_w$ and $\mathbb{P}(Y_w = 1) = 2 \cdot \frac{\kappa}{2} \left(1 - \frac{\kappa}{2}\right)$. So, the expected value of $|N_{G_p}(u)\Delta N_{G_p}(v)|$, that is,

$$
\mathbb{E}\left[|N_{G_p}(u)\Delta N_{G_p}(v)|\right] = 2 \cdot \frac{\kappa}{2} \left(1 - \frac{\kappa}{2}\right) C_{\kappa,s,n}.
$$

As $C_{\kappa,s} = \frac{6\kappa}{\kappa(2-\kappa)}$, $\mathbb{E}\left[|N_{G_p}(u)\Delta N_{G_p}(v)|\right] \geq 3sn$. Using Chernoff bound $F.1$, we have

$$
\mathbb{P}\left(|N_{G_p}(u)\Delta N_{G_p}(v)| < sn\right) \leq e^{-\frac{4sn}{9}}.
$$

Now, by using union bound, we can say that $\mathbb{P}(\mathcal{E}_2) \leq |V(G'_p)|^2 e^{-\frac{4sn}{9}} = C_{\kappa,s,n}^2 n^2 e^{-\frac{4sn}{9}}$. Finally using union bound one more time and the fact that n is sufficiently large, we have

$$
\mathbb{P}(\mathcal{E}_1 \cup \mathcal{E}_2) \leq C_{\kappa,s,n} n \cdot e^{-\frac{2(2-\kappa)}{6} C_{\kappa,s,n}} + C_{\kappa,s,n}^2 n^2 e^{-\frac{4sn}{9}} < 1.
$$

Hence, $\mathbb{P}(\mathcal{E}_1 \cap \mathcal{E}_2) > 0$.

\[\square\]

D.2 Proof of Inequality (2) of Lemma 3.6

Here we prove that

$$
d_\phi(G_u, G_k) \leq d_\psi(G_u, G_k) + 4x(|A_k| + 1) + 2xy + x(x - 1) + 2y |A_y| - y(5n - 2). \quad (17)
$$

Instead of directly proving the above inequality, we will prove it in four steps for better exposition. In Step 1, we prove the inequality for $x = 1, y = 0$. Then we generalize it for $x \leq n, y = 0$, followed by $x = 0, y \leq T_n n$. Finally, combining Steps 1, 2 and 3, we prove the inequality for any $0 \leq x \leq n$, and $0 \leq y \leq T_n n$.

\textbf{Step 1 ($x = 1, y = 0$):} So, let us assume that $a_i \in A_k$, $a'_i \in A_u$, $b_k \in B_k$ and $b'_k \in B_u$ be such that the following holds: $\psi(a_i) = b'_k$ and $\psi(b_k) = a'_i$, $\psi(z) \in A_u$ for each $z \in A_k \setminus \{a_i\}$, and $\phi(b_i) = b_i \in B_u$ for each $b_i \in B_k \setminus \{b_k\}$. By the description of Steps (i), (ii) and (iii) of generating ϕ from ψ, as discussed in Lemma 3.6, we have the following observation.

\textbf{Observation D.2.} For $x = 1$ and $y = 0$, we have $\psi(a_i) = b'_k$ and $\psi(b_k) = a'_i$; $\phi(a_i) = a'_i$ and $\phi(b_k) = b'_k$; For any $z \in (A_k \cup B_k) \setminus \{a_i, b_k\}$, $\phi(z) = \psi(z)$.

We can think of ϕ is generated by performing a swap operation, that means, the mappings of a_i and b_k are swapped while generating ϕ from ψ. Now we show (for the special case of $x = 1$ and $y = 0$) that:

$$
d_\phi(G_k, G_u) \leq d_\psi(G_k, G_u) + 4(|A_k| + 1). \quad (18)
$$

By Observation D.2, $\phi(x) = \psi(x)$ for all vertices $x \in (A_k \cup B_k) \setminus \{a_i, b_k\}$. So, any pair of vertices in $(A_k \cup B_k) \setminus \{a_i, b_k\}$ has no effect on $d_\phi(G_u, G_k) - d_\psi(G_u, G_k)$. Following Definition 1.1 and Definition A.2, we can say that

