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Abstract

The graph isomorphism distance between two graphs Gu and Gk is the fraction of entries
in the adjacency matrix that has to be changed to make Gu isomorphic to Gk. We study the
problem of estimating, up to a constant additive factor, the graph isomorphism distance between
two graphs in the query model. In other words, if Gk is a known graph and Gu is an unknown
graph whose adjacency matrix has to be accessed by querying the entries, what is the query
complexity for testing whether the graph isomorphism distance between Gu and Gk is less than
γ1 or more than γ2, where γ1 and γ2 are two constants with 0 ≤ γ1 < γ2 ≤ 1. It is also called
the tolerant property testing of graph isomorphism in the dense graph model. The non-tolerant
version (where γ1 is 0) has been studied by Fischer and Matsliah (SICOMP’08).

In this paper, we prove a (interesting) connection between tolerant graph isomorphism testing
and tolerant testing of the well studied Earth Mover’s Distance (EMD). We prove that deciding
tolerant graph isomorphism is equivalent to deciding tolerant EMD testing between multi-sets in
the query setting. Moreover, the reductions between tolerant graph isomorphism and tolerant
EMD testing (in query setting) can also be extended directly to work in the two party Alice-Bob
communication model (where Alice and Bob have one graph each and they want to solve tolerant
graph isomorphism problem by communicating bits), and possibly in other sublinear models as
well.

Testing tolerant EMD between two probability distributions is equivalent to testing EMD
between two multi-sets, where the multiplicity of each element is taken appropriately, and we
sample elements from the unknown multi-set with replacement. In this paper, our (main)
contribution is to introduce the problem of (tolerant) EMD testing between multi-sets (over
Hamming cube) when we get samples from the unknown multi-set without replacement and
to show that this variant of tolerant testing of EMD is as hard as tolerant testing of graph
isomorphism between two graphs. Thus, while testing of equivalence between distributions is at
the heart of the non-tolerant testing of graph isomorphism, we are showing that the estimation
of the EMD over a Hamming cube (when we are allowed to sample without replacement) is at
the heart of tolerant graph isomorphism. We believe that the introduction of the problem of
testing EMD between multi-sets (when we get samples without replacement) opens an entirely
new direction in the world of testing properties of distributions.
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1 Introduction

Graph isomorphism (GI) has been one of the most celebrated problems in computer sci-
ence. Roughly speaking, the graph isomorphism problem asks whether two graphs are structure-
preserving. Namely, given two graphs Gu and Gk, graph isomorphism of Gu and Gk is a bijection
ψ : V (Gu) → V (Gk) such that for all pair of vertices u, v ∈ V (Gu), the edges {u, v} ∈ E(Gu) if
and only if {ψ(u), ψ(v)} ∈ E(Gk)

1. One central open problem in complexity theory is whether the
graph isomorphism problem can be solved in polynomial time. Recently in a breakthrough result,
Babai [Bab16] proved that the graph isomorphism problem could be decided in quasi-polynomial
time.

For a central problem like the graph isomorphism, naturally, one would like to understand its
(and related problems) computational complexity for various models of computation. While most of
the focus has been on the standard time complexity in the RAM model for various classes of graphs
(and hyper-graphs), other complexity measures like space complexity, parameterized complexity,
and query complexity have also been studied over the past few decades (see the Dagstuhl Report
[BDST15] and PhD thesis of Sun [Sun16]).

A natural extension of the GI problem is to estimate the “graph isomorphism distance" between
two graphs. In other words, given two graphs Gu and Gk, what fraction of edges are necessary to
add or delete to make the graphs isomorphic.

Definition 1.1. Let Gu = (Vu, Eu) and Gk = (Vk, Ek) be two graphs with |Vu| = |Vk| = n. Given a
bijection φ : Vu → Vk, the distance between the graphs Gu and Gk with respect to the bijection φ is

dφ(Gu, Gk) := |{(u, v) : Exactly one among (u, v) ∈ Eu or (φ(u), φ(v)) ∈ Ek holds}| .

The Graph Isomorphism Distance (or GI-distance in short) between graphs Gu and Gk is
defined as min

φ:Vu→Vk
dφ(Gu, Gk)/n

2, and is denoted by δGI(Gu, Gk) (we will use d(Gu, Gk) to mean

n2δGI(Gu, Gk)).

The problem of computing GI-distance between two graphs is known to be #P -hard [Lin94]. The
next natural question is:

What is the complexity for approximating (either by a constant additive or multiplicative factor) the
graph isomorphism distance between two graphs?

In [Lin94], it was also proven that the problem of computing GI-distance between two graphs is
APX-hard. So, approximating δGI(Gu, Gk) up to a constant multiplicative factor is NP -hard. In
this paper, we study this problem of approximating (up to a constant additive factor) the GI-distance
between two graphs in the query model (see Section 1.1.1) and two party communication complexity
model (see Section 1.1.2). In this work, our main contribution is to show a unified connection between
graph isomorphism testing and Earth Mover’s distance testing which holds across computational
models. We present our results in Section 1.3 after we introduce the Earth Mover’s distance in
Section 1.2.

1.1 Query and Communication Models for Graph Isomorphism

Formally speaking, the main problem is: given two graphs Gu and Gk and an approximation
parameter ζ ∈ (0, 1), the goal is to output an estimate α such that

δGI(Gu, Gk)− ζ ≤ α ≤ δGI(Gu, Gk) + ζ.

1In a graph G, V (G) and E(G) denote the sets of vertices and edges in G, respectively.
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We now present the two models (query and communication) for studying the above problem.

1.1.1 Query Complexity of Graph Isomorphism

In the query model, the problem is equivalent (up to a constant factor) to the tolerant property
testing of graph isomorphism in the dense graph model (introduced in the work of Parnas, Ron and
Rubinfeld [PRR06]). For 0 ≤ γ < 1, two graphs Gu and Gk, with n vertices, are called γ-close or
γ-far to isomorphic2 if d(Gu, Gk) ≤ γn2 or d(Gu, Gk) ≥ γn2, respectively. In (γ1, γ2)-tolerant GI
testing, we are given two graphs Gu and Gk, and two parameters 0 ≤ γ1 < γ2 ≤ 1, with the guarantee
that either the graphs are γ1-close or γ2-far. One of the graphs (usually denoted as Gu) is accessed
by querying the entries of its adjacency matrix. In contrast, the other graph (usually denoted as
Gk

3) is known to the query algorithm, and no cost for accessing the entries of the adjacency matrix
of Gk is incurred. The query complexity is the number of queries (to the adjacency matrix of Gu)
that are required for testing, (with correctness probability at least 2/3 4), whether Gu and Gk are
γ1-close or γ2-far. The query algorithm is assumed to have unbounded computational power.

The non-tolerant property testing version of the graph isomorphism problem (that is, when γ1 = 0)
was first studied by Fischer and Matsliah [FM08] and subsequently, Babai and Chakraborty [BC10]
studied the non-tolerant property testing version of the hypergraph isomorphism problem. Recently,
the non-tolerant testing of GI has been considered in various other models (like Goldreich [Gol19]
studied the problem for the bounded degree graph model of property testing and Levi and Med-
ina [LM20] considered the problem in the distributed setting). However, the tolerant version of the
problem remains elusive and it is surprising that the tolerant version of a fundamental problem
like graph isomorphism (in query model) is not addressed in the literature, though the non-tolerant
version of GI testing problem has been resolved more than a decade ago in [FM08] (when one graph
is unknown). On a different note, there are also studies of non-tolerant version of graph isomorphism
testing in the literature when both the graphs are unknown [FM08, OS18]. We will not discuss much
about that case as the main focus of this paper is different.

Before proceeding further, we want to note that there is a simple algorithm with query complexity
Õ(n) for tolerant testing of graph isomorphism (when one of the graphs is known in advance).
Basically, one goes over all possible n! bijections φ : Vu → Vk and estimates the distance between
Gu and Gk with respect to the permutation. The samples may be reused5, and hence we have the
following observation.

Observation 1.2. Given a known graph Gk and an unknown graph Gu and any approximation
parameter ζ ∈ (0, 1), there is a query algorithm that makes Õ (n) queries and outputs a number α
such that, with probability at least 2

3 , the following holds:

δGI(Gu, Gk)− ζ ≤ α ≤ δGI(Gu, Gk) + ζ.

But obtaining a lower bound matching (at least up to a polylog factor) the upper bound of
Observation 1.2 is not at all obvious. This paper’s main contribution is to show an equivalence
between tolerant testing of graph isomorphism and tolerant EMD testing between multi-sets (in the
query setting).

Like many other property testing problems, the core difficulty in the testing of GI is understanding
certain properties of distributions. In the case of the non-tolerant version of GI, it has been shown in

2As a shorthand, rather than saying γ-close or γ-far to isomorphic, we will just say γ-close or γ-far respectively.
3Gu and Gk denote the unknown and known graphs, respectively.
4The correctness probability can be made any 1− δ by incurring a multiplicative factor of O(log 1

δ
) in the query

complexity.
5If the samples are Θ(log(n!)), then the error probability can be bounded using the union bound.
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[FM08] that the core problem is testing the variation distance between two distributions. Their upper
bound result can be restated as: if there is a property testing algorithm, with query complexity q(n)
for testing equivalence between two distributions, on support size n 6, then GI can be tested using
Õ(q(n)) queries, where the tilde hides a polylogarithmic factor of n (number of vertices). And since
the query complexity for testing identity of distributions (from [BFF+01], [Pan08], [ADK15], [VV17])
is known to be O(

√
n
ε2

), the query complexity for non tolerant GI-testing is Õ(
√
n).

In the lower bound proof of [FM08], there is no direct reduction of the graph isomorphism problem
to the variation distance problem. But it is important to note that lower bound proofs for both of
these problems use the tightness of the birthday paradox. So, in some sense, one can say that the
heart of the non-tolerant testing of GI is in testing variation distance between two distributions.

1.1.2 Communication Complexity of Graph Isomorphism

One of the central models of computation (particularly in the context of theoretical computer
science) is the 2-player communication game introduced by Yao [Yao79]. Communication complexity
is one of the most studied complexity measures and has wide-ranging applications in many different
areas of computer science. But surprisingly, as far as we know, the communication complexity
problem of GI (where Alice has graph Ga and Bob has graph Gb, and they want to decide if Ga
and Gb are isomorphic) has never been studied. One of the main reasons may be that, in the
communication setup, the standard GI problem reduces to the string equality checking problem,
and hence GI in the (randomized) communication setup is not that interesting anymore, since the
randomized communication complexity, trivially, becomes O(1).

But when it comes to tolerant GI testing, the communication version is not at all obvious. So, if
Alice and Bob are given two graphs Ga and Gb respectively, what is the (randomized) communication
complexity for checking if d(Ga, Gb) ≤ γ1n

2 or d(Ga, Gb) ≥ γ2n
2? We discuss our result on this in

Section 6 in detail.

1.2 Earth Mover’s Distance (EMD)

Let H = {0, 1}n be a Hamming cube of dimension n, and p, q be two probability distributions
on H. The Earth Mover’s Distance between p and q is denoted by EMD(p, q) and defined as the
optimum solution to the following linear program:

Minimize
∑
i,j∈H

fijdH(i, j) Subject to
∑
j∈H

fij = p(i) ∀i ∈ H, and
∑
i∈H

fij = q(j) ∀j ∈ H.

A standard way to think of sampling from any probability distribution is to consider it as a
multi-set of elements with appropriate multiplicities, and samples are drawn with replacement from
that multi-set. While estimating EMD between two multi-sets, although the most natural way to
access the unknown multi-set is sampling with replacement, we introduce the problem of tolerant
EMD testing over multi-sets with the access of samples without replacement.

Definition 1.3 (EMD over multi-sets while sampling with and without replacement).
Let S1 and S2 denote two multi-sets, over n-dimensional Hamming cube H = {0, 1}n such that
|S1| = |S2| = n. Consider the two distributions p1 and p2 over the Hamming cube H that are
naturally defined by the sets S1 and S2 where for all x ∈ H probability of x in p1 (and p2) is the

6Testing identity between two distributions means to test if the unknown distribution (from where the samples are
drawn) is identical to the known distribution or if the variation distance between them more than ε.
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number of occurrences of x in S1 (and S2) divided by n. We then define the EMD between the
multi-sets S1 and S2 as

EMD(S1, S1) , n · EMD(p1, p2).

The problem of estimating the EMD over multi-sets while sampling with (or without) replace-
ment means designing an algorithm, that given any two constants β1, β2 such that 0 ≤ β1 < β2 ≤ 1,
a known multi-set Sk and access to the unknown multi-set Su by sampling with (or without)
replacement, decides whether EMD(Sk, Su) ≤ β1n

2 or EMD(Sk, Su) ≥ β2n
2 with probability at

least 2/3. Note that estimating the EMD over multi-sets while sampling with replacement is exactly
same as estimating EMD between the distributions pu and pk with samples drawn according to pu.

We will denote by QWREMD(n, β1, β2) (and QWoREMD(n, β1, β2)) the number of samples
with (or without) replacement required to decide the above from the unknown multi-set Su. For ease
of presentation, we will write QWoREMD(n) (QWREMD(n)) instead of QWoREMD(n, β1, β2)
(QWREMD(n, β1, β2)) when the proximity parameters are clear from the context.

Earth Mover’s Distance (EMD) is a fundamental metric over the space of distributions supported
on a fixed metric space. Estimating EMD between two distributions, up to a multiplicative factor, has
been extensively studied in mathematics and computer science. It is closely related to the embedding
of the EMD metric into a `1 metric. Even the problem of estimation of EMD between distributions
up to an additive factor has been well studied, for reference see [DBNNR11], [SP18]. The hardness
of estimating EMD between distributions depends heavily on the structure of the domain on which
the distributions are supported. In [DBNNR11], the authors have proved a lower bound of Ω((∆/ε)d)
on the query complexity for estimating (up to an additive error of ε) EMD between two distributions
supported on the real cube [0,∆]d. At the same time, it is not hard to see that if the support has
certain structures, estimating EMD may be easy. In this paper, we focus on the estimation of EMD
between two distribution when the metric space is the Hamming cube. For a formal discussion on
EMD over the Hamming cube, please refer to Section 2.3.

As noted earlier, sample access to a probability distribution is precisely the same as uniform
sampling from a multi-set with replacement. Thus, from the results of Valiant and Valiant [VV11],
it can be shown that the sample complexity for estimating the EMD between two distribution
over the Hamming cube of dimension n is Ω( n

logn). In other words, QWREMD(n) = Ω( n
logn),

and this is tight ignoring polynomial factor in log n (See Theorem 2.13 of Section 2.3). But what
about QWoREMD(n)? To the best of our knowledge, the sample complexity measure when the
distributions are accessed by sampling a multi-set without replacement has never been studied
before (for testing/estimating distances between distributions/multi-sets). However, it is interesting
to note that, sampling without replacement model has been considered before in a different context
by Raskhodnikova, Ron, Shpilka and Smith [RRSS09] for proving a lower bound of distinct elements
problem. Also, recently Goldreich [Gol19] considered a similar sampling without replacement model
while studying the non-tolerant graph isomorphism in the bounded degree model.

Coming back to our context: Observe that if QWoREMD(n) = o(
√
n), then QWREMD(n) =

o(
√
n), see Proposition 2.10 in Section 2.3. As QWREMD(n) = Ω( n

logn), we have a lower bound of
Ω(
√
n) on QWoREMD(n). To the best of our knowledge, there is no known better lower bound

than Ω(
√
n) for QWoREMD(n), although a lower bound of Ω( n

logn) exists for QWREMD(n) (using
observation in [DBNNR11]). Note that QWoREMD(n) = QWREMD(n) = Õ(n).

Note that the main contribution of our work is the introduction of the complexity measure
QWoREMD(n) and its connection to graph isomorphism testing across query and communication
models.
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1.3 Our Results

Our main technical result of this paper is that we prove estimating GI-distance is as hard as
tolerant EMD testing over multi-sets with the access of samples without replacement over the
unknown multi-set Su, ignoring polynomial factors of log n.

Theorem 1.4 (Result in Query Complexity). Let Gk and Gu denote the known and the unknown
graphs on n vertices, respectively, and QGI(Gu, Gk) denotes the number of adjacency queries to Gu,
required by the best algorithm that takes two constants γ1, γ2 with 0 ≤ γ1 < γ2 ≤ 1 and decides
whether d(Gu, Gk) ≤ γ1n

2 or d(Gu, Gk) ≥ γ2n
2 with probability at least 2

3 . Then

QGI(Gu, Gk) = Θ̃
(
QWoREMD(n)

)
where Θ̃(·) hides polynomial factors in 1

γ2−γ1
and log n.

This gives us a geometric approach for solving the graph isomorphism testing problem. Thus
improving the bound of QWoREMD(n) would directly provide us a better bound on QGI(Gu, Gk).

