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Abstract

We prove that the Impagliazzo-Nisan-Wigderson [INW94] pseudorandom generator (PRG) fools or-

dered (read-once) permutation branching programs of unbounded width with a seed length of Õ(log d +
logn · log(1/ε)), assuming the program has only one accepting vertex in the final layer. Here, n is
the length of the program, d is the degree (equivalently, the alphabet size), and ε is the error of the
PRG. In contrast, we show that a randomly chosen generator requires seed length Ω(n log d) to fool such
unbounded-width programs. Thus, this is an unusual case where an explicit construction is “better than
random.”

Except when the program’s width w is very small, this is an improvement over prior work. For
example, when w = poly(n) and d = 2, the best prior PRG for permutation branching programs
was simply Nisan’s PRG [Nis92], which fools general ordered branching programs with seed length

O(log(wn/ε) logn). We prove a seed length lower bound of Ω̃(log d + logn · log(1/ε)) for fooling these
unbounded-width programs, showing that our seed length is near-optimal. In fact, when ε ≤ 1/ logn, our
seed length is within a constant factor of optimal. Our analysis of the INW generator uses the connection
between the PRG and the derandomized square of Rozenman and Vadhan [RV05] and the recent analysis
of the latter in terms of unit-circle approximation by Ahmadinejad et al. [AKM+20].

1 Introduction

Randomness, like time or space, is a computational resource. All else being equal, it is best to use as few
random bits as possible. A pseudorandom generator (PRG) is a tool for reducing the number of random
bits used by some computational process.

Definition 1.1. Let F be a class of functions B : [d]n → {0, 1}. An ε-PRG for F is a function G : {0, 1}s →
[d]n such that for every B ∈ F ,

|Pr[B(U[d]n) = 1]− Pr[B(G(U{0,1}s)) = 1]| ≤ ε,

where US is the uniform distribution over the set S. The value s is the seed length of the PRG.

Motivated by the goal of derandomizing small-space computation, a long line of research has studied
PRGs for classes F of functions computable by branching programs.
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Definition 1.2. An ordered branching program B of length n, width w and degree d computes a function
B : [d]n → {0, 1}. At time step t ∈ [n], the program maintains a state in [w], reads the next symbol σt of
the input σ ∈ [d]n and updates its state according to a transition function Wt : [w] × [d] → [w]. We allow
the transition function Wt to be different at each time step.

Moreover, there is an initial state vstart ∈ [w] and a single accept state vend ∈ [w]. Let u be the final
state of the branching program on input σ. If u = vend the branching program accepts, denoted B(σ) = 1.
For any other final state the program rejects, denoted B(σ) = 0.

We can represent a branching program as a graph, with n+1 layers and w vertices per layer corresponding
to the states of the program at each step. For all t ∈ [n], for state s in layer t − 1 and s′ in layer t, we
add edge (s, s′) with label σt ∈ [w] if Wt(s, σt) = s′. An ordered read-once branching program of length n
and width w can compute the output of an algorithm that uses logw bits of memory and n random bits, by
taking the state at each layer as the contents of memory at that time. Unusually, we will consider branching
programs where the width is unbounded (e.g., it can even be w = dn), albeit with the restriction of being a
permutation branching program.

Definition 1.3. A permutation branching program is an ordered branching program where for all t ∈ [n]
and σ ∈ [d], Wt(·, σ) is a permutation. This can be thought of as the computation being time-reversible.

Note that with this restriction the graph representation consists of n + 1 layers where each layer is the
union of d perfect matchings, with each matching corresponding to a distinct input symbol.

Restricted classes of branching programs, including permutation branching programs [Ste12,De11,KNP11],
have received attention largely because of the lack of progress on designing PRGs for general length-n width-
n branching programs since the work of Nisan three decades ago [Nis92]. There has also been work on
permutation branching programs where the input is read in an arbitrary order [RSV13,CHHL19]. Our main
theorem is that there is an explicit PRG fooling unbounded-width permutation branching programs with
seed length that is nearly logarithmic in n and has no dependence on the width w:

Theorem 1.4 (Main Theorem). For all n, d ∈ N and ε > 0, there is an explicitly computable ε-PRG
G : {0, 1}s → [d]n for permutation branching programs of length n, degree d, and arbitrary width. This PRG
has seed length

O (log d+ log n · (log log n+ log(1/ε)) .

In contrast, we show that a randomly chosen generator requires seed length Ω(n log d) to fool such
unbounded-width programs. Thus, this is an unusual case where an explicit construction is “better than
random.” (See Section 1.3 for more discussion.)

The PRG is an instantiation of the Impagliazzo-Nisan-Wigderson (INW) generator [INW94]. The proof
uses the interpretation of the INW generator in terms of the derandomized square for consistently labeled
graphs, introduced by Rozenman and Vadhan [RV05], and the analysis of the derandomized square in terms
of unit-circle approximation by Ahmadinejad et al. [AKM+20].

We emphasize that our definition of permutation branching program only allows one accepting vertex.
This assumption is crucial: a permutation branching program with unbounded width and an unbounded
number of accepting vertices can compute any Boolean function on [d]n, so nontrivial PRGs for that model
do not exist. That being said, a program with a accepting vertices can be written as a sum of a programs
with one accepting vertex each, so our PRG fools such a permutation branching program with seed length

O(log d+ log n · (log log n+ log(a/ε))).

1.1 Prior Work on the Derandomized Square

In the paper introducing the derandomized square [RV05], Rozenman and Vadhan showed how to use it
to decide undirected connectivity in deterministic log space, giving another proof of Reingold’s famous
theorem [Rei08]. As another application, they showed how to take a (polynomially long) pseudorandom
walk through a regular, aperiodic directed graph in such a way that the final vertex is distributed nearly
uniformly (i.e., is close to the stationary distribution of a truly random walk), matching a result of Reingold,
Trevisan, and Vadhan [RTV06]. As mentioned previously, they observed that this pseudorandom walk is
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described by the INW generator, assuming the graph is “consistently labeled” (see Definition 3.4). However,
their analysis does not show how to approximate short random walks (e.g., shorter than the mixing time).

In a pair of relatively recent works [MRSV17,MRSV19], Murtagh et al. showed how to approximate (in
some respects) random walks of any length n, even if n is much smaller than the graph’s mixing time. These
algorithms are only for undirected graphs, but the recent work by Ahmadinejad et al. [AKM+20] handles the
more general case of Eulerian digraphs (as well as getting stronger results for undirected graphs). Among
other tools, all three of these papers [MRSV17,MRSV19,AKM+20] use the derandomized square.

