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Abstract

Consider the problem of computing the majority of a stream of n i.i.d. uniformly random bits. This
problem, known as the coin problem, is central to a number of counting problems in different data stream
models. We show that any streaming algorithm for solving this problem with large constant advantage
must use Ω(logn) bits of space. We extend our lower bound to proving tight lower bounds for solving
multiple, randomly interleaved copies of the coin problem, as well as for solving the OR of multiple copies
of a variant of the coin problem. Our proofs involve new measures of information complexity that are
well-suited for data streams.

We use these lower bounds to obtain a number of new results for data streams. In each case there
is an underlying d-dimensional vector x with additive updates to its coordinates given in a stream of
length m. The input streams arising from our coin lower bound have nice distributional properties, and
consequently for many problems for which we only had lower bounds in general turnstile streams, we
now obtain the same lower bounds in more natural models, such as the bounded deletion model, in
which ‖x‖2 never drops by a constant fraction of what it was earlier, or in the random order model, in
which the updates are ordered randomly. In particular, in the bounded deletion model, we obtain nearly
tight lower bounds for approximating ‖x‖∞ up to additive error 1√

k
‖x‖2, approximating ‖x‖2 up to a

multiplicative (1 + ε) factor (resolving a question of Jayaram and Woodruff in PODS 2018), and solving
the Point Query and `2-Heavy Hitters Problems. In the random order model, we also obtain new lower
bounds for the Point Query and `2-Heavy Hitters Problems. We also give new algorithms complementing
our lower bounds and illustrating the tightness of the models we consider, including an algorithm for
approximating ‖x‖∞ up to additive error 1√

k
‖x‖2 in turnstile streams (resolving a question of Cormode

in a 2006 IITK Workshop), and an algorithm for finding `2-heavy hitters in randomly ordered insertion
streams (which for random order streams, resolves a question of Nelson in a 2018 Warwick Workshop).
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1 Introduction

The data stream model is an important model for processing sequences of data that are too large to be
stored in memory. Common examples of data streams include search logs, scientific data, sensor networks,
and network traffic. In many of these applications, an algorithm is only allowed one pass over the stream
and must store a short summary of what it has seen in order to answer a pre-defined query. We refer the
reader to several surveys on data streams [17, 30, 31].

The arguably most fundamental problem in data streams is maintaining a counter C. Formally, suppose
we are given a sequence of at most n updates of the form C ← C + 1 in an arbitrary order and we are
allowed one pass over this sequence. While one can compute the exact count C using log2 n bits of space,
one can use significantly less space to compute a constant factor multiplicative approximation with constant
probability; indeed, this is possible using only O(log log n) bits of space using a probabilistic counter [28].
However, suppose now we see a stream of both positive and negative updates of the form C ← C + 1 or
C ← C − 1. In this case Ω(log n) bits of space are needed even to compute a constant factor approximation
with constant probability [24].

But perhaps surprisingly, suppose now we see a uniformly random sequence of n i.i.d. updates of the
form C ← C + 1 or C ← C − 1, meaning each update is independently C ← C + 1 with probability 1/2 and
C ← C − 1 with probability 1/2. The following question is open:

How much space is needed to compute a constant factor approximation to C w.h.p. for a uniformly
random sequence of n i.i.d. updates of the form C ← C + 1 or C ← C − 1 (each with probability 1/2)?

This problem is also known as the coin problem and has been studied in the context of branching program
and circuit complexity [8, 33, 14, 25], though such results only give an Ω(log log n) space lower bound for
our problem. This is far from the best known upper bound, which is O(log n) bits.