On the other hand, extending the lower bound of QWREMD(n) to QWoREMD(n) would
give us a better lower bound on QGI(Gu, Gk). However, the difference between sampling with and
without replacement is much more subtle. Freedman [Fre77] has shown the difference when we
sample elements with replacement from a set and that without replacement from the same set.
However, when the number of samples is o(

√
n), the distribution of answers to the queries when

samples are drawn with replacement is very close (in `1 distance) to the distribution of answers to
the queries when samples are drawn without replacement. Thus, following the simulation of samples
with replacement using samples without replacement (stated formally in Proposition 2.10) along
with Theorem 1.4, we can get an alternative proof of the following lower bound proved by Fischer
and Matsliah [FM08].

Corollary 1.5 (Fischer and Matsliah [FM08]). There exists a constant ζ ∈ (0, 1) such that any
query algorithm that decides, with probability at least 2/3, if a known graph Gk and an unknown
graph Gu is isomorphic or γ-far from isomorphic, with γ ≤ ζ, must make Ω(

√
n) queries.

Our proof of Theorem 1.4 has two parts: for the lower bound, we reduce tolerant testing of EMD
of multi-sets over the Hamming cube using samples without to tolerant graph isomorphism testing.
For the upper bound, we reduce from tolerant graph isomorphism to tolerant testing of EMD of
multi-sets over the Hamming cube using samples without replacement. Thus our reductions also
hold for other computational models such as the communication complexity model. We state our
result in communication setting below.

Theorem 1.6 (Result in Communication Complexity). If Alice and Bob are given two graphs Ga
and Gb with n vertices respectively and the (randomized) communication complexity for checking if
the graphs are γ1-close or γ2-far is c(n, γ1, γ2) then the following holds: There exists an absolute
constant C such that if Alice and Bob are given two n-grained distributions 7 over the Cn-dimension
Hamming cube, then the (randomized) communication complexity of checking if the Earth Mover’s
Distance between the distributions is at most β1n or at least β2n is Θ̃ (c(n, γ′1, γ

′
2)), where γ′1 and γ′2

are constants that depend only on β1 and β2, and Θ̃ (·) hides multiplicative factor of poly (log n).

Theorem 1.6 says that the communication complexity of solving tolerant graph isomorphism and
tolerant EMD testing are essentially the same, ignoring the polylog factor. Note that in the case

7The probability of each element in the sample space is an integer multiple of 1
n
.
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of the communication setting, the distinction between with replacement and without replacement
is not present. Also, it is important to point out that the lower bounds on tolerant EMD in the
sampling model ([Val11] and [VV11]) does not give a lower bound in the communication setting.
Though the tolerant graph isomorphism problem has not been addressed at all in the literature of
communication complexity, EMD (for different metric spaces) has been considered in communication,
streaming, and sketching models [KN06, AIK08, ADBIW09, AKR18]. However, the EMD problem
that we have considered in this paper is different from those considered in the literature, and we
believe that it will be of independent interest.

We also observe that the deterministic communication complexity of graph isomorphism is Ω(n2)
even for the non-tolerant setting.

Theorem 1.7. Deterministic communication complexity of non-tolerant version of Graph Isomor-
phism testing (hence the tolerant version) is Θ(n2).

We will prove this theorem in Section 6.

Organization of the paper

In Section 3, we discuss the proof techniques of our main results. We prove the lower bound part
(tolerant graph isomorphism is as hard as tolerant EMD testing) and upper bound part (tolerant EMD
testing is as hard as tolerant graph isomorphism) of Theorem 1.4 in Sections 4 and 5 respectively.
We present the results on communication complexity in Section 6. We finally conclude in Section 7.

Notations

All graphs considered here are undirected, unweighted, and have no self-loops or parallel edges.
For a graph G(V,E), V (G) and E(G) will denote the vertex set and the edge set of G, respectively.
Since we are considering undirected graphs, we write an edge (u, v) ∈ E(G) as {u, v}. The Hamming
distance between two points x and y in a Hamming cube {0, 1}k will be denoted by dH(x, y).

2 Preliminaries

All graphs considered here are undirected, unweighted and have no self-loops or parallel edges.
For a graph G(V,E), V (G) and E(G) will denote the vertex set and the edge set of G, respectively.
Since we are considering undirected graphs, we write an edge (u, v) ∈ E(G) as {u, v}. The Hamming
distance between two points x and y in a Hamming cube {0, 1}k will be denoted by dH(x, y).

2.1 Notion of distance between two graphs

First let us define the notion of Decider of a vertex and then the notion of distance between
two graphs, using decider of vertices, that is conceptually same as that of Graph Isomorphism
Distance defined in Definition 1.1.

Definition 2.1. (Decider of a vertex) Given two graphs Gk and Gu and a bijection φ : V (Gu)→
V (Gk), Decider of a vertex x ∈ V (Gu) with respect to φ is defined as the set of vertices of Gu that
create the edge difference in x and φ(x)’s neighbourhood in Gu and Gk, respectively. Formally,

Deciderφ(x) := {y ∈ V (Gu) : one of the edges {x, y} and {φ(x), φ(y)} is not present}

6



Definition 2.2. (Distance between two graphs) Let Gu and Gk be two graphs and φ : V (Gu)→
V (Gk) be a bijection from the vertex set of Gu to that of Gk. The distance between Gu and Gk
under φ is defined as the sum of the sizes of the deciders of all the vertices in Gu, that is,

dφ(Gu, Gk) :=
∑

x∈V (Gu)

|Deciderφ(x)| .

The distance between two graphs Gu and Gk is the minimum distance under all possible bijections φ
from V (Gu) to V (Gk), that is, d(Gu, Gk) := min

φ
dφ(Gu, Gk).

Remark 1. Recall the definition of δGI(Gu, Gk), Graph Isomorphism Distance between Gu
and Gk, that is given in Definition 1.1. Observe that d(Gu, Gk) = 2

(
n
2

)
δGI(Gu, Gk). Though,

d(Gu, Gk) and δGI(Gu, Gk) represent the same thing, conceptually, we will do our calculations by
using d(Gu, Gk) for simplicity of presentation.

Next we define the concept of closeness between two graphs.

Definition 2.3. (Close and far) For γ ∈ [0, 1), two graphs Gu and Gk with n vertices are γ-close
to isomorphic if d(Gu, Gk) ≤ γn2. Otherwise, we say Gu and Gk are γ-far from being isomorphic. 8

2.2 Property Testing of Distribution Properties

Understanding different properties of probability distributions have been an active area of research
in property testing (For reference, see [Can20]). The authors studied these problems assuming random
sample access from the unknown distributions. Considering the relation between the distributions
and their corresponding representative multi-sets, we can say that all these results hold for multi-sets
along with access over sampling with replacement.

Although it seems that the change of query model from sample with replacement to sample
without replacement does not make much difference, following the work of Freedman [Fre77], we
know that the variation distance between probability distributions when accessed via samples with
and without replacement, becomes arbitrary close to 1/2 when the number of samples is Ω(

√
n).

Because of this reason, many techniques developed for sampling with replacement for various
problems no longer work anymore. Most importantly, proving any lower bound better than Ω(

√
n) is

often nontrivial.

2.3 Earth Mover’s Distance (EMD) over Hamming Cube

In this section, we study some properties of Earth Mover’s distance (EMD) over probability
distributions and multi-sets, which are crucial in the context of both our lower and upper bound.
Before proceeding to the discussion on EMD, let us first recall the definition of `1 distance between
two distributions.

Definition 2.4 (`1 distance between two distributions). Let p and q be two probability distributions
over [n]. The `1 distance between p and q is defined as

dl1(p, q) =

n∑
i=1

|p(i)− q(i)|

8By abuse of notation, we will say Gu and Gk are γ-far when d(Gu, Gk) ≥ γn2.
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Definition 2.5 (EMD between two probability distributions). Let H = {0, 1}d be a Hamming
cube of dimension d, and p, q be two probability distributions on H. The EMD between p and q is
denoted by EMD(p, q) and defined as the optimum solution to the following linear program:

Minimize
∑
x,y∈H

fxydH(x, y)

Subject to
∑
y∈H

fxy = p(x) ∀x ∈ H, and
∑
x∈H

fxy = q(y) ∀y ∈ H.

Now we define EMD between two multi-sets.

Definition 2.6 (EMD between two multi-sets). Let S1, S2 be two multi-sets on a Hamming
cube H = {0, 1}d of dimension d with |S1| = |S2|. The EMD between S1 and S2 is denoted by
EMD(S1, S2) and defined as EMD(S1, S2) = min

φ:S1→S2

∑
x∈S1

dH(x, φ(x)) where φ is a bijection from

S1 to S2.

Note that an unknown distribution p is accessed by taking samples from p. However, a multi-set
is accessed as follows:

Definition 2.7 (Query accesses to multi-sets). A multi-set S of n elements is accessed in one of the
following ways:

Sample Access with replacement: Each element of S is reported uniformly at random indepen-
dent of all previous queries.

Sample Access without replacement: Let us assume we make Q queries to S, where Q ≤ n.
The answer to the first query, say s1, is an element from S chosen uniformly at random. For
any 2 ≤ i ≤ Q, the answer of the i-th query is an element chosen uniformly at random from
S \ {s1, . . . , si−1}. Here sj , 1 ≤ j ≤ Q, denotes the answer to the j-th query.

Although sampling with replacement is more natural query model, we need sampling without
replacement for our lower bound proof. We now note that we can simulate samples with replacement
when we have samples without replacement.

Proposition 2.8 (Simulating samples with replacement from samples without replacement). Given
Q many samples without replacement from an unknown multi-set Su with n elements, we can simulate
Q many samples with replacement from Su where Q ≤ n.

Proof. Consider the following procedure to get Q many samples with replacement (say x1, . . . , xQ)
when we have Q many samples without replacement (s1, . . . , sQ) from the unknown multi-set Su
with Q ≤ n.

We first set x1 = s1. For each i with 2 ≤ i ≤ Q, we set xi as follows: with probability 1− i−1
n ,

we select one of the element from {s1, . . . , si−1} uniformly at random as xi; with probability i−1
n , we

set xi = si. From the description of procedure to generate xi’s, we have P (xi = si) = 1
n .

Thus we can simulate Q many samples with replacement from Q many samples without
replacement from the unknown multi-set Su.

The following observation connects the EMD between two probability distributions with that of
between two multi-sets.
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Observation 2.9. Let p, q be two K-grained probability distributions 9 on a n dimensional Hamming
cube H = {0, 1}n. Then p and q induces two multi-sets S1 and S2 on H, respectively, as follows.
S1 (S2) is the multi-set containing x ∈ H with multiplicity p(x)K (q(x)K) for each x ∈ H. Moreover,
EMD(p, q) = EMD(S1,S2)

K .

Proof. Recall the definitions of EMD between two distributions and two multi-sets given in Def-
inition 2.5 and 2.6, respectively. We will be done with the proof by showing EMD(S1, S2) ≤
K · EMD(p, q) and K · EMD(p, q) ≤ EMD(S1, S2), separately.

For EMD(S1, S2) ≤ K · EMD(p, q), let {f∗ij : i, j ∈ H} be the set of variables that realizes
EMD(p, q), that is, EMD(p, q) =

∑
i,j∈H

f∗ijdH(i, j). Consider a bijection φ from S1 to S2 where

φ(i) = j for gij many i’s. Hence, by Definition 2.6,

EMD(S1, S2) ≤
∑
x∈S1

dH(x, φ(x)) =
∑
i,j∈H

K · f∗ijdH(i, j) = K · EMD(p, q).

Now, we show K ·EMD(p, q) ≤ EMD(S1, S2). Let φ∗ be a bijection from S1 to S2 that realizes
EMD(S1, S2), that is, EMD(S1, S2) =

∑
x∈S1

dH(x, φ∗(x)). For any x, y ∈ H, let fxy be the number

of elements, of the form (x, y) in S1×S2 such that x is mapped to y under φ, divided by K2. Observe
that fxy ≥ 0. Also, fxy > 0 if and only if (x, y) ∈ S1 × S2. More over, {fij : i, j ∈ H} satisfies∑
i∈H

fij = p(j) ∀j ∈ H and
∑
j∈H

fij = q(i) ∀i ∈ H. Hence, by Definition 2.5,

K · EMD(p, q) ≤ K
∑
x,y∈H

fxydH(x, y) =
∑

(x,y)∈S1×S2

K · fxydH(x, y)

=
∑
x∈S1

dH(x, φ∗(x)) = EMD(S1, S2).

Remark 2. Note that sample access from a probability distribution is exactly same as uniform
sampling from a multi-set with replacement.

Proposition 2.10. Let D be the set of all multi-sets of size n over a universe [m]; let Sk and Su
in D denote the known and unknown multi-sets over [n]; and Prop : D ×D → {0, 1} be a boolean
function. Then the following holds:

If there exists an algorithm that determines Prop by Q many samples without replacement
from Su with probability at least 2/3, then there exists an algorithm that determines Prop by
min{Q,

√
min{n,m}} many samples with replacement from Su with probability at least 2/3− o(1).

This follows from the fact that when Q = o(
√
n) and DWR (DWoR) be the probability distribution

over all the subsets having Q elements from [n] with (without) replacement, the `1 distance between
DWR and DWoR is o(1).

Definition 2.11 (EMD over multi-sets while sampling with and without replacement).
Let Sk and Su denote the known and the unknown multi-sets, respectively, over n-dimensional
Hamming cube H = {0, 1}n such that |Su| = |Sk| = n. Consider the two distributions pu and pk
over the Hamming cube H that are naturally defined by the sets Su and Sk where for all x ∈ H

9The probability of each element in the sample space is an integer multiple of 1
K
.
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probability of x in pu (and pk) is the number of occurrences of x in Su (and Sk) divided by n. We
then define the EMD between the multi-sets Su and Sk as

EMD(Su, Sk) , n · EMD(pu, pk).

The problem of estimating the EMD over multi-sets while sampling with (or without) replace-
ment means designing an algorithm, that given any two constants β1, β2 such that 0 ≤ β1 < β2 ≤ 1,
and access to the unknown set Su by sampling with (or without) replacement decides whether
EMD(Sk, Su) ≤ β1n

2 or EMD(Sk, Su) ≥ β2n
2 with probability at least 2/3.

Note that estimating the EMD over multi-sets while sampling with replacement is exactly same
as estimating EMD between the distributions pu and pk with samples drawn according to pu.

Let QWREMD(n, d, β1, β2) (and QWoREMD(n, d, β1, β2)) denote the number of samples with
(and without) replacement required to decide the above from the unknown multi-set Su. For
ease of presentation, we write QWoREMD(n, d) (QWREMD(n, d)) instead of QWoREMD(n, d)
(QWREMD(n, β1, β2)) when the proximity parameters are clear from the context.

Proposition 2.12 (Query complexity of EMD increases with number of points as well as dimension).
Let n, n1, n2, d, d1, d2 ∈ N be such that d1 ≤ d2 and n1 ≤ n2. Then

(i) QWREMD(n1, d) ≤ QWREMD(n2, d);

(ii) QWoREMD(n1, d) ≤ QWoREMD(n2, d);

(iii) QWREMD(n, d1) ≤ QWREMD(n, d2); and

(iv) QWoREMD(n, d1) ≤ QWoREMD(n, d2).

Remark 3. For d = n (as considered in Definition 1.3), QWoREMD(n, d) (and QWREMD(n, d))
are denoted as QWoREMD(n) (and QWREMD(n)).

Now let us state the lower bound of QWREMD(n).

Theorem 2.13. QWREMD(n) = Ω( n
logn).

Thus following Proposition 2.10, we have

Theorem 2.14. QWoREMD(n) = Ω(
√
n).

Note that an upper bound of QWoREMD(n) = Õ(n) is trivial. In the rest of the section, we
focus on proving Theorem 2.13 that states the lower bound on QWREMD(n). We also provide
an upper bound for QWREMD(n) at Lemma 2.19 that shows that Õ(n) many samples with
replacement from Su to estimate QWREMD(n). Note that by Remark 2, it is enough to show the
following lemma that states the lower bound for tolerant EMD testing between two distributions.

Lemma 2.15. Let S be a subset of a Hamming cube H = {0, 1}n such that the minimum distance
between any pair of points in S is at least n2 . Also, let p and q be two known and unknown distributions,
respectively, supported over a subset of S. Then there exists a constant εEMD such that the following
holds. Given two constants β1, β2 with 0 < β1 < β2 < εEMD(c), Ω

(
n

logn

)
samples from the

distribution q are necessary in order to decide whether EMD(p, q) ≤ β1n or EMD(p, q) ≥ β2n.
More over, εEMD =

1−ε`1
4 , where ε`1 is the constant that is mentioned in Theorem 2.17.