Fooling branching programs amounts to approximating bounded-length random walks through directed
graphs, which is why we rely on Ahmadinejad et al.’s results [AKM+20] for our theorem. One of their results
is a deterministic non-black-box algorithm for estimating the acceptance probability of a given polynomial-
width “regular” branching program in space Õ(log n) to within error ε = 1/ poly(n). Our theorem solves
the more challenging black-box derandomization problem, although it only works for permutation branching
programs and we have a worse dependence on the error parameter ε.

1.2 Prior PRGs for Permutation Branching Programs

Our PRG is superior to prior generators for permutation branching programs1 when the width of the
branching program is not small. Previous work has focused on the constant-width case. In that regime,
the best PRG for permutation branching programs is due to Steinke [Ste12]. He achieves seed length
O(w4 logw log n + log n log(1/ε)), which is better than our seed length by a factor of log log n. For larger
widths up to w = poly(n), the best prior PRG for permutation branching programs is by Braverman et
al. [BRRY14], who gave a PRG for regular branching programs with seed length

O(logw log n+ log n · (log log n+ log(1/ε))).

Note that when w = poly(n) and ε = Ω(1), Braverman et al.’s PRG has seed length Θ(log2 n), just like

Nisan’s PRG [Nis92], whereas our PRG has seed length Õ(log n). The case w = poly(n) is arguably the most
important case, because polynomial-width ordered branching programs correspond to uniform randomized
algorithms that always halt. Recall that low-error PRGs for polynomial-width regular branching programs
suffice for derandomizing all of RL [RTV06].

When the width is even larger than poly(n), the best prior PRG is by De [De11]. De’s work is focused
on the constant-width case, but he also gave a generator with seed length O(log(n/ε) log n) independent of
w.

1.3 Failure of the Probabilistic Method

There is something counterintuitive about the superpolynomial-width regime. Recall that for typical models
of computation, including polynomial-width degree-2 branching programs, it is straightforward to show that
there exists a nonexplicit PRG with seed length O(log(n/ε)), because a random function is a good PRG.
Furthermore, it is typically fairly trivial to prove a matching Ω(log(n/ε)) lower bound. The main challenge,
in most cases, is to devise an explicit construction matching the parameters of the probabilistic existence
proof.

However, the standard nonexplicit existence argument is not applicable to unbounded-width permutation
branching programs, because they can compute doubly-exponentially many distinct functions; in particular,
we show (Lemma 5.1) that they can compute every Boolean function B(x, y) that tests whether π(x) = y for
a permutation π : [d]n/2 → [d]n/2. And indeed, as mentioned previously, for seed length less than (n log d)/4,
we show (Theorem 5.2) that a random function is not a good PRG for this model. The reason is that when
a generator is chosen at random, with high probability, there is some permutation π such that every output
(x, y) of the generator satisfies π(x) = y.

Since the probabilistic method fails here, it might be surprising that there even exists a PRG with
near-logarithmic seed length, let alone our explicit construction. Intuitively, the INW generator manages to
outperform the probabilistic method because the second half of the INW generator’s output is information-
theoretically unpredictable given the first half, and vice versa.

1In this discussion of prior work, we focus on the case d = 2 for simplicity.
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We remark that another family of unbounded-width ordered branching programs has been studied previ-
ously: “monotone” branching programs. From Meka and Zuckerman’s work [MZ13], it follows that a random
function is a good PRG for unbounded-width monotone branching programs. In that respect, the model we
study is more unusual.

1.4 The Optimal Seed Length

These considerations raise the question of what the optimal seed length is for our model. We prove (The-
orem 6.1) that any PRG for unbounded-width permutation branching programs must have seed length at
least Ω(log d+ log n · log(1/ε)), provided ε is not extremely small.2 Thus, our explicit PRG’s seed length is
near-optimal. In fact, although the lower bound gets slightly weaker when ε is extremely small, we give a
matching refinement of our upper bound in that regime (see Corollary 4.9), providing an explicit PRG with
asymptotically optimal seed length whenever ε ≤ 1/ log n.

To the best of our knowledge, this is the first known case where, e.g., some seed length s is sufficient for
a constant-error PRG, but seed length O(s + log n) is not sufficient to achieve error 1/n. In the context of
fooling shallow circuits, similar lower bounds were proven previously for restricted classes of PRGs such as
k-wise independent distributions [LV96] or small-bias distributions [DETT10], but our lower bound holds
for any PRG whatsoever. Our lower bound uses basic tools from matching theory and information theory.

On the other hand, we show (Theorem 7.1) that a random function is at least a good hitting set generator
(HSG); the optimal seed length for nonexplicit HSGs for unbounded-width permutation branching programs
is Θ(log(nd/ε)). This is the first case we are aware of where there is a large gap between the best possible
PRGs and the best possible HSGs.

1.5 Organization

In Section 2, we introduce measures of spectral approximation for matrices and basic linear algebra facts. In
Section 3, we introduce the derandomized square, and recall two theorems relating the square to unit-circle
approximation, then prove repeated derandomized squaring provides a suitable quality approximation. In
Section 4, we use the bounds on repeated derandomized squares to analyze the INW generator. In Section 5,
we prove that a random function with seed length less than (n log d)/4 does not fool unbounded-width
permutation branching programs. In Section 6, we prove our lower bound on the seed length of any PRG
for these programs. Finally, in Section 7, we identify the optimal seed length for nonexplicit HSGs for these
programs.

2 Spectral Approximation Preliminaries

We first introduce basic notation and recall two measures of closeness of approximation for matrices, complex
spectral approximation and unit-circle approximation.

• For a complex number z ∈ C we write z∗ to denote the complex conjugate of z and |z| to denote the
magnitude of z.

• For a matrix A ∈ CN×N we write A∗ to denote its conjugate transpose and write UA = (A+A∗)/2 to
denote its symmetrization.

• We say a Hermitian matrix A is positive semidefinite (PSD) or write A � 0 if x∗Ax ≥ 0 for all
x ∈ CN . For two Hermitian matrices A,B, we use A � B to denote A−B � 0 and define � analogously.

Definition 2.1 (Complex Spectral Approximation [AKM+20]). For A,B ∈ CN×N and ε > 0, we say A is
a complex ε-approximation of B, denoted A ≈ε B, if

∀x, y ∈ CN , |x∗(B −A)y| ≤ ε

2
(||x||2 + ||y||2 − x∗UBx− y∗UBy).

For two N -vertex digraphs G̃,G with random walk matrices A,B, write G̃ ≈ε G if A ≈ε B.

2E.g., any ε ≥ exp(−(n log d)0.99) is large enough.
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We now recall the stronger notion that we will use for analyzing the generator.

Definition 2.2 (Unit-Circle Approximation [AKM+20]). For A,B ∈ CN×N and ε > 0, we say A is a

unit-circle ε-approximation of B, denoted A
◦
≈ε B, if

∀x, y ∈ CN , |x∗(B −A)y| ≤ ε

2
(||x||2 + ||y||2 − |x∗Bx+ y∗By|).