$$
d_\phi(G_u, G_k) - d_\psi(G_u, G_k) \leq 2 \left[|\text{DECIDER}_\phi(a_i)| - |\text{DECIDER}_\psi(a_i)| + |\text{DECIDER}_\phi(b_k)| - |\text{DECIDER}_\psi(b_k)|\right]
$$
Note that the first term above can be written as $\text{DECIDER}_\phi(a_i) = (\text{DECIDER}_\phi(a_i) \cap (A_k \cup \{b_s\})) \cup (\text{DECIDER}_\phi(a_i) \cap (B_k \setminus \{b_s\}))$. Breaking other terms in the above expression similarly, we have

$$d_\phi(G_u, G_k) - d_\psi(G_u, G_k) \leq 2|\{x_k| + 1| + |\text{DECIDER}_\phi(a_i) \cap (B_k \setminus \{b_s\})| - |\text{DECIDER}_\psi(a_i) \cap (B_k \setminus \{b_s\})| + |\text{DECIDER}_\phi(b_s) \cap (B_k \setminus \{b_s\})| - |\text{DECIDER}_\psi(b_s) \cap (B_k \setminus \{b_s\})||$$

Once again, from Observation D.2,

$$\phi(N_{B_k \setminus \{b_s\}}(a_i)) = \psi(N_{B_k \setminus \{b_s\}}(a_i)) \text{ (Say I1)}$$
$$N_{B_k \setminus \{b_s\}}(a_i) = N_{B_k \setminus \{b_s\}}(b_s) \text{ (Say I2)}$$
$$N_{B_k \setminus \{b_s\}}(b_s) = \phi(N_{B_k \setminus \{b_s\}}(b_s)) \text{ (Say I3)}$$
$$N_{B_k \setminus \{b_s\}}(b_s) = N_{B_k \setminus \{b_s\}}(\psi(b_s)) \text{ (Say I4)}$$

From our above derivation, $|I_3 \Delta I_4| = |\text{DECIDER}_\psi(b_s) \cap (B_k \setminus \{b_s\})|$. Also, as $y = 0$, we have

$$|\text{DECIDER}_\psi(b_s) \cap (B_k \setminus \{b_s\})| = 0.$$

So, to prove $Z \leq 0$, it is enough to show $Z \leq 2|I_3 \Delta T_4|$. Note that

$$Z \leq |I_1 \Delta I_2| - |I_1 \Delta I_4| + |I_3 \Delta I_4| - |I_3 \Delta I_2|.$$

By using triangle inequality, Z can be upper bounded as follows:

$$Z \leq |I_2 \Delta I_1| + |I_3 \Delta I_4| - |I_3 \Delta I_2| \leq |I_3 \Delta I_4| + |I_3 \Delta I_4| = 2|I_3 \Delta I_4| = 0.$$

Step 2 $x \leq n, y = 0$: Let us consider $A_B \subseteq A_k$ and $B_A \subseteq B_k$ such that $\psi(a_i) \in A_u$ for each $a_i \in A_B$, $\psi(b_s) \in A_u$ for each $b_s \in B_A$, $\psi(a_i) \in A_u$ for each $a_i \in A_k \setminus A_B$, and $\psi(b_s) \in B_B$ for each $b_s \in B_k \setminus B_A$. Now let us consider *swapping* (described below) the mapping of $a_i \in A_B$ and $b_s \in B_A$ such that $\psi(a_i) = b_s$. Let $a'_j \in A_u$ be such that $\psi(b_s) = a'_j$. Let us construct $\phi_x = \psi$ such that the followings hold: $\phi_{x-1}(a_i) = a'_j$, $\phi_1(b_s) = b'_s$, and $\phi_{x-1}(z) = \psi(z)$ for each $z \in (A_k \cup B_k) \setminus \{a_i, b_s\}$. Proceeding in the similar fashion as in the case when $x = 1$ and $y = 0$, we get

$$d_{\phi_{x-1}}(G_u, G_k) - d_\psi(G_u, G_k) \leq 4|A_k| + 4 + 2|I_3 \Delta I_4|,$$

where $|I_3 \Delta I_4| = |\text{DECIDER}_\phi(b_s) \cap (B_k \setminus \{b_s\})| \leq x - 1$. So,

$$d_{\phi_{x-1}}(G_u, G_k) \leq d_\psi(G_u, G_k) + 4|A_k| + 4 + 2(x - 1).$$

We can proceed in the similar fashion by performing swapping operation of the vertices in A_B and Y_k one by one, and construct $\phi_x = \psi, \phi_{x-1}, \phi_{x-2}, \ldots, \phi_0 = \phi$. Observe that $d_{\phi_{i-1}}(G_u, G_k) \leq d_{\phi_i}(G_u, G_k) + 4|A_k| + 4 + 2(i - 1)$. Also, note that ϕ is a *SPECIAL* bijection, and moreover