To prove the above lower bound, let us first consider the following lower bound for tolerant `1
testing between two probability distributions.
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Theorem 2.16 (Valiant and Valiant [VV11]). Let p and q be two known and unknown probability
distributions respectively over [n]. There is an absolute constant ε such that in order to decide whether
‖p− q‖1 ≤ ε or ‖p− q‖1 ≥ 1− ε, Ω( n

logn) samples, from the distribution q, are necessary. 10

Now, we restate the above result for our purpose.

Theorem 2.17. Let p and q be two known and unknown probability distributions, having support
size n, over a Hamming cube H = {0, 1}n. There is an absolute constant ε`1 such that in order to
decide whether ‖p− q‖1 ≤ α1 or ‖p− q‖1 ≥ α2 with 0 < α1 < α2 ≤ 1− ε`1, Ω( n

logn) samples, from
the distribution q, are necessary.

As noted earlier, we will prove Theorem 2.13 by using Lemma 2.17. However, Theorem 2.13 is
regarding EMD between two distributions whereas Lemma 2.17 is regarding `1 distance between
two distributions. The following observation (from [DBNNR11]) gives a connection between EMD
between two distributions with the `1 distance between them, which will be required in lower bound
proof.

Proposition 2.18 ([DBNNR11]). Let (M,D) be a finite metric space and p and q be two probability
distributions on M . Minimum distance between any two points of M is ∆min and diameter of M is
∆max. Then the following condition holds:

‖p− q‖1∆min

2
≤ EMD(p, q) ≤ ‖p− q‖1∆max

2
.

Note that the above proposition gives interesting result when ∆max
∆min

is bounded by a constant.
Note that S ⊂ {0, 1}n satisfies ∆max

∆min
≤ 2.

Proof of Lemma 2.15. In S ⊂ H = {0, 1}n, the pairwise Hamming distance between any two elements
in S is at least n

2 , to have ∆max
∆min

≤ 2 in our context. It is well known that |S| = Ω(n). We will show
that if there exists an algorithm A that decides EMD(p, q) ≤ β1n or EMD(p, q) ≥ β2n by using t
samples from q, then there exists an algorithm P that decides whether ‖p−q‖1 ≤ α1 or ‖p−q‖1 ≥ α2

by using t samples from q, where α1 = 2β1 and α2 = 4β2. Note that we have 0 < β1 < β2 <
1−ε`1

4 .
So, 0 < α1 < α2 < 1− ε`1 , which satisfies the requirement of Theorem 2.17.

Algorithm P:

(1) First run algorithm A.

(2) If the output of algorithm A is EMD(p, q) ≤ β1n, algorithm P returns ‖p− q‖1 ≤ α1.

(3) If the output of algorithm A is EMD(p, q) ≥ β2n, algorithm P returns ‖p− q‖1 ≥ α2.

To complete the proof, we only need to show that P gives desired output with probability at
least 2/3. The result then follows from Theorem 2.17.

Let us first consider the case ‖p − q‖1 ≤ α1. Then by Observation 2.18, we can say that
EMD(p, q) ≤ α1n

2 = β1n. Therefore algorithm A will output that EMD(p, q) ≤ β1n. This implies
that the algorithm P will output ‖p− q‖1 ≤ α1.

Now, let us consider the case ‖p− q‖1 ≥ α2. Using the fact that any pair elements in S ⊂ H is
at least n

2 along with Observation 2.18, we get EMD(p, q) ≥ α2n
4 = β2n. This implies P will output

‖p− q‖1 ≥ α2.
10Note that this is rephrasing of the result proved in [VV11]. For reference, see Chapter 5 of the survey by

Canonne [Can20].
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Till now, we were discussing the proof of Lemma 2.15 that states QWREMD(n) = Ω( n
logn). The

lower bound is almost tight, up to a polynomial factor of log n. The upper bound is stated in the
following observation.

Observation 2.19. QWREMD(n) = Õ(n), where Õ(·) hides a polynomial factor in 1
β2−β1

and
log n.

Instead of proving the above observation, we prove the following lemma that states the upper
bound of tolerant EMD testing between two distributions when we know one distribution and
have sample access to the unknown distribution. By Remark 2, we will be done with the proof of
Observation 2.19.

Lemma 2.20. Let H = {0, 1}n be a n-dimensional Hamming cube, and let p and q denote two known
and unknown n-grained distribution over H. There exists an algorithm that takes two parameters
β1, β2 with 0 ≤ β1 < β2 ≤ 1 and a δ ∈ (0, 1) as input and decides whether EMD(p, q) ≤ β1n or
EMD(p, q) ≥ β2n with probability at least 1− δ. Moreover, the algorithm AlG-EMD queries for
Õ(n) many samples from q, where Õ(·) hides a polynomial factor in 1

β2−β1
and log n.

Proof. Let ε be a constant less than (β2 − β1). We construct a probability distribution q′ such that
the `1 distance between q and q′ will be at most ε, that is,

∑
i∈[L]

|q(i)− q′(i)| ≤ ε. Note that such a q′

can be constructed with probability at least 1− δ by querying for Õ (n) many samples of q which
follows from [DL12]. Then, we find EMD(p, q′). Observe that |EMD(p, q)− EMD(p, q′)| ≤ εn

2 .
This is because∣∣EMD(p, q)− EMD(p, q′)

∣∣ ≤ ∣∣EMD(p, q′) + EMD(q′, q)− EMD(p, q′)
∣∣

≤ EMD(q, q′)

≤ εd

2
(By Proposition 2.18)

As EMD(p, q) ≤ β1n or EMD(p, q) ≥ β2n, by the above observation, we will get either
EMD(p, q′) ≤

(
β1 + ε

2

)
n or EMD(p, q′) ≥

(
β1 + ε

2

)
n, respectively. By our choice of ε < β2 − β1,

we can decide EMD(p, q) ≤ β1n or EMD(p, q) ≥ β2n from the value of EMD(p, q′).

2.4 Communication Complexity Landscape of GI

Two players Alice and Bob have two graphs Ga and Gb (on n vertices) respectively. They would
like to communicate among themselves to decide about the following problems:

(1) Non-tolerant Graph Isomorphism: If Ga and Gb are isomorphic or ε-far from isomorphic where
ε ∈ (0, 1] is a proximity parameter.

(2) Tolerant Graph Isomorphism: If Ga and Gb are ε1-close to being isomorphic or ε2-far from
being isomorphic where ε1, ε2 are two proximity parameters such that 0 ≤ ε1 < ε2 ≤ 1.

We show that the deterministic communication complexity for both these problems is Θ(n2) in
Theorem 6.1. We also prove that the randomized communication complexity for the Non-tolerant
graph isomorphism problem is O(1) (with shared randomness). The communication complexity for
the tolerant graph isomorphism remains open. We showed in this paper (Theorem 6.2) that the
randomized communication complexity of the Tolerant Graph Isomorphism is same as the randomized
communication complexity of the Tolerant EMD problem on the Hamming cube.

The results are summarized in the following table:
The proofs of these results are presented in Section 6.
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Models Non-tolerant Tolerant

Graph Isomorphism Graph Isomorphism

Deterministic Θ(n2) Θ(n2)

Randomized Θ(1) OPEN!

Table 1: Summary of GI results in communication complexity.

2.5 Useful concentration bounds

In our work, we use the following three concentration inequalities, see [DP09].

Lemma 2.21 (Chernoff-Hoeffding bound). Let X1, . . . , Xn be independent random variables such

that Xi ∈ [0, 1]. For X =
n∑
i=1

Xi and µ = E[X], the following holds for all 0 ≤ δ ≤ 1

P (|X − µ| ≥ δµ) ≤ 2 exp

(
−µδ2

3

)
.

Lemma 2.22 (Chernoff-Hoeffding bound). Let X1, . . . , Xn be independent random variables such

that Xi ∈ [0, 1]. For X =
n∑
i=1

Xi and µl ≤ E[X] ≤ µh, the followings hold for any δ > 0.

(i) P (X ≥ µh + δ) ≤ exp
(
−2δ2

n

)
.

(ii) P (X ≤ µl − δ) ≤ exp
(
−2δ2

n

)
.

Lemma 2.23 (Hoeffding’s Inequality). Let X1, . . . , Xn be independent random variables such that

ai ≤ Xi ≤ bi and X =
n∑
i=1

Xi. Then, for all δ > 0,

P (|X − E[X]| ≥ δ) ≤ 2 exp

 −2δ2

n∑
i=1

(bi − ai)2



3 Discussion on our proof of Theorem 1.4

3.1 Lower bound part of Theorem 1.4

In this reduction, we crucially use the fact that the multi-sets are composed of elements from the
Hamming cube. The reduction is based upon an involved gadget construction. In fact, we prove the
lower bound for a slightly more powerful query model rather than the standard adjacency matrix
query model. The most interesting part of our lower bound proof is that thanks to our reduction, we
get to observe the importance of the model of accessing the multi-set without replacement in the
context of EMD testing.

Now, we discuss the overview of our reduction. Let Sk and Su denote the known and the unknown
multi-sets, over a Hamming cube {0, 1}d (of dimension d) with d = Θ(n), having n elements each.
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To start with, let us assume that we know both Sk and Su. We will construct two graphs Gk and Gu
on d+ n vertices as follows:

• The vertex set of Gk (and Gu) are partitioned into two sets Ak and Bk (and Au and Bu) with
|Ak| = |Au| = n and |Bk| = |Bu| = d.

• The graph induced by Ak is a clique, and similarly the graph induced by Au is a clique.

• The graphs induced by Bk and Bu are copies of a special graph with certain nice properties
which enable our reduction to work. The existence of such a graph is proved (in Lemma 4.3)
using a probabilistic argument.

• Finally, for the cross edges between Ak and Bk (and Au and Bu), we have: there is an edge
between the i-th vertex of Ak (or Au) and the j-th vertex of Bk (or Bu) if and only if the j-th
coordinate of the i-th element of Sk (or Su) is 1.

• Finally, a random permutation π is applied to the vertices of Gu.

The permutation π is not known to the GI-tester. Note that we can construct Gk explicitly as
Sk is known. However, that is not the same with Gu as Su is unknown. But since we know the
permutation π, any query to the adjacency matrix of the graph Gu can be answered by a single
query to one bit of Su. But unfortunately we don’t have query access to Su, and only have sample
access to Su. To deal with this problem, it is easier to consider a slightly more powerful query. Say,
the GI-tester wants to query the (i, j)-th bit of the graph Gu. Of course, if both i and j are in Au
or both are in Bu, we can answer without even sampling from Su. But if i is in Au and j is in Bu,
then what we intend to do is to give the whole neighborhood of i in Bu as the answer to the query.
This would be like neighbourhood query in a bipartite graph. But the question remains: how do we
intend to answer the query by sampling. The key observation here is that since the GI-tester does
not know the permutation π that was applied to the vertices in Gu, to its eye, all the vertices that
have not been touched so far look same. So, every time it queries for (i, j), where i ∈ Au and j ∈ Bu,
either of the two cases can happen:

• Either, previously a query of the form (i, j1) was asked where j1 is also in Bu, but in that case,
it must have already got the answer of (i, j) as we must have given all the neighbors of i in Bu.
So in that case, we can give back the same answer without sampling.

• Or, previously i did not participate in any query of the form (i, j1) where j1 is in Bu. In this
case, to the GI-tester’s eye, i is just a new vertex from Au. We can then sample without
replacement from Su and whatever sample of the multi-set we have, we can assume that it
is the element i and answer accordingly. Note that this is the exact place where sampling
without replacement is crucial.

To complete our proof, we need to prove how the GI-distance between Gk and Gu is connected to the
EMD between Sk and Su. Consider the set Φ of all Special bijections from V (Gk) to V (Gu) that
maps Ak into Au and Bk into Bu such that the i-th vertex of Bk is mapped to the i-th vertex of Bu.
Observe that dΦ(Gk, Gu) = 2 · EMD(Sk, Su), where dΦ(Gk, Gu) = min

φ∈Φ
dφ(Gk, Gu) (See Lemma 4.5

for a formal proof). The factor 2 is because of the way we define dφ(Gk, Gu) (See Definition 1.1). This
implies that tolerant isomorphism testing between Gk and Gu is at least as hard as tolerant EMD
testing between Sk and Su if we restrict the bijection from V (Gk) to V (Gu) to be a Special bijection.
The reduction works for all possible bijections, because of the careful choice of the subgraph of Gk
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(and Gu) induced by Bk (and Bu), thus ensuring d(Gk, Gu) is close to dΦ(Gk, Gu) (See Lemma 4.6
for a formal proof).

One might compare our proof technique to the lower bound proof of (non-tolerant) testing
of GI from [FM08]. In [FM08], Ω (

√
n) lower bound was proved directly (using Yao’s lemma) by

constructing two distributions of YES instances and NO instances - the construction of the YES
and NO instances were inspired from the tightness of the birthday paradox, which was also the core
idea behind the lower bound proof of the equivalence testing of two probability distributions. But,
there was no direct reduction from GI testing to equivalence testing of two probability distributions.
But in our lower bound proof, we establish a direct reduction to estimating EMD of multi-sets on
the Hamming cube with access to samples without replacement. This can be of much importance,
mainly while considering other models of computation, like in the communication model. From our
reduction, we can obtain an alternative proof of Ω(

√
n) lower bound for the (non-tolerant) GI testing

via the Ω(
√
n) lower bound of the equivalence testing of distributions, as pointed out in Corollary 1.5.

3.2 Upper bound part of Theorem 1.4

Given a known graph Gk and query access to an unknown graph Gu (both on n vertices), we
present an algorithm for tolerant testing of graph isomorphism between Gk and Gu by using a tolerant
EMD tester (for distributions over H) as a blackbox. Note that this will prove the upper bound part
of Theorem 1.4.

Algorithm for tolerant GI using tolerant EMD as a black box. Our testing algorithm is
inspired by the algorithm of Fischer and Matsliah [FM08] for non-tolerant GI testing. But our
algorithm significantly differs from that of Fischer-Matsliah in some crucial points. As we explain
the high level picture of our algorithm, we will point out some of the crucial differences.

We split our algorithm into three phases. In Phase 1, we first choose a O
(

1
γ2−γ1

)
size collection of

random subset of vertices, i.e, coresets Cu from the unknown graph Gu where each Cu ∈ Cu is of size
O(log n). Thereafter we find all embeddings of Cu inside the known graph Gk. Let the embeddings
be η1, η2, . . . , ηJ where Cik = ηi(Cu). Now each Cu (as well as each Cik) defines a label distribution of
the vertices of Gu (as well as Gk). Let us denote the set of labels as XCu (and YCik). Now we test if
the EMD between XCu and YCik is close or far for each i ∈ [J ] (See Claim 5.2). We keep only those
(Cu, ηi) for Phase 2 such that EMD(XCu , YCik

) ≤
(
γ1 + γ2−γ1

2000

)
n |Cu|.

Although Phase 1 of our algorithm is similar to the algorithm of [FM08], there is a striking
difference. Since the authors of [FM08] were testing the non-tolerant version of graph isomorphism,
they were testing the identity of the label distributions of XCu and YCik

. However, since we are
solving the tolerant version of the problem, we need to allow some error among the label distributions.
We need to pass only those placements of Cu that under good bijections do not produce much error
and testing of tolerant EMD fits exactly for this purpose. It is worth noting that Fischer-Matsliah
uses an equivalence tester in their algorithm to identify the placements that do not produce “any"
error. But, the proof of correctness of the algorithm would not go through even if we use the tolerant
testing of the equivalence of distributions. The use of EMD in this phase is crucial for the proof of
correctness of our algorithm to hold.

In Phase 2, we choose O
(

log2 n
(γ2−γ1)3

)
many vertices from the unknown graph Gu randomly and

call it W . We further find the labels of all the vertices of W under Cu-labelling by querying the
corresponding entries of Gu for each Cu that has passed Phase 1. Then we try to match the vertices
of W to the set of all possible labels {l1, l2, . . . , lt} of the vertices of Gk under Cik-labelling where
Cik = ηi(Cu), for those ηi that have passed Phase 1. Ideally, we would like to find a mapping
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ψ : W → {l1, l2, . . . , lt} such that the total distance between the labels of the matched vertices is not
too large. If no such ψ is possible, we reject the current embedding and try some other embedding
that has passed Phase 1.

In Phase 3, we construct a random partial bijection φ̂ : W → V (Gk) that maps the vertices of W
to the vertices of Gk while preserving the labels according to ψ. We achieve this by mapping each
w ∈W to one vertex of Gk randomly that has same label as determined by ψ. Finally, we randomly
pair the vertices of W and find the fraction of edge mismatches between the paired up vertices of
W and φ̂(W ). If this fraction is at most 5γ1 + 3

5(γ2 − γ1), we accept and say that Gu and Gk are
γ1-close. If there is no such embedding of any Cu ∈ Cu that achieves this, we report that Gu and Gk
are γ2-far.