For two N -vertex digraphs G̃,G with random walk matrices A,B, write G̃
◦
≈ε G if A

◦
≈ε B.

Including the magnitude operation in the right hand side forces the approximation to be exact for all
eigenspaces with eigenvalues of complex magnitude 1, and this property is essential for the preservation of
approximation under high powers. The unit-circle approximation is developed in [AKM+20]. We rely on a
convenient equivalence between unit-circle approximation and complex approximation:

Lemma 2.3 ([AKM+20] Lemma 3.8). Let A,B ∈ CN×N and ε > 0. Then A
◦
≈ε B if and only if for all

z ∈ C with |z| = 1, zA ≈ε zB.

We will also use this basic result about complex approximation. Note that Cohen et al. [CKP+17] prove
the analogous statement where complex numbers are replaced with reals.

Lemma 2.4. Let A,B ∈ CN×N where A ≈ε B. Then (1− ε)UI−B � UI−A � (1 + ε)UI−B.

Proof. Let arbitrary x ∈ CN . Bounding the gap between the symmetrizations via the definition of complex
approximation gives

|x∗UI−Bx− x∗UI−Ax| =
∣∣∣∣12(x∗(B +B∗)x− x∗(A+A∗)x)

∣∣∣∣
≤
∣∣∣∣12x∗(B −A)x

∣∣∣∣+

∣∣∣∣12x∗(B∗ −A∗)x
∣∣∣∣

≤ 1

2
ε(||x||2 − x∗UBx) +

1

2
ε(||x||2 − x∗UBx)

= ε · x∗UI−Bx.

This directly implies x∗UI−Ax − (1 − ε)x∗UI−Bx ≥ 0 and (1 + ε)x∗UI−Bx − x∗UI−Ax ≥ 0. Since x was
arbitrary we are done.

We now state an approximate triangle inequality for unit-circle approximation, which will be a tool for
bounding the error of the generator. Previously, Cohen et al. [CKP+17] proved a similar lemma regarding
the real analogue of complex approximation.

Lemma 2.5 (Quasi-Triangle Inequality). If C
◦
≈ε2 B

◦
≈ε1 A then C

◦
≈ε1+ε2+ε1ε2 A.

Proof. Let z ∈ C satisfy |z| = 1, and let x, y ∈ CN be arbitrary. Since B
◦
≈ε1 A, by Lemma 2.3, zB ≈ε1 zA,

so

|x∗(A−B)y| ≤ ε1
2

(x∗UI−zAx+ y∗UI−zAy).

Similarly, since C
◦
≈ε2 B,

|x∗(B − C)y| ≤ ε2
2

(x∗UI−zBx+ y∗UI−zBy)

≤ ε2
2
· (1 + ε1) · (x∗UI−zAx+ y∗UI−zAy)

where the second inequality follows from Lemma 2.4. Therefore,

|x∗(A− C)y| ≤ |x∗(A−B)y|+ |x∗(B − C)y|

≤
(ε1

2
+
ε2
2

+
ε1ε2

2

)
· (x∗UI−zAx+ y∗UI−zAy).

Since x and y were arbitrary, this shows that zC ≈ε1+ε2+ε1ε2 zA. Since z was arbitrary, we are done by
Lemma 2.3.
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Corollary 2.6 (Iterated Quasi-Triangle Inequality). Suppose δ ≤ 1 and

A0
◦
≈δ A1

◦
≈δ . . .

◦
≈δ A`.

Then A0
◦
≈ε A` with ε = `δ/(1− δ)2.

Proof. Applying Lemma 2.5 inductively, we get a bound of∑̀
i=0

(`− i) · δi+1 =
`δ − δ2 · (`+ 1− δ`)

(1− δ)2
≤ `δ

(1− δ)2
.

Finally, we give a basic result used to relate unit-circle to entrywise approximation for the final generator
analysis.

Proposition 2.7. Given A,B ∈ CN×N so that A
◦
≈ε B, for all indices u, v ∈ [N ], |Au,v −Bu,v| ≤ ε.

Proof. Let eu, ev be the standard basis vectors with ones in coordinates u, v respectively and apply Defini-
tion 2.2:

|Au,v −Bu,v| = |e∗u(A−B)ev| ≤
ε

2
(||eu||2 + ||ev||2 − |e∗uBeu + e∗vBev|) ≤ ε.

3 Repeated Derandomized Squaring

3.1 Graph Labelings

Branching programs are closely related to graphs with one-way labelings.

Definition 3.1 (One-Way Labeling [RV05]). A one-way labeling of a d-regular directed multigraph G
assigns a label in [d] to each edge (u, v) such that for every vertex u, the labels of the outgoing edges of u
are distinct. If G has a one-way labeling, let G[u, i] denote the vertex v such that (u, v) is labeled i.

One-way labelings are compatible with the operation of powering a graph. One step on Gn corresponds
to n steps in G. The formal definition follows.

Definition 3.2 (Graph Powering). Let G be a d-regular directed multigraph with a one-way labeling. For
n ≥ 1, we recursively define Gn to be a (dn)-regular directed multigraph on the same vertex set with a
one-way labeling given by

G1 = G

Gn+1[v, (e1, e2)] = Gn[G[v, e1], e2],

identifying [dn+1] = [d]× [dn].

Derandomized squaring is a way of “approximating” the powers of a graph. The derandomized squaring
operation is defined in terms of graphs with additional structure, namely, a two-way labeling.

Definition 3.3 (Two-Way Labeling [RV05]). A two-way labeling of a d-regular directed multigraph G
assigns two labels in [d] to each edge (u, v): one as an edge incident to u (the “outgoing label”) and one as
an edge incoming to v (the “incoming label”). We require that for every vertex v, the outgoing labels of the
outgoing edges of v are distinct, and the incoming labels of the incoming edges of v are distinct. If G is an N -
vertex graph with a two-way labeling, we define the rotation map [RVW02,RV05] RotG : [N ]× [d]→ [N ]× [d]
by letting RotG(u, i) = (v, j) if there is an edge (u, v) with outgoing label i and incoming label j.

Naturally, if G has a two-way labeling, we think of G as also having a one-way labeling given by the
outgoing labels: RotG(u, i) = (v, j) =⇒ G[u, i] = v. Conversely, there is a natural way to extend any
consistent one-way labeling (defined next) to a two-way labeling.

Definition 3.4 (Consistent One-Way Labeling [HW93]). A consistent one-way labeling of a graph G is a
one-way labeling such that for every vertex v, the labels of the incoming edges of v are distinct. Equivalently,
G[u, i] = G[v, i] =⇒ u = v. If G has a consistent one-way labeling, then we can extend G to a graph G
that has a two-way labeling given by

RotG(u, i) = (G[u, i], i).
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3.2 Derandomized Squaring

Now we are ready to define the derandomized square operation, introduced by Rozenman and Vadhan [RV05].
Let G = (V,E) be a regular directed multigraph. In the true square G2, for each vertex v ∈ V , there is
a complete bipartite graph from in-neighbors of v to outneighbors of v, equivalent to all two-step walks
through v. A derandomized square picks out a pseudorandom subset of such walks by correlating the two
steps via edges on an expander graph H.