Despite the large body of work on data streams, and the simplicity of this question, why is it still open?
To understand this, we look at common techniques for proving lower bounds in data streams. Arguably
the most common is communication complexity, and in particular, 2-player communication complexity. We
(typically) give half of the stream to Alice, and half of the stream to Bob, and Alice runs the streaming
algorithm on her input. She then transmits the state of her algorithm to Bob, who continues the execution
of the streaming algorithm on his input. If the output of the streaming algorithm can be used to solve the
communication game, then the amount of memory of the streaming algorithm must be at least the 1-way
communication of the game. Unfortunately, this approach fails for the above problem. Indeed, with large
probability the count on Alice’s stream will be C

√
n in absolute value, for a constant C > 0, and it suffices

for Alice to just send O(1) bits to round the value of C to a smaller constant. Then Bob adds this to the
count of his stream, which is also random, and obtains a constant factor approximation with large constant
probability. The issue is the random order of the stream makes this problem too easy.

When 2-player communication complexity fails, one often resorts to multiplayer communication complex-
ity to prove lower bounds. We again give each player a portion of the stream and perform the reduction
above, passing the state of the streaming algorithm from one player to the next. However, when lower bound-
ing the communication for the purposes of streaming, existing techniques have only looked at the blackboard
or coordinator models of communication. In the blackboard model, the message sent from one player to
the next is seen by all future players. For the question above, suppose we arbitrarily partition the stream
into pieces and give a piece to each player. In this case, it is known that if each player randomly rounds
their own input count so that the expectation is their actual count, then one can obtain a constant factor
approximation to the overall count from these rounded counts with large probability [22]. This O(log log n)
bit upper bound is a simultaneous protocol (since each player’s message does not depend on prior messages)
and thus also holds in the so-called coordinator model. In fact, an o(log n) bit upper bound holds whenever
the diameter of the underlying communication topology is sub-polynomial; see [22] for further discussion.

This helps explain why the above question is still open. Existing techniques simply do not capture
the intuition for the problem above that each player needs to forward many bits of information about the
inputs of previous players; in both communication models described above, the players only need to concern
themselves with their own input, and let the blackboard or coordinator figure out the rest. While there are
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some topology-dependent communication lower bounds [12, 13], the problems studied in those works are not
useful here and logarithmic factors for those problems are not accounted for, but here this is the main goal.

1.1 Our Results

We resolve the complexity of the coin problem. Namely, we show the following:

Theorem 1. (Informal Coin Problem Lower Bound) Let X1, . . . , Xn be a stream of uniform i.i.d. {0, 1}
bits. Let A be any 1-pass streaming algorithm which reads X1, . . . , Xn in order and outputs the majority bit
with probability at least 0.999. Then A uses Ω(log n) bits of memory.

Here, the probability is over the input and the randomness used. Our proof of Theorem 1 uses techniques
from information complexity, elaborated upon below. We note that the right definition of the information
cost of a streaming algorithm is crucial for proving Theorem 1. We give two different definitions: (1)∑n
i=1 I(Mi;X≤i) and (2)

∑n
i=1

∑
j≤i I(Mi;Xj |Mj−1), where Mi is the memory state of the algorithm after

processing the i-th bit Xi. Here I(A;B) denotes the mutual information between random variables A and
B. We show that, for any deterministic algorithm computing the majority with 0.999 probability, both of
these quantities are Ω(n log n) (Theorem 13 and Claim 6). On the other hand, if the streaming algorithm is
allowed to use private randomness (the streaming algorithm uses fresh randomness at every time step), then
there exists a majority-computing algorithm such that the information cost as defined in (1) is O(n), but
for (2) it is still Ω(n log n) for any streaming algorithm computing majority that uses private randomness
(Corollary 14). Nevertheless, since we want a memory lower bound for the streaming algorithm for the
uniform distribution on X1, . . . , Xn, we can always assume w.l.o.g. that the algorithm is deterministic by
first fixing its private randomness. For deterministic algorithms with memory r, (1) evaluates to at most
n · r, thus implying a memory lower bound of Ω(log n) bits. We also prove that for any streaming algorithm
(possibly using private randomness) with memory r, (2) evaluates to at most n · r, thus also implying a
memory lower bound of Ω(log n) bits. We then have a separation between information and space complexity
for streaming algorithms (using private randomness) with respect to (1).