The proofs of completeness and soundness follow kind of similar route as Fischer-Matsliah’s
proof but the arguments are way more complicated. Many things that were trivial or obvious in
the non-tolerant setting become major hurdles in the tolerant setting, and we overcome them with
significantly difficult technical arguments, presented in Section 5.

4 Tolerant GI is as hard as tolerant EMD testing

In this section, we prove that it is necessary to perform Ω
(
QWoREMD(n)

)
many queries to

the adjacency matrix of Gu to solve (γ1, γ2)-tolerant GI testing of Gk and Gu.

Theorem 4.1 (Restatement of the lower bound part of Theorem 1.4). Let Gk be the known and
Gu be the unknown graph on n vertices, where n ∈ N is sufficiently large. There exists a constant
εISO ∈ (0, 1) such that for any given constants γ1, γ2 with 0 < γ1 < γ2 < εISO, any algorithm that
decides whether the graphs are γ1-close or γ2-far, requires QWoREMD(n) adjacency queries to the
unknown graph Gu where QWoREMD is as defined in Definition 1.3.

In Section 3.1, we have discussed an overview of of our idea to prove the above theorem. To prove
Theorem 4.1, we show a reduction from tolerant GI testing to tolerant EMD testing over multi-sets
when we have samples without replacement from the unknown multi-set.

Lemma 4.2. Suppose there is a constant ε0 ∈
(
0, 1

2

)
such that for all constants γ1, γ2 with 0 < γ1 <

γ2 < ε0 and any constant T ∈ N, the following holds: There exists a (γ1, γ2)-tolerant tester for GI
that, given a known graph Gk and an unknown graph Gu with |V (Gu)| = |V (Gk)| = (T + 1)n, can
distinguish whether d(Gu, Gk) ≤ γ1Tn

2 or d(Gu, Gk) ≥ γ2Tn
2 by performing Q adjacency queries to

Gu.
Then, for any constants β1 and β2 with 0 < β1 < β2 <

ε0
2 , the following holds where κ = β2−β1

8 and
Tκ = d 30

κ(2−κ)e. There is a tolerant tester for EMD such that, given a known and an unknown multi-set
Sk and Su respectively, of the Hamming cube {0, 1}Tκn with |Sk| = |Su| = n, can distinguish whether
EMD(Sk, Su) ≤ β1Tκn

2 or EMD(Sk, Su) ≥ β2Tκn
2 with Q many samples without replacement

from Su.

Remark 4. Observe that Lemma 4.2 talks about tolerant EMD testing between multi-sets with
n elements over a Hamming cube of dimension Tκn. But Theorem 4.1 states the lower bound of
QWoREMD(n), that is, of tolerant EMD testing of multi-sets with n elements over a Hamming
cube of dimension n. However, the query complexity of EMD testing increases with the dimension
of the Hamming cube (See Proposition 2.12). So, we will be done with the proof of Theorem 4.1 by
proving Lemma 4.2.
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4.1 Tolerant GI to Tolerant EMD testing: Proof of Lemma 4.2

To define the necessary reduction for the proof of Lemma 4.2, we need to show the existence of a
graph Gp satisfying some unique properties.

Lemma 4.3. Let κ ∈ (0, 1) and s ≥ 3 be given constants. Then for Cκ,s = d 6s
κ(2−κ)e and sufficiently

large n ∈ N 11, there exists a graph Gp with Cκ,sn many vertices such that the following conditions
hold.

(i) The degree of each vertex in Gp is at least ((1− κ)Cκ,s + 1)n− 1.

(ii) The cardinality of symmetric difference between the sets of neighbors of any two (distinct) vertices
in Gp is at least sn− 2.

Proof. To prove the claim, we use probabilistic method to show the existence of a graph G′p, with
V (G′p) = Cκ,sn, that can have (possible) self loops and satisfy the followings.

(i) The degree of each vertex in G′p is at least ((1− κ)Cκ,s + 1)n.

(ii) The cardinality of symmetric difference between the sets of neighbors of any two (distinct)
vertices in G′p is at least sn.

Let us construct a random graph having the vertex set V (G′p) such that each pair {u, v}, with
u, v ∈ V (G′p) , is an edge with probability 1− κ

2 independent of other pairs.
Now we compute the probability that the degree of a vertex v ∈ G(V ′p), that is degG′p(v), is at

most ((1− κ)Cκ,s + 1)n. For each v′ ∈ V (G′p), let Xv′ be the indicator random variable that takes
value 1 if and only if {v, v′} ∈ E(G′p). Note that degG′p(v) =

∑
v′∈V (G′p)

Xv′ . Also, P(Xv′ = 1) = 1− κ
2 .

So, the expected value of degG′p(v) is
(
1− κ

2

)
Cκ,sn. By using Chernoff bound 2.21, we have

P
(
degG′p(v) ≤ ((1− κ)Cκ,s + 1)n

)
= P

(
degG′p(v) ≤ (1− ε)

(
1− κ

2

)
Cκ,sn

) (
where ε =

κCκ,s − 2

(2− κ)Cκ,s
< 1

)
≤ e−

ε2(2−κ)Cκ,sn

6

Let E1 be the event that there exists a vertex v ∈ V (G′p) such that the degree of v in G′p is at
most ((1− κ)Cκ,s + 1)n. Using union bound, we can say that

P(E1) ≤
∣∣V (G′p)

∣∣ e− ε2(2−κ)Cκ,sn

6 ≤ Cκ,sn · e−
ε2(2−κ)Cκ,sn

6 .

Let E2 be the event that there exists two (distinct) vertices u, v with
∣∣∣NG′p(u)∆NG′p(v)

∣∣∣ < sn, where
NG′p(u) denotes the set of neighbors of u in G′p. Our goal is to show that G′p exists which satisfies the
required conditions. Observe that, G′p satisfies the required conditions if and only if P(Ec1 ∩ Ec2) > 0.
The rest of the work in this proof is to show P(Ec1 ∩ Ec2) > 0.

To bound P(E2), consider two distinct vertices u and v. For w ∈ V (G′p), let Yw be the indicator

random variable that takes value 1 if and only if w ∈ NG′p(u)∆NG′p(v). Note that
∣∣∣NG′p(u)∆NG′p(v)

∣∣∣ =∑
w∈V (G′p)

Yw and P(Yw = 1) = 2 · κ2
(
1− κ

2

)
. So, the expected value of

∣∣∣NG′p(u)∆NG′p(v)
∣∣∣, that is,

E
[∣∣∣NG′p(u)∆NG′p(v)

∣∣∣] = 2 · κ
2

(
1− κ

2

)
Cκ,sn.

11The lower bound of n is a constant that depends on κ and s.
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As Cκ,s = d 6s
κ(2−κ)e, E

[∣∣∣NG′p(u) ∆ NG′p(v)
∣∣∣] ≥ 3sn. Using Chernoff bound 2.21, we have

P
(∣∣∣NG′p(u) ∆ NG′p(v)

∣∣∣ < sn
)
≤ e−

4sn
9

Now, by using union bound, we can say that P(E2) ≤
∣∣V (G′p)

∣∣2 e− 4sn
9 = C2

κ,sn
2e−

4sn
9 . Finally using

union bound one more time and the fact that n is sufficiently large, we have

P(E1 ∪ E2) ≤ Cκ,sn · e−
ε2(2−κ)Cκ,sn

6 + C2
κ,sn

2e−
4sn
9 < 1.

Hence, P(Ec1 ∩ Ec2) > 0.

Let ALG(γ1, γ2, T ) be the algorithm that takes γ1 and γ2 with 0 < γ1 < γ2 < ε0 as input and
decides whether d(Gk, Gu) ≤ γ1Tn

2 or d(Gk, Gu) ≥ γ2Tn
2, where |V (Gk)| = |V (Gu)| = (T + 1)n.

Now we show that for any two constants β1 and β2 with 0 < β1 < β2 < ε0
2 , κ = β2−β1

8 and
Tκ = d 6s

κ(2−κ)e, there exists an algorithm A(β1, β2, κ, Tκ) that can test whether two multi-sets Sk and
Su over the Tκn-dimensional Hamming cube have EMD less than Tκβ1n

2 or more than Tκβ2n
2 with

Q many queries to the multi-set Su. To be specific, algorithm A(β1, β2, κ, Tκ) for EMD testing will
use algorithm ALG(γ1, γ2, T ) for (γ1, γ2)-tolerant GI such that γ1 = 2β1, γ2 = 2β2 − 2κ and T = Tκ.
Note that, as 0 < β1 < β2 <

ε0
2 and κ = β2−β1

8 , 0 < γ1 < γ2 < ε0 holds. The details of the reduction,
that is, algorithm A is described below.

Description of the reduction

Input: A known multi-set Sk = {k1, . . . , kn} over HTκn = {0, 1}Tκn and query access to an unknown
multi-set Su = {u1, . . . , un} over HTκn.

Goal: To decide whether EMD(Sk, Su) ≤ Tκβ1n
2 or EMD(Sk, Su) ≥ Tκβ2n

2.

Construction of Gk and Gu from Sk and Su: Let us first construct the graph Gk from Sk. Gk
has (Tκ + 1)n vertices partitioned into two parts Ak = {a1, . . . , an} and Bk = {b1, . . . , bTκn}.
Now the edges of Gk are described as follows:

• Gk[Ak] is a clique with n vertices.

• Gk[Bk] is a copy of the graph Gp(Vp, Ep) on Tκn vertices as stated in Lemma 4.3 with
parameters s = 5, κ = β2−β1

8 and Tκ = Cκ,5.

• For the cross edges between the vertices in Ak and Bk, we add the edge (ai, bj) to E(Gk)
if and only if the j-th coordinate of ki is 1 for all i ∈ [n] and j ∈ [Tκn].

Note that the graph Gk constructed above is unique for a given multi-set Sk. The graph Gu with
the vertex sets Au = {a′1, . . . , a′n} and Bu = {b′1, . . . , b′Tκn} is constructed from the multi-set Su in a
similar fashion, but at the end, the vertices of Au are permuted using a random permutation. So,

• Gu[Au] is a clique with n vertices.

• Gu[Bu] is a copy of the graph Gp(Vp, Ep) on Tκn vertices as stated in Lemma 4.3, with
parameters s = 5, κ = β2−β1

8 and Tκ = Cκ,5.

18



• Let us first pick a random permutation π on [n]. For the cross edges between the vertices in
Au and Bu, we add the edge (a′π(i), bj) to E(Gu) if and only if the j-th coordinate of ui is 1 for
all i ∈ [n] and j ∈ [Tκn].

Note that our final objective is to prove a lower bound on the query complexity for tolerant testing
of GI, that is, when we have an adjacency query access to Gu. We will instead show that the lower
bound holds even if we have the following query access, named as Au-neighborhood-query : the tester
can choose a vertex a′i ∈ Au and in one go obtain the information about the entire neighborhood of
a′i in Bu.

Observe that the only part of Gu that is not known to the tester is the cross edges between Au
and Bu. So, in this case, the Au-neighborhood query is way more stronger than the standard queries
to Gu, and a lower bound for the Au-neighborhood query would imply a lower bound on adjacency
query.

Simulating Queries to Gu using samples drawn from Su without replacement

Following the above discussion, we will only have to show how to simulate Au-neighborhood
queries using samples drawn from Su without replacement. So, we can assume that the queries are
of the form: what are the neighbors of a′i in Bu? And since in each query the entire neighborhood of
a′i is obtained, the tester would pick different a′i for every query. Note that in Gu, by construction,
the vertices of Au were permuted using a random permutation. So, from the point of view of the
tester, the a′i are just randomly drawn from Au minus the set of a′i already queried. In other word,
the a′i are just randomly drawn from Au without replacement. Now because of the way the edges
between Au and Bu are constructed, the neighborhood of a random a′i drawn from Au without
replacement is same as obtaining random samples from Su without replacement.

It is also important to note that because of the randomness, the queries made by the tester are
actually non-adaptive.

Description of algorithm A for testing EMD(Sk, Su)

Run ALG onGk andGu with parameters γ1 = 2β1 and γ2 = 2β2−2κ. If ALG reports d(Gk, Gu) ≤
Tκγ1n

2, output that EMD(Sk, Su) ≤ Tκβ1n
2. Similarly, if ALG reports that d(Gk, Gu) ≥ Tκγ2n

2,
then output EMD(Sk, Su) ≥ Tκβ2n

2.

Proof of Correctness of the reduction

To prove the correctness of the above reduction, let us first consider the following definition of
Special bijection and its connection with EMD(Sk, Su).

Definition 4.4 (Special bijections). A bijection φ from V (Gk) to V (Gu) is said to be Special if
φ(Ak) = Au, φ(Bk) = Bu and φ(bi) = b′i for all bi ∈ Bk. The set of all special bijections from V (Gk)
to V (Gu) will be denoted by Φ, and dΦ(Gk, Gu) := min

φ∈Φ
dφ(Gk, Gu).

Lemma 4.5. Let Sk, Su be the known and unknown multi-sets, respectively. Then dΦ(Gk, Gu) =
2 · EMD(Sk, Su).

Proof. We will first prove that dΦ(Gk, Gu) ≤ 2 · EMD(Sk, Su).
Recall that Sk = {k1, . . . , kn} and Su = {u1, . . . , un} be the known and unknown multi-sets over

the Hamming cube HTκn = {0, 1}Tκn. Also, note that Gu and Gk are the unknown and known graphs
with vertex bipartitions Au, Bu and Ak, Bk respectively as discussed earlier. Let ψ : Sk → Su be an
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optimal bijection that realizes EMD(Sk, Su). Now, we will construct another bijection ψ′ ∈ Φ such
that dψ′(Gk, Gu) = 2 · EMD(Sk, Su).

We construct the bijection ψ′ ∈ Φ from V (Gk) to V (Gu) as follows: for each i, j ∈ [n], ψ′(ai)
= a′j if and only if ψ(ki) = uj ; for each ` ∈ [Tκn], ψ′(b`) = b′`. From the construction of ψ′ and by
the definition of dψ′(Gk, Gu) (See Definition 1.1), it is clear that dψ′(Gk, Gu) = 2 · EMD(Sk, Su).
Since dΦ(Gk, Gu) = min

φ∈Φ
dφ(Gk, Gu), we can say dΦ(Gk, Gu) ≤ dψ′(Gk, Gu) = 2 · EMD(Sk, Su).

Now we will prove the other way around, that is, we will show that EMD(Sk, Su) ≤ dΦ(Gk,Gu)
2

holds as well. Let ψ ∈ Φ be a bijection from V (Gk)→ V (Gu) that realizes dΦ(Gk, Gu). By definition of
Φ, we can assume that ψ(bi) = b′i for each i ∈ [Tκn]. Now, let us consider a bijection ψ′ from the multi-
set Sk to Su defined as follows: ψ′(ki) = uj if and only if ψ(ai) = a′j for all i, j ∈ [n]. Observe that∑
i∈[n]

dH(ki, ψ
′(ki)) =

dψ(Gk,Gu)
2 . Thus, EMD(Sk, Su) ≤

∑
i∈[n]

dH(ki, ψ
′(ki)) =

dψ(Gk,Gu)
2 = dΦ(Gk,Gu)

2 .

Putting everything together, we have dΦ(Gk, Gu) = 2 · EMD(Sk, Su).

Now, using the following lemma, we will show how dΦ(Gk, Gu) is related to d(Gu, Gk), where Φ
is the set of all Special bijections.

Lemma 4.6. Let Φ be the set of all Special bijections from V (Gk) to V (Gu). Also, let dΦ(Gk, Gu) =
min
φ∈Φ

dφ(Gk, Gu). Then dΦ(Gk, Gu)− 2κTκn
2 ≤ d(Gk, Gu) ≤ dΦ(Gk, Gu). 12

Proof. Note that d(Gk, Gu) ≤ dΦ(Gk, Gu) follows from their definitions.
For the proof of the other side of the inequality, let us consider a bijection ψ : V (Gk)→ V (Gu)

that realizes d(Gk, Gu), that is, d(Gk, Gu) = dψ(Gk, Gu). If ψ is a bijection such that ψ ∈ Φ, then
dΦ(Gk, Gu) − 2κTκn

2 ≤ d(Gk, Gu) holds. So, let us assume that ψ /∈ Φ. Then we will show
that there exists a bijection φ ∈ Φ such that dφ(Gk, Gu) ≤ dψ(Gk, Gu) + 2κTκn

2, which will imply
dΦ(Gk, Gu) ≤ dψ(Gk, Gu) + 2κTκn

2, that is, dΦ(Gk, Gu)− 2κTκn
2 ≤ d(Gk, Gu).