Definition 3.5 (Derandomized Square [RV05]). Let G be a directed d-regular multigraph on N vertices
with a two-way labeling. Let H be a directed c-regular multigraph on d vertices with a one-way labeling.
We define the derandomized square G s H to be a (cd)-regular directed multigraph on N vertices with
a one-way labeling given by

(G s H)[v, (i, j)] = G[v′,H[i′, j]],

where (v′, i′) = RotG(v, i).

Note that Definition 3.5 requires G to have a two-way labeling, but the derandomized square G s H
itself only has a one-way labeling. If we wish to apply the derandomized squaring operation a second time
to approximate G4, we must first assign incoming labels to the edges in G s H. When they introduced
the derandomized square operation, Rozenman and Vadhan studied two distinct approaches for assigning
incoming edge labels [RV05]. The first approach is to assume that we start with a graph G with a consistent
one-way labeling. In this case, G s H has a consistent one-way labeling as well (see Lemma 4.2). This
approach is closely connected to the INW generator [INW94], as we will discuss in Section 4. The second
approach is to assume that H has a two-way labeling. In this case, one can assign incoming edge labels to
G s H by setting RotGsH(v0, (i0, j0)) = (v2, (i3, j1)), where

(v1, i1) = RotG(v0, i0)

(i2, j1) = RotH(i1, j0)

(v2, i3) = RotG(v1, i2).

This is the approach taken in, e.g., the recent work of Ahmadinejad et al. [AKM+20]. Note that if G has a
consistent one-way labeling and H has a two-way labeling, the two approaches for assigning incoming edge
labels to G s H do not coincide.

Like previous work, we will use auxiliary graphs H that have small spectral expansion. For the purposes
of this paper, an undirected graph is a symmetric directed graph, i.e., a directed graph such that for every
edge (u, v), the reverse edge (v, u) is also present.

Definition 3.6. For undirected regular graph H with random walk matrix M , we define the spectral
expansion of H by λ(H) = maxx∈RN :〈1,x〉=0 ||Mx||2/||x||2, where 1 is the all-ones vector. This is equal to
the second largest eigenvalue in absolute value of M .

Ahmadinejad et al. showed that the derandomized square is a unit-circle approximation of the true
square [AKM+20]. Since the conclusion of this theorem is only a statement about the random walk matrix
of G s H, the theorem is oblivious to any edge labels in G s H.

Theorem 3.7 ([AKM+20] Theorem 5.9). Let G be a d-regular directed multigraph with a two-way labeling,
and let H be a c-regular undirected multigraph on d vertices with a one-way labeling. If λ(H) ≤ ε, then

G s H
◦
≈2ε G2.

We now use the spectral approximation measures of Section 2 to bound the error introduced by repeated
derandomized squares. In the theorem below, although Gi has a two-way labeling, when we write Gi =
Gi−1 s Hi, we merely mean equality of one-way labelings. Thus, our bound applies regardless of how the
incoming edge labels of Gi−1 s Hi are assigned, as long as they form a valid two-way labeling.

Theorem 3.8 (Repeated Derandomized Squaring). Let G0,G1, . . . ,G` be directed multigraphs on N vertices
with two-way labelings, where Gi is (d · ci)-regular. Let ε ∈ (0, 0.12), and let H1, . . . ,H` be undirected c-
regular multigraphs with one-way labelings, where Hi is on d · ci−1 vertices and λ(Hi) ≤ ε. Assume that for

every i ∈ [`], we have Gi = Gi−1 s Hi. Then G`
◦
≈8`ε G2`

0 .
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The proof of Theorem 3.8 relies on a result by Ahmadinejad et al. [AKM+20] saying that unit-circle
approximations are preserved under arbitrary true powers.

Lemma 3.9 ([AKM+20] Corollary 4.9). Let G̃,G be directed multigraphs. If G̃
◦
≈ε G then for all k ∈ N we

have G̃k ◦≈ε/(1− 3
2 ε)

Gk.

Proof of Theorem 3.8. By Theorem 3.7, for all j,

Gi+1
◦
≈2ε G2

i .

We then use Lemma 3.9 which states that we can take arbitrary powers and preserve unit-circle approx-
imation. For arbitrary i ∈ [`], ki ∈ N we have:

Gki
i+1

◦
≈ 2ε

1−3ε
G2ki
i .

Then by choosing ki = 2`−i we obtain a chain

G`
◦
≈ 2ε

1−3ε
G2
`−1

◦
≈ 2ε

1−3ε
G4
`−2

◦
≈ 2ε

1−3ε
. . .

◦
≈ 2ε

1−3ε
G2`

0 ,

relating the final derandomized square to the true power via a sequence of unit-circle approximations. Ap-

plying Corollary 2.6 gives the bound G`
◦
≈C G2`

0 where C = 2ε` · 1−3ε
(1−5ε)2 ≤ 8ε`.

4 The Pseudorandom Generator

In this section, we present the PRG of Theorem 1.4. We first state the definition of the Impagliazzo-Nisan-
Widgerson (INW) generator and relate it to the repeated derandomized square. For the remainder of the
section, fix a sequence of c-regular undirected multigraphs H1,H2, . . . where Hi has d · ci−1 vertices and has
a one way labeling. We define a sequence of generators INW0, INW1, . . . such that INWi : [d]× [c]i → [d]2

i

.

Definition 4.1 (INW Generator [INW94]). Define INW0(σ) = σ for σ ∈ [d] as the trivial PRG that outputs
its input and INWi+1(v, e) = (INWi(v), INWi(Hi+1[v, e])).

This is the recursive definition of the INW generator [INW94]. However, in the context of graphs
with consistent one-way labelings there exists an equivalent characterization in terms of the derandomized
square [RV05], which we will use for our analysis. The following two lemmas follow from the reasoning in
Rozenman and Vadhan’s work [RV05, Theorem 5.8]. We repeat the proofs here for completeness.

Lemma 4.2. Let G be a d-regular multigraph and H a c-regular undirected multigraph on d vertices. If G
has a consistent one-way labeling, then G s H has a consistent one-way labeling.

Proof. Let G̃ = G s H. By the definitions of G and s, we have G̃[v, (i, j)] = G[G[v, i],H[i, j]]. To prove

that G̃ has a consistent one-way labeling, fix (i, j), and suppose G̃[u, (i, j)] = G̃[v, (i, j)]. We must show that
u = v. Indeed, we have G[G[u, i],H[i, j]] = G[G[v, i],H[i, j]]. Since G has a consistent one-way labeling,
this implies that G[u, i] = G[v, i]. Again using the fact that G has a consistent one-way labeling, this implies
that u = v as desired.