We next consider the problem of solving multiple copies of the coin problem simultaneously. Through a
non-standard use of the data processing inequality and fundamental properties of mutual information, we
are able to prove the following direct sum like theorem.

Theorem 2. (Informal Direct Sum Theorem) Suppose we are given a sequence of kn i.i.d. stream updates,
the j-th of which has the form Yj = (Xj , sj), where sj is chosen uniformly in {1, 2, . . . , k} and Xj is chosen
uniformly in {0, 1}. We interpret this as k independent instances of the coin problem, where the `-th instance
of the coin problem consists of the sequence of bits Xj1 , . . . , Xjr , where sjt = ` for each t = 1, . . . , r. Suppose
there is a streaming algorithm which, given an ` ∈ [k] at the end of the stream, outputs the majority bit of
the `-th instance of the coin problem with probability at least 1 − 1

4000 . Then the algorithm uses Ω(k log n)
bits of memory.

Here, the probability is over the input stream, private randomness used, and `, which is chosen uniformly
at random from [k]. We refer to the problem in Theorem 2 as the k-Coins Problem for a random order.

We also prove a variant of Theorem 2 (Corollary 17) in which we see exactly one update to each of the k
instances, followed by exactly one update to each of the k instances again, and so on, repeating for n steps.
That is, sj = (j − 1) mod k + 1 for all j ∈ [nk]. We call this the Simultaneous k-Coins problem.

Next, using the notion of information cost for streaming algorithms, we show the hardness of calculating
sums in the coin problem even up to large gaps. Consider the following problem. For a sequence of ±1
integers, let S denote their sum. We say that the instance is a 0-instance if |S| ≤ 4

√
nα and a 1-instance if

|S| ≥ 4
√
nβ, which we refer to as the GapCoin(α, β) problem. We show the following:

Theorem 3. Let M be a streaming algorithm (that might use private randomness) which outputs, with
probability at least 2/3, the answer 0 on every input with |

∑
i xi| ≤ 4

√
nα and 1 on every input with
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|
∑
i xi| > 4

√
nβ. Then (for α ≥ 1 and c2 ≤ β ≤ poly(log n), where c2 > 0 is a large enough constant)

n∑
i=1

i∑
j=1

I(Mi;Xj |Mj−1) > Ω(n log n/(β log2 β)11),

where X is drawn from Un.

We then look at the problem of solving the OR of k copies of the GapCoin(α, β) problem for log k ≤ α ≤
β ≤ log2 k. We refer to this as the k-OR Problem. Using Theorem 3 and a direct sum on the information
cost, under the uniform distribution over all the k instances, we show that solving the OR of multiple copies

requires Ω
(

k logn
polylog(k)

)
bits of memory (Theorem 20). If the ratio β/α is sufficiently close to 1, we show how

to remove the polylog(k) factor, obtaining an optimal Ω(k log n) bit lower bound for this problem (Theorem
21), which is useful for our applications.

We next give a number of new lower bounds and upper bounds in the data stream model.

1.2 Data Stream Applications

Our lower bound for the coin problem gives new lower bounds for a number of problems in different data
stream models. We now introduce these models and problems.

The most general data stream model is the turnstile model, for which there is an underlying d-dimensional
vector x, initialized to 0d, which undergoes a long sequence of additive updates of the form xij ← xij + ∆j ,
where ij ∈ {1, . . . , d}, ∆j ∈ {−1, 1} and (ij ,∆j) is the j-th stream update.

A less general, though often more realistic model, is the bounded deletions model for which one still has
that the updates ∆j can be positive or negative, but one is promised that the norm ‖x‖2 = (

∑d
i=1 x

2
i )

1/2

never drops by more than an α-fraction of what it was at any earlier point in the stream, for a parameter
α. We will focus on constant α in this work.

We let xj denote the number of occurrences, or frequency of item j. While it is impossible to store accurate
approximations to all frequencies with a small amount of memory, there are many useful summaries that
suffice for applications.