We will now present the construction of φ ∈ Φ from ψ. Let us first partition the vertices of Bk,
with respect to ψ, into three parts: Bk = BBI tBBN tBA; for each bi ∈ BBI , ψ(bi) = b′i; for each
bi ∈ BBN , ψ(bi) ∈ Bu but ψ(bi) 6= b′i; for each bi ∈ BA, ψ(bi) ∈ Au. Also, we partition the vertices of
Ak into two parts: Ak = AA tAB ; for each ai ∈ AA, ψ(ai) ∈ Au; for each ai ∈ AB , ψ(ai) ∈ Bu. Let
|BA| = |AB| = x and |BBN | = y, where 0 ≤ x ≤ n and 0 ≤ x + y ≤ Tκn. Now, we will construct
the bijection φ ∈ Φ (from ψ) by performing the following three steps in that order. Note that the
construction of φ is not a part of our reduction. This is used for analysis purpose only.

Step (i) φ(u) = ψ(u) for all vertices u ∈ BBI ∪AA.

Step (ii) For each ai ∈ AB, φ(ai) ∈ Au \ ψ(AA). Also, for each bi ∈ BA, φ(bi) = b′i ∈ Bu \ ψ(BBI).

Step (iii) For each bi ∈ BBN , φ(bi) = b′i.

Observe that φ(Ak) = Au, φ(Bk) = Bu and φ(bi) = b′i for all bi ∈ Bk, that is, φ is a Special
bijection. It remains to show that

dΦ(Gk, Gu) ≤ dψ(Gk, Gu) + 2κTκn
2. (1)

Recall that the graphs Gk[Bk] and Gu[Bu] are the same copies of Gp(Vp, Ep), where |Vp| = Tκn.
Observe that

12Note that this relation does not hold in general. However this is true for the graphs Gk and Gu constructed in the
reduction.
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• From Lemma 4.3, the graphs Gk[Bk] and Gu[Bu] satisfy the following property13: cardinality
of symmetric difference between the sets of neighbors of any two distinct vertices is at least
5n− 2.

• Since Gk[Ak] and Gu[Au] are cliques, the degree of each vertex in graphs Gk[Ak] and Gu[Au] is
exactly n− 1.

To prove dΦ(Gk, Gu) ≤ dψ(Gk, Gu) + 2κTκn
2, it will be sufficient to show that

dφ(Gu, Gk) ≤ dψ(Gu, Gk) + 4x(|Ak|+ 1) + 2xy + x(x− 1) + 2y |Ak| − y(5n− 2). (2)

From Equation 2, we will be done with the proof of Inequality 1 as

dφ(Gu, Gk) ≤ dψ(Gu, Gk) + 4x |Ak|+ 4x+ 2xy + x(x− 1) + 2y |Ak| − y(5n− 2)

= dψ(Gk, Gu) + 4xn+ 4x+ 2xy + n(n− 1) + 2ny − y(5n− 2)

≤ dψ(Gk, Gu) + 4n2 + 4n+ 2ny + n2 + 2ny − y(5n− 2)

≤ dψ(Gk, Gu) + 8n2

≤ dψ(Gk, Gu) + 2κTκn
2.

The last but one inequality follows from the fact that 0 ≤ x ≤ n and the last inequality follows from
the fact that Tκ = d 30

κ(2−κ)e.
Now we present the proof of Inequality 2.

Proof of Inequality (2). Here we prove that

dφ(Gu, Gk) ≤ dψ(Gu, Gk) + 4x(|Ak|+ 1) + 2xy + x(x− 1) + 2y |Ay| − y(5n− 2). (3)

Instead of directly proving the above inequality, we will prove it in four steps for better exposition.
In Step 1, we prove the inequality for x = 1, y = 0. Then we generalize it for x ≤ n, y = 0, followed
by x = 0, y ≤ Tκn. Finally, combining Steps 1, 2 and 3, we prove the inequality for any 0 ≤ x ≤ n,
and 0 ≤ y ≤ Tκn.

Step 1 (x = 1, y = 0): So, let us assume that ai ∈ Ak, a′j ∈ Au, bs ∈ Bk and b′s ∈ Bu be such that
the following holds: ψ(ai) = b′s and ψ(bs) = a′j , ψ(z) ∈ Au for each z ∈ Ak \{ai}, and φ(bt) = b′t ∈ Bu
for each bt ∈ Bk \ {bs}. By the description of Steps (i), (ii) and (iii) of generating φ from ψ, as
discussed in Lemma 4.6, we have the following observation.

Observation 4.7. For x = 1 and y = 0, we have ψ(ai) = b′s and ψ(bs) = a′j ; φ(ai) = a′j and
φ(bs) = b′s; For any z ∈ (Ak ∪Bk) \ {ai, bs}, φ(z) = ψ(z).

We can think of φ is generated by performing a swap operation, that means, the mappings of
ai and bs are swapped while generating φ from ψ. Now we show (for the special case of x = 1 and
y = 0) that:

dφ(Gk, Gu) ≤ dψ(Gk, Gu) + 4(|Ak|+ 1). (4)

By Observation 4.7, φ(x) = ψ(x) for all vertices x ∈ (Ak ∪Bk) \ {ai, bs}. So, any pair of vertices
in (Ak ∪ Bk) \ {ai, bs} has no effect on dφ(Gu, Gk) − dψ(Gu, Gk). Following Definition 1.1 and
Definition 2.2, we can say that

dφ(Gu, Gk)− dψ(Gu, Gk) ≤ 2
(
|Deciderφ(ai)| − |Deciderψ(ai)|

+ |Deciderφ(bs)| − |Deciderψ(bs)|
)

13Note that we are using Lemma 4.3 with parameters s = 5, κ = β2−β1
8

and Tκ = Cκ,5.
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Note that the first term above can be written as Deciderφ(ai) = (Deciderφ(ai) ∩ (Ak ∪ {bs})) ∪
(Deciderφ(ai) ∩ (Bk \ {bs})). Breaking other terms in the above expression similarly, we have

dφ(Gu, Gk)− dψ(Gu, Gk)

≤ 2
[
2
(
|Ak|+ 1

)
+ |Deciderφ(ai) ∩ (Bk \ {bs})| − |Deciderψ(ai) ∩ (Bk \ {bs})|

+ |Deciderφ(bs) ∩ (Bk \ {bs})| − |Deciderψ(bs) ∩ (Bk \ {bs})|
]

= 4 |Ak|+ 4 + 2Z,where
Z = |Deciderφ(ai) ∩ (Bk \ {bs})| − |Deciderψ(ai) ∩ (Bk \ {bs})|

+ |Deciderφ(bs) ∩ (Bk \ {bs})| − |Deciderψ(bs) ∩ (Bk \ {bs})|

By showing Z ≤ 0, we will be done with the proof of Inequality (4). Observe that we can say
|Deciderφ(ai) ∩ (Bk \ {bs})| =

∣∣φ (NBk\{bs}(ai)
)

∆NBu\{b′s}(φ(ai))
∣∣. Also, writing the other terms

in the expression of Z in the similar fashion, we get

Z ≤
∣∣φ(NBk\{bs}(ai))∆

(
NBu\{b′s}(φ(ai))

)∣∣− ∣∣ψ (NBk\{bs}(ai)
)

∆
(
NBu\{b′s}(ψ(ai))

)∣∣
+
∣∣φ (NBk\{bs}(bs)

)
∆
(
NBu\{b′s}(φ(bs))

)∣∣− ∣∣ψ (NBk\{bs}(bs)
)

∆
(
NBu\{b′s}(ψ(bs))

)∣∣
Once again, from Observation 4.7,

φ(NBk\{bs}(ai)) = ψ(NBk\{bs}(ai)) (Say I1)

NBu\{b′s}(φ(ai)) = NBu\{b′s}(ψ(bs)) (Say I2)

φ(NBk\{bs}(bs)) = φ
(
NBk\{bs}(bs)

)
(Say I3)

NBu\{b′s}(ψ(ai)) = NBu\{b′s}(φ(bs)) (Say I4)

From our above derivation, |I3∆I4| = |Deciderφ(bs) ∩ (Bk \ {bs})|. Also, as y = 0, we have

|Deciderφ(bs) ∩ (Bk \ {bs})| = 0.

So, to prove Z ≤ 0, it is enough to show Z ≤ 2 |I3∆T4|. Note that

Z ≤ |I1∆I2| − |I1∆I4|+ |I3∆I4| − |I3∆I2| .

By using triangle inequality, Z can be upper bounded as follows:

Z ≤ |I2∆I4|) + |I3∆I4| − |I3∆I2| ≤ |I3∆I4|+ |I3∆I4| = 2 |I3∆I4| = 0.

Step 2 (x ≤ n, y = 0): Let us consider AB ⊆ Ak and BA ⊆ Bk such that ψ(ai) ∈ Bu for each
ai ∈ AB, ψ(bs) ∈ Au for each bs ∈ BA, ψ(ai) ∈ Au for each ai ∈ Ak \ AB, and ψ(bs) ∈ Bu for each
bs ∈ Bk \BA. Now let us consider swapping (described below) the mapping of ai ∈ AB and bs ∈ BA
such that ψ(ai) = bs. Let a′j ∈ Au be such that ψ(bs) = a′j . Let us construct φx−1 : V (Gk)→ V (Gk)
from φx = ψ such that the followings hold: φx−1(ai) = a′j , φ1(bs) = b′s, and φx−1(z) = ψ(z) for each
z ∈ (Ak ∪Bk) \ {ai, bs}. Proceeding in the similar fashion as in the case when x = 1 and y = 0, we
get

dφx−1(Gu, Gk)− dψ(Gu, Gk) ≤ 4 |Ak|+ 4 + 2 |I3∆I4| ,

where |I3∆I4| = |Deciderφ(bs) ∩ (Bk \ {bs})| ≤ x− 1. So,

dφx−1(Gu, Gk) ≤ dψ(Gu, Gk) + 4 |Ak|+ 4 + 2(x− 1).

We can proceed in the similar fashion by performing swapping operation of the vertices in AB
and Yk one by one, and construct φx = ψ, φx−1, φx−2, . . . , φ0 = φ. Observe that dφi−1

(Gu, Gk) ≤
dφi(Gu, Gk) + 4 |Ak|+ 4 + 2(i− 1). Also, note that φ is a Special bijection, and moreover

dφ(Gu, Gk) ≤ 4x |Ak|+ 4x+ x(x− 1).
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Step 3 (x = 0, y ≤ Tκn): Let us consider BBN ⊆ Bk such that |BBN | = y. Note that for each
bs ∈ BBN , ψ(bs) 6= b′s. Consider bs ∈ BBN such that ψ(bs) = b′i, and let bj be such that ψ(bj) = b′s.
Let us construct φy−1 : V (Gu)→ V (Gk) from φy = ψ as follows: φy−1(bs) = b′s, φy−1(bj) = b′i, and
φy−1(z) = ψ(z) for each z ∈ (Ak ∪Bk) \ {bs, bj}. Thus,

dφy−1(Gu, Gk) ≤ dφy(Gu, Gk) + 2 |Ak| − (5n− 2)

The term 2 |Ak| corresponds to the fact that any vertex of BBN has at most |Ak| many neighbors
in Ak. The second term comes due to the properties of the probabilistic construction of Bk and Bu
following Lemma 4.3.

Step 4 (x ≤ n, y ≤ Tκn): Let us assume ψ(ai) = b′s. Now there are two possibilities:

(1) ψ(bs) = a′j .

(2) ψ(bs) = b′t.

For (1), following the discussion of x ≤ n, y = 0, we can say that

dφx−1,y ≤ dψ(Gu, Gk) + 4(|Ak|+ 1) + 2(x+ y − 1).

For (2), we follow the discussion of x = 0, y ≤ Tκn, and the following holds:

dφx,y−1(Gu, Gk) ≤ dψ(Gu, Gk) + 2 |Ak| − (5n− 2).

Putting everything together, we have

dφ(Gu, Gk) ≤ dψ(Gu, Gk) + 4x(|Ak|+ 1) + 2xy + x(x− 1) + 2y |Ay| − y(5n− 2).

The following lemma completes the proof of Lemma 4.2.

Lemma 4.8. The described algorithm A for EMD, that uses Algorithm ALG on Gk and Gu with pa-
rameters γ1 and γ2 as a subroutine, determines whether EMD(Sk, Su) ≤ β1Tκn

2 or EMD(Sk, Su) ≥
β2Tκn

2 with probability at least 2/3, where γ1 = 2β1, γ2 = 2β2 − 2κ.

Proof. By the assumption of the existence of algorithm ALG that decides whether d(Gk, Gu)
≤ Tκγ1n

2 or d(Gk, Gu) ≥ Tκγ2n
2, we will be done with the proof by showing the followings.

(i) If EMD(Sk, Su) ≤ Tκβ1n
2, then d(Gk, Gu) ≤ Tκγ1n

2,

(ii) If EMD(Sk, Su) ≥ Tκβ2n
2, then d(Gk, Gu) ≥ Tκγ2n

2.

We will first prove (i). From Lemma 4.5, we have dΦ(Gk, Gu) = 2 · EMD(Sk, Su), where Φ
is the set of all Special bijections from V (Gk) to V (Gu). So, EMD(Sk, Su) ≤ Tκβ1n

2 implies
dΦ(Gk, Gu) ≤ 2Tκβ1n

2 = Tκγ1n
2. Now, following the definition of Special bijections (Definition 4.4)

and Lemma 4.6, we can say that d(Gk, Gu) ≤ dΦ(Gk, Gu) ≤ Tκγ1n
2.

Now, for the proof of (ii), considering the fact that dΦ(Gk, Gu) = 2 · EMD(Sk, Su) as above, we
can say that EMD(Sk, Su) ≥ Tκβ2n

2 implies dΦ(Gk, Gu) ≥ 2Tκβ2n
2. From Lemma 4.6, it follows

that dΦ(Gk, Gu)− 2κTκn
2 ≤ d(Gk, Gu). Thus, d(Gk, Gu) ≥ Tκ(2β2 − 2κ)n2 = Tκγ2n

2.
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5 Tolerant EMD testing is as hard as tolerant GI

In this section, we prove the following theorem, that discusses about algorithm for tolerant graph
isomorphism testing with a blackbox access to tolerant EMD testing over multi-sets.

Theorem 5.1. (Restatement of the upper bound part of Theorem 1.4) Let Gk and Gu be the known
and unknown graphs, respectively. There exists an algorithm that takes parameters γ1 and γ2 as input
such that 0 ≤ γ1 < γ2 ≤ 1, performs Õ

(
QWoREMD(n)

)
many queries to the adjacency matrix of

Gu for appropriate β1 and β2 depending on γ1 and γ2, and decides whether d(Gu, Gk) ≤ γ1n
2 or

d(Gu, Gk) ≥ γ2n
2, with probability at least 2/3. Here Õ(·) hides a polynomial factor in 1

β2−β1
and

log n.

Remark 5. The theorem stated above works for any γ1, γ2 such that 0 ≤ γ1 < γ2 ≤ 1. However, for
simplicity of representation, we have assumed γ2 ≥ 11γ1.

Remark 6. Note that Theorem 5.1 can also be stated in terms of QWREMD(n) as QWoREMD(n)
≤ QWREMD(n) as we can simulate sampleswith replacement when we have query access to samples
without replacement (See Proposition 2.8).

Our algorithm for tolerant GI testing, as stated in Theorem 5.1, uses a special kind of tolerant
EMD tester over multi-sets: we know t many multi-sets, one multi-set is unknown and two parameters
ε1 and ε2 are given; the objective is to test tolerant EMD of each known multi-set with the unknown
one. The following theorem gives us the special EMD tester.

Theorem 5.2. Let H = {0, 1}n be a n-dimensional Hamming cube. Let {Sik : i ∈ [t]} ∪ {Su}
denote the multi-sets with n elements from H where {Sik : i ∈ [t]} denote the set of t many known
multi-sets and Su denotes the unknown multi-set. There exists an algorithm AlG-EMD that takes
two proximity parameters ε1, ε2 with 0 ≤ ε1 < ε2 ≤ 1 and a δ ∈ (0, 1) as input and decides whether
EMD(Su, S

i
k) ≤ ε1n

2 or EMD(Su, S
i
k) ≥ ε2n

2, with probability at least 1 − δ, for each i ∈ [t].
Moreover, AlG-EMD uses QWoREMD(n) · O

(
log t

δ

)
many samples without replacement from

Su.

The above theorem follows from the definition of QWoREMD(n) (See Definition 1.3) along with
union bound and standard argument for amplifying the success probability.