Lemma 4.3. Let G0 be a d-regular multigraph on any number of vertices with a consistent one-way labeling.
For i ≥ 0, inductively define Gi+1 = Gi s Hi+1. Then for all v and e, Gi[v, e] = G2i

0 [v, INWi(e)].

Proof. First, note that inductively, Gi has a consistent labeling by Lemma 4.2, so Gi+1 is well-defined. Now

we show by induction on i that Gi[v, e] = G2i

0 [v, INWi(e)]. The case of G0 is immediate. Assume the
inductive hypothesis holds for i. Fix an arbitrary vertex v and edge label e = (e1, e2) ∈ [d · ci]× [c]. We have

Gi+1[v, e] = Gi[Gi[v, e1],Hi+1[e1, e2]] (Definitions)

= G2i

0 [G2i

0 [v, INWi(e1)], INWi(Hi+1[e1, e2])] (Induction hypothesis)

= G2i+1

0 [v, (INWi(e1), INWi(Hi+1[e1, e2]))]

= G2i+1

0 [v, INWi+1(e)].

Let ` = dlog(n)e, and define G : [d]× [c]` → [d]n by letting G(x) be the n-symbol prefix of INW`(x). This
will be the generator that proves Theorem 1.4.
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4.1 Approximation Guarantee

To bridge the gap between regular graphs and branching programs, we now define the execution graph of a
branching program, which is just like the standard graph representation of the program, but the length is
padded to a power of two and edges are added to wrap around from the end to the beginning.

Definition 4.4 (Branching Program Execution Graph). Let B be a permutation branching program of
width w, degree d and length n, and let m be the smallest power of 2 greater than n. Define the execution
graph of B to be a directed d-regular multigraph G on the vertex set {0, . . . ,m} × [w] with a one-way
labeling given by

G[(t, u), σ] =


(t+ 1,Wt(u, σ)) t ∈ {0, . . . , n− 1}
(t+ 1, u) t ∈ {n, . . . ,m− 1}
(0, u) t = m,

where Wt is the transition function of B at layer i as in Definition 1.3.

Remark 4.5. Since B is a permutation branching program, the execution graph G has a consistent one-way
labeling. This is not true for general regular branching programs and is why our method does not generalize.

Claim 4.6. Let ε > 0. If every Hi satisfies λ(Hi) ≤ ε
8` , then G is an ε-PRG for permutation branching

programs of degree d, length n, and arbitrary width.

Proof. Let B be an arbitrary permutation branching program of degree d and length n. Let G0 be the

execution graph of B. Let G1,G2, . . . be the graphs in Lemma 4.3. By Theorem 3.8 we have G`
◦
≈ε Gm

0 .
Let u = (0, vstart) be the start vertex in the execution graph, and let v = (m, vend) be the accept vertex.

By the definition of G0, for all σ ∈ [d]m, we have Gm
0 [u, σ] = (m, a), where a is the final state of B when it

reads σ1...n. Therefore, Gm
0 [u, σ] = v ⇐⇒ B(σ1...n) = 1.

Let M be the random walk matrix of G0 and M̃ the random walk matrix of G`. Then∣∣∣∣∣ Pr
x←U

[d]×[c]`

[B(G(x)) = 1]− Pr
σ←U[d]n

[B(σ) = 1]

∣∣∣∣∣ =

∣∣∣∣∣ Pr
x←U

[d]×[c]`

[Gm
0 [u, INW`(x)] = v]− Pr

e←U[d]m

[Gm
0 [u, e] = v]

∣∣∣∣∣
=

∣∣∣∣∣ Pr
e←U

[d]×[c]`

[G`[u, e] = v]− Pr
e←U[d]m

[Gm
0 [u, e] = v]

∣∣∣∣∣
=
∣∣∣M̃v,u −Mm

v,u

∣∣∣
≤ ε,

where the final line follows from Proposition 2.7.

To complete the proof of Theorem 1.4 we recall a result giving the existence of explicit expanders of all
sizes.

Lemma 4.7 ([MRSV19] Theorem 3.3, Definition 2.13). For all n > 1 and λ > 0, there is a c = poly(1/λ)
and a c-regular undirected multigraph H on n vertices with a one-way labeling such that λ(H) ≤ λ, and given
λ, v, and e, the vertex H[v, e] can be computed in space O(log(nc)).

Proof of Theorem 1.4. Let Hi be the expander given by Lemma 4.7 with n = d · ci−1 and λ = ε/8`. This
sequence H1,H2, . . . satisfies the requirements of Claim 4.6, so G constructed with this sequence is an
ε-PRG. It remains to show the seed length and that the generator is explicit.

By construction the `th INW generator INW` has domain [d]× [c]`. By definition ` ≤ log(n) + 1 and by
Lemma 4.7 the degree of Hi for all i is c = poly(log(n)/ε), which gives a seed length of

s = O(log d+ log n · (log log n+ log(1/ε))).

Finally, G is explicit, in that the output of the generator can be computed in working space O(s). This
follows directly from Definition 4.1 and the explicitness of the expanders.
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4.2 Improved Seed Length for Tiny Error

So far, we have designed a PRG with seed length

O(log d+ log n · (log log n+ log(1/ε))). (1)

In this section, we will present a simple reduction that yields an improved seed length when ε is extremely
small.

Lemma 4.8. Suppose G : {0, 1}s → [dm]n is an ε-PRG for length-n degree-(dm) permutation branching
programs. Identify [dm] = [d]m, and think of G as a function G : {0, 1}s → [d]mn. Then G is an ε-PRG for
length-(mn) degree-d permutation branching programs.

Proof. Let B be a length-(mn) degree-d permutation branching program. Define a length-n degree-(dm)
branching program B′ where one step of B′ simulates m steps of B. Then B′ is a permutation branching
program, and B′ computes the same function as B, so fooling B′ implies fooling B.

Corollary 4.9. For all n, d ∈ N and ε > d−n/2, there is an explicitly computable ε-PRG G : {0, 1}s → [d]n

for permutation branching programs of length n, degree d, and arbitrary width. This PRG has seed length

O

(
log d+ log

(
n log d

log(1/ε)

)
· (log log n+ log(1/ε))

)
.

