
Deterministic and Efficient Interactive Coding from

Hard-to-Decode Tree Codes

Zvika Brakerski∗

Weizmann Institute of Science

Yael Tauman Kalai

Microsoft and MIT

Raghuvansh R. Saxena†

Princeton University

Abstract

The field of Interactive Coding studies how an interactive protocol can be made

resilient to channel errors. Even though this field has received abundant attention

since Schulman’s seminal paper (FOCS 92), constructing interactive coding schemes

that are both deterministic and efficient, and at the same time resilient to adversarial

errors (with constant information and error rates), remains an elusive open problem.

An appealing approach towards resolving this problem is to show efficiently

encodable and decodable constructions of a combinatorial object called tree codes

(Schulman, STOC 93). After a lot of effort in this direction, the current state of

the art has deterministic constructions of tree codes that are efficiently encodable but

require a logarithmic (instead of constant) alphabet (Cohen, Haeupler, and Schulman,

STOC 18). However, we still lack (even heuristic) candidate constructions that are

efficiently decodable.

In this work, we show that tree codes that are efficiently encodable, but not

efficiently decodable, also imply deterministic and efficient interactive coding schemes

that are resilient to adversarial errors. Our result immediately implies a deterministic

and efficient interactive coding scheme with a logarithmic alphabet (i.e., 1/ log log rate).

We show this result using a novel implementation of hashing through deterministic tree

codes that is powerful enough to yield interactive coding schemes.

∗Supported by the Binational Science Foundation (Grant No. 2016726), and by the European Union
Horizon 2020 Research and Innovation Program via ERC Project REACT (Grant 756482) and via Project
PROMETHEUS (Grant 780701).
†Part of this work was done while visiting Microsoft Research New England.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 137 (2020)

Contents

1 Introduction 3

1.1 Our Result . 3

1.2 Related Work . 4

1.3 Our Techniques . 5

2 Overview of Our Interactive Coding Scheme 5

2.1 A Blueprint for Interactive Coding Schemes 5

2.2 Our Approach: Tree Code Based Consistency Checks 7

2.2.1 Basic Idea: A Stack of Tree Codes 7

2.2.2 Analyzing the Stack of Tree Codes 8

2.3 Our Outer Layer: An Error-Resilient Protocol in Model LONG 11

2.4 Our Inner Layer: From Model LONG to the Standard Model 13

3 Definitions and Models 14

3.1 Notations and Preliminaries . 14

3.2 Error Correcting Codes and Tree Codes . 16

3.3 Communication Models . 17

3.3.1 The Communication Model STANDARD 17

3.3.2 The Communication Model LONG . 19

3.4 Formal Statement of the Main Theorem . 21

4 Relation Between Model STANDARD and model LONG 22

4.1 Proof of Claim 4.2 . 24

4.1.1 Intuition and Description of Algorithm 2 25

4.1.2 Analyzing Algorithm 2 (Proof of Claim 4.2) 29

5 Our protocols 39

5.1 Informal Overview . 40

5.1.1 The Rewind Mechanism . 40

5.1.2 The Synchronization Mechanism . 43

5.2 Our Protocols . 44

6 Analysis 46

6.1 Notations and Framework . 48

6.2 Proof of Theorem 6.3 . 49

6.2.1 Our Framework . 50

6.2.2 Some Technical Lemmas . 55

6.2.3 Analyzing One i ∈ Starts . 61

6.2.4 Lemmas Concerning latest(·) and D(·) 64

6.2.5 Lemmas Concerning E(·) . 71

1

6.2.6 Lemmas Concerning F(·) . 79

6.2.7 Lemmas Concerning tax0(·) and tax1(·) 79

6.2.8 Lemmas Concerning G(·) and B(·) . 94

6.2.9 Lemmas Concerning extra(·) . 97

6.2.10 Proof of Lemmas 6.17, 6.18, 6.19, and 6.20 100

6.2.11 Finishing the Proof of Theorem 6.4 127

6.3 Proof of Theorem 6.2 . 139

6.3.1 Proof of item 2 of Theorem 6.2 . 163

6.3.2 Proof of Lemma 6.114 . 171

2

1 Introduction

In a sequence of groundbreaking works, Schulman [Sch92, Sch93, Sch96], defined interactive

error-correcting codes. An interactive error correcting code starts with a two party

communication protocol that is built to work over the noiseless channel, and compiles it

to a noise resilient two-party protocol that is only a constant factor longer than the noiseless

protocol. A protocol is said to be noise-resilient if it works even when a constant fraction of

the symbols communicated during the protocol are adversarially corrupted.

Ever since Schulman’s works, the hunt for deterministic and efficient interactive codes

has remained an elusive open problem. An interactive code is said to be efficient if the

‘next message’ functions of the noise resilient protocol are efficiently (and deterministically)

computable given oracle access to the next message functions of the noiseless protocol.

The main line of attack towards getting deterministic and efficient interactive coding

schemes is to construct efficiently encodable and decodable combinatorial objects known

as tree codes [Sch93]. Essentially, a tree code is an error correcting code with an “online”

encoding function. That is, for all i, the ith symbol computed by the tree code depends only

on the first i symbols of the message it is encoding. The success in this line of attack has

been partial. On the one hand, there has been a lot of progress in the direction of getting

tree codes that are efficiently encodable [Pec06, MS14, CHS18] but on the other hand, the

problem of constructing efficiently decodable tree codes seems to be extremely hard.

1.1 Our Result

We show that efficient interactive codes can be constructed from tree codes that are not

efficiently decodable (but are efficiently encodable). An informal statement of our main

result is below (for a formal statement, see Theorem 3.8).

Theorem 1.1 (Informal). There is an efficient and deterministic transformation from an

efficiently encodable tree-code to an interactive-coding scheme for two party communication

protocols.

Our result makes a fundamental conceptual contribution, showing that efficiently

decoding tree codes is not a bottleneck in the path towards getting deterministic and efficient

interactive coding schemes. Furthermore, by combining it with known results on tree codes,

we obtain interactive coding schemes in regimes where none were known prior to our work.

For example, combining our result with the slightly sub-constant rate tree codes of [CHS18]

yields a new deterministic and efficient interactive coding scheme with slightly super-linear

communication overhead.

Corollary 1.2 (Combining our result with [CHS18]). There exists a deterministic interactive

coding scheme against adversarial noise that takes a two party protocol of length n and obtains

a two party protocol of length O(n log log n) that is resilient to a constant fraction of errors.

3

Additionally, although the parameters of the tree codes that we use are slightly different,

we believe that our techniques can also be combined with those in the work of [MS14] where

the authors show efficiently encodable tree codes based on a conjecture about exponential

sums. This will lead to the first full fledged deterministic and efficient interactive coding

scheme that has a constant communication blowup and is resilient to a constant fraction of

errors based on the same conjecture.

1.2 Related Work

A lot of work has been done in the field of interactive coding in the past few decades, and our

description of the field in the introduction barely scratched the surface. The long line of work

[GMS11, BR11, BK12, BE14, BKN14, GMS14, EGH16, BGMO17, to cite a few] focuses on

building better and better (in various aspects) interactive codes in different regimes. We

only elaborate on a few that are the closest to ours and refer the reader to [Gel17] for an

excellent survey.

Efficient randomized interactive coding schemes. The relaxed problem of

constructing efficient randomized interactive coding schemes has also received a lot of

attention. For our setting of adversarial noise, [BK12], followed by [GH14], construct a hash-

function based interactive coding scheme. Their coding scheme can also be implemented

deterministically in the non-uniform setting, where a non-deterministic “advice” string,

linear in the length of the protocol, is given to the communicating parties and the adversary

[BKN14] (see also [GH14]). For the easier setting of random noise, such schemes have been

known since [Sch92].

Other interactive coding variants. Many other variants of interactive coding have

been studied in the literature, including multi-party interactive coding [RS94, JKL15, HS16,

EKS18, GKR19] and list decodable interactive coding [BE14, GH14]. Non-adversarial error

models were also considered, most notably the binary symmetric channel (BSC) model,

where each bit going over the channel is flipped with some small constant probability

[Sch92, GMS11, GHK+16].

Tree Codes. Efficiently encodable tree codes are known to be constructible

probabilistically with high probability [Sch93, Pec06], or heuristically based on conjectures

on exponential sums [MS14]. Very recently, an explicit construction with constant error rate

and slightly sub-constant (1/ log log(n)) information rate was presented by Cohen, Haeupler

and Schulman [CHS18]. Narayanan and Weidner [NW19] later showed that the tree code

of [CHS18] can be efficiently decoded using a randomized algorithm, but only against sub-

constant error rate. Also related is the construction of tree codes in sub-exponential time by

[Bra12] and the construction of a weaker object called ‘potent tree codes’ in [GMS11].

4

1.3 Our Techniques

It is well known [BK12] that efficient interactive coding schemes are possible given access to

hash functions. In our scheme, we use the same blueprint as [BK12] but we design a novel

way to substitute the randomized hash functions with deterministic tree codes. It turns out

that ensuring that the parties never need to decode the tree code requires the parties to

maintain not one, but several tree codes in a stack and encode different parts of their state

using different tree codes. Matters are further complicated by the fact that the stack needs

to be very small almost all the time so that the communication complexity of our simulation

does not blow up too much.

We then plug this deterministic tree code based hashing mechanism into the consistency

checks of [BK12] to get an interactive coding scheme. In our scheme, instead of sending

hashes of their local state like in [BK12], the parties encode their state using various tree

codes and exchange these encodings with each other. At first sight, this may seem natural

as tree codes, like hash functions, are guaranteed to ‘disagree’ in many coordinates once the

encoded states start becoming different. However, there is a major difference.

Unlike hash functions that are “memoryless” (any invocation of a hash function will

detect an inconsistency with high probability), tree codes are static, deterministic objects. It

is true that they guarantee a large distance on average, but there may be large ‘unprotected’

regions of the tree code where they provide no distance guarantees. A lot of work goes behind

ensuring that the unprotected regions of different tree codes in our stack do not overlap and

we have some protection at all points in our simulation. We next present a detailed overview

of our solution. We believe that our approach may be useful in derandomizing other similar

interactive tasks.

2 Overview of Our Interactive Coding Scheme

We provide a high level overview of our construction and describe the main ideas behind

the proof of security. At a very high level, our construction follows the blueprint of [BK12],

while instantiating the consistency checks using efficiently encodable tree codes instead of

hash functions.

2.1 A Blueprint for Interactive Coding Schemes

In interactive coding, there are two parties, Alice and Bob, that wish to reconstruct the

transcript π of a noiseless protocol while communicating over a noisy channel. This

reconstruction is done gradually, where at each point, the parties maintain a local view

of π that has been reconstructed thus far. The goal of the parties is to make sure that these

(potentially inconsistent) local views eventually converge to the actual transcript π.

In [BK12], the authors present the following two-layer blueprint for efficient interactive

coding schemes:

5

• Inner Layer: The first step in [BK12] is to break the transcript π into logarithmic sized

chunks. In the ‘inner layer’ of the blueprint, the parties simulate each chunk of π separately

using a standard (inefficient) interactive coding scheme. As each chunk is only logarithmic

in length, we can afford to simulate these chunks inefficiently while making sure that the

overall simulation is efficient.

• Outer Layer: In the outer layer, the parties stitch together chunks obtained from the

inner layer to get the actual transcript π. Namely, the parties maintain a local view of

the sequence of chunks that have been simulated so far and in each iteration of the outer

layer, they attempt to extend this sequence by simulating the next chunk. At the end of

each iteration, the parties execute a consistency check to make sure that the chunk they

are adding to their local sequence is consistent with what the other party is adding and

fix inconsistencies (if any).

The consistency check plays two roles. Firstly, the parties check whether they are

‘synchronized’ by exchanging with each other the number of chunks that they have

simulated so far. If the parties are not in sync, i.e., one party has a simulated more

chunks than the other, then the party that has simulated more chunks rewinds one chunk,

and the other party keeps their transcript as is.

Besides the number of chunks, the parties also hash the sequence of chunks that they have

locally and exchange these hashes with each other. These hash values come into play when

the parties are synchronized, and are a means to detect if their local sequences are the

same. If they are, then the parties proceed to simulate the next chunk. Otherwise, both

the parties rewind one chunk.

Analyzing the outer layer. Due to the inner layer, we can assume in our analysis of

the outer layer, that each iteration is either fully corrupted (and thus contains adversarial

content), or not corrupted at all. We need, therefore, to ensure that if at most a constant

fraction of iterations are corrupted then the parties output the correct transcript π.

The analysis of the outer layer is usually done using a potential function, whose goal

is to quantify the intuition that “progress” is made in each iteration of the interactive

coding scheme. Here, “progress” could either mean that the local views of the parties

are now closer to the desired output π, or that some damage done by the adversary

in previous iterations is being undone, or (importantly) that the adversary introduced

new errors. The latter is considered as “progress” since the budget of the adversary is

limited, and the coding scheme benefits from the adversary using up its budget. In order

to get an interactive coding scheme with constant blowup in communication, the prime

principle to keep in mind is that all communication by the parties needs to be “paid for”

by the progress being made. Additionally, if one is interested in constant error rate, then

each error inserted by the adversary is “detected and fixed” after a constant amount of

communication.

6

In [BK12], these two layers are composed to get the final interactive coding scheme. We

emphasize that randomness is only used in the Outer Layer, and in particular in the hashes

inside the consistency checks at the end of each iteration.

2.2 Our Approach: Tree Code Based Consistency Checks

In this work, we replace the randomized consistency checks of [BK12] with a deterministic

tree-code based one. This task is far from trivial. In particular, as we explain below,

the number of bits sent in each of our deterministic consistency checks will not be fixed.

Rather, in our deterministic solution, the length of each consistency check can be arbitrarily

long, depending on the adversarial errors introduced so far. To simplify our description

of our consistency checks, we first assume that the parties are always synchronized. In

Subsection 2.3 we show how to deal with synchronization issues.

2.2.1 Basic Idea: A Stack of Tree Codes

Replacing hash functions with tree codes is a natural approach. The purpose of the hashing

mechanism is to provide a signal for the event that the two local sequences of chunks

disagree. The property of this signal is that once a disagreement occurs, a constant fraction

of the iterations result in the parties receiving an indication of this disagreement (with

overwhelming probability). Observe that a tree code naturally provides such a mechanism,

simply encoding the local view with a tree code does exactly this, since we will still get an

indication of the disagreement in a constant fraction of the iterations, and in order to avoid

the detection of this discrepancy, the adversary needs to keep investing new errors.

A closer look, however, reveals a very significant difference between detection on a large

but fixed subset of the iterations, as offered by tree codes, and detection at every iteration

with large probability, as offered by hash functions. Let us illustrate this using an example.

Suppose that, in some iteration i, the local sequences of chunks of the parties disagree,

and even though iteration i was not corrupted, the parties did not detect this disagreement.

Such failure can happen in the hash setting due to its probabilistic nature, and in the tree

code setting because it only guarantees detection on a large subset of (and not all) iterations.

Further, assume (optimistically) that in iteration i+ 1, the disagreement is detected and the

parties rewind their local state, reaching the same state as they had in iteration i. Now, in

the hash-based solution, we get a second chance to detect the past disagreement, since we

use a fresh hash function. The naive tree-code based solution, however, is doomed to repeat

the mis-detection due to the deterministic nature of the tree code. This allows the adversary

to invest a sufficient amount of errors to place the parties in a vicious loop, and then the

adversary can just sit back and watch the protocol never converging.

Our Approach: Rather than simply rewinding one step and then continuing forward

(which may lead to an infinite loop), our protocol guarantees that the rewinding process

7

removes an actual disagreement. At a high level, this is done by ensuring that the parties

keep rewinding till they find a place where their sequences disagree. Such a rewinding

procedure is implemented using “backwards tree codes”. Namely, as the parties rewind,

they send the sequence of chunks, starting from the last chunk, that they have rewound

encoded using a tree code to each other. The parties will end the rewind stage and continue

going ‘forward’ only after a point of disagreement is found while going backwards.

Unfortunately, this fix is only partial, and the reason again is the deterministic nature

of tree codes. Suppose that the adversary inserts a lot of errors at the beginning to create a

large “unprotected region” (i.e., a region of the tree code lacking good distance). When they

are in an unprotected region, it may take a lot of iterations for the parties to detect that a

disagreement exists in their sequences of chunks. Consequently, when they eventually detect

this disagreement, the parties may have to rewind a lot of chunks in order to reach this point

of disagreement. Once this point of disagreement is reached, the parties start going forward

again.

However, even when going forward a second time, the parties are still in the unprotected

region, and it may take them a lot of iterations to detect any errors that the adversary inserts

now. This slow detection means that the adversary wastes a lot of communication for each

error he inserts, derailing our interactive coding scheme.

We fix this problem by “patching” the unprotected region of the tree code, as follows.

After a disagreement is removed, we add to the original (forward) tree-code, which may be

in an unprotected region, a new forward tree-code. We use this new tree-code to encode

the suffix of the transcript starting from the point of disagreement found by the backward

tree code. This encoding is in addition to the original tree code encoding. As the new tree

code is in a protected region (the first levels of any tree code are protected), the parties will

quickly detect any new errors inserted by the adversary and continue the simulation.

Observe that adding new tree codes each time a point of disagreement is found can result

in the parties having a stack of multiple tree codes. This is because sometimes we will need

to “patch the patch” by adding forward tree codes again and again. We refer to this as “the

stack of tree codes”. As the communication in each iteration will be proportional to the

number of tree codes in the stack, we need to make sure to control the size of the stack so

as to keep it from blowing up the information rate. Besides, there are multiple other issues

that need to be resolved. We address these in the detailed description below.

2.2.2 Analyzing the Stack of Tree Codes

We now cover the remaining issues with our stack of tree codes, and also provide a taste

of our analysis. Recall from Subsection 2.1 that, in order to have a constant blowup in the

communication and a constant error rate, one needs to make sure that the communication

during the rewind and patching phases is proportional to the number of errors inserted by

the adversary.

• The master tree code: The protocol starts as in the basic idea above. The parties

8

maintain locally, a sequence of chunks that they have simulated, and in each consistency

check they send the tree code symbol that stems from encoding this sequence of chunks.

While this is not a complete solution (as we explained), this simple consistency check still

provides the guarantee that as soon as a disagreement arises, the adversary must keep

inserting new errors in order to keep the parties from detecting the disagreement. The

conclusion is that the existence of a discrepancy will eventually be detected, and the time

spent in detecting this disagreement can be charged to the adversary’s budget.

• Backwards tree codes: Recall that once a disagreement is detected the parties start a

backwards tree code to reach the point of disagreement. Can the communication spent in

detecting this disagreement be charged to the adversary’s budget?

Intuitively, it seems that the answer should be yes, since the rewinding should be paid for

by the errors that created and hid the disagreement from the parties. This intuition can

indeed be formalized, except for the following two cases:

– Fake disagreements: Recall that the rewind process is triggered by detecting a

disagreement in the master tree code. However, it is possible that this disagreement

is “fake” in the sense that the parties think there is a disagreement due to adversarial

error, even when there is no disagreement. In this case, the parties will continue to

rewind all the way to the first chunk, since they will never find a point of disagreement,

as none exists.

We get around this issue by having the parties verify the “reason” of entering the

rewind process at each step of the rewind process. Namely, when the parties are

rewinding, then, in the consistency check, they not only exchange the backward tree-

code encodings, but they also exchange the point and value of the master tree code

that caused the rewinding. If at some point these values agree and there is no reason

to go backwards, the parties reverse the backtracking process, one step at a time.

Adding the reasons to the rewind process ensures that the adversary needs to corrupt

the reasons at each step of the rewind process in case of a fake disagreement, thereby,

getting around the above problem.

– Too many disagreements: The other case where the adversary’s budget fails to

pay for the rewinding is in case the adversary inserted a lot of disagreements and it

is infeasible to correct them one at a time1. To understand this case, suppose that

the adversary generated a burst of “ancient” errors resulting in a large unprotected

region, and then inserted another burst of errors inside this unprotected region. As

the region is unprotected, the parties only detect the second burst of errors after a

lot of iterations, when they go back and remove the last disagreement in this burst.

Once they remove this disagreement, the parties start going forward using a patching

tree code. We claim that even if the adversary does not insert any more errors, it

1Note that disagreements can only be corrected one at a time as after reaching the first point of
disagreement, the parties are not even sure whether a second point of disagreement exists or not.

9

will take the parties a lot of iterations to get rid of the second burst of errors. This is

because they will remove these errors one at a time, and may potentially go forward

a lot after any such removal. Indeed, the master tree code does not protect them,

and the patching tree code does not either because it starts after the burst of errors,

and is therefore oblivious to the errors in the burst.

To ensure that error correction happens quickly enough, we “double” the rewind

process (for example, if we detect a disagreement 5 chunks in the past, we will

rewind to remove 10 chunks from the local transcript). On the one hand, this is only

a constant factor, so if there were no ancient errors, then we did not lose too much

from this doubling. On the other hand, if there is an ancient burst of errors, then

due to the doubling of the rewind process, we make progress fast enough towards

correcting all the disagreements in the local view of the parties.

• Patching tree codes: Suppose that a rewind just concluded, and the parties would now

like to start going forward and rebuild their local transcript. Recall that, when the parties

start going forward again, they add a patching tree code to their stack of tree codes that

runs in parallel with the master tree code as they go forward. The purpose of this patching

tree code is to provide extra protection to the parties in case they are in an unprotected

region of the master tree code. With this patching tree code, two encodings are sent in

the consistency check for every new chunk that is added to the local view of the parties.

These encodings are those of the master tree code and the patching tree code respectively.

The encoding of the master tree code corresponds to the all the chunks in the parties’

local view, whereas the encoding of the patching tree code corresponds to the suffix of the

chunks starting from the point where the rewind process ended.

Similar to the analysis of the backwards tree codes, the analysis of the patching tree codes

gets stuck in two cases. Both these cases parallel the analogous cases in the analysis of

the backwards tree codes and we only provide a brief description.

– Fake patches: The first bad case for the analysis is when the adversary makes

the parties add a patching tree code even though they did not reach a point of

disagreement in the rewind phase. This is problematic because when it happens, the

parties erase all of the progress they made in the rewind phase due to just one extra

error inserted by the adversary (namely, the one that caused the patching tree code

to start).

We fix this problem by having a “reason” for the patching tree code that is “verified”

every time a new symbol is sent on the patching tree code. This reason is the location

and the value of the backward tree codes where the disagreement was found. With

this reason, if the adversary wants to create a long fake patching tree code, he needs

to insert errors at every step of this patching tree code in order to fail the verification

done by the parties at every step. This needs a lot of errors that the adversary cannot

afford for too long.

10

– Too many patches: The other bad case occurs when the adversary creates multiple

patches on the same master tree code. Recall that the purpose of a patch is to provide

protection in the unprotected regions of the master tree code. Once the parties are

outside the unprotected region, they must drop the patching tree codes to save on

the communication in the consistency check. Indeed, the communication needed in

the consistency checks increases with the number of tree codes in the stack.

However, the parties do not know where the unprotected regions are, and we need

some other criterion to drop the patching tree codes. One natural candidate is to

drop the patching tree code at the point where the rewind process started, i.e., if the

parties rewound x chunks before going forward again, then the patching tree code will

be dropped after x iterations. This idea, however, does not work, and it is possible

to create a pathological example where the adversary can make the parties waste a

lot of communication in the patching and rewind processes by carefully inserting a

small number of corruptions.

The solution is twofold. Firstly, we double the length of the patching tree codes.

Namely, instead of dropping them after x iterations, the parties drop them after 2x

iterations. On the one hand, it is only a constant factor, and therefore still can be

charged to the adversary’s budget while on the other hand, now the parties will be able

to escape the unprotected region much faster and reach a point where the master tree

code again protects them. Besides doubling the length of the patching tree codes, we

will also need the patching tree codes deeper in the stack to be more secure than the

tree codes higher up in our stack. We do this by adding more and more redundancy

to tree code symbols as we go deeper and deeper in the stack. Specifically, we ensure

that the size of the encoding of a tree code is a small exponential in the position of

the tree code in the stack. This extra redundancy in deeper tree codes allows us to

finish our argument.

In conclusion, our consistency check maintains a stack of tree codes consisting of the

master code, backtracking codes, and patching codes. We use the term forward tree codes

to refer to the master and the patching tree codes together. The number of bits sent in

each consistency check depends on the number of tree codes in the stack. Importantly, the

consistency check only requires efficiently encodable tree codes and does not require any

randomness.

2.3 Our Outer Layer: An Error-Resilient Protocol in Model LONG

Recall that we assumed the parties are always synchronized in Subsection 2.2 when describing

our tree code based consistency checks. We next remove this assumption and show how the

parties can synchronize themselves and finish our Outer Layer.

Recall that synchronization is needed in [BK12] because if the parties are not

synchronized, then they think they are simulating different chunks of the noiseless transcript

11

and the resulting communication is meaningless. For our consistency checks, synchronization

is also needed in order to make sure that tree code encodings exchanged by the parties in the

consistency checks can be compared to each other. Indeed, it only makes sense to compare

two tree code encodings if they come from the same ‘level’ in the tree code, as otherwise,

the distance property is not guaranteed to hold.

In order to make sure that they are synchronized, the parties exchange the following

synchronization information: The total number of chunks (forward and backward) that the

parties have simulated so far, the number of tree codes they have in their stack, the number

of chunks in the parties’ local sequence when each tree code was added to the stack, and

the length of their forward transcript and backward transcript (the length of the backward

transcript is non-zero only if they are in the process of backtracking). This synchronization

information adds only a constant multiplicative overhead to the number of bits sent in the

consistency checks, and therefore blows up the length of our interactive coding scheme by

only a constant factor.

The model LONG. Observe that the number of bits required to encode our synchronization

information and the number of tree code encodings exchanged by the parties depends on the

number of tree codes in the parties’ stack. Correspondingly, the number of bits sent by the

parties in the consistency check in the Outer Layer will vary from iteration to iteration. In

order to capture this neatly, we present our outer layer in an artificial model, called model

LONG. In our Inner Layer, we convert a protocol in model LONG to one in the standard two

party model.

In model LONG, the protocol proceeds in “iterations” of P + 1 rounds, where P is the

time it takes to simulate one chunk of the noiseless transcript. Each iteration consists of P

“standard/short” rounds where parties send each other one symbol per round followed by

one “long” round where the parties may send arbitrarily long messages. The long rounds

correspond to the consistency check in our Outer Layer, where the parties may be sending

a lot of bits based on the number of tree codes currently in their stack. In model LONG,

we consider adversaries that either corrupt an entire iteration, and are charged by the

communication complexity of that iteration, or leave the iteration completely uncorrupted.

This is similar to the adversaries in [BK12], except that for us, the communication complexity

of an iteration is not fixed, and depends on the adversarial error.

Synchronizing Alice and Bob. The presence of a stack of tree codes instead of a single

hash function and fact that the communication complexity of an iteration is not fixed makes

our synchronization procedure more complicated than [BK12]. Firstly, in order to detect

which party is ahead of the other, the parties can no longer rely on the length of their local

sequence of chunks. Indeed, this length is not a good estimate because the parties can go

both forward and backwards in the sequence. Instead, the parties determine who is further

ahead based on the total number of chunks, both forward and backward, simulated so far

and this number is exchanged as a part of the synchronization information.

12

Furthermore, because the communication in each iteration is different, when the parties

detect that they are out of sync (say Alice is ahead of Bob), then instead of Alice going

back one iteration in time, as in [BK12], she needs to go back an amount proportional

to the communication in this iteration. For example, suppose that Alice and Bob detect

a synchronization error in iteration i, when the length of the synchronization information

received by Alice from Bob is b bits. Also suppose that in all the iterations 1 through i Alice

sent a bits of synchronization information to Bob. Then, in iteration i, Alice will need to go

back (roughly) b/a iterations, so that the total amount of communication that she rewound

is around a · b/a = b. Rewinding in this way ensures that the amount of communication it

takes to get back in sync is upper bounded by a constant times the amount of errors invested

by the adversary to make the parties fall out of sync.

Finally, just like [BK12], if the parties are synchronized, then they continue the

consistency check as described in the foregoing section.

2.4 Our Inner Layer: From Model LONG to the Standard Model

In our Inner Layer, we convert a protocol in model LONG to a protocol in the standard model,

with essentially the same error resilience properties (up to constant factors). The fact that

the long messages exchanged after every P rounds in model LONG are arbitrarily long makes

this part quite tedious2. We do this in two steps:

1. First, we convert the protocol in model LONG into another protocol in model LONG,

which has the guarantee that all the long messages are of the same fixed length which

is a constant times P .

2. Then, we convert the protocol obtained in Step 1 above into one in the standard model.

Observe that Step 2 is quite straightforward and is very similar to the Inner Layer of

[BK12] described in Subsection 2.1, and it simply applies a deterministic tree code based

interactive coding scheme to each iteration separately. Since each iteration is only of length

O(P) after Step 1, which is logarithmic in the length of the noiseless transcript, the tree

codes required in this step are computationally efficient.

However, Step 1 is tedious, and is roughly carried out as follows. When a party needs to

send a long message, the party first encodes the message using a standard error correcting

code resilient to insertions and deletions. Then the party breaks this encoded message (which

may be way too long) into blocks, each of length P . The parties will then send these blocks

one at a time, along with some metadata, which includes which block number it is, and

whether it is the last block or not, etc.. This metadata will help the receiving party stitch

the individual blocks together in the right order.

2Dealing with variable message-length in interactive coding was already considered in previous works
[EHK18] (although our case is simpler in some aspects since we do not seek to preserve round complexity).

13

The reason we use error correcting codes resilient to insertion and deletion errors is to

simulate the guarantee in model LONG that says that corrupting any part of the long message

or the P standard rounds before it requires the adversary to spend a number of errors

proportional to the length of the long message. Error correcting codes resilient to insertions

and deletions provide this abstraction (up to constant factors) even if certain blocks are lost

in the transmission and reconstruction.

However, even these error correcting codes do not make sure that corrupting any of the

P standard rounds requires as many corruptions as the length of the long message. To

ensure this, we repeat these P standard rounds before every block in the long message and

only proceed if all these repetitions are consistent with each other, i.e. they yield the same

transcript. If there are blocks where these P rounds are not consistent with each other, we

rewind one block and repeat to (hopefully) get consistency. Ensuring that the repetitions are

mutually consistent in turn ensures that the adversary needs to invest a lot of corruptions

if he wants to corrupt the P standard rounds. In turn, this ensures that our requirements

from the Inner Layer are satisfied.

3 Definitions and Models

3.1 Notations and Preliminaries

Notation. For d > 0, the notation [d] = {1, 2, · · · , d} will denote the set of integers at most

d. The notation [a : b) will denote the set [a, b)∩Z, and (a : b), (a : b], and [a : b] are defined

analogously. For n > 0 and a set S, the set S≤n is defined to be
⋃n
i=0 S

i where Si denotes

the set S × S × · · · × S︸ ︷︷ ︸
i times

. We also define S∗ =
⋃
i≥0 S

i. We use ‖ to denote concatenation.

For a string s = s1s2 · · · sn of length n > 0 and i ∈ [n], we use s≤i to denote the string

s1s2 · · · si. We define s<i, s>i, and s≥i analogously. For i1 < i2 ∈ [n], we use s(i1:i2] or s(i1 : i2]

to denote si1+1si1+2 · · · ii2 and s(i1:i2), s(i1 : i2) etc. are defined analogously. Similarly, for

a function f : X → Y n (for some sets X, Y , and n > 0) and i ∈ [n], we use fi to denote

the function that on input x ∈ X outputs the ith coordinate of f(x), and f≤i to denote the

function that outputs the first i coordinates. We similarly define f<i, f>i, and f≥i. We shall

use A and B to denote Alice and Bob respectively, and if C ∈ {A,B}, then C will denote

the unique element in {A,B} that is not C. For any vector v, we denote by |v| the number

of elements in v.

A distance metric over strings. Let Σ be an alphabet. Consider strings u, v ∈ Σ∗. We

define the function ∆ : Σ∗ × Σ∗ → N as:

∆(u, v) = ||u| − |v||+
∑

i∈[min(|u|,|v|)]

1 (ui 6= vi) .

14

Observe that ∆ reduces to the well known notion of Hamming distance when |u| = |v|. Just

like the Hamming distance, the function ∆ defines a metric.

Lemma 3.1. The function ∆(·, ·) defines a metric over strings.

Proof. Clearly ∆(u, u) = 0 for all strings u and the function ∆ is symmetric. It remains to

show the triangle inequality. Let u, v, w be strings. Define k = min(|u|, |w|). If |v| ≤ k, we

have that:

∆(u,w) = ||u| − |w||+
∑
i∈[k]

1 (ui 6= wi)

= ||u| − |v||+ ||v| − |w|| − 2 · (k − |v|) +
∑
i∈[k]

1 (ui 6= wi) (As |v| ≤ k)

≤ ||u| − |v||+ ||v| − |w||+
∑
i∈[|v|]

1 (ui 6= wi) (As |v| ≤ k)

≤ ∆(u, v) + ∆(v, w).

On the other hand, if |v| > k = min(|u|, |v|, |w|), we have that:

∆(u,w) = ||u| − |w||+
∑
i∈[k]

1 (ui 6= wi)

≤ ||u| − |v||+ ||v| − |w||+
∑
i∈[k]

1 (ui 6= vi) +
∑
i∈[k]

1 (vi 6= wi)

≤ ∆(u, v) + ∆(v, w),

where the last step uses k = min(|u|, |v|, |w|).

Lemma 3.2. Let k, l1, l2 be integers such that k ≤ l1. For strings s1 ∈ Σl1 , s2 ∈ Σl2 , t ∈ Σk,

we have

∆(s1, t)−∆(s1‖s2, t) = −l2.

Proof. Note that

∆(s1, t)−∆(s1‖s2, t) = l1 − k +
∑
i∈[k]

1 (s1,i 6= ti)− (l1 + l2 − k)−
∑
i∈[k]

1 (s1,i 6= ti)

= −l2.

Lemma 3.3. Let k, l1, l2 be integers such that l1 + l2 ≤ k. For strings s1 ∈ Σl1 , s2 ∈ Σl2 , t ∈
Σk, we have

∆(s1‖s2, t) ≤ ∆(s1, t).

Proof. Note that

∆(s1‖s2, t) = k − l1 − l2 +
∑
i∈[l1]

1 (s1,i 6= ti) +
∑
i∈[l2]

1 (s2,i 6= tl1+i)

15

≤ k − l1 +
∑
i∈[l1]

1 (s1,i 6= ti)

= ∆(s1, t).

3.2 Error Correcting Codes and Tree Codes

We will use error correcting codes, and tree codes extensively in this paper, and we recall

these notions in this section.

Error Correcting Codes. We will use the following error correcting codes promised by

[SZ99, GL16]. Recall the function ∆(v, w) defined in Subsection 3.1.

Theorem 3.4. Fix any finite alphabet Σ and any γ ∈ (0, 1/2). There exists an integer

K0 = K0(γ) and functions ECCγ : Σ∗ → Σ∗ and DECCγ : Σ∗ → Σ∗ that can be computed in

time polynomial in the length of their input such that the following holds for all t > 0:

• For all u ∈ Σt, we have ECCγ(u) ∈ ΣK0t. (Rate condition)

• For all u ∈ Σt and all Ẽ ∈ Σ∗, we have ∆(Ẽ,ECCγ(u)) ≤ γK0t =⇒ DECCγ(Ẽ) = u.

(Distance condition)

We mention that the requirement in Theorem 3.4 is strictly weaker than the ‘edit distance’

requirement in the works of [SZ99, GL16] as our metric ∆(·) is larger than edit distance.

This weaker requirement will be sufficient for our needs. Additionally working with ∆(·)
allows us to use Lemma 3.2 which will simplify the presentation of some of our arguments.

Remark 3.5. Let Σ be as in Theorem 3.4. For notational ease, in the rest of this

paper, we denote ECC = ECC 1
3
, DECC = DECC 1

3
, and K0 = K0(1/3). Observe that

we can assume, without loss of generality, for all s ∈ Σ∗ such that |s| ≥ K0, we have
|s|
2
≤ K0 · |DECC(s)| ≤ 2|s|.

Tree Codes. Tree codes, first introduced by Schulman [Sch93], are ‘online’ error correcting

codes that work even when the input is streaming. We use the following version defined

in [BR11].

Definition 3.6 ((α, d, n,Σ)-tree code). Let d, n > 0 be integers and let α > 0 be a parameter.

Let Σ be a finite set. A d-ary tree code of depth n and distance α > 0 over alphabet Σ is

defined by an encoding function TCα,d,n,Σ : [d]≤n → Σ that satisfies the following:

For all integers k ≤ n, if we define, for v = v1v2 · · · vk ∈ [d]k, the function TCα,d,n,Σ(v)

to be TCα,d,n,Σ(v1)‖TCα,d,n,Σ(v1, v2)‖ · · · ‖TCα,d,n,Σ(v1, v2, · · · , vk), then, it holds for all u =

u1 · · ·uk, v = v1 · · · vk ∈ [d]k that

∆(TCα,d,n,Σ(u),TCα,d,n,Σ(v)) ≥ α · (k − |LCP(u, v)|) .

16

In the above definition, LCP(u, v) denotes the longest common prefix of the strings u, v.

Observe that the way TCα,d,n,Σ is defined, it holds that TCα,d,n,Σ(u) and TCα,d,n,Σ(v) are of

length k and agree on the first |LCP(u, v)| coordinates. Thus, the definition implies that at

least a α fraction of the remaining coordinates are different in TCα,d,n,Σ(u) and TCα,d,n,Σ(v).

The following theorem was first proved by [Sch96]:

Theorem 3.7. For every n, d ∈ N, and 0 < α < 1, there exists a (α, d, n, [dO1−α(1)])-tree

code.

3.3 Communication Models

In this section, we define the two communication models that we work with and establish a

connection between these models.

3.3.1 The Communication Model STANDARD

We begin by defining the model STANDARD that captures the ‘standard’ two party setting

with adversarial noise found in the literature. Namely, the protocols in STANDARD have a

fixed, predetermined number of rounds such that in every round, Alice sends a message

to Bob and then, Bob sends a message to Alice (that may depend on the message he just

received). Furthermore, the messages sent by the parties to each other come from a constant

sized alphabet Σ.

Note that the execution of a protocol in model STANDARD takes place in the presence of

adversarial noise. This means that a small number of messages sent by the parties may be

corrupted before they reach the other party. The corruptions are adversarial in the sense

that we only record the total number of messages corrupted, and the protocol should work

regardless of where these corruptions are (as long as they are below the total number of

corruptions allowed).

Next, we formally define the notion of a protocol and an adversary in model STANDARD:

Definition of a protocol. Let T > 0 be an integer and Σ be a finite non-empty set. Let

XA, XB be the set of inputs of Alice and Bob respectively. Similarly, let Y A, Y B be the set

of outputs of Alice and Bob respectively.

A protocol Π with T rounds and alphabet Σ in model STANDARD is defined by a tuple

Π = {fC , gC}C∈{A,B}. Here3, the function fA has type fA : XA × Σ<T → Σ and the

function fB has type fB : XB × Σ≤T → Σ. Also, for C ∈ {A,B}, the function gC has type

gC : XC × Σ≤2T → Y C .

3Note that the difference of ‘<’ vs. ‘≤’ in the definition of fA and fB above is owing to our convention
that Alice speaks first in every round.

17

Definition of an adversary. Using the same notation as above, we define an adversary

A for the protocol Π. The adversary A is defined by a pair of functions (AA,AB) of the

type AA,AB : XA ×XB → ΣT .

Recall that we use AAi to denote ith coordinate of AA and AA≤i to denote the first i

coordinates of AA, etc. We finish this section, by describing how a protocol Π is executed

in the presence of adversary A.

Execution of a protocol. The protocol Π proceeds in T rounds. At the beginning of

the protocol, Alice has an input xA ∈ XA while Bob has an input xB ∈ XB. We maintain

the invariant that before she speaks in round i, Alice can compute AA<i(xA, xB) and before

Bob speaks in round i, he can compute AB≤i(xA, xB). Additionally, we maintain that after

round i, Alice and Bob have transcripts πA, πB ∈ Σ2i respectively. At the beginning of the

protocol, πA = πB = ε, the empty string

In round i ∈ [T], Alice sends the symbol fA(xA,AA<i(xA, xB)) to Bob and Bob receives

the symbol ABi (xA, xB). This is followed by Bob sending the symbol fB(xB,AB≤i(xA, xB)) to

Alice and Alice receiving AAi (xA, xB). Alice appends fA(xA,AA<i(xA, xB)) and AAi (xA, xB)

to πA (in that order) while Bob appends ABi (xA, xB) and fB(xB,AB≤i(xA, xB)) to πB.

Observe how the execution preserves our invariant above. Also, note that if

fA(xA,AA<i(xA, xB)) 6= ABi (xA, xB), then the message from Alice to Bob was corrupted

in round i. Similarly, if fB(xB,AB≤i(xA, xB)) 6= AAi (xA, xB), then the message from Bob to

Alice was corrupted in round i.

After T rounds are over, the parties output gC(xC , πC), where, as usual, C = A for Alice

and C = B for Bob.

Observe that the entire execution described above is determined by Π, A, xA, and xB.

For C ∈ {A,B}, we sometimes simply say ΠC
A(xA, xB) to denote the value of gC(xC , πC) in

the execution above.

Corruptions. For r ∈ [T], we define:

corrA→BS,Π,A(xA, xB, r) = 1(fA(xA,AA<r(xA, xB)) 6= ABr (xA, xB)).

corrB→AS,Π,A(xA, xB, r) = 1(fB(xB,AB≤r(xA, xB)) 6= AAr (xA, xB)).

(S in the aboved notation stands for the model STANDARD.) Observe that

corrA→BS,Π,A(xA, xB, r) = 1 if and only if the message from Alice to Bob was corrupted in

round r. Similarly corrB→AS,Π,A(xA, xB, r) = 1 if and only if the message from Bob to Alice was

corrupted in round r. Also, define:

corrA→BS,Π,A(xA, xB,≤ r) =
∑
i∈[r]

corrA→BS,Π,A(xA, xB, i).

corrB→AS,Π,A(xA, xB,≤ r) =
∑
i∈[r]

corrB→AS,Π,A(xA, xB, i).

18

The total number of corruptions is defined to be:

corrS,Π,A(xA, xB,≤ r) = corrA→BS,Π,A(xA, xB,≤ r) + corrB→AS,Π,A(xA, xB,≤ r).

Finally, we define corrS,Π,A(xA, xB) = corrS,Π,A(xA, xB,≤ T). We omit the subscripts from

the above definition when they are clear from context.

Noiseless Adversary. Observe that for every protocol Π, there is a unique adversary A∗
that satisfies corrS,Π,A∗(x

A, xB) = 0. We call this the noiseless adversary for Π and define

ΠC(xA, xB) = ΠC
A∗(x

A, xB) for C ∈ {A,B}.

3.3.2 The Communication Model LONG

To improve the presentation of our interactive coding scheme, we define a new communication

model called model LONG. We remark that the model LONG is somewhat unrealistic and we

only use it to make the proof of correctness of our interactive coding scheme simpler.

The key difference between the model LONG and the model STANDARD is that the former

has an additional parameter that we call the ‘period’ and denote by P . The total number

of rounds in any protocol in model LONG will be a multiple of P + 1. These rounds will be

exactly like the rounds in a protocol in model STANDARD, except that every (P + 1)th round,

the parties can send arbitrarily many symbols from Σ (based on the transcript so far).

Due to the fact that there are rounds where the parties can send more than one symbol

from Σ, the total number of symbols sent in the protocol may not be determined by the

number of rounds. We will use R to denote the number of rounds in the protocol and

have an additional parameter, S, to capture the number of symbols exchanged by any party

during the protocol (We will define S formally later).

We now proceed to define the notion of a protocol and an adversary more formally. Note

that the adversaries in model LONG can insert/delete symbols in the rounds that are multiples

of P + 1. This is done to avoid signaling, as the messages in these rounds can be of different

lengths (see [GK17] and references therein for a good discussion of signaling).

We also note that in model LONG, the corruptions inserted by the adversary are counted

in a way such that even if the adversary corrupts only one symbol in the rounds (c(P + 1) :

(c+1)(P+1)], for some c ≥ 0, it has to spend as many corruptions as the total communication

in rounds (c(P + 1) : (c + 1)(P + 1)]. This way of counting the corruptions is justified by

using appropriate (interactive) error correction.

Definition of a protocol. Let Σ be a finite set with a special symbol ⊥ and let P,R, S > 0

be integers such that S is a multiple of P and R is a multiple of P +1. As before, let XA, XB

be the set of inputs of Alice and Bob respectively. Similarly, let Y A, Y B be the set of outputs

of Alice and Bob respectively.

A protocol Π with R rounds, period P , with alphabet Σ, and a length of S symbols in

19

model LONG is defined by a tuple Π = {fC , gC}C∈{A,B}. Here4, the function fA has type

fA : XA × (Σ∗)<R → Σ∗ and the function fB has type fB : XB × (Σ∗)≤R → Σ∗. Also, for

C ∈ {A,B}, the function gC has type gC : XC × (Σ∗)≤R → Y C .

To reflect the fact that in every (P + 1)th round, the parties can send arbitrarily long

messages to each other, we make sure that the functions fA and fB satisfy an additional

property. For the function fA, we require that unless the second input is in (Σ∗)k(P+1)−1, for

some integer k, the function will only take values in Σ, and for the function fB, we require

that unless the second input is in (Σ∗)k(P+1), for some integer k, the function will only take

values in Σ.

Similarly, to reflect the fact that the parties communicate at most S symbols, we ensure

that after S symbols have been communicated (sent/received) by any party, the party can

only send and receive ⊥. This is done by ensuring that, for all π ∈ (Σ∗)<R and i ∈ [R], we

have: ∑
i′<i

|πi′ |+
∑
i′<i

|fA(xA, π<i′)| < S =⇒
∑
i′<i

|πi′ |+
∑
i′≤i

|fA(xA, π<i′)| ≤ S.

∑
i′<i

|πi′ |+
∑
i′<i

|fA(xA, π<i′)| ≥ S =⇒ fA(xA, π<i) =

{
⊥P , (P + 1) divides i

⊥ , otherwise
.

(1)

In the foregoing equation, ⊥P denotes ⊥ concatenated to itself P times. Analogous

constraints hold for Bob as well.

Definition of an adversary. Using the same notations as above, we define an adversary

A for Π. The adversary A is defined by a pair of functions (AA,AB) where AA,AB :

XA × XB → (Σ∗)R. As before, for i ∈ [R], we use AAi (resp. ABi) and AA≤i (resp. AB≤i) to

denote the ith coordinate and the first i coordinates of AA (resp. AB) respectively.

We require that if i ∈ [R] is not a multiple of P + 1, then AAi ,ABi take values in Σ. This

ensures that if i is not a multiple of P + 1, then the parties receive exactly one symbol in

round i.

Execution of a protocol. We now describe an execution of a protocol Π in model LONG

in the presence of adversary A. We use the same notation as above. At the beginning

of the protocol, Alice and Bob have inputs xA ∈ XA and xB ∈ XB respectively. We will

maintain the invariant that before Alice speaks in round i ∈ [R], she knows the value of

AA<i(xA, xB). Similarly, we will maintain that before Bob speaks in round i, he knows the

value of AB≤i(xA, xB).

In round i ∈ [R], Alice sends fA(xA,AA<i(xA, xB)) to Bob while Bob receives ABi (xA, xB).

This is followed by Bob sending fB(xB,AB≤i(xA, xB)) to Alice and Alice receivingAAi (xA, xB).

Observe how this execution maintains are invariant above.

4Again, the difference of ‘<’ vs. ‘≤’ in the definition of fA and fB above is owing to our convention that
Alice speaks first in every round.

20

Finally, after round R, for all C ∈ {A,B}, party C outputs gC(xC ,AC≤R(xA, xB)). Recall

that C = A for Alice and C = B for Bob.

Observe that the entire execution described above is determined by Π, A, xA, and xB. For

C ∈ {A,B}, we sometimes simply say ΠC
A(xA, xB) to denote the value of gC(xC ,AC≤R(xA, xB))

in the execution above.

Corruptions. To finish this section, for r ∈ [R/(P + 1)], we define the function

corrL,Π,A(xA, xB, r) that measures the number of corruptions inserted by the adversary in

the rounds ((r− 1)(P + 1) : r(P + 1)] (L in these definitions stands for the model LONG). We

have:

discA→BL,Π,A(xA, xB, r) = 1
(
∃i′ ∈ [P + 1] : fA(xA,AA<(r−1)(P+1)+i′(x

A, xB)) 6= AB(r−1)(P+1)+i′(x
A, xB)

)
.

discB→AL,Π,A(xA, xB, r) = 1
(
∃i′ ∈ [P + 1] : fB(xB,AB≤(r−1)(P+1)+i′(x

A, xB)) 6= AA(r−1)(P+1)+i′(x
A, xB)

)
.

corrA→BL,Π,A(xA, xB, r) = discA→BL,Π,A(xA, xB, r) ·max
(
|fA(xA,AA<r(P+1)(x

A, xB))|, |ABr(P+1)(x
A, xB)|

)
.

corrB→AL,Π,A(xA, xB, r) = discB→AL,Π,A(xA, xB, r) ·max
(
|fB(xB,AB≤r(P+1)(x

A, xB))|, |AAr(P+1)(x
A, xB)|

)
.

corrL,Π,A(xA, xB, r) = corrA→BL,Π,A(xA, xB, r) + corrB→AL,Π,A(xA, xB, r).

(In the above notation disc stands for discrepancy.) We omit the subscripts from the

above definition when they are clear from context and define corrA→BL,Π,A(xA, xB,≤ r) =∑
i∈[r] corr

A→B
L,Π,A(xA, xB, i) and corrA→BL,Π,A(xA, xB) = corrA→BL,Π,A(xA, xB,≤ R/(P + 1)). We define

corrA→BL,Π,A(xA, xB,≤ 0) = 0 for convenience and use analogous definitions for corrB→AL,Π,A and

corrL,Π,A.

3.4 Formal Statement of the Main Theorem

Having defined our communication models, we are ready to formally state our main theorem.

Theorem 3.8 (Formal statement of Theorem 1.1). There exists constant η, η′, θ such that

the following holds:

Let Σ, XA, XB, Y A, Y B be sets as in Subsection 3.3. Let Π = {fC , gC}C∈{A,B} be a

protocol in model STANDARD with T > 2200K0+105θ2 rounds and alphabet Σ. Furthermore,

the input and output sets of Alice (resp. Bob) in Π are XA and Y A (resp. XB and Y B)

respectively.

Then, there is a protocol Π′ = {f ′C , g′C}C∈{A,B} in model STANDARD with T ′ = ηT ,

alphabet Σ, and the same input and outputs sets for the two parties such that for every

adversary A′ for Π′ in model STANDARD, and all inputs xA ∈ XA and xB ∈ XB, and

C ∈ {A,B}, we have that

corrS,Π′,A′(x
A, xB) ≤ θT ′ =⇒ Π′CA′(x

A, xB) = ΠC(xA, xB).

21

Furthermore, the functions f ′C and g′C, for C ∈ {A,B} make use of the function TC =

TC1−10−5,|Σ|2 log(η′T),η′T/ log(η′T),ΣK log(η′T)(·) (for a large enough constant K so that Theorem 3.7

holds) and can be computed in time polynomial in T given oracle access to the functions fC

and gC, where C ∈ {A,B}, and oracle access to the function TC.

Remark 3.9. There exists η0 > 0 such that Theorem 3.8 holds for η = η0 and θ = 1
10

for

the weaker requirement that the functions f ′C and g′C, for C ∈ {A,B} can be computed in

time exponential in T . For this weaker requirement, oracle access to TC is not necessary for

the furthermore part.

For the rest of this paper, we reserve η0 to denote the constant from Remark 3.9.

4 Relation Between Model STANDARD and model LONG

Recall that our goal in Theorem 3.8 is to describe an interactive coding scheme in model

STANDARD. Instead of showing such a scheme, we actually show an interactive coding scheme

in model LONG and a general transformation from protocols in model LONG to protocols in

model STANDARD. This section formalizes and proves the transformation (see Theorem 4.1),

while the next section constructs the interactive coding scheme in model LONG.

Theorem 4.1. For all θ2 > 10−20, there exist constant η1, θ1 such that for η2 = 105θ2 +

100K0, the following holds:

Let Σ, XA, XB, Y A, Y B be sets as in Subsection 3.3 above. Let P,R, S > 0 be integers

such that 2 logS > P ≥ logS > 100(K0 + log η2). Let Π = {fC , gC}C∈{A,B} be a protocol

in model LONG with R rounds, period P , alphabet Σ and length of S symbols. Furthermore,

the input and output sets of Alice (resp. Bob) in Π are XA and Y A (resp. XB and Y B)

respectively.

Then, there is a protocol Π′ = {f ′C , g′C}C∈{A,B} in model STANDARD with T = η1S rounds

and alphabet Σ with the same input and output sets for the two parties such that for every

adversary A′ for Π′ in model STANDARD, there is an adversary A for Π in model LONG such

that for all inputs xA ∈ XA and xB ∈ XB, we have

1. For all C ∈ {A,B}, we have that ΠC
A(xA, xB) = Π′CA′(x

A, xB). Furthermore, the

functions f ′C and g′C, for C ∈ {A,B} can be computed in time polynomial in S

assuming oracle access to the functions fC and gC, where C ∈ {A,B}.

2. It holds that corrS,Π′,A′(x
A, xB) ≤ θ1T =⇒ corrL,Π,A(xA, xB) ≤ θ2S.

We devote the rest of this section to proving Theorem 4.1. We shall use the following

claim:

Claim 4.2. For all θ2 > 10−20, if η2 = 105θ2 + 100K0, then the following holds:

Let Σ, XA, XB, Y A, Y B be sets as in Subsection 3.3 above. Let P,R, S > 0 be integers

such that 2 logS > P ≥ logS > 100(K0 + log η2). Let Π = {fC , gC}C∈{A,B} be a protocol

22

in model LONG with R rounds, period P , alphabet Σ and length of S symbols. Furthermore,

the input and output sets of Alice (resp. Bob) in Π are XA and Y A (resp. XB and Y B)

respectively. Then, there is a protocol Π̂ = {f̂C , ĝC}C∈{A,B} in model LONG such that:

1. The protocol Π̂ has a length of Ŝ = η2S symbols, R̂ = Ŝ(P+1)
10P

rounds, and period P̂ = P .

2. For all r ∈ [R̂/(P + 1)], the number of symbols transmitted by the parties in round

r(P + 1) in Π̂ is 4P regardless of the inputs of Alice and Bob. This means that,

without loss of generality, we can assume that the number of symbols received by Alice

and Bob is also 4P .

3. For every adversary Â for Π̂ in model LONG, there is an adversary A for Π in model

LONG such that for all inputs xA ∈ XA and xB ∈ XB, we have

(a) For all C ∈ {A,B}, we have that ΠC
A(xA, xB) = Π̂C

Â(xA, xB). Furthermore, the

functions f̂C and ĝC, for C ∈ {A,B} can be computed in time polynomial in S

assuming oracle access to the functions fC and gC, where C ∈ {A,B}.
(b) It holds that corrL,Π̂,Â(xA, xB) ≤ θ2S/100 =⇒ corrL,Π,A(xA, xB) ≤ θ2S.

We prove this claim in Subsection 4.1 and first show how Theorem 4.1 follows from it.

Proof of Theorem 4.1 assuming Claim 4.2. Let θ2 > 10−20 be fixed. Define η1 = η0+8K0

10
and

θ1 = θ2
800η1

· min (η0/10, K0). Let Π̂ in model LONG be as promised by Claim 4.2. Define a

protocol Π′ in model STANDARD with T ′ = η1S rounds and the same input and output sets

and alphabet as Π as follows:

When the inputs to the parties are xA and xB, then, in protocol Π′, Alice and Bob execute

the protocol in Algorithm 1 R̂/(P + 1) times, where the transcripts input to any execution

are the outputs of the previous execution. After R̂/(P + 1) executions, the parties output

ĝC(xC , τ̂C), where τ̂C is output of the last, i.e., the (R̂/(P + 1))th execution.

We claim that Π′ satisfies Theorem 4.1. Consider any adversary A′ for Π′ in model

STANDARD and let xA and xB be inputs for Alice and Bob. From Algorithm 1, this adversary

defines a value τ̂C ∈ (Σ∗)∗ for C ∈ {A,B}, which is the transcript output by the (R̂/(P+1))th

execution. Furthermore, observe from Algorithm 1 that |τ̂Ar | = |τ̂Br | = 4P , if r is a multiple

of P + 1, and |τ̂Ar | = |τ̂Br | = 1 otherwise. Define an adversary Â for Π̂ in model LONG such

that ÂC(xA, xB) = τ̂C for C ∈ {A,B}. Finally, define A for Π in model LONG to be the one

promised by item 3 above.

We claim that A satisfies Theorem 4.1. Indeed, the first part holds because, by item 3a,

we have ΠC
A(xA, xB) = Π̂C

Â(xA, xB) = ĝC(xC , τ̂C) = Π′CA′(x
A, xB). The furthermore part

follows straightforwardly from the definition of Algorithm 1 and the furthermore part of

item 3a together with Theorem 3.4 and Remark 3.9. The second part also holds because if

corrS,Π′,A′(x
A, xB) ≤ θ1T = θ1η1S, then

corrS,Π′,A′(x
A, xB,≤ 10η1

η2

i)− corrS,Π′,A′(x
A, xB,≤ 10η1

η2

(i− 1)) >
800θ1η1

θ2

P,

23

for at most θ2S/(800P) values of i ∈ [R̂/(P + 1)]. Due to Remark 3.9 and Theorem 3.4,

if i is not one of these values, we have that corrL,Π̂,Â(xA, xB, i) = 0. This means that

corrL,Π̂,Â(xA, xB) ≤ θ2S/100 implying that corrL,Π,A(xA, xB) ≤ θ2S, as required.

Algorithm 1 Compiling one block of the protocol Π̂.

Input: For C ∈ {A,B}, party C has an input xC ∈ XC and a transcript π̂C ∈ (Σ∗)∗. It

holds that the |π̂C | is a multiple of P + 1.

Output: For C ∈ {A,B}, the party C outputs a transcript τ̂C ∈ (Σ∗)∗. It holds that

|τ̂C | = |π̂C |+ P + 1.

1: Alice and Bob simulate the next P rounds of the protocol Π̂ assuming inputs xC and

transcript π̂C , as follows: Let C = {fCC , gCC }C∈{A,B} be a protocol in model STANDARD

with P rounds such that, for C ∈ {A,B}, we have

• fCC (xC , ς) = f̂C(xC , π̂C‖ς) for all ς ∈ Σ∗. (Here, on the right hand side, we consider

ς to be an element of (Σ∗)∗, by considering each of its coordinates to be an element

of Σ∗.)

• gAC : XC × Σ2P → (Σ∗)P (resp. gBC) is the function that outputs all the even (resp.

odd) coordinates of its second argument (seen as elements of Σ∗).

Let C′ be the protocol with η0P rounds promised by Remark 3.9 when applied to C. The

parties execute C′ for η0P rounds and get output τC1 .

2: For the next 4K0P rounds, Bob sends ⊥ while Alice sends the symbols in

ECC(f̂A(xA, π̂A‖τA1)) one by one. Let τB2 ∈ Σ∗ denote the string of symbols received

by Bob and define τ̂B ← π̂B‖τB1 ‖DECC(τB2).

3: For the next 4K0P rounds, Alice sends nothing while Bob sends the symbols in

ECC(f̂B(xB, τ̂B)) one by one. Let τA2 ∈ Σ∗ denote the string of symbols received by

Alice and define τ̂A ← π̂A‖τA1 ‖DECC(τA2).

4: Alice outputs τ̂A and Bob outputs τ̂B.

4.1 Proof of Claim 4.2

Henceforth, we concentrate on proving Claim 4.2. Let Π be a protocol as in the statement

of Claim 4.2. As Π is in model LONG with period P , the players can send arbitrarily long

messages every (P + 1)th round. Define the set of messages:

Long = {z | ∃k > 0 : z = 2k(P + 1) or z = 2k(P + 1)− 1}, (2)

and note that an integer z is in the definition of Long if and only if the zth message in Π

can be arbitrarily long. We emphasize that in Long, we count the number of messages, and

not the number of rounds, which explains the factor of 2. We assume that the number of

symbols sent by the parties in the long messages is a multiple of P . This is without loss of

24

generality as it can be ensured by blowing up the total number of symbols sent by a factor

of at most 2.

We define the protocol Π̂ in Algorithm 2. In fact, Algorithm 2 only describes Alice’s side

of Π̂. Bob’s side of Π̂ is symmetric. Before we analyze Algorithm 2, we give some intuition

behind its definition.

4.1.1 Intuition and Description of Algorithm 2

Many of the ideas in Algorithm 2 are similar to ideas we’ve already described in Section 2,

and we keep this part brief and simple.

In order to compile the protocol Π to the protocol Π̂, we replace the long messages in Π

by messages in ΣP . We do this by encoding these long messages using an error-correcting

code resilient to insertion deletion errors and the breaking the encoded messages into smaller

messages in ΣP . Our assumption that the number of symbols sent by the parties in the long

messages is a multiple of P kicks in here, and allows us to break the long messages into

blocks of length P without having to worry about rounding issues.

Along with sending each message block by block, we also send some auxiliary information

with the blocks. This auxiliary information consists of the message number m, the block

number c, a Boolean variable e, that indicates whether or not this block is the last one in

the message, and another Boolean variable flag whose purpose we describe later.

The auxiliary information sent with each message requires at most logarithmic (in S)

number of symbols to share (up to constant factors). This is where our assumption that

P ≥ log(S) kicks in. Since the parties only send the auxiliary information once per block,

and P ≥ log(S), this information only adds a constant factor to the total communication.

In addition to the long messages in Π, the parties also need to send messages consisting

of a single symbol from Σ. In our protocol, these messages are sent in the rounds that are

not multiples of P + 1 and are repeated before each block in the long message (Line 9).

Moreover, a block is only added to the long message if the short messages received before

the block are consistent with those received previously. This is controlled by the variable

flag.

Once the parties receive these long and short messages, they check in Line 19 if the

auxiliary information matches. If yes, they add these messages to the variable msgs, which

records the transcript of Π. If not, then the parties resynchronize (using ideas similar to

those described in Subsection 2.3 and Subsection 2.4 (see also Subsubsection 5.1.2).

Notation. The most important variable in Algorithm 2 is the variable msgs that takes

values in (Σ∗)∗ and records the transcript of Π, as it is being simulated. We consider this

variable as a list and in Algorithm 2, we make sure that the last coordinate in this list always

the empty string ε unless we are in the middle of communicating a long message. Adopting

this convention helps us to easily detect whether or not we are in the middle of sending a

long message. It also helps make our notation in the analysis a little cleaner.

25

In addition, we use the following notation:

• Length of the list: We will use |msgs| to denote the number of elements in msgs.

• Accessing an element in the list: For 1 ≤ i ≤ |msgs|, the notation msgsi denotes

the ith element in msgs. When i = |msgs|, we sometimes use msgs.last instead of

msgsi.
5

• Adding elements to the list: When we wish to add an element σ ∈ Σ∗ to msgs, we

denote this by msgs.Add(σ). The element σ is then added at the end of the list.

• Removing elements in the list: When we wish to remove the last element from

msgs, we write msgs.Rem(). After this operation, the list has one less element. We

write msgs.Rem(i) to denote the operation of removing the last i elements in the list.

The notation msgsB will be used to denote the sublist of msgs that contains all the

elements in even positions in msgs. This notation derives from the fact that the even messages

in Π are messages from Bob to Alice. We similarly define msgsA. Additionally, for z > 0,

the notation msgsB,≤z denotes the elements in the first z even positions of msgs, i.e., the

first z positions of msgsB. We similarly define msgsB,z, msgsB,<z, msgsA,z, msgsA,≤z, and

msgsA,<z. Finally, we use DECC(msgsB) to denote the list obtained by applying DECC to

all the elements of msgsB that occur at coordinates that are multiples of P + 1. We define

DECC(msgsB,≤z), DECC(msgsA), DECC(msgsA,≤z) similarly.

Analogous notation is defined for the variables D-msgs′ and D-msgs.

A guide to Algorithm 2. The protocol Π̂ proceeds in R̂/(P + 1) iterations, maintaining

a variable msgs that records the transcript simulated so far. Our protocol has the invariant

that the last message in msgs is always ε, unless we are in the middle of sending a

long message. In Line 7, we denote by m = |msgs|, and we consider the index ind ←
(P + 1) · (dm/(2(P + 1))e − 1). The value ind captures the prefix of msgs containing chunks

that have been completely simulated.

In Lines 8-15, one chunk of the underlying protocol Π is being executed. If m /∈ Long,

then this chunk corresponds to the next chunk after msgs. If m ∈ Long, then this chunk

corresponds to the last chunk in msgs, and hence this is a re-execution. The reason for the

re-execution is as stated in Subsection 2.4: Namely, if m ∈ Long, then the parties are in the

middle of transmitting a long message, and want to make sure that each block of the long

message is sent with the same set of P short messages. If the P messages in the re-execution

differ from the previous execution, then a flag is raised and the parties (later) act on this

flag and rewind one block.