Remark 7. The algorithm of Theorem 5.1, to be discussed in Section 5.1, formulates a tolerant
EMD instance of multi-sets having n elements in H = {0, 1}d, where d = O (log n/(γ2 − γ1)). But
ALG-EMD is an algorithm for tolerant EMD testing between two multi-sets having n elements
in {0, 1}n. This is not a problem as the query complexity of EMD is an increasing function in
dimension (See Proposition 2.12 in Section 2.3). Moreover, the algorithm in Section 5.1 calls ALG-
EMD with parameters ε1 = (γ1 + γ2−γ1

2000 ), ε2 = γ2/5, t = 2O(log2 n/(γ2−γ1)) and δ is a suitable constant
depending upon γ1 and γ2, where γ1 and γ2 are parameters as stated in Theorem 5.1. So, each call
to ALG-EMD, in our context, makes Õ

(
QWoREMD(n)

)
many queries.

5.1 Algorithm for tolerant GI testing

For our algorithm, we need the following definitions of label and embedding.

Definition 5.3. (Label of a vertex) Given a graph G and C ⊂ V (G) = {c1, . . . c|C|}, the C-labelling
of V (G) is a function LC : V (G)→ {0, 1}|C| such that the i-th entry of LC(v) is 1 if and only if v is
a neighbor of ci ∈ C. Also, LC(v) is referred as the label of v under C-labelling of V (G).
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Definition 5.4. (Embedding of a Vertex Set into another Vertex Set) Let Gu and Gk be two graphs.
Consider A ⊆ V (Gu) and B ⊆ V (Gk) such that |A| ≤ |B|. An injective mapping η from A to B is
referred as an embedding of A into B.

Now we present our query algorithm TolerantGI(Gu, Gk, γ1, γ2) that comprises three phases.
he technical overview of the algorithm is already presented in Section 3.2

Formal Description of TolerantGI(Gu, Gk, γ1, γ2):

The three phases of our algorithm are as follows:

5.1.1 Phase 1

The first phase of our algorithm consists of the following three steps.

Step 1 First we sample a collection Cu of O (log n) sized random subsets of V (Gu) with |Cu| =

O( 1
γ2−γ1

). We perform Step 2 and Step 3 for each Cu ∈ Cu.

Step 2 We determine all possible embeddings, that is, η1, . . . , ηJ , of Cu into V (Gk), where J =(
n

O(logn)

)
≤ 2O(log2 n). For each i ∈ [J ], let Cik be the set of images of Cu under the i-th

embedding of Cu into V (Gk), that is, Cik = ηi(Cu). For all i ∈ [J ], we construct the multi-set
YCik

that contains Cik-labellings of all the vertices of Gk.

Step 3 Now for each vertex v ∈ V (Gu), there is a Cu-labelling of v. Let XCu be the multi-set of
Cu-labellings of all the vertices in V (Gu). However, XCu is unknown to the algorithm. We call
ALG-EMD (as stated in Theorem 5.2) by setting parameters as described in Remark 7 to
decide whether EMD(XCu , YCik

) ≤ (γ1 + γ2−γ1

2000 )n |Cu| or EMD(XCu , YCik
) ≥ γ2n |Cu| /5, for

each i ∈ [J ]. Let us pair up Cu’s and their accepted embeddings into Gk and call the set Γ,
that is,

Γ =

{
(Cu, ηi) |ALG-EMD decides EMD(XCu , YCik

) ≤ (γ1 +
γ2 − γ1

2000
)n |Cu|

}
.

Note that, at the end of the Phase 1, we have Γ with |Γ| ≤ |Cu| · 2O(log2 n) = O
(

2(log2 n)
)
. By

the description of Step 3 above, Phase 1 of our algorithm calls ALG-EMD O(|Cu|) times, once for
each Cu ∈ Cu. So, setting δ = 1

9|Γ| in Theorem 5.2, we obtain the following observation about Γ that
will be used to prove the soundness of our algorithm.

Observation 5.5. Consider Γ, the set of accepted embeddings that have passed Phase 1 paired
with corresponding Cu, as defined above. Then

P
(
∀ (Cu, ηi) ∈ Γ, EMD(XCu , YCik

) ≤ γ2n |Cu| /5
)
≥ 8

9
.

5.1.2 Phase 2

In the second phase, the algorithm performs the following two steps.

Step 1 We sample a subset W of O(log2 n/(γ2 − γ1)3) vertices randomly from Gu.

Step 2 For each (Cu, ηi) ∈ Γ that has passed Phase 1, we perform the following steps:
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(i) We find the Cik = ηi(Cu)-labelling of the vertices of Gk. Let l1, . . . , lt be the labels of the
vertices where t = 2|Cik| and Vj ⊆ V (Gk) be the set of vertices with label lj .

(ii) We define a matrix M of size |W | × 2|Cik| where each row represents the label of a vertex
w ∈ W and each column represents one of the possible Cik-labelling of V (Gk)

14. The
(i, j)-th entry of M is defined as: Mij = dH(LCu(wi), lj).

(iii) We choose a function ψ : W → {l1, . . . lt} randomly satisfying

∑
w∈W

dH(LCu(w), ψ(w)) ≤ 2γ2

5
|Cu| |W | and |{w : ψ(w) = lj}| ≤ |Vj | ∀ j ∈ [t]. (5)

Let ΓW be the set of tuples such that

ΓW = {(Cu, ηi, ψ) : (Cu, ηi) ∈ Γ and ψ satisfies Equation (5)} .

Like Observation 5.5, the following observation about the set ΓW will be used to prove the
soundness of our algorithm.

Observation 5.6. |ΓW | ≤ |Γ| ≤ 2O(log2 n). Moreover, any (Cu, ηi, ψ) that has passed this phase
satisfies Equation (5).

5.1.3 Phase 3

The third phase of our algorithm comprises the following four steps.

Step 1 We randomly pair up the vertices of W . Let {(a1, b1), . . . , (ap, bp)} be the pairs of the
vertices, where p = O(log2 n/(γ2 − γ1)3). We now determine which (ai, bi) pairs form edges in
Gu by querying the corresponding entries of the adjacency matrix of Gu.

Step 2 For each (Cu, ηi, ψ) ∈ ΓW that has passed Phase 2, we perform Step 3 and Step 4 as
follows.

Step 3 We choose an embedding φ̂ : W → V (Gk) randomly, satisfying φ̂(w) ∈ Vj if and only if
ψ(w) = lj and modulo permutation of the vertices in Vj for all j ∈ [t]. In other words, we map
each w ∈W to a vertex in Gk randomly having ψ(w) = lj as its Cik-labelling in Gk.

Step 4 We find the fraction ζ(Cu, ηi, ψ, φ̂) =
∣∣{(ai, bi) : 1(ai,bi) = 1}

∣∣ /p, where 1(ai,bi) = 1 if exactly
one among (ai, bi) ∈ E(Gu) and (φ̂(ai), φ̂(bi)) ∈ E(Gk) holds.

If ζ(Cu, ηi, ψ, φ̂) ≤ 5γ1 + 3
5(γ2−γ1), then HALT and REPORT that Gu and Gk are γ1-close.

While executing Step 3 and Step 4 for each tuple in ΓW , if we did not HALT, then we HALT
now and REPORT that Gu and Gk are γ2-far.

Observation 5.7. (i) The number of times our algorithm executes Step 2, Step 3 and Step 4
is at most |ΓW | ≤ 2O(log2 n).

(ii) If there exists a (Cu, ηi, ψ) such that ζ(Cu, ηi, ψ, φ̂) ≤ 5γ1 + 3
5(γ2 − γ1), then our algorithm

reports that Gu and Gk are γ1-close. Otherwise, Gu and Gk are reported to be γ2-far.
14Let Cu =

{
x1, . . . , xO(logn/(γ2−γ1))

}
. Note that for each wi ∈ W , LCu(wi) ∈ {0, 1}O(logn/(γ2−γ1)) such that the

j-th coordinate is 1 if and only if wi is a neighbour of xj , where i ∈
[
O(log2 n/(γ2 − γ1)3)

]
and j ∈ [O (logn/(γ2 − γ1))].

Similarly, lj ∈ {0, 1}O(logn/(γ2−γ1)) such that the i-th coordinate of lj is 1 if and only if η(xi) is a neighbour of v ∈ Vj ,
where j ∈

[
2|C

i
k|
]
.
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5.2 Proof of correctness

To prove the correctness of our algorithm, we need to show the following three properties:

Completeness Property If Gu and Gk are γ1-close to isomorphic, then our algorithm reports the
same with probability at least 2/3.

Soundness Property If Gu and Gk are γ2-far from isomorphic, then the algorithm reports the
same with probability at least 2/3.

Query Complexity The query complexity of our algorithm is Õ(n).

5.2.1 Proof of Completeness Property

In order to prove the completeness property as described above, we will first prove some claims.
Finally, combining the claims, we would conclude the completeness property of our algorithm.

We will first prove that there exists a Cu ∈ Cu considered in Step 1 of Phase 1 of the al-
gorithm and a corresponding embedding ηi : Cu → V (Gk) in Step 2 of Phase 1 such that
EMD

(
XCu , YCik

)
≤ (γ1 + γ2−γ1

2000 )n |Cu| holds with probability at least 20/21, where Cik = ηi(Cu).

Claim 5.8. Let φ : V (Gu)→ V (Gk) be a bijection such that dφ(Gu, Gk) ≤ γ1n
2. Then there exists

a Cu ∈ Cu and an embedding ηi : Cu → V (Gk) such that the following hold with probability at least
20/21.

• ∀v ∈ Cu, we have ηi(v) = φ(v), and

• EMD
(
XCu , YCik

)
≤ (γ1 + γ2−γ1

2000 )n |Cu|

Note that Cik = ηi(Cu) and YCik is set of Cik-labelling of V (Gk).15

Proof. Consider a particular Cu ∈ Cu and an embedding ηi : Cu → V (Gk) such that ηi(v) = φ(v) for
all v ∈ Cu. Note that this embedding ηi is considered in Step 2 of Phase 1 of the algorithm. Now
we will show that EMD

(
XCu , YCik

)
≤ (γ1 + γ2−γ1

2000 )n |Cu| holds with probability at least a constant,

to be specified later, that depends upon γ1 and γ2, where Cik = ηi(Cu).
We know that dφ(Gu, Gk) ≤ γ1n

2 and by Definition 2.2, we have∑
x∈V (Gu)

|Deciderφ(x)| ≤ γ1n
2.

Thus,

E

 ∑
x∈V (Gu)

|Deciderφ(x) ∩ Cu|

 ≤ γ1n |Cu| . (6)

From Definition 2.2, we can say that

EMD
(
XCu , YCik

)
= min

f :V (Gu)→V (Gk)

∑
x∈V (Gu)

|Deciderf (x) ∩ Cu|

≤
∑

x∈V (Gu)

|Deciderφ(x) ∩ Cu|

15Cik and YCi
k
are defined in Step 2 of Phase 1.
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Therefore,

E
[
EMD

(
XCu , YCik

)]
≤ E

 ∑
x∈V (Gu)

|Deciderφ(x) ∩ Cu|


≤ γ1n |Cu| (From Equation (6))

Using Markov inequality, we can say that

P
(
EMD

(
XCu , YCik

)
≤ (γ1 +

γ2 − γ1

2000
)n |Cu|

)
≥ 1− γ1

γ1 + γ2−γ1

2000

.

Note that |Cu| = O( 1
γ2−γ1

) and we have been arguing for a particular Cu ∈ Cu. So, taking |Cu|
suitably, we get a Cu and an embedding ηi : Cu → V (Gk) satisfying the properties mentioned in the
statement of this claim with probability at least 20/21.

The above claim discusses about the existence of a Cu ∈ Cu and its embeddings satisfying above
mentioned desired properties. Now we discuss how our algorithm determines all Cu ∈ Cu that satisfy
the properties. Note that Step 3 of Phase 1 of our algorithm calls ALG-EMD. Following the
correctness of ALG-EMD (Theorem 5.2), we determine all embeddings ηi : Cu → V (Gk) such that
EMD

(
XCu , YCik

)
≤ (γ1 + γ2−γ1

2000 )n |Cu| holds with probability at least 20/21. The discussion in this
paragraph is formalized in the following claim.

Claim 5.9. Let Cu ∈ Cu and η1, . . . , ηJ be the all possible embeddings of Cu into V (Gk). Then Step
3 of Phase 1 can determine the set Γ = {(Cu, ηi) |EMD(XCu , YCik

) ≤ (γ1 + γ2−γ1

2000 )n |Cu|} with
probability at least 20/21. Note that Cik = ηi(Cu), XCu is the set of Cu-labelling of V (Gu) and YCik
is set of Cik-labelling of V (Gk).

As we are considering the case that Gu and Gk are γ1-close to being isomorphic, from Claim 5.8, we
can assume that there is an appropriate (Cu, ηi) ∈ Γ such that EMD

(
XCu , YCik

)
≤ (γ1+ γ2−γ1

2000 )n |Cu|.
Now we will prove that there exists a function ψ : W → {l1, . . . , lt} as considered in Step 2 (iii) in
Phase 2 of our algorithm such that Equation (5) holds with probability at least 20/21.

Claim 5.10. Let us assume that φ : V (Gu) → V (Gk) be a bijection such that dφ(Gu, Gk) ≤ γ1n
2

and (Cu, ηi) ∈ Γ where Cu ∈ Cu and ηi : Cu → V (Gk) be an embedding such that

• ∀v ∈ Cu we have ηi(v) = φ(v), and

• EMD
(
XCu , YCik

)
≤ (γ1 + γ2−γ1

2000 )n |Cu| where Cik = ηi(Cu).

Also, let {`1, . . . , `t} be the all possible Cik-labellings of V (Gk), where t =
[
2|Cik|

]
. Then there exists

a mapping ψ : W → {l1, . . . , lt} such that the following hold with probability at least 20/21.

(i)
∑
w∈W

dH(LCu(w), ψ(w)) ≤ 2γ2

5 |Cu| |W |, and

(ii) ∀ j ∈ [t], we have |{w : ψ(w) = lj}| ≤ |Vj |.

Proof. From the conditions given in the statement of the claim, we can say that there exists
f : V (Gu)→ V (Gk) such that f(v) = ηi(v) = φ(v) for all v ∈ Cu and

∑
x∈V (Gu)

|Deciderf (x) ∩ Cu| ≤

(γ1 + γ2−γ1

2000 )n |Cu|
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Since |Deciderf (x) ∩ Cu| = dH(LCu(x),LCik(f(x))), we have

∑
x∈V (Gu)

dH(LCu(x),LCik(f(x))) ≤ (γ1 +
γ2 − γ1

2000
)n |Cu|

Since we are taking the vertices in W uniformly at random from Gu, we can say that

E

[∑
w∈W

dH(LCu(w),LCik(f(w)))

]
≤ (γ1 +

γ2 − γ1

2000
) |Cu| |W |

Using Hoeffding’s inequality, we have

P

(∑
w∈W

dH(LCu(w),LCik(f(w))) ≤ 2γ2

5
|Cu| |W |

)
≥ 1− e−O(|W |)

Now, we define ψ : W → {`1, . . . , `t} such that ψ(w) = LCik(f(w)). In other words, the Cik-
labelling of f(w) is same as the labelling of ψ(w) for each w ∈W . Thus, the ψ defined here satisfies
the Condition (i) of this claim, that is,∑

w∈W
dH(LCu(w), ψ(w)) ≤ 2γ2

5
|Cu| |W | .

Observe that∣∣∣{w ∈W : LCik(f(w)) = lj}
∣∣∣ ≤ ∣∣∣{v ∈ V (Gk) : LCik(v) = lj}

∣∣∣ ≤ |Vj | .
So, by the definition of ψ, |{w ∈W : ψ(w) = lj}| ≤ |Vj |. Hence ψ considered above also satisfies
Condition (ii) of the claim.

Now consider the situation when the algorithm is at Step 1 of Phase 3. If Gu and Gk are
γ1-close, that is, there exists a bijection φ from V (Gu) to V (Gk) such that dφ(Gu, Gk) ≤ γ1n

2, then
there exists Cu ∈ Cu, ηi : Cu → V (Gk), and ψ satisfying the conditions given in Claims 5.8 and 5.10.
However, we do not know φ. If we construct, though inefficiently, a bijection φ′ that is same as φ
with respect to the same Cu ∈ Cu, ηi : Cu → V (Gk) and ψ (conditions given in Claims 5.8 and 5.10),
then the following claim says that the difference between dφ′(Gu, Gk) and dφ(Gu, Gk) is not too large.

Claim 5.11. Let us assume that φ : V (Gu) → V (Gk) be a bijection such that dφ(Gu, Gk) ≤ γ1n
2,

and (Cu, ηi) ∈ Γ where Cu ∈ Cu and ηi : Cu → V (Gk) be an embedding such that

• ∀ v ∈ Cu we have ηi(v) = φ(v), and

• EMD
(
XCu , YCik

)
≤ (γ1 + γ2−γ1

2000 )n |Cu| where Cik = ηi(Cu).