Proof. If log(1/ε) < log d, then the seed length of Equation 1 is already sufficient. Assume, therefore, that

log(1/ε) ≥ log d. Let m =
⌈
log(1/ε)
log d

⌉
and let n′ = dn/me. Plugging into Equation 1, we have constructed

already a PRG for length-n′ degree-(dm) permutation branching programs with seed length s, where

s ≤ O(log(dm) + log(n/m) · (log log n+ log(1/ε))

= O

(
log(1/ε) + log

(
n log d

log(1/ε)

)
· (log log n+ log(1/ε))

)
= O

(
log

(
n log d

log(1/ε)

)
· (log log n+ log(1/ε))

)
,

where the last step uses the assumption ε ≥ d−n/2 which implies log
(
n log d
log(1/ε)

)
≥ 1. By Lemma 4.8, that

same PRG fools length-(mn′) degree-d permutation branching programs. Since mn′ > n, by truncating to
the first n symbols, we get the desired PRG for length-n degree-d permutation branching programs.

5 A Random Function is Not a Good PRG

In this section, we prove that a random generator does not fool unbounded-width permutation branching
programs, unless the seed length is Ω(n log d). The proof is based on the following family of exponential-width
permutation branching programs.

Lemma 5.1. Let n be a multiple of two, and let π : [d]n/2 → [d]n/2 be a permutation. There is a width-(dn/2)
length-n degree-d permutation branching program B such that

B(x, y) = 1 ⇐⇒ y = π(x).

Proof. Let Zd denote the ring of integers modulo d. We identify the state space [dn/2] with the space Zn/2d ,

a Zd-module. Let e1, . . . , en/2 ∈ Zn/2d denote the standard “basis vectors,” i.e., et has a 1 in coordinate t

and 0 in all other coordinates. The transition function Wt : Zn/2d × Zd → Zn/2d is given by

Wt(v, σ) =

{
v + σ · et if t ≤ n/2
π−1(π(v)− σ · et) if t > n/2.
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These transition functions satisfy the permutation condition, because

Wt(Wt(v, σ),−σ) = v.

The start state of B is the zero element 0 ∈ Zn/2d , and the accepting state is π−1(0). By induction, when B

reads an input (x, y) ∈ (Zn/2d )2, it passes through the state x in layer n/2, and ultimately it arrives at the
state π−1(π(x)− y) in the final layer. Thus, B(x, y) = 1 ⇐⇒ y = π(x).

Theorem 5.2 (Failure of the Probabilistic Method). Let n be a multiple of 2. Let s =
⌊
n log d

4

⌋
− 1, and

sample a generator G uniformly at random from all functions G : {0, 1}s → [d]n. With probability at least
3/4, there is some length-n degree-d permutation branching program B such that∣∣∣∣ Pr

σ←U[d]n

[B(σ) = 1]− Pr
x←U{0,1}s

[B(G(x)) = 1]

∣∣∣∣ = 1− d−n/2.

Proof. Let GL, GR : {0, 1}s → [d]n/2 be the left and right halves of G respectively, i.e., G(x) = GL(x)◦GR(x).
We claim that with high probability, GL and GR are both injective. Indeed, for each pair of distinct seeds
x, x′ ∈ {0, 1}s, the strings GL(x), GL(x′) are independent uniform (n/2)-symbol strings, so

Pr
G

[GL(x) = GL(x′)] = d−n/2.

The number of pairs (x, x′) is at most
(
2s

2

)
≤ 1

222s ≤ 2−3dn/2, where the last inequality is by our choice of
s. Therefore, by the union bound,

Pr
G

[GL is not injective] ≤ 2−3.

The same argument applies to GR as well, so except with probability 2 · 2−3 = 1
4 , GL and GR are both

injective. In this case, there exists a permutation π : [d]n/2 → [d]n/2 such that for every seed x,

π(GL(x)) = GR(x).

By Lemma 5.1, there is a length-n degree-d permutation branching program B such that

B(y, z) = 1 ⇐⇒ z = π(y).

Therefore, for every seed x, B(G(x)) = 1, so Prx[B(G(x)) = 1] = 1. On the other hand, since π is a
permutation, Prσ[B(σ) = 1] = d−n/2.

6 Seed Length Lower Bound

In this section, we prove our lower bound on the seed length of any PRG for unbounded-width permutation
branching programs, showing that our PRG’s seed length is near-optimal. Except when ε is extremely small,
the lower bound is Ω(log d+ log n · log(1/ε)).

Theorem 6.1. Let d ≥ 2 and n ≥ 1. Let G : {0, 1}s → [d]n be an ε-PRG for length-n degree-d permutation
branching programs of unbounded width, where d−n/2 ≤ ε ≤ 0.49. Then

s ≥ Ω

(
log d+ log

(
n log d

log(1/ε)

)
· log(1/ε)

)
.

The proof of Theorem 6.1 is based on the same family of exponential-width branching programs that we
used to prove Theorem 5.2. At an intuitive level, we argue that either the first half of the PRG’s output is
information-theoretically unpredictable given the second half, or vice versa. After all, if each half is somewhat
predictable given the other half, there ought to exist a permutation π such that the pseudorandom string
(x, y) has a noticeable chance (say at least 2ε) of satisfying π(x) = y, whereas a truly random string is
extremely unlikely to satisfy π(x) = y. It follows that the PRG must use Ω(log(1/ε)) bits of seed above and
beyond the seed length for sampling the first half or the second half individually.

To obtain a suitable permutation π, we rely on the following lemma. For intuition, note that Equations 2
and 3 immediately imply that π maximizes

∑
x p(x, π(x)).
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Lemma 6.2. For every integer N ≥ 1 and every function p : [N ]× [N ]→ [0,∞), there exist a permutation
π : [N ]→ [N ] and functions q, r : [N ]→ [0,∞) such that

∀x, y ∈ [N ], p(x, y) ≤ q(x) + r(y) (2)

and ∑
x∈[N ]

p(x, π(x)) =
∑
x∈[N ]

q(x) +
∑
y∈[N ]

r(y). (3)

Lemma 6.2 is a reformulation of a well-known fact from matching theory ; see, for example, the introduc-
tion of [DP14]. (Think of p as a weight function on the edges of the complete bipartite graph KN,N , and
think of π as identifying a perfect matching.) The lemma follows from strong linear programming duality
and the fact that the integer matching polytope equals the fractional matching polytope. For a simple proof
of the latter, see, for example, [Har09].

As outlined previously, we would now like to show that if each of X and Y is somewhat predictable
given the other, then there is a noticeable chance that π(X) = Y . To rigorously formulate and prove this
statement, we use the notion of Shannon entropy.

Definition 6.3. If X is a discrete random variable, the entropy of X is

H[X] = E
x∼X

[
log

(
1

Pr[X = x]

)]
.

If X and Y are jointly distributed discrete random variables, the joint entropy H[X,Y ] is the entropy of the
pair (X,Y ), and the conditional entropy of X given Y is

H[X | Y ] = E
y∼Y

[H[X | Y = y]] = E
x∼X
y∼Y

[
log

(
1

Pr[X = x | Y = y]

)]
.