$$d_\phi(G_u, G_k) \leq 4x|A_k| + 4x + x(x - 1).$$
Let us consider $B_{BN} \subseteq B_k$ such that $|B_{BN}| = y$. Note that for each $b_s \in B_{BN}$, $\psi(b_s) \neq b'_s$. Consider $b_s \in B_{BN}$ such that $\psi(b_s) = b'_s$, and let b_j be such that $\psi(b_j) = b'_j$. Let us construct $\phi_{y-1} : V(G_u) \rightarrow V(G_k)$ from $\phi_y = \psi$ as follows: $\phi_{y-1}(b_s) = b'_s$, $\phi_{y-1}(b_j) = b'_j$, and $\phi_{y-1}(z) = \psi(z)$ for each $z \in (A_k \cup B_k) \setminus \{b_s, b_j\}$. Thus,

$$d_{\phi_{y-1}}(G_u, G_k) \leq d_{\phi_y}(G_u, G_k) + 2|A_k| - (5n - 2)$$

The term $2|A_k|$ corresponds to the fact that any vertex of B_{BN} has at most $|A_k|$ many neighbors in A_k. The second term comes due to the properties of the probabilistic construction of B_k and B_u following Lemma 3.3 proved in Appendix D.1.

Step 4 ($x \leq n, y \leq T_n$): Let us assume $\psi(a_i) = b'_s$. Now there are two possibilities:

1. $\psi(b_s) = a'_j$.
2. $\psi(b_s) = b'_s$.

For (1), following the discussion of $x \leq n, y = 0$, we can say that

$$d_{\phi_{x-1,y}} \leq d_{\psi}(G_u, G_k) + 4(|A_k| + 1) + 2(x + y - 1).$$

For (2), we follow the discussion of $x = 0, y \leq T_n$, and the following holds:

$$d_{\phi_{x,y-1}}(G_u, G_k) \leq d_{\psi}(G_u, G_k) + 2|A_k| - (5n - 2).$$

Putting everything together, we have

$$d_{\phi}(G_u, G_k) \leq d_{\psi}(G_u, G_k) + 4x(|A_k| + 1) + 2xy + x(x - 1) + 2y|A_y| - y(5n - 2).$$

E Missing Proofs of Section 4

E.1 Proof of Observation 4.12

Observation E.1 (Observation 4.12 restated). If $\left|\text{Symm}_{\phi_{\phi'}}(x)\right| \geq \frac{2^n}{1000} n$, then

$$\mathbb{P}\left(\left|\text{Symm}_{\phi_{\phi'}}(x) \cap C_u\right| \geq (1 - \frac{1}{50}) \frac{|C_u|}{n}\right) \leq e^{-\Omega(|C_u|)}.$$

Proof. Since C_u is taken uniformly at random, we can say that

$$\mathbb{E}\left[|\text{Decider}_{\phi'}(x) \Delta \text{Decider}_x(x) \cap C_u|\right] = |\text{Decider}_{\phi'}(x) \Delta \text{Decider}_x(x)| \frac{|C_u|}{n}$$

So, using the Chernoff bound mentioned in Lemma F.1, we can say that

$$\mathbb{P}\left(|\text{Decider}_{\phi'}(x) \Delta \text{Decider}_x(x) \cap C_u| \geq \frac{49}{50} |\text{Decider}_{\phi'}(x) \Delta \text{Decider}_x(x)| \frac{|C_u|}{n}\right) \leq e^{-\Omega(|C_u|)}$$

\square
E.2 Proof of Observation 4.13

Observation E.2 (Observation 4.13 restated). (i) If $|\text{DECIDER}_\phi(x)| \geq \frac{\gamma_2 - \gamma_1}{1000} n$, then

$$\mathbb{P} \left(|\text{DECIDER}_\phi(x) \cap C_u| \geq (1 + \frac{1}{50}) |\text{DECIDER}_\phi(x)| \frac{|C_u|}{n} \right) \leq e^{-O(|C_u|)}.$$

(ii) If $|\text{DECIDER}_\phi(x)| < \frac{\gamma_2 - \gamma_1}{1000} n$, then $\mathbb{P} \left(|\text{DECIDER}_\phi(x) \cap C_u| \geq \frac{\gamma_2 - \gamma_1}{750} |C_u| \right) \leq e^{-O(|C_u|)}$.