After simulating a chunk of the protocol, in Line 18 the parties exchange messages of

length 4P . If it is Bob’s turn to speak (m is even), then Alice sends σ = ⊥P , and if it is

5In particular, if msgs = [ε] then |msgs| = 1 and |msgs1| = 0. Namely, we consider the empty message as
a message of length 0.

26

Alice’s turn to speak then she sends her next block of her long message, also denoted by σ

(if m /∈ Long then σ is the first block of her long message). In addition to σ she also sends

the following auxiliary variables: m indicating the number of messages in msgs, c indicating

the length of the last message in msgs, σ which is the next block of the long message,

e indicating whether we are done sending the long message or not, and flag indicating

whether an inconsistency was found in the last chunk.

If everything seems to be consistent (and there are no flags), then Alice appends to

msgs either the message σ̃ that she received from Bob, or her own message σ, depending

on whether it is Bob’s turn to speak or her turn to speak. This is done in Line 20. In

addition she adds ε to msgs if the party finished sending their long message, as indicated by

the variable e or ẽ, respectively. This is done in Line 22.

If things are not consistent, then Alice does the following:

1. If m /∈ Long, which corresponds to the case that we simulated a new chunk in Lines 8-

15, then Alice removes her last 2P messages. This is done by removing the last 2P + 1

messages (which includes ε which is always appended to msgs unless we are in the

middle of transmitting a long message), and then appending ε. This is done in Line 25.

2. If Alice is ahead of Bob (namely, (m̃, c̃) ≤ (m, c)) and an inconsistency was found (i.e.,

¬(flag ∧ ˜flag)) then Alice distinguishes between the following cases:

(a) If c = 0 and m − 1 /∈ Long, which corresponds to the case that in Line 7, it is

Alice’s turn to send her long message, but she hasn’t started sending it yet, then

Alice removes the last 2P messages from msgs as above (by removing 2P + 1

messages and adding ε).

(b) Otherwise, Alice would like to delete the last P symbols from her last long

message. To do this she first checks if c = 0 and m−1 ∈ Long, which corresponds

to the case that in Line 7 it is Bob’s turn to send his long message, but he hasn’t

started sending it yet. In this case, Alice first removes ε from msgs, which is the

last message in msgs. This is followed by Alice deleting the last P symbols from

the last message in msgs.

27

Algorithm 2 The protocol Π̂ in the proof of Claim 4.2 (Alice’s side).

Input: An input xA ∈ XA.

Output: An element in Y A.

5: msgs← [ε].

6: for i ∈ [R̂/(P + 1)] do

7: m← |msgs|, c← |msgs.last|, f lag ← True, ind← (P + 1) · (dm/(2(P + 1))e − 1).

8: for j ∈ [P] do

9: Send σ = fA(xA,DECC(msgsB,<ind+j)) to Bob and receive σ̃ ∈ Σ.

10: if m ∈ Long then

11: If msgsB,ind+j 6= σ̃, then flag ← False.

12: else

13: Do msgs.last← σ followed by msgs.Add(σ̃) and msgs.Add(ε).

14: end if

15: end for

16: longmsg ← ECC(fA(xA,DECC(msgsB,<ind+P+1))), e← True (c = |longmsg| − P) .

17: If m mod 2 = 0, then, we set σ ← ⊥P . Otherwise, set σ ← longmsg(c : c+ P].

18: Send M = (m, c, e, σ, flag) to Bob and receive M̃ = (m̃, c̃, ẽ, σ̃, ˜flag). These messages

are padded to contain 4P symbols from Σ. Our choice of P, S makes this possible as

m, c ≤ 24P/3, e and flag are Boolean, and σ ∈ ΣP .

19: if (m̃, c̃) = (m, c) and flag ∧ ˜flag then

20: If m mod 2 = 0, then, msgs.last← msgs.last‖σ̃. Else, msgs.last← msgs.last‖σ.

21: if (e and m mod 2 = 1) or (ẽ and m mod 2 = 0) then

22: msgs.Add(ε).

23: end if

24: else

25: If m /∈ Long, do msgs.Rem(2P + 1) followed by msgs.Add(ε).

26: if (m̃, c̃) ≤ (m, c) then

27: if c = 0 and m− 1 /∈ Long then

28: Do msgs.Rem(2P + 1) followed by msgs.Add(ε).

29: else

30: if c = 0 then

31: msgs.Rem().

32: end if

33: msgs.last← msgs.last[1 : |msgs.last| − P].

34: end if

35: end if

36: end if

37: end for

38: D-msgs′ ← msgs. If |D-msgs′| is odd or D-msgs′.last = ε, do D-msgs′.Rem().

39: D-msgs ← D-msgs′. Pad D-msgs so that |D-msgs| ≥ 2R, by adding ⊥ in coordinates

/∈ Long and ECC(⊥P) in coordinates ∈ Long. Output gC(xC ,DECC(D-msgsB,≤R)).

28

4.1.2 Analyzing Algorithm 2 (Proof of Claim 4.2)

Having defined the protocol Π̂, we now show that it satisfies the properties in item 1 to item 3

in Claim 4.2. Observe that item 1 and item 2 are easily seen to hold from the definition of Π̂

and we only need to show item 3. We fix an adversary Â for Π̂ and construct an adversary

A for Π such that item 3 holds.

In what follows, and for the remainder of this section, we fix inputs xA ∈ XA and xB ∈ XB

for the two parties, and construct an adversaryA for these fixed inputs. This suffices since we

assume that our adversary knows both inputs and is computationally unbounded. Observe

that fixing the inputs xA, xB and the adversary Â determines the value of all variables in all

iterations of Π̂ when run with inputs (xA, xB) in the presence of Â.

Observe that Algorithm 2 loops over i ∈ [R̂/(P + 1)]. For any variable var other than

σ and flag in Algorithm 2 and any i ∈ [R̂/(P + 1)], we let varA[i] denote the value of var

the first time it is set in the ith iteration of Alice’s execution of Algorithm 2, e.g., mA[4] will

denote the value of m after Line 7 in the 4th iteration in Alice’s execution of Algorithm 2. For

a variable like msgs that is defined once for all the iterations, msgsA[i] will denote the value

of msgs at the beginning of the ith iteration, i.e., after Line 6 in the ith iteration in Alice’s

execution of Algorithm 2. When we omit the argument i, or when i = R̂/(P+1)+1, we mean

the value of the variable at the end of the protocol. We define varB[i] and varB analogously

with Alice replaced by Bob. For the variables σ and flag, we let varA[i] denote the value of

var after Line 17 is executed by Alice in iteration i, and varB[i] is defined similarly. Observe

that, for any i and C ∈ {A,B}, we have mC [i] /∈ Long =⇒ flagC [i] = True. Thus, we can

assume without loss of generality that m̃C [i] /∈ Long =⇒ ˜flag
C

[i] = True.

We define A to satisfy

AA≤R(xA, xB) = DECC(D-msgsAB,≤R), AB≤R(xA, xB) = DECC(D-msgsBA,≤R).

Together with Line 39, this definition of A immediately shows the property in item 3a

above. It remains to show the property in item 3b. To this end, we use the following claims.

Lemma 4.3. If corrL,Π̂,Â(xA, xB) ≤ θ2S/100, it holds for C ∈ {A,B} that
∑

j>0|msgsCj | >
5K0S.

We defer the proof of Lemma 4.3, and in what follows we use it to prove the following

claim.

Lemma 4.4. If corrL,Π̂,Â(xA, xB) ≤ θ2S/100, it holds for j ∈ [R] that,

D-msgsAA,j =

{
ECC(fA(xA,DECC(D-msgsAB,<j))) , P + 1 divides j

fA(xA,DECC(D-msgsAB,<j)) , otherwise
.

Furthermore, for all j ∈ [2R], msgsAj is a prefix of D-msgsAj . An analogous claim holds for

Bob.

29

Proof. We only show the claim for Alice as the claim for Bob is similar. First, consider j ∈ [R]

such that D-msgsAA,j was not set in Line 39. In this case, due to Line 38, we get that there

exists an iteration i1 ≤ R̂/(P+1) such that |msgsA[i′]| > 2j−1 for all i1 < i′ ≤ R̂/(P+1)+1.

Let i1 be the smallest such iteration. By our choice of i1, we have

D-msgsAA,j = msgsAA,j[i1 + 1] =

{
ECC(fA(xA,DECC(msgsAB,<j[i1 + 1]))) , P + 1 divides j

fA(xA,DECC(msgsAB,<j[i1 + 1])) , otherwise

=

{
ECC(fA(xA,DECC(D-msgsAB,<j))) , P + 1 divides j

fA(xA,DECC(D-msgsAB,<j)) , otherwise
.

On the other hand, for j ∈ [R] such that D-msgsAA,j was set in Line 39, we have

D-msgsAA,j = ECC(⊥P) or ⊥ depending on whether j is a multiple of (P + 1) or not, and it

is sufficient to show that fA(xA,DECC(D-msgsAB,<j)) = ⊥P or ⊥ depending on whether j is

a multiple of (P + 1) or not. Using Equation 1, we get that it is sufficient to show that∑
j′<j

|DECC(D-msgsAB,j′)|+ |fA(xA,DECC(D-msgsAB,<j′))| ≥ S.

Using Theorem 3.4 and Remark 3.5, we get that it is sufficient to show that∑
j′≤|D-msgs′A|

|D-msgs′Aj′ | ≥ 2K0S. (3)

To see why this holds, observe that∑
j′≤|D-msgs′A|

|D-msgs′Aj′ | =
∑

j′≤|D-msgs′A|

|msgsAj′|

≥ −1
(
|msgsA| is odd

)
· |longmsgA|+

∑
j′≤|msgsA|

|msgsAj′ |

≥ −K0 · |fA(xA,DECC(D-msgsAB,<indA+P+1))|+
∑

j′≤|msgsA|

|msgsAj′|

(Theorem 3.4)

≥ 4K0S. (Equation 1, Lemma 4.3)

Finally, we show the furthermore part. Let j ∈ [2R]. Observe that the claim is trivial

unless j = |msgsA| ∈ Long and j is odd. Thus, it is sufficient to show that if |msgsA| ∈ Long

is odd, then, we have longmsgA = ECC(⊥P). This follows from Equation 3.

Now, in order to prove the property in item 3b, we prove the following lemma that implies

item 3b.

Lemma 4.5. If corrL,Π̂,Â(xA, xB) ≤ θ2S/100 then

corrA→BL,Π,A(xA, xB), corrB→AL,Π,A(xA, xB) ≤ 40 · corrL,Π̂,Â(xA, xB) + 2P.

30

Proof. We only show that corrA→BL,Π,A(xA, xB) ≤ 40 · corrL,Π̂,Â(xA, xB) + 2P as the other claim

is symmetric. In fact, we show that, for all r ∈ [R/(P + 1)], we have

corrA→BL,Π,A(xA, xB, r) ≤ 2P + 10 ·
∑

C∈{A,B}

∑
r′∈[R̂/(P+1)]

indC [r′]/(P+1)∈{r−1,r}

corrL,Π̂,Â(xA, xB, r′),

where the first term is needed for at most one value of r and the result follows. Fix

r ∈ [R/(P + 1)]. If discA→BL,Π,A(xA, xB, r) = 0, then corrA→BL,Π,A(xA, xB, r) = 0 as well, and there is

nothing to show. We therefore assume that discA→BL,Π,A(xA, xB, r) = 1 implying that there exists

a value of i′ ∈ [P +1] such that fA(xA,AA<(r−1)(P+1)+i′(x
A, xB)) 6= AB(r−1)(P+1)+i′(x

A, xB). Let

i′ be the smallest such value. We have the following cases:

• When i′ ∈ [P]: In this case, by the definition of A and Lemma 4.4, we have that

D-msgsAA,(r−1)(P+1)+i′ 6= D-msgsBA,(r−1)(P+1)+i′ . Let C ∈ {A,B} be the lexicographically

smallest such that6 |msgsCA,r(P+1)| ≥ |msgsCA,r(P+1)| and there exists i1 ≤ R̂/(P +1) such

that |msgsC [i1]| = 2(r−1)(P +1)+1 < |msgsC [i′′]| for all i1 < i′′ ≤ R̂/(P +1)+1. Note

that C is well defined as at least one such C always exists due to D-msgsAA,(r−1)(P+1)+i′ 6=
D-msgsBA,(r−1)(P+1)+i′ . Define a1 = max

(
|msgsCA,r(P+1)|/P, 1

)
.

For all l ∈ [a1], define i′′l to the largest iteration such that indC [i′′l] = (r − 1)(P + 1),

cC [i′′l] = (l− 1)P and party C executes Line 20 in iteration i′′l . Due to our choice of a1,

at least one such iteration always exists and therefore i′′l is well defined and we have

i′′1 < i′′2 < · · · < i′′a1 . Either corrL,Π̂,Â(xA, xB, i′′l) > 0 for at least 0.5a1 values of l ∈ [a1]

in which case we have:

10 ·
∑

r′∈[R̂/(P+1)]

indC [r′]/(P+1)∈{r−1,r}

corrL,Π̂,Â(xA, xB, r′) ≥ 20a1P ≥ corrA→BL,Π,A(xA, xB, r),

and the lemma follows, or there exists l1 > 0.5a1 such that iteration i′′l1 satisfies

corrL,Π̂,Â(xA, xB, i′′l1) = 0. This together with that fact that party C executes Line 20

in iteration i′′l1 and cC [i′′l1] = (l1 − 1)P implies that msgsAA,(r−1)(P+1)+i′′′ [i
′′
l1

+ 1] =

msgsBA,(r−1)(P+1)+i′′′ [i
′′
l1

+ 1] for all i′′′ ∈ [P] and cC [i′′l1] = cC [i′′l1] = (l1 − 1)P .

However, due to our choice of i′′l1 and i′, this means that there exists at least l1 values

of j′′ > i′′l1 such that indC [j′′] = (r−1)(P +1), cC [j′′] ≤ (l1−1)P , and party C executes

Line 28 or Line 33 in iteration j′′. We get that corrL,Π̂,Â(xA, xB, j′′) > 0 for all such j′′

giving

10 ·
∑

r′∈[R̂/(P+1)]

indC [r′]/(P+1)∈{r−1,r}

corrL,Π̂,Â(xA, xB, r′) ≥ 20a1P ≥ corrA→BL,Π,A(xA, xB, r),

6We adopt the convention that, for C ∈ {A,B}, if j > |msgsCA|, then |msgsCA,j | = 0.

31

finishing the argument.

• When i′ = P + 1: In this case, we can conclude from Theorem 3.4 that

∆(ECC(fA(xA,AA<r(P+1)(x
A, xB))),D-msgsBA,r(P+1))

≥ 1

3
· |ECC(fA(xA,AA<r(P+1)(x

A, xB)))|.

It follows by the definition of A and Lemma 4.4 that

∆(D-msgsAA,r(P+1),D-msgsBA,r(P+1)) >
1

5
·max

(
|D-msgsAA,r(P+1)|, |D-msgsBA,r(P+1)|

)
. (4)

Let C ∈ {A,B} be the lexicographically smallest such that |msgsCA,r(P+1)| ≥
|msgsCA,r(P+1)| and there exists i1 ≤ R̂/(P +1) such that |msgsC [i1]| = 2(r−1)(P +1)+

1 < |msgsC [i′′]| for all i1 < i′′ ≤ R̂/(P+1)+1. Observe that C is well defined as at least

one such C always exists due to D-msgsAA,r(P+1) 6= D-msgsBA,r(P+1). Let a1 =
|msgsC

A,r(P+1)
|

P
.

For all l ∈ [a1], define i′′l to the largest iteration such that indC [i′′l] = (r − 1)(P + 1),

cC [i′′l] = (l − 1)P , mC [i′′l] is odd, and party C executes Line 20 in iteration i′′l . Due

to our choice of a1, at least one such iteration always exists and therefore i′′l is well

defined and we have i′′1 < i′′2 < · · · < i′′a1 . Either corrL,Π̂,Â(xA, xB, i′′l) > 0 for at least

0.1a1 values of l ∈ [a1] in which case we have:

10 ·
∑

r′∈[R̂/(P+1)]

indC [r′]/(P+1)∈{r−1,r}

corrL,Π̂,Â(xA, xB, r′) ≥ 4a1P ≥ corrA→BL,Π,A(xA, xB, r),

and the lemma follows, or there exists at least 0.9a1 values of l ∈ [a1] such that

corrL,Π̂,Â(xA, xB, i′′l) = 0. We deal with this case in the rest of this proof. First, assume

that:

∆(msgsAA,r(P+1),msgsBA,r(P+1)) >
1

5
·max

(
|msgsAA,r(P+1)|, |msgsBA,r(P+1)|

)
, (5)

noting that the right hand side is just 1
5
· |msgsCA,r(P+1)| by our choice of C. Next, note

that for all l ∈ [a1] such that corrL,Π̂,Â(xA, xB, i′′l) = 0, by our definition of i′′l we have,

msgsCA,r(P+1),((l−1)P :lP][i
′′
l + 1] = msgsCA,r(P+1),((l−1)P :lP][i

′′
l + 1] = msgsCA,r(P+1),((l−1)P :lP].

Together with Equation 5, this means that for at least 0.1a1 of these values we have

msgsCA,r(P+1),((l−1)P :lP][i
′′
l + 1] 6= msgsCA,r(P+1),((l−1)P :lP] implying that for at least 0.1a1

of these values of l, there is an iteration j′′l > i′′l such that cC [j′′l + 1] = (l − 1)P and

indC [j′′l]/(P + 1) ∈ {r − 1, r} and party C executes Line 33 in iteration j′′l Due to our

32

choice of i′, this is possible only if corrL,Π̂,Â(xA, xB, j′′l) > 0 for all such j′′l giving

10 ·
∑

r′∈[R̂/(P+1)]

indC [r′]/(P+1)∈{r−1,r}

corrL,Π̂,Â(xA, xB, r′) ≥ 4a1P ≥ corrA→BL,Π,A(xA, xB, r),

finishing the argument in this case. Now, assume that Equation 5 does not hold.

As Equation 4 holds and Equation 5 does not hold, we have that D-msgsC
′

A,r(P+1) 6=
msgsC

′

A,r(P+1) for at least one value of C ′ ∈ {A,B}. In fact, it holds for exactly one

value of C ′ as otherwise D-msgsAA,r(P+1) = D-msgsBA,r(P+1) contradicting Equation 4. If

it holds for C ′ = B (and therefore, not for C ′ = A) then we have msgsBA,r(P+1) = ε by

our definition of D-msgsBA,r(P+1) contradicting the fact that Equation 5 does not hold.

So, we can assume that C ′ = A is the unique satisfier of D-msgsC
′

A,r(P+1) 6= msgsC
′

A,r(P+1).

By the definition of D-msgsAA,r(P+1) and Lemma 4.4, we get that msgsAA,r(P+1) is a

prefix of D-msgsAA,r(P+1) = ECC(⊥P). Note that |D-msgsAA,r(P+1)| > |D-msgsBA,r(P+1)| as

otherwise the fact that Equation 4 holds and Equation 5 does not hold contradicts

Lemma 3.3. However, this implies by Remark 3.5 that

corrA→BL,Π,A(xA, xB, r) ≤ 2P.

As D-msgsAA,r(P+1) 6= msgsAA,r(P+1) for at most one value of r, the claim follows.

We now show Lemma 4.3. We actually prove a stronger result, namely, Lemma 4.6, that

implies Lemma 4.3. Before stating Lemma 4.6, we define the following shorthands7 for all

i ∈ [R̂/(P + 1) + 1]:

corr<i = corr≤i−1 = corrL,Π̂,Â(xA, xB,≤ i− 1),

goodi = min

(∑
j>0

|msgsAj [i]|,
∑
j>0

|msgsBj [i]|

)
,

badi =
∑
j>0

∆
(
msgsAj [i],msgsBj [i]

)
.

f-badi =
∑
j>0

1
(
∃i′ ∈ [2P] : msgsA2(j−1)(P+1)+i′ [i] 6= msgsB2(j−1)(P+1)+i′ [i]

)
× min

C∈{A,B}

2(P+1)∑
i′=1

|msgsC2(j−1)(P+1)+i′ [i]|.

We will need another definition to show Lemma 4.6. Define mi = min(mA[i],mB[i]) and

7We assume for convenience that, for all i, j, we have msgsAj [i] = ε when j > |msgsA[i]| and similarly for

msgsBj [i].

33

mi = max(mA[i],mB[i]) and:

gapi = P · |[mi : mi) ∩ Long|+ |[mi : mi) ∩ Long|.

With these definitions, we are now ready to state Lemma 4.6. Observe how Lemma 4.3

follows from Lemma 4.6 by setting i = R̂/(P+1)+1 and using the fact that corr<R̂/(P+1)+1 =

corrL,Π̂,Â(xA, xB) ≤ θ2S/100.

Lemma 4.6. For all i ∈ [R̂/(P + 1) + 1], we have

1000 · corr<i + 2 · goodi − 4 · badi − 12 · gapi − 20 · f-badi ≥ P (i− 1).

Proof. We show this by induction on i. For the base case, note that the claim holds for i = 1

as all the terms are 0. We will show that, for any i ∈ [R̂/(P + 1)], we have

1000 · (corr≤i − corr<i) + 2 · (goodi+1 − goodi)

− 4 · (badi+1 − badi)− 12 · (gapi+1 − gapi)− 20 · (f-badi+1 − f-badi) ≥ P,
(6)

and the induction step will follow. Fix i ∈ [R̂/(P + 1)]. We begin with some inequalities

that help us bound the terms in Equation 6. First, note that, by Lemma 3.1:

badi+1 − badi ≤
∑

C∈{A,B}

∑
j>0

∆(msgsCj [i+ 1],msgsCj [i]). (7)

Similarly, we have:

goodi − goodi+1 ≤
∑

C∈{A,B}

∣∣∣∣∣∑
j>0

|msgsCj [i]| −
∑
j>0

|msgsCj [i+ 1]|

∣∣∣∣∣
≤

∑
C∈{A,B}

∑
j>0

∣∣|msgsCj [i]| − |msgsCj [i+ 1]|
∣∣

≤
∑

C∈{A,B}

∑
j>0

∆(msgsCj [i+ 1],msgsCj [i]).

(8)

We also have, by the definition of gapi that:

gapi+1 − gapi ≤ P ·
(
|[mi+1 : mi+1) ∩ Long| − |[mi : mi) ∩ Long|

)
+
(
|[mi+1 : mi+1) ∩ Long| − |[mi : mi) ∩ Long|

)
≤
(
P · |[mi : mi+1) ∩ Long|+ |[mi : mi+1) ∩ Long|

)
· 1 (mi < mi+1)

+
(
P · |[mi+1 : mi) ∩ Long|+ |[mi+1 : mi) ∩ Long|

)
· 1
(
mi+1 < mi

)
≤ 1 (mi < mi+1) ·

(
2P

⌈
mi+1 −mi

2P + 2

⌉
+ (mi+1 −mi)

)
+ 1

(
mi+1 < mi

)
·
(

2P

⌈
mi −mi+1

2P + 2

⌉
+
(
mi −mi+1

))
,

(9)

where the last step uses the definition of Long. Finally, we upper bound f-badi+1 − f-badi.

34

Observe that

f-badi+1 − f-badi

≤
∑

C∈{A,B}

∑
j>0

∣∣|msgsCj [i]| − |msgsCj [i+ 1]|
∣∣

+
∑

C∈{A,B}

∑
j>0

1
(
∃i′ ∈ [2P] : msgsC2(j−1)(P+1)+i′ [i+ 1] 6= msgsC2(j−1)(P+1)+i′ [i]

)
×

2(P+1)∑
i′=1

|msgsC2(j−1)(P+1)+i′ [i+ 1]|

≤ 6P +
∑

C∈{A,B}

∑
j>0

∆(msgsCj [i+ 1],msgsCj [i]),

(10)

where the last step uses the definition of our protocol. We now consider various cases

and show Equation 6 in each case.

• corrL,Π̂,Â(xA, xB, i) > 0: In this case, we show that value of corr≤i − corr<i ≥ 4P

is large enough to outweigh all the other terms in Equation 6. We first upper bound∑
C∈{A,B}

∑
j>0 ∆(msgsCj [i+1],msgsCj [i]). Fix C ∈ {A,B} and note that, in iteration i,

party C changes msgs in Line 13, Line 20, Line 25, Line 28, and Line 33. Furthermore,

in each of these lines, we change at most 2P symbols. This gives∑
C∈{A,B}

∑
j>0

∆(msgsCj [i+ 1],msgsCj [i]) ≤ 20P.

From Equation 7, Equation 8, and Equation 10, we get

goodi − goodi+1, badi+1 − badi, f-badi+1 − f-badi ≤ 30P. (11)

Next, we show that:

gapi+1 − gapi ≤ 10P. (12)

Observe that, to show Equation 12, it is sufficient to show that for any C ∈ {A,B},
mC changes by at most 2P + 1 in iteration i. Then, we can apply Equation 9 to get

the bound on gapi+1−gapi. The reason mC changes by at most 2P +1 in any iteration

is that either party C executes Line 25 in iteration i, which cancels the change in mC ,

if any, made in Line 13, and then further decreases mC by at most 2P + 1 in case it

executes Line 28 or Line 31, or party C does not execute Line 25, in which case party

C increases mC by at most 2P in the P executions of Line 13 and maybe by one more

party C executes Line 22.

Equation 6 follows from Equation 11 and Equation 12.

• corrL,Π̂,Â(xA, xB, i) = 0: In this case, we use the definition of corrL,Π̂,Â(xA, xB, i) to

35

conclude that

(m̃A[i], c̃A[i], ẽA[i], σ̃A[i], ˜flag
A

[i]) = (mB[i], cB[i], eB[i], σB[i], f lagB[i]),

(mA[i], cA[i], eA[i], σA[i], f lagA[i]) = (m̃B[i], c̃B[i], ẽB[i], σ̃B[i], ˜flag
B

[i]).
(13)

We consider three cases:

– (mA[i], cA[i]) = (mB[i], cB[i]): In this case, by Equation 13, we have

(m̃A[i], c̃A[i]) = (mB[i], cB[i]) = (mA[i], cA[i]) = (m̃B[i], c̃B[i]), and we use (m, c)

to denote this common value. This also implies that indA[i] = indB[i] and we use

ind to denote this value. We first claim that mA[i + 1] = mB[i + 1] implying by

the definition of gap that

gapi+1 = gapi = 0. (14)

Indeed, due to Equation 13, either both Alice and Bob execute Line 20 but not

Line 22, or they both execute Line 22, or they both execute Line 28, or they both

execute Line 33. In any case, mA[i+1] = mB[i+1] follows. We have the following

subcases:

∗ flagA[i] ∧ flagB[i] = True: Observe that Equation 13 implies that both

Alice and Bob execute Line 20 in iteration i and can also execute Line 13 P

times if m /∈ Long. We get:

goodi+1 − goodi = P + 2P · 1(m /∈ Long) ≥ P. (15)

Furthermore, as Alice and Bob only add symbols to msgs, and because of our

assumptions that (mA[i], cA[i]) = (mB[i], cB[i]) and corrL,Π̂,Â(xA, xB, i) = 0,

we get that :

badi+1 = badi. (16)

We now analyze f-badi− f-badi+1. If m /∈ Long, then as we ensure that either

mA[i] or mA[i] − 1 are always in Long, the fact that m /∈ Long implies that

m−1 ∈ Long which implies (due to the definition of Long) that m = 2·ind+1.

This, with the fact that both Alice and Bob execute Line 20 in iteration i

implies that

f-badi − f-badi+1

= −1
(
∃i′ ∈ [2P] : msgsA2·ind+i′ [i+ 1] 6= msgsB2·ind+i′ [i+ 1]

)
× min

C∈{A,B}

2(P+1)∑
i′=1

|msgsC2·ind+i′ [i+ 1]|

= 0,

as corrL,Π̂,Â(xA, xB, i) = 0. On the other hand, if m ∈ Long, we get

that flagA[i] ∧ flagB[i] = True implies that for all i′ ∈ [2P], we have

36

msgsA2·ind+i′ [i + 1] = msgsB2·ind+i′ [i + 1] due to corrL,Π̂,Â(xA, xB, i) = 0. We

get that f-badi = f-badi+1. Thus, in either case, we have:

f-badi = f-badi+1. (17)

Combining Equation 14, Equation 15, Equation 16, and Equation 17, we can

conclude Equation 6.

∗ flagA[i]∧flagB[i] = False: Observe that this is possible only if m ∈ Long.

If c = 0 and m− 1 /∈ Long, Alice and Bob both execute Line 28 in iteration

i. Otherwise, they both execute Line 33 in iteration i. We get:

goodi − goodi+1 = P + P · 1(c = 0 ∧m− 1 /∈ Long). (18)

Additionally, as m ∈ Long and flagA[i] ∧ flagB[i] = False, we have using

corrL,Π̂,Â(xA, xB, i) = 0 that there exists i′ ∈ [2P] for which msgsA2·ind+i′ [i+1] 6=
msgsB2·ind+i′ [i+ 1]. We get that

f-badi − f-badi+1 = P + P · 1(c = 0 ∧m− 1 /∈ Long). (19)

Furthermore, as Alice and Bob only remove (the same number of) symbols

to msgs, and because of our assumption that (mA[i], cA[i]) = (mB[i], cB[i]) ,

we get that :

badi+1 ≤ badi. (20)

Combining Equation 14, Equation 18, Equation 19, and Equation 20, we can

conclude Equation 6.

– (mA[i], cA[i]) > (mB[i], cB[i]): In this case, by Equation 13, we have

(mA[i], cA[i]) > (m̃A[i], c̃A[i]) and (mB[i], cB[i]) < (m̃B[i], c̃B[i]). Due to these

inequalities, we know that both Alice and Bob execute Line 25 and this line

undoes any change they made to msgs in Line 13. Thus, any changes in the

variable msgs in iteration i happen after Line 25. In particular, due to the fact

that (mB[i], cB[i]) < (m̃B[i], c̃B[i]), Bob does not execute any line after Line 25

and we have msgsB[i+ 1] = msgsB[i]. We consider various cases:

∗ cA[i] > 0: In this case, we show that the value of badi+1 − badi is large and

negative enough to outweigh all the other terms. To begin with, observe that

msgsB[i+ 1] = msgsB[i] together with Equation 8 implies that

goodi − goodi+1 ≤
∑
j>0

∆(msgsAj [i+ 1],msgsAj [i]) ≤ P, (21)

as Alice executes Line 33 in iteration i. We again use the fact that Alice

executes Line 33 in iteration i to conclude that mA[i] = mA[i + 1]. This,

together with mB[i+1] = |msgsB[i+ 1]| = |msgsB[i]| = mB[i] and Equation 9

37

gives:

gapi = gapi+1 and f-badi ≥ f-badi+1. (22)

Finally, we analyze badi − badi+1. We get:

badi+1 − badi

=
∑
j>0

∆
(
msgsAj [i+ 1],msgsBj [i+ 1]

)
−∆

(
msgsAj [i],msgsBj [i]

)
(a)
= ∆

(
msgsAmA[i][i+ 1],msgsBmA[i][i+ 1]

)
−∆

(
msgsAmA[i][i],msgsBmA[i][i]

)
(b)
= −P.

(23)

In the above derivation, (a) is due to msgsB[i+1] = msgsB[i] together with the

fact that Alice only changes position mA[i] of msgsA[i] as she only executes

Line 33 and (b) is due to Lemma 3.2. From Equation 21, Equation 22 and

Equation 23, we observe that Equation 6 follows.

∗ cA[i] = 0 : Observe that cA[i] = 0 and (mA[i], cA[i]) > (mB[i], cB[i])

necessitates mA[i] > mB[i]. In this case, Alice either executes Line 28 or

executes Line 31 and Line 33 after Line 25. Thus, using the fact that

msgsB[i + 1] = msgsB[i] together with Equation 7 and Equation 8 implies

that

badi+1 − badi, goodi − goodi+1 ≤
∑
j>0

∆(msgsAj [i+ 1],msgsAj [i])

≤ P + P · 1(mA[i]− 1 /∈ Long).

(24)

We next claim that:

f-badi ≥ f-badi+1. (25)

If mA[i]−1 ∈ Long, this follows as Alice is only removing symbols in iteration

i. On the other hand, if mA[i]−1 /∈ Long, then, as we ensure that either mB[i]

or mB[i]− 1 are always in Long, the fact that mA[i] > mB[i] and mA[i]− 1 /∈
Long implies (due to the definition of Long) that mA[i + 1] = mA[i] − 2P ≥
mB[i]. This, together with mB[i + 1] = |msgsB[i+ 1]| = |msgsB[i]| = mB[i]

gives Equation 25.

Finally, we argue about gapi+1 − gapi. From the definition of gap and

mA[i] > mA[i+ 1] ≥ mB[i+ 1] = mB[i], it follows that:

gapi − gapi+1 = P · |[mA[i+ 1] : mA[i]) ∩ Long|+ |[mA[i+ 1] : mA[i]) ∩ Long|
≥ P + P · 1(mA[i]− 1 /∈ Long).

(26)

From Equation 24, Equation 25 and Equation 26, we observe that Equation 6

38

follows.

– (mA[i], cA[i]) < (mB[i], cB[i]): Symmetric to the case above

5 Our protocols

Our goal in this section is to prove the following theorem:

Theorem 5.1. There exist constants θ2 ≥ 10−20, η3, η4 > 1 such that the following holds:

Let Σ, XA, XB, Y A, Y B be sets as in Subsection 3.3. Let Π = {fC , gC}C∈{A,B} be a

protocol in model STANDARD with T > 2200K0+105θ2 rounds and alphabet Σ. Furthermore,

the input and output sets of Alice (resp. Bob) in Π are XA and Y A (resp. XB and Y B)

respectively.

Then, there is a protocol Π′ = {f ′C , g′C}C∈{A,B} in model LONG with R = η4 · T rounds,

length of S = η3 ·T symbols, alphabet Σ, period P = log(S), and the same input and outputs

sets for the two parties such that for every adversary A′ for Π′ in model LONG, for all inputs

xA ∈ XA and xB ∈ XB, and for all C ∈ {A,B}, we have that

corrL,Π′,A′(x
A, xB) ≤ θ2S =⇒ Π′CA′(x

A, xB) = ΠC(xA, xB).

Furthermore, the functions f ′C and g′C, for C ∈ {A,B} make use of the function

TC = TC1−10−5,|Σ|2P ,S/P,ΣKP (·) (for a large enough constant K so that Theorem 3.7 holds)

and can be computed in time polynomial in T given oracle access to the functions fC and

gC, where C ∈ {A,B}, and oracle access to the function TC.

We show that Theorem 3.8 follows from Theorem 4.1 and Theorem 5.1.

Proof of Theorem 3.8 assuming Theorem 4.1 and Theorem 5.1. Let θ2 ≥ 10−20, η3, η4 be as

promised by Theorem 5.1. Let η1 and θ1 be as promised by Theorem 4.1 for θ2. To show

Theorem 3.8, we define θ = θ1, η = η1η3, and η′ = η3.

Fix a protocol Π in model STANDARD and let Π′ be a protocol in model LONG with S ′

symbols be as promised by Theorem 5.1. Let Π′′ be a protocol with T ′′ rounds in model

STANDARD be as promised by Theorem 4.1 when applied to Π′. We claim that Π′′ satisfies

Theorem 3.8. For this, we fix an adversary A′′ for Π′′ in model STANDARD. Let A′ be the

adversary for Π′ in model LONG promised by Theorem 4.1 and A be an adversary for Π

promised by Theorem 5.1 for A′. For all inputs xA ∈ XA and xB ∈ XB, we have

corrS,Π′′,A′′(x
A, xB) ≤ θT ′′ =⇒ corrL,Π′,A′(x

A, xB) ≤ θ2S
′ =⇒ Π′CA′(x

A, xB) = ΠC(xA, xB).

However, we also have Π′′CA′′(x
A, xB) = Π′CA′(x

A, xB) finishing the argument.

The furthermore part of Theorem 3.8 follows straightforwardly.

39

The rest of this paper is devoted to showing Theorem 5.1. Fix K to be a large enough

constant such that TC1−10−5,Σ2P ,n/P,ΣKP (·) exists. Observe that K is well-defined due to

Theorem 3.7. We define θ2 = 10−20 and η3 = 108K and η4 = 107 and assume without loss of

generality that R is a multiple of P + 1 and S is a multiple of 1100KP . Fix an alphabet Σ,

input and output sets XA, XB, Y A, Y B, and protocol Π in model STANDARD such that Π has

T rounds and alphabet Σ. Our goal is to define a protocol Π′ such that Theorem 5.1 holds.

We begin by giving an informal overview of Π′ in Subsection 5.1 and follow it up with the

actual protocols in Subsection 5.2.

5.1 Informal Overview

In order to define the protocol Π′, we build on the ideas described in Section 2. Broadly, the

ideas in Section 2 can be divided into two parts. First, there are the consistency checks that

takes up most of Section 2 and will be covered in Subsubsection 5.1.1. Additionally, there

is the synchronization mechanism that was covered in Subsection 2.3 and will be further

discussed in Subsubsection 5.1.2.

5.1.1 The Rewind Mechanism

As motivated in Section 2, the protocol Π′ will break the protocol Π into small chunks, and

simulate the protocol Π chunk by chunk. After each chunk of Π is simulated, the transcript

generated is added to a transcript π that the protocol Π′ maintains.

Alongside simulating the chunks, the protocol Π′ also runs a rewind mechanism to detect

and fix errors in the simulation of these chunks. Namely, if the parties detect an error in

one of the chunks they simulated, they start going ‘backwards’ over the chunks to find the

source of this error. When the parties are going backwards over the chunks, they add the

transcripts of these chunk to a ‘backwards transcript’ ψ, that the protocol maintains. This

means that at any point in the protocol, the parties will be maintaining two transcripts π

and ψ, where the transcript ψ is different from the empty transcript ε only if the parties are

going backwards over the chunks to find a source of an error they detected.

In fact, the crux of the protocol Π′ is the rewind mechanism. As discussed in Section 2,

this rewind mechanism takes place through a stack of tree codes maintained by the parties.

Structure of the stack of tree codes. The stack of tree codes maintained by the parties

has two kinds of tree codes: forward tree codes and backward tree codes. The forward tree

codes encode suffixes of the transcript π while the backward tree codes encode the transcript

ψ. The stack of the tree code begins with a forward tree code and alternates between forward

and backward tree codes, i.e., the second tree code on the stack will be a backward tree code,

the third one will be a forward tree code and so on. This implies that when the number of

tree codes in the stack is odd, then the last tree code in the stack is a forward tree code and

the protocol is going forward on the transcript π, and vice versa.

40

In fact, in our implementation, each of the tree codes in the stack is actually the same

tree code, but is used to encode a different suffix of the transcripts π and ψ maintained by

the protocol. Thus, an element in the stack will be completely characterized by a parameter

r denoting the root of the tree code. A value r of the root (for forward tree codes) means

that the tree code will be used to encode the suffix of π starting at position r. Besides r, we

also store other information about tree codes in the variables t, α, and β. We explain these

variables later. We will use R to denote the stack of tree codes.

To finish this part of the overview, we mention that although we store forward and

backward tree codes alternately in the stack, the only backward tree code that we will ever

use is the last backward tree code in the stack. Nonetheless, we keep the other backward

tree codes as they help the presentation in places and only affect the communication by a

constant factor.

Operations done on the tree codes. We next overview the operations performed on

this stack of tree codes.

• The first and the most basic operation that the parties will need to perform on the

stack is to add the transcripts of the simulated (or rewound) chunks, to the tree codes

in the stack. When the parties are going forward, then this operation is simply adding

the transcript, σ, of the chunk just simulated to π (Line 67). On the other hand, when

the parties are going backwards, then this operation involves removing the transcript,

σ, of the most recent chunk from π and adding it to the backwards transcript (Line 76

and Line 77)

• Besides adding the chunk transcripts to the tree codes present in the stack, we will

also need to add fresh tree codes to the stack. Recall from Subsubsection 2.2.2 that

every new tree code added to the stack has a reason associated with it. This reason

is, at a high level, the discrepancy that led to this tree code. We now discuss how we

add new tree codes and compute their reasons.

When the parties are going forward, the parties turn and start going backward as soon

as they see that the tree code encoding they computed (Γ) is different from the tree

code encoding that they received (Γ̃). Before starting a new backward tree code in

Line 70, the parties store this point where they turned in the variable t (Line 69) and

the values of Γ and Γ̃ as the reason in the variable α. In fact, in our implementation,

the parties store only the first place where Γ and Γ̃ were different as opposed to storing

all of Γ and Γ̃. This seemingly weaker idea actually suffices.

On the other hand, when the parties see a discrepancy in their encodings while going

backward, they do not turn and start a forward tree code immediately. As explained in

Subsubsection 2.2.2, the parties instead record this point of discrepancy in the variable

t (Line 90), store the discrepancy as their reason (Line 91) in a variable β8, and turn

8When the parties are going backward, Γ and Γ̃ have only one coordinate.

41

after the transcript sent over the backward tree code is double of what it was when

the discrepancy was found. If this happens, then Line 80 is executed and the parties

add a new forward tree code (and set ψ to ε as it is no longer needed).

Observe that, we treat the reason, α, for the backward tree codes differently from

the reason, β, for the backward tree codes. As the parties turn from going forward

to going backward immediately after seeing the discrepancy, they carry the reason

for the backward tree code when they are going backward. On the other hand, the

parties, when turning from backward to forward, do not turn immediately after seeing

a discrepancy and therefore, need to carry the reason for the forward tree code both

while going backward and going forward. To simplify our implementation, we only

carry the reason for turning forward on the backward tree codes (this only affects the

constants). Overall, the backward tree codes may have both α and β non-trivial, while

the forward tree codes always have α and β set to ⊥.

• Finally, we discuss dropping tree codes from the stack of tree codes. We note that the

parties do not need a backward tree code in the stack once they add a new forward

tree code on top of it. Nonetheless, we keep the backward tree code until the parties

reach a point ‘beyond’ the backward tree code as it only costs us a constant factor

overall. More precisely, when the parties turn forwards from backward, say at point r,

then we keep these two tree codes until the point where |π| ≤ r. When this happens,

we drop both of these tree codes from the stack (Line 88). If the parties go back all

the way to |π| = 0, we drop all the tree codes from the stack and reinitialize R and ψ

(Line 84).

It remains to discuss what happens when the parties drop a forward tree code.

As explained in Subsubsection 2.2.2, the parties drop the forward tree codes after

‘doubling’ them. This is implemented in Line 73, where if the parties realized that

they have double any of the forward tree codes in stack, the pop all the tree codes

starting from the forward tree code that was doubled. To check whether there is

a forward tree code that has been doubled, the parties go over all odd i ∈ |R|
(recall that forward tree codes are stored in odd positions in the stack) and see if

2(R[i].t − R[i + 2].r) ≤ |π| − R[i + 2].r, i.e., they see if the length of the current

transcript π is at least double of where the last forward tree turned to a backward,

i.e., R[i].t, measured from the current root R[i+ 2].r.

Also recall from Subsubsection 2.2.2 that the tree codes need to have more and more

redundancy as the stack of the parties grows deeper and deeper. This is done in Line 50

where we pad the long message sent by the parties to length max(O(1.1|R|), p/2). The

first term inside the max(·) captures the redundancy while the second term is need

to ensure that the parties can resynchronize if the adversary inserts corruptions and

makes them unsynchronized. Its significance will be explained in Subsubsection 5.1.2.

42

5.1.2 The Synchronization Mechanism

We build on the sketch of the synchronization mechanism presented in Subsection 2.3.

Recall that our synchronization mechanism largely mimics the synchronization mechanism

of [BK12] for the most part, but has some non-trivial adaptations required to get it to work

in model LONG.

In the synchronization mechanism of [BK12], the parties maintain a ‘state’ of the protocol.

In [BK12], the value of this state was just the length of the transcript simulated so far. After

simulating a fresh chunk of the protocol, the parties share their state with each other. If the

states are the same, then both parties have local transcripts of the same length, and they

continue the protocol as normal. On the other hand, if one party has a longer transcript

than the other party, then, the party that is ‘ahead’ will rewind chunks, one at time, so that

both the parties have transcripts of the same length.

The reason the parties share the length of the transcript simulated so far with each other

is that this length is a natural measure of the amount of progress the parties have made in

the simulation, i.e., it is true that if a party in [BK12] has a longer transcript than the other

party, and this party rewinds one chunk, then the two parties will only get closer to each

other. This is no longer the case in our protocol, as the party who has a longer transcript

may or may not be ahead of the other party, depending on whether the parties are going

forwards or backwards.

In our protocol, the proper analogue of the length of the transcript simulated is the

number of times the parties added a chunk (to either a forward or a backward tree code).

In fact, our protocol keeps a list, S, of states, and adds an element to this list every time

a symbol is added to any of the tree codes (Line 96). An element of the list S is define by

a tuple (R, π, ψ, p), where R, π, and ψ are as above, and p is a new variable whose role is

explained later. This tuple was designed to contain all the information needed by the parties

to revert to a previous ‘state’ of the protocol and continue the execution from there.

The variable P. The fact that our rewind mechanism deals with a stack with multiple

tree codes creates an additional complication in the synchronization mechanism. Consider

a situation where Alice and Bob have the same transcript π but two different stacks of tree

codes. For simplicity, let us even assume that the set of the roots of the tree codes are not the

same for Alice and Bob. In this case, even though the transcripts are the same for Alice and

Bob, the fact that the roots are different means that the tree code encodings are potentially

different, and the parties will not be able to continue with the simulation thinking that errors

have happened.

In order to get around this problem, we have the parties exchange a few parameters of

their stacks with each other. These parameters are R, the stacks of tree codes, |π| and |ψ|,
the lengths of the forward and backward transcripts, and variable p that we explain later.

These four parameters are captured in the variable P. Note that, in particular, P contains

the roots of all the tree codes and the lengths of the transcript and thus, the problem in the

43

foregoing paragraph does not arise.

Synchronization To summarize, after simulating every chunk the parties send the values

|S| and P to each other along with the encoding on the tree codes (Line 50). If these values

match, then the parties add a symbol to their (either forward or backward) transcript (see

Line 52).

If the value of |S| agrees with the value received but the value of P does not, then the

parties think that they have added the same number of symbols but there was a discrepancy

in one of the tree codes that they added. (Both) the parties rewind one step in this case

hoping to revert to a state where the values of P match9. This is done in Line 54. We next

mention a subtlety of our protocol that makes Line 54 work. This subtlety arises because the

number of bits sent by the parties in Line 50 is a function of the state the parties are in, and

thus may be different for different states. Consider a situation where a state where the parties

communicate a lot is followed immediate by a state where the parties communicate very little.

If the parties wrongly (due to corruptions) decide to execute Line 54 in the iteration with

little communication, then they actually end up rewinding a lot of communication due to

a small number of errors. This is problematic, and the way we get around this problem is

by ensuring that the communication in adjacent states differs by a factor of at most 2 in

Line 5010.

Lastly, the value of |S| is greater than the value received by the party, then the party

thinks that they are ahead of the other party and would like to rewind. As in the

foregoing paragraph, we would like to rewind a number of states roughly ‘equivalent’ to

the communication in this round. As the amount of communication may be different in

different iterations, there is no direct correspondence between the amount of communication

in a state to the number of states. This is where the variable p comes in. The variable p for

a state in S stores the amount of communication done by the parties to reach that state.

In Line 56, we remove a number of states so that the sum of the corresponding p values is

bounded by a constant times the amount of communication in this iteration.

5.2 Our Protocols

We build our protocols based on the overview given in Subsection 5.1. As described in

Subsection 5.1, we design our protocols so that the parties maintain a list of states S. Each

element in the list S is described by a tuple (R, π, ψ, p). The parameters P that the parties

exchange when the state is (R, π, ψ, p) are (R, |π|, |ψ|, p). Here, the variable R denotes the

stack of tree codes, and we maintain four variables (r, t, α, β) for each element in this stack.

Refer to Algorithm 3 for a description of these variables.

We consider both S and R as lists and these two variables support the following

operations:

9There exists such a state because both the parties start with the same state.
10The condition 10l̃ < l before Line 54 arises due to a technicality in out analysis

44

Algorithm 3 Notation
structure T

Tree code root r ∈ N,
Turn t ∈ N,
Reason for current tree code α ∈ N× ΣKP × ΣKP ,
Reason for turn β ∈ ΣKP × ΣKP .

end structure
structure S contains a list of quadruples where each quadruple has

Tree codes R ∈ T ∗,
Transcript-F π ∈

(
Σ2P

)∗
,

Transcript-B ψ ∈
(
Σ2P

)∗
,

Previous communication p ∈ N.
end structure
structure P is a single quadruple that has

Tree codes R ∈ T ∗,
Length-F |π| ∈ N,
Length-B |ψ| ∈ N,
Previous communication p ∈ N.

end structure

• Length of the list: We will use |S| to denote the number of elements in the list S.

We define |R| similarly.

• Accessing an element in the list: For 1 ≤ i ≤ |S|, the notation S[i] will denote

the ith element in S. When i = |S|, we sometimes use S.last instead of S[|S|]. The

variable π in the ith element of S will be denoted using S[i].π. The corresponding

quantities for other fields in S[i] and for the list R are defined analogously.

• Adding elements to the list: When we wish to add an element e ∈ T ∗ ×
(
Σ2P

)∗ ×(
Σ2P

)∗ ×N to S, we denote this using S.Add(e). The element e is then added at the

end of the list. Likewise for R.

• Removing elements in the list: When we wish to remove the last element from

S, we write S.Rem(). After this operation, the list has one less element. We write

S.Rem(i) to denote the operation of removing the last i elements in the list. Likewise

for R.

The notation RF will be used to denote the sublist of R that contains all the elements

in odd positions in R. This notation derives from the fact that the odd positions in R are

occupied by forward tree codes.

Also, we use the variables R, π, ψ, p, and ` freely throughout the protocols we describe.

These are our global variables and can be accessed from anywhere in the protocol. The

variable ` will be reserved for the length of the message sent by the parties in Line 50. For

brevity of notation, we define TC(·) = TC1−10−5,|Σ|2P ,S/P,ΣKP (·).

45

We describe our interactive coding scheme in Algorithm 4, which in turn, uses Algorithm 6

and Algorithm 5. We only write Alice’s side of these protocols as Bob’s side is symmetric.

In our description, we use � to denote a fixed default value of the variables α, β described

above.

Algorithm 4 Our interactive coding scheme showing Theorem 5.1 (Alice’s side).

Input: An input xA ∈ XA.
Output: An element in Y A.
40: S ← [([(0, 0, �, �)], ε, ε, 0)].
41: for i ∈ [R/(P + 1)] do
42: (R, π, ψ, p)← S.last.
43: P ← (R, |π|, |ψ|, p).
44: σ ← Chunk().
45: if |R| is odd then
46: Γ←

[
TC((π‖σ)>r) for (r, ·, ·, ·) ∈ RF

]
.

47: else
48: Γ← [TC(ψ‖σ)].
49: end if
50: Send (P, |S|,Γ) and receive (P̃, |S̃|, Γ̃) as elements of Σ∗. Observe that Σ500KP ·1.1|R|

is large enough to ensure that the tuple (P, |S|,Γ) can be interpreted as an element
inside it. Alice pads her message so that it has `← max(500KP ·1.1|R|, p/2) symbols
from Σ. Let ˜̀ be the number of symbols received.
Alice makes sure that Equation 1 is satisfied in this step as follows: If her message
violates Equation 1, she replaces it with the longest string of ⊥s so that Equation 1
is satisfied. If this happens or if Alice receives a string of ⊥ in this line, she does not
execute Line 54 and Line 56 below.

51: if |S| = |S̃| and P = P̃ then
52: AddSym(σ,Γ, Γ̃).
53: else if |S| = |S̃| or 10˜̀< ` then
54: S.Rem().
55: else if |S| > |S̃| then
56: S.Rem(min(µ, |S|−|S̃|+1(10` < ˜̀))) where µ is the smallest integer that satisfies∑µ

h=1S[|S|+ 1− h].p > 10(`+ ˜̀) (we set µ = |S|+ 1 if none exist).
57: end if
58: end for
59: (R, π, ψ, p)← S.last.
60: Output gA(xA, π[1 : T/P]) interpreting π[1 : T/P] as an element of Σ2T .

6 Analysis

We work with the Σ, XA, XB, Y A, Y B, and Π that we fixed in the beginning of Section 5.

Recall that Π has T rounds. The furthermore part of Theorem 5.1 is easily observed from

46

Algorithm 5 The Protocol Chunk.

61: Alice simulates the next P rounds of the protocol Π assuming input xA and transcript
π. Formally, let πeven denote the even coordinates of π when it is interpreted as a string
in Σ∗. Alice runs the protocol C = {fCC , gCC }C∈{A,B} with P rounds where, we have
fAC (xA, ς) = fA(xA, πeven‖ς) for all ς ∈ Σ<P and gCC is the function that simply returns
its second argument. Note that the output space of the protocol C is Σ2P . She sets σ to
be the output of the protocol C.

62: if |R| is even then
63: σ ← π[|π|].
64: end if
65: return σ.

Algorithm 6 The Protocol AddSym(σ,Γ, Γ̃).

66: if |R| is odd then
67: π ← π‖σ.
68: if Γ 6= Γ̃ then
69: R.last.t← |π|.
70: R.Add(|π|, 0, (RF[h].r,Γh, Γ̃h), �) where h is the smallest such that Γh 6= Γ̃h.
71: else
72: d∗ ← smallest odd number (|R|, if none exist) such that 2R[d].t−R[d+2].r ≤ |π|.
73: R.Rem(|R| − d∗).
74: end if
75: else
76: ψ ← ψ‖σ.
77: π ← π<|π|.
78: if |ψ| = 2(R.last.r −R.last.t) then
79: R.last.α,R.last.β ← �.
80: R.Add(|π|, 0, �, �).
81: ψ ← ε.
82: else
83: if |π| = 0 then
84: R ← [(0, 0, �, �)].
85: ψ ← ε.
86: else
87: Let d∗ be the largest (possibly 0) such that ∀d′ ∈ [d∗] : R[|R|−2d′+1].r = |π|.
88: Delete positions d′ from R for all |R| − 2d∗ ≤ d′ < |R|.
89: if Γ 6= Γ̃ and R.last.t = 0 then
90: R.last.t← R.last.r− |ψ|. As |π| > 0, we have R.last.r > |ψ| in this line.
91: R.last.β ← (Γ1, Γ̃1). Note that |Γ| = |Γ̃| = 1 in this case.
92: end if
93: end if
94: end if
95: end if
96: S.Add(R, π, ψ, `).

47

the description of Π′. Thus, to prove Theorem 5.1, it remains to show that:

Theorem 6.1. For any adversary A′ for Π′, and for all inputs xA ∈ XA and xB ∈ XB, for

all C ∈ {A,B}, we have that:

corrL,Π′,A′(x
A, xB) ≤ θ2S =⇒ Π′CA′(x

A, xB) = ΠC(xA, xB).

6.1 Notations and Framework

We fix an adversary A′ and inputs xA ∈ XA, xB ∈ XB such that corrL,Π′,A′(x
A, xB) ≤ θ2S

for the rest of this paper.

As the protocol Π′ is deterministic, fixing the inputs and the adversary fixes the values

of all the variables in all the iterations of the loop in Line 41 (for both Alice and Bob). For

i ∈ [R/(P + 1)] and a variable var other than σ, we will use varAi to denote the value of the

variable var the first time it is set in iteration i of the loop in Line 41 in Alice’s execution

of Algorithm 4. For a variable like S that is defined once for all the iterations, the value

SAi will denote the value of S at the beginning of Alice’s execution of iteration i. When we

omit the subscript i or when i = R/(P + 1) + 1, we mean the value of var at the end of

Alice’s execution of Algorithm 4. We define varBi and varB analogously with Alice replaced

by Bob. Also, the notation σAi will denote the value of σ after Algorithm 5 is executed by

Alice in iteration i. The notation σBi is defined similarly.

Recall that the variable R is a list of tuples of the form (r, t, α, β). We will use R ′ to

denote the same list with the last two entries omitted from each entry in the list, i.e., for

every entry (r, t, α, β) in R, the list R ′ will have the entry (r, t). We define the variable

Q = (R ′, |π|, |ψ|, p). Observe that, due to Line 79, if (R, π, ψ, p) is the quadruple from

Line 42 in our protocol, we may have α, β 6= � only for the last element in R. Thus, the

quadruple (R, π, ψ, p) is determined by Q, π‖ψ,R.last.α,R.last.β

For C ∈ {A,B}, we define EC(l) to be the set of all iterations i such that party C executes

Line l in iteration i. Also define, for i ∈ [R/(P + 1)], the values corrAi = corrA→BL,Π′,A′(x
A, xB, i),

corrBi = corrB→AL,Π′,A′(x
A, xB, i), and corri = corrAi + corrBi .

Finally, for a part of this section, we will need to consider another adversary A′′ for Π′.

When we refer to the value of a variable (or the value of corr) in the execution of Π′ in

the presence of these adversaries (with the same inputs), we explicitly write the adversaries

either in parenthesis or as a subscript. Thus, we may write QA
5 (A′′) or corrB2 (A′′), etc.

Proof of Theorem 6.1. We show Theorem 6.1 in two steps. First, we show that, at the cost of

changing the constants in the theorem, we can assume that the adversary A′ has a particular

structure. More precisely,

Theorem 6.2. There is an adversary A′′ for Π′ and num > 0 such that the following hold:

1. We have [num− 1] ⊆ EA(A′′, 52) ∩ EB(A′′, 52) and for all i ∈ [num], it holds that

(QA
i (A′′), |SAi (A′′)|) = (QB

i (A′′), |SBi (A′′)|).

48

Furthermore, SCi (A′′) = SCnum(A′′) for all num ≤ i ≤ R/(P + 1) + 1 and C ∈ {A,B}.

2. It holds that:∑
i<num

`Ai (A′′) + `Bi (A′′) ≥ S/500.
∑
i<num

corri(A′′) ≤ 107θ2S.

3. We have:

∀C ∈ {A,B} : Π′CA′′(x
A, xB) = ΠC(xA, xB)

=⇒ ∀C ∈ {A,B} : Π′CA′(x
A, xB) = ΠC(xA, xB).

Fix A′′ and num to be the ones promised by Theorem 6.2 for the rest of this paper. We

finish the proof of Theorem 6.1 by showing that:

Theorem 6.3. For all C ∈ {A,B}, we have that Π′CA′′(x
A, xB) = ΠC(xA, xB).

6.2 Proof of Theorem 6.3

We now prove Theorem 6.3. Recall that A′′ and num > 0 are the values promised by

Theorem 6.2. As we will restrict attention to the adversary A′′, we will drop it from our

notation for variables, etc. That is, the notation varAi will denote varAi (A′′), E(·) will denote

E(A′′, ·), etc.11

We have from item 1 in Theorem 6.2 that [num − 1] ⊆ EA(52) ∩ EB(52) and for all

i ∈ [num],

(QA
i , |SAi |) = (QB

i , |SBi |).

It follows from the definition of Q, R ′, and ` that (R ′Ai , |πAi |, |ψAi |, pAi , |SAi |, |RA
i |, `Ai) =

(R ′Bi , |πBi |, |ψBi |, pBi , |SBi |, |RB
i |, `Bi) for all i ∈ [num]. Due to this equality, we drop the

superscripts A and B from these quantities. We also drop the superscripts from E(·) when

it is clear that the value of EA(·) and EB(·) are the same.

We consider the first num iterations of Π′ when executed in the presence of A′′. Owing

to the furthermore part of item 1 of Theorem 6.2, we have for C ∈ {A,B} that πCnum = πC .

Using this together with Algorithm 5 and the definition of ΠC(xA, xB), we get that in order

to prove Theorem 6.3, it is sufficient to show that πAnum[1 : T/P] = πBnum[1 : T/P].

Recall that we use LCP(u, v) to denote the longest common prefix of two strings u, v.

Thus, all we have to show is that |LCP
(
πAnum, π

B
num

)
| ≥ T/P . This follows from the following

theorem, our choice of S, and item 2 of Theorem 6.2.

11This should not be confused with our notation in Subsection 6.1 and Subsection 6.3, where we dropped
the adversary A′ from our notation for variables. The adversary A′ will not appear anywhere in this section.

49

Theorem 6.4. It holds that:∑
i<num

`i ≤ 16 · `1 · |LCP
(
πAnum, π

B
num

)
|+ 105 ·

∑
i<num

corri.

Proof. Note that `i = max(500KP ·1.1|Ri|, pi/2) for i ∈ [num], where pi = `i−1 for i > 1 and

p1 = 0. This gives: ∑
i<num

`i ≤
∑
i<num

500KP · 1.1|Ri| + `i−1/2 · 1(i > 1),

implying that
∑

i<num `i ≤
∑

i<num 1000KP · 1.1|Ri|. Thus, in order to finish the proof it

is sufficient to show that
∑

i<num `
∗
i ≤ 8 · `∗1 · |LCP

(
πAnum, π

B
num

)
|+ 105 ·

∑
i<num corri, where

`∗i = 1000KP · 1.1|Ri| for i ∈ [num]. We show this in Subsubsection 6.2.11 below.

6.2.1 Our Framework

Define the sets StartsF = E(80) ∪ E(84) ∪ {0} and StartsB = E(70). Observe that the

sets StartsF and StartsB are disjoint. Let the set:

Starts = StartsF ∪ StartsB.

For i ∈ Starts, define the function:

Stop(i) =

{
arg min{i < i′ ≤ num | i′ ∈ E(84)} , i ∈ E(84) ∪ {0}
arg min{i < i′ ≤ num | |Ri′ | < |Ri+1|} − 1 , i ∈ E(70) ∪ E(80)

.

If any of the arg min is over an empty set, then we define Stop(i) = num and say that i

is ‘fixed’ . If i ∈ Starts is not fixed, we say that i is ‘direct’ if |RStop(i)| − |Ri+1| is even.

Otherwise, we say that i is indirect. Let Range(i) = (i : Stop(i)]. We make the following

observations about our protocol.

Fact 6.5. It holds that:

1. For all 0 ≤ i < num, we have |Ri+1| ≥ 1, with equality when i ∈ E(84)∪{0} and strict

inequality when i ∈ E(70) ∪ E(80).

2. For all 1 ≤ i < num, we have |Ri+1| ≤ |Ri| + 1 with strict inequality unless

i ∈ E(70) ∪ E(80).

3. For all i ∈ Starts, we have (i : Stop(i)) ∩ E(84) = ∅. Furthermore, for all

j ∈ Range(i), we have |Rj| ≥ |Ri+1|.

4. For all 1 ≤ i < num and C ∈ {A,B}, we have RC
i [1 : min(|Ri+1|, |Ri|)) = RC

i+1[1 :

min(|Ri+1|, |Ri|)). In particular, due to item 3, for all i ∈ Starts, j, j′ ∈ Range(i),

and all C ∈ {A,B}, we have RC
j [1 : |Ri+1|) = RC

j′ [1 : |Ri+1|).

50

5. For all 1 ≤ i < num and all C ∈ {A,B}, if |Ri| is odd, we have πCi+1 = πCi ‖σCi , and

if |Ri| is even, we have πCi+1 = πCi [1 : |πi|) and σCi = πCi [|πi|]. If |Ri| is even and

i /∈ Starts, we have ψCi+1 = ψCi ‖σCi .

6. For all i ∈ Starts, we have Ri+1.last.r = |πi+1|.

7. For all i ∈ Starts that are not fixed, we have Stop(i) ∈ E(84) ∪ E(73) ∪ E(88).

8. For all 1 ≤ i < num and all odd d ≤ min(|Ri+1|, |Ri|), we have Ri[d].r = Ri+1[d].r. In

particular, due to item 3 and item 6, we have for all i ∈ StartsF and j ∈ Range(i)

that |πi+1| = Rj[|Ri+1|].r.

9. For all 1 ≤ i ≤ i′ ≤ num such that |Ri′′ | is even for all i′′ ∈ [i : i′] and C ∈ {A,B}, we

have (Ri′ .last.r,RC
i′ .last.α) = (Ri.last.r,RC

i .last.α). If Ri.last.t > 0, we also have

(Ri′ .last.t,RC
i′ .last.β) = (Ri.last.t,RC

i .last.β).

10. For all i ∈ [num] such that |Ri| is even, we have |ψi| + |πi| = Ri.last.r > 0.

Furthermore, if |Ri| is odd, then |ψi| = 0.

11. For all 1 ≤ i < num such that |Ri| is even, we have |ψi| < 2 (Ri.last.r −Ri.last.t).

It follows by item 10 that i ∈ E(80) implies Ri.last.t > 0. If Ri+1.last.t > 0, we also

have |ψi|+ 1 ≥ Ri+1.last.r −Ri+1.last.t.