Let {`1, . . . , `t} be the all possible Cik-labellings of the vertices of Gk where t =
[
2|Cik|

]
, and W be

the set of vertices of Gu sampled at random in Step 1 of Phase 2 and ψ : W → {`1, . . . , `t} be the
mapping considered in Step 2 (iii) in Phase 2 such that

•
∑
w∈W

dH(LCu(w), ψ(w)) ≤ 2γ2

5 |Cu| |W |, and

• ∀j ∈ [t], we have |{w : ψ(w) = lj}| ≤ |Vj |.
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Then, with probability at least 18/21, there exists a bijection φ′ : V (Gu)→ V (Gk), with φ′(x) =
φ(x) = ηi(x) for each x ∈ Cu and φ′(w) = φ̂(w) for each w ∈W such that

dφ′(Gu, Gk) ≤ dφ(Gu, Gk) + (4γ1 +
γ2 − γ1

2
)n2.

Proof. We will prove the claim by contradiction. Suppose that

dφ′(Gu, Gk) > dφ(Gu, Gk) + (4γ1 +
γ2 − γ1

2
)n2 (7)

By using Definition 2.2, we write the above equation as∑
x∈V (Gu)

∣∣Deciderφ′(x)
∣∣ > ∑

x∈V (Gu)

|Deciderφ(x)|+ (4γ1 +
γ2 − γ1

2
)n2

So, ∑
x∈V (Gu)

∣∣Deciderφ′(x)∆Deciderφ(x)
∣∣ > (4γ1 +

γ2 − γ1

2
)n2

Let us denote Deciderφ′(x)∆Deciderφ(x) = Symmφφ′(x). Dividing the sum in the left hand side
with respect to the values of

∣∣Deciderφ′(x)∆Deciderφ(x)
∣∣’s, that is, ∣∣Symmφφ′(x)

∣∣’s, we get∑
x∈V (Gu)

|Symmφφ′ (x)|≥ (γ2−γ1)n
1000

∣∣Symmφφ′(x)
∣∣+

∑
x∈V (Gu)

|Symmφφ′ (x)|< (γ2−γ1)n
1000

∣∣Symmφφ′(x)
∣∣ > (4γ1 +

γ2 − γ1

2
)n2

Note that the second sum of the left hand side is at most γ2−γ1

1000 n
2. Therefore,∑

x∈V (Gu):

|Symmφφ′ (x)|≥ (γ2−γ1)n
1000

∣∣Symmφφ′(x)
∣∣ > (4γ1 +

γ2 − γ1

2
)n2 − γ2 − γ1

1000
n2 (8)

Before proceeding further, consider the following observation, which follows from standard
Chernoff bound type argument.

Observation 5.12. If
∣∣Symmφφ′(x)

∣∣ ≥ (γ2−γ1)n
1000 , then

P
(∣∣Symmφφ′(x) ∩ Cu

∣∣ ≥ (1− 1

50
)
∣∣Symmφφ′(x)

∣∣ |Cu|
n

)
≤ e−O(|Cu|).

This implies that the following holds with probability at least 1− ne−O(|Cu|).∑
x∈V (Gu):

|Symmφφ′ (x)|≥ (γ2−γ1)n
1000

∣∣Symmφφ′(x) ∩ Cu
∣∣ ≥ (

1− 1

50

)
|Cu|
n

∑
x∈V (Gu):

|Symmφφ′ (x)|≥ (γ2−γ1)n
1000

∣∣Symmφφ′(x)
∣∣

=
49

50

(
4γ1 +

499(γ2 − γ1)

1000

)
n |Cu| . (∵ By Equation (8))

Hence, with probability at least 1− ne−O(|Cu|), the following event holds.∑
x∈V (Gu)

∣∣Symmφφ′(x) ∩ Cu
∣∣ ≥ 49

50

(
4γ1 +

499(γ2 − γ1)

1000

)
n |Cu| . (9)
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Assuming Equation (9) holds and using the fact that W ⊂ V (Gu) is taken uniformly at random, we
can say that

E

[∑
w∈W

∣∣Symmφφ′(x) ∩ Cu
∣∣] > 49

50
(4γ1 +

499(γ2 − γ1)

1000
) |Cu| |W |

Using Hoeffding’s inequality (See Lemma 2.23), we get

P

(∑
w∈W

∣∣Symmφφ′(w) ∩ Cu)
∣∣ ≤ (3γ1 +

11(γ2 − γ1)

24
) |Cu| |W |

)
≤ e−O(

|Cu|2|W |2

|W ||Cu|2
)

= e−O(|W |)

As the above equation holds in the conditional space that Equation (9) holds, we have

P

(∑
w∈W

∣∣Symmφφ′ ∩ Cu)
∣∣ > (3γ1 +

11(γ2 − γ1)

24
) |Cu| |W |

)
≥ 1− ne−O(|Cu|) − e−O(|W |). (10)

Note that Equation (7) implies Equation (10). However, till now, we have not used any information
given in the statement of Claim 5.11, except that Cu and W are taken uniformly at random. By
using the fact that the sum of label differences of the vertices of W under Cu-labelling and that of ψ
is bounded, we will deduce that

P

(∑
w∈W

∣∣Symmφφ′(w) ∩ Cu
∣∣ ≤ (2γ1 +

9(γ2 − γ1)

20
) |Cu| |W |

)
≥ 1− ne−O(|Cu|) − e−O(|W |). (11)

As Equation (7) implies Equation (10), and Equations (10) and (11) together implies that Equation (7)
does not hold with probability at least 1− 4ne−O(|Cu|)− e−O(|W |). Hence, we are done with the proof
of Claim 5.11 except that we need to show Equation (11).

By the definition of the bijection φ, we have
∑

x∈V (Gu)

|Deciderφ(x)| ≤ γ1n
2. This implies

∑
x∈V (Gu)

|Deciderφ(x)|≥ (γ2−γ1)n
1000

|Deciderφ(x)| ≤ γ1n
2 (12)

To proceed further, we need the following observation, which is a direct application of Chernoff-
Hoeffding bound.

Observation 5.13. (i) If |Deciderφ(x)| ≥ (γ2−γ1)n
1000 , then

P
(
|Deciderφ(x) ∩ Cu| ≥ (1 +

1

50
) |(Deciderφ(x)| |Cu|

n

)
≤ e−O(|Cu|).

(ii) If |Deciderφ(x)| < (γ2−γ1)n
1000 , then P

(
|Deciderφ(x) ∩ Cu| ≥ γ2−γ1

750 |Cu|
)
≤ e−O(|Cu|).

Note that the above observation implies that the following holds with probability at least
1− ne−O(|Cu|).
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∑
x∈V (Gu)

|Deciderφ(x) ∩ Cu|

=
∑

x∈V (Gu):

|Deciderφ(x)|≥ (γ2−γ1)n
1000

|Deciderφ(x) ∩ Cu|+
∑

x∈V (Gu):

|Deciderφ(x)|< (γ2−γ1)n
1000

|Deciderφ(x) ∩ Cu|

≤
(

1 +
1

50

) ∑
x∈V (Gu):

|Deciderφ(x)|≥ (γ2−γ1)n
1000

|Deciderφ(x)| |Cu|
n

+
(γ2 − γ1)n |Cu|

750

≤ 51

50
γ1n |Cu|+

(γ2 − γ1)n |Cu|
750

Note that the last inequality follows from Equation (12). Summarizing the above calculation, we get
that the following event occurs with probability at least 1− ne−O(|Cu|).∑

x∈V (Gu)

|Deciderφ(x) ∩ Cu| ≤
51

50
γ1n |Cu|+

(γ2 − γ1)n |Cu|
750

. (13)

Let us assume Equation (13) holds. Since we are taking the vertices of W uniformly at random from
V (Gu), we have

E

[∑
w∈W

|Deciderφ(w) ∩ Cu|

]
= E

[∑
w∈W

dH(LCu(w),LCik(φ(w))

]

≤ 51

50
γ1 |Cu| |W |+

(γ2 − γ1) |Cu| |W |
750

.

Similarly from Step 2 (iii) of Phase 2, we have

∑
w∈W

∣∣Deciderφ′(w) ∩ Cu
∣∣ =

∑
w∈W

dH(LCu(w),LCik(φ′(w)))

≤ 2γ2

5
|Cu| |W |

Recall that Symmφφ′(x) = Deciderφ′(x)∆Deciderφ(x). Therefore,

E

[∑
w∈W

∣∣Symmφφ′(x) ∩ Cu
∣∣] ≤ E

[∑
w∈W

∣∣Deciderφ′(w) ∩ Cu
∣∣]+

∑
w∈W

|Deciderφ(w) ∩ Cu|

≤ (
764

750
γ1 +

301(γ2 − γ1)

750
) |Cu| |W |

Using Hoeffding’s inequality (see Lemma 2.23), we can say that

P

(∑
w∈W

∣∣Symmφφ′(w) ∩ Cu
∣∣ > (2γ1 +

9(γ2 − γ1)

20
) |Cu| |W |

)
≤ e−O(

|Cu|2|W |2

|W ||Cu|2
)

= e−O(|W |).
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Note that the above equation holds on the conditional space that Equation (13) holds. Hence,

P

(∑
w∈W

∣∣Symmφφ′(w) ∩ Cu
∣∣ ≤ (2γ1 +

9(γ2 − γ1)

20
) |Cu| |W |

)
≥ 1− ne−O(|Cu|) − e−O(|W |).

If we had constructed a bijection φ′ as stated in the above claim, we could easily test by sampling
suitable many random edges from Gu and checking the corresponding edges in Gk. It is important to
note that, it is not possible to construct φ′ efficiently. However, without constructing the bijection
φ′, if we can test for presence of some randomly chosen edges in Gu and their corresponding edges in
Gk, we are done. In order to achieve this, we choose W randomly in Step 1 of Phase 2 and pair
up the vertices of W in Step 1 of Phase 3. Using Step 2 (iii) of Phase 2 and Step 3 of Phase
3, we check if φ̂(w) = φ′(w) for each w ∈W . Note that φ̂ : W → V (Gk) is the map constructed in
Step 3 of Phase 3 and φ′ : V (Gu)→ V (Gk) is the bijection as stated in Claim 5.11. Then we check
the edge mismatches between the paired up vertices of W in Gu and their corresponding mapped
vertices in Gk in Step 4 of Phase 3, which is possible as we have constructed the mappings of the
vertices in W in Step 2 (iii) of Phase 2.

The following claim proves that if Gu and Gk are γ1-close, then ζ(Cu, ηi, ψ, φ̂) ≤ 5γ1 + 3
5(γ2− γ1),

as considered in Step 4 of Phase 3 holds with probability at least 20/21.

Claim 5.14. Let us assume that φ : V (Gu) → V (Gk) be a bijection such that dφ(Gu, Gk) ≤ γ1n
2,

and (Cu, ηi) ∈ Γ where Cu ∈ Cu, and ηi : Cu → V (Gk) be an embedding of Cu such that

• ∀ v ∈ Cu we have ηi(v) = φ(v), and

• EMD
(
XCu , YCik

)
≤ (γ1 + γ2−γ1

2000 )n |Cu| where Cik = ηi(Cu).

Let {`1, . . . , `t} be the all possible Cik-labellings of Gk where t =
[
2|Cik|

]
, W be the set of vertices of

Gu sampled at random in Step 1 of Phase 2, and ψ : W → {`1, . . . , `t} be the mapping considered
in Step 2 (iii) of Phase 2 such that

•
∑
w∈W

dH(LCu(w), ψ(w)) ≤ 2γ2

5 |Cu| |W |, and

• ∀j ∈ [t], we have |{w : ψ(w) = lj}| ≤ |Vj |.

If we take an embedding φ̂ : W → V (Gk) such that φ̂(w) ∈ Vj if and only if ψ(w) = `j, then

ζ(Cu, ηi, ψ, φ̂) ≤ 5γ1 +
3

5
(γ2 − γ1)

holds with probability at least 20/21, where ζ(Cu, ηi, ψ, φ̂) is as defined in Step 3 of Phase 3.

Proof. Recall that W is a subset of V (Gu) taken uniformly at random in Step 1 of Phase 2
and we paired up the vertices of W randomly in Step 1 of Phase 3 respectively. Also, we are
checking the edge mismatches of the paired up vertices of W and their corresponding mapped
vertices in Gk according to the mapping φ̂ : W → V (Gk) in Step 4 of Phase 3 to compute
ζ(Cu, ηi, ψ, φ̂). Considering the conditions given in the statement of this claim and Claim 5.11, one
can think that we are checking the presence of |W |2 many randomly chosen edges in Gu and the
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corresponding edges in Gk according to some bijection φ′ : V (Gu)→ V (Gk), where φ′ is a bijection
with dφ′(Gu, Gk) ≤ (5γ1 + γ2−γ1

2 )n2.

So, E
[
ζ(Cu, ηi, ψ, φ̂)

]
≤ (5γ1 + γ2−γ1

2 ). Now, applying Hoeffding’s inequality (Lemma 2.23) and

taking |W | = C ′ log2 n
(γ2−γ1)3 for suitably large constant C ′, we have

P
(
ζ(Cu, ηi, ψ, φ̂) > 5γ1 +

3

5
(γ2 − γ1)

)
= P

(
ζ(Cu, ηi, ψ, φ̂) |W | >

(
5γ1 +

3

5
(γ2 − γ1)

)
|W |

)
≤ e−O(|W |) ≤ 1

21

Now we are ready to prove the completeness property using Claims 5.8, 5.10, 5.11, 5.14 and
Theorem 5.2.

Lemma 5.15 (Completeness Lemma). If Gu and Gk are γ1-close to isomorphic, then our algorithm
reports the same with probability at least 2/3.

Proof. Observe that from Claim 5.8, we know that, with probability at least 20/21, there exists
a Cu ∈ Cu and an embedding ηi : Cu → V (Gk) such that EMD

(
XCu , YCik

)
≤
(
γ1 + γ2−γ1

2000

)
n |Cu|

where Cik = ηi(Cu). Similarly, from Theorem 5.2, we can say that, with probability at least 20/21, the
algorithm ALG-EMD returns all embeddings ηi such that EMD

(
XCu , YCik

)
≤
(
γ1 + γ2−γ1

2000

)
n |Cu|.

Now from Claim 5.10, we know that, with probability at least 20/21, conditions of Equation (5)
hold. Again, from Claim 5.11, we can say that constructing partial bijection at Step 3 of Phase 3
does not change isomorphism distance by more than (4γ1 + γ2−γ1

2 )n2 with probability at least 18/21.
Finally, from Claim 5.14, we can say that the algorithm will correctly detect the distance at Step 4
of Phase 3 by testing ζ(Cu, ηi, ψ, φ̂) ≤ 5γ1 + 3

5(γ2− γ1) with probability at least 20/21. Thus, using
union bound, we can say that when Gk and Gu are γ1-close to being isomorphic, TolerantGI(Gu,
Gk, γ1, γ2) reports the same with probability at least 2/3.

5.2.2 Proof of Soundness Property

Similarly for the soundness property of our algorithm, let us consider the case when Gu and Gk
are γ2-far from being isomorphic. Then we will show that the algorithm will output the correct
answer with probability at least 2/3.

Recall the definition of the set ΓW with which we started Phase 3 of our algorithm.

ΓW = {(Cu, ηi, ψ) : (Cu, ηi) ∈ Γ such that Equation 5 holds}.

By Observation 5.5, we have

Pr
(
∀ (Cu, ηi, ψ) ∈ ΓW , EMD(XCu , YCik

) ≤ γ2

5
|Cu|n

)
≥ 8

9
. (14)

From now on, we work on the conditional space where EMD(XCu , YCik
) ≤ γ2

5 |Cu|n ∀ (Cu, ηi, ψ)

holds. By Observation 5.7 (i), we know that |ΓW | ≤ 2O(log2 n/(γ2−γ1)). So, the following claim about
any (Cu, ηi, ψ) ∈ ΓW along with union bound over all the elements in ΓW , we will be done with the
proof of soundness property.
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Claim 5.16. Let (Cu, ηi, ψ) ∈ ΓW and φ̂ be the embedding of W into Gk constructed while executing
Step 3 of Phase 3 for (Cu, ηi, ψ). Also, let EMD(XCu , YCik

) ≤ γ2

5 |Cu|n, where C
i
k = ηi(Cu). Then

the following holds with probability at most 2
9|ΓW | :

ζ(Cu, ηi, ψ, φ̂) ≤ 5γ1 +
3

5
(γ2 − γ1).

Proof. Let Φ(Cu, C
i
k) be the class of all bijections such that the following hold for each φ ∈ Φ(Cu, Ck).

• φ(x) = ηi(x) for each x ∈ Cu, and

•
∑

v∈V (Gu)

|Deciderφ(v) ∩ Cu| ≤ γ2

5 n |Cu|.