Proof. (i) Since C_u is taken uniformly at random, we have

$$E \left[|(\text{DECIDER}_\phi(x) \cap C_u)| \right] = |\text{DECIDER}_\phi(x)| \frac{|C_u|}{n}.$$

So, using the Chernoff bound mentioned in Lemma F.1 we have

$$\mathbb{P} \left(|\text{DECIDER}_\phi(x)| \geq \frac{51}{50} |\text{DECIDER}_\phi(x)| \frac{|C_u|}{n} \right) \leq e^{-O(|C_u|)}$$

(ii) Since C_u is taken uniformly at random, we have

$$E \left[|(\text{DECIDER}_\phi(x) \cap C_u)| \right] \leq \left(\frac{\gamma_2 - \gamma_1}{1000} \right) |C_u|.$$

So, using the Chernoff bound mentioned in Lemma F.1 we have

$$\mathbb{P} \left(|\text{DECIDER}_\phi(x) \cap C_u| \geq \left(\frac{\gamma_2 - \gamma_1}{750} \right) |C_u| \right) \leq e^{-O(|C_u|)}$$

\[\square\]

F Some probability results

Lemma F.1 (Chernoff-Hoeffding bound, see [DP09]). Let X_1, \ldots, X_n be independent random variables such that $X_i \in [0, 1]$. For $X = \sum_{i=1}^{n} X_i$ and $\mu = \mathbb{E}[X]$, the following holds for all $0 \leq \delta \leq 1$

$$\mathbb{P} (|X - \mu| \geq \delta \mu) \leq 2 \exp \left(\frac{-\mu \delta^2}{3} \right).$$

Lemma F.2 (Chernoff-Hoeffding bound, see [DP09]). Let X_1, \ldots, X_n be independent random variables such that $X_i \in [0, 1]$. For $X = \sum_{i=1}^{n} X_i$ and $\mu_l \leq \mathbb{E}[X] \leq \mu_h$, the followings hold for any $\delta > 0$.

(i) $\mathbb{P} (X \geq \mu_h + \delta) \leq \exp \left(\frac{-2\delta^2}{n} \right)$.

(ii) $\mathbb{P} (X \leq \mu_l - \delta) \leq \exp \left(\frac{-2\delta^2}{n} \right)$.

43
Lemma F.3 (Hoeffding’s Inequality). Let X_1, \ldots, X_n be independent random variables such that $a_i \leq X_i \leq b_i$ and $X = \sum_{i=1}^{n} X_i$. Then, for all $\delta > 0$,

$$
\mathbb{P} (|X - \mathbb{E}[X]| \geq \delta) \leq 2 \exp \left(-\frac{2\delta^2}{\sum_{i=1}^{n} (b_i - a_i)^2} \right).
$$

Lemma F.4 (Theorem 3.2 in [DP09]). Let X_1, \ldots, X_n be random variables such that $a_i \leq X_i \leq b_i$ and $X = \sum_{i=1}^{n} X_i$. Let \mathcal{D} be the dependent graph, with vertex set $V(\mathcal{D}) = \{X_1, \ldots, X_n\}$ and edge set $E(\mathcal{D}) = \{(X_i, X_j) : X_i$ and X_j are dependent}. Then, for all $\delta > 0$,

$$
\mathbb{P} (|X - \mathbb{E}[X]| \geq \delta) \leq 2 \exp \left(-\frac{2\delta^2}{\chi^*(\mathcal{D}) \sum_{i=1}^{n} (b_i - a_i)^2} \right),
$$

where $\chi^*(\mathcal{D})$ denotes the fractional chromatic number of \mathcal{D}.

The following lemma directly follows from Lemma F.4.

Lemma F.5 (Chernoff bound for bounded dependency). Let X_1, \ldots, X_n be indicator random variables such that there are at most d many X_j’s on which an X_i depends. For $X = \sum_{i=1}^{n} X_i$ and $\mu_l \leq \mathbb{E}[X] \leq \mu_h$, the followings hold for any $\delta > 0$.

(i) $\mathbb{P} (X \geq \mu_h + \delta) \leq \exp \left(-\frac{2\delta^2}{(d+1)n} \right)$,

(ii) $\mathbb{P} (X \leq \mu_l - \delta) \leq \exp \left(-\frac{2\delta^2}{(d+1)n} \right)$.