Lemma 6.6. For all i ∈ [num], if |Ri| is odd, then we have

Ri[1].r ≤ Ri[3].r ≤ · · · ≤ Ri.last.r ≤ |πi| < min
odd d<|Ri|−1

2Ri[d].t−Ri[d+ 2].r.

On the other hand, if |Ri| is even, then we have

Ri[1].r ≤ · · · ≤ Ri[|Ri|−1].r < |πi| ≤ min

(
Ri[|Ri| − 1].t, min

odd d<|Ri|−1
2Ri[d].t−Ri[d+ 2].r

)
.

Furthermore,

• In either case, for all odd d < |Ri| − 1, we have

Ri[d].t > Ri[d+ 2].r.

• If i ∈ E(73) and d∗i < |Ri|, we have

|πi+1| = 2Ri[|Ri+1|].t−Ri[|Ri+1|+ 2].r

Proof. Proof by induction on i. The base case i = 1 is straightforward. We assume the claim

holds for i < num and show it for i+ 1. We consider various cases:

• If i ∈ E(67), then |πi+1| = |πi|+ 1. We have:

51

– If i ∈ E(70), then a new entry gets added to R in iteration i, |Ri+1| is even, and

the r field in other entries does not change. Thus, Ri[1].r ≤ Ri[3].r ≤ · · · ≤
Ri.last.r ≤ |πi| implies Ri+1[1].r ≤ Ri+1[3].r ≤ · · · ≤ Ri+1[|Ri+1| − 1].r ≤ |πi| <
|πi+1|.
Furthermore, as the t entry only changes in Ri+1[|Ri+1| − 1] and Ri+1[|Ri+1| −
1].t = |πi+1|, we have

|πi+1| = |πi|+ 1

≤ min

(
Ri+1[|Ri+1| − 1].t, min

odd d<|Ri|−1
2Ri[d].t−Ri[d+ 2].r

)
= min

(
Ri+1[|Ri+1| − 1].t, min

odd d<|Ri+1|−1
2Ri+1[d].t−Ri+1[d+ 2].r

)
.

The furthermore part is straightforward as none of the relevant fields change.

– Otherwise, i ∈ E(73), then an even number of entries are removed from the end

of R in iteration i. Thus, the induction hypothesis Ri[1].r ≤ Ri[3].r ≤ · · · ≤
Ri.last.r ≤ |πi| with Line 73 implies Ri+1[1].r ≤ Ri+1[3].r ≤ · · · ≤ Ri+1.last.r ≤
|πi| < |πi+1|.
Additionally, by definition of d∗, we have

|πi+1| < min
odd d<|Ri+1|−1

2Ri+1[d].t−Ri+1[d+ 2].r.

The furthermore parts are straightforward.

• If i ∈ E(76), then |πi+1| = |πi| − 1. We have:

– If i ∈ E(80), then a new entry gets added to R in iteration i, |Ri+1| is

odd, and the r and t field in other entries does not change. Furthermore,

Ri+1.last.r = |πi+1|. Thus, Ri[1].r ≤ Ri[3].r ≤ · · · ≤ Ri[|Ri| − 1].r < |πi| implies

Ri+1[1].r ≤ Ri+1[3].r ≤ · · · ≤ Ri+1[|Ri+1| − 2].r ≤ |πi| − 1 = |πi+1| = Ri+1.last.r.

Furthermore, we have

min
odd d<|Ri+1|−1

2Ri+1[d].t−Ri+1[d+ 2].r

= min

(
2Ri[|Ri| − 1].t−Ri+1.last.r, min

odd d<|Ri|−1
2Ri[d].t−Ri[d+ 2].r

)
≥ min (2|πi| − |πi+1|, |πi|) > |πi+1|.

For the furthermore part, as the other relevant fields do not change, it is enough

to show that Ri[|Ri| − 1].t > Ri+1.last.r = |πi+1| = |πi| − 1 which holds due to

the induction hypothesis.

– If i ∈ E(84), then RC
i+1 = [(0, 0, �, �)] for C ∈ {A,B}, and the induction step is

straightforward.

52

– Otherwise, we have i ∈ E(87). Using the definition of d∗ and the induction

hypothesis, we get Ri[1].r ≤ Ri[3].r ≤ · · · < Ri[|Ri| − 2d∗ + 1].r = · · · =

Ri[|Ri| − 1].r = |πi+1| = |πi| − 1 < |πi|. We execute Line 88 and possibly also

execute Line 90. The former deletes the entries at positions [|Ri| − 2d∗i : |Ri|)
from R while the latter does not affect the r and t fields in any of the odd entries.

Thus, to show that Ri+1[1].r ≤ Ri+1[3].r ≤ · · · ≤ Ri+1[|Ri+1| − 1].r < |πi+1|, we

need to show Ri[1].r ≤ Ri[3].r ≤ · · · ≤ Ri[|Ri| − 2d∗ − 1].r < |πi+1|, which holds

by definition of d∗.

Furthermore, if d∗ = 0, then we have

|πi+1| < |πi| ≤ min

(
Ri[|Ri| − 1].t, min

odd d<|Ri|−1
2Ri[d].t−Ri[d+ 2].r

)
= min

(
Ri+1[|Ri+1| − 1].t, min

odd d<|Ri+1|−1
2Ri+1[d].t−Ri+1[d+ 2].r

)
.

On the other hand, if d∗ > 0, then we have

|πi+1| = |πi| − 1

≤ min

(
Ri[|Ri| − 2d∗ + 1].r, min

odd d<|Ri|−1
2Ri[d].t−Ri[d+ 2].r

)
≤ min

(
Ri[|Ri| − 2d∗ − 1].t, min

odd d<|Ri+1|−1
2Ri[d].t−Ri[d+ 2].r

)
= min

(
Ri+1[|Ri+1| − 1].t, min

odd d<|Ri+1|−1
2Ri+1[d].t−Ri+1[d+ 2].r

)
.

The furthermore part is straightforward as none of the relevant fields change.

Lemma 6.7. For i < i′ ∈ Starts , either Range(i) ∩ Range(i′) = ∅ or Range(i′) ⊆
Range(i).

Proof. If i is fixed, the result is straightforward. So we assume that i is not fixed. We

first assume i ∈ E(84) ∪ {0} so that Stop(i) = arg min{i < i′′ ≤ num | i′′ ∈ E(84)}. If

i′ ≥ Stop(i), we are done as Range(i′)∩Range(i) = ∅. On the other hand, if i′ < Stop(i),

then using the fact that i′ ∈ Starts, it follows that i′ ∈ E(70) ∪ E(80). In this case, we

show that Range(i′) ⊆ Range(i) by showing that Stop(i) ≥ Stop(i′). To see why the

latter holds, use item 1 of Fact 6.5 to get

|RStop(i)+1| = 1 < 2 ≤ |Ri′+1|.

Now, assume that i ∈ E(70) ∪ E(80) so that Stop(i) = arg min{i < i′′ ≤ num | |Ri′′ | <
|Ri+1|}−1. If i′ ≥ Stop(i), we are done as Range(i′)∩Range(i) = ∅. On the other hand,

if i′ < Stop(i), then we claim that i′ 6∈ E(84) ∪ {0}. Otherwise, by item 1 of Fact 6.5, we

53

have

|Ri′+1| = 1 < 2 ≤ |Ri+1|,

contradicting i′ < Stop(i). Now, we use i′ ∈ Starts to get i′ ∈ E(70) ∪ E(80). As

i′ < Stop(i), we get |Ri′+1| ≥ |Ri+1| and, in turn, Stop(i) ≥ Stop(i′). It follows that

Range(i′) ⊆ Range(i).

Midpoints. For i ∈ Starts, define

Mid(i) = max{i′ ∈ Range(i) | |Ri′ | = |Ri+1|}.

Observe that Mid(i) is well defined as the maximum is taken over a non-empty (as it contains

i + 1) set. Also, for i ∈ Starts \ {0}, define Prev(i) = max{i′ < i ∈ Starts | |Ri′+1| =

|Ri|}. This is well defined as the set over which the maximum is taken is non-empty. Indeed,

if |Ri| = 1, then 0 is in the set. Otherwise, if |Ri| > 1, then, using the fact that |R| increases

by at most 1 in each iteration and only increases in iterations in Starts, we can conclude

that there is i′ < i ∈ Starts such that |Ri′+1| = |Ri| and the set, therefore, is non-empty.

Lemma 6.8. For i ∈ E(70) ∪ E(80), we have Range(i) ⊆ Range(Prev(i)).

Proof. Owing to Lemma 6.7, it is sufficient to show that Stop(Prev(i)) > i. Suppose for

the sake of contradiction that Stop(Prev(i)) ≤ i implying that Prev(i) is not fixed. Due

to item 7 of Fact 6.5, we have that Stop(Prev(i)) < i. This gives Prev(i) /∈ E(84) ∪ {0}
as otherwise Stop(Prev(i)) ∈ Starts and |RStop(Prev(i))+1| = |RPrev(i)+1| = |Ri|
contradicting the definition of Prev(i).

Thus, we must have Prev(i) ∈ E(70) ∪ E(80) in which case |RStop(Prev(i))+1| <
|RPrev(i)+1| = |Ri|. As |R| increases by at most 1 in each iteration and only increases

in iterations in Starts, we can conclude that there is Stop(Prev(i)) < i′′ < i ∈ Starts

such that |Ri′′+1| = |Ri| contradicting the definition of Prev(i).

Lemma 6.9. For all i ∈ Starts that are indirect, we have:

• Mid(i) < Stop(i).

• If i ∈ StartsF, then Mid(i) ∈ E(70). If i ∈ StartsB, then Mid(i) ∈ E(80).

• Stop(Mid(i)) = Stop(i).

• Prev(Mid(i)) = i.

Proof. We prove each part in turn:

• For the first part, it is sufficient to show that |RStop(i)| > |Ri+1|. If i ∈ E(84) ∪ {0},
then, by the definition of Stop(i), we have, Stop(i) ∈ E(84). This implies that

|RStop(i)| is even in turn implying |RStop(i)| > |Ri+1| = 1.

54

On the other hand, if i ∈ E(70) ∪ E(80), then, by the definition of Stop(i), we have,

|RStop(i)| ≥ |Ri+1|. This combined with the fact that |RStop(i)| − |Ri+1| is odd (as i is

indirect) implies that |RStop(i)| > |Ri+1|.

• By the previous part, we have Mid(i) < Stop(i). This combined with the definition

of Mid(i) and item 3 of Fact 6.5 implies that |RMid(i)+1| > |Ri+1| = |RMid(i)|. Now, if

i ∈ StartsF, then |Ri+1| = |RMid(i)| is odd and |RMid(i)+1| > |RMid(i)| is only possible

when Mid(i) ∈ E(70).

Similarly, if i ∈ StartsB, then |Ri+1| = |RMid(i)| is even and |RMid(i)+1| > |RMid(i)| is

only possible when Mid(i) ∈ E(80).

• Assume for the sake of contradiction that Stop(Mid(i)) 6= Stop(i). By Lemma 6.7,

we must have Stop(Mid(i)) < Stop(i). By the foregoing part and the definition

of Stop(i), we have that |RStop(Mid(i))+1| < |RMid(i)+1|. Combined with item 3 of

Fact 6.5, we get

|Ri+1| ≤ |RStop(Mid(i))+1| < |RMid(i)+1| = |RMid(i)|+ 1 = |Ri+1|+ 1.

As all the values are integers, we must have |Ri+1| = |RStop(Mid(i))+1| contradicting the

definition of Mid(i).

• We argue using the definition of Prev(·):

Prev(Mid(i)) = max{i′ <Mid(i) ∈ Starts | |Ri′+1| = |RMid(i)|} ≥ i,

where the last step is because i < Mid(i) ∈ Starts and |Ri+1| = |RMid(i)|. We next

claim that max{i′ < Mid(i) ∈ Starts | |Ri′+1| = |RMid(i)|} ≤ i. To see why, suppose

for the sake of contradiction that there exists i′′ > i ∈ {i′ < Mid(i) ∈ Starts |
|Ri′+1| = |RMid(i)|}. Observe that i′′ /∈ {0} ∪ E(84) as otherwise Mid(i) > i′′ > i is a

contradiction to item 3 of Fact 6.5. Therefore, i′′ ∈ E(70) ∪ E(80). This implies that

|RMid(i)| = |Ri′′+1| = |Ri′′ |+ 1 ≥ |Ri+1|+ 1,

a contradiction.

Let i ∈ Starts. We say that j ∈ {i} ∪ Range(i) is ‘good’ for i if one of the following

conditions hold: (1) j = i, (2) |Rj| = |Ri+1|, (3) j = Stop(i) and |Rj| − |Ri+1| is even.

6.2.2 Some Technical Lemmas

Lemma 6.10. For all i ∈ StartsF that are indirect, we have |πStop(i)+1| = |πi+1|.

Proof. To start, conclude from the definition of indirect that |RStop(i)| is even. This together

with item 7 of Fact 6.5 gives us that Stop(i) ∈ E(84) ∪ E(88).

55

If Stop(i) ∈ E(84), then we have |πStop(i)| = 1 and |πStop(i)+1| = 0. We have using item 8

of Fact 6.5 and Lemma 6.6 that

|πStop(i)+1| = 0 ≤ |πi+1| = RStop(i)[|Ri+1|].r < |πStop(i)| = 1,

and the result follows as all quantities are integers. On the other hand, if Stop(i) ∈ E(88),

then we get from the definition of Stop(·) that i ∈ E(80) and therefore |RStop(i)+1| < |Ri+1|.
This, due to Line 87 and Line 88 means that |πStop(i)+1| = RStop(i)[|Ri+1|].r. To finish the

argument, we simply invoke item 8 of Fact 6.5.

Lemma 6.11. For all i ∈ StartsB and j ∈ {i} ∪Range(i) \ {num}, we have

|πj+1|+ min
j′∈[i:j]

|πj′+1| ≤ 2 · |πi+1|.

Proof. Proof by contradiction. Suppose there exists j ∈ {i} ∪ Range(i) \ {num} such

that the result does not hold and consider the smallest such j. It must be that |πj+1| 6=
minj′∈[i:j]|πj′+1|, as otherwise

|πj+1|+ min
j′∈[i:j]

|πj′+1| = 2 · min
j′∈[i:j]

|πj′+1| ≤ 2 · |πi+1|.

Thus, in particular, we have j 6= i and therefore, by our choice of j, we have

|πj|+ min
j′∈[i:j)

|πj′+1| < |πj+1|+ min
j′∈[i:j]

|πj′+1|,

implying that |πj| < |πj+1| and therefore that |Rj| is odd by item 5 of Fact 6.5. As

i ∈ StartsB and j ∈ Range(i), we get from item 3 of Fact 6.5 that |Rj| is odd implies

|Rj| > |Ri+1|.
Let i + 1 ≤ j′′ ≤ j to be the largest such that |Rj′′ | = |Ri+1|. Observe that j′′ is well

defined as j′′ = i+ 1 is one such value. As |Rj| > |Ri+1|, we have j′′ < j, and therefore, by

our choice of j′′, that |Rj′′+1| > |Ri+1| = |Rj′′| (we have |Rj′′+1| > |Ri+1| due to item 3 of

Fact 6.5) implying that j′′ ∈ E(80) ⊆ StartsF by item 2 of Fact 6.5.

Next, note that j ≤ Stop(j′′) =⇒ j ∈ Range(j′′) as otherwise, by definition of Stop(·)
and item 3 of Fact 6.5, we have |Ri+1| ≤ |RStop(j′′)+1| < |Rj′′+1| = |Rj′′ |+ 1 = |Ri+1|+ 1, a

contradiction to the choice of j′′ as all quantities are integers. We have

|πj+1| > 2 · |πi+1| − min
j′∈[i:j]

|πj′+1|

≥ 2 · |πi+1| − |πj′′+1|
≥ 2 ·Ri+1[|Ri+1| − 1].t− |πj′′+1| (As i ∈ StartsB)

≥ 2 ·Ri+1[|Ri+1| − 1].t−Rj[|Rj′′+1|].r (Fact 6.5, item 8)

≥ 2 ·Rj[|Ri+1| − 1].t−Rj[|Rj′′+1|].r (Fact 6.5, item 4)

≥ 2 ·Rj[|Ri+1| − 1].t−Rj[|Ri+1|+ 1].r (As j′′ ∈ E(80))

56

≥ |πj|+ 1, (Lemma 6.6)

a contradiction to item 5 of Fact 6.5.

Lemma 6.12. Let i ∈ Starts and i′ ∈ Range(i) ∩ Starts be such that |Ri′| = |Ri+1|.
We have:

• If Stop(i′) < Stop(i), then i′ is indirect and we have |RStop(i′)+1| = |Ri+1|.

• If Stop(i′) = Stop(i) < num, then we have i′ is indirect if and only if Stop(i) is

good for i.

Proof. We prove each part in turn. In both the parts, we use the fact that i′ < Stop(i′) ≤
Stop(i) implies that i′ /∈ E(84) ∪ {0} as otherwise, we have a contradiction to item 3 of

Fact 6.5.

• First, note that Stop(i′) < Stop(i) implies that Stop(i′) + 1 ∈ Range(i) and

therefore

|Ri+1| ≤ |RStop(i′)+1| (Fact 6.5, item 3)

< |Ri′+1| (Definition of Stop(·) and i′ /∈ E(84) ∪ {0})
= |Ri′ |+ 1 (As i′ /∈ E(84) ∪ {0})
= |Ri+1|+ 1. (|Ri′ | = |Ri+1|)

As all quantities are integers, we get that |RStop(i′)+1| = |Ri+1|. It remains to show

that i′ is indirect. For this, we need to show that |RStop(i′)| − |Ri′+1| is odd. As

Stop(i′) < Stop(i), we have that Stop(i′) /∈ E(84) and therefore, by item 7 of

Fact 6.5 that Stop(i′) ∈ E(73) ∪ E(88). This means that |RStop(i′)| − |RStop(i′)+1| is

even and it is sufficient to show that |RStop(i′)+1|−|Ri′+1| is odd. The latter is because:

|RStop(i′)+1| − |Ri′+1| = |Ri+1| − |Ri′+1| = |Ri′| − |Ri′+1| = −1,

as i′ /∈ E(84) ∪ {0}.

• As Stop(i) = Stop(i′) < num, we have that i′ is indirect if and only if |RStop(i)| −
|Ri′+1| is odd. As i′ /∈ E(84) ∪ {0} and |Ri′ | = |Ri+1|, this happens if and only if

|RStop(i)| − |Ri+1| is even which is if and only if Stop(i) is good for i.

Lemma 6.13. Let i ∈ StartsB and j ∈ Range(i) \ {num} be good for i. We have

• |πj+1| ≤ minj′∈[i:j)|πj′+1|. The inequality is strict if |Rj| = |Ri+1|.

• |ψj| < 2 · (|πi+1| − |πj+1|).

57

Proof. Proof by induction. For the base case j = i + 1, we have by item 5 of Fact 6.5 that

|πi+1| − |πj+1| = 1 and |ψj| = 0 and the claim follows. We show it for j > i + 1 assuming

that it holds for all values < j. Let i + 1 ≤ j′ < j be the largest such that j′ is good for

i. This is well defined as j′ = i + 1 is one such value. Note that |Rj′ | and |Rj| are even by

definition of good. If j′ = j − 1, then we argue using item 5 of Fact 6.5:

|πj+1| < |πj′+1| ≤ min

(
|πj′+1|, min

j′′∈[i:j′)
|πj′′+1|

)
= min

j′′∈[i:j)
|πj′′+1|,

and

|ψj| ≤ |ψj′ |+ 1 < 2 · (|πi+1| − |πj|) + 1 < 2 · (|πi+1| − |πj+1|) .

The remainder of this proof deals with the case j′ < j − 1. In this case, by our choice

of j′ we have that j′ + 1 is not good for i implying that |Rj′+1| > |Ri+1| = |Rj′| (we have

|Rj′+1| > |Ri+1| due to item 3 of Fact 6.5) implying that j′ ∈ E(80) ⊆ StartsF by item 2

of Fact 6.5.

As j′ < j ≤ Stop(i), we have by Lemma 6.7 that Stop(j′) ≤ Stop(i). We consider two

cases:

• When Stop(j′) < Stop(i): In this case, we first claim that j = Stop(j′) + 1.

Indeed, j ≤ Stop(j′) + 1 as otherwise we get |RStop(j′)+1| = |Ri+1| from Lemma 6.12

implying that Stop(j′) + 1 < j is good for i contradicting the choice of j′. Also

j ≥ Stop(j′) + 1, as either j = Stop(i) > Stop(j′) or by the definition of good,

we have |Rj| = |Ri+1| < |Rj′+1| implying that j ≥ Stop(j′) + 1 by the definition of

Stop(·).

Next, we use Lemma 6.12 to conclude that j′ is indirect, which with Lemma 6.10

means:

|πj+1| < |πStop(j′)+1| = |πj′+1| ≤ min

(
|πj′+1|, min

j′′∈[i:j′)
|πj′′+1|

)
= min

j′′∈[i:j′]
|πj′′+1|.

Due to item 8 of Fact 6.5 and Lemma 6.6, we also have

|πj+1| < |πStop(j′)+1| = |πj′+1| ≤ min
j′′∈(j′:Stop(j′)]

|πj′′ |.

We combine these two equations to conclude that |πj+1| < |πj′+1| = minj′′∈[i:j)|πj′′+1|,
as desired. For the second part, let j′ < j1 ≤ j be the largest such that |Rj1| is odd.

This is well defined as |Rj′+1| is odd. By our choice of j1, we have that |Rj′′ | is even

for all j1 < j′′ ≤ j implying that (j1 : j) ∩ Starts = ∅. Furthermore, as |Rj1| is odd,

we have that |ψj1+1| = 0.

Due to item 5 of Fact 6.5, we have that |ψj| − |ψj1+1| = |πj1+1| − |πj|. Combining, we

get

|ψj| = |πj1+1| − |πj|

58

≤ 2 · |πi+1| − min
j′′∈[i:j1]

|πj′′+1| − |πj| (Lemma 6.11)

≤ 2 · |πi+1| − |πj′+1| − |πj| (As |πj′+1| = minj′′∈[i:j)|πj′′+1|)
≤ 2 · (|πi+1| − |πj|) (Lemma 6.10 and j = Stop(j′) + 1)

< 2 · (|πi+1| − |πj+1|) . (Fact 6.5, item 5)

• When Stop(j′) = Stop(i): As j′ < j ≤ Stop(i) = Stop(j′), we have that

j ∈ Range(j′) and therefore, using item 3 of Fact 6.5 and the fact that j is good

for i, we have that |Rj| ≥ |Rj′+1| > |Ri+1| and j = Stop(i). Thus, we don’t have to

show a strict inequality in the first part of this lemma.

Using the fact that j = Stop(i) is good for i, we have by Lemma 6.12 that j′ is

indirect, which with Lemma 6.10 means:

|πj+1| = |πj′+1| ≤ min

(
|πj′+1|, min

j′′∈[i:j′)
|πj′′+1|

)
= min

j′′∈[i:j′]
|πj′′+1|.

Due to item 8 of Fact 6.5 and Lemma 6.6, we also have

|πj+1| = |πj′+1| ≤ min
j′′∈(j′:Stop(j′)]

|πj′′ |.

We combine these two equations to conclude that |πj+1| = |πj′+1| = minj′′∈[i:j)|πj′′+1|,
as desired. For the second part, let j′ < j1 ≤ j be the largest such that |Rj1| is odd.

This is well defined as |Rj′+1| is odd. By our choice of j1, we have that |Rj′′| is even

for all j1 < j′′ ≤ j implying that (j1 : j) ∩ Starts = ∅. Furthermore, as |Rj1| is odd,

we have that |ψj1+1| = 0.

Due to item 5 of Fact 6.5, we have that |ψj| − |ψj1+1| = |πj1+1| − |πj|. Combining, we

get

|ψj| = |πj1+1| − |πj|
≤ 2 · |πi+1| − min

j′′∈[i:j1]
|πj′′+1| − |πj| (Lemma 6.11)

≤ 2 · |πi+1| − |πj′+1| − |πj| (As |πj′+1| = minj′′∈[i:j)|πj′′+1|)
≤ 2 · |πi+1| − |πj′+1| − |πj+1| − 1 (Fact 6.5, item 5)

< 2 · (|πi+1| − |πj+1|) . (As |πj+1| = |πj′+1|)

Corollary 6.14. Let i ∈ StartsB and j ∈ Range(i) \ {num}. If |Rj| = |Ri+1|, we have

for all j′ ∈ (i : j] that |πj| ≤ |πj′| and πCj = πCj′ [1 : |πj|] for all C ∈ {A,B}.

Proof. We only show that |πj| ≤ |πj′| as the other part follows because the parties only

add/remove one symbol from π in every iteration. As |Rj| = |Ri+1| implies j is good for i,

59

we get using item 5 of Fact 6.5 that:

|πj| ≤ |πj+1|+ 1 ≤ min
j′∈[i:j)

|πj′+1| = min
j′∈(i:j]

|πj′ |.

Lemma 6.15. Let i ∈ StartsB and i′ ∈ (i : Stop(i))∩StartsF be such that |Ri′ | = |Ri+1|.
We have for all j ∈ [i : Stop(i′)] \ {num} that:

|πi′+1| ≤ |πj+1|.

Proof. If j ∈ [i : i′], this follows using Lemma 6.13. We next show this for j ∈ [i :

Stop(i′)] \ {num}. For all such j, we have by item 8 of Fact 6.5 that |πi′+1| = Rj[|Ri′+1|].r.
If |Rj| is odd, we get using Lemma 6.6 and item 5 of Fact 6.5 that:

|πj+1| = |πj|+ 1 ≥ Rj[|Ri′+1|].r + 1 = |πi′+1|+ 1.

On the other hand, if |Rj| is even, we get using Lemma 6.6 and item 5 of Fact 6.5 that:

|πj+1| = |πj| − 1 > Rj[|Ri′+1|].r − 1 > |πi′+1| − 1,

and the result follows as all quantities are integers.

Lemma 6.16. For all i ∈ StartsB that are indirect, we have:

0 ≤ |πStop(i)+1| − |πi+1| ≤ |πi+1| − |πMid(i)+1|.

Furthermore, if |RStop(i)+1|+ 1 = |Ri+1|, then the second inequality is an equality.

Proof. To start, conclude from the definition of indirect that |RStop(i)| is odd. We show that

Stop(i) ∈ E(73) and d∗Stop(i) < |RStop(i)| and apply the “furthermore” part of Lemma 6.6.

Indeed, by item 7 of Fact 6.5, we get Stop(i) ∈ E(84) ∪ E(73) ∪ E(88) which together with

the fact that |RStop(i)| is odd gives Stop(i) ∈ E(73). Also, d∗Stop(i) ≤ |RStop(i)| − 2 =⇒
|RStop(i)+1| ≤ |RStop(i)| − 2 as otherwise, we have by Line 73 that

|RStop(i)| = |RStop(i)+1|
< |Ri+1| (Definition of Stop(·))
≤ |RStop(i)|, (Fact 6.5, item 3)

a contradiction. From the “furthermore” part of Lemma 6.6, we get that

|πStop(i)+1| = 2RStop(i)[|RStop(i)+1|].t−RStop(i)[|RStop(i)+1|+ 2].r.

Assuming that |RStop(i)+1|+ 1 = |Ri+1|, we derive

|πStop(i)+1| = 2RStop(i)[|RStop(i)+1|].t−RStop(i)[|RStop(i)+1|+ 2].r

= 2Ri+1[|Ri+1| − 1].t−RStop(i)[|Ri+1|+ 1].r (Fact 6.5, item 4)

60

= 2Ri+1[|Ri+1| − 1].t−RStop(i)[|RMid(i)+1|].r (Lemma 6.9)

= 2Ri+1[|Ri+1| − 1].t− |πMid(i)+1| (Lemma 6.9 and Fact 6.5, item 8)

= 2|πi+1| − |πMid(i)+1|, (Line 69)

showing the “furthermore” part of the lemma. Moreover using Lemma 6.13, we can continue

as |πStop(i)+1| = 2|πi+1| − |πMid(i)+1| ≥ |πi+1| showing the first inequality in this case. If

|RStop(i)+1| + 1 6= |Ri+1|, the fact that |RStop(i)+1| < |Ri+1| (definition of Stop(·)) and the

fact that |RStop(i)+1| is odd (as Stop(i) ∈ E(73)) gives us that |RStop(i)+1|+ 2 < |Ri+1|. In

this case, we have by item 4 of Fact 6.5 that:

|πStop(i)+1| = 2RStop(i)[|RStop(i)+1|].t−RStop(i)[|RStop(i)+1|+ 2].r

= 2Ri+1[|RStop(i)+1|].t−Ri+1[|RStop(i)+1|+ 2].r

≥ |πi+1|. (Lemma 6.6)

For the second inequality, we proceed via contradiction. If the inequality is not true,

then we have.

|πStop(i)| = |πStop(i)+1| − 1 (Fact 6.5, item 5)

≥ 2 · |πi+1| − |πMid(i)+1|
≥ 2 ·Ri+1[|Ri+1| − 1].t− |πMid(i)+1| (As i ∈ StartsB)

≥ 2 ·RStop(i)[|Ri+1| − 1].t− |πMid(i)+1| (Fact 6.5, item 4)

≥ 2 ·RStop(i)[|Ri+1| − 1].t−RMid(i)+1[|Ri+1|+ 1].r

(Definition of Mid(i) and Lemma 6.9)

≥ 2 ·RStop(i)[|Ri+1| − 1].t−RStop(i)[|Ri+1|+ 1].r

(Lemma 6.9 and Fact 6.5, item 8)

However, as |RStop(i)| > |Ri+1| due to the fact that i is indirect and item 3 of Fact 6.5, this

contradicts Lemma 6.6.

6.2.3 Analyzing One i ∈ Starts

The goal in this section is to state our results about a given i ∈ Starts. We defer the proofs

of these results to Subsubsection 6.2.10. We first state the results when i ∈ StartsF, i.e.,

when a forward tree code is pushed at iteration i.

Analyzing forward tree codes. For 1 ≤ j < num and l ∈ [|πj+1|], define

latest(j, l) = arg max{j′ ≤ j | |Rj′| is odd ∧ |πj′+1| = l}.

We show that latest(·) is always well defined as the arg max is always over a non-empty set.

This is because |π| increases by at most one in any iteration, and only increases when |R| is

61

odd (Fact 6.5, item 5). Next, for 1 ≤ j′ ≤ j < num and d > 0, define

EF
d (j, j′) =


corrj′ , |Rj′| is even

corrj′ · 1(ΓAj′,≥d 6= ΓBj′,≥d) ,∃l ∈ [|πj+1|] such that j′ = latest(j, l)

2 · corrj′ , otherwise

.

The function E(·) captures the amount of corruptions inserted in iteration j′ (up to

constant factors). Next, for i ∈ StartsF and j ∈ {i} ∪ Range(i) \ {num}, define

depth(i) = (|Ri+1|+ 1) /2 and:

Gi(j) = |LCP(πAj+1(|πi+1| : |πj+1|], πBj+1(|πi+1| : |πj+1|])|.
Bi(j) = |πj+1| − |πi+1| − Gi(j).

Di(j) = |{|πi+1| < l ≤ |πj+1| | ΓAlatest(j,l),≥depth(i) 6= ΓBlatest(j,l),≥depth(i)}|.
sparei(j) = 1 (Bi(j) > 0 ∧ (j /∈ E(70) ∨ Di(j) = Di(j − 1))) .

Lastly, for d > 0, define:

EF
i,d(j) =

∑
j′∈(i:j]

EF
d (j, j′).

With these definitions, we are now ready to state our result for forward tree codes.

Lemma 6.17. For all i ∈ StartsF and all j ∈ {i} ∪Range(i) \ {num} that are good for

i, we have:

j∑
i′=i+1

`∗i′ ≤ 104 · EF
i,depth(i)(j) + `∗i+1 · (Gi(j) + 150Bi(j)− 2500 · Di(j))

+ `∗i+1 · 1(j = Stop(i) ∧ |Rj| 6= |Ri+1|) · (Gi(j) + Bi(j))

− 2500 · `∗i+1 · sparei(j).

We now state our results when i ∈ StartsB, i.e., when a backward tree code is pushed

at iteration i.

Analyzing Backward Tree Codes. For 1 ≤ j < num such that |Rj| is even, define

turn(j) = 1
(
ψAj ‖σAj 6= ψBj ‖σBj

)
.

F(j) =
20

1− 10−5
·∆
(
TC(ψAj ‖σAj),TC(ψBj ‖σBj)

)
+ 20 ·

(
|LCP(ψAj ‖σAj , ψBj ‖σBj)| − |ψj|

)
+ 80.

Also, define for η ≥ 0, the function tax0(η, j) as in Algorithm 7.

For 1 ≤ j < num such that |Rj| is odd, we define all of turn(j), F(j) and tax0(·, j) to

be 0. Next, we define for i ∈ StartsB and all j ∈ {i} ∪ Range(i) \ {num} such that

62

Algorithm 7 The definition of tax0(η, j).

if πAj ‖ψAj = πBj ‖ψBj then
tax0(η, j)← η · (|ψj|+ 1).

else if turn(j) = 1 then
tax0(η, j)← 3 · (|ψj|+ 1).
if Rj+1.last.t > 0 then

tax0(η, j)← tax0(η, j) + η · (2 · (Rj+1.last.r −Rj+1.last.t)− |ψj| − 1).
else if j /∈ E(80) ∪ E(84) then

tax0(η, j)← tax0(η, j) + η ·
(

1
10
· F(j) + |ψj|+ 1

)
.

end if
else if max(Rj.last.t,Rj+1.last.t) > 0 then

tax0(η, j)← η · (max(Rj.last.t,Rj+1.last.t)− |πj+1|).
end if

|πj+1| ≤ |πi+1|, the functions12:

tax1,i(j) = 100 max
(
0, 9|LCP(πAi+1(|πj+1| : |πi+1|], πBi+1(|πj+1| : |πi+1|])| − 8 (|πi+1| − |πj+1|)

)
.

EB
i (j) =

|πi+1|∑
l=|πj+1|+1

corrlatest(i,l) +

j∑
i′=i+1

corri′ · (1 + 1 (|Ri′ | is odd)) .

Finally, for η, η′ ≥ 0, define:

extrai(η, η
′, j) = `∗i+1 min

(
|πi+1| − |πPrev(i)+1|

30
− tax0(η, j), 35 (|πi+1| − |πj+1|)− tax0(η′, j)

)
.

For brevity sake, we adopt the convention that extrai(j) = extrai(225, 10, j). With these

definitions, we are now ready to state our result for backward tree codes.

Lemma 6.18. For all i ∈ StartsB and all j ∈ {i} ∪Range(i) \ {num} that are good for

i, we have:

j∑
i′=i+1

`∗i′ ≤ 104 · EB
i (j) + extrai(j) + 3 · `∗i+1 · 1(j 6= i) · (|ψj|+ 1)− 2 · `∗i+1 · (|πi+1| − |πj+1|)

− `∗i+1 · 1 (j ∈ E(80)) · tax1,i(j).

Analyzing Indirect Tree Codes. Finally, if i ∈ Starts is indirect, we shall also have

the following additional results.

Lemma 6.19. For all i ∈ StartsF that are indirect, we have

Stop(i)∑
i′=i+1

`∗i′ ≤ 104 · EF
i,depth(i)(Mid(i)) + 104 · EB

Mid(i)(Stop(i))

12In particular, by Lemma 6.13, these functions are well defined for all j that are good for i. Similarly, by
Corollary 6.14, these are also defined for all j such that j + 1 ∈ Range(i) \ {num} and |Rj+1| = |Ri+1|.

63

+
3

1.1
· `∗i+1 ·

(
|ψStop(i)|+ 1

)
− `∗i+1 · tax0(225,Stop(i)).

Lemma 6.20. For all i ∈ StartsB that are indirect, we have:

Stop(i)∑
i′=i+1

`∗i′ ≤ 104 · EB
i (Mid(i)) + 104 · EF

Mid(i),depth(Mid(i))(Stop(i))

+ `∗Mid(i)+1 ·
(
150 · BMid(i)(Stop(i))− 2500 · DMid(i)(Stop(i))

)
+ 44 · `∗i+1 ·

(
|πi+1| − |πMid(i)+1|

)
− `∗i+1 · tax1,i(Mid(i))

− 2500 · `∗i+1 · spareMid(i)(Stop(i)).

6.2.4 Lemmas Concerning latest(·) and D(·)

Lemma 6.21. Let 1 ≤ j < num and l ∈ [|πj+1|]. For all j′ ∈ [latest(j, l) : j], it holds that

|πj′+1| ≥ l.

Proof. Suppose not and let j′ ∈ [latest(j, l) : j] be such that |πj′+1| < l ≤ |πj+1|. As |π|
increases by at most one in every iteration and increases only when |R| is odd (item 5 of

Fact 6.5), we have a j′′ ∈ (j′ : j] ⊆ (latest(j, l) : j] such that |Rj′′ | is odd and |πj′′+1| = l.

This is a contradiction to the definition of latest(j, l).

Corollary 6.22. For all 1 ≤ j < num, l ∈ [|πj+1|], and C ∈ {A,B}, it holds that

πClatest(j,l)+1 = πCj+1[1 : l] .

Lemma 6.23. For all 1 ≤ j < num and l ∈ [|πj+1|], we either have latest(j, l) = j ∈ E(70)

or we have for all C ∈ {A,B} that ΓClatest(j,l) = Γ̃Clatest(j,l).

Proof. If latest(j, l) = j ∈ E(70), then there is nothing to show, so we assume that this

is not the case. Suppose for the sake of contradiction that there exists C ∈ {A,B} such

that ΓClatest(j,l) 6= Γ̃Clatest(j,l). Consider iteration latest(j, l) in the execution of party C. As

|Rlatest(j,l)| is odd, party C executes Line 70 in iteration latest(j, l). Due to our assumption

above, this means that latest(j, l) < j =⇒ latest(j, l) + 1 ∈ (latest(j, l) : j]. However, as

party C executes Line 70 in iteration latest(j, l), we have that |Rlatest(j,l)+1| is even implying

that |πlatest(j,l)+2| = |πlatest(j,l)+1| − 1 = l − 1 contradicting Lemma 6.21.

Lemma 6.24. For i ∈ StartsF and j ∈ {i} ∪Range(i) \ {num}, we have(
1− 10−5

)
· Bi(j) ≤ Di(j) ≤ Bi(j).

Proof. We first show that latest(j, l) ∈ Range(i) for all |πi+1| < l ≤ |πj+1|. To show this, it

is sufficient to show that latest(j, l) > i. This is because, otherwise, we have a contradiction

to Lemma 6.21. For the first part, note that:

Di(j) = |{|πi+1| < l ≤ |πj+1| | ΓAlatest(j,l),≥depth(i) 6= ΓBlatest(j,l),≥depth(i)}|

64

≥ |{|πi+1| < l ≤ |πj+1| | ΓAlatest(j,l),depth(i) 6= ΓBlatest(j,l),depth(i)}|

≥
∣∣∣{|πi+1| < l ≤ |πj+1| | TC

(
πAlatest(j,l)+1,>|πi+1|

)
6= TC

(
πBlatest(j,l)+1,>|πi+1|

)}∣∣∣
(Fact 6.5, item 8 on latest(j, l))

≥
∣∣{|πi+1| < l ≤ |πj+1| | TC

(
πAj+1(|πi+1| : l]

)
6= TC

(
πBj+1(|πi+1| : l]

)}∣∣
(Corollary 6.22)

≥ ∆(TC(πAj+1(|πi+1| : |πj+1|]),TC(πBj+1(|πi+1| : |πj+1|]))
≥ (1− 10−5) ·

(
|πj+1| − |πi+1| − |LCP(πAj+1(|πi+1| : |πj+1|], πBj+1(|πi+1| : |πj+1|])|

)
(Definition 3.6)

≥ (1− 10−5) · Bi(j).

For the second part, note that:

Di(j) = |{|πi+1| < l ≤ |πj+1| | ΓAlatest(j,l),≥depth(i) 6= ΓBlatest(j,l),≥depth(i)}|
= |{|πi+1| < l ≤ |πi+1|+ Gi(j) | ΓAlatest(j,l),≥depth(i) 6= ΓBlatest(j,l),≥depth(i)}|

+ |{|πi+1|+ Gi(j) < l ≤ |πj+1| | ΓAlatest(j,l),≥depth(i) 6= ΓBlatest(j,l),≥depth(i)}|
≤ |{|πi+1| < l ≤ |πi+1|+ Gi(j) | ΓAlatest(j,l),≥depth(i) 6= ΓBlatest(j,l),≥depth(i)}|

+ |πj+1| − |πi+1| − Gi(j)

≤ |{|πi+1| < l ≤ |πi+1|+ Gi(j) | ΓAlatest(j,l),≥depth(i) 6= ΓBlatest(j,l),≥depth(i)}|+ Bi(j).

With this, to finish the proof, it is sufficient to show that ΓAlatest(j,l),≥depth(i) =

ΓBlatest(j,l),≥depth(i) for all |πi+1| < l ≤ |πi+1|+Gi(j). To show this, fix |πi+1| < l ≤ |πi+1|+Gi(j)

and note that by the definition of Gi(j) we have

πAj+1(|πi+1| : l] = πBj+1(|πi+1| : l]
=⇒ πAlatest(j,l)+1,>|πi+1| = πBlatest(j,l)+1,>|πi+1| (Corollary 6.22)

=⇒ πAlatest(j,l)+1,>Rlatest(j,l)[2·depth(i)−1].r = πBlatest(j,l)+1,>Rlatest(j,l)[2·depth(i)−1].r.

(Fact 6.5, item 8 on latest(j, l))

This implies by Lemma 6.6 that for all d ≥ depth(i), we have

πAlatest(j,l)+1,>Rlatest(j,l)[2d−1].r = πBlatest(j,l)+1,>Rlatest(j,l)[2d−1].r

=⇒ TC
(
πAlatest(j,l)+1,>Rlatest(j,l)[2d−1].r

)
= TC

(
πBlatest(j,l)+1,>Rlatest(j,l)[2d−1].r

)
=⇒ ΓAlatest(j,l),d = ΓBlatest(j,l),d,

and ΓAlatest(j,l),≥depth(i) = ΓBlatest(j,l),≥depth(i) follows.

Lemma 6.25. For i ∈ StartsF and j ∈ Range(i) \ {num} such that |Rj| is odd, we have

4 · EF
i,depth(i)(j − 1)− `∗i+1 · Di(j − 1)− `∗i+1 · sparei(j − 1)

65

≤ 4 · EF
i,depth(i)(j)− `∗i+1 · Di(j)− `∗i+1 · sparei(j).

Proof. As |Rj| is odd, we have by item 5 of Fact 6.5 that |πj+1| = |πj| + 1 and

latest(j, l) = latest(j − 1, l) for all l ∈ [|πj|] and latest(j, |πj+1|) = j. The former implies

that EF
depth(i)(j, j

′) = EF
depth(i)(j − 1, j′) for all j′ ∈ (i : j). We get from the definition of E(·)

that:

EF
i,depth(i)(j − 1) =

∑
j′∈(i:j)

EF
depth(i)(j − 1, j′)

=
∑
j′∈(i:j)

EF
depth(i)(j, j

′)

= EF
i,depth(i)(j)− EF

depth(i)(j, j)

= EF
i,depth(i)(j)− corrj · 1(ΓAj,≥depth(i) 6= ΓBj,≥depth(i)),

(27)

as latest(j, |πj+1|) = j. Again, using the fact that |πj+1| = |πj| + 1 and latest(j, l) =

latest(j − 1, l) for all l ∈ [|πj|] and latest(j, |πj+1|) = j, we get from the definition of D(·)
that:

Di(j − 1) = |{|πi+1| < l ≤ |πj| | ΓAlatest(j−1,l),≥depth(i) 6= ΓBlatest(j−1,l),≥depth(i)}|
= |{|πi+1| < l ≤ |πj| | ΓAlatest(j,l),≥depth(i) 6= ΓBlatest(j,l),≥depth(i)}|
= |{|πi+1| < l ≤ |πj+1| | ΓAlatest(j,l),≥depth(i) 6= ΓBlatest(j,l),≥depth(i)}|

− 1

(
ΓAlatest(j,|πj+1|),≥depth(i) 6= ΓBlatest(j,|πj+1|),≥depth(i)

)
= Di(j)− 1

(
ΓAlatest(j,|πj+1|),≥depth(i) 6= ΓBlatest(j,|πj+1|),≥depth(i)

)
= Di(j)− 1

(
ΓAj,≥depth(i) 6= ΓBj,≥depth(i)

)
,

(28)

as latest(j, |πj+1|) = j. Combining the two equations above, we get:

2 · EF
i,depth(i)(j − 1)− `∗i+1 · Di(j − 1)

≤ 2 · EF
i,depth(i)(j)− `∗i+1 · Di(j)

− 2 · corrj · 1(ΓAj,≥depth(i) 6= ΓBj,≥depth(i)) + `∗i+1 · 1
(
ΓAj,≥depth(i) 6= ΓBj,≥depth(i)

)
≤ 2 · EF

i,depth(i)(j)− `∗i+1 · Di(j)

− 2 · corrj · 1(ΓAj,≥depth(i) = Γ̃Aj,≥depth(i) 6= ΓBj,≥depth(i))

+ `∗i+1 · 1(ΓAj,≥depth(i) = Γ̃Aj,≥depth(i) 6= ΓBj,≥depth(i))

+ `∗i+1 · 1(ΓAj,≥depth(i) 6= ΓBj,≥depth(i) ∧ ΓAj,≥depth(i) 6= Γ̃Aj,≥depth(i))

≤ 2 · EF
i,depth(i)(j)− `∗i+1 · Di(j)

− 2 · corrj · 1(ΓAj,≥depth(i) = Γ̃Aj,≥depth(i) 6= ΓBj,≥depth(i))

+ `∗j · 1(ΓAj,≥depth(i) = Γ̃Aj,≥depth(i) 6= ΓBj,≥depth(i))

66

+ `∗i+1 · 1(ΓAj,≥depth(i) 6= ΓBj,≥depth(i) ∧ ΓAj,≥depth(i) 6= Γ̃Aj,≥depth(i))

(Fact 6.5, item 3 and definition of `∗)

≤ 2 · EF
i,depth(i)(j)− `∗i+1 · Di(j)

−
(
2 · corrj − `∗j

)
· 1(ΓAj,≥depth(i) = Γ̃Aj,≥depth(i) 6= ΓBj,≥depth(i))

+ `∗i+1 · 1(ΓAj,≥depth(i) 6= ΓBj,≥depth(i) ∧ ΓAj,≥depth(i) 6= Γ̃Aj,≥depth(i))

≤ 2 · EF
i,depth(i)(j)− `∗i+1 · Di(j)

−
(
2 · corrj − `∗j

)
· 1(ΓAj,≥depth(i) = Γ̃Aj,≥depth(i) 6= ΓBj,≥depth(i))

+ `∗i+1 · 1(ΓAj,≥depth(i) 6= ΓBj,≥depth(i) ∧ j ∈ E(70)) (Definition of Line 70)

≤ 2 · EF
i,depth(i)(j)− `∗i+1 · Di(j)

−
(
2 · corrj − `∗j

)
· 1(ΓAj,≥depth(i) = Γ̃Aj,≥depth(i) 6= ΓBj,≥depth(i))

+ `∗i+1 · 1(Di(j) > Di(j − 1) ∧ j ∈ E(70)) (Equation 28)

To continue, we claim that
(
2 · corrj − `∗j

)
· 1(ΓAj,≥depth(i) = Γ̃Aj,≥depth(i) 6= ΓBj,≥depth(i)) ≥ 0.

Indeed, either 1(ΓAj,≥depth(i) = Γ̃Aj,≥depth(i) 6= ΓBj,≥depth(i)) = 0 in which case, there is nothing to

show, or Γ̃Aj,≥depth(i) 6= ΓBj,≥depth(i) implying that 2 · corrj ≥ `∗j . This gives:

2 · EF
i,depth(i)(j − 1)− `∗i+1 · Di(j − 1)

≤ 2 · EF
i,depth(i)(j)− `∗i+1 · Di(j) + `∗i+1 · 1(Di(j) > Di(j − 1) ∧ j ∈ E(70)).

(29)

We next show:

Claim 6.26. 1(Bi(j − 1) > 0) + 1(Bi(j − 1) = 0 ∧ Di(j) > Di(j − 1)) ≥ 1(Bi(j) > 0).

Proof. We show that Bi(j) > 0 implies that either Bi(j−1) > 0 or Di(j) > Di(j−1) and the

claim follows. To this end, suppose that Bi(j) > 0. If Bi(j − 1) > 0, we are done, so assume

that Bi(j − 1) = 0. By Lemma 6.24, we get that Di(j) > 0 = Di(j − 1), as desired.

Finally, observe that:

4 · EF
i,depth(i)(j − 1)− `∗i+1 · Di(j − 1)− `∗i+1 · sparei(j − 1)

≤ 4 · EF
i,depth(i)(j − 1)− `∗i+1 · Di(j − 1)− `∗i+1 · 1(Bi(j − 1) > 0)

(Definition of spare(·) as |Rj| is odd)

≤ 4 · EF
i,depth(i)(j − 1)− `∗i+1 · Di(j − 1)− `∗i+1 · 1(Bi(j) > 0)

+ `∗i+1 · 1(Bi(j − 1) = 0 ∧ Di(j) > Di(j − 1)) (Claim 6.26)

≤ 4 · EF
i,depth(i)(j − 1)− `∗i+1 · Di(j − 1)− `∗i+1 · sparei(j)
− `∗i+1 · 1(Bi(j) > 0 ∧ j ∈ E(70) ∧ Di(j) > Di(j − 1))

+ `∗i+1 · 1(Bi(j − 1) = 0 ∧ Di(j) > Di(j − 1)).

(Definition of spare(·) and Di(j) ≥ Di(j − 1))

67

Noting that Di(j) > Di(j − 1) implies Di(j) > 0 which in turn implies Bi(j) > 0 by

Lemma 6.24, we continue as,

4 · EF
i,depth(i)(j − 1)− `∗i+1 · Di(j − 1)− `∗i+1 · sparei(j − 1)

≤ 4 · EF
i,depth(i)(j − 1)− `∗i+1 · Di(j − 1)− `∗i+1 · sparei(j)
− `∗i+1 · 1(j ∈ E(70) ∧ Di(j) > Di(j − 1))

+ `∗i+1 · 1(Bi(j − 1) = 0 ∧ Di(j) > Di(j − 1))

≤ 2 · EF
i,depth(i)(j − 1) + 2 · EF

i,depth(i)(j)− `∗i+1 · Di(j)− `∗i+1 · sparei(j)
+ `∗i+1 · 1(Bi(j − 1) = 0 ∧ Di(j) > Di(j − 1)) (Equation 29)

≤ 4 · EF
i,depth(i)(j)− `∗i+1 · Di(j)− `∗i+1 · sparei(j)
− 2 · corrj · 1(ΓAj,≥depth(i) 6= ΓBj,≥depth(i))

+ `∗i+1 · 1(Bi(j − 1) = 0 ∧ Di(j) > Di(j − 1)) (Equation 27)

≤ 4 · EF
i,depth(i)(j)− `∗i+1 · Di(j)− `∗i+1 · sparei(j)
− 2 · corrj · 1(ΓAj,≥depth(i) 6= ΓBj,≥depth(i))

+ `∗j · 1(Bi(j − 1) = 0 ∧ Di(j) > Di(j − 1))

(Fact 6.5, item 3 and definition of `∗)

≤ 4 · EF
i,depth(i)(j)− `∗i+1 · Di(j)− `∗i+1 · sparei(j)
− 2 · corrj · 1(Bi(j − 1) = 0 ∧ ΓAj,≥depth(i) 6= ΓBj,≥depth(i))

+ `∗j · 1(Bi(j − 1) = 0 ∧ Di(j) > Di(j − 1))

≤ 4 · EF
i,depth(i)(j)− `∗i+1 · Di(j)− `∗i+1 · sparei(j)
−
(
2 · corrj − `∗j

)
· 1(Bi(j − 1) = 0 ∧ ΓAj,≥depth(i) 6= ΓBj,≥depth(i)). (Equation 28)

To finish all, we need to show is that
(
2 · corrj − `∗j

)
· 1(Bi(j − 1) = 0 ∧ ΓAj,≥depth(i) 6=

ΓBj,≥depth(i)) ≥ 0. If 1(Bi(j − 1) = 0 ∧ ΓAj,≥depth(i) 6= ΓBj,≥depth(i)) = 0, there is nothing to show,

so we assume that Bi(j − 1) = 0 and ΓAj,≥depth(i) 6= ΓBj,≥depth(i). By definition of Γ, we get that

there is an h ≥ depth(i) such that

ΓAj,h 6= ΓBj,h =⇒ TC(πAj+1,>Rj [2h−1].r) 6= TC(πBj+1,>Rj [2h−1].r) (As |Rj| is odd)

=⇒ πAj+1,>Rj [2h−1].r 6= πBj+1,>Rj [2h−1].r

=⇒ πAj+1,>Rj [2depth(i)−1].r 6= πBj+1,>Rj [2depth(i)−1].r (Lemma 6.6 as h ≥ depth(i))

=⇒ πAj+1,>Rj [|Ri+1|].r 6= πBj+1,>Rj [|Ri+1|].r (Definition of depth(i))

=⇒ πAj+1,>|πi+1| 6= πBj+1,>|πi+1| (Fact 6.5, item 8)

=⇒ πAj,>|πi+1| 6= πBj,>|πi+1| ∨ σ
A
j 6= σBj (Fact 6.5, item 5)

=⇒ σAj 6= σBj . (As Bi(j − 1) = 0)

From σAj 6= σBj , it follows that 2 · corrj − `∗j ≥ 0 implying
(
2 · corrj − `∗j

)
· 1(Bi(j − 1) =

0 ∧ ΓAj,≥depth(i) 6= ΓBj,≥depth(i)) ≥ 0 and finishing the proof.

68

Lemma 6.27. For i, i′ ∈ StartsF such that i′ is direct, Range(i′) ⊆ Range(i), and

depth(i′) = depth(i) + 1, we have

Di(Stop(i′))− Di(i
′)− Di′(Stop(i′)) ≤ 2

`∗i′+1

(
EF
i′,depth(i)(Stop(i′))− EF

i′,depth(i′)(Stop(i′))
)
.

Proof. We first show that latest(i′, l) = latest(Stop(i′), l) for all |πi+1| < l ≤ |πi′+1|. Suppose

not. Then, for |πi+1| < l ≤ |πi′+1|, we have by the definition of latest(·) that there exists

j′ ∈ Range(i′) such that |Rj′| is odd and |πj′+1| = l. By item 5 of Fact 6.5, we conclude that

|πj′ | = l− 1 < |πi′+1|. Next, using item 8 of Fact 6.5 on j′, we get that |πj′| < Rj′ [|Ri′+1|].r,
a contradiction to Lemma 6.6.

We use the definition D(·) to derive:

Di(Stop(i′))− Di(i
′)− Di′(Stop(i′))

= |{|πi+1| < l ≤ |πStop(i′)+1| | ΓAlatest(Stop(i′),l),≥depth(i) 6= ΓBlatest(Stop(i′),l),≥depth(i)}|
− |{|πi+1| < l ≤ |πi′+1| | ΓAlatest(i′,l),≥depth(i) 6= ΓBlatest(i′,l),≥depth(i)}|
− |{|πi′+1| < l ≤ |πStop(i′)+1| | ΓAlatest(Stop(i′),l),≥depth(i′) 6= ΓBlatest(Stop(i′),l),≥depth(i′)}|

= |{|πi+1| < l ≤ |πStop(i′)+1| | ΓAlatest(Stop(i′),l),≥depth(i) 6= ΓBlatest(Stop(i′),l),≥depth(i)}|
− |{|πi+1| < l ≤ |πi′+1| | ΓAlatest(Stop(i′),l),≥depth(i) 6= ΓBlatest(Stop(i′),l),≥depth(i)}|
− |{|πi′+1| < l ≤ |πStop(i′)+1| | ΓAlatest(Stop(i′),l),≥depth(i′) 6= ΓBlatest(Stop(i′),l),≥depth(i′)}|

= |{|πi′+1| < l ≤ |πStop(i′)+1| | ΓAlatest(Stop(i′),l),≥depth(i) 6= ΓBlatest(Stop(i′),l),≥depth(i)}|
− |{|πi′+1| < l ≤ |πStop(i′)+1| | ΓAlatest(Stop(i′),l),≥depth(i′) 6= ΓBlatest(Stop(i′),l),≥depth(i′)}|

=

|πStop(i′)+1|∑
l=|πi′+1|+1

1
(
ΓAlatest(Stop(i′),l),≥depth(i) 6= ΓBlatest(Stop(i′),l),≥depth(i)

)

−
|πStop(i′)+1|∑
l=|πi′+1|+1

1
(
ΓAlatest(Stop(i′),l),≥depth(i′) 6= ΓBlatest(Stop(i′),l),≥depth(i′)

)
,

(30)

Next, we claim that latest(Stop(i′), l) ∈ Range(i′) for all |πi′+1| < l ≤ |πStop(i′)+1|. To show

this, it is sufficient to show that latest(Stop(i′), l) > i′. This is because, otherwise, we have

a contradiction to Lemma 6.21. Since latest(Stop(i′), l) ∈ Range(i′), we have from item 3

of Fact 6.5 that `∗latest(Stop(i′),l) ≥ `∗i′+1. Using these two claims, we get:

2

`∗i′+1

(
EF
i′,depth(i)(Stop(i′))− EF

i′,depth(i′)(Stop(i′))
)

=
2

`∗i′+1

·
∑

j′∈(i′:Stop(i′)]

(
EF
depth(i)(Stop(i′), j′)− EF

depth(i′)(Stop(i′), j′)
)

69

≥ 2

`∗i′+1

·
|πStop(i′)+1|∑
l=|πi′+1|+1

corrlatest(Stop(i′),l) ·
(
1(ΓAlatest(Stop(i′),l),≥depth(i) 6= ΓBlatest(Stop(i′),l),≥depth(i))

− 1(ΓAlatest(Stop(i′),l),≥depth(i′) 6= ΓBlatest(Stop(i′),l),≥depth(i′))

)

≥
|πStop(i′)+1|∑
l=|πi′+1|+1

2 · corrlatest(Stop(i′),l)

`∗latest(Stop(i′),l)

·
(
1(ΓAlatest(Stop(i′),l),≥depth(i) 6= ΓBlatest(Stop(i′),l),≥depth(i))

− 1(ΓAlatest(Stop(i′),l),≥depth(i′) 6= ΓBlatest(Stop(i′),l),≥depth(i′))

)
.

To continue, we use item 7 of Fact 6.5 to get that Stop(i′) /∈ E(70). This with Lemma 6.23

gives:

2

`∗i′+1

(
EF
i′,depth(i)(Stop(i′))− EF

i′,depth(i′)(Stop(i′))
)

≥
|πStop(i′)+1|∑
l=|πi′+1|+1

2 · corrlatest(Stop(i′),l)

`∗latest(Stop(i′),l)

·
(
1(Γ̃Alatest(Stop(i′),l),≥depth(i) 6= ΓBlatest(Stop(i′),l),≥depth(i))

− 1(Γ̃Alatest(Stop(i′),l),≥depth(i′) 6= ΓBlatest(Stop(i′),l),≥depth(i′))

)
.

Note that 1(Γ̃Alatest(Stop(i′),l),≥depth(i) 6= ΓBlatest(Stop(i′),l),≥depth(i)) ≥ 1(Γ̃Alatest(Stop(i′),l),≥depth(i′) 6=
ΓBlatest(Stop(i′),l),≥depth(i′)) and the inequality is strict only if 2·corrlatest(Stop(i′),l) ≥ `∗latest(Stop(i′),l).

Thus, we get:

2

`∗i′+1

(
EF
i′,depth(i)(Stop(i′))− EF

i′,depth(i′)(Stop(i′))
)

≥
|πStop(i′)+1|∑
l=|πi′+1|+1

(
1(Γ̃Alatest(Stop(i′),l),≥depth(i) 6= ΓBlatest(Stop(i′),l),≥depth(i))

− 1(Γ̃Alatest(Stop(i′),l),≥depth(i′) 6= ΓBlatest(Stop(i′),l),≥depth(i′))

)

≥
|πStop(i′)+1|∑
l=|πi′+1|+1

(
1(ΓAlatest(Stop(i′),l),≥depth(i) 6= ΓBlatest(Stop(i′),l),≥depth(i))

− 1(ΓAlatest(Stop(i′),l),≥depth(i′) 6= ΓBlatest(Stop(i′),l),≥depth(i′))

)
(Lemma 6.23)

= Di(Stop(i′))− Di(i
′)− Di′(Stop(i′)). (Equation 30)

70

6.2.5 Lemmas Concerning E(·)

Lemma 6.28. Let i ∈ StartsF. For j ∈ {i} ∪Range(i) \ {num} , we have for all d > 0:

EF
i,d(j) ≤ 2 ·

j∑
j′=i+1

corrj′ .

Proof. Using the definition of E(·), we get:

EF
i,d(j) =

∑
j′∈(i:j]

EF
d (j, j′) ≤ 2 ·

∑
j′∈(i:j]

corrj′ .

Lemma 6.29. Let i ∈ StartsF and i′ ∈ (i : Stop(i))∩StartsB. For j ∈ {i′}∪Range(i′)\
{num} such that |πj+1| ≤ |πi′+1|, we have for all d > 0:

EF
i,d(i

′) + EB
i′ (j) ≤ 3 ·

j∑
j′=i+1

corrj′ .

Proof. Use the definition of E(·) to get:

EB
i′ (j) =

|πi′+1|∑
l=|πj+1|+1

corrlatest(i′,l) +

j∑
j′=i′+1

corrj′ · (1 + 1 (|Rj′ | is odd))

≤
|πi′+1|∑

l=|πj+1|+1

corrlatest(i′,l) + 2 ·
j∑

j′=i′+1

corrj′ .

We claim that latest(i′, l) > i for all l ∈ (|πj+1| : |πi′+1|]. Indeed, if not, then using

Lemma 6.21, we get that |πi+1| ≥ l > |πj+1|. As j ∈ {i′} ∪ Range(i′) ⊆ Range(i)

by Lemma 6.7, we get |πj+1| < Rj[|Ri+1|].r using item 8 of Fact 6.5. This contradicts

Lemma 6.6.

Additionally, observing that latest(i′, l) > i is distinct for all l ∈ (|πj+1| : |πi′+1|], we get:

EB
i′ (j) ≤

i′∑
j′=i+1

corrj′ + 2 ·
j∑

j′=i′+1

corrj′ ,

which with Lemma 6.28 gives:

EF
i,d(i

′) + EB
i′ (j) ≤ 3 ·

i′∑
j′=i+1

corrj′ + 2 ·
j∑

j′=i′+1

corrj′ ≤ 3 ·
j∑

j′=i+1

corrj′ .

Lemma 6.30. Let i ∈ StartsF and i′ ∈ (i : Stop(i)) ∩ StartsB be such that i′ is indirect

71

and |Ri′| = |Ri+1|. We have for all d > 0:

EF
i,d(i

′) + EB
i′ (Mid(i′)) + EF

Mid(i′),d(Stop(i′)) ≤ EF
i,d(Stop(i′)).

Proof. To start, we need the following claim:

Claim 6.31. For all l ∈ [|πMid(i′)+1|], we have latest(i′, l) = latest(Stop(i′), l). It follows

that latest(Stop(i′), l) ≤ i′.

Proof. Proof by contradiction. Suppose that, for some l ≤ |πMid(i′)+1|, we have latest(i′, l) 6=
latest(Stop(i′), l). Then, by the definition of latest(·), there exists j′ ∈ Range(i′) such that

|Rj′| is odd and |πj′+1| = l. By item 5 of Fact 6.5, we conclude that |πj′| = l−1 < |πMid(i′)+1|.
Now, either j′ ≤Mid(i′), in which case, by Lemma 6.13, we have |πj′ | < |πMid(i′)+1| ≤ |πj′ |, a

contradiction (Mid(i′) is good for i′ by definition), or we have Mid(i′) < j′ ≤ Stop(i′) =⇒
j′ ∈ Range(Mid(i′)) by Lemma 6.9. When this happens, we use item 8 of Fact 6.5 on

Mid(i′) and j′ to get that |πj′ | < Rj′ [|RMid(i′)+1|].r, a contradiction to Lemma 6.6.