Consider the following observation, about the bijections in Φ, that we will prove later.

Observation 5.17. Let φ be a bijection in Φ. Then
∑
w∈W

|Deciderφ(w) ∩ Cu| ≤ 2γ2

5 |Cu| |W | holds

with probability at least 1− 1
9|ΓW | .

Our algorithm constructs ψ : W → {`1, . . . , `t} in Step 2 of Phase 2 satisfying

•
∑
w∈W

dH(LCu(w), ψ(w)) ≤ 2γ2

5 |Cu| |W |, and

• ∀j ∈ [t], we have |{w : ψ(w) = lj}| ≤ |Vj |.

Note that
∑
w∈W

dH(LCu(w), ψ(w)) =
∑
w∈W

|Deciderφ(w) ∩ Cu|, where φ is some bijection in

Φ. After getting ψ, we construct a partial bijection φ̂ : W → V (Gk) that satisfies the above
two conditions. So, one can think of W is taken uniformly at random from the set of all W ’s
satisfying

∑
w∈W

|Deciderφ(w) ∩ Cu| ≤ 2γ2

5 |Cu| |W |. Now, from Observation 5.17, we have the

following observation.

Observation 5.18. φ̂ is a random restriction of a random bijection φ ∈ Φ(Cu, Ck) by the set W
with probability at least 1− 1

9|ΓW | .

Proof. Let us consider a φ such that φ|W = φ̂. Let W = {φ̂X = φ|X : X ⊂ V (Gu) and |X| = |W |},
and W ′ ⊆ W is defined as:

W ′ =

{
φ̂X ∈ W :

∑
w∈X
|Deciderφ(w) ∩ Cu| ≤

2γ2

5
|Cu| |W |

}

Observe that φ̂ = φ̂W ∈ W. By Observation 5.17, we know that if we take a set X ⊂ V (Gu) (i.e,
a φ̂X uniformly at random from W), then the probability that φ̂X ∈ W ′, is at least 1− 1

9|ΓW | . So,

|W ′| ≥
(

1− 1
9|ΓW |

)
|W |.

Observe that the partial bijection φ̂, constructed by our algorithm, is same as that of φ̂W , and φ̂
is in W ′. Now, using the fact that |W ′| ≥

(
1− 1

9|ΓW |

)
|W |, the observation follows.

Recall that W is a subset of V (Gu) taken uniformly at random in Step 1 of Phase 2 and we
paired up the vertices of W randomly in Step 1 of Phase 3 respectively. Also, we are checking
the edge mismatches of the paired up vertices of W and their corresponding mapped vertices in
Gk according to the mapping φ̂ : W → V (Gk) in Step 4 of Phase 3 to compute ζ(Cu, ηi, ψ, φ̂).
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Considering the discussion here, one can think of that, we are checking the presence of |W |2 many
randomly chosen edges in Gu and the corresponding edges in Gk according to some bijection φ ∈ Φ.

Note that dφ(Gu, Gk) ≥ γ2n
2. Thus, E

[
ζ(Cu, ηi, ψ, φ̂)

]
≥ γ2|W |. Now we can deduce the

following. 16

P
(
ζ(Cu, ηi, ψ, φ̂) ≤ 5γ1 +

3

5
(γ2 − γ1)

)
= P

(
ζ(Cu, ηi, ψ, φ̂) |W | ≤ (5γ1 +

3

5
(γ2 − γ1)) |W |

)
≤ e−O(|W |)

≤ 1

9 |ΓW |

Note that we were deriving the above bound on P
(
ζ(Cu, ηi, ψ, φ̂) ≤ 5γ1 + 3

5(γ2 − γ1)
)
assuming that

φ̂ is a random restriction of a random φ ∈ Φ. Hence, combining Observation 5.18 with the above
bound on P

(
ζ(Cu, ηi, ψ, φ̂) ≤ 5γ1 + 3

5(γ2 − γ1)
)
(when φ̂ is a random restriction of a random φ ∈ Φ),

we get

P
(
ζ(Cu, ηi, ψ, φ̂) ≤ 5γ1 +

3

5
(γ2 − γ1)

)
≤ 2

9 |ΓW |
.

Proof of Observation 5.17. . Since W is taken uniformly at random,

E

[∑
w∈W

|Deciderφ(w) ∩ Cu|

]
≤ γ2

5
|Cu| |W |

Using Hoeffding’s inequality, we get

P

(∑
w∈W

|Deciderφ(w) ∩ Cu| ≥
2γ2

5
|Cu| |W |

)
≤ e−O(|W |) ≤ 1

9 |ΓW |
.

Now we are ready to prove the soundness property of our algorithm.

Lemma 5.19 (Soundness Lemma). If Gu and Gk are γ2-far from isomorphic, then the algorithm
reports the same with probability at least 2/3.

Proof. From Observation 5.7 (i), we know that |ΓW | is at most 2
C1

log2 n
γ2−γ1 . In Claim 5.16, we are

proving that ζ(Cu, ηi, ψ, φ̂) ≤ 5γ1 + 3
5(γ2−γ1) holds with probability at most 2

9|ΓW | for any particular
(Cu, ηi, ψ) ∈ ΓW with EMD(XCu , YCik

) ≤ γ2

5 |Cu|n. So, by the union bound, the probability that there

exists a (Cu, ηi, ψ) ∈ ΓW with EMD(XCu , YCik
) ≤ γ2

5 |Cu|n such that ζ(Cu, ηi, ψ, φ̂) ≤ 5γ1+ 3
5(γ2−γ1),

is at most 2
9 . Now From Equation 14,

Pr
(
∀ (Cu, ηi, ψ, φ̂) ∈ ΓW , EMD(XCu , YCik

) ≤ γ2

5
|Cu|n

)
≥ 8

9

Putting everything together, the probability that the algorithm reports that Gu and Gk are γ2-far, is
at least 2/3.

16Here we are assuming γ2 ≥ 11γ1.
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Till now we have proved the completeness and soundness property of our algorithm TolerantGI.
We will prove the query complexity property in the next section when we prove the final theorem.

5.3 Proof of Theorem 5.1

Proof of Theorem 5.1. From the Completeness Lemma (Lemma 5.15) and Soundness Lemma (Lemma 5.19),
we can say that our algorithmTolerantGI correctly decides whether d(Gu, Gk) ≤ γ1n

2 or d(Gu, Gk) ≥
γ2n

2 with probability at least 2/3.
Now, we calculate the query complexity of our algorithm. Note that Step 1 and Step 2 of

Phase 1, Step 1 and Step 3 of Phase 2, Step 1, Step 2 and Step 3 of Phase 3, of the algorithm
TolerantGI, do not require any query to the adjacency matrix of Gu. Let CostCu denote the query
complexity corresponding to a particular Cu ∈ Cu. So, the total query complexity of the algorithm
TolerantGI is

∑
Cu∈Cu

CostCu . Observe that

CostCu = Query Complexity of algorithm ALG-EMD + CostCu,W

where CostCu,W denotes the query complexity of Step 1 of Phase 2 corresponding to W and
Cu ∈ Cu.

Note that ALG-EMD is the algorithm corresponding to Theorem 5.2. In Step 3 of Phase 1 of
our algorithm, for each Cu ∈ Cu, we call ALG-EMD with parameters d = O (log n), t = 2O(log2 n),
ε1 =

(
γ1 + γ2−γ1

2000

)
, ε2 = γ2

5 and δ = Θ(1). So, the query complexity of each call, to ALG-EMD from
our algorithm, is Õ

(
min{n, 2d}

)
= Õ(n).

Further note that, from the description Step 1 of Phase 2, COSTCu,W = O
(
log2 n

)
. Since

|Cu| = O
(

1
γ2−γ1

)
, the total query complexity of our algorithm is Õ(n).

6 Communication Complexity Landscape of GI

Let us first recall the model as stated in Section 2.4. Two players Alice and Bob have two graphs
Ga and Gb (on n vertices) respectively. They would like to communicate among themselves to decide
about the following problems:

(1) Non-tolerant Graph Isomorphism: If Ga and Gb are isomorphic or ε-far from isomorphic where
ε ∈ (0, 1] is a proximity parameter.

(2) Tolerant Graph Isomorphism: If Ga and Gb are ε1-close to being isomorphic or ε2-far from
being isomorphic where ε1, ε2 are two proximity parameters such that 0 ≤ ε1 < ε2 ≤ 1.

In the following, we formally prove results regarding the above two problems in deterministic and
randomized settings, as stated in Section 2.4.

6.1 Deterministic Communication Complexity of GI

Theorem 6.1. Deterministic communication complexity of both the tolerant graph isomorphism and
non-tolerant graph isomorphism is Θ(n2).

Proof. Note that the upper bound protocol (with O(n2) bits of communication) is trivial for the
problems. So, we only prove the lower bound of Ω(n2) on the communication complexity of the
problems. Since the non-tolerant graph isomorphism problem is a special case of the tolerant
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graph isomorphism Problem, it is enough to show that the lower bound for the non-tolerant graph
isomorphism Problem.

Note that the non-tolerant graph isomorphism problem is basically checking if the GI-distance
between the graphs of Alice and Bob is less than εn2. We will prove the lower bound using a reduction.
In the work of Ambainis, Gasarch, Srinavasan and Utis [AGSU15], the authors showed that the
Hamming distance problem - where Alice and Bob has two strings of length m and they want to
check if the Hamming distance between the strings is less than A, for a given 1 ≤ A ≤ m− 1 - has
communication complexity Ω(m). We will show that the communication problem of checking if the
two graphs have GI-distance less than A is as hard as testing if the Hamming distance between two
strings is less than A.

Let Alice and Bob have two strings X and Y respectively, with |X| = |Y | =
(
n
2

)
. So, we can

think of X and Y to represent two graph GX and GY respectively on vertex set of size n. Let us
construct two graph Ga and Gb as follows:

• Ga and Gb are two graphs on vertex set of size 100n. Let the vertices be {v1, . . . , v100n}.

• The induced graphs on the first n vertices is GX and GY respectively, That is, Ga and Gb
restricted to vertices {v1, . . . , vn} is GX and GY respectively.

• For all other pairs of vertices (that is, (vi, vj) where at least one of i and j is greater than n),
we flip an unbiased coin. If the coin turns HEAD, we put the edge (vi, vj) in Ga and also in
Gb, and if the the coin turns TAIL, we do not put the edge (vi, vj) in Ga and also not in Gb,

So, Ga and Gb are probabilistic construction of two graphs. Using simple probabilistic method
technique, we will now show that there exists graphs Ga and Gb such that d(Ga, Gb) ≥ dH(X,Y ),
where dH(X,Y ) is the Hamming distance between the strings X and Y . This would conclude the
reduction and the lower bound would follow.

Recall from Definition 2.2, the distance between two graphs under a particular permutation σ on
the vertices of the graph. If Ga and Gb are two graphs and P be a set of pairs of vertices, then we
extend the notation to dσ(Ga, Gb)|P to denote the number of mismatches in entries corresponding to
P of the adjacency matrices of σ(Ga) and Gb. Given a permutation σ of the vertices of a graph, let
the support of σ be defined as the set of vertices moved by the permutation. So the support of σ
acting on the vertex set {v1, . . . , v100n} is the set {vi : σ(vi) 6= vi}.

Note that the permutation σ induces a permutation on the pair of vertices. Let us denote the
permutation to be σP . Let P1 be the set of pairs of vertices where both the vertices are from the set
{v1, . . . , vn}. Let P2 = P\P1, where P is the set of all pairs of vertices.

Let σ be a permutation of the vertices of Ga with support size k. Some useful observations (which
we believe follows easily and need no explanation) are presented as follows:

• The number of elements in P1 that are moved by σP is at most kn.

• The number of elements (vi, vj) ∈ P2 such that at least one of σ(vi) and σ(vj) is not in
{v1, . . . , vn} is at least 99nk.

• There are at least 99nk/3 = 33nk pair of disjoint edges from the set P2 such that the first
element of the pair is mapped to the second element of the pair by σP .

• Now, since the edges in P2 were put uniformly and independently at random, if (vi, vj) and
(σ(vi), σ(vj)) is one such pair (as described in the previous bullet) then probability that
(vi, vj) ∈ E(Ga) iff (vi, vj) ∈ E(Gb) is 1/2. So, we have

P (dσ(Ga, Gb) ≤ kn) ≤
(

33nk

nk

)
1

233nk−nk (15)
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From Equation (15) and using union bound, we can say that

P (∀σ, with support size k , dφ(Ga, Gb)|P ≤ kn) ≤ 1

225nk
(16)

Now note that, since we know that an σ with support size k touches at most kn elements in P1

and P1 corresponds to the indices of the strings X and Y , so from Equation 16, we have that

P (∀σ, with support size k , dφ(Ga, Gb) ≤ dH(X,Y )) ≤ 1

225nk
(17)

By summing up over all possible values of k ∈ [1, 100n], we can say that

P (∀σ, dφ(Ga, Gb) ≤ dH(X,Y )) < 1 (18)

Thus, there exists a pair of graphs Ga and Gb (as constructed earlier) such that for any permutation
of the vertices, the distance increases. So, d(Ga, Gb) ≥ dH(X,Y ). This concludes the proof.

6.2 Randomized Communication Complexity of Non-tolerant GI

Once again we study the non-tolerant graph isomorphism problem. However, unlike above, Alice
and Bob can now determine their messages not only from their inputs and previous messages but
also with the help of a shared random string.

Theorem 6.2. Randomized communication complexity of non-tolerant graph isomorphism is Θ(1)
in shared randomness model.

Proof. Given the graph Ga, Alice will first apply all n! permutations on the vertices of Ga and
keep this collection of permutated graphs in a set XGa . She will then represent each graph of this
collection as a string of O(n2) length with {0, 1} entries. Once she has this collection of permutated
copies of Ga represented as a collection of string over {0, 1}, she defines a lexicographic ordering over
these strings of XGa .

Similarly, Bob also performs the steps mentioned above and obtains a collection of strings YGb of
the permuted copies of his graph Gb ordered in lexicographic manner.

Now, they check whether the first strings of the collection of graphs XGa and YGb are equal or
not. If they are equal, they decide that Ga and Gb are isomorphic. Otherwise, they say that Ga and
Gb are ε far from isomorphic.

Note that equality of two strings can be decided by θ(1) bits of communication in shared
randomness model. For correctness of this protocol, note that if the two graphs Ga and Gb are
isomorphic, the first strings in the lexicographic ordered sets XGa and YGb will be equal. Since we do
not care about the case when the distance is in between 0 and εn2, we can safely say that Ga and Gb
are ε far when the two strings are not equal.

Note that, in the above lemma, we considered the case that the two players Alice and Bob are
using shared random bits. However, if they use private random bits, from the seminal result of
Newman [New91], we can say that the total amount of communication can only be increased by
O(log n) bits.
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7 Conclusion

In this paper, we proved that the query complexity of tolerant GI testing between a known
graph Gk and an unknown graph Gu is the same as (up to polylogarithmic factor) tolerant testing of
EMD between a known multi-set Sk and an unknown multi-set Su when we have samples without
replacement from Su. In Lemma 2.13, we have shown that the sample complexity of testing of EMD
between a known multi-set Sk and an unknown multi-set Su when we have samples with replacement
from Su is Ω( n

logn). Thus the natural open question is

What is the query complexity of tolerant EMD testing when we have samples without
replacement from the unknown multi-set?

As mentioned before, it is interesting to note that our lower bound proof is via a pure reduction
from tolerant graph isomorphism to tolerant testing of EMD of multi-sets over the Hamming cube
using samples without replacement. Using our lower bound technique (and Proposition 2.10), we can
get an alternative proof of Fischer and Matsliah’s lower bound result for testing non-tolerant graph
isomorphism [FM08]. Our upper bound proof is also a pure reduction from tolerant testing of EMD
of multi-sets over the Hamming cube to tolerant graph isomorphism problem. Thus our reductions
also hold for other computational models such as the communication complexity model. So, in the
communication model (that is, when Alice and Bob have graphs Ga and Gb respectively and they
want to estimate the GI-distance between them), the amount of bits of communication is same (up
to a polylogarithmic factors) to the problem of estimating the EMD between two distributions over
Hamming cube, where Alice and Bob have access to one distribution each. The question we would
like to pose is:

What is the randomized communication complexity of testing tolerant
graph isomorphism problem?

Fischer and Matsliah [FM08] studied the non-tolerant version of the graph isomorphism problem
in two scenarios:

(i) one graph is known and the other graph is unknown, and

(ii) both the graphs are unknown.

They resolved the query complexity of (i), whereas Onak and Sun [OS18] resolved (ii). With this
paper, we initiate the study of tolerant graph isomorphism problem in the query and communication
world. So, another natural open question to look for is:

What is the query complexity of tolerant graph isomorphism
when both the graphs are unknown?
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