Lemma 6.4. Let N ≥ 1, and let X and Y be jointly distributed random variables, each taking values in
[N ]. There exists a permutation π : [N ]→ [N ] such that

Pr[π(X) = Y ] ≥ 2−H[X|Y ]−H[Y |X].

Lemma 6.4 bears a resemblance to a well-known fact, which says that if we allow an arbitrary function
π (not necessarily a permutation), the maximum possible value of Pr[π(X) = Y ] is precisely the “average
min-entropy” of Y given X [DORS08]. Our lemma is an interesting “symmetric” variant.

Proof. Let π, q, r be the functions guaranteed by Lemma 6.2 for the function p(x, y) = Pr[(X,Y ) = (x, y)].
Then

Pr[π(X) = Y ] =
∑
x∈[N ]

q(x) +
∑
y∈[N ]

r(y) (Equation 3)

≥
∑

x∈Supp(X)

q(x) +
∑

y∈Supp(Y )

r(y)

=
∑

x∈Supp(X)
y∈Supp(Y )

Pr[(X,Y ) = (x, y)] ·
(

q(x)

Pr[X = x]
+

r(y)

Pr[Y = y]

)

≥
∑

x∈Supp(X)
y∈Supp(Y )

Pr[(X,Y ) = (x, y)]2 · q(x) + r(x)

Pr[X = x] · Pr[Y = y]

≥
∑

x∈Supp(X)
y∈Supp(Y )

Pr[(X,Y ) = (x, y)]3

Pr[X = x] · Pr[Y = y]
(Equation 2)

= E
(x,y)∼(X,Y )

[Pr[X = x | Y = y] · Pr[Y = y | X = x]]

≥ 2E(x,y)∼(X,Y )[log(Pr[X=x|Y=y]·Pr[Y=y|X=x])] (Jensen)

= 2−H[X|Y ]−H[Y |X].
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To apply Lemma 6.4 to analyze pseudorandom distributions for permutation branching programs, we
will use the standard chain rule for Shannon entropy.

Claim 6.5 (Chain Rule). If X and Y are discrete random variables, then H[X,Y ] = H[X] + H[Y | X].

Lemma 6.6. Let n be a multiple of two, let X and Y be random variables distributed over [d]n/2, and let
ε ≥ d−n/2. Assume that for every length-n degree-d permutation branching program B,

|Pr[B(U[d]n) = 1]− Pr[B(X,Y ) = 1]| ≤ ε. (4)

Then

H[X,Y ] ≥ 1

2

(
H[X] + H[Y ] + log

(
1

2ε

))
.

Proof. Let π be the permutation of Lemma 6.4. By Lemma 5.1, there is some length-n degree-d permutation
branching program B such that

B(x, y) = 1 ⇐⇒ π(x) = y.

Since π is a permutation, Pr[B(U[d]n) = 1] = d−n/2. Therefore, by Equation 4,

2−H[X|Y ]−H[Y |X] ≤ d−n/2 + ε ≤ 2ε.

Therefore,

H[X,Y ] =
1

2
(H[X] + H[Y | X] + H[Y ] + H[X | Y ]) (Chain Rule)

≥ 1

2

(
H[X] + H[Y ] + log

(
1

2ε

))
.

To complete the proof of Theorem 6.1, we use the following standard fact about Shannon entropy.

Claim 6.7. If X is a discrete random variable and f is a function, then H[f(X)] ≤ H[X].

Proof of Theorem 6.1. The seed length must be Ω(log d) simply because the program can compute any
arbitrary function of its first symbol. For i ≥ 0, let

ni =

⌈
log(1/ε)

log d

⌉
· 2i.

We will prove by induction on i that if a distribution X over [d]ni fools length-ni degree-d permutation
branching programs with error ε, then

H[X] ≥ i

2
· log

(
1

2ε

)
.

The base case i = 0 is trivial. For the inductive step, consider a distribution (X,Y ) over strings of length
ni, where |X| = |Y | = ni−1. Since a permutation branching program can elect to ignore some of its input
symbols, X and Y must each individually fool length-ni−1 degree-d permutation branching programs with
error ε. Therefore, by induction,

1

2
(H[X] + H[Y ]) ≥ (i− 1)

2
· log

(
1

2ε

)
.

Furthermore, since ni ≥ 2 log(1/ε)/ log d, we have ε ≥ d−ni/2, so we may apply Lemma 6.6 to complete the
inductive step.

Now consider

i =

⌊
log

(
n

dlog(1/ε)/ log de

)⌋
.
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Since ε ≥ d−n/2, we have n/2 ≤ ni ≤ n. Let X be the truncation of G(U{0,1}s) to the first ni symbols. Then

s = H[U{0,1}s ] ≥ H[G(U{0,1}s)] ≥ H[X] ≥ i

2
log

(
1

2ε

)
,

where the first two inequalities follow from Claim 6.7. If log(1/ε) > log d, then i = Ω
(

log
(
n log d
log(1/ε)

))
, so we

are done. Meanwhile, if log d = λ · log(1/ε) for some λ ≥ 1, then i = blog nc, so we have shown

s ≥ blog nc
2

· log

(
1

2ε

)
.

We also have
s ≥ Ω(log d) = Ω(λ · log(1/ε)) ≥ Ω(log λ · log(1/ε)).

Combining, we get

s ≥ Ω ((log n+ log λ) · log(1/ε)) = Ω (log(nλ) · log(1/ε)) = Ω

(
log

(
n log d

log(1/ε)

)
· log(1/ε)

)
.

7 The Optimal Seed Length for Hitting Set Generators

Let F be a class of functions B : [d]n → {0, 1}. Recall that an ε-HSG for F is a function G : {0, 1}s → [d]n

such that
∀B ∈ F , Pr[B(U[d]n) = 1] ≥ ε =⇒ ∃x ∈ {0, 1}s, B(G(x)) = 1.

Thus, an HSG is a “one-sided” variant of a PRG.
In this section, we prove that any HSG for polynomial-width permutation branching programs is an

HSG for unbounded-width permutation branching programs. As a corollary, we will show that the optimal
(nonexplicit) seed length for an HSG for unbounded-width permutation branching programs is O(log(nd/ε)).

Theorem 7.1. Let n be a positive integer, let G : {0, 1}s → [d]n be a function, and let ε > 0.

1. There is a value w = O(n/ε) such that if G is an (ε/2)-HSG for width-w length-n ordered branching
programs, then G is an ε-HSG for unbounded-width length-n permutation branching programs.

2. There is a value w = O(n2/ε) such that if G is an (ε/2)-HSG for width-w length-n permutation branch-
ing programs, then G is an ε-HSG for unbounded-width length-n permutation branching programs.

Item 2 is not necessary for the purpose of establishing the optimal seed length for HSGs for unbounded-
width permutation branching programs. We include the proof because we find it interesting.