Now, using the fact that latest(i′, l) = latest(Stop(i′), l) for all l ≤ |πMid(i′)+1|, we have

for j′ ∈ (i : i′] that:

EF
d (i′, j′) =


corrj′ , |Rj′| is even

corrj′ · 1(ΓAj′,≥d 6= ΓBj′,≥d) ,∃l ∈ [|πi′+1|] such that j′ = latest(i′, l)

2 · corrj′ , otherwise

=


corrj′ , |Rj′| is even

corrj′ · 1(ΓAj′,≥d 6= ΓBj′,≥d) ,∃l ∈ [|πMid(i′)+1|] such that j′ = latest(i′, l)

corrj′ · 1(ΓAj′,≥d 6= ΓBj′,≥d) ,∃l ∈ (|πMid(i′)+1| : |πi′+1|] such that j′ = latest(i′, l)

2 · corrj′ , otherwise

=


corrj′ , |Rj′| is even

corrj′ · 1(ΓAj′,≥d 6= ΓBj′,≥d) ,∃l ∈ [|πMid(i′)+1|] such that j′ = latest(Stop(i′), l)

corrj′ · 1(ΓAj′,≥d 6= ΓBj′,≥d) ,∃l ∈ (|πMid(i′)+1| : |πi′+1|] such that j′ = latest(i′, l)

2 · corrj′ , otherwise

≤


corrj′ , |Rj′| is even

corrj′ · 1(ΓAj′,≥d 6= ΓBj′,≥d) ,∃l ∈ [|πMid(i′)+1|] such that j′ = latest(Stop(i′), l)

corrj′ ,∃l ∈ (|πMid(i′)+1| : |πi′+1|] such that j′ = latest(i′, l)

2 · corrj′ , otherwise

.

To continue, we claim that

Claim 6.32. For all l ∈ (|πMid(i′)+1| : |πStop(i′)+1|], it holds that latest(Stop(i′), l) ∈
Range(Mid(i′)).

72

Proof. Due to Lemma 6.9, it is sufficient to show that latest(Stop(i′), l) >Mid(i′). This is

because, otherwise, we have a contradiction to Lemma 6.21.

Using this claim, we can continue as (for j′ ∈ (i : i′]):

EF
d (i′, j′) ≤


corrj′ , |Rj′ | is even

corrj′ · 1(ΓAj′,≥d 6= ΓBj′,≥d) ,∃l ∈ [|πStop(i′)+1|] such that j′ = latest(Stop(i′), l)

corrj′ ,∃l ∈ (|πMid(i′)+1| : |πi′+1|] such that j′ = latest(i′, l)

2 · corrj′ , otherwise

= EF
d (Stop(i′), j′)− corrj′ · 1

(
∃l ∈ (|πMid(i′)+1| : |πi′+1|] : j′ = latest(i′, l)

)
.

Summing over all j′ ∈ (i : i′], we derive:

EF
i,d(i

′) =
∑

j′∈(i:i′]

EF
d (i′, j′)

≤
∑

j′∈(i:i′]

EF
d (Stop(i′), j′)− corrj′ · 1

(
∃l ∈ (|πMid(i′)+1| : |πi′+1|] : j′ = latest(i′, l)

)
=
∑

j′∈(i:i′]

EF
d (Stop(i′), j′)−

|πi′+1|∑
l=|πMid(i′)+1|+1

corrlatest(i′,l),

where the last step uses the following claim:

Claim 6.33. For all l ∈ (|πMid(i′)+1| : |πi′+1|], we have latest(i′, l) ∈ (i : i′].

Proof. To start, note that Mid(i′) + 1 ∈ Range(Mid(i)) ⊆ Range(i′) ⊆ Range(i)

by Lemma 6.9 and Lemma 6.7, implying by item 8 of Fact 6.5 and Lemma 6.6 that

|πi+1| = RMid(i′)+1[|Ri+1|].r ≤ RMid(i′)+1[|RMid(i′)+1|].r = |πMid(i′)+1|.
We will actually show that the claim holds for all l ∈ (|πi+1| : |πi′+1|]. It is sufficient

to show that latest(i′, l) > i. This is because, otherwise, we have a contradiction to

Lemma 6.21.

Using the definition of EF(·) and EB(·), we continue as:

EF
i,d(i

′) + EB
i′ (Mid(i′)) + EF

Mid(i′),d(Stop(i′))

≤
∑

j′∈(i:i′]

EF
d (Stop(i′), j′) +

Mid(i′)∑
j′=i′+1

corrj′ · (1 + 1 (|Rj′ | is odd))

+

Stop(i′)∑
j′=Mid(i′)+1

EF
d (Stop(i′), j′).

Finally, due to Claim 6.31 and Claim 6.32, we have that for all j′ ∈ (i′ : Mid(i′)] there does

73

not exists any l ∈ [|πStop(i′)+1|] such that j′ = latest(Stop(i′), l). This gives:

EF
i,d(i

′) + EB
i′ (Mid(i′)) + EF

Mid(i′),d(Stop(i′))

≤
∑

j′∈(i:i′]

EF
d (Stop(i′), j′) +

Mid(i′)∑
j′=i′+1

EF
d (Stop(i′), j′) +

Stop(i′)∑
j′=Mid(i′)+1

EF
d (Stop(i′), j′)

≤
Stop(i′)∑
j′=i+1

EF
d (Stop(i′), j′)

≤ EF
i,d(Stop(i′)).

Lemma 6.34. Let i ∈ StartsB and i′ ∈ (i : Stop(i)) ∩ StartsF be such that i′ is indirect

and |Ri′| = |Ri+1|. We have for all d > 0:

EB
i (i′) + EF

i′,d(Mid(i′)) + EB
Mid(i′)(Stop(i′)) ≤ EB

i (Stop(i′)).

Proof. By definition, we have for all j′ ∈ (i′ : Mid(i′)] and d > 0:

EF
d (Mid(i′), j′) ≤


corrj′ , |Rj′ | is even

corrj′ , ∃l ∈ [|πMid(i′)+1|] such that j′ = latest(Mid(i′), l)

2 · corrj′ , otherwise

.

We also have the following claim:

Claim 6.35. For all l ∈ (|πi′+1| : |πMid(i′)+1|], we have latest(Mid(i′), l) ∈ (i′ : Mid(i′)].

Proof. It is sufficient to show that latest(Mid(i′), l) > i′. This is because, otherwise, we have

a contradiction to Lemma 6.21.

Using this claim, we derive, for all d > 0:

EF
i′,d(Mid(i′)) =

∑
j′∈(i′:Mid(i′)]

EF
d (Mid(i′), j′)

≤
Mid(i′)∑
j′=i′+1

corrj′ · (1 + 1 (|Rj′ | is odd))−
|πMid(i′)+1|∑
l=|πi′+1|+1

corrlatest(Mid(i′),l).

Using the definition of EB(·), we continue as:

EB
i (i′) + EF

i′,d(Mid(i′)) + EB
Mid(i′)(Stop(i′))

≤
Mid(i′)∑
j′=i′+1

corrj′ · (1 + 1 (|Rj′| is odd))−
|πMid(i′)+1|∑
l=|πi′+1|+1

corrlatest(Mid(i′),l)

74

+

|πi+1|∑
l=|πi′+1|+1

corrlatest(i,l) +
i′∑

j′=i+1

corrj′ · (1 + 1 (|Rj′| is odd))

+

|πMid(i′)+1|∑
l=|πStop(i′)+1|+1

corrlatest(Mid(i′),l) +

Stop(i′)∑
j′=Mid(i′)+1

corrj′ · (1 + 1 (|Rj′ | is odd))

≤
Mid(i′)∑
j′=i′+1

corrj′ · (1 + 1 (|Rj′| is odd))−
|πMid(i′)+1|∑
l=|πi′+1|+1

corrlatest(Mid(i′),l)

+

|πi+1|∑
l=|πStop(i′)+1|+1

corrlatest(i,l) +
i′∑

j′=i+1

corrj′ · (1 + 1 (|Rj′ | is odd))

+

|πMid(i′)+1|∑
l=|πi′+1|+1

corrlatest(Mid(i′),l) +

Stop(i′)∑
j′=Mid(i′)+1

corrj′ · (1 + 1 (|Rj′ | is odd))

(Lemma 6.10)

≤
Stop(i′)∑
j′=i+1

corrj′ · (1 + 1 (|Rj′ | is odd)) +

|πi+1|∑
l=|πStop(i′)+1|+1

corrlatest(i,l)

≤ EB
i (Stop(i′)).

Lemma 6.36. Let i ∈ StartsB and j ∈ Range(i) \ {num} be such that |Rj| = |Ri+1| and

σAj 6= σBj . It holds that13 2.2 · corrlatest(i,|πj |) ≥ `∗i+1 and

5000 ·
|πi+1|∑

l=|πj+1|+1

corrlatest(i,l) +
`∗i+1

30
·
(
|πi+1| − |πPrev(i)+1|

)
≥ 500 · `∗i+1 · (|πi+1| − |πj+1|) (31)

Proof. Conclude from the definition of Prev(·) that Prev(i) ∈ Starts and |RPrev(i)+1| =
|Ri| = |Ri+1| − 1 is odd. This means that Prev(i) ∈ StartsF. We start by showing the

following claims:

Claim 6.37. |πPrev(i)+1| ≤ |πj+1| < |πi+1|.

Proof. By Lemma 6.8, we have Range(i) ⊆ Range(Prev(i)) implying that j ∈
Range(Prev(i)). Thus, we have from item 8 of Fact 6.5 that |πPrev(i)+1| =

Rj[|RPrev(i)+1|].r. Using Lemma 6.6 and item 8 of Fact 6.5, we conclude that |πPrev(i)+1| ≤
|πj+1|. For the second inequality, we simply use Lemma 6.13.

Claim 6.38. For all l ∈ (|πj+1| : |πi+1|], we have that latest(i, l) ∈ Range(Prev(i)).

13Due to Corollary 6.14, we have that |πj | ≤ |πi+1| and therefore, latest(i, l) is well defined for
l ∈ [|πj | : |πi+1|] = (|πj+1| : |πi+1|] as |Rj | = |Ri+1| is even.

75

Proof. By definition of latest(·), we have that latest(i, l) ≤ i < Stop(i) ≤ Stop(Prev(i))

as Range(i) ⊆ Range(Prev(i)) by Lemma 6.8. It is thus, sufficient to show that

latest(i, l) > Prev(i). This is because, otherwise, Lemma 6.21 says |πPrev(i)+1| ≥ l > |πj+1|,
a contradiction to Claim 6.37.

Observe that:

σAj 6= σBj =⇒ πAj [|πj|] 6= πBj [|πj|] (Fact 6.5, item 5)

=⇒ πAi+1[|πj|] 6= πBi+1[|πj|]. (Corollary 6.14)

By Corollary 6.22, this means that, for l ∈ (|πj+1| : |πi+1|] = [|πj| : |πi+1|], we have

πAlatest(i,l)+1[|πj|] 6= πBlatest(i,l)+1[|πj|]. (32)

In particular, putting l = |πj| and using the fact that |πj| = |πlatest(i,|πj |)+1|, we get that:

πAlatest(i,|πj |)+1[|πlatest(i,|πj |)+1|] 6= πBlatest(i,|πj |)+1[|πlatest(i,|πj |)+1|]

As |Rlatest(i,|πj |)| is odd by definition, we have by item 5 of Fact 6.5 that, for C ∈ {A,B}, it

holds that πClatest(i,|πj |)+1[|πlatest(i,|πj |)+1|] = σClatest(i,|πj |). This allows us to continue as:

σAj 6= σBj =⇒ σAlatest(i,|πj |) 6= σBlatest(i,|πj |).

Again using the fact that |Rlatest(i,|πj |)| is odd, we get by Algorithm 5 that 2 · corrlatest(i,|πj |) ≥
`∗latest(i,|πj |). As Prev(i) ∈ Starts and latest(i, |πj|) ∈ Range(Prev(i)), we have by item 3

of Fact 6.5 that |Rlatest(i,|πj |)| ≥ |RPrev(i)+1| = |Ri| = |Ri+1| − 1. Using the definition of `∗,

this means that 2.2 · corrlatest(i,|πj |) ≥ 1.1`∗latest(i,|πj |) ≥ `∗i+1, as desired.

It remains to show Equation 31. If |πj+1| + 1 = |πi+1|, Equation 31 follows because

|πi+1| ≥ |πPrev(i)+1| (Claim 6.37) and

500 · `∗i+1 · (|πi+1| − |πj+1|) = 500 · `∗i+1 ≤ 5000 · corrlatest(i,|πj |).

Due to Claim 6.37, we can henceforth assume that |πi+1| − |πj+1| > 1. Consider an

l ∈ (|πj+1| : |πi+1|). We have from Equation 32 that:

πAlatest(i,l)+1[|πj|] 6= πBlatest(i,l)+1[|πj|]
=⇒ πAlatest(i,l)+1[|πj| : l] 6= πBlatest(i,l)+1[|πj| : l]
=⇒ πAlatest(i,l)+1(|πPrev(i)+1| : l] 6= πBlatest(i,l)+1(|πPrev(i)+1| : l]. (Claim 6.37)

We also have, by Lemma 6.23 that ΓClatest(i,l) = Γ̃Clatest(i,l) for all C ∈ {A,B}. This means that,

for all l ∈ (|πj+1| : |πi+1|), either ΓAlatest(i,l) 6= Γ̃Blatest(i,l) or we have

ΓAlatest(i,l) = ΓBlatest(i,l)

=⇒ ΓAlatest(i,l),depth(Prev(i)) = ΓBlatest(i,l),depth(Prev(i))

76

=⇒ TC(πAlatest(i,l)+1,>Rlatest(i,l)[|RPrev(i)+1|].r) = TC(πBlatest(i,l)+1,>Rlatest(i,l)[|RPrev(i)+1|].r).

(Definition of Γ and |Rlatest(i,l)| is odd)

Due to Claim 6.38, we have latest(i, l) ∈ Range(Prev(i)) which together with Prev(i) ∈
StartsF and item 8 of Fact 6.5 gives us that

TC(πAlatest(i,l)+1,>|πPrev(i)+1|) = TC(πBlatest(i,l)+1,>|πPrev(i)+1|)

=⇒ TC(πAi+1(|πPrev(i)+1| : l]) = TC(πBi+1(|πPrev(i)+1| : l]). (Corollary 6.22)

Overall, we get that for all l ∈ (|πj+1| : |πi+1|), either ΓAlatest(i,l) 6= Γ̃Blatest(i,l) or

TC(πAi+1(|πPrev(i)+1| : l]) = TC(πBi+1(|πPrev(i)+1| : l]). The number of l ∈ (|πj+1| : |πi+1|)
is |πi+1| − |πj+1| − 1 ≥ |πi+1|−|πj+1|

2
. Thus, either there are at least

|πi+1|−|πj+1|
4

values of

l ∈ (|πj+1| : |πi+1|) such that ΓAlatest(i,l) 6= Γ̃Blatest(i,l) or there are at least
|πi+1|−|πj+1|

4
values of

l ∈ (|πj+1| : |πi+1|) such that TC(πAi+1(|πPrev(i)+1| : l]) = TC(πBi+1(|πPrev(i)+1| : l]).
In the former case, we have at least

|πi+1|−|πj+1|
4

values of l such that 2 · corrlatest(i,l) ≥
`∗latest(i,l). As Prev(i) ∈ Starts and latest(i, l) ∈ Range(Prev(i)) by Claim 6.38, we have

by item 3 of Fact 6.5 that |Rlatest(i,l)| ≥ |RPrev(i)+1| = |Ri| = |Ri+1|− 1. Using the definition

of `∗, this means that 2.2 · corrlatest(i,l) ≥ 1.1`∗latest(i,l) ≥ `∗i+1 for at least
|πi+1|−|πj+1|

4
values of

l ∈ (|πj+1| : |πi+1|) implying

5000 ·
|πi+1|∑

l=|πj+1|+1

corrlatest(i,l) ≥ 500 · `∗i+1 · (|πi+1| − |πj+1|) ,

and Equation 31 follows.

In the latter case, recall the definition of TC from Definition 3.6 and define τC =

TC
(
πCi+1,>|πPrev(i)+1|

)
. Note that |τA| = |τB| = |πi+1| − |πPrev(i)+1|. We have from

Definition 3.6 that

∆(τA, τB) ≥
(
1− 10−5

)
·
(
|πi+1| − |πPrev(i)+1| − |LCP(πAi+1,>|πPrev(i)+1|, π

B
i+1,>|πPrev(i)+1|)|

)
.

Define z = |LCP(πAi+1,>|πPrev(i)+1|, π
B
i+1,>|πPrev(i)+1|)|. As the function TC(·) is online, we have

∆(τA, τB) ≥
(
1− 10−5

)
·
(
|πi+1| − |πPrev(i)+1| − z

)
=⇒ ∆(τA>z, τ

B
>z) ≥

(
1− 10−5

)
·
(
|πi+1| − |πPrev(i)+1| − z

)
.

Using the definition of ∆(·), we get :

|πi+1|−|πPrev(i)+1|∑
z′=z+1

1
(
τA[z′] 6= τB[z′]

)
≥
(
1− 10−5

)
·
(
|πi+1| − |πPrev(i)+1| − z

)
=⇒

|πi+1|−|πPrev(i)+1|∑
z′=z+1

1
(
τA[z′] = τB[z′]

)
≤ 10−5 ·

(
|πi+1| − |πPrev(i)+1| − z

)

77

=⇒
|πi+1|−|πPrev(i)+1|∑

z′=z+1

1
(
τA[z′] = τB[z′]

)
≤ 10−5 ·

(
|πi+1| − |πPrev(i)+1|

)
.

Recall that πAi+1[|πj|] 6= πBi+1[|πj|] and |πj| > |πPrev(i)+1| (Claim 6.37). This means that

z ≤ |πj+1| − |πPrev(i)+1| and we get

|πi+1|−|πPrev(i)+1|∑
z′=|πj+1|−|πPrev(i)+1|+1

1
(
τA[z′] = τB[z′]

)
≤ 10−5 ·

(
|πi+1| − |πPrev(i)+1|

)
=⇒

|πi+1|∑
z′=|πj+1|+1

1
(
TC
(
πAi+1(|πPrev(i)+1| : z′]

)
= TC

(
πBi+1(|πPrev(i)+1| : z′]

))
≤ 10−5 ·

(
|πi+1| − |πPrev(i)+1|

)
.

As there are at least
|πi+1|−|πj+1|

4
values of l ∈ (|πj+1| : |πi+1|) such that TC(πAi+1(|πPrev(i)+1| :

l]) = TC(πBi+1(|πPrev(i)+1| : l]), we conclude that

|πi+1| − |πj+1|
4

≤ 10−5 ·
(
|πi+1| − |πPrev(i)+1|

)
.

This means that

`∗i+1

30
·
(
|πi+1| − |πPrev(i)+1|

)
≥ 500 · (|πi+1| − |πj+1|) · `∗i+1,

and Equation 31 follows.

Lemma 6.39. Consider i ∈ StartsB and j′ < j ∈ {i} ∪ Range(i) \ {num} such that

|Rj′′ | = |Ri+1| for all j′′ ∈ (j′ : j]. We have:

EB
i (j′) +

j∑
i′=j′+1

corri′ ≤ EB
i (j′) +

j∑
i′=j′+1

corri′ +

|πj′+1|∑
l=|πj+1|+1

corrlatest(i,l) ≤ EB
i (j).

Proof. We have:

EB
i (j)− EB

i (j′) ≥
|πi+1|∑

l=|πj+1|+1

corrlatest(i,l) +

j∑
i′=i+1

corri′ · (1 + 1 (|Ri′| is odd))

−
|πi+1|∑

l=|πj′+1|+1

corrlatest(i,l) −
j′∑

i′=i+1

corri′ · (1 + 1 (|Ri′ | is odd)) .

As |Rj′′| is even for all j′′ ∈ (j′ : j], we have by item 5 of Fact 6.5 that |πj+1| ≤ |πj′+1|

78

implying:

EB
i (j)− EB

i (j′) ≥
|πj′+1|∑

l=|πj+1|+1

corrlatest(i,l) +

j∑
i′=j′+1

corri′ · (1 + 1 (|Ri′| is odd))

≥
|πj′+1|∑

l=|πj+1|+1

corrlatest(i,l) +

j∑
i′=j′+1

corri′ .

6.2.6 Lemmas Concerning F(·)

Lemma 6.40. Consider 1 ≤ j < num such that |Rj| is even. We have 100 ≤ F(j) ≤
100 + 0.2 ·

(
|ψj|+ 1− |LCP(ψAj ‖σAj , ψBj ‖σBj)|

)
.

Proof. The first inequality follows using a simple application of Definition 3.6. For the second

one, note that the function TC is online and therefore:

F(j) =
20

1− 10−5
·∆
(
TC(ψAj ‖σAj),TC(ψBj ‖σBj)

)
+ 20 ·

(
|LCP(ψAj ‖σAj , ψBj ‖σBj)| − |ψj|

)
+ 80

≤ 100 +
20

1− 10−5
·
(
|ψj|+ 1− |LCP(ψAj ‖σAj , ψBj ‖σBj)|

)
+ 20 ·

(
|LCP(ψAj ‖σAj , ψBj ‖σBj)| − |ψj| − 1

)
≤ 100 + 0.2 ·

(
|ψj|+ 1− |LCP(ψAj ‖σAj , ψBj ‖σBj)|

)
.

6.2.7 Lemmas Concerning tax0(·) and tax1(·)

Lemma 6.41. Let i ∈ StartsB and j, j′ ∈ {i} ∪ Range(i) \ {num} be such that

|πj+1| ≤ |πj′+1| ≤ |πi+1|. It holds that

tax1,i(j)− tax1,i(j
′) ≤ 100 · (|πj′+1| − |πj+1|) .

Proof. We first claim that:

|LCP(πAi+1(|πj+1| : |πi+1|], πBi+1(|πj+1| : |πi+1|])|
− |LCP(πAi+1(|πj′+1| : |πi+1|], πBi+1(|πj′+1| : |πi+1|])| ≤ |πj′+1| − |πj+1|.

(33)

Indeed, either |LCP(πAi+1(|πj+1| : |πi+1|], πBi+1(|πj+1| : |πi+1|])| ≤ |πj′+1| − |πj+1| in which case

there is nothing to show or |LCP(πAi+1(|πj+1| : |πi+1|], πBi+1(|πj+1| : |πi+1|])| > |πj′+1| − |πj+1|,
in which case Equation 33 follows by the definition of LCP(·).

We now show the lemma. If tax1,i(j) = 0, there is nothing to show. So we assume that

tax1,i(j) > 0 and derive

tax1,i(j)− tax1,i(j
′)

79

≤ 900 · |LCP(πAi+1(|πj+1| : |πi+1|], πBi+1(|πj+1| : |πi+1|])| − 800 · (|πi+1| − |πj+1|)
− 900 · |LCP(πAi+1(|πj′+1| : |πi+1|], πBi+1(|πj′+1| : |πi+1|])|+ 800 · (|πi+1| − |πj′+1|)

≤ 900 · |LCP(πAi+1(|πj+1| : |πi+1|], πBi+1(|πj+1| : |πi+1|])|
− 900 · |LCP(πAi+1(|πj′+1| : |πi+1|], πBi+1(|πj′+1| : |πi+1|])|+ 800 · (|πj+1| − |πj′+1|)

≤ 900 · (|πj′+1| − |πj+1|) + 800 · (|πj+1| − |πj′+1|) (Equation 33)

≤ 100 · (|πj′+1| − |πj+1|) .

Lemma 6.42. For all 0 ≤ η′ ≤ η and all 1 ≤ j < num, it holds that tax0(η′, j) ≤ tax0(η, j).

Moreover, if |Rj| is even and turn(j) = 1, then tax0(η, j) ≥ min(3, η/2) · (|ψj|+ 1).

Proof. If |Rj| is odd, there is nothing to show so we assume that |Rj| is even. To show the

lemma (including the “moreover” part), observe that it is sufficient to show that all terms

multiplied to η in Algorithm 7 are non-negative. We do this term by term. The terms |ψj|+1

and 1
10
· F(j) + |ψj|+ 1 are clearly non-negative due to Lemma 6.40.

Next, we show that the term 2 · (Rj+1.last.r −Rj+1.last.t) − |ψj| − 1 is non-negative

assuming Rj+1.last.t > 0. As Rj+1.last.t > 0 and |Rj| is even, we must have that |Rj+1| is

even. If Rj.last.t > 0, we have by item 9 and item 11 of Fact 6.5 that

2 · (Rj+1.last.r −Rj+1.last.t)− |ψj| − 1 = 2 · (Rj.last.r −Rj.last.t)− |ψj| − 1 ≥ 0.

On the other hand, if Rj.last.t = 0, we must have j ∈ E(90) implying that

2 · (Rj+1.last.r −Rj+1.last.t)− |ψj| − 1 = |ψj|+ 1 ≥ 0.

Finally, we show that max(Rj.last.t,Rj+1.last.t) − |πj+1| ≥ 0 assuming

max(Rj.last.t,Rj+1.last.t) > 0. If |πj+1| = 0, then there is nothing to show, so we assume

that |πj+1| > 0 =⇒ j /∈ E(84). Either j ∈ E(80), in which case we get:

max(Rj.last.t,Rj+1.last.t)− |πj+1| = Rj.last.t− |πj+1|
= |ψj|+ 1 + Rj.last.t−Rj.last.r

(Fact 6.5, item 5 and item 10)

=
1

2
· (|ψj|+ 1) (As j ∈ E(80))

≥ 0,

or j ∈ E(87) implying that |Rj+1| is even and max(Rj.last.t,Rj+1.last.t) = Rj+1.last.t.

Due to our assumption that max(Rj.last.t,Rj+1.last.t) > 0, we get:

max(Rj.last.t,Rj+1.last.t)− |πj+1| = Rj+1.last.t− |πj+1|
≥ Rj+1.last.r − |ψj| − 1− |πj+1| (Fact 6.5, item 11)

= Rj+1.last.r − |ψj| − |πj| (Fact 6.5, item 5)

80

= Rj.last.r − |ψj| − |πj| (Fact 6.5, item 9)

= 0. (Fact 6.5, item 10)

Corollary 6.43. For all η ≥ 0 and all 1 ≤ j < num, it holds that 0 ≤ tax0(η, j).

Proof. Apply the foregoing lemma on 0 and η noting that tax0(0, j) ≥ 0.

Lemma 6.44. Consider η ≥ 0 and 1 ≤ j < num such that j ∈ E(80) ∪ E(84). We have

tax0(η, j) ≥ min(3, η/2) · (|ψj|+ 1).

Proof. We consider the definition of tax0(η, j). Note that as j ∈ E(80)∪E(84), we have that

|Rj| is even. If πAj ‖ψAj = πBj ‖ψBj , then the lemma clearly holds. Additionally, if turn(j) = 1,

then the lemma holds due to Lemma 6.42. Therefore, for the rest of the proof, we can assume

that

πAj ‖ψAj 6= πBj ‖ψBj and turn(j) = 0 =⇒ ψAj ‖σAj = ψBj ‖σBj .

Under these assumptions, we claim that j ∈ E(84) is not possible. Indeed, if j ∈ E(84),

then |πj| = 1 =⇒ πCj = σCj for C ∈ {A,B} contradicting the foregoing equation. Thus, we

get that j ∈ E(80) which means that Rj.last.t > 0 by item 11 of Fact 6.5. Combining with

the foregoing equation, we get

tax0(η, j) ≥ η · (Rj.last.t− |πj+1|)
≥ η · (Rj.last.t−Rj.last.r + |ψj|+ 1) (Fact 6.5, item 5 and item 10)

≥ η

2
· (|ψj|+ 1) . (As j ∈ E(80))

Lemma 6.45. Consider 1 ≤ j′ ≤ j < num such that |Rj′′ | = |Rj| is even for all j′′ ∈ (j′ : j]

and turn(j′′) = turn(j) for all j′′ ∈ [j′ : j]. For all 0 ≤ z < 1 and all η ≥ 3
1−z , we have

5η

j∑
j′′=j′+1

corrj′′ ≥ zη`∗j ·
j∑

j′′=j′+1

1(turn(j) = 1 ∨Rj′′ .last.t > 0) + `∗j (tax0(η, j)− tax0(η, j′)) .

Proof. Proof by induction on j. If j = j′, then there is nothing to show. We show the result

for j > j′ by assuming it for j − 1. From our induction hypothesis, we have:

5η ·
j−1∑

j′′=j′+1

corrj′′ ≥ zη`∗j−1 ·
j−1∑

j′′=j′+1

1(turn(j − 1) = 1 ∨Rj′′ .last.t > 0)

+ `∗j−1 (tax0(η, j − 1)− tax0(η, j′))

≥ zη`∗j−1 ·
j−1∑

j′′=j′+1

1(turn(j) = 1 ∨Rj′′ .last.t > 0)

81

+ `∗j−1 (tax0(η, j − 1)− tax0(η, j′)) (As turn(j − 1) = turn(j))

≥ zη`∗j ·
j−1∑

j′′=j′+1

1(turn(j) = 1 ∨Rj′′ .last.t > 0)

+ `∗j (tax0(η, j − 1)− tax0(η, j′)) ,

as either j − 1 = j′ in which case, the right hand sides are = 0 or `∗j−1 = `∗j under the

assumption of the lemma. Owing to this, it is sufficient to show that:

5η · corrj ≥ zη`∗j · 1(turn(j) = 1 ∨Rj.last.t > 0) + `∗j (tax0(η, j)− tax0(η, j − 1)) . (34)

To show this, assume first that πAj ‖ψAj = πBj ‖ψBj . Under this assumption, we claim that

tax0(η, j) − tax0(η, j − 1) = η. Indeed, either j − 1 ∈ Starts in which case the fact that

|Rj| is even means that j − 1 ∈ StartsB =⇒ |Rj−1| is odd and we have

tax0(η, j)− tax0(η, j − 1) = η · (|ψj|+ 1)− 0 (As |Rj−1| is odd)

= η, (As j − 1 ∈ StartsB)

or j − 1 /∈ Starts in which case, by item 5 of Fact 6.5, we get that πAj−1‖ψAj−1 = πBj−1‖ψBj−1

and Algorithm 7 shows tax0(η, j)− tax0(η, j − 1) = η. Consequently, we have

zη`∗j · 1(turn(j) = 1 ∨Rj.last.t > 0) + `∗j (tax0(η, j)− tax0(η, j − 1)) ≤ η`∗j + η`∗j ≤ 2η · `∗j .

This means that it is sufficient to show that `∗j ≤ 2 · corrj. As Theorem 6.2 promises

that j ∈ E(52), it is enough to show that RA
j .last.α 6= RB

j .last.α. To this end, define

j1 ≤ j be the largest such that |Rj1| is odd. This is well defined as j1 = 1 is one such

value. As |Rj| is even, we have by our choice of j1 that j1 + 1 ≤ j and |Rj′′| is even for all

j′′ ∈ (j1 : j]. It follows that j1 ∈ E(70) and (using item 9 of Fact 6.5) that, in order to show

RA
j .last.α 6= RB

j .last.α, it is sufficient to show RA
j1+1.last.α 6= RB

j1+1.last.α.

We now focus on showing RA
j1+1.last.α 6= RB

j1+1.last.α. Suppose not, then we have

using j1 ∈ E(70) that (RF,j1 [h
A
j1

].r,ΓA
j1,hAj1

, Γ̃A
j1,hAj1

) = (RF,j1 [h
B
j1

].r, Γ̃B
j1,hBj1

,ΓB
j1,hBj1

) and ΓA
j1,hAj1

6=

Γ̃A
j1,hAj1

. Using h∗ to denote the common value of RF,j1 [h
A
j1

].r and RF,j1 [h
B
j1

].r and using the

definition of Γ, we get,

(RF,j1 [h
A
j1

].r,ΓAj1,hAj1
, Γ̃Aj1,hAj1

) = (RF,j1 [h
B
j1

].r, Γ̃Bj1,hBj1
,ΓBj1,hBj1

)

=⇒ ΓAj1,hAj1
6= ΓBj1,hBj1

(As ΓA
j1,hAj1

6= Γ̃A
j1,hAj1

)

=⇒ TC(πAj1+1,>h∗) 6= TC(πBj1+1,>h∗) (As j1 ∈ E(70))

=⇒ πAj1+1 6= πBj1+1.

However, due to item 5 of Fact 6.5 (we have (j1 : j) /∈ Starts as |Rj′′ | is even for all

j′′ ∈ (j1 : j]), this means that πAj ‖ψAj 6= πBj ‖ψBj , a contradiction to our assumption. For the

rest of the proof, we assume that πAj ‖ψAj 6= πBj ‖ψBj . We consider various cases and show

82

Equation 34 in each case.

• When turn(j) = 1: As we assume that turn(j′′) = turn(j) for all j′′ ∈ [j′ : j], we

have that turn(j − 1) = 1 as well. In particular, this means that |Rj−1| is even. As

|Rj| is also even, we have j − 1 /∈ Starts and using item 5 of Fact 6.5, we get that

πAj−1‖ψAj−1 6= πBj−1‖ψBj−1. We have two subcases:

– When Rj.last.t = 0: As j− 1 /∈ Starts, we have j− 1 /∈ E(80)∪E(84) which,

combined with πAj−1‖ψAj−1 6= πBj−1‖ψBj−1 gives:

tax0(η, j − 1) = 3 · (|ψj−1|+ 1) + η ·
(

1

10
· F(j − 1) + |ψj−1|+ 1

)
. (35)

We claim that:

Claim 6.46. tax0(η, j) ≤ 3 · (|ψj|+ 1) + η ·
(

1
10
· F(j) + |ψj|+ 1

)
− 10η ·

1 (Rj+1.last.t > 0 ∨ j ∈ E(80) ∪ E(84)) .

Proof. If Rj+1.last.t > 0, then we have

tax0(η, j) = 3 · (|ψj|+ 1) + η · (2 · (Rj+1.last.r −Rj+1.last.t)− |ψj| − 1)

≤ 3 · (|ψj|+ 1) + η · (|ψj|+ 1) (Fact 6.5, item 11)

≤ 3 · (|ψj|+ 1) + η ·
(

1

10
· F(j) + |ψj|+ 1

)
− 10η. (Lemma 6.40)

If Rj+1.last.t = 0 and j /∈ E(80) ∪ E(84), then we have

tax0(η, j) = 3 · (|ψj|+ 1) + η ·
(

1

10
· F(j) + |ψj|+ 1

)
.

Finally, if Rj+1.last.t = 0 and j ∈ E(80) ∪ E(84), then we have

tax0(η, j) = 3 · (|ψj|+ 1)

≤ 3 · (|ψj|+ 1) + η ·
(

1

10
· F(j) + |ψj|+ 1

)
− 10η. (Lemma 6.40)

Claim 6.47. F(j)− F(j − 1) = 20
1−10−5 · 1

(
TC(ψAj ‖σAj) 6= TC(ψBj ‖σBj)

)
− 20.

Proof. As |Rj−1| and |Rj| are both even, we have by definition that:

F(j)− F(j − 1)

=
20

1− 10−5
·∆
(
TC(ψAj ‖σAj),TC(ψBj ‖σBj)

)
+ 20 ·

(
|LCP(ψAj ‖σAj , ψBj ‖σBj)| − |ψj|

)
− 20

1− 10−5
·∆
(
TC(ψAj−1‖σAj−1),TC(ψBj−1‖σBj−1)

)
83

− 20 ·
(
|LCP(ψAj−1‖σAj−1, ψ

B
j−1‖σBj−1)| − |ψj−1|

)
=

20

1− 10−5
· 1
(
TC(ψAj ‖σAj) 6= TC(ψBj ‖σBj)

)
− 20

+ 20 · |LCP(ψAj ‖σAj , ψBj ‖σBj)| − 20 · |LCP(ψAj−1‖σAj−1, ψ
B
j−1‖σBj−1)|

(Fact 6.5, item 5)

=
20

1− 10−5
· 1
(
TC(ψAj ‖σAj) 6= TC(ψBj ‖σBj)

)
− 20. (As turn(j) = 1)

Using Equation 35 and Claim 6.46, we have

zη · 1(turn(j) = 1 ∨Rj.last.t > 0) + tax0(η, j)− tax0(η, j − 1)

≤ zη − 3 · (|ψj−1|+ 1)− η ·
(

1

10
· F(j − 1) + |ψj−1|+ 1

)
+ 3 · (|ψj|+ 1) + η ·

(
1

10
· F(j) + |ψj|+ 1

)
− 10η · 1(Rj+1.last.t > 0 ∨ j ∈ E(80) ∪ E(84))

≤ 3 + η + zη − η

10
· (F(j)− F(j − 1))

− 10η · 1(Rj+1.last.t > 0 ∨ j ∈ E(80) ∪ E(84)) (Fact 6.5, item 5)

≤ 2η +
η

10
(F(j)− F(j − 1))− 10η · 1(Rj+1.last.t > 0 ∨ j ∈ E(80) ∪ E(84))

(As η ≥ 3
1−z)

≤ 2η +
η

10
·
(
25 · 1

(
TC(ψAj ‖σAj) 6= TC(ψBj ‖σBj)

)
− 20

)
− 10η · 1(Rj+1.last.t > 0 ∨ j ∈ E(80) ∪ E(84)) (Claim 6.47)

≤ 2.5η · 1
(
TC(ψAj ‖σAj) 6= TC(ψBj ‖σBj)

)
− 10η · 1(Rj+1.last.t > 0 ∨ j ∈ E(80) ∪ E(84))

≤ 2.5η · 1
(
ΓAj 6= ΓBj

)
− 10η · 1(Rj+1.last.t > 0 ∨ j ∈ E(80) ∪ E(84)).

(As |Rj| is even)

Now, if Rj+1.last.t > 0 or j ∈ E(80) ∪ E(84) then zη · 1(turn(j) ∨ Rj.last.t >

0) + tax0(η, j)− tax0(η, j− 1) ≤ 0 and Equation 34 follows. Similarly, if ΓAj = ΓBj ,

then Equation 34 follows. It remains to argue the case, when neither of these

hold.

In this case, as j /∈ E(80) ∪ E(84), we must have j ∈ E(87). Furthermore, as

we have Rj.last.t = 0 and Rj+1.last.t = 0, we must have j /∈ E(90) implying

that ΓAj = Γ̃Aj . However, as we have ΓAj 6= ΓBj , this gives ΓBj 6= Γ̃Aj implying that

`∗j ≤ 2 · corrj and we can continue as:

zη · 1(turn(j) = 1∨Rj.last.t > 0) + tax0(η, j)− tax0(η, j − 1) ≤ 2.5η ≤ 5η · corrj
`∗j

,

84

and Equation 34 follows.

– When Rj.last.t > 0: In this case, as we have turn(j − 1) = 1 and πAj−1‖ψAj−1 6=
πBj−1‖ψBj−1, we get

tax0(η, j−1) = 3 ·(|ψj−1|+ 1)+η ·(2 · (Rj.last.r −Rj.last.t)− |ψj−1| − 1) . (36)

We claim that:

Claim 6.48. It holds that:

tax0(η, j) ≤ 3 · (|ψj|+ 1) + η · (2 · (Rj.last.r −Rj.last.t)− |ψj| − 1) .

Proof. If Rj+1.last.t > 0, then we must have j /∈ E(80) ∪ E(84) implying that

|Rj+1| is even and

tax0(η, j) = 3 · (|ψj|+ 1) + η · (2 · (Rj+1.last.r −Rj+1.last.t)− |ψj| − 1)

= 3 · (|ψj|+ 1) + η · (2 · (Rj.last.r −Rj.last.t)− |ψj| − 1) .

(Fact 6.5, item 9)

Otherwise, if Rj+1.last.t = 0, then we must have |Rj+1| is odd implying

j ∈ E(80)∪E(84) as otherwise, we have a contradiction to item 9 of Fact 6.5. We

get:

tax0(η, j) = 3 · (|ψj|+ 1)

≤ 3 · (|ψj|+ 1) + η · (2 · (Rj.last.r −Rj.last.t)− |ψj| − 1) .

(Fact 6.5, item 11)

Using Equation 36 and Claim 6.48, we have

zη · 1(turn(j) = 1 ∨Rj.last.t > 0) + tax0(η, j)− tax0(η, j − 1)

≤ zη − 3 · (|ψj−1|+ 1)− η · (2 · (Rj.last.r −Rj.last.t)− |ψj−1| − 1)

+ 3 · (|ψj|+ 1) + η · (2 · (Rj.last.r −Rj.last.t)− |ψj| − 1)

≤ 3 + zη − η (Fact 6.5, item 5)

≤ 0, (As η ≥ 3
1−z)

and Equation 34 follows.

• When turn(j) = 0: As we assume that turn(j′′) = turn(j) for all j′′ ∈ [j′ : j], we have

that turn(j − 1) = 0 as well. We have two subcases:

– When Rj.last.t = 0: In this case, we claim that tax0(η, j − 1) = 0. Indeed,

either j− 1 ∈ Starts in which case the fact that |Rj| is even means that j− 1 ∈
StartsB =⇒ |Rj−1| is odd and we have tax0(η, j − 1) = 0, or j − 1 /∈ Starts

85

in which case, we have that |Rj−1| is even and (by item 5 of Fact 6.5) that

πAj−1‖ψAj−1 6= πBj−1‖ψBj−1. In this case, we must have Rj−1.last.t = 0 as otherwise

Rj.last.t = 0 contradicts item 9 of Fact 6.5. However, if πAj−1‖ψAj−1 6= πBj−1‖ψBj−1

and turn(j − 1) = 0 and Rj−1.last.t = Rj.last.t = 0, we have tax0(η, j − 1) = 0,

as desired. We claim that:

Claim 6.49. tax0(η, j) = 0.

Proof. If Rj+1.last.t = 0, then the claim is straightforward. Otherwise, the fact

that Rj.last.t = 0 and Rj+1.last.t > 0 implies that j ∈ E(90) implying that

tax0(η, j) = η · (max(Rj.last.t,Rj+1.last.t)− |πj+1|)
= η · (Rj+1.last.t− |πj+1|) (As Rj.last.t = 0)

= 0. (As j ∈ E(90) and Fact 6.5, item 10 and item 5)

Using Claim 6.49 and the fact that tax0(η, j − 1) = 0, Equation 34 follows

straightforwardly.

– When Rj.last.t > 0: As Rj.last.t > 0, we have j − 1 /∈ Starts and therefore

|Rj−1| is even. Using item 5 of Fact 6.5, this means that πAj−1‖ψAj−1 6= πBj−1‖ψBj−1.

We claim that:

Rj.last.t = max(Rj.last.t,Rj+1.last.t) = max(Rj−1.last.t,Rj.last.t). (37)

Indeed, if the first equality is not true, then we have Rj+1.last.t > Rj.last.t > 0

implying that j /∈ E(80) ∪ E(84) which means that |Rj+1| is even. However, if

|Rj+1| and |Rj| are both even, then Rj+1.last.t > Rj.last.t > 0 is a contradiction

to item 9 of Fact 6.5.

Similarly, if the second equality is not true, then we have Rj−1.last.t > Rj.last.t >

0. As we have that |Rj| and |Rj−1| are both even, then Rj−1.last.t > Rj.last.t > 0

is a contradiction to item 9 of Fact 6.5.

Together with πAj ‖ψAj 6= πBj ‖ψBj and πAj−1‖ψAj−1 6= πBj−1‖ψBj−1 and turn(j − 1) =

turn(j) = 0, Equation 37 allows us to conclude:

tax0(η, j)− tax0(η, j − 1) = η · (Rj.last.t− |πj+1|)− η · (Rj.last.t− |πj|)
= η · (|πj| − |πj+1|)
= η. (Fact 6.5, item 5)

Thus, we have that:

zη`∗j · 1(turn(j) = 1 ∨Rj.last.t > 0) + `∗j (tax0(η, j)− tax0(η, j − 1)) ≤ 2η`∗j .

This means that, in order to show Equation 34, it is enough to show that

86

`∗j ≤ 2 · corrj. As Theorem 6.2 promises that j ∈ E(52), it is enough to show

that RA
j .last.β 6= RB

j .last.β. To this end, define j1 ≤ j be the largest such that

Rj1 .last.t = 0. This is well defined as j1 = 1 is one such value. As Rj.last.t > 0,

we have by our choice of j1 that j1 + 1 ≤ j and Rj′′ .last.t > 0 for all j′′ ∈ (j1 : j].

It follows that j1 ∈ E(90). We claim that:

Claim 6.50. We have |Rj′′ | is even for all j′′ ∈ [j1 : j].

Proof. Suppose for the sake of contradiction that there exists j2 ∈ [j1 : j] such

that |Rj2| is odd and let j2 denote the smallest such value. As |Rj1| is even, we

must have that |Rj2−1| is even implying that j2− 1 ∈ [j1 : j)∩Starts. However,

this means that Rj2 .last.t = 0, a contradiction to the fact that Rj′′ .last.t > 0 for

all j′′ ∈ (j1 : j].

Using Claim 6.50 and item 9 of Fact 6.5, in order to show RA
j .last.β 6= RB

j .last.β,

it is sufficient to show RA
j1+1.last.β 6= RB

j1+1.last.β.

We now focus on showing RA
j1+1.last.β 6= RB

j1+1.last.β. Suppose not, then we have

using j1 ∈ E(90) that (ΓAj1 , Γ̃
A
j1

) = (Γ̃Bj1 ,Γ
B
j1

) and ΓAj1 6= Γ̃Aj1 . Using the definition of

Γ, we get,

(ΓAj1 , Γ̃
A
j1

) = (Γ̃Bj1 ,Γ
B
j1

) =⇒ ΓAj1 6= ΓBj1 (As ΓAj1 6= Γ̃Aj1)

=⇒ TC(ψAj1‖σ
A
j1

) 6= TC(ψBj1‖σ
B
j1

) (As j1 ∈ E(90))

=⇒ ψAj1‖σ
A
j1
6= ψBj1‖σ

B
j1
.

However, due to item 5 of Fact 6.5 (we have [j1 : j) /∈ Starts due to Claim 6.50),

this means that ψAj ‖σAj 6= ψBj ‖σBj , a contradiction to the fact that turn(j) = 0.

Lemma 6.51. Let i ∈ StartsB and j ∈ Range(i) \ {num} be good for i. For all η > 0,

we have:

tax0(η, j) ≤ (1.02η + 3) · (|ψj|+ 1) + 10η ≤ (2.04η + 6) · (|πi+1| − |πj+1|) + 10η.

Proof. We only show the first inequality as the second follows from Lemma 6.13. As

we assume that j 6= i is good for i, we have by the definition of good that |Rj| is

even. We consider the definition of tax0(η, j). If πAj ‖ψAj = πBj ‖ψBj , then we have

tax0(η, j) = η · (|ψj|+ 1) and there is nothing to show. Therefore, we assume henceforth

that πAj ‖ψAj 6= πBj ‖ψBj .

If turn(j) = 1 and Rj+1.last.t > 0, then we have:

tax0(η, j) = 3 · (|ψj|+ 1) + η · (2 · (Rj+1.last.r −Rj+1.last.t)− |ψj| − 1)

≤ (η + 3) · (|ψj|+ 1) , (Fact 6.5, item 11)

87

and the lemma follows. If turn(j) = 1, Rj+1.last.t = 0, and j /∈ E(80)∪E(84), then we have:

tax0(η, j) = 3 · (|ψj|+ 1) + η ·
(

1

10
· F(j) + |ψj|+ 1

)
≤ 3 · (|ψj|+ 1) + η · (10 + 1.02 · (|ψj|+ 1)) (Lemma 6.40)

≤ (1.02η + 3) · (|ψj|+ 1) + 10η,

and the lemma follows. If turn(j) = 1, Rj+1.last.t = 0, and j ∈ E(80) ∪ E(84), then we

have tax0(η, j) = 3 · (|ψj|+ 1) and there is nothing to show. This completes the proof when

turn(j) = 1 and we assume henceforth that turn(j) = 0. If max(Rj.last.t,Rj+1.last.t) =

Rj.last.t > 0, then we have

tax0(η, j) = η · (Rj.last.t− |πj+1|)
= η · (Rj.last.t− |πj|+ 1) (Fact 6.5, item 5)

= η · (Rj.last.t−Rj.last.r + |ψj|+ 1) (Fact 6.5, item 10)

≤ η

2
· (|ψj|+ 1) , (Fact 6.5, item 11)

and the lemma follows. If Rj+1.last.t > Rj.last.t, then we must have j ∈ E(90) =⇒ |Rj+1|
is even and we get

tax0(η, j) = η · (Rj+1.last.t− |πj+1|)
= η · (Rj+1.last.r − |ψj+1| − |πj+1|) (As j ∈ E(90))

= 0, (Fact 6.5, item 10)

and the lemma follows. Finally, if max(Rj.last.t,Rj+1.last.t) = 0, then tax0(η, j) = 0 and

the lemma follows straightforwardly.

Lemma 6.52. Consider i ∈ StartsB and j′ < j ∈ {i} ∪ Range(i) \ {num} such that

|Rj′′ | = |Ri+1| for all j′′ ∈ (j′ : j]. Suppose that j ∈ E(80). The following hold:

• If Rj′+1.last.t > 0, then, for all η ≥ 6, we have

15 ·
j∑

i′=j′+1

corri′ ≥ 3 · `∗i+1 · (|ψj|+ 1)− `∗i+1 · tax0(η, j′).

• If tax1,i(j) > 0 and turn(j) = 1 and turn(j′) = 0, we have

60 ·
j∑

i′=j′+1

corri′ ≥ 15 · `∗i+1 + 2 · `∗i+1 · (|ψj|+ 1) + `∗i+1 · (|πj′+1| − |πj+1|) .

Proof. We prove each part in turn:

88

• First, observe that due to Lemma 6.42, we can assume η = 6 without loss of generality.

As Rj′+1.last.t > 0 and |Rj′+1| is even, we have that |Rj′| is even as well. We consider

the definition of tax0(·). If πAj′‖ψAj′ = πBj′‖ψBj′ , then the right hand side is at most 0

and the lemma clearly holds. Similarly, if turn(j) = 1, then the lemma holds due to

Lemma 6.42. Therefore, for the rest of the proof, we can assume that

πAj′‖ψAj′ 6= πBj′‖ψBj′ and turn(j′) = 0.

Under these assumptions and due to the fact that Rj′+1.last.t > 0, we have

`∗i+1 · tax0(6, j′) ≥ 6 · `∗i+1 · (Rj′+1.last.t− |πj′+1|)
≥ 6 · `∗i+1 · (Rj′+1.last.t− |πj+1|)− 6 · `∗i+1 · (|πj′+1| − |πj+1|)
≥ 6 · `∗i+1 · (Rj.last.t− |πj+1|)− 6 · `∗i+1 · (|πj′+1| − |πj+1|)

(Fact 6.5, item 9)

≥ 6 · `∗i+1 · (Rj.last.t− |πj|+ 1)− 6 · `∗i+1 · (j − j′)
(Fact 6.5, item 5 and |Rj′′ | is even for all j′′ ∈ (j′ : j])

≥ 6 · `∗i+1 · (Rj.last.t−Rj.last.r + |ψj|+ 1)− 6 · `∗i+1 · (j − j′)
(Fact 6.5, item 10 and |Rj| is even)

≥ 3 · `∗i+1 · (|ψj|+ 1)− 6 · `∗i+1 · (j − j′) (As j ∈ E(80))

≥ 3 · `∗i+1 · (|ψj|+ 1)− 6 ·
j∑

i′=j′+1

`∗i′ .

(As |Rj′′| = |Ri+1| for all j′′ ∈ (j′ : j])

Thus, it is sufficient to show that `∗i′ ≤ 2 · corri′ for all i′ ∈ (j′ : j]. As Theorem 6.2

promises that i′ ∈ E(52), it is enough to show that RA
i′ .last.β 6= RB

i′ .last.β. Next,

using item 9 of Fact 6.5, it is enough to show that RA
j′+1.last.β 6= RB

j′+1.last.β. To this

end, define j1 ≤ j′ + 1 be the largest such that Rj1 .last.t = 0. This is well defined as

j1 = 1 is one such value. As Rj′+1.last.t > 0, we have by our choice of j1 that j1 ≤ j′

and Rj′′ .last.t > 0 for all j′′ ∈ (j1 : j′ + 1]. It follows that j1 ∈ E(90). We claim that:

Claim 6.53. We have |Rj′′ | is even for all j′′ ∈ [j1 : j′ + 1].

Proof. Suppose for the sake of contradiction that there exists j2 ∈ [j1 : j′ + 1] such

that |Rj2| is odd and let j2 denote the smallest such value. As |Rj1 | is even, we must

have that |Rj2−1| is even implying that j2 − 1 ∈ [j1 : j′ + 1) ∩ Starts. However,

this means that Rj2 .last.t = 0, a contradiction to the fact that Rj′′ .last.t > 0 for all

j′′ ∈ (j1 : j′ + 1].

Using Claim 6.53 and item 9 of Fact 6.5, in order to show RA
j′+1.last.β 6= RB

j′+1.last.β,

it is sufficient to show RA
j1+1.last.β 6= RB

j1+1.last.β.

89

We now focus on showing RA
j1+1.last.β 6= RB

j1+1.last.β. Suppose not, then we have

using j1 ∈ E(90) that (ΓAj1 , Γ̃
A
j1

) = (Γ̃Bj1 ,Γ
B
j1

) and ΓAj1 6= Γ̃Aj1 . Using the definition of Γ,

we get,

(ΓAj1 , Γ̃
A
j1

) = (Γ̃Bj1 ,Γ
B
j1

) =⇒ ΓAj1 6= ΓBj1 (As ΓAj1 6= Γ̃Aj1)

=⇒ TC(ψAj1‖σ
A
j1

) 6= TC(ψBj1‖σ
B
j1

) (As j1 ∈ E(90))

=⇒ ψAj1‖σ
A
j1
6= ψBj1‖σ

B
j1
.

However, due to item 5 of Fact 6.5 (we have [j1 : j′+ 1) /∈ Starts due to Claim 6.53),

this means that ψAj′‖σAj′ 6= ψBj′‖σBj′ , a contradiction to the fact that turn(j′) = 0.

• We start by showing the following helper claims.

Claim 6.54. For all j′′ ∈ (j′ : j], we have that |ψj| − |ψj′′ | = j − j′′. Moreover, for all

C ∈ {A,B}, we have ψCj′′‖σCj′′ =
(
ψCj ‖σCj

)
[1 : |ψj′′ |+ 1].

Proof. Proof by backwards induction on j′′. For the base case j′′ = j, the claim is

trivial. We show the statement holds for j′′ ∈ (j′ : j) assuming it holds for j′′ + 1. As

|Rj′′| = |Rj′′+1| = |Ri+1| are both even, we have that j′′ /∈ Starts, implying by item 5

of Fact 6.5, that |ψj| − |ψj′′ | = |ψj| − |ψj′′+1|+ 1 = j − j′′ and

ψCj′′‖σCj′′ = ψCj′′+1 =
(
ψCj ‖σCj

)
[1 : |ψj′′+1|] =

(
ψCj ‖σCj

)
[1 : |ψj′′|+ 1],

by the induction hypothesis as desired.

Claim 6.55. For all j′′ ∈ [j′ : j], we have that |πj′′+1| − |πj+1| = j − j′′.

Proof. Proof by backwards induction on j′′. For the base case j′′ = j, the claim is

trivial. We show the statement holds for j′′ ∈ [j′ : j) assuming it holds for j′′ + 1.

As |Rj′′+1| = |Ri+1| is even, we have by item 5 of Fact 6.5 that |πj′′+1| − |πj+1| =

|πj′′+2| − |πj+1|+ 1 = j − j′′ by the induction hypothesis as desired.

Define j1 ∈ (j′ : j] to be the smallest such that turn(j1) = 1. As turn(j) = 1, the value

j1 is well defined. Moreover, as turn(j′) = 0, we have that turn(j1 − 1) = 0. We claim

that:

Claim 6.56. σAj1 6= σBj1 and |LCP(ψAj ‖σAj , ψBj ‖σBj)| = |ψj1|.

Proof. We first show that

ψAj1‖σ
A
j1
6= ψBj1‖σ

B
j1

and ψAj1 = ψBj1 . (38)

The former follows from turn(j1) = 1 and the definition of turn(·). For the latter, note

that either |Rj1−1| is odd, which together with the fact that |Rj1| is even means that

90

j1 − 1 ∈ StartsB =⇒ ψAj1 = ψBj1 = ε, or |Rj1−1| is even, which together with the fact

that |Rj1 | is even means that j1 − 1 /∈ Starts implying that:

ψAj1 = ψAj1−1‖σAj1−1 (Fact 6.5, item 5)

= ψBj1−1‖σBj1−1 (As turn(j1 − 1) = 0 and |Rj1−1| is even)

= ψBj1 . (Fact 6.5, item 5)

From Equation 38, we get that σAj1 6= σBj1 . Moreover, combining Equation 38 with

Claim 6.54, we also get
(
ψAj ‖σAj

)
[1 : |ψj1| + 1] 6=

(
ψBj ‖σBj

)
[1 : |ψj1| + 1] and(

ψAj ‖σAj
)

[1 : |ψj1|] =
(
ψBj ‖σBj

)
[1 : |ψj1 |] implying that |LCP(ψAj ‖σAj , ψBj ‖σBj)| = |ψj1|

and the claim follows.

Using Claim 6.56, we have:

σAj1 6= σBj1 =⇒ πAj1 [|πj1|] 6= πBj1 [|πj1|] (Fact 6.5, item 5 and |Rj1| is even)

=⇒ πAi+1[|πj1|] 6= πBi+1[|πj1|] (Corollary 6.14 and |Rj1| = |Ri+1|)
=⇒ πAi+1(|πj+1| : |πj1|] 6= πBi+1(|πj+1| : |πj1|]

(As |πj+1| < |πj1| by Claim 6.55)

=⇒ |LCP(πAi+1(|πj+1| : |πi+1|], πBi+1(|πj+1| : |πi+1|])| ≤ |πj1| − |πj+1| − 1.

Next, as |Rj1| is even and item 5 of Fact 6.5, we have that |πj1|−1 = |πj1+1|. Plugging

this in, we get

|LCP(πAi+1(|πj+1| : |πi+1|], πBi+1(|πj+1| : |πi+1|])| ≤ |πj1+1| − |πj+1|. (39)

Observe that from Claim 6.54 and Claim 6.55, we can conclude that |ψj| − |ψj1 | =

j − j1 = |πj1+1| − |πj+1|. Using this, we can continue Equation 39 as

|ψj| − |ψj1| ≥ |LCP(πAi+1(|πj+1| : |πi+1|], πBi+1(|πj+1| : |πi+1|])|

>
8

9
· (|πi+1| − |πj+1|) (As tax1,i(j) > 0)

=
8

9
· (|πi+1| − |πj1+1|) +

8

9
· (|πj1+1| − |πj+1|)

=
8

9
· (|πi+1| − |πj1+1|) +

8

9
· (|ψj| − |ψj1|)

(As |ψj| − |ψj1| = |πj1+1| − |πj+1|)

≥ 4

9
· (|ψj1 |+ 1) +

8

9
· (|ψj| − |ψj1|) . (Lemma 6.13 and |Rj1| = |Ri+1|)

This rearranges to |ψj| + 1 > 5 · (|ψj1|+ 1). In particular, together with Claim 6.54,

this means that j − j1 = |ψj| − |ψj1| > 4.

Define j2 ∈ (j1 : j] be the largest such that Rj2 .last.t = 0. We claim that j2 is well

defined as j1+1 is one such value. Indeed, if not, then Rj1+1.last.t > 0 implying item 11

91

of Fact 6.5 that |ψj1|+ 1 ≥ Rj1+1.last.r −Rj1+1.last.t. Moreover, as Rj1+1.last.t > 0,

we get from item 9 of Fact 6.5 that |ψj1|+ 1 ≥ Rj.last.r−Rj.last.t = 1
2
· (|ψj|+ 1) as

j ∈ E(80). This contradicts the fact that |ψj|+ 1 > 5 · (|ψj1|+ 1). We claim that:

Claim 6.57. We have j2 − j1 >
1
4
· (|ψj|+ 1). Moreover, for all j′′ ∈ [j1 : j2], we have

Rj′′ .last.t = 0 and for all j′′ ∈ (j2 : j], we have Rj′′ .last.t = Rj.last.t.

Proof. Due to item 11 of Fact 6.5 and the fact that j ∈ E(80), we have Rj.last.t >

0 =⇒ j2 < j. Due to our choice of j2 this means that Rj2+1.last.t > 0 implying

by item 9 of Fact 6.5 that Rj′′ .last.t = Rj.last.t for all j′′ ∈ (j2 : j]. We next show

that Rj′′ .last.t = 0 for all j′′ ∈ [j1 : j2]. Suppose not and let j′′ ∈ [j1 : j2] be such

that Rj′′ .last.t > 0. Then, we would get from item 9 of Fact 6.5 that Rj2 .last.t > 0, a

contradiction.

It remains to show that j2 − j1 >
1
4
· (|ψj|+ 1). This is because:

j2 − j1 = |ψj2| − |ψj1 | (Claim 6.54)

= Rj2+1.last.r −Rj2+1.last.t− (|ψj1|+ 1)

(As Claim 6.57 implies j2 ∈ E(90))

= Rj.last.r −Rj.last.t− (|ψj1|+ 1)

(Fact 6.5, item 9 and |Rj′′| is even for all j′′ ∈ (j2 : j])

=
1

2
· (|ψj|+ 1)− (|ψj1|+ 1) (As j ∈ E(80))

>
1

4
· (|ψj|+ 1) . (As |ψj|+ 1 > 5 · (|ψj1|+ 1))

Consider now the iterations ∈ [j1 : j2). As |Rj′′ | = |Ri+1| for all j′′ ∈ [j1 : j2], we have

that [j1 : j2) ⊆ E(87). However, [j1 : j2) ⊆ E(87) and Rj′′ .last.t = 0 for all j′′ ∈ [j1 : j2]

is only possible if ΓAj′′ = Γ̃Aj′′ for all j′′ ∈ [j1 : j2). We next claim that:

Claim 6.58.
∑j2−1

j′′=j1
1
(
ΓAj′′ 6= ΓBj′′

)
≥ 4

5
· (j2 − j1).

Proof. By Claim 6.57, we have j2 > j1 =⇒ j2 − 1 ≥ j1. Combining with Claim 6.54,

we get that |ψj2−1| ≥ |ψj1| implying by Claim 6.56 and the definition of LCP(·)
that |LCP((ψAj ‖σAj)[1 : |ψj2−1|+ 1], (ψBj ‖σBj)[1 : |ψj2−1|+ 1])| = |ψj1|. Next, we apply

Claim 6.54 to get |LCP(ψAj2−1‖σAj2−1, ψ
B
j2−1‖σBj2−1)| = |ψj1 | Plugging into Definition 3.6,

we have that

∆(TC(ψAj2−1‖σAj2−1),TC(ψBj2−1‖σBj2−1)) ≥
(
1− 10−5

)
· (|ψj2−1|+ 1− |ψj1|)

≥ 4

5
· (|ψj2−1|+ 1− |ψj1|)

92

≥ 4

5
· (j2 − j1) . (Claim 6.54)

From the definition of ∆(·) and TC(·), we get:

4

5
· (j2 − j1) ≤

|ψj2−1|+1∑
z=1

1
(
TC
((
ψAj2−1‖σAj2−1

)
[1 : z]

)
6= TC

((
ψBj2−1‖σBj2−1

)
[1 : z]

))
.

For all z ∈ [|ψj1|], we have by Claim 6.56 that
(
ψAj ‖σAj

)
[1 : z] =

(
ψBj ‖σBj

)
[1 : z] which

implies by Claim 6.54 that
(
ψAj2−1‖σAj2−1

)
[1 : z] =

(
ψBj2−1‖σBj2−1

)
[1 : z] in turn implying

that TC
((
ψAj2−1‖σAj2−1

)
[1 : z]

)
= TC

((
ψBj2−1‖σBj2−1

)
[1 : z]

)
. Thus, we get:

4

5
· (j2 − j1) ≤

|ψj2−1|+1∑
z=|ψj1 |+1

1
(
TC
((
ψAj2−1‖σAj2−1

)
[1 : z]

)
6= TC

((
ψBj2−1‖σBj2−1

)
[1 : z]

))

≤
|ψj2−1|+1∑
z=|ψj1 |+1

1
(
TC
((
ψAj ‖σAj

)
[1 : z]

)
6= TC

((
ψBj ‖σBj

)
[1 : z]

))
(Claim 6.54)

≤
j2−1∑
j′′=j1

1
(
TC
(
ψAj′′‖σAj′′

)
6= TC

(
ψBj′′‖σBj′′

))
(Claim 6.54)

≤
j2−1∑
j′′=j1

1
(
ΓAj′′ 6= ΓBj′′

)
. (Definition of Γ as |Rj′′ | is even)

Combined with ΓAj′′ = Γ̃Aj′′ for all j′′ ∈ [j1 : j2), Claim 6.58 gives that for at least
4
5
· (j2 − j1) values of j′′ ∈ [j1 : j2), we have Γ̃Aj′′ 6= ΓBj′′ =⇒ 2 · corrj′′ ≥ `j′′ . As

|Rj′′| = |Ri+1| for all j′′ ∈ [j1 : j2], this gives:

60 ·
j∑

j′′=j′+1

corrj′′ ≥ 60 ·
j2−1∑
j′′=j1

corrj′′

≥ 24 · (j2 − j1) · `∗i+1

≥ 6 · `∗i+1 · (|ψj|+ 1) (Claim 6.57)

≥ 5 · `∗i+1 · (|ψj|+ 1) + `∗i+1 · (|πj′+1| − |πj+1|)
(Claim 6.54, Claim 6.55)

≥ 15 · `∗i+1 + 2 · `∗i+1 · (|ψj|+ 1) + `∗i+1 · (|πj′+1| − |πj+1|) .
(As |ψj|+ 1 > 5 · (|ψj1|+ 1) ≥ 5)

as desired.

93

6.2.8 Lemmas Concerning G(·) and B(·)

Lemma 6.59. Let i ∈ StartsF and i′ ∈ (i : Stop(i))∩StartsB be such that |Ri′ | = |Ri+1|.
We have for all j ∈ {i′} ∪Range(i′) \ {num} satisfying |Rj| = |Ri′+1| that:

50 · (|πi′+1| − |πj+1|) ≤ tax1,i′(j) + 1000 · Bi(i′).

Proof. For all j ∈ {i′} ∪ Range(i′) \ {num} =⇒ j 6= i satisfying |Rj| = |Ri′+1|, we

have that |πj+1| ≤ |πi′+1| by Lemma 6.13. Also, j ∈ {i′} ∪ Range(i′) ⊆ Range(i) by

Lemma 6.7, we get |πi+1| = Rj[|Ri+1|].r using item 8 of Fact 6.5. Using Lemma 6.6, this

gives |πi+1| ≤ |πj+1|. We claim that:

|LCP(πAi′+1(|πi+1| : |πi′+1|], πBi′+1(|πi+1| : |πi′+1|])|
− |LCP(πAi′+1(|πj+1| : |πi′+1|], πBi′+1(|πj+1| : |πi′+1|])| ≤ |πj+1| − |πi+1|.

(40)

Indeed, either |LCP(πAi′+1(|πi+1| : |πi′+1|], πBi′+1(|πi+1| : |πi′+1|])| ≤ |πj+1|− |πi+1| in which case

there is nothing to show or |LCP(πAi′+1(|πi+1| : |πi′+1|], πBi′+1(|πi+1| : |πi′+1|])| > |πj+1|− |πi+1|,
in which case Equation 40 follows by the definition of LCP(·) and the fact that |πi+1| ≤
|πj+1| ≤ |πi′+1|. Equation 40 gives:

tax1,i′(j) + 1000 · Bi(i′)
≥ 900 · |LCP(πAi′+1(|πj+1| : |πi′+1|], πBi′+1(|πj+1| : |πi′+1|])| − 800 · (|πi′+1| − |πj+1|)

+ 1000 · Bi(i′) (Definition of tax1(·))
≥ 900 · |LCP(πAi′+1(|πi+1| : |πi′+1|], πBi′+1(|πi+1| : |πi′+1|])|

− 900 · (|πj+1| − |πi+1|)− 800 · (|πi′+1| − |πj+1|) + 1000 · Bi(i′) (Equation 40)

≥ 900 · |LCP(πAi′+1(|πi+1| : |πi′+1|], πBi′+1(|πi+1| : |πi′+1|])|
− 900 · (|πi′+1| − |πi+1|) + 100 · (|πi′+1| − |πj+1|) + 1000 · Bi(i′)

≥ 100 · Bi(i′) + 100 · (|πi′+1| − |πj+1|) (Definition of G(·) and B(·))
≥ 50 · (|πi′+1| − |πj+1|) .

Lemma 6.60. Let i ∈ StartsF and i′ ∈ (i : Stop(i)) ∩ StartsB be such that i′ is indirect

and |Ri′| = |Ri+1|. We have:

• If Gi(i
′) < |πMid(i′)+1| − |πi+1|, then, for all j′ ∈ [i′ : Stop(i′)], we have Gi(i

′) = Gi(j
′)

and Bi(j
′) = Bi(i

′) + |πj′+1| − |πi′+1|. Moreover, we have:

Di(i
′)− Di(Mid(i′)) + sparei(i

′) ≥ 1.

• If Gi(i
′) ≥ |πMid(i′)+1| − |πi+1|, then Bi(Stop(i′)) = BMid(i′)(Stop(i′)) and

Di(Mid(i′)) = 0 and sparei(Stop(i′)) ≤ spareMid(i′)(Stop(i′)).

Proof. We prove each part separately using the following claim in both the parts:

94

Claim 6.61. For all j′ ∈ [i′ : Stop(i′)] and C ∈ {A,B}, we have πCj′+1,≤|πMid(i′)+1|
=

πCi′+1,≤|πMid(i′)+1|
.

Proof. As the parties only add/remove one symbol from π in every iteration, it is sufficient

to show that |πMid(i′)+1| ≤ |πj′+1| for all j′ ∈ [i′ : Stop(i′)]. This follows from Lemma 6.15

and the fact that Stop(i′) = Stop(Mid(i′)) by Lemma 6.9.

• If Gi(i
′) < |πMid(i′)+1| − |πi+1|, then by the definition of G(·) and LCP(·), we get (using

h to denote |πi+1|+ Gi(i
′) + 1 ≤ |πMid(i′)+1|):

πAi′+1(|πi+1| : h) = πBi′+1(|πi+1| : h) and πAi′+1[h] = πBi′+1[h].

As h ≤ |πMid(i′)+1|, we get by Claim 6.61 that, for all j′ ∈ [i′ : Stop(i′)], we have:

πAj′+1(|πi+1| : h) = πBj′+1(|πi+1| : h) and πAj′+1[h] = πBj′+1[h].

It follows that by the definition of G(·) and LCP(·) that Gi(j
′) = h−1−|πi+1| = Gi(i

′).

By the definition of B(·), we also get:

Bi(j
′)− Bi(i

′) = |πj′+1| − |πi′+1| − Gi(j
′) + Gi(i

′) = |πj′+1| − |πi′+1|,

as desired. Next, we claim that:

Claim 6.62. For all l ∈ (|πi+1| : |πMid(i′)+1|], it holds that latest(Mid(i′), l) =

latest(i′, l).

Proof. Suppose not. Then, there is an l ∈ (|πi+1| : |πMid(i′)+1|] such that

latest(Mid(i′), l) ∈ (i′ : Mid(i′)]. By definition of latest(·), we get that

|πlatest(Mid(i′),l)+1| = l and |Rlatest(Mid(i′),l)| is odd implying by item 5 of Fact 6.5 that

|πlatest(Mid(i′),l)| = l − 1 < |πMid(i′)+1|. As latest(Mid(i′), l) ∈ (i′ : Mid(i′)], this is a

contradiction to Lemma 6.13.

Also, note that by definition of Mid(·), we can apply Lemma 6.13 on i′,Mid(i′). We

get that |πMid(i′)+1| < |πi′+1|. Using this and the definition of D(·), we get:

Di(Mid(i′))

= |{|πi+1| < l ≤ |πMid(i′)+1| | ΓAlatest(Mid(i′),l),≥depth(i) 6= ΓBlatest(Mid(i′),l),≥depth(i)}|
= |{|πi+1| < l ≤ |πMid(i′)+1| | ΓAlatest(i′,l),≥depth(i) 6= ΓBlatest(i′,l),≥depth(i)}|

(Claim 6.62)

≤ |{|πi+1| < l ≤ |πi′ | | ΓAlatest(i′,l),≥depth(i) 6= ΓBlatest(i′,l),≥depth(i)}|.
(As |πMid(i′)+1| < |πi′+1|)

As |Ri′ | is odd, we have by item 5 of Fact 6.5 that |πi′+1| = |πi′ |+ 1 and latest(i′, l) =

latest(i′ − 1, l) for all l ∈ [|πi′|]. This gives:

Di(i
′ − 1) = |{|πi+1| < l ≤ |πi′| | ΓAlatest(i′−1,l),≥depth(i) 6= ΓBlatest(i′−1,l),≥depth(i)}|

95

= |{|πi+1| < l ≤ |πi′| | ΓAlatest(i′,l),≥depth(i) 6= ΓBlatest(i′,l),≥depth(i)}|.

By definition of D(·), we also have:

Di(i
′) = |{|πi+1| < l ≤ |πi′+1| | ΓAlatest(i′,l),≥depth(i) 6= ΓBlatest(i′,l),≥depth(i)}|.

As |πi′+1| = |πi′| + 1, it follows that Di(Mid(i′)) ≤ Di(i
′ − 1) ≤ Di(i

′). Consequently,

we have Di(i
′)− Di(Mid(i′)) ≥ Di(i

′)− Di(i
′ − 1) ≥ 1 (Di(i

′) > Di(i
′ − 1)). Using the

definition of spare(·), this gives:

Di(i
′)− Di(Mid(i′)) + sparei(i

′)

≥ 1 (Di(i
′) > Di(i

′ − 1)) + 1 (Bi(i
′) > 0 ∧ (i′ /∈ E(70) ∨ Di(i

′) = Di(i
′ − 1)))

≥ 1 (Di(i
′) > Di(i

′ − 1)) + 1 (Bi(i
′) > 0 ∧ Di(i

′) = Di(i
′ − 1)) .

We next use the fact that Bi(i
′) = |πi′+1|−|πi+1|−Gi(i′) ≥ |πMid(i′)+1|−|πi+1|−Gi(i′) > 0

to get

Di(i
′)− Di(Mid(i′)) + sparei(i

′) ≥ 1 (Di(i
′) > Di(i

′ − 1)) + 1 (Di(i
′) = Di(i

′ − 1))

≥ 1. (As Di(i
′) ≥ Di(i

′ − 1))

• If Gi(i
′) ≥ |πMid(i′)+1| − |πi+1|, we use the definition of G(·) and Claim 6.61 to get

πAi′+1(|πi+1| : |πMid(i′)+1|] = πBi′+1(|πi+1| : |πMid(i′)+1|]
=⇒ πAStop(i′)+1(|πi+1| : |πMid(i′)+1|] = πBStop(i′)+1(|πi+1| : |πMid(i′)+1|].

(41)

Using Equation 41, we derive:

Gi(Stop(i′))

= |LCP(πAStop(i′)+1(|πi+1| : |πStop(i′)+1|], πBStop(i′)+1(|πi+1| : |πStop(i′)+1|])|
= |πMid(i′)+1| − |πi+1|

+ |LCP(πAStop(i′)+1(|πMid(i′)+1| : |πStop(i′)+1|], πBStop(i′)+1(|πMid(i′)+1| : |πStop(i′)+1|])|
= |πMid(i′)+1| − |πi+1|+ GMid(i′)(Stop(i′)).

Using the definition of B(·), this rearranges to Bi(Stop(i′)) = BMid(i′)(Stop(i′)). To

show Di(Mid(i′)) = 0, we argue:

Gi(i
′) ≥ |πMid(i′)+1| − |πi+1|

=⇒ πAi′+1(|πi+1| : |πMid(i′)+1|] = πBi′+1(|πi+1| : |πMid(i′)+1|]
=⇒ πAMid(i′)+1(|πi+1| : |πMid(i′)+1|] = πBMid(i′)+1(|πi+1| : |πMid(i′)+1|] (Claim 6.61)

=⇒ Gi(Mid(i′)) = |πMid(i′)+1| − |πi+1|
=⇒ Bi(Mid(i′)) = 0 (Definition of B(·))
=⇒ Di(Mid(i′)) = 0. (Lemma 6.24)

96

We next prove sparei(Stop(i′)) ≤ spareMid(i′)(Stop(i′)) If sparei(Stop(i′)) = 0,

there is nothing to show so we assume otherwise and show spareMid(i′)(Stop(i′)) =

1. By the definition of sparei(Stop(i′)), we get Bi(Stop(i′)) > 0 and

(Stop(i′) /∈ E(70) ∨ Di(Stop(i′)) = Di(Stop(i′)− 1)). From Bi(Stop(i′)) > 0 and

Bi(Stop(i′)) = BMid(i′)(Stop(i′)), we conclude that BMid(i′)(Stop(i′)) > 0.

Now, in order to show that spareMid(i′)(Stop(i′)) = 1, all the remains to be shown

is that
(
Stop(i′) /∈ E(70) ∨ DMid(i′)(Stop(i′)) = DMid(i′)(Stop(i′)− 1)

)
. This clearly

holds if Stop(i′) /∈ E(70), so we assume that Di(Stop(i′)) = Di(Stop(i′) − 1). As i′

in indirect, we have |RStop(i′)| is odd which means (using item 5 of Fact 6.5) that

|πStop(i′)+1| = |πStop(i′)| + 1 and latest(Stop(i′), l) = latest(Stop(i′) − 1, l) for all

l ∈ [|πStop(i′)|] and latest(Stop(i′), |πStop(i′)+1|) = Stop(i′). We get from the definition

of D(·) that:

Di(Stop(i′)) = Di(Stop(i′)− 1) =⇒ ΓAStop(i′),≥depth(i) = ΓBStop(i′),≥depth(i)

=⇒ ΓAStop(i′),≥depth(Mid(i′)) = ΓBStop(i′),≥depth(Mid(i′))

=⇒ DMid(i′)(Stop(i′)) = DMid(i′)(Stop(i′)− 1),

finishing the proof.

6.2.9 Lemmas Concerning extra(·)

Lemma 6.63. Consider i ∈ StartsB and all j ∈ {i} ∪ Range(i) \ {num} such that

|πj+1| ≤ |πi+1|. For all η ≥ η1 ≥ 0 and η′ ≥ η′1 ≥ 0, we have:

extrai(η, η
′, j) ≤ extrai(η1, η

′
1, j).

Proof. We have:

extrai(η, η
′, j)

= `∗i+1 ·min

(
|πi+1| − |πPrev(i)+1|

30
− tax0(η, j), 35 (|πi+1| − |πj+1|)− tax0(η′, j)

)
≤ `∗i+1 ·min

(
|πi+1| − |πPrev(i)+1|

30
− tax0(η1, j), 35 (|πi+1| − |πj+1|)− tax0(η′1, j)

)
(Lemma 6.42)

≤ extrai(η1, η
′
1, j).

Lemma 6.64. Consider i ∈ StartsB and j′ < j ∈ {i} ∪ Range(i) \ {num} such that

|Rj′′ | = |Ri+1| for all j′′ ∈ (j′ : j] and turn(j′′) = turn(j) for all j′′ ∈ [j′ : j]. For all

97

0 ≤ z < 1 and all 1000 ≥ η ≥ η′ ≥ 3
1−z , we have:

104 · EB
i (j′) + extrai(η, η

′, j′)

≤ 104 · EB
i (j) + extrai(η, η

′, j)− zη′`∗j ·
j∑

j′′=j′+1

1(turn(j) = 1 ∨Rj′′ .last.t > 0).

Proof. Note that:

extrai(η, η
′, j′) ≤ `∗i+1 ·

(
|πi+1| − |πPrev(i)+1|

30
− tax0(η, j′)

)
≤
`∗i+1

30
·
(
|πi+1| − |πPrev(i)+1|

)
− `∗j · tax0(η, j′) (As |Rj| = |Ri+1|)

≤
`∗i+1

30
·
(
|πi+1| − |πPrev(i)+1|

)
− `∗j · tax0(η, j)

+ 5η

j∑
j′′=j′+1

corrj′′ − zη`∗j ·
j∑

j′′=j′+1

1(turn(j) = 1 ∨Rj′′ .last.t > 0)

(Lemma 6.45)

≤
`∗i+1

30
·
(
|πi+1| − |πPrev(i)+1|

)
− `∗j · tax0(η, j)

+ 5000

j∑
j′′=j′+1

corrj′′ − zη′`∗j ·
j∑

j′′=j′+1

1(turn(j) = 1 ∨Rj′′ .last.t > 0)

(As η′ ≤ η ≤ 1000)

≤ `∗i+1 ·
(
|πi+1| − |πPrev(i)+1|

30
− tax0(η, j)

)
+ 5000

j∑
j′′=j′+1

corrj′′ − zη′`∗j ·
j∑

j′′=j′+1

1(turn(j) = 1 ∨Rj′′ .last.t > 0).

(As |Rj| = |Ri+1|)

Similarly,

extrai(η, η
′, j′) ≤ `∗i+1 · (35 (|πi+1| − |πj′+1|)− tax0(η′, j′))

≤ 35 · `∗i+1 · (|πi+1| − |πj′+1|)− `∗j · tax0(η′, j′) (As |Rj| = |Ri+1|)
≤ 35 · `∗i+1 · (|πi+1| − |πj+1|)− `∗j · tax0(η′, j′) (As |πj+1| ≤ |πj′+1|)
≤ 35 · `∗i+1 · (|πi+1| − |πj+1|)− `∗j · tax0(η′, j)

+ 5η′
j∑

j′′=j′+1

corrj′′ − zη′`∗j ·
j∑

j′′=j′+1

1(turn(j) = 1 ∨Rj′′ .last.t > 0)

(Lemma 6.45)

≤ 35 · `∗i+1 · (|πi+1| − |πj+1|)− `∗j · tax0(η′, j)

98

+ 5000

j∑
j′′=j′+1

corrj′′ − zη′`∗j ·
j∑

j′′=j′+1

1(turn(j) = 1 ∨Rj′′ .last.t > 0)

(As η′ ≤ η ≤ 1000)

≤ `∗i+1 · (35 (|πi+1| − |πj+1|)− tax0(η′, j))

+ 5000

j∑
j′′=j′+1

corrj′′ − zη′`∗j ·
j∑

j′′=j′+1

1(turn(j) = 1 ∨Rj′′ .last.t > 0).

(As |Rj| = |Ri+1|)

Combining the last two inequalities, we have that:

extrai(η, η
′, j′) ≤ `∗i+1 min

(
|πi+1| − |πPrev(i)+1|

30
− tax0(η, j), 35 (|πi+1| − |πj+1|)− tax0(η′, j)

)
+ 5000

j∑
j′′=j′+1

corrj′′ − zη′`∗j ·
j∑

j′′=j′+1

1(turn(j) = 1 ∨Rj′′ .last.t > 0)

≤ extrai(η, η
′, j)

+ 5000

j∑
j′′=j′+1

corrj′′ − zη′`∗j ·
j∑

j′′=j′+1

1(turn(j) = 1 ∨Rj′′ .last.t > 0)

(Definition of extra(·))
≤ extrai(η, η

′, j) + 104 · EB
i (j)− 104 · EB

i (j′)

− zη′`∗j ·
j∑

j′′=j′+1

1(turn(j) = 1 ∨Rj′′ .last.t > 0). (Lemma 6.39)

The lemma follows after a simple rearrangement.

Lemma 6.65. Let i ∈ StartsB and i′ ∈ (i : Stop(i))∩E(80) be such that i′ is indirect and

|Ri′ | = |Ri+1|. We have:

extrai(i
′) + 3 · `∗i+1 · (|ψi′|+ 1) ≤ extrai(225, 225,Stop(i′)) + `∗i+1 · tax0(225,Stop(i′)).

Proof. By definition of extra(·), we derive:

extrai(i
′) = extrai(225, 10, i′)

= `∗i+1 ·min

(
|πi+1| − |πPrev(i)+1|

30
− tax0(225, i′), 35 (|πi+1| − |πi′+1|)− tax0(10, i′)

)
≤ `∗i+1 ·min

(
|πi+1| − |πPrev(i)+1|

30
, 35 (|πi+1| − |πi′+1|)

)
− `∗i+1 · tax0(10, i′)

(Lemma 6.42)

99

≤ `∗i+1 ·min

(
|πi+1| − |πPrev(i)+1|

30
, 35

(
|πi+1| − |πStop(i′)+1|

))
− `∗i+1 · tax0(10, i′)

(Lemma 6.10)

≤ `∗i+1 ·min

(
|πi+1| − |πPrev(i)+1|

30
, 35

(
|πi+1| − |πStop(i′)+1|

))
− 3 · `∗i+1 · (|ψi′|+ 1)

(Lemma 6.44)

≤ extrai(225, 225,Stop(i′)) + `∗i+1 · tax0(225,Stop(i′))− 3 · `∗i+1 · (|ψi′|+ 1) .

(Definition of extra(·))

The lemma follows after a simple rearrangement.

Lemma 6.66. Consider i ∈ StartsB and j′ < j ∈ {i} ∪ Range(i) \ {num} such that

|Rj′′ | = |Ri+1| for all j′′ ∈ (j′ : j]. Suppose that j ∈ E(80), tax1,i(j) > 0, turn(j) = 1, and

turn(j′) = 0. We have that:

104 · EB
i (j′) + extrai(225, 225, j′) + 150 · `∗i+1 · (|πj′+1| − |πj+1|) ≤ 104 · EB

i (j) + extrai(j).

Proof. We have due to Corollary 6.43 that:

extrai(225, 225, j′) ≤ `∗i+1 min

(
|πi+1| − |πPrev(i)+1|

30
, 35 (|πi+1| − |πj′+1|)

)
.

As |Rj′′| is even for all j′′ ∈ (j′ : j], we have by item 5 of Fact 6.5 that |πj+1| ≤ |πj′+1|
implying:

extrai(225, 225, j′) ≤ `∗i+1 min

(
|πi+1| − |πPrev(i)+1|

30
, 35 (|πi+1| − |πj+1|)

)
≤ extrai(225, 225, j) + `∗i+1 · tax0(225, j) (Definition of extra(·))
≤ extrai(j) + `∗i+1 · tax0(225, j) (Lemma 6.63)

≤ extrai(j) + 300 · `∗i+1 · (|ψj|+ 1) + 2250 · `∗i+1 (Lemma 6.51)

≤ extrai(j) + 104 ·
j∑

i′=j′+1

corri′ − 150 · `∗i+1 · (|πj′+1| − |πj+1|)

(Lemma 6.52)

≤ extrai(j) + 104 · EB
i (j)− 104 · EB

i (j′)− 150 · `∗i+1 · (|πj′+1| − |πj+1|) .
(Lemma 6.39)

The lemma follows after a simple rearrangement.

6.2.10 Proof of Lemmas 6.17, 6.18, 6.19, and 6.20

In this section, we present our proofs of Lemmas 6.17, 6.18, 6.19, and 6.20. These lemmas will

be shown together by the following indiction based approach: We shall show by induction

that for all D ≥ 0, Lemma 6.17 and Lemma 6.18 hold for j − i = D and Lemma 6.19 and

Lemma 6.20 hold for Stop(i)− i = D.

100

For the base case D = 0, observe that Lemma 6.17 and Lemma 6.18 are trivial if j = i

and Lemma 6.19 and Lemma 6.20 are trivial as Stop(i)− i > 0 for all i ∈ Starts. To finish

the induction, we take an arbitrary D > 0 and, assuming the induction hypothesis holds for

all numbers < D, show that it holds for D as well.

To this end, fix D > 0. We first show that Lemma 6.19 and Lemma 6.20 hold if

Stop(i)− i = D (under the induction hypothesis).

Proof of Lemma 6.19. Let i ∈ StartsF be indirect and satisfy Stop(i) − i = D. By

definition of Mid(·), we have |RMid(i)| = |Ri+1| and therefore Mid(i) is good for i.

Furthermore, as i is indirect, we have |RStop(i)| − |Ri+1| is odd implying that Mid(i) <

Stop(i), which in turn means that Mid(i)−i < D. By the induction hypothesis, Lemma 6.17

holds for i,Mid(i) and we have:

Mid(i)∑
i′=i+1

`∗i′ ≤ 104 · EF
i,depth(i)(Mid(i)) + `∗i+1 · (Gi(Mid(i)) + 150Bi(Mid(i))− 2500 · Di(Mid(i)))

≤ 104 · EF
i,depth(i)(Mid(i)) + `∗i+1 · Gi(Mid(i)) (Lemma 6.24)

≤ 104 · EF
i,depth(i)(Mid(i)) + `∗i+1 ·

(
|πMid(i)+1| − |πi+1|

)
(Definition of G(·))

≤ 104 · EF
i,depth(i)(Mid(i)) + `∗i+1 ·

(
|πMid(i)+1| − |πStop(i)+1|

)
. (Lemma 6.10)

By Lemma 6.9, we have Mid(i) ∈ StartsB and Stop(Mid(i)) = Stop(i). Furthermore,

as i is indirect, we have that |RStop(i)| − |RMid(i)+1| = |RStop(i)| − |Ri+1| − 1 is even, and

thus Stop(i) is good for Mid(i). Applying Lemma 6.18 on Mid(i) and Stop(i) (note that

Mid(i) > i =⇒ Stop(i)−Mid(i) < D), we get

Stop(i)∑
i′=Mid(i)+1

`∗i′ ≤ 104 · EB
Mid(i)(Stop(i)) + extraMid(i)(Stop(i)) + 3 · `∗Mid(i)+1 ·

(
|ψStop(i)|+ 1

)
− 2 · `∗Mid(i)+1 · (|πMid(i)+1| − |πStop(i)+1|)

≤ 104 · EB
Mid(i)(Stop(i)) + 3 · `∗Mid(i)+1 ·

(
|ψStop(i)|+ 1

)
− 2 · `∗Mid(i)+1 · (|πMid(i)+1| − |πStop(i)+1|)− `∗Mid(i)+1 · tax0(225,Stop(i))

+
1

30
· `∗Mid(i)+1 ·

(
|πMid(i)+1| − |πPrev(Mid(i))+1|

)
(Definition of extra(·))

≤ 104 · EB
Mid(i)(Stop(i)) + 3 · `∗Mid(i)+1 ·

(
|ψStop(i)|+ 1

)
− 2 · `∗Mid(i)+1 · (|πMid(i)+1| − |πStop(i)+1|)− `∗Mid(i)+1 · tax0(225,Stop(i))

+
1

30
· `∗Mid(i)+1 ·

(
|πMid(i)+1| − |πi+1|

)
(Lemma 6.9)

≤ 104 · EB
Mid(i)(Stop(i)) + 3 · `∗Mid(i)+1 ·

(
|ψStop(i)|+ 1

)
− 59

30
· `∗Mid(i)+1 · (|πMid(i)+1| − |πStop(i)+1|)− `∗Mid(i)+1 · tax0(225,Stop(i))

(Lemma 6.10)

101

≤ 104 · EB
Mid(i)(Stop(i)) + 3.3 · `∗i+1 ·

(
|ψStop(i)|+ 1

)
− 649

300
· `∗i+1 · (|πMid(i)+1| − |πStop(i)+1|)− 1.1 · `∗i+1 · tax0(225,Stop(i))

(Definition of `∗)

≤ 104 · EB
Mid(i)(Stop(i)) +

(
3

1.1
+

349

600

)
· `∗i+1 ·

(
|ψStop(i)|+ 1

)
− 649

300
· `∗i+1 · (|πMid(i)+1| − |πStop(i)+1|)− 1.1 · `∗i+1 · tax0(225,Stop(i))

≤ 104 · EB
Mid(i)(Stop(i)) +

3

1.1
· `∗i+1 ·

(
|ψStop(i)|+ 1

)
− `∗i+1 · (|πMid(i)+1| − |πStop(i)+1|)− 1.1 · `∗i+1 · tax0(225,Stop(i))

(Lemma 6.13)

≤ 104 · EB
Mid(i)(Stop(i)) +

3

1.1
· `∗i+1 ·

(
|ψStop(i)|+ 1

)
− `∗i+1 · (|πMid(i)+1| − |πStop(i)+1|)− `∗i+1 · tax0(225,Stop(i)).

(Corollary 6.43)

Adding the two equations, we get:

Stop(i)∑
i′=i+1

`∗i′ ≤ 104 · EF
i,depth(i)(Mid(i)) + `∗i+1 ·

(
|πMid(i)+1| − |πStop(i)+1|

)
+ 104 · EB

Mid(i)(Stop(i)) +
3

1.1
· `∗i+1 ·

(
|ψStop(i)|+ 1

)
− `∗i+1 · (|πMid(i)+1| − |πStop(i)+1|)− `∗i+1 · tax0(225,Stop(i))

≤ 104 · EF
i,depth(i)(Mid(i)) + 104 · EB

Mid(i)(Stop(i))

+
3

1.1
· `∗i+1 ·

(
|ψStop(i)|+ 1

)
− `∗i+1 · tax0(225,Stop(i)),

as desired.

Proof of Lemma 6.20. Let i ∈ StartsB be indirect and satisfy Stop(i) − i = D. By

definition of Mid(·), we have |RMid(i)| = |Ri+1| and therefore Mid(i) is good for i.

Furthermore, as i is indirect, we have |RStop(i)| − |Ri+1| is odd implying that Mid(i) <

Stop(i), which in turn means that Mid(i)−i < D. By the induction hypothesis, Lemma 6.18

holds for i,Mid(i) and we have:

Mid(i)∑
i′=i+1

`∗i′ ≤ 104 · EB
i (Mid(i)) + extrai(Mid(i)) + 3 · `∗i+1 ·

(
|ψMid(i)|+ 1

)
− 2 · `∗i+1 · (|πi+1| − |πMid(i)+1|)− `∗i+1 · 1 (Mid(i) ∈ E(80)) · tax1,i(Mid(i))

≤ 104 · EB
i (Mid(i)) + extrai(Mid(i)) + 4 · `∗i+1 · (|πi+1| − |πMid(i)+1|)

− `∗i+1 · 1 (Mid(i) ∈ E(80)) · tax1,i(Mid(i)) (Lemma 6.13)

≤ 104 · EB
i (Mid(i)) + extrai(Mid(i)) + 4 · `∗i+1 · (|πi+1| − |πMid(i)+1|)

102

− `∗i+1 · tax1,i(Mid(i)) (Lemma 6.9)

≤ 104 · EB
i (Mid(i)) + 35 · `∗i+1 ·

(
|πi+1| − |πMid(i)+1|

)
− `∗i+1 · tax0(10,Mid(i))

+ 4 · `∗i+1 · (|πi+1| − |πMid(i)+1|)− `∗i+1 · tax1,i(Mid(i)) (Definition of extra(·))
≤ 104 · EB

i (Mid(i)) + 39 · `∗i+1 ·
(
|πi+1| − |πMid(i)+1|

)
− `∗i+1 · tax1,i(Mid(i)).

(Corollary 6.43)

By Lemma 6.9, we have Mid(i) ∈ StartsF and Stop(Mid(i)) = Stop(i). Furthermore,

as i is indirect, we have |RStop(i)| − |RMid(i)+1| = |RStop(i)| − |Ri+1| − 1 is even, and thus

Stop(i) is good for Mid(i). Applying Lemma 6.17 on Mid(i) and Stop(i) (note that

Mid(i) > i =⇒ Stop(i)−Mid(i) < D), we get

Stop(i)∑
i′=Mid(i)+1

`∗i′

≤ 104 · EF
Mid(i),depth(Mid(i))(Stop(i))

+ `∗Mid(i)+1 ·
(
GMid(i)(Stop(i)) + 150BMid(i)(Stop(i))− 2500 · DMid(i)(Stop(i))

)
+ `∗Mid(i)+1 ·

(
GMid(i)(Stop(i)) + BMid(i)(Stop(i))

)
− 2500 · `∗Mid(i)+1 · spareMid(i)(Stop(i))

≤ 104 · EF
Mid(i),depth(Mid(i))(Stop(i))

+ `∗Mid(i)+1 ·
(
150BMid(i)(Stop(i))− 2500 · DMid(i)(Stop(i))

)
+ 2 · `∗Mid(i)+1 ·

(
GMid(i)(Stop(i)) + BMid(i)(Stop(i))

)
− 2500 · `∗Mid(i)+1 · spareMid(i)(Stop(i))

≤ 104 · EF
Mid(i),depth(Mid(i))(Stop(i)) + 2 · `∗Mid(i)+1 ·

(
|πStop(i)+1| − |πMid(i)+1|

)
+ `∗Mid(i)+1 ·

(
150BMid(i)(Stop(i))− 2500 · DMid(i)(Stop(i))

)
− 2500 · `∗Mid(i)+1 · spareMid(i)(Stop(i)) (Definition of G(·) and B(·))

≤ 104 · EF
Mid(i),depth(Mid(i))(Stop(i)) + 4 · `∗Mid(i)+1 ·

(
|πi+1| − |πMid(i)+1|

)
+ `∗Mid(i)+1 ·

(
150BMid(i)(Stop(i))− 2500 · DMid(i)(Stop(i))

)
− 2500 · `∗Mid(i)+1 · spareMid(i)(Stop(i)) (Lemma 6.16)

≤ 104 · EF
Mid(i),depth(Mid(i))(Stop(i)) + 5 · `∗i+1 ·

(
|πi+1| − |πMid(i)+1|

)
+ `∗Mid(i)+1 ·

(
150BMid(i)(Stop(i))− 2500 · DMid(i)(Stop(i))

)
− 2500 · `∗i+1 · spareMid(i)(Stop(i)). (Definition of `∗)

Adding the two equations, we get:

Stop(i)∑
i′=i+1

`∗i′ ≤ 104 · EB
i (Mid(i)) + 39 · `∗i+1 ·

(
|πi+1| − |πMid(i)+1|

)
− `∗i+1 · tax1,i(Mid(i))

+ 104 · EF
Mid(i),depth(Mid(i))(Stop(i)) + 5 · `∗i+1 ·

(
|πi+1| − |πMid(i)+1|

)
103

+ `∗Mid(i)+1 ·
(
150BMid(i)(Stop(i))− 2500 · DMid(i)(Stop(i))

)
− 2500 · `∗i+1 · spareMid(i)(Stop(i))

≤ 104 · EB
i (Mid(i)) + 104 · EF

Mid(i),depth(Mid(i))(Stop(i))

+ `∗Mid(i)+1 ·
(
150BMid(i)(Stop(i))− 2500 · DMid(i)(Stop(i))

)
+ 44 · `∗i+1 ·

(
|πi+1| − |πMid(i)+1|

)
− `∗i+1 · tax1,i(Mid(i))

− 2500 · `∗i+1 · spareMid(i)(Stop(i)),

as desired.

We now show that Lemma 6.17 and Lemma 6.18 hold if j − i = D (under the induction

hypothesis).

Proof of Lemma 6.17. Let i ∈ StartsF and j ∈ {i} ∪Range(i) \ {num} be such that j is

good for i and j − i = D. Recall that D > 0 and therefore, we have j > i implying by the

definition of good that |Rj| is odd. Define j1 ∈ [i : j) to be the largest such that j1 is good

for i. Observe that j1 is well defined as i is good for i. Also, note that j1 − i < j − i = D.

If j1 = j − 1, we have by Lemma 6.17 on i, j1 that:

j∑
i′=i+1

`∗i′ =

j1∑
i′=i+1

`∗i′ + `∗j

≤ `∗j + 104 · EF
i,depth(i)(j1) + `∗i+1 · (Gi(j1) + 150Bi(j1)− 2500 · Di(j1))

− 2500 · `∗i+1 · sparei(j1)

≤ `∗j + 104 · EF
i,depth(i)(j) + `∗i+1 · (Gi(j1) + 150Bi(j1)− 2500 · Di(j))

− 2500 · `∗i+1 · sparei(j) (Lemma 6.25)

≤ `∗i+1 + 104 · EF
i,depth(i)(j) + `∗i+1 · (Gi(j1) + 150Bi(j1)− 2500 · Di(j))

− 2500 · `∗i+1 · sparei(j),

as the fact that both j − 1 and j are good for i implies that |Rj| = |Ri+1| in turn implying

that `∗j = `∗i+1. Now, as |Rj| is odd, we have by item 5 of Fact 6.5 that πCj+1 = πCj ‖σCj for

all C ∈ {A,B}. By definition of B(·), this means that Bi(j) ≥ Bi(j − 1) = Bi(j1). Also, by

definition of G(·) and B(·), we have

1 + Gi(j1) + Bi(j1) ≤ 1 + |πj1+1| − |πi+1|
≤ 1 + |πj| − |πi+1| (As j1 = j − 1)

≤ |πj+1| − |πi+1| (As |Rj| is odd and Fact 6.5, item 5)

≤ Gi(j) + Bi(j). (Definition of G(·) and B(·))

104

Plugging this in and using Bi(j) ≥ Bi(j1), we get:

j∑
i′=i+1

`∗i′ ≤ 104 · EF
i,depth(i)(j) + `∗i+1 · (Gi(j) + 150Bi(j)− 2500 · Di(j))

− 2500 · `∗i+1 · sparei(j).

The remainder of this proof deals with the case j1 < j − 1. In this case, by our choice of

j1 we have that j1 + 1 < j is not good for i implying that |Rj1+1| > |Ri+1| = |Rj1| (we have

|Rj1+1| > |Ri+1| due to item 3 of Fact 6.5) implying that j1 ∈ E(70) ⊆ StartsB by item 2

of Fact 6.5. As j1 < j ≤ Stop(i), we have by Lemma 6.7 that Stop(j1) ≤ Stop(i). We

claim that:

Claim 6.67. Either j = Stop(j1) + 1 and |Rj| = |Ri+1| or j = Stop(j1) = Stop(i) and

|Rj| > |Ri+1|. In either case, we have that j1 is indirect.

Proof. As Stop(j1) ≤ Stop(i), we have the following two cases:

• When Stop(j1) < Stop(i): In this case, we first use Lemma 6.12 to get that

|RStop(j1)+1| = |Ri+1| and j1 is indirect. Observe that the claim follows if we show

that j = Stop(j1) + 1. Indeed, j ≤ Stop(j1) + 1 as otherwise |RStop(j1)+1| = |Ri+1|
implies that Stop(j1) + 1 < j is good for i contradicting the choice of j1. Also

j ≥ Stop(j1) + 1, as either j = Stop(i) > Stop(j1) or by the definition of good,

we have |Rj| = |Ri+1| < |Rj1+1| implying that j ≥ Stop(j1) + 1 by the definition of

Stop(·).

• When Stop(j1) = Stop(i): As j1 < j ≤ Stop(i) = Stop(j1), we have that

j ∈ Range(j1) and therefore, using item 3 of Fact 6.5 and the fact that j is good

for i, we have that j = Stop(i) and |Rj| ≥ |Rj1+1| > |Ri+1|. Using the fact that

j = Stop(i) is good for i, we have by Lemma 6.12 that j1 is indirect.

As Stop(j1) ∈ {j − 1, j} and j1 is indirect, we derive:

Stop(j1)∑
i′=i+1

`∗i′ =

j1∑
i′=i+1

`∗i′ +

Stop(j1)∑
i′=j1+1

`∗i′

≤ 104 · EF
i,depth(i)(j1) + `∗i+1 · (Gi(j1) + 150Bi(j1)− 2500 · Di(j1))

− 2500 · `∗i+1 · sparei(j1) +

Stop(j1)∑
i′=j1+1

`∗i′

(Induction hypothesis and j1 < j ≤ Stop(i))

≤ 104 · EF
i,depth(i)(j1) + `∗i+1 · (Gi(j1) + 150Bi(j1)− 2500 · Di(j1))

+ 104 · EB
j1

(Mid(j1)) + 104 · EF
Mid(j1),depth(Mid(j1))(Stop(j1))

105

+ `∗Mid(j1)+1 ·
(
150 · BMid(j1)(Stop(j1))− 2500 · DMid(j1)(Stop(j1))

)
+ 44 · `∗j1+1 ·

(
|πj1+1| − |πMid(j1)+1|

)
− `∗j1+1 · tax1,j1(Mid(j1))

− 2500 · `∗i+1 · sparei(j1)− 2500 · `∗j1+1 · spareMid(j1)(Stop(j1)).

(Induction hypothesis)

We continue using the definition of `∗ which implies that `∗j1+1 = 1.1 · `∗i+1 and `∗Mid(j1)+1 =

1.12 · `∗i+1. This gives:

Stop(j1)∑
i′=i+1

`∗i′ ≤ 104 · EF
i,depth(i)(j1) + `∗i+1 · (Gi(j1) + 150Bi(j1)− 2500 · Di(j1))

+ 104 · EB
j1

(Mid(j1)) + 104 · EF
Mid(j1),depth(Mid(j1))(Stop(j1))

+ `∗i+1 ·
(
200 · BMid(j1)(Stop(j1))− 3025 · DMid(j1)(Stop(j1))

)
+ 50 · `∗i+1 ·

(
|πj1+1| − |πMid(j1)+1|

)
− `∗i+1 · tax1,j1(Mid(j1))

− 2500 · `∗i+1 · sparei(j1)− 2500 · `∗i+1 · spareMid(j1)(Stop(j1)).

Next, we upper bound the term 104 ·EF
Mid(j1),depth(Mid(j1))(Stop(j1)) using Lemma 6.27 on

i,Mid(j1). Observe that Lemma 6.27 is applicable due to the guarantees form Lemma 6.9.

As the right hand side in Lemma 6.27 is always non-negative and `∗Mid(j1)+1 > `∗i+1, we get:

104
(
EF
Mid(j1),depth(i)(Stop(j1))− EF

Mid(j1),depth(Mid(j1))(Stop(j1))
)

≥ 5000 · `∗i+1 ·max
(
0,Di(Stop(j1))− Di(Mid(j1))− DMid(j1)(Stop(j1))

)
≥ 2750 · `∗i+1 ·max

(
0,Di(Stop(j1))− Di(Mid(j1))− DMid(j1)(Stop(j1))

)
≥ 2500 · `∗i+1 ·

(
Di(Stop(j1))− Di(Mid(j1))− DMid(j1)(Stop(j1))

)
+ 250 · `∗i+1 ·max

(
0,Di(Stop(j1))− Di(Mid(j1))− DMid(j1)(Stop(j1))

)
≥ 2500 · `∗i+1 · (Di(Stop(j1))− Di(Mid(j1)))− 2750 · `∗i+1 · DMid(j1)(Stop(j1))

+ 250 · `∗i+1 ·max (0,Di(Stop(j1))− Di(Mid(j1))) .

Using this inequality, we continue as:

Stop(j1)∑
i′=i+1

`∗i′ ≤ 104 · EF
i,depth(i)(j1) + `∗i+1 · (Gi(j1) + 150Bi(j1)− 2500 · Di(j1))

+ 104 · EB
j1

(Mid(j1)) + 104 · EF
Mid(j1),depth(i)(Stop(j1))

− 2500 · `∗i+1 · (Di(Stop(j1))− Di(Mid(j1))) + 2750 · `∗i+1 · DMid(j1)(Stop(j1))

− 250 · `∗i+1 ·max (0,Di(Stop(j1))− Di(Mid(j1)))

+ `∗i+1 ·
(
200 · BMid(j1)(Stop(j1))− 3025 · DMid(j1)(Stop(j1))

)
+ 50 · `∗i+1 ·

(
|πj1+1| − |πMid(j1)+1|

)
− `∗i+1 · tax1,j1(Mid(j1))

− 2500 · `∗i+1 · sparei(j1)− 2500 · `∗i+1 · spareMid(j1)(Stop(j1)).

We continue by bounding EF
i,depth(i)(j1) + ·EB

j1
(Mid(j1)) + EF

Mid(j1),depth(i)(Stop(j1)) using

106

Lemma 6.30.

Stop(j1)∑
i′=i+1

`∗i′ ≤ 104 · EF
i,depth(i)(Stop(j1)) + `∗i+1 · (Gi(j1) + 150Bi(j1)− 2500 · Di(j1))

− 2500 · `∗i+1 · (Di(Stop(j1))− Di(Mid(j1))) + 2750 · `∗i+1 · DMid(j1)(Stop(j1))

− 250 · `∗i+1 ·max (0,Di(Stop(j1))− Di(Mid(j1)))

+ `∗i+1 ·
(
200 · BMid(j1)(Stop(j1))− 3025 · DMid(j1)(Stop(j1))

)
+ 50 · `∗i+1 ·

(
|πj1+1| − |πMid(j1)+1|

)
− `∗i+1 · tax1,j1(Mid(j1))

− 2500 · `∗i+1 · sparei(j1)− 2500 · `∗i+1 · spareMid(j1)(Stop(j1)).

Next, we upper bound 200 ·BMid(j1)(Stop(j1)) by 250 ·DMid(j1)(Stop(j1)) using Lemma 6.24

and simplify. We also swap the terms Di(j1) and Di(Stop(j1)).

Stop(j1)∑
i′=i+1

`∗i′ ≤ 104 · EF
i,depth(i)(Stop(j1)) + `∗i+1 · (Gi(j1) + 150Bi(j1)− 2500 · Di(Stop(j1)))

− 2500 · `∗i+1 · (Di(j1)− Di(Mid(j1)))

− 250 · `∗i+1 ·max (0,Di(Stop(j1))− Di(Mid(j1)))

+ 50 · `∗i+1 ·
(
|πj1+1| − |πMid(j1)+1|

)
− `∗i+1 · tax1,j1(Mid(j1))

− 2500 · `∗i+1 · sparei(j1)− 2500 · `∗i+1 · spareMid(j1)(Stop(j1)).

We now consider two cases based on the cases in Lemma 6.60.

• When Gi(j1) < |πMid(j1)+1| − |πi+1|: In this case, Lemma 6.60 says that Gi(j1) =

Gi(Stop(j1)) and Bi(Stop(j1)) = Bi(j1) + |πStop(j1)+1|− |πj1+1|. Plugging these in, we

get:

Stop(j1)∑
i′=i+1

`∗i′ ≤ 104 · EF
i,depth(i)(Stop(j1))− 150 · `∗i+1 ·

(
|πStop(j1)+1| − |πj1+1|

)
+ `∗i+1 · (Gi(Stop(j1)) + 150Bi(Stop(j1))− 2500 · Di(Stop(j1)))

− 2500 · `∗i+1 · (Di(j1)− Di(Mid(j1)))

− 250 · `∗i+1 ·max (0,Di(Stop(j1))− Di(Mid(j1)))

+ 50 · `∗i+1 ·
(
|πj1+1| − |πMid(j1)+1|

)
− `∗i+1 · tax1,j1(Mid(j1))

− 2500 · `∗i+1 · sparei(j1)− 2500 · `∗i+1 · spareMid(j1)(Stop(j1)).

Using the fact that spare(·) and tax1(·) are non-negative, we have:

Stop(j1)∑
i′=i+1

`∗i′ ≤ 104 · EF
i,depth(i)(Stop(j1))− 150 · `∗i+1 ·

(
|πStop(j1)+1| − |πj1+1|

)
+ `∗i+1 · (Gi(Stop(j1)) + 150Bi(Stop(j1))− 2500 · Di(Stop(j1)))

107

− 2500 · `∗i+1 · (Di(j1)− Di(Mid(j1)))

− 250 · `∗i+1 ·max (0,Di(Stop(j1))− Di(Mid(j1)))

+ 50 · `∗i+1 ·
(
|πj1+1| − |πMid(j1)+1|

)
− 2500 · `∗i+1 · sparei(j1).

Considering two sub-cases based on Claim 6.67, we get

– When j = Stop(j1) + 1 and |Rj| = |Ri+1|: In this case, the “furthermore”

part of Lemma 6.16 gives |πStop(j1)+1| − |πj1+1| = |πj1+1| − |πMid(j1)+1| and we can

simplify as:

Stop(j1)∑
i′=i+1

`∗i′ ≤ 104 · EF
i,depth(i)(Stop(j1))

+ `∗i+1 · (Gi(Stop(j1)) + 150Bi(Stop(j1))− 2500 · Di(Stop(j1)))

− 2500 · `∗i+1 · (Di(j1)− Di(Mid(j1)))

− 250 · `∗i+1 ·max (0,Di(Stop(j1))− Di(Mid(j1)))

− 2500 · `∗i+1 · sparei(j1).

Finally, we note that the term max (0,Di(Stop(j1))− Di(Mid(j1))) is non-

negative and upper bound Di(j1)−Di(Mid(j1))+sparei(j1) by 1 using Lemma 6.60

to get:

Stop(j1)∑
i′=i+1

`∗i′ ≤ 104 · EF
i,depth(i)(Stop(j1))

+ `∗i+1 · (Gi(Stop(j1)) + 150Bi(Stop(j1))− 2500 · Di(Stop(j1)))

− 2500 · `∗i+1.

(42)

– When j = Stop(j1) = Stop(i) and |Rj| > |Ri+1|: In this case, we first

assume that 50 ·
(
|πj1+1| − |πMid(j1)+1|

)
≤ |πStop(j1)+1| − |πi+1| and derive:

Stop(j1)∑
i′=i+1

`∗i′ ≤ 104 · EF
i,depth(i)(Stop(j1))− 150 · `∗i+1 ·

(
|πStop(j1)+1| − |πj1+1|

)
+ `∗i+1 · (Gi(Stop(j1)) + 150Bi(Stop(j1))− 2500 · Di(Stop(j1)))

− 2500 · `∗i+1 · (Di(j1)− Di(Mid(j1)))

− 250 · `∗i+1 ·max (0,Di(Stop(j1))− Di(Mid(j1)))

+ `∗i+1 ·
(
|πStop(j1)+1| − |πi+1|

)
− 2500 · `∗i+1 · sparei(j1).

Now, note that the terms max (0,Di(Stop(j1))− Di(Mid(j1))) and |πStop(j1)+1|−

108

|πj1+1| are non-negative (using Lemma 6.16 for the latter). This gives:

Stop(j1)∑
i′=i+1

`∗i′ ≤ 104 · EF
i,depth(i)(Stop(j1))

+ `∗i+1 · (Gi(Stop(j1)) + 150Bi(Stop(j1))− 2500 · Di(Stop(j1)))

− 2500 · `∗i+1 · (Di(j1)− Di(Mid(j1)))

+ `∗i+1 ·
(
|πStop(j1)+1| − |πi+1|

)
− 2500 · `∗i+1 · sparei(j1).

We upper bound Di(j1) − Di(Mid(j1)) + sparei(j1) by 1 using Lemma 6.60 as in

the previous case to get:

Stop(j1)∑
i′=i+1

`∗i′ ≤ 104 · EF
i,depth(i)(Stop(j1))

+ `∗i+1 · (Gi(Stop(j1)) + 150Bi(Stop(j1))− 2500 · Di(Stop(j1)))

+ `∗i+1 ·
(
|πStop(j1)+1| − |πi+1|

)
− 2500 · `∗i+1.

(43)

If our assumption does not hold, then we have 50 ·
(
|πj1+1| − |πMid(j1)+1|

)
>

|πStop(j1)+1| − |πi+1|. We first use the fact that the terms sparei(j1) and

|πStop(j1)+1| − |πj1+1| are non-negative (using Lemma 6.16 for the latter) and

max (0,Di(Stop(j1))− Di(Mid(j1))) ≥ Di(Stop(j1))− Di(Mid(j1)) to get:

Stop(j1)∑
i′=i+1

`∗i′ ≤ 104 · EF
i,depth(i)(Stop(j1))

+ `∗i+1 · (Gi(Stop(j1)) + 150Bi(Stop(j1))− 2500 · Di(Stop(j1)))

− 2500 · `∗i+1 · (Di(j1)− Di(Mid(j1)))

− 250 · `∗i+1 · (Di(Stop(j1))− Di(Mid(j1)))

+ 50 · `∗i+1 ·
(
|πj1+1| − |πMid(j1)+1|

)
.

(44)

To continue, we derive:

Di(j1)− Di(Mid(j1)) ≥
(
1− 10−5

)
· Bi(j1)− Bi(Mid(j1)) (Lemma 6.24)

≥ Bi(j1)− Bi(Mid(j1))− 10−5 · (|πj1+1| − |πi+1|)
(Definition of B(·))

≥ Bi(j1)− Bi(Mid(j1))− 10−5 ·
(
|πStop(j1)+1| − |πi+1|

)
.

(Lemma 6.16)

Similarly, we also have:

Di(Stop(j1))− Di(Mid(j1))

109

≥
(
1− 10−5

)
· Bi(Stop(j1))− Bi(Mid(j1)) (Lemma 6.24)

≥ Bi(Stop(j1))− Bi(Mid(j1))− 10−5 ·
(
|πStop(j1)+1| − |πi+1|

)
(Definition of B(·))

≥ Bi(j1) + |πStop(j1)+1| − |πj1+1| − Bi(Mid(j1))

− 10−5 ·
(
|πStop(j1)+1| − |πi+1|

)
(Lemma 6.60)

≥ Bi(j1)− Bi(Mid(j1))− 10−5 ·
(
|πStop(j1)+1| − |πi+1|

)
. (Lemma 6.16)

Plugging these two into Equation 44, we get:

Stop(j1)∑
i′=i+1

`∗i′ ≤ 104 · EF
i,depth(i)(Stop(j1))

+ `∗i+1 · (Gi(Stop(j1)) + 150Bi(Stop(j1))− 2500 · Di(Stop(j1)))

− 2750 · `∗i+1 ·
(
Bi(j1)− Bi(Mid(j1))− 10−5 ·

(
|πStop(j1)+1| − |πi+1|

))
+ 50 · `∗i+1 ·

(
|πj1+1| − |πMid(j1)+1|

)
.

Due to Lemma 6.60, we have that Bi(j1) − Bi(Mid(j1)) = |πj1+1| − |πMid(j1)+1|.
Plugging in, we get:

Stop(j1)∑
i′=i+1

`∗i′ ≤ 104 · EF
i,depth(i)(Stop(j1))

+ `∗i+1 · (Gi(Stop(j1)) + 150Bi(Stop(j1))− 2500 · Di(Stop(j1)))

− 2750 · `∗i+1 ·
(
|πj1+1| − |πMid(j1)+1| − 10−5 ·

(
|πStop(j1)+1| − |πi+1|

))
+ 50 · `∗i+1 ·

(
|πj1+1| − |πMid(j1)+1|

)
.

Now, we use our assumption that |πStop(j1)+1|−|πi+1| < 50 ·
(
|πj1+1| − |πMid(j1)+1|

)
and simplify:

Stop(j1)∑
i′=i+1

`∗i′ ≤ 104 · EF
i,depth(i)(Stop(j1))

+ `∗i+1 · (Gi(Stop(j1)) + 150Bi(Stop(j1))− 2500 · Di(Stop(j1)))

− 2500 · `∗i+1 ·
(
|πj1+1| − |πMid(j1)+1|

)
.

Finally, we use Lemma 6.13 to conclude:

Stop(j1)∑
i′=i+1

`∗i′ ≤ 104 · EF
i,depth(i)(Stop(j1))

+ `∗i+1 · (Gi(Stop(j1)) + 150Bi(Stop(j1))− 2500 · Di(Stop(j1)))

− 2500 · `∗i+1.

(45)

110

• When Gi(j1) ≥ |πMid(j1)+1| − |πi+1|: In this case, Lemma 6.60 says that

Di(Mid(j1)) = 0 and sparei(Stop(j1)) ≤ spareMid(j1)(Stop(j1)). Plugging these in,

we get:

Stop(j1)∑
i′=i+1

`∗i′ ≤ 104 · EF
i,depth(i)(Stop(j1)) + `∗i+1 · (Gi(j1) + 150Bi(j1)− 2500 · Di(Stop(j1)))

− 2500 · `∗i+1 · Di(j1)

− 250 · `∗i+1 ·max (0,Di(Stop(j1)))

+ 50 · `∗i+1 ·
(
|πj1+1| − |πMid(j1)+1|

)
− `∗i+1 · tax1,j1(Mid(j1))

− 2500 · `∗i+1 · sparei(j1)− 2500 · `∗i+1 · sparei(Stop(j1)).

Now, note that the terms max (0,Di(Stop(j1))) and sparei(j1) are non-negative.

Therefore, we have:

Stop(j1)∑
i′=i+1

`∗i′ ≤ 104 · EF
i,depth(i)(Stop(j1)) + `∗i+1 · (Gi(j1) + 150Bi(j1)− 2500 · Di(Stop(j1)))

− 2500 · `∗i+1 · Di(j1)

+ 50 · `∗i+1 ·
(
|πj1+1| − |πMid(j1)+1|

)
− `∗i+1 · tax1,j1(Mid(j1))

− 2500 · `∗i+1 · sparei(Stop(j1)).

Next, we use Lemma 6.24 to bound 2500Di(j1) ≥ 1150 · Bi(j1). Putting this in, and

simplifying, we get:

Stop(j1)∑
i′=i+1

`∗i′ ≤ 104 · EF
i,depth(i)(Stop(j1)) + `∗i+1 · (Gi(j1)− 2500 · Di(Stop(j1)))

− 1000 · `∗i+1 · Bi(j1)

+ 50 · `∗i+1 ·
(
|πj1+1| − |πMid(j1)+1|

)
− `∗i+1 · tax1,j1(Mid(j1))

− 2500 · `∗i+1 · sparei(Stop(j1)).

To continue, we note from the definition of G(·) that

Gi(j1) ≤ |πj1+1| − |πi+1|
≤ |πStop(j1)+1| − |πi+1| (Lemma 6.16)

≤ Gi(Stop(j1)) + Bi(Stop(j1)) (Definition of G(·) and B(·))
≤ Gi(Stop(j1)) + 150Bi(Stop(j1)). (As B(·) ≥ 0)

Plugging in, we get:

Stop(j1)∑
i′=i+1

`∗i′ ≤ 104 · EF
i,depth(i)(Stop(j1))

111

+ `∗i+1 · (Gi(Stop(j1)) + 150Bi(Stop(j1))− 2500 · Di(Stop(j1)))

− 1000 · `∗i+1 · Bi(j1)

+ 50 · `∗i+1 ·
(
|πj1+1| − |πMid(j1)+1|

)
− `∗i+1 · tax1,j1(Mid(j1))

− 2500 · `∗i+1 · sparei(Stop(j1)).

Finally, Lemma 6.59 says that 50 ·
(
|πj1+1| − |πMid(j1)+1|

)
≤ tax1,j1(Mid(j1)) + 1000 ·

Bi(j1). This gives us:

Stop(j1)∑
i′=i+1

`∗i′ ≤ 104 · EF
i,depth(i)(Stop(j1))

+ `∗i+1 · (Gi(Stop(j1)) + 150Bi(Stop(j1))− 2500 · Di(Stop(j1)))

− 2500 · `∗i+1 · sparei(Stop(j1)).

(46)

Observe that the inequalities showed in Equation 42, Equation 43, Equation 45, and

Equation 46 in the cases considered above can be summarized as:

Stop(j1)∑
i′=i+1

`∗i′ ≤ 104 · EF
i,depth(i)(Stop(j1))

+ `∗i+1 · (Gi(Stop(j1)) + 150Bi(Stop(j1))− 2500 · Di(Stop(j1)))

+ `∗i+1 · 1
(
Stop(j1) = Stop(i) ∧ |RStop(j1)| 6= |Ri+1|

)
·
(
|πStop(j1)+1| − |πi+1|

)
− 2500 · `∗i+1 · sparei(Stop(j1)).

(47)

We again consider the two sub-cases given by Claim 6.67.

• When j = Stop(j1) + 1 and |Rj| = |Ri+1|: In this case, we have

j∑
i′=i+1

`∗i′ ≤
Stop(j1)∑
i′=i+1

`∗i′ + `∗j (As j = Stop(j1) + 1)

≤ `∗i+1 +

Stop(j1)∑
i′=i+1

`∗i′ (As |Rj| = |Ri+1|)

≤ `∗i+1 + 104 · EF
i,depth(i)(Stop(j1))

+ `∗i+1 · (Gi(Stop(j1)) + 150Bi(Stop(j1))− 2500 · Di(Stop(j1)))

− 2500 · `∗i+1 · sparei(Stop(j1)). (Equation 47)

Now, as |Rj| = |Ri+1| is odd, we have by item 5 of Fact 6.5 that πCj+1 = πCj ‖σCj for all

C ∈ {A,B}. By definition of B(·), this means that Bi(j) ≥ Bi(j − 1) = Bi(Stop(j1)).

Also, by definition of G(·) and B(·), we have

1 + Gi(Stop(j1)) + Bi(Stop(j1)) = 1 + |πStop(j1)+1| − |πi+1|

112

= 1 + |πj| − |πi+1| (As j = Stop(j1) + 1)

= |πj+1| − |πi+1|
= Gi(j) + Bi(j).

Plugging this in and using Bi(j) ≥ Bi(Stop(j1)), we get:

j∑
i′=i+1

`∗i′ ≤ 104 · EF
i,depth(i)(Stop(j1)) + `∗i+1 · (Gi(j) + 150Bi(j)− 2500 · Di(Stop(j1)))

− 2500 · `∗i+1 · sparei(Stop(j1)).

To finish, we use the fact that j = Stop(j1) + 1 and apply Lemma 6.25. This gives:

j∑
i′=i+1

`∗i′ ≤ 104 · EF
i,depth(i)(j) + `∗i+1 · (Gi(j) + 150Bi(j)− 2500 · Di(j))

− 2500 · `∗i+1 · sparei(j).

• When j = Stop(j1) = Stop(i) and |Rj| > |Ri+1|: In this case, we simply

substitute j = Stop(j1) in Equation 47 to get:

j∑
i′=i+1

`∗i′ ≤ 104 · EF
i,depth(i)(j) + `∗i+1 · (Gi(j) + 150Bi(j)− 2500 · Di(j))

+ `∗i+1 · 1 (j = Stop(i) ∧ |Rj| 6= |Ri+1|) · (|πj+1| − |πi+1|)
− 2500 · `∗i+1 · sparei(j).

Lemma 6.17 follows by observing that |πj+1| − |πi+1| = Gi(j) + Bi(j) by definition.

Proof of Lemma 6.18. Let i ∈ StartsB and all j ∈ {i} ∪ Range(i) \ {num} be such that

j is good for i and j − i = D. Recall that D > 0 and therefore, we have j > i implying by

the definition of good that |Rj| is even. This proof is divided into two parts. In both parts,

we make use of the following claim:

Claim 6.68. Let j1 ∈ (i : j)∩E(80) be indirect and satisfy |Rj1| = |Ri+1| and Stop(j1) ≤ j.

We have:

Stop(j1)∑
i′=i+1

`∗i′ ≤ 104 · EB
i (Stop(j1)) + extrai(225, 225,Stop(j1)) + 3 · `∗i+1 ·

(
|ψStop(j1)|+ 1

)
− 2 · `∗i+1 · (|πi+1| − |πStop(j1)+1|)− `∗i+1 · tax1,i(Stop(j1)).

113

Proof. We derive:

Stop(j1)∑
i′=i+1

`∗i′ ≤
j1∑

i′=i+1

`∗i′ +

Stop(j1)∑
i′=j1+1

`∗i′

≤ 104 · EB
i (j1) + extrai(j1) + 3 · `∗i+1 · (|ψj1|+ 1)− 2 · `∗i+1 · (|πi+1| − |πj1+1|)

− `∗i+1 · 1 (j1 ∈ E(80)) · tax1,i(j1) +

Stop(j1)∑
i′=j1+1

`∗i′ . (Induction hypothesis)

Due to the fact that j1 ∈ E(80) and the induction hypothesis, we have:

Stop(j1)∑
i′=i+1

`∗i′ ≤ 104 · EB
i (j1) + extrai(j1) + 3 · `∗i+1 · (|ψj1 |+ 1)− 2 · `∗i+1 · (|πi+1| − |πj1+1|)

− `∗i+1 · tax1,i(j1) + 104 · EF
j1,depth(j1)(Mid(j1)) + 104 · EB

Mid(j1)(Stop(j1))

+
3

1.1
· `∗j1+1 ·

(
|ψStop(j1)|+ 1

)
− `∗j1+1 · tax0(225,Stop(j1)).

We continue using the definition of `∗ which implies that `∗j1+1 = 1.1 · `∗i+1. Due to

Corollary 6.43, this gives:

Stop(j1)∑
i′=i+1

`∗i′ ≤ 104 · EB
i (j1) + extrai(j1) + 3 · `∗i+1 · (|ψj1|+ 1)− 2 · `∗i+1 · (|πi+1| − |πj1+1|)

− `∗i+1 · tax1,i(j1) + 104 · EF
j1,depth(j1)(Mid(j1)) + 104 · EB

Mid(j1)(Stop(j1))

+ 3 · `∗i+1 ·
(
|ψStop(j1)|+ 1

)
− `∗i+1 · tax0(225,Stop(j1)).

We continue by bounding EB
i (j1) + EF

j1,depth(j1)(Mid(j1)) + EB
Mid(j1)(Stop(j1)) using

Lemma 6.34.

Stop(j1)∑
i′=i+1

`∗i′ ≤ 104 · EB
i (Stop(j1)) + extrai(j1) + 3 · `∗i+1 · (|ψj1 |+ 1)− 2 · `∗i+1 · (|πi+1| − |πj1+1|)

− `∗i+1 · tax1,i(j1) + 3 · `∗i+1 ·
(
|ψStop(j1)|+ 1

)
− `∗i+1 · tax0(225,Stop(j1)).

Now, we upper bound the terms extrai(j1) + 3 · `∗i+1 · (|ψj1|+ 1) by an application of

Lemma 6.65.

Stop(j1)∑
i′=i+1

`∗i′ ≤ 104 · EB
i (Stop(j1)) + extrai(225, 225,Stop(j1))− 2 · `∗i+1 · (|πi+1| − |πj1+1|)

− `∗i+1 · tax1,i(j1) + 3 · `∗i+1 ·
(
|ψStop(j1)|+ 1

)
.

Finally, we use Lemma 6.10 to get that |πj1+1| = |πStop(j1)+1|. As tax1,i(j1) is only a function

114

of i and |πj1+1|, we also have that tax1,i(j1) = tax1,i(Stop(j1)). This gives:

Stop(j1)∑
i′=i+1

`∗i′ ≤ 104 · EB
i (Stop(j1)) + extrai(225, 225,Stop(j1)) + 3 · `∗i+1 ·

(
|ψStop(j1)|+ 1

)
− 2 · `∗i+1 · (|πi+1| − |πStop(j1)+1|)− `∗i+1 · tax1,i(Stop(j1)).