Proof. Let B be a length-n permutation branching program. We will define a function f : [d]n → {0, 1}
such that f(x) = 1 =⇒ B(x) = 1 and Prx∈[d]n [B(x) 6= f(x)] ≤ ε/2. Furthermore, we will show that f
can be computed by an ordered branching program of width O(n/ε), as well as by a permutation branching
program of width O(n2/ε).

Think of B as a directed graph. Let V0, . . . , Vn be the layers of the graph. For each vertex v, let p→v
denote the probability that B passes through v when it reads a random input. Let q = d2n/εe. If the width
of B is less than q, we can just let f = B, so assume the width of B is at least q. For each t ∈ {0, 1, . . . , n},
define St to be the set of q vertices v ∈ Vt with the largest values of p→v. Let f(x) = 1 if the path through
B described by x stays within S0, S1, . . . , Sn and ends at the accepting vertex.

Clearly, f(x) = 1 =⇒ B(x) = 1. Now consider sampling x = (x1, . . . , xn) ∈ [d]n uniformly at random.
For each t ∈ [n] and each vertex v ∈ Vt, let Bv→ denote the permutation branching program that ignores
the first t symbols of its inputs and then simulates the last (n− t) layers of B starting at vertex v. By the
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definition of St, each v ∈ Vt \ St satisfies p→v < 1/q. Therefore,

Pr
x

[B(x) 6= f(x)] ≤
n∑
t=1

∑
v∈Vt\St

p→v · Pr
x

[Bv→(x) = 1]

<
1

q
·
n∑
t=1

∑
v∈Vt\St

Pr
x

[Bv→(x) = 1]

≤ 1

q
·
n∑
t=1

E
x

[∑
v∈Vt

Bv→(x)

]
.

Consider any fixed t and x. By the permutation condition, it is possible to work backward from the accepting
vertex to find the unique vertex v ∈ Vt such that Bv→(x) = 1. Therefore,

∑
v∈Vt

Bv→(x) = 1. Thus,

Pr
x

[B(x) 6= f(x)] ≤ 1

q
·
n∑
t=1

1 ≤ ε

2
.

An ordered branching program for f can be obtained from B by deleting all the vertices in Vt \ St and
redirecting all their incoming edges to a new ⊥ vertex. All outgoing edges from the ⊥ vertex in layer t point
to the ⊥ vertex in layer t + 1, and finally in layer n, the ⊥ vertex is a reject vertex. Clearly, the width of
this program is q + 1.

Now let us define a permutation branching program computing f of width w = q · (n + 1). Let w0 be
the width of B, and number the states so that St corresponds to [q] ⊆ [w0]. Let Wt : [w0] × [d] → [w0] be
the transition function of B. Let At,σ be the set of v ∈ [q] such that Wt(v, σ) ∈ [q]. By the permutation
condition, for each fixed t and σ, the function Wt(·, σ) is a permutation on [w0]. Therefore, there exists a
permutation πt,σ : [w0] \At,σ → [w0] \Wt(At,σ, σ).

Let Zn denote the additive group of integers modulo n, and identify [w] = [q]×Zn+1. The new branching
program’s transition function W ′t : [q]× Zn+1 × [d]→ [q]× Zn+1 is given by

W ′t (v, i, σ) =

{
(Wt(v, σ), i) if v ∈ At,σ
(πt,σ(v), i+ 1) otherwise.

Clearly, this satisfies the permutation condition. The start state is (vstart, 0) and the accept state is (vend, 0),
where vstart and vend are the start and accept states of B. If f(σ) = 1, then inductively, when our permutation
branching program reads σ, it simulates B and ultimately accepts without ever incrementing i. Conversely,
if our permutation branching program accepts σ, then i must never be incremented. Therefore, when B
reads σ, it stays within the sets S0, . . . , Sn and accepts, and hence f(σ) = 1.

Finally, if Pr[B(U[d]n) = 1] ≥ ε, then Pr[f(U[d]n) = 1] ≥ ε/2. Therefore, under either of the two
assumptions of the theorem, G hits f , and since f ≤ B, this implies that G hits B as well.

Corollary 7.2. For every n, d, ε, there exists an ε-HSG G : {0, 1}s → [d]n for unbounded-width length-n
degree-d permutation branching programs with seed length s = O(log(nd/ε)).

Proof. It is standard that there exists a nonexplicit ε-HSG for width-w length-n degree-d ordered branching
programs with seed length O(log(wnd/ε)). (Indeed, a random function is an HSG with these parameters
with high probability.)

The next claim shows that the seed length in Corollary 7.2 is optimal.

Claim 7.3. Let d ≥ 2 and n ≥ 1. Let G : {0, 1}s → [d]n be an ε-HSG for length-n degree-d permutation
branching programs of unbounded width, where d−n ≤ ε ≤ 1/3. Then s ≥ Ω(log(nd/ε)).

Proof sketch. The seed length needs to be at least Ω(log d) because the program can compute any function
of the first input symbol. The seed length needs to be at least Ω(log(1/ε)) because unbounded-width
permutation branching programs can check whether a prefix of the input is equal to a fixed arbitrary string.
Finally, let G : {0, 1}s → [d]n with s < log n; we will show that G is not a (1/3)-HSG for degree-d permutation
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branching programs. Let b : [d]→ F2 be as close to balanced as possible. Since 2s < n, there is some nonzero
vector z ∈ Fn2 such that for every seed x,

n∑
i=1

zi · b(G(x)i) = 0.

The function B(x) =
∑n
i=1 zi ·b(xi) can be computed by a width-2 degree-d permutation branching program,

and Prx[B(x) = 1] ≥ 1/3.

8 Directions for further research

The obvious challenge is to obtain optimal PRGs for unbounded-width permutation branching programs
in the large-error regime. We conjecture that our seed length lower bound is tight, i.e., there is a PRG
construction that eliminates the log log n factor from our PRG’s seed length.

We showed that there is a nonexplicit HSG with seed length O(log(n/ε)) for unbounded-width permu-
tation branching programs. A natural problem is to match the seed length with an explicit construction. In
the constant-width case, Braverman et al. [BRRY14] presented a simple HSG for the more general model of
regular branching programs with seed length O(log n), independent of ε.

We wonder what PRGs can be constructed for the more challenging model of arbitrary-order permutation
branching programs. Reingold, Steinke, and Vadhan [RSV13] and Chattopadhyay et al. [CHHL19] have
constructed PRGs for the small-width case. By using one generator for large ε and the other for small ε,
one can achieve seed length Õ(log n · log(1/ε)) when the width is a constant. For the unbounded-width case,
explicit constructions or bounds for nonexplicit PRGs would be interesting.

Finally, we wonder whether our results can be generalized to the case of unbounded-width regular branch-
ing programs. Our HSG existence proof (Theorem 7.1 and Corollary 7.2) does generalize to the regular case3,
but the PRG situation is unclear.
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