We now state the first part of our proof, where we show Lemma 6.18 in the case that

1 (j ∈ E(80)) ·tax1,i(j) > 0. Later, we show Lemma 6.18 in the case 1 (j ∈ E(80)) ·tax1,i(j) =

0.

When 1 (j ∈ E(80)) · tax1,i(j) > 0. In this case, we first claim that |Rj| = |Ri+1|.
Indeed, if not, then as j > i is good for i, we must have j = Stop(i) implying by item 7 of

Fact 6.5 that j ∈ E(84) ∪ E(73) ∪ E(88). However, this means that j /∈ E(80), contradicting

the fact that 1 (j ∈ E(80)) · tax1,i(j) > 0.

Define j1 ∈ [i : j) to be the largest such that |Rj1| 6= |Ri+1|. We note that j1 is well

defined as |Ri| 6= |Ri+1|. Also, as we showed that |Rj| = |Ri+1|, we have for all j′ ∈ (j1 : j]

that

|Rj′ | = |Ri+1|. (48)

Next, we show that:

Claim 6.69. If j1 > i, then j1 = Stop(j2) for some j2 ∈ (i : j1)∩E(80) that is indirect and

satisfies |Rj2| = |Ri+1|.

Proof. Define j2 ∈ (i : j1] to be the largest such that |Rj2 | = |Ri+1|. Observe that j2 is well

defined as i + 1 ∈ (i : j1] is one such value and that j2 < j1 by definition of j1. As j2 < j1,

we have |Rj2+1| 6= |Ri+1| by our choice of j2. Combining with item 3 of Fact 6.5 (note that

j2 + 1 ∈ Range(i) as j2 < j1 < j), we get that |Rj2+1| > |Ri+1| = |Rj2|.
Due to item 2 of Fact 6.5, this is possible only if j2 ∈ E(80). We next show that

Stop(j2) < j. This is because, if not, then j2 < j1 < j implies that j ∈ Range(j2) which,

with item 3 of Fact 6.5, means that |Rj| ≥ |Rj2+1| = |Rj2| + 1 = |Ri+1| + 1, contradicting

Equation 48. As Stop(j2) < j ≤ Stop(i), we have by Lemma 6.12 that j2 is indirect and

we have |RStop(j2)+1| = |Ri+1|.
It remains to show that j1 = Stop(j2). For this, note by our choice of j2 that

|RStop(j2)+1| = |Ri+1| is possible only if j1 ≤ Stop(j2). Furthermore, j1 ≥ Stop(j2), as

otherwise, by Equation 48, we have that |RStop(j2)| = |Ri+1|. This means that

|RStop(j2)| = |Rj2| < |Rj2+1|,

a contradiction to item 3 of Fact 6.5.

Corollary 6.70. If j1 > i, then |Rj1| is even and j1 /∈ Starts.

115

Proof. Let j2 be as promised by Claim 6.69. We have by Claim 6.69 that

|Rj1| − |Ri+1| = |RStop(j2)| − |Ri+1| (As j1 = Stop(j2))

= |RStop(j2)| − |Rj2| (As |Rj2| = |Ri+1|)
= |RStop(j2)| − |Rj2+1|+ 1, (As j2 ∈ E(80))

is even as j2 is indirect. As i ∈ StartsB, this implies that |Rj1| is even. To see why

j1 /∈ Starts, note simply that |Rj1| and |Rj1+1| are both even (the latter due to Equation 48

implying that j1 /∈ Starts.

This allows us to claim that:

j1∑
i′=i+1

`∗i′ ≤ 104 · EB
i (j1) + extrai(225, 225, j1) + 3 · `∗i+1 · 1(j1 6= i) · (|ψj1|+ 1)

− 2 · `∗i+1 · (|πi+1| − |πj1+1|)− `∗i+1 · tax1,i(j1).

(49)

Indeed, either j1 = i and Equation 49 follows because all terms are 0, or j1 > i, in which

case, Equation 49 follows by applying Claim 6.68 on the value j2 promised by Claim 6.69.

We next show that:

Claim 6.71. For all j′ ∈ (j1 : j], we have |πj′ | − |πj′+1| = 1 and

|ψj′ |+ 1− 1(j1 6= i) · (|ψj1|+ 1) = j′ − j1.

Proof. For the first equation, we simply observe that |Rj′| is even (Equation 48) and apply

item 5 of Fact 6.5. For the second equation, we proceed by induction. The base case is

j′ = j1 + 1 which holds because either j1 = i and |ψj′| = |ψi+1| = 0 or j1 > i in which case,

by Corollary 6.70 and item 5 of Fact 6.5, we have |ψj′| + 1 − (|ψj1|+ 1) = 1 = j′ − j1, as

desired.

We now suppose the statement holds for j′ ∈ (j1 : j) and show that it holds for j′ + 1.

By Equation 48, we have |Rj′| and |Rj′+1| are both even. This means that j′ /∈ Starts,

which when combined with item 5 of Fact 6.5 yields

|ψj′+1|+ 1− 1(j1 6= i) · (|ψj1|+ 1) = |ψj′ |+ 2− 1(j1 6= i) · (|ψj1|+ 1) = j′ + 1− j1,

using the induction hypothesis, as desired.

Corollary 6.72. We have:

j∑
i′=j1+1

`∗i′ = 3 · `∗i+1 · (|ψj|+ 1− 1(j1 6= i) · (|ψj1|+ 1))− 2 · `∗i+1 · (|πj1+1| − |πj+1|) .

Proof. We simplify the right hand side using Claim 6.71. We get:

3 · `∗i+1 · (|ψj|+ 1− 1(j1 6= i) · (|ψj1|+ 1))− 2 · `∗i+1 · (|πj1+1| − |πj+1|)

116

= 3 · `∗i+1 · (j − j1)− 2 · `∗i+1 · (j − j1)

= `∗i+1 · (j − j1) .

By Equation 48 and the definition of `∗, we have that
∑j

i′=j1+1 `
∗
i′ = `∗i+1 · (j − j1) finishing

the proof.

Adding Corollary 6.72 and Equation 49, we get:

j∑
i′=i+1

`∗i′ ≤ 104 · EB
i (j1) + extrai(225, 225, j1) + 3 · `∗i+1 · (|ψj|+ 1)

− 2 · `∗i+1 · (|πi+1| − |πj+1|)− `∗i+1 · tax1,i(j1).

Now, apply Lemma 6.41 to get (note that the condition in Lemma 6.41 is satisfied as

|πj1+1| − |πj+1| = j − j1 > 0 by Claim 6.71):

j∑
i′=i+1

`∗i′ ≤ 104 · EB
i (j1) + extrai(225, 225, j1) + 3 · `∗i+1 · (|ψj|+ 1)

− 2 · `∗i+1 · (|πi+1| − |πj+1|) + 100`∗i+1 · (|πj1+1| − |πj+1|)− `∗i+1 · tax1,i(j).

(50)

We now show:

Claim 6.73. For all j′ ∈ [j1 : j), we have turn(j′) ≤ turn(j′ + 1).

Proof. By Equation 48, we have that |Rj′+1| is even. Assume first that |Rj′| is also even.

This means that j′ /∈ Starts, which gives:

turn(j′) = 1
(
ψAj′‖σAj′ 6= ψBj′‖σBj′

)
(Definition of turn(·))

= 1
(
ψAj′+1 6= ψBj′+1

)
(Fact 6.5, item 5 and j′ /∈ Starts)

≤ 1
(
ψAj′+1‖σAj′+1 6= ψBj′+1‖σBj′+1

)
= turn(j′ + 1), (Definition of turn(·))

as desired. On the other hand, if |Rj′| is odd, then j′ = j1 as otherwise, we have contradiction

to Equation 48. We claim that j′ = j1 and |Rj′ | is odd can happen only if j1 = i. Indeed,

suppose that j′ = j1 > i, we have a contradiction to Corollary 6.70. However, j′ = j1 = i

means that turn(j′) = turn(i) = 0 ≤ turn(j′ + 1) and we are done.

Owing to Claim 6.73, we have the following sub-cases:

• When turn(j1) = turn(j): In this case, Claim 6.73 says that turn(j′) = turn(j) for all

j′ ∈ [j1 : j]. This together with Equation 48 means that we can apply Lemma 6.64 (on

j1, j with z = 0.98) to bound the term 104 ·EB
i (j1) + extrai(225, 225, j1) in Equation 50.

117

We get:

j∑
i′=i+1

`∗i′ ≤ 104 · EB
i (j) + extrai(225, 225, j) + 3 · `∗i+1 · (|ψj|+ 1)

− 2 · `∗i+1 · (|πi+1| − |πj+1|) + 100 · `∗i+1 · (|πj1+1| − |πj+1|)− `∗i+1 · tax1,i(j)

− 0.98 · 225 · `∗j ·
j∑

j′′=j1+1

1(turn(j) = 1 ∨Rj′′ .last.t > 0).

Simplifying using the observation that 0.98 · 225 > 200 and using Lemma 6.63, we get:

j∑
i′=i+1

`∗i′ ≤ 104 · EB
i (j) + extrai(j) + 3 · `∗i+1 · (|ψj|+ 1)− 2 · `∗i+1 · (|πi+1| − |πj+1|)

+ 100 · `∗i+1 · (|πj1+1| − |πj+1|)− `∗i+1 · tax1,i(j)

− 200 · `∗j ·
j∑

j′′=j1+1

1(turn(j) = 1 ∨Rj′′ .last.t > 0).

As |πj1+1| − |πj+1| = j − j1 by Claim 6.71 and `∗j = `∗i+1 by Equation 48, Lemma 6.18

now follows from the following claim:

Claim 6.74. j − j1 ≤ 2 ·
∑j

j′′=j1+1 1(turn(j) = 1 ∨Rj′′ .last.t > 0).

Proof. If turn(j) = 1, there is nothing to show so suppose for contradiction that

turn(j) = 0 and j − j1 > 2 ·
∑j

j′′=j1+1 1(Rj′′ .last.t > 0). Let j3 ∈ (j1 : j] be the

smallest such that Rj3 .last.t > 0. Observe that j3 is well defined as Rj.last.t > 0

due to the fact that j ∈ E(80) and item 11 of Fact 6.5. By item 9 of Fact 6.5

(the conditions in item 9 of Fact 6.5 are satisfied due to Equation 48) we have that

(Rj′ .last.r,Rj′ .last.t) = (Rj.last.r,Rj.last.t) for all j′ ∈ [j3 : j]. In particular, this

means that
∑j

j′′=j1+1 1(Rj′′ .last.t > 0) ≥ j − j3 + 1 and we get:

j − j1 > 2 ·
j∑

j′′=j1+1

1(Rj′′ .last.t > 0) ≥ 2 · (j − j3 + 1), (51)

implying that j3− 1 > j+j1
2

> j1. By our choice of j3, this means that Rj3−1.last.t = 0

which, along with Rj3 .last.t > 0 implies that j3 − 1 ∈ E(90), in turn implying that

Rj3 .last.r −Rj3 .last.t = |ψj3|. We derive:

|ψj3| = Rj3 .last.r −Rj3 .last.t

= Rj.last.r −Rj.last.t (As (Rj3 .last.r,Rj3 .last.t) = (Rj.last.r,Rj.last.t))

=
|ψj|+ 1

2
. (As j ∈ E(80))

118

In order to continue, we invoke Claim 6.71 to get |ψj|+ 1 ≥ j − j1. This gives:

|ψj3| ≤ |ψj|+ 1− j − j1

2

< |ψj|+ 1− (j − j3 + 1) (Equation 51)

≤ |ψj|+ 1− (|ψj| − |ψj3 |+ 1) (Claim 6.71)

= |ψj3|,

a contradiction.

• When turn(j1) < turn(j): As turn(·) takes values in {0, 1}, we have in this case that

turn(j1) = 0 and turn(j) = 1. We continue Equation 50 using Lemma 6.66.

j∑
i′=i+1

`∗i′ ≤ 104 · EB
i (j) + extrai(j) + 3 · `∗i+1 · (|ψj|+ 1)− 2 · `∗i+1 · (|πi+1| − |πj+1|)

− `∗i+1 · tax1,i(j),

and Lemma 6.18 follows.

When 1 (j ∈ E(80)) · tax1,i(j) = 0. In this case, in order to show the lemma, we have

to show that:

j∑
i′=i+1

`∗i′ ≤ 104 · EB
i (j) + extrai(j) + 3 · `∗i+1 · (|ψj|+ 1)− 2 · `∗i+1 · (|πi+1| − |πj+1|). (52)

We now show Equation 52 by considering the following sub-cases:

• When |Rj| > |Ri+1|: As j is good for i, this can only happen if j = Stop(i). Define

j1 ∈ (i : j] to be the largest such that |Rj1| = |Ri+1|. Observe that j1 is well defined as

i+ 1 is one such value. Due to our assumption that |Rj| > |Ri+1|, we have that j1 < j

implying by our choice of j1 that |Rj1+1| > |Ri+1| = |Rj1| (we have |Rj1+1| ≥ |Ri+1|
due to item 3 of Fact 6.5). By item 2 of Fact 6.5, it follows that j1 ∈ E(80).

We next show that Stop(j1) = j = Stop(i). Indeed Stop(j1) ≤ Stop(i)

due to Lemma 6.7. Moreover, Stop(j1) ≥ Stop(i) as otherwise, we get that

|RStop(j1)+1| = |Ri+1| from Lemma 6.12 but this contradicts the choice of j1. As

Stop(j1) = j = Stop(i) is good for i, we have by Lemma 6.12 that j1 is indirect.

Plugging in Stop(j1) = j in Claim 6.68, we get:

j∑
i′=i+1

`∗i′ ≤ 104 · EB
i (j) + extrai(225, 225, j) + 3 · `∗i+1 · (|ψj|+ 1)

− 2 · `∗i+1 · (|πi+1| − |πj+1|)− `∗i+1 · tax1,i(j)

≤ 104 · EB
i (j) + extrai(j) + 3 · `∗i+1 · (|ψj|+ 1)− 2 · `∗i+1 · (|πi+1| − |πj+1|).

119

as tax1(·) is non-negative and Lemma 6.63.

For the rest of this proof, we assume that |Rj| = |Ri+1|. We next deal with the sub-case

σAj 6= σBj .

• When σA
j 6= σB

j : Define S to be the (possibly empty) set S = (i : j)∩{j′ ∈ Starts |
|Rj′| = |Ri+1|}. Let j1 < j2 < · · · < j|S| be the elements of S in increasing order. As

j ≤ Stop(i), we have by item 3 of Fact 6.5 that S ⊆ E(80) ⊆ StartsF. We adopt

the convention that j|S|+1 = j for notational convenience. First, observe that for all

z ∈ [|S|], we have

|Rjz+1| = |Ri+1| = |Rjz | < |Rjz+1|,

implying by definition of Stop(·) that Stop(jz) < jz+1. As jz+1 ≤ j ≤ Stop(i) for

z ∈ [|S|], we have by Lemma 6.12 that jz is indirect and |RStop(jz)+1| = |Ri+1|. We

claim that:

Claim 6.75. For all z ∈ [|S|], and all j′ ∈ (Stop(jz) : jz+1], we have |Rj′| = |Ri+1|.
Furthermore, for all j′ ∈ (i : j1], we have |Rj′| = |Ri+1|.

Proof. Proof by contradiction. Let z ∈ [|S|] and j′ ∈ (Stop(jz) : jz+1] be the smallest

such that |Rj′ | 6= |Ri+1|. As j′ ≤ j, we have j′ ∈ Range(i) implying by item 3 of

Fact 6.5 that |Rj′| > |Ri+1|. As |RStop(jz)+1| = |Ri+1|, we have j′ > Stop(jz) + 1

implying by our choice of j′ that |Rj′| > |Ri+1| = |Rj′−1|. Due to item 2 of Fact 6.5, this

means that j′− 1 ∈ E(80). However, as jz < j′− 1 < jz+1, we have (jz : jz+1)∩S 6= ∅,
a contradiction to our ordering of the elements of S.

The proof for the furthermore part is similar, and we include it here for completeness.

Proof by contradiction. Let j′ ∈ (i : j1] be the smallest such that |Rj′| 6= |Ri+1|. As

j′ ≤ j, we have j′ ∈ Range(i) implying by item 3 of Fact 6.5 that |Rj′ | > |Ri+1|.
Also, note that j′ > i + 1 implying by our choice of j′ that |Rj′| > |Ri+1| = |Rj′−1|.
Due to item 2 of Fact 6.5, this means that j′− 1 ∈ E(80). However, as i < j′− 1 < j1,

we have (i : j1) ∩ S 6= ∅, a contradiction to our ordering of the elements of S.

Claim 6.76. For all z ∈ [|S|] and j′ ∈ [Stop(jz) : jz+1], we have |πStop(jz)+1|−|πj′+1| =
j′ − Stop(jz) = |ψj′ | − |ψStop(jz)|.

Proof. Proof by induction. The base case j′ = Stop(jz) is trivial. We show the

claim for j′ ∈ (Stop(jz) : jz+1], by assuming it holds for j′ − 1. First, note that as

|Rj′| is even (Claim 6.75), we have by item 5 of Fact 6.5 that |πStop(jz)+1| − |πj′+1| =
|πStop(jz)+1| − |πj′ | + 1 = j′ − Stop(jz) by the induction hypothesis. We now claim

that |Rj′−1| is even as well. If j′ > Stop(jz) + 1, this follows from Claim 6.75.

If not, then j′ = Stop(jz) + 1 and we can conclude |Rj′−1| is even from the fact

120

that jz is indirect, and |Rjz+1| = |Rjz | + 1 = |Ri+1| + 1 is odd. As |Rj′−1| and

|Rj′| are both even, we have j′ − 1 /∈ Starts, and therefore, by item 5 of Fact 6.5

that |ψj′ | − |ψStop(jz)| = |ψj′−1| + 1 − |ψStop(jz)| = j′ − Stop(jz), using the induction

hypothesis as desired.

Claim 6.77. For all 1 ≤ z < |S| such that RStop(jz)+1.last.t = 0, we have

|ψStop(jz)|+ 1 ≤ |πjz+1| − |πjz+1+1|.

Proof. As 1 ≤ z < |S|, we have that jz+1 ∈ S ⊆ E(80). Due to item 11 of Fact 6.5,

this means that Rjz+1 .last.t > 0. Let j′ ∈ (Stop(jz) : jz+1] be the smallest such that

Rj′ .last.t > 0. Observe j′ is well defined as Rjz+1 .last.t > 0 and j′ > Stop(jz) + 1

as RStop(jz)+1.last.t = 0. The latter together with our choice of j′ implies that

Rj′−1.last.t = 0 =⇒ j′ − 1 ∈ E(90). We derive:

|ψStop(jz)|+ 1 ≤ |ψj′−1|+ 1 (Claim 6.76)

= Rj′ .last.r −Rj′ .last.t (As j′ − 1 ∈ E(90))

= Rjz+1 .last.r −Rjz+1 .last.t (Fact 6.5, item 9 and Claim 6.75)

=
|ψjz+1|+ 1

2
(As jz+1 ∈ E(80))

=
|πStop(jz)+1| − |πjz+1+1|+ |ψStop(jz)|+ 1

2
(Claim 6.76)

=
|πjz+1| − |πjz+1+1|+ |ψStop(jz)|+ 1

2
, (Lemma 6.10)

and the claim follows via a simple rearrangement.

We now analyze
∑j

i′=i+1 `
∗
i′ . As i < j1 < Stop(j1) < j2 < · · · < j, we have:

j∑
i′=i+1

`∗i′ ≤
j1∑

i′=i+1

`∗i′ +

|S|∑
z=1

Stop(jz)∑
i′=jz+1

`∗i′ +

|S|∑
z=1

jz+1∑
i′=Stop(jz)+1

`∗i′

Due to Claim 6.75, we have |Rj′| = |Ri+1| is even for all j′ ∈ (i : j1]. Combining with

item 5 of Fact 6.5, we get that |πi+1| − |πj1+1| = j1 − i. Also, combining with the

definition of `∗, we get that `∗i+1 · (|πi+1| − |πj1+1|) = `∗i+1 · (j1 − i) =
∑j1

i′=i+1 `
∗
i′ . Using

this and similar results for the intervals (Stop(jz) : jz+1] for z ∈ [|S|], we get

j∑
i′=i+1

`∗i′ ≤ `∗i+1 · (|πi+1| − |πj1+1|) +

|S|∑
z=1

Stop(jz)∑
i′=jz+1

`∗i′ +

|S|∑
z=1

`∗i+1 ·
(
|πStop(jz)+1| − |πjz+1+1|

)
.

Invoking Lemma 6.10 and telescoping, we get:

j∑
i′=i+1

`∗i′ ≤ `∗i+1 · (|πi+1| − |πj+1|) +

|S|∑
z=1

Stop(jz)∑
i′=jz+1

`∗i′ .

121

We now apply Lemma 6.19 on jz for z ∈ [|S|] to get:

j∑
i′=i+1

`∗i′ ≤ `∗i+1 · (|πi+1| − |πj+1|)

+

|S|∑
z=1

104 · EF
jz ,depth(jz)(Mid(jz)) + 104 · EB

Mid(jz)(Stop(jz))

+

|S|∑
z=1

3

1.1
· `∗jz+1 ·

(
|ψStop(jz)|+ 1

)
− `∗jz+1 · tax0(225,Stop(jz)).

We continue using the definition of `∗ which implies that `∗jz+1 = 1.1 · `∗i+1. This with

Corollary 6.43 gives:

j∑
i′=i+1

`∗i′ ≤ `∗i+1 · (|πi+1| − |πj+1|)

+

|S|∑
z=1

104 · EF
jz ,depth(jz)(Mid(jz)) + 104 · EB

Mid(jz)(Stop(jz))

+

|S|∑
z=1

3 · `∗i+1 ·
(
|ψStop(jz)|+ 1

)
− `∗i+1 · tax0(225,Stop(jz)).

We continue by bounding EF
jz ,depth(jz)(Mid(jz))+EB

Mid(jz)(Stop(jz)) using Lemma 6.34.

j∑
i′=i+1

`∗i′ ≤ `∗i+1 · (|πi+1| − |πj+1|) +

|S|∑
z=1

104 · EB
i (Stop(jz))− 104 · EB

i (jz)

+

|S|∑
z=1

3 · `∗i+1 ·
(
|ψStop(jz)|+ 1

)
− `∗i+1 · tax0(225,Stop(jz)).

We continue with an application of Lemma 6.39 on the intervals (Stop(jz) : jz+1] for

z ∈ [|S|] and the interval (i : j1] (the conditions of Lemma 6.39 are satisfied due to

Claim 6.75) and noting that EB
i (i) = 0:

j∑
i′=i+1

`∗i′ ≤ `∗i+1 · (|πi+1| − |πj+1|) +

|S|∑
z=1

104 · EB
i (Stop(jz))− 104 · EB

i (jz)

+

|S|∑
z=1

104 · EB
i (jz+1)− 104 · EB

i (Stop(jz))

− 104 ·
|S|∑
z=1

|πStop(jz)+1|∑
l=|πjz+1+1|+1

corrlatest(i,l) − 104 ·
|S|∑
z=1

jz+1∑
i′=Stop(jz)+1

corri′

122

+ 104 · EB
i (j1)− 104 ·

j1∑
i′=i+1

corri′ − 104 ·
|πi+1|∑

l=|πj1+1|+1

corrlatest(i,l)

+

|S|∑
z=1

3 · `∗i+1 ·
(
|ψStop(jz)|+ 1

)
− `∗i+1 · tax0(225,Stop(jz)).

Telescoping all the EB(·) terms, we get:

j∑
i′=i+1

`∗i′ ≤ 104 · EB
i (j) + `∗i+1 · (|πi+1| − |πj+1|)

− 104 ·
|S|∑
z=1

|πStop(jz)+1|∑
l=|πjz+1+1|+1

corrlatest(i,l) − 104 ·
|S|∑
z=1

jz+1∑
i′=Stop(jz)+1

corri′

− 104 ·
j1∑

i′=i+1

corri′ − 104 ·
|πi+1|∑

l=|πj1+1|+1

corrlatest(i,l)

+

|S|∑
z=1

3 · `∗i+1 ·
(
|ψStop(jz)|+ 1

)
− `∗i+1 · tax0(225,Stop(jz)).

Next, we use Lemma 6.10 to get |πjz+1| = |πStop(jz)+1|. Using this fact to combine all

the corrlatest(i,l) terms and using
∑j1

i′=i+1 corri′ ≥ 0, we have:

j∑
i′=i+1

`∗i′ ≤ 104 · EB
i (j) + `∗i+1 · (|πi+1| − |πj+1|)− 104 ·

|πi+1|∑
l=|πj+1|+1

corrlatest(i,l)

− 104 ·
|S|∑
z=1

jz+1∑
i′=Stop(jz)+1

corri′

+

|S|∑
z=1

3 · `∗i+1 ·
(
|ψStop(jz)|+ 1

)
− `∗i+1 · tax0(225,Stop(jz)).

We get using Claim 6.76 that :

j∑
i′=i+1

`∗i′ ≤ 104 · EB
i (j) + `∗i+1 · (|πi+1| − |πj+1|)− 104 ·

|πi+1|∑
l=|πj+1|+1

corrlatest(i,l)

− 104 ·
|S|∑
z=1

jz+1∑
i′=Stop(jz)+1

corri′

+

|S|∑
z=1

3 · `∗i+1 ·
(
|ψjz+1|+ 1

)
− `∗i+1 · tax0(225,Stop(jz)).

123

We now deal with the terms 3 ·
(
|ψjz+1|+ 1

)
− tax0(225,Stop(jz)) for z ∈ [|S|]. If

S = ∅, these terms just disappear. Otherwise, if z = |S|, we upper bound it simply by

3 ·
(
|ψj|S|+1

|+ 1
)

= 3 · (|ψj|+ 1). For z < |S|, we have that jz+1 ∈ S ⊆ E(80).

If RStop(jz)+1.last.t > 0, we apply Lemma 6.52 on Stop(jz), jz+1 (the conditions

of Lemma 6.39 are satisfied due to Claim 6.75). If RStop(jz)+1.last.t = 0, we use

Claim 6.77 to get that 3 ·
(
|ψStop(jz)|+ 1

)
− tax0(225,Stop(jz)) ≤ 3 ·

(
|ψStop(jz)|+ 1

)
≤

3 ·
(
|πjz+1| − |πjz+1+1|

)
. We get:

j∑
i′=i+1

`∗i′ ≤ 104 · EB
i (j) + `∗i+1 · (|πi+1| − |πj+1|)− 104 ·

|πi+1|∑
l=|πj+1|+1

corrlatest(i,l)

+
∑

1≤z<|S|
RStop(jz)+1.last.t=0

3 · `∗i+1 ·
(
|πjz+1| − |πjz+1+1|

)
+ 3 · `∗i+1 · (|ψj|+ 1) .

Now, note by Lemma 6.13 that |πi+1| − |πj1+1| ≥ 0. Also, by Claim 6.76 and

Lemma 6.10, we have that |πjz+1| − |πjz+1+1| = |πStop(jz)+1| − |πjz+1+1| ≥ 0. Thus,

we get

|πi+1| − |πj+1| ≥ |πj1+1| − |πj+1|

=

|S|∑
z=1

|πjz+1| − |πjz+1+1|

≥
∑

1≤z<|S|
RStop(jz)+1.last.t=0

|πjz+1| − |πjz+1+1|.

Plugging this in, we get:

j∑
i′=i+1

`∗i′ ≤ 104 · EB
i (j) + 4 · `∗i+1 · (|πi+1| − |πj+1|) + 3 · `∗i+1 · (|ψj|+ 1)

− 104 ·
|πi+1|∑

l=|πj+1|+1

corrlatest(i,l).

Use Lemma 6.36 to get:

j∑
i′=i+1

`∗i′ ≤ 104 · EB
i (j) + 4 · `∗i+1 · (|πi+1| − |πj+1|) + 3 · `∗i+1 · (|ψj|+ 1)− 2250 · `∗i+1

+ `∗i+1 ·min

(
0,
|πi+1| − |πPrev(i)+1|

30
− 500 · (|πi+1| − |πj+1|)

)
.

Finally, note by Lemma 6.51 that tax0(10, j) ≤ 27 · (|πi+1| − |πj+1|) + 100 and

124

tax0(225, j) ≤ 470 · (|πi+1| − |πj+1|) + 2250. Plugging these in and using the definition

of extra, we get

j∑
i′=i+1

`∗i′ ≤ 104 · EB
i (j)− 2 · `∗i+1 · (|πi+1| − |πj+1|) + 3 · `∗i+1 · (|ψj|+ 1)

+ extrai(j),

as desired.

Owing to this result, we can now assume for the rest of the proof that |Rj| = |Ri+1|
and σAj = σBj . We first claim that σAj = σBj implies that turn(j) = turn(j − 1). Indeed, as

σAj = σBj , we have that turn(j) = 1
(
ψAj 6= ψBj

)
. Now, either |Rj−1| is odd, which means

that turn(j − 1) = 0 and, as |Rj| is even, implies that j − 1 ∈ E(70) which means that

ψAj = ψBj = ε and therefore, turn(j) = 0 = turn(j − 1), or |Rj−1| and |Rj| are both even, in

which case, we have j − 1 /∈ Starts, and by item 5 of Fact 6.5, that

turn(j) = 1
(
ψAj 6= ψBj

)
= 1

(
ψAj−1‖σAj−1 6= ψBj−1‖σBj−1

)
= turn(j − 1).

Define j1 ∈ [i : j) to be the largest such that j1 is good for i. Observe that j1 is well

defined as i is good for i. Also, note that j1 − i < j − i = D. We have:

• When j1 = j − 1: We have by Lemma 6.18 on i, j1 that:

j∑
i′=i+1

`∗i′ ≤
j1∑

i′=i+1

`∗i′ + `∗j

≤ `∗j + 104 · EB
i (j1) + extrai(j1) + 3 · `∗i+1 · 1(j1 6= i) · (|ψj1|+ 1)

− 2 · `∗i+1 · (|πi+1| − |πj1+1|)− `∗i+1 · 1 (j1 ∈ E(80)) · tax1,i(j1).

As we have |Rj| = |Ri+1|, we have that `∗j = `∗i+1. Also, note that as |Rj| = |Ri+1| is

even, we have that j − 1 = j1 /∈ E(80). Using this, we get:

j∑
i′=i+1

`∗i′ ≤ `∗i+1 + 104 · EB
i (j1) + extrai(j1) + 3 · `∗i+1 · 1(j1 6= i) · (|ψj1|+ 1)

− 2 · `∗i+1 · (|πi+1| − |πj1+1|).

Again using the fact that |Rj| = |Ri+1| is even, we have by item 5 of Fact 6.5 that

|πj+1| = |πj| − 1 = |πj1+1| − 1. This yields:

j∑
i′=i+1

`∗i′ ≤ 3 · `∗i+1 + 104 · EB
i (j1) + extrai(j1) + 3 · `∗i+1 · 1(j1 6= i) · (|ψj1|+ 1)

− 2 · `∗i+1 · (|πi+1| − |πj+1|).

Now, as j1 < j ≤ Stop(i) is good for i, we have that either j1 = i or |Rj1| = |Ri+1|

125

is even. In the former case, we have |ψj| = |ψi+1| = 0 as i ∈ StartsB and in the

latter case, we have from the fact that |Rj1| = |Rj| is even that j1 /∈ Starts which,

by item 5 of Fact 6.5, means that |ψj1+1| = |ψj1|+ 1. Thus, in either case, we get that

|ψj| = 1(j1 6= i) · (|ψj1|+ 1). Plugging this, we get:

j∑
i′=i+1

`∗i′ ≤ 104 · EB
i (j1) + extrai(j1) + 3 · `∗i+1 · (|ψj|+ 1)− 2 · `∗i+1 · (|πi+1| − |πj+1|).

Finally, we use Lemma 6.64 on with j′ = j1. Note that the conditions of the lemma

are satisfies as we have |Rj| = |Ri+1| and turn(j) = turn(j − 1). We get:

j∑
i′=i+1

`∗i′ ≤ 104 · EB
i (j) + extrai(j) + 3 · `∗i+1 · (|ψj|+ 1)− 2 · `∗i+1 · (|πi+1| − |πj+1|),

which is exactly Equation 52.

• When j1 < j−1: In this case, by our choice of j1, we have that j1 +1 < j is not good

for i. This is possible only if i < j1 < Stop(i). By definition of good, the latter implies

that |Rj1+1| > |Ri+1| = |Rj1| (we have |Rj1+1| > |Ri+1| due to item 3 of Fact 6.5)

implying that j1 ∈ E(80) ⊆ StartsF by item 2 of Fact 6.5. As j1 < j ≤ Stop(i), we

have by Lemma 6.7 that Stop(j1) ≤ Stop(i). We claim that:

Claim 6.78. We have j = Stop(j1) + 1 and j1 is indirect.

Proof. We have j ≥ Stop(j1) + 1 , because otherwise j ∈ Range(j1) which means

due to item 3 of Fact 6.5 that

|Ri+1| = |Rj| ≥ |Rj1+1| > |Ri+1|,

a contradiction. As Stop(i) ≥ j ≥ Stop(j1) + 1, we have by Lemma 6.12 that

|RStop(j1)+1| = |Ri+1| and j1 is indirect. As |RStop(j1)+1| = |Ri+1|, we must have

j ≤ Stop(j1) + 1, as otherwise, we have a contradiction to the choice of j1.

Using Claim 6.68 (the conditions in Claim 6.68 are satisfied due to Claim 6.78), we

derive:

j∑
i′=i+1

`∗i′ ≤
Stop(j1)∑
i′=i+1

`∗i′ + `∗j

≤ 104 · EB
i (Stop(j1)) + extrai(225, 225,Stop(j1)) + 3 · `∗i+1 ·

(
|ψStop(j1)|+ 1

)
− 2 · `∗i+1 · (|πi+1| − |πStop(j1)+1|)− `∗i+1 · tax1,i(Stop(j1)) + `∗j .

126

We now plug in j = Stop(j1) + 1 and use the fact that tax1(·) is non-negative and

`∗j = `∗i+1 along with Lemma 6.63.

j∑
i′=i+1

`∗i′ ≤ 104 · EB
i (j − 1) + extrai(j − 1) + 3 · `∗i+1 · (|ψj−1|+ 1)

− 2 · `∗i+1 · (|πi+1| − |πj|) + `∗i+1.

Next, we use Lemma 6.64 on with j′ = j − 1. Note that the conditions of the lemma

are satisfies as we have |Rj| = |Ri+1| and turn(j) = turn(j − 1). We get:

j∑
i′=i+1

`∗i′ ≤ 104 · EB
i (j) + extrai(j) + 3 · `∗i+1 · (|ψj−1|+ 1)− 2`∗i+1 · (|πi+1| − |πj|) + `∗i+1.

Now, as j1 ∈ E(80) is indirect (Claim 6.78) and |Rj1| = |Ri+1|, we have that |RStop(j1)|
is even. Using this and the fact that Stop(j1) = j − 1 < Stop(i), we have by item 3

and item 7 of Fact 6.5 that j− 1 ∈ E(88) =⇒ j− 1 /∈ Starts. By item 5 of Fact 6.5,

this gives |ψj−1|+ 1 = |ψj|. We get:

j∑
i′=i+1

`∗i′ ≤ 104 · EB
i (j) + extrai(j) + 3 · `∗i+1 · (|ψj|+ 1)− 2 · `∗i+1 · (|πi+1| − |πj|+ 1).

Finally, as |Rj| = |Ri+1| is even, we have |πj+1| + 1 = |πj| by item 5 of Fact 6.5 and

we get:

j∑
i′=i+1

`∗i′ ≤ 104 · EB
i (j) + extrai(j) + 3 · `∗i+1 · (|ψj|+ 1)− 2 · `∗i+1 · (|πi+1| − |πj+1|).

6.2.11 Finishing the Proof of Theorem 6.4

We now finish by showing Theorem 6.4.

Finishing the proof of Theorem 6.4. To finish the proof, we have to show that:∑
i<num

`∗i ≤ 8 · `∗1 · |LCP
(
πAnum, π

B
num

)
|+ 105 ·

∑
i<num

corri. (53)

Let a = |E(84)|. Define i0 = 0 and i1 < i2 < · · · < ia to be the elements of E(84) in

increasing order. Observe that iz ∈ Starts for all 0 ≤ z ≤ a. Also, by definition of

Stop(·), we have for 0 ≤ z < a that Stop(iz) = iz+1. Furthermore, for 0 ≤ z < a, observe

that |RStop(iz)| − |Riz+1| = |Riz+1 | − |Riz+1| = |Riz+1 | − 1 as iz ∈ E(84) ∪ {0}. Using now

that iz+1 ∈ E(84), this means that |RStop(iz)| − |Riz+1| is odd implying that iz is indirect for

127

all 0 ≤ z < a. We have:

ia∑
i=1

`∗i =
a∑
z=1

iz∑
i=iz−1+1

`∗i

=
a∑
z=1

Stop(iz−1)∑
i=iz−1+1

`∗i (As Stop(iz) = iz+1 for 0 ≤ z < a)

≤
a∑
z=1

104 · EF
iz−1,depth(iz−1)(Mid(iz−1)) + 104 · EB

Mid(iz−1)(Stop(iz−1))

+
a∑
z=1

3

1.1
· `∗iz−1+1 ·

(
|ψStop(iz−1)|+ 1

)
− `∗iz−1+1 · tax0(225,Stop(iz−1)).

(Lemma 6.19 as iz is indirect for 0 ≤ z < a)

To continue, we use Lemma 6.44 noting that Stop(iz−1) = iz ∈ E(84). We get:

ia∑
i=1

`∗i ≤
a∑
z=1

104 · EF
iz−1,depth(iz−1)(Mid(iz−1)) + 104 · EB

Mid(iz−1)(iz).

To continue, we invoke Lemma 6.29 with i = iz−1, i′ = Mid(iz−1), and j = Stop(iz−1) = iz
(note that the condition of the lemma are satisfied due to Lemma 6.9 and the fact that

|πiz+1| = 0). We get

ia∑
i=1

`∗i ≤
a∑
z=1

3 · 104 ·
iz∑

i′=iz−1+1

corri′ ≤ 105 ·
ia∑
i′=1

corri′ .

Thus, in order to show Equation 53, it is sufficient to show that:

num−1∑
i=ia+1

`∗i ≤ 8 · `∗1 · |LCP
(
πAnum, π

B
num

)
|+ 105 ·

num−1∑
i=ia+1

corri. (54)

We now focus on showing Equation 54. Note that if ia = num − 1, then there is nothing

to show, so we assume ia < num − 1. Now, for b > 0 and a sequence J of b iterations

j1 < j2 < · · · jb < num, we say that J is ‘nice’ if j1 = ia and the following hold for all

1 ≤ z < b:

• If z is odd, we have jz ∈ StartsF. If z > 1 is odd, we additionally have

jz ∈ E(80) ⊆ StartsF. If z is even, we have jz ∈ StartsB.

• z = |Rjz+1| = |Rjz+1|.

• Stop(jz) ≥ num− 1.

Claim 6.79. There exists a b > 1 and a nice sequence J of b iterations such that

jb = num− 1.

128

Proof. Proof by contradiction. Suppose that for all nice sequences of at least 2 iterations,

we have jb < num− 1. Pick one such sequence J with the largest value of jb. Observe that

J is well defined as the sequence J with only the iterations ia, ia+1 is a nice sequence (using

the fact that ia ∈ E(84) ∪ {0} is fixed by our choice of a).

Let j1, j2, · · · , jb−1, jb be the iterations in J . Observe that jb < num − 1 ≤ Stop(jb−1).

By our choice of J , the sequence j1, j2, · · · , jb−1, jb + 1 is not nice. Using the definition of

nice, this is only possible if |Rjb| = |Rjb−1+1| 6= |Rjb+1|. Now, as jb < Stop(jb−1) implies

that jb + 1 ∈ Range(jb−1) which, together with |Rjb−1+1| 6= |Rjb+1| and item 3 of Fact 6.5

gives us that |Rjb| = |Rjb−1+1| < |Rjb+1|.
Due to item 2 of Fact 6.5, this is possible only if jb ∈ E(70)∪E(80). As |Rjb| = |Rjb−1+1| =

b − 1, we additionally get that |Rjb+1| = b and jb ∈ E(80) ⊆ StartsF if b is odd and jb ∈
StartsB otherwise. Combining, this with the fact that the sequence j1, j2, · · · , jb−1, jb, jb+1

is not nice (again due to the choice of J , we have that Stop(jb) < num− 1 ≤ Stop(jb−1).

Due to Lemma 6.12, this means that |RStop(jb)+1| = |Rjb−1+1|. However, this means that the

sequence j1, j2, · · · , jb−1,Stop(jb) + 1 is nice, contradicting the choice of J .

For the rest of the proof, fix b > 1 and J to be those promised by Claim 6.79. As J is

nice, we derive:

num−1∑
i=ia+1

`∗i =

jb∑
i=j1+1

`∗i (As j1 = ia and jb = num− 1)

=
b−1∑
z=1

jz+1∑
i=jz+1

`∗i (As jz < jz+1 for all 1 ≤ z < b)

=
b−1∑

odd z=1

jz+1∑
i=jz+1

`∗i +
b−1∑

even z=1

jz+1∑
i=jz+1

`∗i .

To continue, we use Lemma 6.17 for odd z and Lemma 6.18 for even z and get (note that

the conditions in Lemma 6.17 and Lemma 6.18 are satisfied due to the definition of nice):

num−1∑
i=ia+1

`∗i ≤
b−1∑

odd z=1

104 · EF
jz ,depth(jz)(jz+1) + `∗jz+1 (Gjz(jz+1) + 150Bjz(jz+1)− 2500 · Djz(jz+1))

+
b−1∑

odd z=1

`∗jz+1 · 1(jz+1 = Stop(jz) ∧ |Rjz+1| 6= |Rjz+1|) (Gjz(jz+1) + Bjz(jz+1))

−
b−1∑

odd z=1

2500 · `∗jz+1 · sparejz(jz+1)

+
b−1∑

even z=1

104 · EB
jz(jz+1) + extrajz(jz+1) + 3 · `∗jz+1 · 1(jz+1 6= jz) ·

(
|ψjz+1|+ 1

)

129

−
b−1∑

even z=1

2 · `∗jz+1 · (|πjz+1| − |πjz+1+1|)

−
b−1∑

even z=1

`∗jz+1 · 1 (jz+1 ∈ E(80)) · tax1,jz(jz+1).

Simplifying using the fact that |Rjz+1| = |Rjz+1| by the definition of nice and noting that

spare(·) is non-negative and 1(jz+1 6= jz) ≤ 1, we get:

num−1∑
i=ia+1

`∗i ≤
b−1∑

odd z=1

104 · EF
jz ,depth(jz)(jz+1) + `∗jz+1 (Gjz(jz+1) + 150Bjz(jz+1)− 2500 · Djz(jz+1))

+
b−1∑

even z=1

104 · EB
jz(jz+1) + extrajz(jz+1) + 3 · `∗jz+1 ·

(
|ψjz+1|+ 1

)
−

b−1∑
even z=1

2 · `∗jz+1 · (|πjz+1| − |πjz+1+1|)

−
b−1∑

even z=1

`∗jz+1 · 1 (jz+1 ∈ E(80)) · tax1,jz(jz+1).

Reordering the terms, and reindexing the term
∑b−1

even z=1 104 · EB
jz(jz+1), we get:

num−1∑
i=ia+1

`∗i ≤
b−1∑

odd z=1

104 · EF
jz ,depth(jz)(jz+1) +

b−2∑
odd z=1

104 · EB
jz+1

(jz+2)

+
b−1∑

odd z=1

`∗jz+1 (Gjz(jz+1) + 150Bjz(jz+1)− 2500 · Djz(jz+1))

+
b−1∑

even z=1

extrajz(jz+1) + 3 · `∗jz+1 ·
(
|ψjz+1|+ 1

)
− 2`∗jz+1 · (|πjz+1| − |πjz+1+1|)

−
b−1∑

even z=1

`∗jz+1 · 1 (jz+1 ∈ E(80)) · tax1,jz(jz+1).

This is equivalent to:

num−1∑
i=ia+1

`∗i ≤ 104 · 1(b is even) · EF
jb−1,depth(jb−1)(jb)

+
b−2∑

odd z=1

104 · EF
jz ,depth(jz)(jz+1) + 104 · EB

jz+1
(jz+2)

+
b−1∑

odd z=1

`∗jz+1 (Gjz(jz+1) + 150Bjz(jz+1)− 2500 · Djz(jz+1))

130

+
b−1∑

even z=1

extrajz(jz+1) + 3 · `∗jz+1 ·
(
|ψjz+1|+ 1

)
− 2`∗jz+1 · (|πjz+1| − |πjz+1+1|)

−
b−1∑

even z=1

`∗jz+1 · 1 (jz+1 ∈ E(80)) · tax1,jz(jz+1).

Now, note that if b is even, then by the definition of nice and Claim 6.79, we have that

jb−1 ∈ StartsF and jb = num − 1 ≤ Stop(jb−1). This means we can use Lemma 6.28 to

bound the first term. We get:

num−1∑
i=ia+1

`∗i ≤ 105 · 1(b is even) ·
jb∑

j′=jb−1+1

corrj′ +
b−2∑

odd z=1

104 · EF
jz ,depth(jz)(jz+1) + 104 · EB

jz+1
(jz+2)

+
b−1∑

odd z=1

`∗jz+1 (Gjz(jz+1) + 150Bjz(jz+1)− 2500 · Djz(jz+1))

+
b−1∑

even z=1

extrajz(jz+1) + 3 · `∗jz+1 ·
(
|ψjz+1|+ 1

)
− 2`∗jz+1 · (|πjz+1| − |πjz+1+1|)

−
b−1∑

even z=1

`∗jz+1 · 1 (jz+1 ∈ E(80)) · tax1,jz(jz+1).

Again by the definition of nice, we have for odd z ∈ [b − 2] that jz ∈ StartsF,

jz+1 ∈ (jz : Stop(jz))∩StartsB, and jz+2 ∈ Range(jz+1)\{num} . As |Rjz+1+1| = |Rjz+2 |,
we have by Lemma 6.13 that |πjz+2+1| ≤ |πjz+1+1| and we can use Lemma 6.29 to get:

num−1∑
i=ia+1

`∗i ≤ 105 · 1(b is even) ·
jb∑

j′=jb−1+1

corrj′ +
b−2∑

odd z=1

105 ·
jz+2∑

j′=jz+1

corrj′

+
b−1∑

odd z=1

`∗jz+1 (Gjz(jz+1) + 150Bjz(jz+1)− 2500 · Djz(jz+1))

+
b−1∑

even z=1

extrajz(jz+1) + 3 · `∗jz+1 ·
(
|ψjz+1|+ 1

)
− 2`∗jz+1 · (|πjz+1| − |πjz+1+1|)

−
b−1∑

even z=1

`∗jz+1 · 1 (jz+1 ∈ E(80)) · tax1,jz(jz+1).

This is equivalent to (note that j1 = ia and jb = num− 1 by Claim 6.79):

num−1∑
i=ia+1

`∗i ≤ 105 ·
num−1∑
i=ia+1

corri

+
b−1∑

odd z=1

`∗jz+1 (Gjz(jz+1) + 150Bjz(jz+1)− 2500 · Djz(jz+1))

131

+
b−1∑

even z=1

extrajz(jz+1) + 3 · `∗jz+1 ·
(
|ψjz+1|+ 1

)
− 2`∗jz+1 · (|πjz+1| − |πjz+1+1|)

−
b−1∑

even z=1

`∗jz+1 · 1 (jz+1 ∈ E(80)) · tax1,jz(jz+1).

By definition of extra(·), we derive:

num−1∑
i=ia+1

`∗i ≤ 105 ·
num−1∑
i=ia+1

corri +
b−1∑

odd z=1

`∗jz+1 (Gjz(jz+1) + 150Bjz(jz+1)− 2500 · Djz(jz+1))

+
b−1∑

even z=1

`∗jz+1 ·
(
|πjz+1| − |πPrev(jz)+1|

30
− tax0(225, jz+1)

)

+
b−1∑

even z=1

3 · `∗jz+1 ·
(
|ψjz+1|+ 1

)
− 2`∗jz+1 · (|πjz+1| − |πjz+1+1|)

−
b−1∑

even z=1

`∗jz+1 · 1 (jz+1 ∈ E(80)) · tax1,jz(jz+1).

Continuing using Lemma 6.24, we have:

num−1∑
i=ia+1

`∗i ≤ 105 ·
num−1∑
i=ia+1

corri +
b−1∑

odd z=1

`∗jz+1 (Gjz(jz+1)− 2300Bjz(jz+1))

+
b−1∑

even z=1

`∗jz+1 ·
(
|πjz+1| − |πPrev(jz)+1|

30
− tax0(225, jz+1)

)

+
b−1∑

even z=1

3 · `∗jz+1 ·
(
|ψjz+1|+ 1

)
− 2`∗jz+1 · (|πjz+1| − |πjz+1+1|)

−
b−1∑

even z=1

`∗jz+1 · 1 (jz+1 ∈ E(80)) · tax1,jz(jz+1).

Now, we claim that for even z < b− 1 we have that Prev(jz) = jz−1. For this, we need to

show that |Rjz−1+1| = |Rjz | and |Rj′+1| 6= |Rjz | for all j′ ∈ (jz−1 : jz)∩Starts. The former

is due to the definition of nice while the latter is because j′ ∈ (jz−1 : jz) ∩ Starts =⇒
j′ ∈ (jz−1 : jz) ∩ (E(70) ∪ E(80)) by choice of ia = j1, which in turn implies that

|Rj′+1| = |Rj′ | + 1 ≥ |Rjz−1+1| + 1 = |Rjz | + 1 as j′ ∈ Range(jz−1) by definition of

nice and item 3 of Fact 6.5. Plugging in, we get

num−1∑
i=ia+1

`∗i ≤ 105 ·
num−1∑
i=ia+1

corri +
b−1∑

odd z=1

`∗jz+1 (Gjz(jz+1)− 2300Bjz(jz+1))

+
b−1∑

even z=1

`∗jz+1 ·
(
|πjz+1| − |πjz−1+1|

30
− tax0(225, jz+1)

)

132

+
b−1∑

even z=1

3 · `∗jz+1 ·
(
|ψjz+1|+ 1

)
− 2`∗jz+1 · (|πjz+1| − |πjz+1+1|)

−
b−1∑

even z=1

`∗jz+1 · 1 (jz+1 ∈ E(80)) · tax1,jz(jz+1).

To continue, we need the following claim:

Claim 6.80. For all even 1 < z < b, we have

3 ·
(
|ψjz+1|+ 1

)
− tax0(225, jz+1)

≤ 6 · 1
(
turn(jz+1) = 0 ∧ z + 1 = b ∧ πAjz+1

‖ψAjz+1
6= πBjz+1

‖ψBjz+1

)
·
(
|πjz+1| − |πjz−1+1|

)
.

Proof. To start, note that |Rjz+1| = z is even. If turn(jz+1) = 1, then, we have from

Lemma 6.42 that the left hand side is non-positive and there is nothing to show. If

πAjz+1
‖ψAjz+1

= πBjz+1
‖ψBjz+1

, then by the definition of tax0(225, ·), we have that the left hand

side is non-positive and there is nothing to show. Also, if z+1 < b, we have by the definition

of nice that jz+1 ∈ E(80) which together with Lemma 6.44 means again that the left hand

side is non-positive and there is nothing to show.

If none of these conditions holds, we have due to Corollary 6.43 that:

3 ·
(
|ψjz+1|+ 1

)
− tax0(225, jz+1) ≤ 3 ·

(
|ψjz+1 |+ 1

)
.

Using Lemma 6.13 (the conditions in Lemma 6.13 are satisfied due to the definition of nice),

we get:

3 ·
(
|ψjz+1|+ 1

)
− tax0(225, jz+1) ≤ 6 ·

(
|πjz+1| − |πjz+1+1|

)
,

implying that it is enough to show that |πjz−1+1| ≤ |πjz+1+1|. To see this, we use the definition

of nice to conclude that jz+1 ∈ Range(jz−1) and we have:

|πjz+1+1| = |πjz+1 | − 1 (Fact 6.5, item 5 as |Rjz+1| = z is even)

> Rjz+1 [z − 1].r − 1 (Lemma 6.6 as |Rjz+1| = z is even)

= |πjz−1+1| − 1, (Fact 6.5, item 8 as jz+1 ∈ Range(jz−1))

and the result follows as all quantities are integers.

Using Claim 6.80, we get:

num−1∑
i=ia+1

`∗i ≤ 105 ·
num−1∑
i=ia+1

corri +
b−1∑

odd z=1

`∗jz+1 (Gjz(jz+1)− 2300Bjz(jz+1))

+
b−1∑

even z=1

`∗jz+1 ·
(
|πjz+1| − |πjz−1+1|

30

)

133

+
b−1∑

even z=1

6 · `∗jz+1 · 1
(
turn(jz+1) = 0 ∧ z + 1 = b ∧ πAjz+1

‖ψAjz+1
6= πBjz+1

‖ψBjz+1

)
×
(
|πjz+1| − |πjz−1+1|

)
−

b−1∑
even z=1

2`∗jz+1 · (|πjz+1| − |πjz+1+1|)

−
b−1∑

even z=1

`∗jz+1 · 1 (jz+1 ∈ E(80)) · tax1,jz(jz+1).

To continue, we use the definition of G(·) and B(·) to get:

num−1∑
i=ia+1

`∗i ≤ 105 ·
num−1∑
i=ia+1

corri +
b−1∑

odd z=1

`∗jz+1 (Gjz(jz+1)− 2300Bjz(jz+1))

+
b−1∑

even z=1

`∗jz+1 ·
(
Gjz−1(jz) + Bjz−1(jz)

30

)

+
b−1∑

even z=1

6 · `∗jz+1 · 1
(
turn(jz+1) = 0 ∧ z + 1 = b ∧ πAjz+1

‖ψAjz+1
6= πBjz+1

‖ψBjz+1

)
×
(
Gjz−1(jz) + Bjz−1(jz)

)
−

b−1∑
even z=1

2`∗jz+1 · (|πjz+1| − |πjz+1+1|)

−
b−1∑

even z=1

`∗jz+1 · 1 (jz+1 ∈ E(80)) · tax1,jz(jz+1).

This gives:

num−1∑
i=ia+1

`∗i ≤ 105 ·
num−1∑
i=ia+1

corri +
b−1∑

odd z=1

`∗jz+1 (Gjz(jz+1)− 2300Bjz(jz+1))

+
b−1∑

even z=1

`∗jz+1 ·
(
Gjz−1(jz) + Bjz−1(jz)

30
+ 6 · Bjz−1(jz)

)

+
b−1∑

even z=1

6 · `∗jz+1 · 1
(
turn(jz+1) = 0 ∧ z + 1 = b ∧ πAjz+1

‖ψAjz+1
6= πBjz+1

‖ψBjz+1

)
× Gjz−1(jz)

−
b−1∑

even z=1

2`∗jz+1 · (|πjz+1| − |πjz+1+1|)

−
b−1∑

even z=1

`∗jz+1 · 1 (jz+1 ∈ E(80)) · tax1,jz(jz+1).

134

The sum in the third line is non-zero only when z = b− 1 is even. We get:

num−1∑
i=ia+1

`∗i ≤ 105 ·
num−1∑
i=ia+1

corri +
b−1∑

odd z=1

`∗jz+1 (Gjz(jz+1)− 2300Bjz(jz+1))

+
b−1∑

even z=1

`∗jz+1 ·
(
Gjz−1(jz) + Bjz−1(jz)

30
+ 6 · Bjz−1(jz)

)
+ 6 · `∗jb−1+1 · 1

(
turn(jb) = 0 ∧ b is odd ∧ πAjb‖ψ

A
jb
6= πBjb‖ψ

B
jb

)
· Gjb−2

(jb−1)

−
b−1∑

even z=1

2`∗jz+1 · (|πjz+1| − |πjz+1+1|)

−
b−1∑

even z=1

`∗jz+1 · 1 (jz+1 ∈ E(80)) · tax1,jz(jz+1).

To continue, we reindex the second line and get:

num−1∑
i=ia+1

`∗i ≤ 105 ·
num−1∑
i=ia+1

corri +
b−1∑

odd z=1

`∗jz+1 (Gjz(jz+1)− 2300Bjz(jz+1))

+
b−2∑

odd z=1

`∗jz+1+1 ·
(
Gjz(jz+1) + Bjz(jz+1)

30
+ 6 · Bjz(jz+1)

)
+ 6 · `∗jb−1+1 · 1

(
turn(jb) = 0 ∧ b is odd ∧ πAjb‖ψ

A
jb
6= πBjb‖ψ

B
jb

)
· Gjb−2

(jb−1)

−
b−1∑

even z=1

2`∗jz+1 · (|πjz+1| − |πjz+1+1|)

−
b−1∑

even z=1

`∗jz+1 · 1 (jz+1 ∈ E(80)) · tax1,jz(jz+1).

Using the definition of `∗ and nice, we have `∗jz+1+1 = 1.1 · `∗jz+1 for all 1 < z < b − 1. This

allows us to merge the first two lines to get:

num−1∑
i=ia+1

`∗i ≤ 105 ·
num−1∑
i=ia+1

corri +
b−1∑

odd z=1

`∗jz+1 (1.12 · Gjz(jz+1)− 2280Bjz(jz+1))

+ 6 · `∗jb−1+1 · 1
(
turn(jb) = 0 ∧ b is odd ∧ πAjb‖ψ

A
jb
6= πBjb‖ψ

B
jb

)
· Gjb−2

(jb−1)

−
b−1∑

even z=1

2`∗jz+1 · (|πjz+1| − |πjz+1+1|)

−
b−1∑

even z=1

`∗jz+1 · 1 (jz+1 ∈ E(80)) · tax1,jz(jz+1).

135

Noting that B(·) and tax1(·) are non-negative, we get:

num−1∑
i=ia+1

`∗i ≤ 105 ·
num−1∑
i=ia+1

corri +
b−1∑

odd z=1

1.12 · `∗jz+1 · Gjz(jz+1)−
b−3∑

odd z=1

2280 · `∗jz+1 · Bjz(jz+1)

+ 6 · `∗jb−1+1 · 1
(
turn(jb) = 0 ∧ b is odd ∧ πAjb‖ψ

A
jb
6= πBjb‖ψ

B
jb

)
· Gjb−2

(jb−1)

−
b−1∑

even z=1

2`∗jz+1 · (|πjz+1| − |πjz+1+1|)

−
b−2∑

even z=1

`∗jz+1 · 1 (jz+1 ∈ E(80)) · tax1,jz(jz+1).

Separating the z = 1 term in the first line and reindexing, we get:

num−1∑
i=ia+1

`∗i ≤ 105 ·
num−1∑
i=ia+1

corri + 1.12 · `∗j1+1 · Gj1(j2)

+
b−2∑

even z=1

1.12 · `∗jz+1+1 · Gjz+1(jz+2)− 2280 · `∗jz−1+1 · Bjz−1(jz)

+ 6 · `∗jb−1+1 · 1
(
turn(jb) = 0 ∧ b is odd ∧ πAjb‖ψ

A
jb
6= πBjb‖ψ

B
jb

)
· Gjb−2

(jb−1)

−
b−1∑

even z=1

2`∗jz+1 · (|πjz+1| − |πjz+1+1|)

−
b−2∑

even z=1

`∗jz+1 · 1 (jz+1 ∈ E(80)) · tax1,jz(jz+1).

Using the definition of `∗ and nice, we have `∗jz+1+1 = 1.1 · `∗jz+1 for all 1 < z < b − 1. This

allows us to get:

num−1∑
i=ia+1

`∗i ≤ 105 ·
num−1∑
i=ia+1

corri + 1.12 · `∗j1+1 · Gj1(j2)

+
b−2∑

even z=1

1.12 · `∗jz+1+1 · Gjz+1(jz+2)− 1500 · `∗jz+1+1 · Bjz−1(jz)

+ 6.6`∗jb−2+1 · 1
(
turn(jb) = 0 ∧ b is odd ∧ πAjb‖ψ

A
jb
6= πBjb‖ψ

B
jb

)
· Gjb−2

(jb−1)

−
b−1∑

even z=1

2`∗jz+1 · (|πjz+1| − |πjz+1+1|)

−
b−2∑

even z=1

0.9 · `∗jz+1+1 · 1 (jz+1 ∈ E(80)) · tax1,jz(jz+1).

136

Next, we note by the definition of nice that jz+1 ∈ E(80) for all even z ≤ b− 2. We get:

num−1∑
i=ia+1

`∗i ≤ 105 ·
num−1∑
i=ia+1

corri + 1.12 · `∗j1+1 · Gj1(j2)

+
b−2∑

even z=1

`∗jz+1+1 ·
(
1.12 · Gjz+1(jz+2)− 1500 · Bjz−1(jz)− 0.9 · tax1,jz(jz+1)

)
+ 6.6`∗jb−2+1 · 1

(
turn(jb) = 0 ∧ b is odd ∧ πAjb‖ψ

A
jb
6= πBjb‖ψ

B
jb

)
· Gjb−2

(jb−1)

−
b−1∑

even z=1

2`∗jz+1 · (|πjz+1| − |πjz+1+1|).

Now, note that

`∗jb−2+1 · 1
(
turn(jb) = 0 ∧ b is odd ∧ πAjb‖ψ

A
jb
6= πBjb‖ψ

B
jb

)
· Gjb−2

(jb−1)

≤ `∗j1+1 · 1
(
turn(j3) = 0 ∧ b = 3 ∧ πAj3‖ψ

A
j3
6= πBj3‖ψ

B
j3

)
· Gj1(j2)

+
b−2∑

even z=1

`∗jz+1+1 · Gjz+1(jz+2).

Indeed, either b is even, in which case the left hand side is 0 and there is nothing to show,

or b = 3, in which case `∗jb−2+1 ·1
(
turn(jb) = 0 ∧ b is odd ∧ πAjb‖ψ

A
jb
6= πBjb‖ψ

B
jb

)
·Gjb−2

(jb−1) =

`∗j1+1 ·1
(
turn(j3) = 0 ∧ πAj3‖ψ

A
j3
6= πBj3‖ψ

B
j3

)
·Gj1(j2) and we are done or b > 3 is odd, in which

case the inequality follows by substituting z = b− 3 in the right hand side. This gives:

num−1∑
i=ia+1

`∗i ≤ 105 ·
num−1∑
i=ia+1

corri + 1.12 · `∗j1+1 · Gj1(j2)

+
b−2∑

even z=1

`∗jz+1+1 ·
(
8 · Gjz+1(jz+2)− 1500 · Bjz−1(jz)− 0.9 · tax1,jz(jz+1)

)
+ 6.6 · `∗j1+1 · 1

(
turn(j3) = 0 ∧ b = 3 ∧ πAj3‖ψ

A
j3
6= πBj3‖ψ

B
j3

)
· Gj1(j2)

−
b−1∑

even z=1

2`∗jz+1 · (|πjz+1| − |πjz+1+1|).

In order to continue, we apply the Lemma 6.59 on jz−1, jz, and jz+1 for even z ≤ b−2. Note

that the conditions in Lemma 6.59 are satisfied due to the definition of nice. We get:

num−1∑
i=ia+1

`∗i ≤ 105 ·
num−1∑
i=ia+1

corri + 1.12 · `∗j1+1 · Gj1(j2)

+
b−2∑

even z=1

`∗jz+1+1 ·
(
8 · Gjz+1(jz+2)− 45 ·

(
|πjz+1| − |πjz+1+1|

))
+ 6.6 · `∗j1+1 · 1

(
turn(j3) = 0 ∧ b = 3 ∧ πAj3‖ψ

A
j3
6= πBj3‖ψ

B
j3

)
· Gj1(j2)

137

−
b−1∑

even z=1

2`∗jz+1 · (|πjz+1| − |πjz+1+1|).

Next, note by the definition of G that, for even z ≤ b− 2, we have Gjz+1(jz+2) ≤ |πjz+2+1| −
|πjz+1+1|. Applying Lemma 6.15, gives us |πjz+1+1| = minj′∈[jz :Stop(jz+1)]\{num}|πj′+1| ≤
minj′∈[jz :jz+2]|πj′+1| by the definition of nice. Combining, we get Gjz+1(jz+2) ≤ |πjz+2+1| +
minj′∈[jz :jz+2]|πj′+1| − 2 · |πjz+1+1| which with Lemma 6.11 gives Gjz+1(jz+2) ≤ 2 ·(
|πjz+1| − |πjz+1+1|

)
. Plugging in, we get:

num−1∑
i=ia+1

`∗i ≤ 105 ·
num−1∑
i=ia+1

corri + 1.12 · `∗j1+1 · Gj1(j2)

+ 6.6 · `∗j1+1 · 1
(
turn(j3) = 0 ∧ b = 3 ∧ πAj3‖ψ

A
j3
6= πBj3‖ψ

B
j3

)
· Gj1(j2)

−
b−1∑

even z=1

2`∗jz+1 · (|πjz+1| − |πjz+1+1|).

Observe that, if b = 2, then the last term is 0. Otherwise, if b > 2, we have by the definition

of nice and Lemma 6.13 that, for all even z ≤ b − 1, it holds that |πjz+1| ≥ |πjz+1+1|. This

gives (using `∗j2+1 > `∗j1+1 if b > 2):

num−1∑
i=ia+1

`∗i ≤ 105 ·
num−1∑
i=ia+1

corri + 1.12 · `∗j1+1 · Gj1(j2)− 2 · 1(b > 2) · `∗j1+1 · (|πj2+1| − |πj3+1|)

+ 6.6 · `∗j1+1 · 1
(
turn(j3) = 0 ∧ b = 3 ∧ πAj3‖ψ

A
j3
6= πBj3‖ψ

B
j3

)
· Gj1(j2).

(55)

We now show the following claims:

Claim 6.81. If b > 2, then for C ∈ {A,B}, we have πCj2+1[1 : |πj3+1|] = πCnum[1 : |πj3+1|].

Proof. As the parties only add/remove one symbol from π in every iteration, it is sufficient

to show that |πj3+1| ≤ |πj′+1| for all j′ ∈ [j2 : num). This follows from Lemma 6.13 if b = 3

and Lemma 6.15 if b > 3.

Claim 6.82. 1.12 · Gj1(j2)− 2 · 1(b > 2) · (|πj2+1| − |πj3+1|) ≤ 1.12 · |LCP
(
πAnum, π

B
num

)
|.

Proof. If b = 2, then by Claim 6.79, we have j2 = num − 1 and we get from the definition

of G(·) that 1.12 · Gj1(j2) = 1.12 · |LCP(πAnum(|πj1+1| : |πnum|], πBnum(|πj1+1| : |πnum|])| =

1.12 · |LCP(πAnum, π
B
num)| as j1 = ia =⇒ |πj1+1| = 0. Otherwise, we have b > 2 and we

derive:

1.12 · Gj1(j2)− 2 · (|πj2+1| − |πj3+1|)
≤ 1.12 · Gj1(j2)− 1.12 · (|πj2+1| − |πj3+1|) (As |πj2+1| ≥ |πj3+1|)
≤ 1.12 · |LCP(πAj2+1(|πj1+1| : |πj2+1|], πBj2+1(|πj1+1| : |πj2+1|])| − 1.12 · (|πj2+1| − |πj3+1|)

(Definition of G(·))

138

≤ 1.12 · |LCP(πAj2+1(|πj1+1| : |πj3+1|], πBj2+1(|πj1+1| : |πj3+1|])| (As |πj2+1| ≥ |πj3+1|)
≤ 1.12 · |LCP(πAj2+1[1 : |πj3+1|], πBj2+1[1 : |πj3+1|])| (As j1 = ia =⇒ |πj1+1| = 0)

≤ 1.12 · |LCP(πAnum[1 : |πj3+1|], πBnum[1 : |πj3+1|])| (Claim 6.81)

≤ 1.12 · |LCP(πAnum, π
B
num)|. (Definition of LCP(·))

Claim 6.83. If b = 3, turn(j3) = 0, and πAj3‖ψ
A
j3
6= πBj3‖ψ

B
j3

, we have Gj1(j2) =

|LCP(πAnum, π
B
num)|.

Proof. By definition of nice and Claim 6.79, we have j3 = num − 1 and |Rj3| is even. Due

to the latter, we have by the definition of turn(·) that ψAj3‖σ
A
j3

= ψBj3‖σ
B
j3

. This together with

item 5 of Fact 6.5 gives us that ψAj3‖π
A
j3

[|πj3|] = ψBj3‖π
B
j3

[|πj3|]. However, as πAj3‖ψ
A
j3
6= πBj3‖ψ

B
j3

,

this is only possible if πAj3 [1 : |πj3|) 6= πBj3 [1 : |πj3|) which using item 5 of Fact 6.5 and

j3 = num − 1 means that πAnum 6= πBnum, which when combined with Claim 6.81 gives

πAj2+1[1 : |πnum|] 6= πBj2+1[1 : |πnum|] implying that

Gj1(j2) = |LCP(πAj2+1(|πj1+1| : |πj2+1|], πBj2+1(|πj1+1| : |πj2+1|])|
= |LCP(πAj2+1, π

B
j2+1)| (As j1 = ia =⇒ |πj1+1| = 0)

= |LCP(πAj2+1[1 : |πnum|], πBj2+1[1 : |πnum|])| (As πAj2+1[1 : |πnum|] 6= πBj2+1[1 : |πnum|])
= |LCP(πAnum, π

B
num)|. (Claim 6.81 and j3 = num− 1)

Plugging in Claim 6.82 and Claim 6.83 into Equation 55, we get:

num−1∑
i=ia+1

`∗i ≤ 105 ·
num−1∑
i=ia+1

corrj′ + 8 · `∗j1+1 · |LCP
(
πAnum, π

B
num

)
|,

and Equation 54 follows as j1 = ia =⇒ `∗j1+1 = `∗1 by definition of `∗.

6.3 Proof of Theorem 6.2

This section is dedicated to proving Theorem 6.2. We will need the following definition

Definition 6.84. For C ∈ {A,B}, i ∈ [R/(P + 1) + 1], and j ∈ [|SCi |], define the value

lastCi (j) as:

lastCi (j) = max{j′ ∈ [i] | |SCj′ | = j and j′ − 1 ∈ {0} ∪ EC(52)}.

As the value of |SC | increases by at most 1 in every iteration, and increases only when

party C executes Line 52, we have that the max(·) in the definition above is always over a

non-empty set, and is thus, well defined. We will omit the subscript i when i = R/(P+1)+1.

Some properties of the function lastCi (·) are captured in the following lemma.

139

Lemma 6.85. It holds for all C ∈ {A,B} that:

1. For all i ∈ [R/(P + 1) + 1] and all j < j′ ∈ [|SCi |], we have lastCi (j) < lastCi (j′).

2. For all i′ ≤ i ∈ [R/(P + 1) + 1] and all j ∈ [|SCi |] such that i′ ≥ lastCi (j), we have

|SCi′ | ≥ j and SCi′ [j] = SClastCi (j)
[j].

3. For all i ∈ [R/(P + 1)] and all j ∈ [min(|SCi |, |SCi+1|)], we have lastCi (j) = lastCi+1(j).

4. For all i ∈ [R/(P + 1) + 1] and all 1 ≤ j < |SCi |, we have SClastCi (j)
= SClastCi (j+1)−1

.

5. For all i ∈ [R/(P + 1) + 1], we have SCi .last = SClastCi (|SCi |)
.last.

Proof. We have that:

1. By Definition 6.84, we have that |SClastCi (j)
| = j. Under the conditions of the lemma, this

extends to j = |SClastCi (j)
| < j′ ≤ |SCi |. As |SC | increases by at most 1 in every iteration,

and increases only if party C executes Line 52, |SClastCi (j)
| < j′ ≤ |SCi | implies that there

is an iteration i′ such that lastCi (j) < i′ ≤ i such that |SCi′ | = j′ and i′ − 1 ∈ EC(52).

In particular we get that lastCi (j′) ≥ i′ > lastCi (j).

2. We first show that |SCi′ | ≥ j by contradiction. Suppose that |SCi′ | < j. Under the

conditions of the lemma, this extends to |SCi′ | < j ≤ |SCi |. As |SC | increases by at most

1 in every iteration, and increases only if party C executes Line 52, |SCi′ | < j ≤ |SCi |
implies that there is an iteration i′ < i′′ ≤ i such that |SCi′′ | = j and i′′ − 1 ∈ EC(52).

As lastCi (j) ≤ i′, this contradicts Definition 6.84.

We now show that SCi′ [j] = SClastCi (j)
[j]. Suppose not. Observe that, in our protocol, the

only way the parties can change the jth entry in S is by removing it in one iteration

and adding a different one in a subsequent iteration. Thus, SCi′ [j] = SClastCi (j)
[j] and

i′ ≥ lastCi (j) implies that there is an iteration lastCi (j) < i′′ ≤ i′ ≤ i such that |SCi′′ | = j

and i′′ − 1 ∈ EC(52). However, this contradicts Definition 6.84.

3. We observe from Definition 6.84 that, if lastCi (j) 6= lastCi+1(j) for some j, then,

lastCi+1(j) = i + 1 and therefore i ∈ EC(52) and j = |SCi+1| = |SCi | + 1. In particular,

j /∈ [min(|SCi |, |SCi+1|)] = [|SCi |] and we have a contradiction.

4. We first show that |SClastCi (j)
| = |SClastCi (j+1)−1

| = j. Indeed, |SClastCi (j)
| = j is

straightforward by Definition 6.84. Also, by Definition 6.84 and the fact that j ≥ 1,

we get that |SClastCi (j+1)
| = j + 1 and lastCi (j + 1) − 1 ∈ EC(52). Together, this gives

|SClastCi (j+1)−1
| = |SClastCi (j+1)

| − 1 = j as desired.

We now show that, for all j′ ∈ [j], we have that SClastCi (j)
[j′] = SClastCi (j+1)−1

[j′]. Let

j′ ∈ [j]. As j′ ≤ j < j+1, we have by item 1 that lastCi (j′) ≤ lastCi (j) < lastCi (j+1) =⇒

140

lastCi (j′) ≤ lastCi (j) ≤ lastCi (j + 1) − 1 as all quantities are integers. By item 2, this

gives:

SClastCi (j)
[j′] = SClastCi (j′)[j

′] = SClastCi (j+1)−1
[j′],

as desired.

5. By item 2, we get SCi .last = SCi [|SCi |] = SClastCi (|SCi |)
[|SCi |]. Due to Definition 6.84, we

have |SClastCi (|SCi |)
| = |SCi | and can extend to SCi .last = SClastCi (|SCi |)

.last.

With Definition 6.84 and Lemma 6.85, we can now prove Theorem 6.2.

Proof of Theorem 6.2. To start, observe that if A′ is such that ∀C ∈ {A,B} : Π′CA′(x
A, xB) =

ΠC(xA, xB), then we can setA′′ to be the adversary that does not corrupt any of the messages

by any of the parties. When the protocol Π′ is run with A′′, the parties execute Line 52

for the first S
1100KP

iterations (our choice of parameters ensures that S
1100KP

is an integer),

and exchange ⊥s afterwards. This, taking the adversary A′′ and setting num = S
1100KP

+ 1

satisfies all the requirements of Theorem 6.2.

We can therefore, assume that ∃C ∈ {A,B} : Π′CA′(x
A, xB) 6= ΠC(xA, xB). We assume

that C = A without loss of generality. We define:

Definition 6.86. We define Sync to be the set containing all j ∈ [min
(
|SA|, |SB|

)
] such

that lastA(j) = lastB(j) and we have

(PA
lastA(j)

, |SAlastA(j)
|) = (PB

lastB(j)
, |SBlastB(j)

|).

Observe that 1 ∈ Sync. Let M = max(Sync) denote the largest element in Sync. Note

that M ≤ min
(
|SA|, |SB|

)
. For 1 ≤ j < M and C ∈ {A,B}, define,

lo(j) = max{j′ ∈ Sync | j′ ≤ j}.
hi(j) = min{j′ ∈ Sync | j′ > j}.

tipC(j) =

hi(j) , |RC
lastC(hi(j))

| is odd

1 + max{lo(j) ≤ j′ < hi(j) | |RC
lastC(j′)

| is odd} , |RC
lastC(hi(j))

| is even
.

If the max in the definition of tip(·) is over an empty set, we define tipC(j) = lo(j). As

1,M ∈ Sync, both lo(j) and hi(j) are well defined for all 1 ≤ j < M and lo(j) < hi(j).

Claim 6.87. Let C ∈ {A,B}. For all 1 ≤ j < M and tipC(j) ≤ j′ ≤ hi(j), we have:

|ψC
lastC(j′)

| = |ψC
lastC(hi(j))

|+ j′ − hi(j).

Proof. Proof by backwards induction on j′. The base case j′ = hi(j) is trivial. We show the

statement holds for tipC(j) ≤ j′ < hi(j) by assuming it holds for j′ + 1. As we assume

141

that tipC(j) < hi(j), we have by the definition of tip(·) that |RC
lastC(j′′)

| is even for all

j′′ ∈ [tipC(j) : hi(j)].

In particular, we get that |RC
lastC(j′)

| and |RC
lastC(j′+1)

| are both even. Applying item 4 of

Lemma 6.85, we get that |RC
lastC(j′+1)−1

| and |RC
lastC(j′+1)

| are both even. As lastC(j′+1)−1 ∈
EC(52) by Definition 6.84, we get from the fact that |RC

lastC(j′+1)−1
| and |RC

lastC(j′+1)
| are both

even that |ψC
lastC(j′+1)

| = |ψC
lastC(j′+1)−1

|+ 1. This gives:

|ψC
lastC(j′)

| = |ψC
lastC(j′+1)−1

| (Lemma 6.85, item 4)

= |ψC
lastC(j′+1)

| − 1 (As |ψC
lastC(j′+1)

| = |ψC
lastC(j′+1)−1

|+ 1)

= |ψC
lastC(hi(j))

| − hi(j) + j′ + 1− 1 (Induction hypothesis)

= |ψC
lastC(hi(j))

| − hi(j) + j′,

and the result follows.

Claim 6.88. Let C ∈ {A,B}. For all 1 ≤ j < M such that |RC
lastC(hi(j))

| is even and

tipC(j) > lo(j), we have:

|ψC
lastC(tipC(j))

| = 0.

Proof. Under the assumptions of the lemma, we have by the definition of tip(·) that

|RC
lastC(tipC(j)−1)

| is odd and |RC
lastC(tipC(j))

| is even. Applying item 4 of Lemma 6.85, we

get that |RC
lastC(tipC(j))−1

| is odd and |RC
lastC(tipC(j))

| is even. As lastC(tipC(j))− 1 ∈ EC(52) by

Definition 6.84, we get from the fact that |RC
lastC(tipC(j))−1

| is odd and |RC
lastC(tipC(j))

| is even

that |ψC
lastC(tipC(j))

| = 0 as desired.

Corollary 6.89. For all 1 ≤ j < M , we have tipA(j) = tipB(j).

Proof. Suppose first that there exists a C ∈ {A,B} such that |RC
lastC(hi(j))

| is odd. In this

case, as hi(j) ∈ Sync by definition, we have from Definition 6.86 that |RC
lastC(hi(j))

| is odd for

all C ∈ {A,B} as well implying that tipA(j) = tipB(j) = hi(j).

For the rest of the proof, we assume that |RC
lastC(hi(j))

| is even for all C ∈ {A,B}. Suppose

for the sake of contradiction that tipA(j) 6= tipB(j) and assume without loss of generality

that tipA(j) < tipB(j). As lo(j) ≤ tipA(j), we get:

|ψB
lastB(hi(j))

| = |ψB
lastB(tipB(j))

|+ hi(j)− tipB(j) (Claim 6.87)

= hi(j)− tipB(j) (Claim 6.88)

< |ψA
lastA(tipB(j)−1)

|+ hi(j)− tipB(j) + 1

≤ |ψA
lastA(hi(j))

| (Claim 6.87)

= |ψB
lastB(hi(j))

|, (As hi(j) ∈ Sync and Definition 6.86)

a contradiction.

142

Owing to Corollary 6.89, we henceforth omit the superscript C in tipC(·) and simply

write tip(j). We also note that:

Claim 6.90. If 1 ≤ j < M and j /∈ Sync, then we have lo(j) = lo(j−1) and hi(j) = hi(j−1)

and tip(j) = tip(j − 1).

Proof. Note that j /∈ Sync implies that j > 1. The first two follow straightforwardly from

the definitions. For the third, note that tip(j) is determined by lo(j) and hi(j) and therefore

tip(j) = tip(j − 1).

Claim 6.91. For all 1 ≤ j < M and all tip(j) ≤ j′ ≤ hi(j), the following hold:

1. For C ∈ {A,B}, we have:

∃j′′ ∈ (tip(j) : j′] : lastC(j′′)− 1 ∈ EC(90) =⇒ RC
lastC(j′)

.last.t > 0.

2. We have:(
RA

lastA(j′)
.last, |πA

lastA(j′)
|, |ψA

lastA(j′)
|
)

=
(
RB

lastB(j′)
.last, |πB

lastB(j′)
|, |ψB

lastB(j′)
|
)
.

3. For C ∈ {A,B}, we have:

∃j′′ ∈ (tip(j) : j′] : lastC(j′′)− 1 ∈ EC(90)

=⇒ RC
lastC(j′)

.last.t = RC
lastC(hi(j))

.last.t

=⇒ @j′′ ∈ (j′ : hi(j)] : lastC(j′′)− 1 ∈ EC(90).

4. For C ∈ {A,B}, we have RC
lastC(j′)

.last.α = RC
lastC(hi(j))

.last.α and

RC
lastC(j′)

.last.β =

� ,RC
lastC(j′)

.last.t 6= RC
lastC(hi(j))

.last.t

RC
lastC(hi(j))

.last.β ,RC
lastC(j′)

.last.t = RC
lastC(hi(j))

.last.t
.

Proof. Suppose first that tip(j) = hi(j). In this case, we also have tip(j) = j′ = hi(j) and

the claim is straightforward due to Definition 6.86 as hi(j) ∈ Sync. So assume throughout

that tip(j) < hi(j). By the definition of tip(·), this means that |RC
lastC(j′′)

| is even for all

j′′ ∈ [tip(j) : hi(j)] and all C ∈ {A,B}.
It follows that, for all j′′ ∈ (tip(j) : hi(j)] and all C ∈ {A,B}, we have that |RC

lastC(j′′−1)
|

and |RC
lastC(j′′)

| are both even. Due to item 4 of Lemma 6.85, this means that |RC
lastC(j′′)−1

|
and |RC

lastC(j′′)
| are both even. As lastC(j′′) − 1 ∈ EC(52) by Definition 6.84, this is only

possible if lastC(j′′)− 1 ∈ EC(87) for all j′′ ∈ (tip(j) : hi(j)].

For item 1, we proceed by induction on j′. The base case j′ = tip(j) is trivial. We show

the claim for j′ ∈ (tip(j) : hi(j)] by assuming it holds for j′− 1. Let C ∈ {A,B}. We showed

that lastC(j′)− 1 ∈ EC(87). If lastC(j′)− 1 /∈ EC(90), we derive:

∃j′′ ∈ (tip(j) : j′] : lastC(j′′)− 1 ∈ EC(90)

143

=⇒ ∃j′′ ∈ (tip(j) : j′) : lastC(j′′)− 1 ∈ EC(90)

=⇒ RC
lastC(j′−1)

.last.t > 0 (Induction hypothesis)

=⇒ RC
lastC(j′)−1

.last.t > 0 (Lemma 6.85, item 4)

=⇒ RC
lastC(j′)

.last.t > 0. (As lastC(j′)− 1 ∈ EC(87) \ EC(90))

Otherwise, if lastC(j′)−1 ∈ EC(90), we get that RC
lastC(j′)

.last.t > 0 by Line 90 and the proof

is complete.

For the remaining parts, we proceed by backwards induction on j′. The base case

j′ = hi(j) is straightforward due to Definition 6.86 as hi(j) ∈ Sync. We show the

statement holds for tip(j) ≤ j′ < hi(j) by assuming it holds for j′ + 1. Recall that

lastC(j′ + 1)− 1 ∈ EC(87). We have:

1. The fact that lastC(j′ + 1) − 1 ∈ EC(87) implies that for C ∈ {A,B}, the tuple(
RC

lastC(j′+1)
.last, |πC

lastC(j′+1)
|, |ψC

lastC(j′+1)
|
)

completely

determines the tuple
(
RC

lastC(j′+1)−1
.last, |πC

lastC(j′+1)−1
|, |ψC

lastC(j′+1)−1
|
)

for C ∈ {A,B}.

Thus, our induction hypothesis that
(
RA

lastA(j′+1)
.last, |πA

lastA(j′+1)
|, |ψA

lastA(j′+1)
|
)

=(
RB

lastB(j′+1)
.last, |πB

lastB(j′+1)
|, |ψB

lastB(j′+1)
|
)

implies(
RA

lastA(j′+1)−1
.last, |πA

lastA(j′+1)−1
|, |ψA

lastA(j′+1)−1
|
)

=
(
RB

lastB(j′+1)−1
.last, |πB

lastB(j′+1)−1
|, |ψB

lastB(j′+1)−1
|
)
,

which using item 4 of Lemma 6.85 implies that(
RA

lastA(j′)
.last, |πA

lastA(j′)
|, |ψA

lastA(j′)
|
)

=
(
RB

lastB(j′)
.last, |πB

lastB(j′)
|, |ψB

lastB(j′)
|
)
,

2. If lastC(j′ + 1) − 1 /∈ EC(90), then we have RC
lastC(j′+1)

.last.t = RC
lastC(j′+1)−1

.last.t =

RC
lastC(j′)

.last.t by item 4 of Lemma 6.85 implying that:

∃j′′ ∈ (tip(j) : j′] : lastC(j′′)− 1 ∈ EC(90)

⇐⇒ ∃j′′ ∈ (tip(j) : j′ + 1] : lastC(j′′)− 1 ∈ EC(90),

RC
lastC(j′)

.last.t = RC
lastC(hi(j))

.last.t

⇐⇒ RC
lastC(j′+1)

.last.t = RC
lastC(hi(j))

.last.t,

@j′′ ∈ (j′ : hi(j)] : lastC(j′′)− 1 ∈ EC(90)

⇐⇒ @j′′ ∈ (j′ + 1 : hi(j)] : lastC(j′′)− 1 ∈ EC(90).

and the claim follows easily from the induction hypothesis. On the other hand, if

lastC(j′ + 1) − 1 ∈ EC(90), then by Line 90, we have RC
lastC(j′+1)−1

.last.t = 0 =

RC
lastC(j′)

.last.t by item 4 of Lemma 6.85. By item 1, we get @j′′ ∈ (tip(j) : j′] :

144

lastC(j′′)− 1 ∈ EC(90).

This means that it is sufficient to show that RC
lastC(j′)

.last.t 6= RC
lastC(hi(j))

.last.t. If not,

then we have RC
lastC(hi(j))

.last.t = 0 =⇒ RC
lastC(j′+1)

.last.t 6= RC
lastC(hi(j))

.last.t. By the

induction hypothesis, this means that @j′′ ∈ (tip(j) : j′ + 1] : lastC(j′′)− 1 ∈ EC(90), a

contradiction to the assumption that lastC(j′ + 1)− 1 ∈ EC(90).

3. As lastC(j′ + 1)− 1 ∈ EC(87) for C ∈ {A,B}, we have that

RC
lastC(j′)

.last.α = RC
lastC(j′+1)−1

.last.α (Lemma 6.85, item 4)

= RC
lastC(j′+1)

.last.α

= RC
lastC(hi(j))

.last.α. (Induction hypothesis)

If lastC(j′ + 1) − 1 /∈ EC(90), we get
(
RC

lastC(j′+1)−1
.last.t,RC

lastC(j′+1)−1
.last.β

)
=(

RC
lastC(j′+1)

.last.t,RC
lastC(j′+1)

.last.β
)

implying that

RC
lastC(j′)

.last.β = RC
lastC(j′+1)−1

.last.β (Lemma 6.85, item 4)

= RC
lastC(j′+1)

.last.β

=

� ,RC
lastC(j′+1)

.last.t 6= RC
lastC(hi(j))

.last.t

RC
lastC(hi(j))

.last.β ,RC
lastC(j′+1)

.last.t = RC
lastC(hi(j))

.last.t
.

(Induction hypothesis)

The proof is done as we have RC
lastC(j′+1)

.last.t = RC
lastC(j′+1)−1

.last.t = RC
lastC(j′)

.last.t

by item 4 of Lemma 6.85. On the other hand, if lastC(j′ + 1) − 1 ∈ EC(90), then

we have by Line 90 and item 3 that 0 = RC
lastC(j′+1)−1

.last.t 6= RC
lastC(j′+1)

.last.t =

RC
lastC(hi(j))

.last.t by the induction hypothesis. As RC
lastC(j′+1)−1

.last.t = RC
lastC(j′)

.last.t

by item 4 of Lemma 6.85, this means that it is sufficient to show that RC
lastC(j′)

.last.β =

�. The latter is because

RC
lastC(j′)

.last.β = RC
lastC(j′+1)−1

.last.β (Lemma 6.85, item 4)

= �. (As RC
lastC(j′+1)−1

.last.t = 0)

Next, for 1 ≤ j < |SA|, define the set:

boss(j) =


{A,B} , {j, j + 1} ⊆ Sync

{A} ,M ≤ j < |SA|
{arg minC∈{A,B}mink∈[lo(j):tip(j)]|πClastC(k)

|} , {j, j + 1} 6⊆ Sync ∧ 1 ≤ j < M

,

where the ties in arg min are broken arbitrarily. Note that boss(j) is well defined as

145

j + 1 ∈ Sync =⇒ j < M and therefore, the three cases are disjoint. Also, observe

that boss(j) is singleton except when {j, j + 1} ⊆ Sync. Define boss(j) = {A,B} \ boss(j).
We have:

Claim 6.92. For all 1 ≤ j < |SA| and C ∈ boss(j), we have j < |SC |.

Proof. For j < M , we simply derive j < M ≤ min
(
|SA|, |SB|

)
≤ |SC |. Otherwise, we have

j ≥M =⇒ boss(j) = {A} and the claim follows easily.

Claim 6.93. For all 1 ≤ j < |SA|, we have:

j /∈ Sync =⇒ boss(j) = boss(j − 1).

Proof. Suppose that j /∈ Sync implying in particular that j 6= M . If M < j, then M ≤ j−1,

and therefore boss(j) = boss(j − 1) = {A}. On the other hand if j < M , then j /∈ Sync

implies due to Claim 6.90 that lo(j) = lo(j − 1) and tip(j) = tip(j − 1). We have

boss(j) = {arg min
C∈{A,B}

min
k∈[lo(j):tip(j)]

|πC
lastC(k)

|}

= {arg min
C∈{A,B}

min
k∈[lo(j−1):tip(j−1)]

|πC
lastC(k)

|} = boss(j − 1),

as desired.

We are now ready to define the adversary A′′ that along with num = |SA| shows

Theorem 6.2. To define A′′, we need to define a pair of functions (A′′A,A′′B) where

A′′A,A′′B : XA × XB → (Σ∗)R. We shall only define these functions for the pair of

inputs (xA, xB) as this partial definition is all that is needed for Theorem 6.2. We first

define the values of A′′A≤(num−1)(P+1)(x
A, xB) and A′′B≤(num−1)(P+1)(x

A, xB). We do this in

num− 1 steps and after step j, for j ∈ [num− 1], we would have defined A′′A≤j(P+1)(x
A, xB)

and A′′B≤j(P+1)(x
A, xB). This partial definition is sufficient to determine the values of the

variables PC
j′ (A′′),QC

j′ (A′′),S
C
j′(A′′) for C ∈ {A,B} and j′ ∈ [j + 1] and whether or not

[j] ⊆ EA(A′′, 52) ∩ EB(A′′, 52). We will maintain:

Lemma 6.94. We have that:

1. For all j′ ∈ [j] and C ∈ boss(j′), we have SCj′+1(A′′).last = SClastC(j′+1)
.last.

2. The set [j] ⊆ EA(A′′, 52) ∩ EB(A′′, 52) and for all j′ ∈ [j + 1], we have

QA
j′(A′′) = QB

j′ (A′′) and |SAj′(A′′)| = |SBj′(A′′)| = j′.

3. If 1 ≤ j < M , then, for all C ∈ boss(j′), the following hold14:

14As usual, C denotes the unique element in {A,B} that is different from C.

146

(a) If j < tip(j), then

πCj+1(A′′)
[
1 : min

j′∈(j:tip(j)]
|πC

lastC(j′)
|
]

= πC
lastC(tip(j))

[
1 : min

j′∈(j:tip(j)]
|πC

lastC(j′)
|
]
.

(b) If j + 1 ≥ tip(j), then(
R ′Cj+1(A′′).last, πCj+1(A′′), ψCj+1(A′′)

)
=
(
R ′C

lastC(j+1)
.last, πC

lastC(j+1)
, ψC

lastC(j+1)

)
.

Furthermore, we have RC
j+1(A′′).last.α = RC

lastC(hi(j))
.last.α and

RC
j+1(A′′).last.β =

� ,RC
j+1(A′′).last.t 6= RC

lastC(hi(j))
.last.t

RC
lastC(hi(j))

.last.β ,RC
j+1(A′′).last.t = RC

lastC(hi(j))
.last.t

.

4. For j′ ∈ [j + 1] ∩ Sync and all C ∈ {A,B}, we have SCj′(A′′).last = SClastC(j′).last.

The definitions of A′′A≤0(xA, xB) and A′′B≤0(xA, xB) are trivial and they satisfy Lemma 6.94

trivially. Assume that, for some 1 ≤ j < |SA|, the values of A′′A≤(j−1)(P+1)(x
A, xB) and

A′′B≤(j−1)(P+1)(x
A, xB) have been defined and they satisfy Lemma 6.94. We now define the

values of A′′A(j−1)(P+1)+j′(x
A, xB) and A′′B(j−1)(P+1)+j′(x

A, xB) for j′ ∈ [P + 1] and show that

Lemma 6.94 holds also for A′′A≤j(P+1)(x
A, xB) and A′′B≤j(P+1)(x

A, xB).

As A′′Cj(P+1)(x
A, xB) =

(
P̃C

j (A′′), |S̃Cj (A′′)|, Γ̃Cj (A′′)
)

for C ∈ {A,B} we need to define,

for C ∈ {A,B}, the values of P̃C
j (A′′), |S̃Cj (A′′)|, Γ̃Cj (A′′), and A′′C(j−1)(P+1)+j′(x

A, xB) for

j′ ∈ [P]. For C ∈ {A,B}, we define:

P̃C
j (A′′) = PC

j (A′′) |S̃Cj (A′′)| = |SCj (A′′)|. (56)

For C ∈ boss(j), define Γ̃Cj (A′′) = Γ̃C
lastC(j+1)−1

and for j′ ∈ [P],

A′′C(j−1)(P+1)+j′(x
A, xB) = A′C

(lastC(j+1)−2)(P+1)+j′
(xA, xB). (57)

It remains to define the values Γ̃Cj (A′′) and A′′C(j−1)(P+1)+j′(x
A, xB) for j′ ∈ [P] and C ∈

boss(j). For this, consider the following cases:

• 1 ≤ j < M : If there exists a z < tip(j) such that |πCj (A′′)| = |πC
lastC(z+1)−1

| and

|RC
lastC(z+1)−1

| is odd, then, denoting by z the largest such value, define, for j′ ∈ [P]:

A′′C(j−1)(P+1)+j′(x
A, xB) = A′C

(lastC(z+1)−2)(P+1)+j′
(xA, xB). (58)

If no such z exists, define A′′C(j−1)(P+1)+j′(x
A, xB) = ⊥ for all j′ ∈ [P].

• M ≤ j < |SA|: Define A′′C(j−1)(P+1)+j′(x
A, xB) = ⊥ for j′ ∈ [P].

It remains to define the value of Γ̃Cj (A′′) for C ∈ boss(j). Before defining this, we note

that having defined A′′C(j−1)(P+1)+j′(x
A, xB) for j′ ∈ [P] and C ∈ {A,B}, we have also defined

147

the value of ΓCj (A′′) for C ∈ {A,B}. Also, as boss(j) is always non-empty, we have also

defined the value of Γ̃Cj (A′′) where C denotes the unique element in {A,B} that is different

from C. If ΓCj (A′′) = Γ̃Cj (A′′), we define:

Γ̃Cj (A′′) = ΓCj (A′′). (59)

Otherwise, let h be the smallest such that ΓCj,h(A′′) 6= Γ̃Cj,h(A′′). Define:

Γ̃Cj (A′′) =

ΓCj (A′′)|
h←ΓCj,h(A′′) ,ΓCj,h(A′′) = Γ̃Cj,h(A′′)

ΓCj (A′′)|
h←Γ̃Cj,h(A′′) ,ΓCj,h(A′′) 6= Γ̃Cj,h(A′′)

. (60)

In the above definition, ΓCj (A′′)|h←γ denotes ΓCj (A′′) with coordinate h set to γ. In order to

show that these definitions satisfy Lemma 6.94, we will need the following claims:

Claim 6.95. We have for all C ∈ boss(j) that

SCj (A′′).last = SClastC(j+1)−1
.last and |SClastC(j+1)−1

| = j.

Proof. Note by Claim 6.92 that j < |SC |. This means that we can apply item 4 of

Lemma 6.85 on boss(j) to get SClastC(j)
= SClastC(j+1)−1

.

From Definition 6.84, we immediately get that |SClastC(j)
| = |SClastC(j+1)−1

| = j and the

second part of the claim holds. Moreover, due to the foregoing equality it is sufficient

to show that SCj (A′′).last = SClastC(j)
.last in order to show the first part of the claim. If

j ∈ Sync, this follows from item 4 of the induction hypothesis of Lemma 6.94. Otherwise,

we have j /∈ Sync implying in particular that j > 1 and C ∈ boss(j − 1) by Claim 6.93. We

have by item 1 of the induction hypothesis of Lemma 6.94 that SCj (A′′).last = SClastC(j)
.last,

as desired.

Claim 6.96. We have for all C ∈ boss(j) and j′ ∈ [P + 1] that:

A′′C(j−1)(P+1)+j′(x
A, xB) = A′C

(lastC(j+1)−2)(P+1)+j′
(xA, xB).

Proof. For j′ ∈ [P], this simply follows from Equation 57. For j′ = P + 1, we have

A′′Cj(P+1)(x
A, xB) =

(
P̃C

j (A′′), |S̃Cj (A′′)|, Γ̃Cj (A′′)
)

=
(
PC

j (A′′), |SCj (A′′)|, Γ̃Cj (A′′)
)

(Equation 56)

=
(
PC

j (A′′), |SCj (A′′)|, Γ̃C
lastC(j+1)−1

)
(As Γ̃Cj (A′′) = Γ̃C

lastC(j+1)−1
)

=
(
PC

j (A′′), j, Γ̃C
lastC(j+1)−1

)
(Induction hypothesis Lemma 6.94, item 2)

=
(
PC

lastC(j+1)−1
, |SClastC(j+1)−1

|, Γ̃C
lastC(j+1)−1

)
. (Claim 6.95)

148

By Definition 6.84 and the fact that j ≥ 1, we get that lastC(j+1)−1 ∈ EC(52). This gives:

A′′Cj(P+1)(x
A, xB) =

(
PC

lastC(j+1)−1
, |SClastC(j+1)−1

|, Γ̃C
lastC(j+1)−1

)
=
(
P̃C

lastC(j+1)−1
, |S̃ClastC(j+1)−1|, Γ̃ClastC(j+1)−1

)
(Line 52)

= A′C
(lastC(j+1)−1)(P+1)

.

Claim 6.97. If {j, j + 1} 6⊆ Sync, we have ΓAj (A′′) = Γ̃Aj (A′′) ⇐⇒ ΓBj (A′′) = Γ̃Bj (A′′).

Proof. Observe from the definition of boss(·) that {j, j + 1} 6⊆ Sync implies that boss(j)

is singleton. Let C be the unique element in boss(j) and C be the unique element not in

boss(j). If ΓCj (A′′) = Γ̃Cj (A′′), we have by Equation 59 that Γ̃Cj (A′′) = ΓCj (A′′) and we

are done. Otherwise, let h be the smallest such that ΓCj,h(A′′) 6= Γ̃Cj,h(A′′). We show that

ΓCj,h(A′′) 6= Γ̃Cj,h(A′′) and the result follows. If ΓCj,h(A′′) = Γ̃Cj,h(A′′), we have by Equation 60

that

Γ̃Cj,h(A′′) = ΓCj,h(A′′) 6= Γ̃Cj,h(A′′) = ΓCj,h(A′′),

as desired. Otherwise, if ΓCj,h(A′′) 6= Γ̃Cj,h(A′′), we have

Γ̃Cj,h(A′′) = Γ̃Cj,h(A′′) 6= ΓCj,h(A′′),

as desired.

We now show that these definitions satisfy Lemma 6.94.

Proof of Lemma 6.94. First, we show item 1 of Lemma 6.94. Due to the induction

hypothesis, it is sufficient to show for all C ∈ boss(j) that

SCj+1(A′′).last = SClastC(j+1)
.last. (61)

To see why Equation 61 holds, note from Claim 6.95 that SCj (A′′).last = SClastC(j+1)−1
.last.

This means that party C starts iteration j in the execution of Π′ with A′′ and iteration

lastC(j + 1)− 1 in the execution of Π′ with A′ with the same values of (R, π, ψ, p). Due to

Claim 6.96, the symbols received by the party C in these two iterations are also the same and

due to Equation 56 and Definition 6.84, party C executes Line 52 in both these iterations.

It follows from Algorithm 4 that SCj+1(A′′).last = SClastC(j+1)
.last.

Next, we show item 2 of Lemma 6.94. Due to the induction hypothesis, it is sufficient to

show that j ∈ EA(A′′, 52) ∩ EB(A′′, 52) and

QA
j+1(A′′) = QB

j+1(A′′) and |SAj+1(A′′)| = |SBj+1(A′′)| = j + 1.

We have j ∈ EA(A′′, 52) ∩ EB(A′′, 52) due to Equation 56. It follows that for C ∈ {A,B},
we have |SCj+1(A′′)| = |SCj (A′′)| + 1 = j + 1 and all that remains to be shown is that

149

QA
j+1(A′′) = QB

j+1(A′′). If {j, j + 1} ⊆ Sync, then boss(j) = {A,B} by the definition of

boss(·). Using the previous part, we get:

QA
j+1(A′′) = QA

lastA(j+1)
(Equation 61)

= QB
lastB(j+1)

(As j + 1 ∈ Sync and Definition 6.86)

= QB
j+1(A′′). (Equation 61)

Now, suppose that {j, j + 1} 6⊆ Sync. Observe from Algorithm 4 that, for j ∈ EA(A′′, 52) ∩
EB(A′′, 52) and C ∈ {A,B}, the value of QC

j+1(A′′) is determined independently of C given

QC
j (A′′) and whether or not ΓCj (A′′) = Γ̃Cj (A′′). Thus, due to Claim 6.97 and the fact that

QA
j (A′′) = QB

j (A′′), we also have QA
j+1(A′′) = QB

j+1(A′′) as desired.

Next, we show item 3 of Lemma 6.94. Observe that this is non-trivial only if 1 ≤ j < M

and boss(j) is non-empty. In turn, as boss(j) is always non-empty by definition, this part

is non-trivial only if boss(j) and boss(j) are singleton, so we assume this throughout. Let

C be the unique element in boss(j) and C be the unique element in boss(j). We first show

item 3a of Lemma 6.94. We start by claiming:

πCj (A′′)
[
1 : min

j′∈[j:tip(j)]
|πC

lastC(j′)
|
]

= πC
lastC(tip(j))

[
1 : min

j′∈[j:tip(j)]
|πC

lastC(j′)
|
]
. (62)

To show Equation 62, we consider two cases. First, we assume that j /∈ Sync implying

in particular that j > 1. Additionally, j /∈ Sync also implies that tip(j − 1) = tip(j) by

Claim 6.90 and boss(j− 1) = boss(j) = {C} by Claim 6.93. In this case, we have by item 3a

of the induction hypothesis of Lemma 6.94 that:

πCj (A′′)
[
1 : min

j′∈[j:tip(j−1)]
|πC

lastC(j′)
|
]

= πC
lastC(tip(j−1))

[
1 : min

j′∈[j:tip(j−1)]
|πC

lastC(j′)
|
]
.

Using tip(j − 1) = tip(j), we get Equation 62, as desired. On the other hand, if j ∈ Sync,

then j = lo(j) by definition and we have by item 4 of the induction hypothesis of Lemma 6.94

that SCj (A′′).last = SClastC(j)
.last =⇒ πCj (A′′) = πC

lastC(j)
. To show Equation 62, we actually

show a stronger statement that, for all j′′ ∈ [j : tip(j)], we have:

πCj (A′′)
[
1 : min

j′∈[j:tip(j)]
|πC

lastC(j′)
|
]

= πC
lastC(j′′)

[
1 : min

j′∈[j:tip(j)]
|πC

lastC(j′)
|
]
.

As πCj (A′′) = πC
lastC(j)

, the foregoing equation clearly holds for j′′ = j. Suppose for the sake

of contradiction that there is a j′′ ∈ (j : tip(j)] such that the foregoing equation does not

hold for j′′. Let j′′ be the smallest such value. We have by our choice of j′′ that

πCj (A′′)
[
1 : min

j′∈[j:tip(j)]
|πC

lastC(j′)
|
]

= πC
lastC(j′′−1)

[
1 : min

j′∈[j:tip(j)]
|πC

lastC(j′)
|
]

6= πC
lastC(j′′)

[
1 : min

j′∈[j:tip(j)]
|πC

lastC(j′)
|
]
.

150

It follows that there is an h ∈ [minj′∈[j:tip(j)]|πC
lastC(j′)

|] such that πC
lastC(j′′−1)

[h] 6= πC
lastC(j′′)

[h].

However, as j = lo(j) and h ∈ [minj′∈[j:tip(j)]|πC
lastC(j′)

|] ⊆ [minj′∈[j:tip(j)]|πClastC(j′)
|] (recall that

boss(j) = {C} and the definition of boss(·)) and lastC(j′′) − 1 ∈ EC(52) by Definition 6.84,

we have

πC
lastC(j′′)

[h] = πC
lastC(j′′)−1

[h] = πC
lastC(j′′−1)

[h],

by item 4 of Lemma 6.85, a contradiction. Next, we show that:

|πCj (A′′)| = |πC
lastC(j)

| and |πCj+1(A′′)| = |πC
lastC(j+1)

|. (63)

Indeed, we have QA
j (A′′) = QB

j (A′′) by item 2 of induction hypothesis of Lemma 6.94

implying that:

|πCj (A′′)| = |πCj (A′′)|

= |πC
lastC(j+1)−1

| (Claim 6.95 and boss(j) = {C})

= |πC
lastC(j)

|. (Lemma 6.85, item 4)

Moreover, as QA
j+1(A′′) = QB

j+1(A′′) by item 2 of Lemma 6.94, we also have:

|πCj+1(A′′)| = |πCj+1(A′′)| = |πC
lastC(j+1)

|. (Equation 61 and boss(j) = {C})

Now, recall that j ∈ EA(A′′, 52)∩EB(A′′, 52) from item 2 of Lemma 6.94. Thus, we have

that either j ∈ EC(A′′, 67) or j ∈ EC(A′′, 77). We have the following cases:

• If |πC

lastC(j)
| ≥ minj′∈(j:tip(j)]|πC

lastC(j′)
|: In this case, as j ∈ EC(A′′, 67) or j ∈

EC(A′′, 77), we have:

πCj+1(A′′)
[
1 : min

(
|πCj (A′′)|, |πCj+1(A′′)|

)]
= πCj (A′′)

[
1 : min

(
|πCj (A′′)|, |πCj+1(A′′)|

)]
.

Due to the fact that j < tip(j) and Equation 63, this gives:

πCj+1(A′′)
[
1 : min

j′∈[j:tip(j)]
|πC

lastC(j′)
|
]

= πCj (A′′)
[
1 : min

j′∈[j:tip(j)]
|πC

lastC(j′)
|
]
. (64)

The foregoing equation allows us to derive:

πCj+1(A′′)
[
1 : min

j′∈(j:tip(j)]
|πC

lastC(j′)
|
]

= πCj+1(A′′)
[
1 : min

j′∈[j:tip(j)]
|πC

lastC(j′)
|
]

(As |πC
lastC(j)

| ≥ minj′∈(j:tip(j)]|πC
lastC(j′)

|)

= πCj (A′′)
[
1 : min

j′∈[j:tip(j)]
|πC

lastC(j′)
|
]

(Equation 64)

= πC
lastC(tip(j))

[
1 : min

j′∈[j:tip(j)]
|πC

lastC(j′)
|
]

(Equation 62)

151

= πC
lastC(tip(j))

[
1 : min

j′∈(j:tip(j)]
|πC

lastC(j′)
|
]
.

(As |πC
lastC(j)

| ≥ minj′∈(j:tip(j)]|πC
lastC(j′)

|)

• If |πC

lastC(j)
| < minj′∈(j:tip(j)]|πC

lastC(j′)
|: Using Equation 63, we get that |πCj (A′′)| <

|πC
lastC(tip(j))

|. We have by Claim 6.91 that |πA
lastA(tip(j))

| = |πB
lastB(tip(j))

| which implies

that |πCj (A′′)| < |πC
lastC(tip(j))

|.

As |πCj (A′′)| < |πC
lastC(tip(j))

|, there exists a 1 ≤ z < tip(j) such that |πCj (A′′)| =

|πC
lastC(z+1)−1

| and |RC
lastC(z+1)−1

| is odd. Moreover, for the largest such z, we have

that:

πC
lastC(tip(j))

[
1 : |πC

lastC(z+1)
|
]

= πC
lastC(z+1)

= πC
lastC(z+1)−1

‖σC
lastC(z+1)−1

,

as |RC
lastC(z+1)−1

| is odd and lastC(z + 1)− 1 ∈ EC(52) by definition. We can conclude

that:

πC
lastC(z+1)−1

= πC
lastC(tip(j))

[
1 : |πC

lastC(z+1)
| − 1

]
. (65)

σC
lastC(z+1)−1

= πC
lastC(tip(j))

[
|πC

lastC(z+1)
|
]
. (66)

From Equation 65, we can conclude that

|πC
lastC(z+1)

| − 1 = |πC
lastC(z+1)−1

|

= |πCj (A′′)| (As |πCj (A′′)| = |πC
lastC(z+1)−1

|)

= |πC
lastC(j)

|. (Equation 63)

This allows us to continue Equation 65 as:

πC
lastC(z+1)−1

= πC
lastC(tip(j))

[
1 : |πC

lastC(z+1)
| − 1

]
= πC

lastC(tip(j))

[
1 : |πC

lastC(j)
|
]

= πC
lastC(tip(j))

[
1 : min

j′∈[j:tip(j)]
|πC

lastC(j′)
|
]

(As |πC
lastC(j)

| < minj′∈(j:tip(j)]|πC
lastC(j′)

|)

= πCj (A′′)
[
1 : min

j′∈[j:tip(j)]
|πC

lastC(j′)
|
]

(Equation 62)

= πCj (A′′)
[
1 : |πC

lastC(j)
|
]

(As |πC
lastC(j)

| < minj′∈(j:tip(j)]|πC
lastC(j′)

|)

= πCj (A′′)
[
1 : |πCj (A′′)|

]
(Equation 63)

= πCj (A′′).

Consider now iteration j in the execution of Π′ with A′′ and iteration lastC(z+1)−1 in

152

the execution of Π′ with A′ from the perspective of party C. As πC
lastC(z+1)−1

= πCj (A′′),
the value of π is the same for both these iterations. Moreover, due to Equation 58, the

first P symbols received by party C in these two iterations are the same. Finally, as

|πC
lastC(j)

| < minj′∈(j:tip(j)]|πC
lastC(j′)

| ≤ |πC
lastC(j+1)

|, we have that |R| is odd in both the

iterations. It follows from Algorithm 5 and Equation 66 that

σCj (A′′) = σC
lastC(z+1)−1

= πC
lastC(tip(j))

[
|πC

lastC(z+1)
|
]
.

We next claim that:

|πCj+1(A′′)| = min
j′∈(j:tip(j)]

|πC
lastC(j′)

|. (67)

Indeed, we have |πCj+1(A′′)| ≥ minj′∈(j:tip(j)]|πC
lastC(j′)

| as j < tip(j) and Equation 63. We

also have that |πCj+1(A′′)| ≤ minj′∈(j:tip(j)]|πC
lastC(j′)

| as otherwise, as both the quantities

are integers, we have

|πCj+1(A′′)| ≥ min
j′∈(j:tip(j)]

|πC
lastC(j′)

|+ 1

> |πC
lastC(j)

|+ 1 (As |πC
lastC(j)

| < minj′∈(j:tip(j)]|πC
lastC(j′)

|)

≥ |πC
lastC(j+1)−1

|+ 1 (Lemma 6.85, item 4)

≥ |πC
lastC(j+1)

| (As lastC(j + 1)− 1 ∈ EC(52) by Definition 6.84)

≥ |πCj+1(A′′)|, (Equation 63)

a contradiction. Also, as |πC
lastC(j)

| < |πC
lastC(j+1)

|, we have by Equation 63 that

|πCj (A′′)| < |πCj+1(A′′)| which together with the fact that j ∈ EC(A′′, 52) implies

πCj+1(A′′) = πCj (A′′)‖σCj (A′′) This yields:

πCj+1(A′′)
[
1 : min

j′∈(j:tip(j)]
|πC

lastC(j′)
|
]

= πCj+1(A′′)
[
1 : |πCj+1(A′′)|

]
(Equation 67)

= πCj+1(A′′)
= πCj (A′′)‖σCj (A′′)
= πC

lastC(z+1)−1
‖σCj (A′′) (As πC

lastC(z+1)−1
= πCj (A′′))

= πC
lastC(z+1)−1

‖πC
lastC(tip(j))

[
|πC

lastC(z+1)
|
]
(As σCj (A′′) = πC

lastC(tip(j))

[
|πC

lastC(z+1)
|
]
)

= πC
lastC(tip(j))

[
1 : |πC

lastC(z+1)
| − 1

]
‖πC

lastC(tip(j))

[
|πC

lastC(z+1)
|
]

(Equation 65)

= πC
lastC(tip(j))

[
1 : |πC

lastC(z+1)
|
]

= πC
lastC(tip(j))

[
1 : |πC

lastC(z+1)−1
|+ 1

]
(Equation 65)

153

= πC
lastC(tip(j))

[
1 : |πCj (A′′)|+ 1

]
(As |πCj (A′′)| = |πC

lastC(z+1)−1
|)

= πC
lastC(tip(j))

[
1 : |πCj+1(A′′)|

]
(As πCj+1(A′′) = πCj (A′′)‖σCj (A′′))

= πC
lastC(tip(j))

[
1 : min

j′∈(j:tip(j)]
|πC

lastC(j′)
|
]
, (Equation 67)

as desired.

Next, we show item 3b of Lemma 6.94. We first claim that, for C ′, C ′′ ∈ {A,B}, we have:(
R ′C

′

j+1(A′′).last, |πC′j+1(A′′)|, |ψC′j+1(A′′)|
)

=
(
R ′C

′′

lastC
′′

(j+1)
.last, |πC′′

lastC
′′

(j+1)
|, |ψC′′

lastC
′′

(j+1)
|
)
.

(68)

Indeed, as j < hi(j), we can invoke Claim 6.91 to conclude:(
R ′C

lastC(j+1)
.last, |πC

lastC(j+1)
|, |ψC

lastC(j+1)
|
)

=
(
R ′C

lastC(j+1)
.last, |πC

lastC(j+1)
|, |ψC

lastC(j+1)
|
)

(Claim 6.91)

=
(
R ′Cj+1(A′′).last, |πCj+1(A′′)|, |ψCj+1(A′′)|

)
(Equation 61 and boss(j) = {C})

=
(
R ′Cj+1(A′′).last, |πCj+1(A′′)|, |ψCj+1(A′′)|

)
.

(As QA
j+1(A′′) = QB

j+1(A′′))

We now break the proof in to the following cases:

• j+ 1 > tip(j): As both quantities are integers, we have that j ≥ tip(j) =⇒ tip(j) ≤
j < hi(j) by definition of hi(·). We claim that:(

R ′Cj (A′′).last, πCj (A′′), ψCj (A′′)
)

=
(
R ′C

lastC(j)
.last, πC

lastC(j)
, ψC

lastC(j)

)
. (69)

Indeed, either j ∈ Sync, in which case Equation 69 follows due to item 4 of the

induction hypothesis of Lemma 6.94, or j /∈ Sync implying in particular that j > 1.

Additionally, j /∈ Sync also implies that tip(j − 1) = tip(j) by Claim 6.90 and

boss(j − 1) = boss(j) = {C} by Claim 6.93. It follows that j ≥ tip(j − 1) and

Equation 69 follows by item 3b of the induction hypothesis of Lemma 6.94. We next

claim that:

Claim 6.98. The quantities |RC
lastC(j+1)−1

|, |RC
lastC(j+1)

| are both even. Moreover, for

C ′ ∈ {A,B}, the quantities |RC′
j (A′′)| and |RC′

j+1(A′′)| are both even.

Proof. We first show that |RC′

lastC
′
(j)
| and |RC′

lastC
′
(j+1)
| are both even for C ′ ∈ {A,B}.

This is because tip(j) < hi(j), and therefore, we have by the definition of tip(·) that

|RC′

lastC
′
(j′′)
| is even for all j′′ ∈ [tip(j) : hi(j)], as desired.

We now prove the claim. The first part of the claim follows simply from the fact that

|RC
lastC(j)

| and |RC
lastC(j+1)

| are both even and item 4 of Lemma 6.85. It remains to show

154

the “moreover” part. Note that as we showed item 2 of Lemma 6.94, it is sufficient to

show that there exists C ′ ∈ {A,B} such that |RC′
j (A′′)| is even and another (possibly

different) C ′ ∈ {A,B} such that |RC′
j+1(A′′)| is even.

For the latter, we simply note that |RC
j+1(A′′)| = |RC

lastC(j+1)
| by Equation 61 is even,

while for the former, we may either have j ∈ Sync in which case, we have by item 4 of

the induction hypothesis of Lemma 6.94, we have that |RC
j (A′′)| = |RC

lastC(j)
| is even, or

j /∈ Sync, in which case, we have j > 1 and boss(j−1) = boss(j) = {C} by Claim 6.93.

We get that |RC
j (A′′)| = |RC

lastC(j)
| is even by item 1 of the induction hypothesis of

Lemma 6.94 and the result follows.

Consider now iteration j in the execution of Π′ with A′′ and iteration lastC(j + 1)− 1

in the execution of Π′ with A′ from the perspective of party C. Due to Claim 6.98,

the value of |R| is even before and after both these iterations. Furthermore, as

we showed that j ∈ EC(A′′, 52) and lastC(j + 1) − 1 ∈ EC(52) by Definition 6.84,

we can conclude that Line 87 is executed in both the iterations. It follows from

Algorithm 6 that the values of (π, ψ) before these iterations determine the values after

these iterations. Thus, as Equation 69 says
(
πCj (A′′), ψCj (A′′)

)
=
(
πC
lastC(j)

, ψC
lastC(j)

)
=(

πC
lastC(j+1)−1

, ψC
lastC(j+1)−1

)
by item 4 of Lemma 6.85, we must also have:(

πCj+1(A′′), ψCj+1(A′′)
)

=
(
πC
lastC(j+1)

, ψC
lastC(j+1)

)
. (70)

Next, comparing the two iterations again, we claim that:

Claim 6.99. RC
j+1(A′′).last.α = RC

lastC(hi(j))
.last.α.

Proof. If j ∈ Sync, we have:

RC
j+1(A′′).last.α = RC

j (A′′).last.α (As j ∈ EC(A′′, 87))

= RC
lastC(j)

.last.α (Induction hypothesis Lemma 6.94, item 4)

= RC
lastC(j+1)−1

.last.α (Lemma 6.85, item 4)

= RC
lastC(j+1)

.last.α (As lastC(j + 1)− 1 ∈ EC(87))

= RC
lastC(hi(j))

.last.α. (Claim 6.91)

If j /∈ Sync, we have in particular that j > 1. Additionally, j /∈ Sync also implies that

tip(j − 1) = tip(j) by Claim 6.90 and boss(j − 1) = boss(j) = {C} by Claim 6.93. It

follows that j ≥ tip(j − 1) and we get:

RC
j+1(A′′).last.α = RC

j (A′′).last.α (As j ∈ EC(A′′, 87))

155

= RC
lastC(hi(j−1))

.last.α (Induction hypothesis Lemma 6.94, item 3b)

= RC
lastC(hi(j))

.last.α. (Claim 6.90)

Claim 6.100. It holds that:

RC
j (A′′).last.β =

� ,RC
j (A′′).last.t 6= RC

lastC(hi(j))
.last.t

RC
lastC(hi(j))

.last.β ,RC
j (A′′).last.t = RC

lastC(hi(j))
.last.t

.

Proof. If j ∈ Sync, then j = lo(j) by definition of lo(·) and j + 1 > tip(j) =⇒ j =

lo(j) = tip(j). We have by Claim 6.91 that:

RC
j (A′′).last.β = RC

lastC(j)
.last.β (Induction hypothesis Lemma 6.94, item 4)

=

� ,RC
lastC(j)

.last.t 6= RC
lastC(hi(j))

.last.t

RC
lastC(hi(j))

.last.β ,RC
lastC(j)

.last.t = RC
lastC(hi(j))

.last.t

(Claim 6.91)

=

� ,RC
j (A′′).last.t 6= RC

lastC(hi(j))
.last.t

RC
lastC(hi(j))

.last.β ,RC
j (A′′).last.t = RC

lastC(hi(j))
.last.t

.

(Induction hypothesis Lemma 6.94, item 4)

If j /∈ Sync, we have in particular that j > 1. Additionally, j /∈ Sync also implies that

tip(j − 1) = tip(j) by Claim 6.90 and boss(j − 1) = boss(j) = {C} by Claim 6.93. It

follows that j ≥ tip(j − 1) and we get:

RC
j (A′′).last.β =

� ,RC
j (A′′).last.t 6= RC

lastC(hi(j−1))
.last.t

RC
lastC(hi(j−1))

.last.β ,RC
j (A′′).last.t = RC

lastC(hi(j−1))
.last.t

,

by item 3b of the induction hypothesis of Lemma 6.94 and the claim follows using

Claim 6.90.

Claim 6.101. We have:

RC
j+1(A′′).last.β =

� ,RC
j+1(A′′).last.t 6= RC

lastC(hi(j))
.last.t

RC
lastC(hi(j))

.last.β ,RC
j+1(A′′).last.t = RC

lastC(hi(j))
.last.t

.

Proof. Recall that j ∈ EC(A′′, 87). In the case that j /∈ EC(A′′, 90), we obtain(
RC
j (A′′).last.t,RC

j (A′′).last.β
)

=
(
RC
j+1(A′′).last.t,RC

j+1(A′′).last.β
)

allowing us to

get:

RC
j+1(A′′).last.β = RC

j (A′′).last.β

156

=

� ,RC
j (A′′).last.t 6= RC

lastC(hi(j))
.last.t

RC
lastC(hi(j))

.last.β ,RC
j (A′′).last.t = RC

lastC(hi(j))
.last.t

(Claim 6.100)

=

� ,RC
j+1(A′′).last.t 6= RC

lastC(hi(j))
.last.t

RC
lastC(hi(j))

.last.β ,RC
j+1(A′′).last.t = RC

lastC(hi(j))
.last.t

,

(As RC
j (A′′).last.t = RC

j+1(A′′).last.t)

as desired. In the other case that j ∈ EC(A′′, 90), we have 0 = RC
j (A′′).last.t 6=

RC
j+1(A′′).last.t. Using Equation 68 and Equation 69, we get RC

lastC(j)
.last.t 6=

RC
lastC(j+1)

.last.t =⇒ RC
lastC(j+1)−1

.last.t 6= RC
lastC(j+1)

.last.t by item 4 of Lemma 6.85.

As lastC(j + 1)− 1 ∈ EC(87), this is possible only if lastC(j + 1)− 1 ∈ EC(90).

Next, we apply item 3 of Claim 6.91 to conclude that RC
lastC(j+1)−1

.last.t 6=
RC

lastC(j+1)
.last.t = RC

lastC(hi(j))
.last.t. Again using Equation 68 and Equation 69,

we get RC
j (A′′).last.t 6= RC

j+1(A′′).last.t = RC
lastC(hi(j))

.last.t. Moreover, as we have

shown item 2 of Lemma 6.94, we get that RC
j (A′′).last.t 6= RC

j+1(A′′).last.t. Due to

Claim 6.98, the last two are possible only if j ∈ EA(A′′, 90) ∩ EB(A′′, 90).

As RC
j+1(A′′).last.t = RC

lastC(hi(j))
.last.t, we need to show that

RC
j+1(A′′).last.β = RC

lastC(hi(j))
.last.β. (71)

As RC
lastC(j+1)

.last.t = RC
lastC(hi(j))

.last.t, we have:

RC
lastC(hi(j))

.last.β = RC
lastC(j+1)

.last.β (Claim 6.91, item 4)

= RC

lastC(j+1)
.last.β (Claim 6.91, item 2)

= RC
j+1(A′′).last.β, (Equation 61 and boss(j) = {C})

implying that Equation 71 follows once we show that RC
j+1(A′′).last.β =

RC
j+1(A′′).last.β. In this proof, we assume for simplicity that C = B as the other case is

symmetric. We need to show that RA
j+1(A′′).last.β = RB

j+1(A′′).last.β, or equivalently

using the definition of β in Line 91, that
(

ΓAj,1(A′′), Γ̃Aj,1(A′′)
)

=
(

Γ̃Bj,1(A′′),ΓBj,1(A′′)
)

.

We first show that Γ̃Aj,1(A′′) = ΓBj,1(A′′). This is because:

Γ̃Aj,1(A′′) = RA
j+1(A′′).last.β[2]

= RB
lastB(j+1)

.last.β[2] (As RC
j+1(A′′).last.β = RC

lastC(j+1)
.last.β)

= TC(ψB
lastB(j+1)

) (As lastC(j + 1)− 1 ∈ EC(90))

= TC(ψBj+1(A′′)) (Equation 70)

= ΓBj,1(A′′). (As j ∈ EA(A′′, 90) ∩ EB(A′′, 90))

157

It remains to show that ΓAj,1(A′′) = Γ̃Bj,1(A′′). For this, we use the definition of

Γ̃Cj (A′′) in Equation 59 and Equation 60. As j ∈ EA(A′′, 90) ∩ EB(A′′, 90), we

have ΓAj (A′′) 6= Γ̃Aj (A′′) and |ΓAj (A′′)| = |Γ̃Aj (A′′)| = 1 implying that Equation 60

applies with h = 1. Equation 60 gives Γ̃Bj,1(A′′) = ΓAj,1(A′′) using the fact that

Γ̃Aj,1(A′′) = ΓBj,1(A′′) finishing the proof.

Combining Equation 68, Equation 70, Claim 6.99, and Claim 6.101 proves item 3b of

Lemma 6.94.

• j+ 1 = tip(j): In this case, we have that lo(j) ≤ j < tip(j) by definition of lo(·). We

have by item 3a of Lemma 6.94 that:

πCj+1(A′′)
[
1 : |πC

lastC(j+1)
|
]

= πC
lastC(j+1)

[
1 : |πC

lastC(j+1)
|
]
.

Due to Equation 68, this gives:

πCj+1(A′′) = πC
lastC(j+1)

. (72)

Next, note that hi(j) ∈ Sync implies |RA
lastA(hi(j))

| = |RB
lastB(hi(j))

| by Definition 6.86 and

consider the following subcases:

– |RA
lastA(hi(j))

| = |RB
lastB(hi(j))

| is odd: By definition of tip(·), this implies tip(j) =

hi(j). As j + 1 = tip(j) = hi(j) ∈ Sync, we have:

|RC

lastC(j+1)
| = |RC

j+1(A′′)| (Equation 61 and boss(j) = {C})

= |RC
j+1(A′′)|, (As QA

j+1(A′′) = QB
j+1(A′′))

implying that |RC
j+1(A′′)| is odd as well. As |RC

j+1(A′′)| and |RC
lastC(j+1)

| are both

odd, we must have:

ψCj+1(A′′) = ψC
lastC(j+1)

= ε.

RC
j+1(A′′).last.α = RC

lastC(j+1)
.last.α = �.

RC
j+1(A′′).last.β = RC

lastC(j+1)
.last.β = �.

Combining the foregoing equation, Equation 68, Equation 72, and the fact that

j + 1 = hi(j) proves item 3b of Lemma 6.94.

– |RA
lastA(hi(j))

| = |RB
lastB(hi(j))

| is even: In this case, as lo(j) ≤ j < j + 1 = tip(j),

we have from the definition of tip(·) that |RC

lastC(j)
| and |RC

lastC(j)
| are both odd and

|RC

lastC(j+1)
| and |RC

lastC(j+1)
| are both even. It follows by item 4 of Lemma 6.85

that |RC′

lastC
′
(j+1)−1

| is odd and |RC′

lastC
′
(j+1)
| is even for C ′ ∈ {A,B}. We claim

that:

158

Claim 6.102. For C ′ ∈ {A,B}, we have that |RC′
j (A′′)| is odd and |RC′

j+1(A′′)|
is even.

Proof. Note that as we showed item 2 of Lemma 6.94, it is sufficient to show

that there exists C ′ ∈ {A,B} such that |RC′
j (A′′)| is odd and another (possibly

different) C ′ ∈ {A,B} such that |RC′
j+1(A′′)| is even. For the former, note that

either j ∈ Sync in which case, we have by item 4 of the induction hypothesis of

Lemma 6.94 that |RC
j (A′′)| = |RC

lastC(j)
| is odd, or j /∈ Sync implying in particular

that j > 1. Additionally, j /∈ Sync also implies that tip(j − 1) = tip(j) by

Claim 6.90 and boss(j − 1) = boss(j) = {C} by Claim 6.93. We get |RC
j (A′′)| =

|RC

lastC(j)
| is odd from item 1 of the induction hypothesis of Lemma 6.94. Finally,

by Equation 61, we have that |RC
j+1(A′′)| = |RC

lastC(j+1)
| is even.

Consider now iteration j in the execution of Π′ withA′′ and iteration lastC(j+1)−1

in the execution of Π′ withA′ from the perspective of party C. Due to Claim 6.102,

the value of |R| is odd before both the iterations and even after both the iterations.

Furthermore, as we showed that j ∈ EC(A′′, 52) and lastC(j + 1)− 1 ∈ EC(52) by

Definition 6.84, we can conclude that Line 70 is executed in both the iterations

and we get:

ψCj+1(A′′) = ψC
lastC(j+1)

= ε and RC
j+1(A′′).last.β = RC

lastC(j+1)
.last.β = �.

(73)

We next claim that

RC
j+1(A′′).last.β =

� ,RC
j+1(A′′).last.t 6= RC

lastC(hi(j))
.last.t

RC
lastC(hi(j))

.last.β ,RC
j+1(A′′).last.t = RC

lastC(hi(j))
.last.t

.

(74)

Indeed, we have:

RC
j+1(A′′).last.β = RC

lastC(j+1)
.last.β

=

� ,RC
lastC(j+1)

.last.t 6= RC
lastC(hi(j))

.last.t

RC
lastC(hi(j))

.last.β ,RC
lastC(j+1)

.last.t = RC
lastC(hi(j))

.last.t

(Claim 6.91)

=

� ,RC
j+1(A′′).last.t 6= RC

lastC(hi(j))
.last.t

RC
lastC(hi(j))

.last.β ,RC
j+1(A′′).last.t = RC

lastC(hi(j))
.last.t

,

(Equation 68)

as desired. As j ∈ EA(A′′, 52) ∩ EB(A′′, 52) and we have Claim 6.102, we can

159

conclude that j ∈ EA(A′′, 70) ∩ EB(A′′, 70). We claim that:

RC
j+1(A′′).last.α = RC

lastC(hi(j))
.last.α. (75)

Before showing Equation 75, we observe that the combination of Equation 68,

Equation 72, Equation 73 , Equation 74, and Equation 75 proves item 3b of

Lemma 6.94, and thus showing Equation 75 finishes the proof of item 3b of

Lemma 6.94. Note that:

RC
j+1(A′′).last.α = RC

lastC(j+1)
.last.α (Equation 61)

= RC
lastC(j+1)

.last.α (Claim 6.91, item 2)

= RC
lastC(hi(j))

.last.α, (Claim 6.91, item 4)

and therefore, Equation 75 follows once we show RC
j+1(A′′).last.α =

RC
j+1(A′′).last.α. Assume for simplicity that C = B as the other case is

symmetric. We have to show that RA
j+1(A′′).last.α = RB

j+1(A′′).last.α, or

equivalently, using Line 70 that(
RA

F,j+1(A′′)[hA].r,ΓAj,hA(A′′), Γ̃Aj,hA(A′′)
)

=
(
RB

F,j+1(A′′)[hB].r, Γ̃Bj,hB(A′′),ΓBj,hB(A′′)
)
.

where, hC
′
, for C ′ ∈ {A,B} is the smallest such that ΓC

′

j,hC′
(A′′) 6= Γ̃C

′

j,hC′
(A′′).

Note that hC
′
is well defined as j ∈ EA(A′′, 70)∩EB(A′′, 70). Due to Equation 60,

we have hA = hB = h, say, and using the fact that QA
j+1(A′′) = QB

j+1(A′′), we

get:

RA
F,j+1(A′′)[hA].r = RA

F,j+1(A′′)[h].r = RB
F,j+1(A′′)[h].r = RB

F,j+1(A′′)[hB].r,

implying that RB
j+1(A′′).last.α[1] = RA

j+1(A′′).last.α[1]. We next show that

Γ̃Aj,h(A′′) = ΓBj,h(A′′). This is because

Γ̃Aj,h(A′′) = RA
j+1(A′′).last.α[3]

= RB
lastB(j+1)

.last.α[3] (As RC
j+1(A′′).last.α = RC

lastC(j+1)
.last.α)

= TC(πB
lastB(j+1),>RB

lastB(j+1)
.last.α[1]

) (As lastC(j + 1)− 1 ∈ EC(70))

= TC(πB
lastB(j+1),>RA

j+1(A′′).last.α[1]
)

(As RC
j+1(A′′).last.α = RC

lastC(j+1)
.last.α)

= TC(πB
lastB(j+1),>RB

j+1(A′′).last.α[1]
)

(As RB
j+1(A′′).last.α[1] = RA

j+1(A′′).last.α[1])

= TC((πBj+1(A′′))>RB
j+1(A′′).last.α[1]) (Equation 72)

160

= ΓBj,h(A′′). (Line 70)

It remains to show that ΓAj,h(A′′) = Γ̃Bj,h(A′′). For this, we use the definition

of Γ̃Cj (A′′) in Equation 59 and Equation 60. By our choice of h, we have

that Equation 60 applies with h. Equation 60 gives Γ̃Bj,h(A′′) = ΓAj,h(A′′) as

ΓBj,h(A′′) = Γ̃Aj,h(A′′) finishing the proof.

Finally, we show item 4 of Lemma 6.94. Due to the induction hypothesis, it is sufficient to

show that, if j + 1 ∈ Sync, then we have SCj+1(A′′).last = SClastC(j+1)
.last for all C ∈ {A,B}.

Thus, we assume throughout that j + 1 ∈ Sync. Observe that if j ∈ Sync as well, then

boss(j) = {A,B} by the definition of boss(·) and we are done by item 1 of Lemma 6.94.

This means that we can assume j /∈ Sync implying by the definition of boss(·) that boss(j)

and boss(j) are singleton. Let C be the unique element in boss(j) and C be the unique

element in boss(j). As we have shown Equation 61, all that remains to be shown is that

SCj+1(A′′).last = SClastC(j+1)
.last. To start, observe that:

QC
j+1(A′′) = QC

j+1(A′′) (As QA
j+1(A′′) = QB

j+1(A′′))

= QC

lastC(j+1)
. (Equation 61)

As j + 1 ∈ Sync, we have from Definition 6.86 that PA
lastA(j+1)

= PB
lastB(j+1)

. As Q is

determined by P, we get in turn that QA
lastA(j+1)

= QB
lastB(j+1)

implying that

QC
j+1(A′′) = QC

lastC(j+1)
= QC

lastC(j+1)
. (76)

Next, we observe that the fact that j + 1 ∈ Sync implies that hi(j) = j + 1 and consider the

following cases:

• When |RC

lastC(j+1)
| is odd: As hi(j) = j + 1, we have by the definition of tip(·) that

hi(j) = tip(j) = j + 1. Due to Equation 76, we have in this case that |RC
j+1(A′′)| and

|RC
lastC(j+1)

| are also odd. Observe that when |R| is odd, then R is is determined by R ′

and we have ψ = ε. This means that, in this case, S.last is determined by (Q, π). As we

have already shown Equation 76, in order to show that SCj+1(A′′).last = SClastC(j+1)
.last

it is enough to show that πCj+1(A′′) = πC
lastC(j+1)

. This is because by item 3a of

Lemma 6.94 and the fact that hi(j) = tip(j) = j + 1, we have:

πCj+1(A′′)
[
1 : |πC

lastC(hi(j))
|
]

= πC
lastC(hi(j))

[
1 : |πC

lastC(hi(j))
|
]
,

and we can conclude from hi(j) = j+1 and Equation 76 that |πCj+1(A′′)| = |πC
lastC(j+1)

| =
|πC

lastC(hi(j))
| = |πC

lastC(hi(j))
| by Definition 6.86.

• When |RC

lastC(j+1)
| is even: As j + 1 = hi(j) ≥ tip(j), we have due to item 3b of

161

Lemma 6.94 that:(
R ′Cj+1(A′′).last, πCj+1(A′′), ψCj+1(A′′)

)
=
(
R ′C

lastC(j+1)
.last, πC

lastC(j+1)
, ψC

lastC(j+1)

)
.

Furthermore, we have RC
j+1(A′′).last.α = RC

lastC(hi(j))
.last.α and

RC
j+1(A′′).last.β =

� ,RC
j+1(A′′).last.t 6= RC

lastC(hi(j))
.last.t

RC
lastC(hi(j))

.last.β ,RC
j+1(A′′).last.t = RC

lastC(hi(j))
.last.t

.

As hi(j) = j + 1, this simplifies to:(
RC
j+1(A′′).last, πCj+1(A′′), ψCj+1(A′′)

)
=
(
RC

lastC(j+1)
.last, πC

lastC(j+1)
, ψC

lastC(j+1)

)
.

As the variable S.last is determined by (Q, π‖ψ,R.last.α,R.last.β), the foregoing

equation and Equation 76 imply that SCj+1(A′′).last = SClastC(j+1)
.last completing the

proof.

Next, we define the values A′′A>(num−1)(P+1)(x
A, xB) and A′′B>(num−1)(P+1)(x

A, xB). For all

num ≤ j ≤ R/(P + 1), j′ ∈ [P], and C ∈ {A,B}, we define:

A′′C(j−1)(P+1)+j′(x
A, xB) = ⊥ and A′′Cj(P+1)(x

A, xB) = ⊥P . (77)

With this definition of A′′ and num, we show that the requirements of Theorem 6.2 are

satisfied. Observe that item 1 of Theorem 6.2 is straightforward from item 2 of Lemma 6.94.

Next, we show item 3 of Theorem 6.2. If M < |SA| = num, we have boss(num−1) = {A}
by definition of boss(·) implying using item 1 of Lemma 6.94 that SAnum(A′′).last =

SAlastA(num)
.last. Otherwise, as M ≤ min

(
|SA|, |SB|

)
, we must have M = |SA| ∈ Sync

implying by item 4 of Lemma 6.94 that SAnum(A′′).last = SAlastA(num)
.last.

Thus, in either case, we have SAnum(A′′).last = SAlastA(num)
.last. Due to the “furthermore”

part of item 1 of Theorem 6.2, we have that SA(A′′).last = SAlastA(num)
.last. Combining with

item 5 of Lemma 6.85, we have that SA(A′′).last = SA.last.
Finally, as the output of Alice is determined by SA.last, the fact that SA.last =

SA(A′′).last implies:

Π′AA′′(x
A, xB) = Π′AA′(x

A, xB) 6= ΠA(xA, xB),

and item 3 of Theorem 6.2 follows. We finish the proof by showing item 2 of Theorem 6.2

in the next subsection.

162

6.3.1 Proof of item 2 of Theorem 6.2

We start with some technical lemmas.

Lemma 6.103. Let C ∈ {A,B} and j ∈ [R/(P + 1) + 1]. We have for all 1 ≤ z < |SCj |
that SCj [z].p ≤ 2 · SCj [z + 1].p = 2 · `C

lastCj (z+1)−1
.

Proof. Proof by induction on j. The base case j = 1 is trivial. We show the statement

holds for j + 1 assuming that it holds for j. Consider 1 ≤ z < |SCj+1| and assume first that

z < min(|SCj |, |SCj+1|). For all such z observe that Algorithm 4 does not change the values

of SCj [z] and SCj [z + 1] in iteration j. Furthermore, by item 3 of Lemma 6.85, we have that

lastCj+1(z+1) = lastCj (z+1). Combining and using the induction hypothesis the result clearly

follows.

Now consider min(|SCj |, |SCj+1|) ≤ z < |SCj+1|. When this happens, we have in particular

that |SCj | < |SCj+1| implying that j ∈ EC(52) and |SCj+1| = |SCj | + 1 = z + 1. We get from

Line 50 and Line 96 that

SCj+1[z].p = SCj [z].p = SCj .last.p = pCj ≤ 2 · `Cj = 2 · SCj+1[z + 1].p.

To finish the proof, we simply note by Definition 6.84 that j = lastCj+1(z + 1)− 1.

Lemma 6.104. For C ∈ {A,B} and j ∈ EC(54) ∪ EC(56), we have

|SCj |−1∑
z=|SCj+1|

`C
lastCj (z+1)−1

=

|SCj |∑
z=|SCj+1|+1

SCj [z].p ≤ 22 ·
(
`Aj + `Bj + corrj

)
.

Proof. The equality follows simply from Lemma 6.103 as we get
∑|SCj |−1

z=|SCj+1|
`C
lastCj (z+1)−1

=∑|SCj |−1

z=|SCj+1|
SCj [z + 1].p =

∑|SCj |
z=|SCj+1|+1

SCj [z].p. For the inequality, we upper bound the left

hand side by 22 · (`Cj + ˜̀C
j) and then use the definition of corr to upper bound ˜̀C

j ≤ `Cj + corrj
to finish the proof15. We first deal with the simple case when j ∈ EC(54). In this case

|SCj+1|+ 1 = |SCj | and we get:

|SCj |∑
z=|SCj+1|+1

SCj [z].p = SCj .last.p = pCj ≤ 2 · `Cj ,

by Line 50. In the other case, when j ∈ EC(56), we consider the value µCj computed in

Line 56. If µCj = |SCj |+ 1, then we have by the definition of µ that:

|SCj |∑
z=|SCj+1|+1

SCj [z].p ≤
|SCj |∑
z=1

SCj [z].p ≤ 10 ·
(
`Cj + ˜̀C

j

)
,

15Recall that C denotes the unique element in {A,B} that is different from C.

163

Otherwise, we we use our choice of µCj to conclude:

µCj −1∑
z=1

SCj [|SCj |+ 1− z].p ≤ 10 ·
(
`Cj + ˜̀C

j

)
<

µCj∑
z=1

SCj [|SCj |+ 1− z].p. (78)

This lets us derive:

|SCj |∑
z=|SCj+1|+1

SCj [z].p =

|SCj |−|SCj+1|∑
z=1

SCj [|SCj |+ 1− z].p

≤
µCj∑
z=1

SCj [|SCj |+ 1− z].p (As |SCj | − |SCj+1| ≤ µCj by Line 56)

= SCj [|SCj |].p+

µCj∑
z=2

SCj [|SCj |+ 1− z].p

= SCj [|SCj |].p+

µCj −1∑
z=1

SCj [|SCj | − z].p

≤ SCj [|SCj |].p+ 2 ·
µCj −1∑
z=1

SCj [|SCj |+ 1− z].p (Lemma 6.103)

≤ SCj [|SCj |].p+ 20 ·
(
`Cj + ˜̀C

j

)
(Equation 78)

≤ 22 ·
(
`Cj + ˜̀C

j

)
. (As SCj [|SCj |].p = pCj ≤ 2 · `Cj by Line 50)

Lemma 6.105. It holds for C ∈ {A,B} that:∑
j∈EC(52)

`Cj · 1(∃j < j′ ≤ R/(P + 1) : |SCj′+1| < |SCj+1|) ≤ 22 ·
∑

j∈EC(54)∪EC(56)

(
`Aj + `Bj + corrj

)
.

Proof. Let J be the set of all j ∈ EC(52) such that there exists j < j′ ≤ R/(P +1) satisfying

|SCj′+1| < |SCj+1|. We start by claiming that:

Claim 6.106. For all j ∈ J , there exists j′′ ∈ EC(54) ∪ EC(56) and z ∈ (|SCj′′+1| : |SCj′′ |]
such that (j′′, z) determines j and `Cj = SCj′′ [z].p.

We show Claim 6.106 later but use it to get:∑
j∈EC(52)

`Cj · 1(∃j < j′ ≤ R/(P + 1) : |SCj′+1| < |SCj+1|)

≤
∑
j∈J

`Cj

164

≤
∑

j′′∈EC(54)∪EC(56)

|SC
j′′ |∑

z=|SC
j′′+1

|+1

SCj′′ [z].p (Claim 6.106)

≤ 22 ·
∑

j′′∈EC(54)∪EC(56)

(
`Aj′′ + `Bj′′ + corrj′′

)
. (Lemma 6.104)

We now show Claim 6.106.

Proof of Claim 6.106. Define j′′ to be the smallest j < j′ ≤ R/(P + 1) such that |SCj′+1| <
|SCj+1| and z = |SCj+1|. Note that j′′ is well defined as j ∈ J . By our choice of j′′, we must

have |SCj′′+1| < |SCj+1| ≤ |SCj′′ | implying that j′′ ∈ EC(54) ∪ EC(56) and z ∈ (|SCj′′+1| : |SCj′′ |].
In order to show that the pair (j′′, z) determines j, we show that j+1 = lastCj′′(z). Suppose

not. As z = |SCj+1| and j ∈ EC(52), this is only possible if there exists j + 1 < j′′′ ≤ j′′ such

that |SCj′′′ | = z and j′′′−1 ∈ EC(52). However, this means that |SCj′′′−1| = z−1 contradicting

the choice of j′′.

Finally, to show that `Cj = SCj′′ [z].p, we use item 2 of Lemma 6.85 that says SCj′′ [z].p =

SClastC
j′′ (z)

[z].p = SCj+1[|SCj+1|].p = SCj+1.last.p. The last term equals `Cj as j ∈ EC(52).

Lemma 6.107. For all j ∈ [num], there exists C ∈ {A,B} such that `Aj (A′′) = `Bj (A′′) =

`C
lastC(j)

.

Proof. Fix j ∈ [num]. We first show that there exists C ∈ {A,B} such that QC
j (A′′) =

QC
lastC(j)

. If j ∈ Sync, we let C be an arbitrary element in {A,B} and the claim follows from

item 4 of Lemma 6.94. On the other hand, if j /∈ Sync, we have in particular that j > 1.

In this case, we let C be an arbitrary element in boss(j − 1) (recall that boss(·) is always

non-empty by definition). We get by item 1 of Lemma 6.94 that QC
j (A′′) = QC

lastC(j)
, as

desired.

Let C ∈ {A,B} be as above. Use item 2 of Lemma 6.94 to conclude that QA
j (A′′) =

QB
j (A′′) = QC

lastC(j)
. As ` is determined by Q, we get:

`Aj (A′′) = `Bj (A′′) = `C
lastC(j)

.

Lemma 6.108. It holds that:∑
j∈[num]\Sync

`Aj (A′′) + `Bj (A′′) ≤ 300 ·
R/(P+1)∑
j=1

corrj + 50 ·
∑

C∈{A,B}

∑
j∈EC(54)∪EC(56)

(
`Aj + `Bj

)
.

Proof. We start by claiming that:

165

Claim 6.109. For all j ∈ [num]\Sync, there exists a C ∈ {A,B} and j′ ∈ [R/(P + 1)] such

that (C, j′) determines j and16:

`Aj (A′′)+`Bj (A′′) ≤ 2.2·(corrj′+`Cj′ ·1(j′ ∈ EC(52))·1(∃j′ < j′′ ≤ R/(P+1) : |SCj′′+1| < |SCj′+1|)).

We show Claim 6.109 later but assuming it for now, we get:∑
j∈[num]\Sync

`Aj (A′′) + `Bj (A′′)

≤ 2.2 ·
∑

C∈{A,B}

R/(P+1)∑
j′=1

`Cj′ · 1(j′ ∈ EC(52)) · 1(∃j′ < j′′ ≤ R/(P + 1) : |SCj′′+1| < |SCj′+1|)

+ 2.2 ·
∑

C∈{A,B}

R/(P+1)∑
j′=1

corrj′

≤ 5 ·
R/(P+1)∑
j′=1

corrj′ + 2.2 ·
∑

C∈{A,B}

∑
j′∈EC(52)

`Cj′ · 1(∃j′ < j′′ ≤ R/(P + 1) : |SCj′′+1| < |SCj′+1|)

≤ 5 ·
R/(P+1)∑
j=1

corrj + 2.2 ·
∑

C∈{A,B}

∑
j∈EC(52)

`Cj · 1(∃j < j′ ≤ R/(P + 1) : |SCj′+1| < |SCj+1|)

≤ 5 ·
R/(P+1)∑
j=1

corrj + 50 ·
∑

C∈{A,B}

∑
j∈EC(54)∪EC(56)

(
`Aj + `Bj + corrj

)
(Lemma 6.105)

≤ 5 ·
R/(P+1)∑
j=1

corrj + 50 ·
∑

C∈{A,B}

∑
j∈EC(54)∪EC(56)

(
`Aj + `Bj

)
+ 50 ·

∑
C∈{A,B}

R/(P+1)∑
j=1

corrj

≤ 300 ·
R/(P+1)∑
j=1

corrj + 50 ·
∑

C∈{A,B}

∑
j∈EC(54)∪EC(56)

(
`Aj + `Bj

)
.

It remains to show Claim 6.109.

Proof of Claim 6.109. Let C ∈ {A,B} be the one promised by Lemma 6.107 and j′ =

lastC(j) − 1. By Definition 6.84, we have that |SCj′+1| = j and it follows that (C, j′)

determines j. Definition 6.84 also says that j′ ∈ EC(52). We claim that:

`Aj (A′′) + `Bj (A′′) ≤ 2.2 · `Cj′ . (79)

As `Aj (A′′) = `Bj (A′′) = `Cj′+1 by Lemma 6.107, it is sufficient to show that `Cj′+1 ≤ 1.1 · `Cj′ . In

turn, due to Line 50, it is sufficient to show that SCj′+1.last.p ≤ 1.1·`Cj′ and 500KP ·1.1|R
C
j′+1
| ≤

1.1 · `Cj′ . For the former, note that j′ ∈ EC(52) implies that SCj′+1.last.p ≤ `Cj′ while for

the latter use j′ ∈ EC(52) to conclude |RC
j′+1| ≤ |RC

j′ | + 1, which using Line 50 implies

16Recall that C denotes the unique element in {A,B} that is different from C.

166

500KP · 1.1|R
C
j′+1
| ≤ 1.1 · 500KP · 1.1|R

C
j′ | ≤ 1.1 · `Cj′ . Consider now the following cases:

• corrj′ > 0: In this case, we have by definition of corr that corrj′ ≥ min
(
`Cj′ ,

˜̀C
j′

)
. As

j′ ∈ EC(52), we must have PC
j′ = P̃C

j′ =⇒ `Cj′ = ˜̀C
j′ . Plugging in, we get corrj′ ≥ `Cj′

which, together with Equation 79 implies Claim 6.109.

• corrj′ = 0: In this case, we first note that:

(P̃C
j′ , |S̃

C

j′ |) = (PC
j′ , |SCj′ |) (As corrj′ = 0)

= (P̃C
j′ , |S̃

C

j′ |) (As j′ ∈ EC(52))

= (PC
j′ , |SCj′ |). (As corrj′ = 0)

It follows that j′ ∈ EC(52) ∩ EC(52) and `Cj′ = `Cj′ . Observe from Algorithm 6

that the former together with (PC
j′ , |S

C
j′ |) = (PC

j′ , |S
C
j′ |) and corrj′ = 0 implies that

(PC
j′+1, |S

C
j′+1|) = (PC

j′+1, |S
C
j′+1|) which, in particular means that |SCj′+1| = |SCj′+1| = j

by Definition 6.84. We claim that there exists j′ ≤ j′′ ≤ R/(P + 1) such that

|SCj′′+1| < |SCj′+1|. Proving this claim suffices as we must have j′ < j′′ implying:

`Cj′ = `Cj′ = `Cj′ · 1(j′ ∈ EC(52)) · 1(∃j′ < j′′ ≤ R/(P + 1) : |SCj′′+1| < |SCj′+1|),

and Equation 79 finishes the proof of Claim 6.109. Suppose for contradiction that

|SCj′′+1| ≥ |SCj′+1| for all j′ ≤ j′′ ≤ R/(P + 1). Due to item 3 of Lemma 6.85, this

means that lastC(|SCj′+1|) = lastCj′+1(|SCj′+1|). We get that:

lastC(j) = lastC(|SCj′+1|) (As |SCj′+1| = j)

= lastCj′+1(|SCj′+1|)
= j′ + 1 (Definition 6.84)

= lastC(j). (As j′ = lastC(j)− 1)

The results in this paragraph satisfy all conditions of Definition 6.86 and thus, show

that j ∈ Sync, a contradiction.

Lemma 6.110. Let 1 ≤ j < num be such that {j, j + 1} ⊆ Sync. Then, we have for

C ∈ {A,B} that corrCj (A′′) = corrC
lastC(j+1)−1

.

Proof. As j ∈ Sync, we have using item 4 of Lemma 6.94 that SCj (A′′).last = SClastC(j)
.last

for C ∈ {A,B}. Applying item 4 of Lemma 6.85, we get SCj (A′′).last = SClastC(j+1)−1
.last for

C ∈ {A,B}.

167

Observe from the definition of boss(·) that {j, j+1} ⊆ Sync implies that boss(j) = {A,B}.
Thus, by Claim 6.96, we have for all C ∈ {A,B} and j′ ∈ [P + 1] that:

A′′C(j−1)(P+1)+j′(x
A, xB) = A′C

(lastC(j+1)−2)(P+1)+j′
(xA, xB). (80)

Fix an arbitrary C ∈ {A,B} and consider now iteration j in the execution of Π′ with A′′
and iteration lastC(j+ 1)− 1 in the execution of Π′ with A′ from the perspective of party C.

As we showed that j ∈ EC(A′′, 52) in item 1 of Theorem 6.2 and lastC(j + 1)− 1 ∈ EC(52)

by Definition 6.84, we have that Line 52 is executed in both the iterations. Furthermore,

as SCj (A′′).last = SClastC(j+1)−1
.last for C ∈ {A,B}, the value of S.last is the same before

both the iterations, and due to Equation 80, the symbols received by party C are the same

in both the iterations. It follows that corrCj (A′′) = corrC
lastC(j+1)−1

, as desired.

Lemma 6.111. It holds that:∑
j<num

corrj(A′′) ≤ 1000 ·
R/(P+1)∑
j=1

corrj + 150 ·
∑

C∈{A,B}

∑
j∈EC(54)∪EC(56)

(
`Aj + `Bj

)
.

Proof. Note that:∑
j<num

corrj(A′′) ≤
∑
j<num

{j,j+1}⊆Sync

corrj(A′′) +
∑
j<num

{j,j+1}6⊆Sync

corrj(A′′).

Recall that corrj(A′′) = corrAj (A′′) + corrBj (A′′) for all j ∈ [R/(P + 1)]. We bound the first

term by using Lemma 6.110 to get corrj(A′′) = corrA
lastA(j+1)−1

+ corrB
lastB(j+1)−1

. This gives:∑
j<num

corrj(A′′) ≤
∑
j<num

{j,j+1}⊆Sync

∑
C∈{A,B}

corrC
lastC(j+1)−1

+
∑
j<num

{j,j+1}6⊆Sync

corrj(A′′)

≤
∑

C∈{A,B}

∑
j<num

{j,j+1}⊆Sync

corrC
lastC(j+1)−1

+
∑
j<num

{j,j+1}6⊆Sync

corrj(A′′).

As for C ∈ {A,B}, the value of lastC(j + 1) is distinct for all 1 ≤ j < |SC |, we get:

∑
j<num

corrj(A′′) ≤
∑

C∈{A,B}

R/(P+1)∑
j=1

corrCj +
∑
j<num

{j,j+1}6⊆Sync

corrj(A′′)

≤
R/(P+1)∑
j=1

corrj +
∑
j<num

{j,j+1}6⊆Sync

corrj(A′′).

For 1 ≤ j < num and C ∈ {A,B}, we have by definition of corr that17 corrCj (A′′) ≤

17C denotes the unique element in {A,B} that is different from C.

168

max
(
`Cj (A′′), ˜̀C

j (A′′)
)

. As j ∈ EA(A′′, 52) ∩ EB(A′′, 52) by item 2 of Lemma 6.94, we

must have PC
j (A′′) = P̃C

j (A′′) =⇒ `Cj (A′′) = ˜̀C
j (A′′). Combining with Lemma 6.107,

we get `Cj (A′′) = ˜̀C
j (A′′). This implies that corrCj (A′′) ≤ `Cj (A′′) in turn implying that

corrj(A′′) = corrAj (A′′) + corrBj (A′′) ≤ `Aj (A′′) + `Bj (A′′). Plugging in, we get:

∑
j<num

corrj(A′′) ≤
R/(P+1)∑
j=1

corrj +
∑
j<num

{j,j+1}6⊆Sync

`Aj (A′′) + `Bj (A′′)

≤
R/(P+1)∑
j=1

corrj +
∑
j<num
j 6∈Sync

`Aj (A′′) + `Bj (A′′) +
∑
j<num
j+1/∈Sync

`Aj (A′′) + `Bj (A′′)

≤
R/(P+1)∑
j=1

corrj +
∑
j<num
j 6∈Sync

`Aj (A′′) + `Bj (A′′) +
∑

1<j≤num
j /∈Sync

`Aj−1(A′′) + `Bj−1(A′′).

Next, note that, for all 1 < j ≤ num and C ∈ {A,B}, we have by Line 50 that

`Cj (A′′) ≥ pCj (A′′)/2 = SCj (A′′).last.p/2. As j − 1 ∈ EA(A′′, 52) ∩ EB(A′′, 52) by item 2

of Lemma 6.94, we get `Cj (A′′) ≥ `Cj−1(A′′)/2. Plugging in, we get:

∑
j<num

corrj(A′′) ≤
R/(P+1)∑
j=1

corrj +
∑
j<num
j 6∈Sync

`Aj (A′′) + `Bj (A′′) + 2 ·
∑

1<j≤num
j /∈Sync

`Aj (A′′) + `Bj (A′′)

≤
R/(P+1)∑
j=1

corrj + 3 ·
∑

j∈[num]\Sync

`Aj (A′′) + `Bj (A′′)

≤ 1000 ·
R/(P+1)∑
j=1

corrj + 150 ·
∑

C∈{A,B}

∑
j∈EC(54)∪EC(56)

(
`Aj + `Bj

)
.

(Lemma 6.108)

To continue, we define, for i ∈ [R/(P + 1) + 1] and j ∈ [min(|SAi |, |SBi |)],

oki(j) = 1(PA
lastAi (j)

= PB
lastBi (j)

).

Also, define, for i ∈ [R/(P + 1) + 1] and C ∈ {A,B},

synci =

min(|SAi |,|SBi |)−1∑
j=1

min(`A
lastAi (j+1)−1

, `B
lastBi (j+1)−1

) · oki(j + 1).

totalCi =

|SCi |−1∑
j=1

`C
lastCi (j+1)−1

.

169

ζi = 8000 ·
i−1∑
j=1

corrj + 9 · synci − 4 ·
∑

C∈{A,B}

totalCi .

When we omit the subscript i in the above definitions, we mean i = R/(P + 1) + 1.

Lemma 6.112. For i ∈ [R/(P + 1)], and j ∈ [min(|SAi |, |SBi |)] ∩ [min(|SAi+1|, |SBi+1|)], we

have oki(j) = oki+1(j)

Proof. Direct calculation using item 3 of Lemma 6.85:

oki(j) = 1(PA
lastAi (j)

= PB
lastBi (j)

) = 1(PA
lastAi+1(j)

= PB
lastBi+1(j)

) = oki+1(j).

Lemma 6.113. For i ∈ [R/(P + 1) + 1], we have 2 · synci ≤
∑

C∈{A,B} total
C
i .

Proof. We directly derive:

2 · synci ≤
min(|SAi |,|SBi |)−1∑

j=1

`A
lastAi (j+1)−1

+

min(|SAi |,|SBi |)−1∑
j=1

`B
lastBi (j+1)−1

≤
|SAi |−1∑
j=1

`A
lastAi (j+1)−1

+

|SBi |−1∑
j=1

`B
lastBi (j+1)−1

≤ totalAi + totalBi =
∑

C∈{A,B}

totalCi .

Lemma 6.114. It holds that:

ζ ≥ S

20
and ζ − sync ≥ 1

4
·
∑

C∈{A,B}

∑
i∈EC(54)∪EC(56)

(
`Ai + `Bi

)
.

We prove this lemma in the next subsection, but first show that item 2 of Theorem 6.2

follows from this lemma.

Proof of item 2 of Theorem 6.2 assuming Lemma 6.114. We have:

∑
i<num

`Ai (A′′) + `Bi (A′′) ≥
min(|SA|,|SB |)−1∑

i=1

`Ai (A′′) + `Bi (A′′)

≥
min(|SA|,|SB |)−1∑

i=1

min
(
`A
lastA(i)

, `B
lastB(i)

)
(Lemma 6.107)

≥
min(|SA|,|SB |)−1∑

i=1

min
(
`A
lastA(i+1)−1

, `B
lastB(i+1)−1

)
(Lemma 6.85, item 4)

170

≥ sync (Definition of sync(·))

≥ ζ

9
− 1000 ·

R/(P+1)∑
j=1

corrj (Definition of ζ(·))

≥ S

180
− 1000 ·

R/(P+1)∑
j=1

corrj (Lemma 6.114)

≥ S

500
. (As corrL,Π′,A′(x

A, xB) ≤ θ2S)

We also have:∑
j<num

corrj(A′′) ≤ 1000 ·
R/(P+1)∑
j=1

corrj + 150 ·
∑

C∈{A,B}

∑
j∈EC(54)∪EC(56)

(
`Aj + `Bj

)
(Lemma 6.111)

≤ 1000 ·
R/(P+1)∑
j=1

corrj + 600 · (ζ − sync) (Lemma 6.114)

≤ 1000 ·
R/(P+1)∑
j=1

corrj + 600 ·

ζ − 9 · sync + 4 ·
∑

C∈{A,B}

totalC


(Lemma 6.113)

≤ 1000 ·
R/(P+1)∑
j=1

corrj + 600 · 8000 ·
R/(P+1)∑
j=1

corrj (Definition of ζ(·))

≤ 107θ2S. (As corrL,Π′,A′(x
A, xB) ≤ θ2S)

6.3.2 Proof of Lemma 6.114

We start with the following technical lemma.

Lemma 6.115. Let C ∈ {A,B} and i ∈ [R/(P + 1) + 1]. For all 1 ≤ j < |SCi |, we have

`C
lastCi (j+1)−1

= `C
lastCi (j)

≤ 2`C
lastCi (j+1)

≤ 2.2 · `C
lastCi (j+1)−1

.

Proof. The equality follows directly from item 4 of Lemma 6.85 and the fact that S
determines `. Next, we have by Definition 6.84 that lastCi (j + 1) − 1 ∈ EC(52) implying

that pC
lastCi (j+1)

= SClastCi (j+1)
.last.p = `C

lastCi (j+1)−1
.

Now for the first inequality, note by Line 50 that 2`C
lastCi (j+1)

≥ pC
lastCi (j+1)

= `C
lastCi (j+1)−1

,

while for the second inequality, note that lastCi (j + 1) − 1 ∈ EC(52) implies |RC
lastCi (j+1)

| ≤

171

|RC
lastCi (j+1)−1

|+ 1 giving

`C
lastCi (j+1)

= max

(
500KP · 1.1

|RC

lastC
i

(j+1)
|
, pC

lastCi (j+1)

)
≤ 1.1 ·max

(
500KP · 1.1

|RC

lastC
i

(j+1)−1
|
, pC

lastCi (j+1)

)
≤ 1.1 · `C

lastCi (j+1)−1
.

Corollary 6.116. For C ∈ {A,B} and i ∈ [R/(P + 1) + 1] such that |SCi | > 1, we have
10
11
· `Ci ≤ `C

lastCi (|SCi |)−1
≤ 2 · `Ci .

Proof. By Lemma 6.115, we have that `C
lastCi (|SCi |)

≤ 1.1 · `C
lastCi (|SCi |)−1

≤ 2.2 · `C
lastCi (|SCi |)

and by

item 5 of Lemma 6.85 and the fact that S.last determines `, we have that `Ci = `C
lastCi (|SCi |)

.

We now analyze the quantities sync and total, dedicating a lemma for each one of them.

Lemma 6.117. Let i ∈ [R/(P + 1)].

1. If corri = 0 and i ∈ EA(52) ∩ EB(52), then

synci+1 − synci ≥
1

2
(`Ai + `Bi).

2. If min(|SAi+1|, |SBi+1|) ≥ min(|SAi |, |SBi |), we have synci+1 ≥ synci.

3. If min(|SAi+1|, |SBi+1|) + 1 ≥ |SAi | = |SBi | and PA
i 6= PB

i , then synci+1 ≥ synci.

4. If |SBi | < |SAi | and |SBi | − 1 = |SBi+1| ≤ |SAi+1|, we have

synci+1 − synci ≥ −min

(
2 · `Bi ,

2

3
· `A

lastAi (|SBi |)−1
+

1

3
· `B

lastBi (|SBi |)−1

)
.

An analogous claim holds with the roles of Alice and Bob reversed.

5. It holds that:

synci+1 − synci ≥ −22 ·
(
`Ai + `Bi + corri

)
.

Proof. To start, using the notation z = min(|SAi |, |SBi |, |SAi+1|, |SBi+1|), we claim that

z−1∑
j=1

min(`A
lastAi (j+1)−1

, `B
lastBi (j+1)−1

) · oki(j + 1)

=
z−1∑
j=1

min(`A
lastAi+1(j+1)−1

, `B
lastBi+1(j+1)−1

) · oki+1(j + 1).

(81)

172

Indeed, we have:

z−1∑
j=1

min(`A
lastAi (j+1)−1

, `B
lastBi (j+1)−1

) · oki(j + 1)

=
z−1∑
j=1

min(`A
lastAi (j+1)−1

, `B
lastBi (j+1)−1

) · oki+1(j + 1) (Lemma 6.112)

=
z−1∑
j=1

min(`A
lastAi+1(j+1)−1

, `B
lastBi+1(j+1)−1

) · oki+1(j + 1). (Lemma 6.85, item 3)

We now prove each part in turn using Equation 81 in each part.

1. As corri = 0 and i ∈ EA(52) ∩ EB(52), we have ΓAi = Γ̃Bi , Γ̃Ai = ΓBi and

(P̃A
i , |S̃

A

i |) = (PB
i , |SBi |) = (P̃B

i , |S̃
B

i |) = (PA
i , |SAi |).

We use (P∗, |S∗|) to denote the common value of the quantities above. Observe from

Algorithm 6 that the equations above imply that (PA
i+1, |SAi+1|) = (PB

i+1, |SBi+1|) and

|SCi+1| = |S∗|+ 1 for C ∈ {A,B}.
Using Definition 6.84, we additionally have lastCi+1(|S∗| + 1) = i + 1 for C ∈ {A,B}.
This gives oki+1(|S∗|+ 1) = 1(PA

lastAi+1(|S∗|+1)
= PB

lastBi+1(|S∗|+1)
) = 1(PA

i+1 = PB
i+1) = 1

and therefore:

synci+1 − synci = min(`A
lastAi+1(|S∗|+1)−1

, `B
lastBi+1(|S∗|+1)−1

) · oki+1(|S∗|+ 1)

(Equation 81 as |SCi+1| = |S∗|+ 1 for C ∈ {A,B})
= min(`A

lastAi+1(|S∗|+1)−1
, `B

lastBi+1(|S∗|+1)−1
) (As oki+1(|S∗|+ 1) = 1)

= min(`Ai , `
B
i) (As lastCi+1(|S∗|+ 1) = i+ 1 for C ∈ {A,B})

=
1

2
(`Ai + `Bi). (As PA

i = PB
i)

2. This part is straightforward from Equation 81 as ` is always non-negative.

3. If min(|SAi+1|, |SBi+1|) ≥ |SAi | = |SBi |, we are done by item 2. Thus, we assume that

min(|SAi+1|, |SBi+1|) + 1 = |SAi | = |SBi |. Let C ∈ {A,B} be the minimizer of |SCi+1|
(breaking ties arbitrarily). We have from Equation 81 that

synci+1 − synci = −min(`A
lastAi (|SCi+1|+1)−1

, `B
lastBi (|SCi+1|+1)−1

) · oki(|SCi+1|+ 1),

and it is sufficient to show that oki(|SCi+1| + 1) = 0. By definition, we have

oki(|SCi+1|+ 1) = 1(PA
lastAi (|SCi+1|+1)

= PB
lastBi (|SCi+1|+1)

). As |SCi+1|+ 1 = |SAi | = |SBi |, we

get oki(|SCi+1| + 1) = 1(PA
lastAi (|SAi |)

= PB
lastBi (|SBi |)

). By item 5 of Lemma 6.85 and the

fact that S.last determined P, we get that oki(|SCi+1| + 1) = 1(PA
i = PB

i) = 0, as

PA
i 6= PB

i finishing the proof.

173

4. We have from Equation 81 that:

synci+1 − synci = −min(`A
lastAi (|SBi |)−1

, `B
lastBi (|SBi |)−1

) · oki(|SBi |)

≥ −min(`A
lastAi (|SBi |)−1

, `B
lastBi (|SBi |)−1

).

Now, note that min(`A
lastAi (|SBi |)−1

, `B
lastBi (|SBi |)−1

) ≤ `B
lastBi (|SBi |)−1

≤ 2 · `Bi by

Corollary 6.116. Also, note that min(`A
lastAi (|SBi |)−1

, `B
lastBi (|SBi |)−1

) ≤ 2
3
· `A

lastAi (|SBi |)−1
+

1
3
· `B

lastBi (|SBi |)−1
as the minmum is at most a weighted average. Combining, we get:

synci+1 − synci ≥ −min

(
2 · `Bi ,

2

3
· `A

lastAi (|SBi |)−1
+

1

3
· `B

lastBi (|SBi |)−1

)
.

5. Due to item 2, it is sufficient to consider the case min(|SAi+1|, |SBi+1|) < min(|SAi |, |SBi |).
We have due to Equation 81 that:

synci+1 − synci = −
min(|SAi |,|SBi |)−1∑

j=min(|SAi+1|,|SBi+1|)

min(`A
lastAi (j+1)−1

, `B
lastBi (j+1)−1

) · oki(j + 1).

Let C ∈ {A,B} be the minimizer of |SCi+1| (breaking ties arbitrarily). As |SCi+1| =

min(|SAi+1|, |SBi+1|) < min(|SAi |, |SBi |) ≤ |SCi |, we must have i ∈ EC(54) ∪ EC(56). We

get that:

synci+1 − synci = −
min(|SAi |,|SBi |)−1∑

j=min(|SAi+1|,|SBi+1|)

min(`A
lastAi (j+1)−1

, `B
lastBi (j+1)−1

) · oki(j + 1)

≥ −
|SCi |−1∑
j=|SCi+1|

min(`A
lastAi (j+1)−1

, `B
lastBi (j+1)−1

) · oki(j + 1)

(As |SCi+1| = min(|SAi+1|, |SBi+1|) < min(|SAi |, |SBi |) ≤ |SCi |)

≥ −
|SCi |−1∑
j=|SCi+1|

`C
lastCi (j+1)−1

≥ −22 ·
(
`Ai + `Bi + corri

)
. (Lemma 6.104)

Lemma 6.118. Let C ∈ {A,B} and i ∈ [R/(P + 1)].

1. If |SCi | < |SCi+1|, then totalCi − totalCi+1 ≥ −`Ci .

2. If |SCi | = |SCi+1|, then totalCi − totalCi+1 = 0.

3. If |SCi | > |SCi+1|, then totalCi − totalCi+1 ≥ `C
lastCi (|SCi |)−1

≥ 10
11
· `Ci .

174

4. If i ∈ EC(56) and µCi ≤ |SCi | − |S̃
C

i |+ 1(10`Ci <
˜̀C
i), then

totalCi − totalCi+1 ≥ 10
(
`Ci + ˜̀C

i

)
.

5. If i ∈ EC(56) and 10`Ci <
˜̀C
i and µCi > |SCi | − |S̃

C

i |+ 1, then

totalCi − totalCi+1 ≥
3

2
· `C

lastCi (|S̃Ci |)−1
.

Proof. Note by item 3 of Lemma 6.85 that

min(|SCi |,|SCi+1|)−1∑
j=1

`C
lastCi (j+1)−1

=

min(|SCi |,|SCi+1|)−1∑
j=1

`C
lastCi+1(j+1)−1

. (82)

We prove each part separately using Equation 82 in each part.

1. As |SCi | < |SCi+1|, we must have i ∈ EC(52) implying |SCi | + 1 = |SCi+1| and

lastCi+1(|SCi+1|) = i + 1 by Definition 6.84. From Equation 82, we get that totalCi −
totalCi+1 = −`C

lastCi+1(|SCi+1|)−1
= −`Ci .

2. Straightforward from Equation 82.

3. As |SCi | > |SCi+1|, we have from Equation 82 that totalCi − totalCi+1 ≥ `C
lastCi (|SCi |)−1

.

Corollary 6.116 finishes the proof.

4. Firstly, note that µCi ≤ |SCi | − |S̃
C

i | + 1(10`Ci < ˜̀C
i) implies µCi ≤ |SCi | as |S̃Ci | ≥ 1.

We get:

totalCi − totalCi+1 ≥
|SCi |−1∑
j=|SCi+1|

`C
lastCi (j+1)−1

(Equation 82 as i ∈ EC(56) =⇒ |SCi | > |SCi+1|)

≥
|SCi |∑

j=|SCi+1|+1

SCi [j].p (Lemma 6.104)

≥
|SCi |∑

j=|SCi |−µCi +1

SCi [j].p

(Line 56 as µCi ≤ |SCi | − |S̃
C

i |+ 1(10`Ci <
˜̀C
i))

≥
µCi∑
j=1

SCi [|SCi |+ 1− j].p

≥ 10
(
`Ci + ˜̀C

i

)
. (Line 56 as µCi ≤ |SCi |)

175

5. As 10`Ci < ˜̀C
i and µCi > |SCi | − |S̃

C

i | + 1, we have by Line 56 that |SCi | − |SCi+1| =

|SCi | − |S̃
C

i |+ 1 ≥ 2. It follows that |SCi+1| = |S̃
C

i | − 1 and |SCi | ≥ |SCi+1|+ 2. We get

from Equation 82 that:

totalCi − totalCi+1 ≥ `C
lastCi (|SCi+1|+1)−1

+ `C
lastCi (|SCi+1|+2)−1

≥ `C
lastCi (|SCi+1|+1)−1

+ `C
lastCi (|SCi+1|+1)

(Lemma 6.85, item 4)

≥ `C
lastCi (|SCi+1|+1)−1

+
1

2
· `C

lastCi (|SCi+1|)
(Lemma 6.115)

≥ 3

2
· `C

lastCi (|SCi+1|+1)−1
(Lemma 6.85, item 4)

≥ 3

2
· `C

lastCi (|S̃Ci |)−1
. (As |SCi+1| = |S̃

C

i | − 1)

We are now ready to prove Lemma 6.114.

Proof of Lemma 6.114. To show Lemma 6.114, we show by induction that, for all j ∈
[R/(P + 1) + 1], we have

ζj ≥
1

4
·
j−1∑
i=1

(
`Ai + `Bi

)
and ζj − syncj ≥

1

4
·
∑

C∈{A,B}

∑
i∈EC(54)∪EC(56)

i<j

(
`Ai + `Bi

)
. (83)

Then, by plugging j = R/(P+1)+1, we get ζ−sync ≥ 1
4
·
∑

C∈{A,B}
∑

i∈EC(54)∪EC(56)

(
`Ai + `Bi

)
and ζ ≥ 1

4
·
∑R/(P+1)

i=1

(
`Ai + `Bi

)
. Lemma 6.114 then follows as either the parties never send

a string of ⊥s in Line 50, in which case we have
∑R/(P+1)

i=1

(
`Ai + `Bi

)
≥ 250RK ≥ S by

our choice of parameters, or one of them aborts after communicating S symbols. In this

case, as S symbols have been communicated by one of the parties, say C, we again get∑R/(P+1)
i=1

(
`Ai + `Bi

)
≥
∑R/(P+1)

i=1

(
`Ci + ˜̀C

i − corri
)
≥ 0.9S as corrL,Π′,A′(x

A, xB) ≤ θ2S.

Now, we focus on showing Equation 83. The base case j = 1 holds because all quantities

are 0. To show the induction step, it is sufficient to show that, for j ∈ [R/(P + 1)], we have:

ζj+1 − ζj ≥
1

4
·
(
`Aj + `Bj

)
(84)

(
ζj+1 − syncj+1

)
−
(
ζj − syncj

)
≥ 1

4
·
∑

C∈{A,B}

(
`Aj + `Bj

)
· 1
(
j ∈ EC(54) ∪ EC(56)

)
. (85)

We now break the proof into several cases.

• corrj <
1
15
·
(
`Aj + `Bj

)
: In this case, we start by showing that:

Claim 6.119. If corrAj > 0, we have 10 ·max(`Aj ,
˜̀B
j) < `Bj . An analogous result holds

for Bob. It follows that corrAj > 0 =⇒ corrBj = 0.

176

Proof. We have by definition of corr that:

max
(
`Aj ,

˜̀B
j

)
≤ corrAj <

1

15
·
(
`Aj + `Bj

)
≤ 1

15
·
(

max
(
`Aj ,

˜̀B
j

)
+ `Bj

)
.

Rearranging gives the result.

We have the following subcases:

– |SA
j | = |S

B
j |: We further subdivide this case:

∗ PA
j = PB

j : As PA
j = PB

j , we have that `Aj = `Bj =⇒ corrj = 0 by the

contrapositive of Claim 6.119. As corrj = 0, we have

(P̃B
j , |S̃

B

j |) = (PA
j , |SAj |) = (PB

j , |SBj |) = (P̃A
j , |S̃

A

j |).

It follows that j ∈ EA(52)∩EB(52). We conclude using item 1 of Lemma 6.117

that syncj+1 − syncj ≥ 1
2
(`Aj + `Bj). Also, by applying item 1 in Lemma 6.118

on A and B, we get that
∑

C∈{A,B} total
C
j −

∑
C∈{A,B} total

C
j+1 ≥ −(`Aj + `Bj).

Combining, we have:

ζj+1 − ζj ≥
9

2
· (`Aj + `Bj)− 4 · (`Aj + `Bj) ≥ 1

2
(`Aj + `Bj),(

ζj+1 − syncj+1

)
−
(
ζj − syncj

)
≥ 4(`Aj + `Bj)− 4(`Aj + `Bj) ≥ 0,

and Equation 84 and Equation 85 follow as j ∈ EA(52) ∩ EB(52).

∗ PA
j 6= PB

j : We first claim that j ∈ EA(54)∩EB(54). If corrj = 0, this holds

because we have |S̃Bj | = |SAj | = |SBj | = |S̃Aj | and P̃B
j = PA

j 6= PB
j = P̃A

j .

Otherwise, there exists C ∈ {A,B} such that corrCj > 0. Assume without loss

of generality that C = A. By Claim 6.119, we have that 10 ·max(`Aj ,
˜̀B
j) < `Bj

and corrBj = 0. The former implies that P̃B
j 6= PB

j and 10 · ˜̀Bj < `Bj implying

in turn that j ∈ EB(54) while the latter implies that |SAj | = |SBj | = |S̃Aj |
and PA

j 6= PB
j = P̃A

j implying that j ∈ EA(54). Overall, we get that

j ∈ EA(54) ∩ EB(54).

It follows that |SAj+1| = |SBj+1| = |SAj | − 1 = |SBj | − 1. By item 3 of

Lemma 6.117, this gives syncj+1 ≥ syncj while by item 3 of Lemma 6.118

on A and B, we get that
∑

C∈{A,B} total
C
j −

∑
C∈{A,B} total

C
j+1 ≥ 10

11
(`Aj + `Bj).

Combining, we get:

ζj+1 − ζj ≥
40

11
· (`Aj + `Bj),

(
ζj+1 − syncj+1

)
−
(
ζj − syncj

)
≥ 40

11
· (`Aj + `Bj),

and Equation 84 and Equation 85 follow.

– |SA
j | > |S

B
j |: We further subdivide this case.

177

∗ 10 · `Aj ≥ `Bj : By the contrapositive of Claim 6.119, we have that corrAj = 0.

It follows that `Aj = ˜̀B
j =⇒ 10 · ˜̀Bj ≥ `Bj and |S̃Bj | = |SAj | > |SBj | implying

that j ∈ EB(52) ∩ EB(54) ∩ EB(56). In turn, this means that |SBj | = |SBj+1|.
Claim 6.120. |SBj+1| ≤ |SAj+1| < |SAj |.
Proof. If 10 · ˜̀A

j < `Aj , we must have `Aj 6= ˜̀A
j implying that P̃A

j 6= PA
j .

Together, these mean that j ∈ EA(54) from which we get that |SAj+1| =

|SAj | − 1 and the claim follows.

On the other hand, if 10· ˜̀Aj ≥ `Aj , we have by the contrapositive of Claim 6.119

that corrBj = 0, implying that `Bj = ˜̀A
j and |SAj | > |SBj | = |S̃Aj |. Thus, we

have j ∈ EA(56) and |SAj+1| < |SAj | follows. Moreover, we have by Line 56

that

|SAj | − |SAj+1| ≤ |SAj | − |S̃
A

j |+ 1(10`Aj <
˜̀A
j)

≤ |SAj | − |SBj |+ 1(10`Aj < `Bj) (As corrBj = 0)

≤ |SAj | − |SBj+1|, (As 10 · `Aj ≥ `Bj and |SBj | = |SBj+1|)

finishing the proof.

As |SBj | = |SBj+1| and we have Claim 6.120, we can apply item 2 of

Lemma 6.117 to get syncj+1 ≥ syncj. We can also apply item 3 of

Lemma 6.118 on A and item 2 of Lemma 6.118 on B get
∑

C∈{A,B} total
C
j −∑

C∈{A,B} total
C
j+1 ≥ 10

11
· `Aj . Combining, we get:

ζj+1 − ζj ≥
40

11
· `Aj ≥

1

4
· (`Aj + `Bj),

(
ζj+1 − syncj+1

)
−
(
ζj − syncj

)
≥ 40

11
· `Aj ≥

1

4
· (`Aj + `Bj),

and Equation 84 and Equation 85 follow.

∗ 10 · `Aj < `Bj : By the contrapositive of Claim 6.119, we have that corrBj = 0.

It follows that ˜̀A
j = `Bj and |S̃Aj | = |SBj | < |SAj |. The former implies that

10˜̀A
j = 10`Bj ≥ `Aj which together with the latter implies that j ∈ EA(56) =⇒

|SAj+1| < |SAj |. We claim that:

Claim 6.121. |SBj | − 1 = |SBj+1| ≤ |SAj+1|.
Proof. We first claim that 10 · ˜̀B

j < `Bj . Indeed, either corrAj > 0 and the

claim follows by Claim 6.119, or corrAj = 0 =⇒ ˜̀B
j = `Aj implying in turn

that 10 · ˜̀Bj = 10 · `Aj < `Bj .

As 10 · ˜̀B
j < `Bj , we have in particular that `Bj 6= ˜̀B

j implying that

P̃B
j 6= PB

j . Together, these mean that j ∈ EB(54) from which we get

that |SBj+1| = |SBj | − 1. As j ∈ EA(56), we also have:

|SAj | − |SAj+1| ≤ |SAj | − |S̃
A

j |+ 1(10`Aj <
˜̀A
j)

178

≤ |SAj | − |SBj |+ 1(10`Aj < `Bj) (As corrBj = 0)

≤ |SAj | − |SBj+1|, (As 10`Aj < `Bj and |SBj+1| = |SBj | − 1)

and the claim follows by simple rearrangement.

Assume for now that the value µAj computed by Alice in Line 56 satisfies

µAj ≤ |SAj |−|S̃
A

j |+1(10`Aj <
˜̀A
j). In this case, we apply item 4 of Lemma 6.117

to get syncj+1 − syncj ≥ −2 · `Bj . We also apply item 4 of Lemma 6.118 on A

and item 3 of Lemma 6.118 on B get
∑

C∈{A,B} total
C
j −

∑
C∈{A,B} total

C
j+1 ≥

10
(
`Aj + ˜̀A

j

)
+ 10

11
`Bj ≥ 10

(
`Aj + `Bj

)
as ˜̀A

j = `Bj . Combining, we get:

ζj+1 − ζj ≥ −18 · `Bj + 40
(
`Aj + `Bj

)
≥ 22 · (`Aj + `Bj),(

ζj+1 − syncj+1

)
−
(
ζj − syncj

)
≥ −16 · `Bj + 40

(
`Aj + `Bj

)
≥ 24 · (`Aj + `Bj),

and Equation 84 and Equation 85 follow.

On the other hand, if µAj > |SAj | − |S̃
A

j | + 1(10`Aj < ˜̀A
j), we apply item 4

of Lemma 6.117 to get syncj+1 − syncj ≥ −2
3
· `A

lastAj (|SBj |)−1
− 1

3
· `B

lastBj (|SBj |)−1
.

We also apply item 5 of Lemma 6.118 on A and item 3 of Lemma 6.118 on

B get
∑

C∈{A,B} total
C
j −

∑
C∈{A,B} total

C
j+1 ≥ 3

2
· `A

lastAj (|S̃Aj |)−1
+ `B

lastBj (|SBj |)−1
=

3
2
· `A

lastAj (|SBj |)−1
+ `B

lastBj (|SBj |)−1
as |S̃Aj | = |SBj |. Combining, we get:

ζj+1 − ζj ≥ `B
lastBj (|SBj |)−1

,(
ζj+1 − syncj+1

)
−
(
ζj − syncj

)
≥ `B

lastBj (|SBj |)−1
,

and Equation 84 and Equation 85 follow as `B
lastBj (|SBj |)−1

≥ 10
11
·`Bj ≥ 4

5
·(`Aj +`Bj)

using Corollary 6.116 and the fact that 10 · `Aj < `Bj .

– |SA
j | < |S

B
j |: Symmetric to the case above.

• corrj ≥ 1
15
·
(
`Aj + `Bj

)
: We apply item 5 of Lemma 6.117 to get syncj+1 − syncj ≥

−22 ·
(
`Aj + `Bj + corrj

)
. We also combine item 1, item 2, and item 3 of Lemma 6.118

on A and B to conclude that
∑

C∈{A,B} total
C
j −

∑
C∈{A,B} total

C
j+1 ≥ −(`Aj + `Bj).

Equation 84 and Equation 85 follow as:

ζj+1 − ζj ≥ 8000 · corrj − 200 ·
(
`Aj + `Bj + corrj

)
− 4(`Aj + `Bj) ≥ 250 ·

(
`Aj + `Bj

)
.

(
ζj+1 − syncj+1

)
−
(
ζj − syncj

)
≥ 8000 · corrj − 180 ·

(
`Aj + `Bj + corrj

)
− 4(`Aj + `Bj)

≥ 500 ·
(
`Aj + `Bj

)
− 200 ·

(
`Aj + `Bj

)
≥ 200 ·

(
`Aj + `Bj

)
.

179

References

[BE14] Mark Braverman and Klim Efremenko. List and unique coding for interactive

communication in the presence of adversarial noise. In Foundations of Computer

Science (FOCS), pages 236–245, 2014. 4

[BGMO17] Mark Braverman, Ran Gelles, Jieming Mao, and Rafail Ostrovsky. Coding

for interactive communication correcting insertions and deletions. IEEE

Transactions on Information Theory, 63(10):6256–6270, 2017. 4

[BK12] Zvika Brakerski and Yael Tauman Kalai. Efficient interactive coding against

adversarial noise. In Foundations of Computer Science (FOCS), 2012 IEEE

53rd Annual Symposium on, pages 160–166. IEEE, 2012. 4, 5, 6, 7, 11, 12, 13,

43

[BKN14] Zvika Brakerski, Yael Tauman Kalai, and Moni Naor. Fast interactive coding

against adversarial noise. Journal of the ACM (JACM), 61(6):35, 2014. 4

[BR11] Mark Braverman and Anup Rao. Towards coding for maximum errors in

interactive communication. In Symposium on Theory of computing (STOC),

pages 159–166. ACM, 2011. 4, 16

[Bra12] Mark Braverman. Towards deterministic tree code constructions. In Proceedings

of the 3rd Innovations in Theoretical Computer Science Conference, pages 161–

167. ACM, 2012. 4

[CHS18] Gil Cohen, Bernhard Haeupler, and Leonard J. Schulman. Explicit binary tree

codes with polylogarithmic size alphabet. In Ilias Diakonikolas, David Kempe,

and Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT

Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June

25-29, 2018, pages 535–544. ACM, 2018. 3, 4

[EGH16] Klim Efremenko, Ran Gelles, and Bernhard Haeupler. Maximal noise in

interactive communication over erasure channels and channels with feedback.

IEEE Transactions on Information Theory, 62(8):4575–4588, 2016. 4

[EHK18] Klim Efremenko, Elad Haramaty, and Yael Kalai. Interactive coding

with constant round and communication blowup. Electronic Colloquium on

Computational Complexity (ECCC), 25:54, 2018. 13

[EKS18] Klim Efremenko, Gillat Kol, and Raghuvansh Saxena. Interactive coding over

the noisy broadcast channel. In Proceedings of the 50th Annual ACM SIGACT

Symposium on Theory of Computing, pages 507–520. ACM, 2018. 4

180

[Gel17] Ran Gelles. Coding for interactive communication: A survey. Foundations and

Trends R© in Theoretical Computer Science, 13(1–2):1–157, 2017. 4

[GH14] Mohsen Ghaffari and Bernhard Haeupler. Optimal Error Rates for Interactive

Coding II: Efficiency and List Decoding. In Symposium on Foundations of

Computer Science (FOCS), FOCS, pages 394–403, 2014. 4

[GHK+16] Ran Gelles, Bernhard Haeupler, Gillat Kol, Noga Ron-Zewi, and Avi Wigderson.

Towards optimal deterministic coding for interactive communication. In

Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 1922–1936. Society for Industrial and Applied Mathematics,

2016. 4

[GK17] Ran Gelles and Yael Tauman Kalai. Constant-rate interactive coding is

impossible, even in constant-degree networks. In 8th Innovations in Theoretical

Computer Science Conference, ITCS 2017, January 9-11, 2017, Berkeley, CA,

USA, pages 21:1–21:13, 2017. 19

[GKR19] Ran Gelles, Yael Tauman Kalai, and Govind Ramnarayan. Efficient

multiparty interactive coding for insertions, deletions and substitutions. CoRR,

abs/1901.09863, 2019. 4

[GL16] Venkatesan Guruswami and Ray Li. Efficiently decodable insertion/deletion

codes for high-noise and high-rate regimes. In 2016 IEEE International

Symposium on Information Theory (ISIT), pages 620–624. IEEE, 2016. 16

[GMS11] Ran Gelles, Ankur Moitra, and Amit Sahai. Efficient and explicit coding for

interactive communication. In Foundations of Computer Science (FOCS), 2011

IEEE 52nd Annual Symposium on, pages 768–777. IEEE, 2011. 4

[GMS14] Ran Gelles, Ankur Moitra, and Amit Sahai. Efficient coding for interactive

communication. IEEE Transactions on Information Theory, 60(3):1899–1913,

2014. 4

[HS16] William M. Hoza and Leonard J. Schulman. The adversarial noise threshold

for distributed protocols. In Symposium on Discrete Algorithms (SODA), pages

240–258, 2016. 4

[JKL15] Abhishek Jain, Yael Tauman Kalai, and Allison Bishop Lewko. Interactive

coding for multiparty protocols. In Proceedings of the 2015 Conference on

Innovations in Theoretical Computer Science, pages 1–10. ACM, 2015. 4

[MS14] Cristopher Moore and Leonard J Schulman. Tree codes and a conjecture on

exponential sums. In Innovations in theoretical computer science (ITCS), pages

145–154. ACM, 2014. 3, 4

181

[NW19] Anand Kumar Narayanan and Matthew Weidner. On decoding cohen-haeupler-

schulman tree codes. CoRR, abs/1909.07413, 2019. 4

[Pec06] Marcin Peczarski. An improvement of the tree code construction. Inf. Process.

Lett., 99(3):92–95, 2006. 3, 4

[RS94] Sridhar Rajagopalan and Leonard J. Schulman. A coding theorem for distributed

computation. In Symposium on the Theory of Computing (STOC), pages 790–

799, 1994. 4

[Sch92] Leonard J Schulman. Communication on noisy channels: A coding theorem

for computation. In Foundations of Computer Science (FOCS), pages 724–733.

IEEE, 1992. 3, 4

[Sch93] Leonard J Schulman. Deterministic coding for interactive communication. In

Symposium on Theory of computing (STOC), pages 747–756. ACM, 1993. 3, 4,

16

[Sch96] Leonard J. Schulman. Coding for interactive communication. IEEE Transactions

on Information Theory, 42(6):1745–1756, 1996. 3, 17

[SZ99] Leonard J Schulman and David Zuckerman. Asymptotically good codes

correcting insertions, deletions, and transpositions. IEEE transactions on

information theory, 45(7):2552–2557, 1999. 16

182
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