1.2.1 “Lifting” Lower Bounds to the Bounded Deletions Model

There are a large number of lower bounds known in the turnstile model but they involve very sudden drops
to the norm of the underlying vector and consequently do not hold in the bounded deletions model. Using
our lower bounds for the coin problem, for a number of applications we are able to obtain improved lower
bounds in the bounded deletions model, matching those that previously were only known to hold in the
turnstile model.

Estimating the maximum frequency. This is denoted by ‖x‖∞ = maxi∈{1,...,d} |xi|.
By a reduction from the so-called Index problem in 2-player communication complexity, this problem

requires Ω(d) bits of memory to approximate up to a multiplicative factor of 2, even in random-order streams
[10]. A common goal is to instead output an approximation to ‖x‖∞ with additive error 1√

k
‖x‖2 [27, 19, 26].

One can prove an Ω(k logm) lower bound for turnstile streams using the standard Augmented-Indexing
communication problem, see [24] for similar reductions. However, this lower bound inherently requires the
norm of the underlying vector x to grow to poly(m) and then drop to 2i for a random i ∈ {1, 2, . . . , logm}.
These logm scales are precisely the source of the logm factor in the lower bound, while the k factor comes
from having to solve a problem requiring k bits of information to solve at each scale. In the bounded deletions
model one cannot reduce the norm of x by more than a constant factor and thus, only an Ω(k) lower bound
is known and standard1.

1One can prove this via a reduction from the Index problem. In this problem, Alice has a vector a ∈ {0, 1}k/9, and Bob has
an index j ∈ {1, 2, . . . , k/9}. In the stream, Alice presents the updates xi ← xi + 1 for each i for which ai = 1. She sends the
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We resolve this question in the bounded deletions model, up to poly(log k) factors. Our lower bound
applies even to outputting an estimate Z with both additive and multiplicative error:

‖x‖∞ −
‖x‖2√
k
≤ Z ≤ γ‖x‖∞ +

‖x‖2√
k

(1)

Theorem 4. (‖x‖∞-Approximation) Any streaming algorithm achieving (1) in the bounded deletions model
with probability at least 2/3, over its private randomness, requires Ω(k logm) bits of memory if γ = 1, and

Ω
(

k logm
polylog(k)

)
bits of space for any 1 < γ ≤ polylog(k).

Estimating the variance. Another problem is to estimate the variance of the frequencies, or equivalently
‖x‖2. Here the goal is to output an estimate within (1±ε)‖x‖2. It is known [24] that this requires Ω(ε−2 logm)
bits of memory in the turnstile model. The proof again requires the underlying vector x to grow to poly(m)
and then drop to 2i for a random i ∈ {1, 2, . . . , logm}. These logm scales are the source of the logm factor
in the lower bound, while the ε−2 factor comes from a single-scale lower bound.

In [21] it was asked if one could obtain a better upper bound for this problem in the bounded deletions
model. The only known lower bound is Ω((log(1/α))/ε2) [21], given the promise that at each time in the
stream, ‖x‖2 is never an α-fraction below of what it was at an earlier time in the stream.

We show the input stream we generate for the variance estimation problem, using the Simultaneous
k-Coins problem with k = Θ(ε−2), satisfies the bounded deletions property (with constant α) and we
resolve the question in [21] in the negative.

Theorem 5. (Euclidean Norm Estimation) Any streaming algorithm in the bounded deletions model (with
the α above being an absolute small enough constant) which outputs a number within (1 ± ε)‖x‖2, with
probability at least 2/3 over its private randomness, requires Ω((logm)/ε2) bits of memory.

For this theorem, and throughout, we assume ε−2 ≤ min{m, d}0.9, which is the most common setting.

The Point Query Problem. Another related problem is the `2-Point Query Problem, in which one is
given a single index j at the end of the stream and one would like to estimate xj up to additive error ε‖x‖2
with constant probability over the private randomness, see, e.g., [18, 15].

Again this can be shown to require Ω(ε−2 logm) bits of memory in the turnstile model, using standard
techniques as in [24]. However, again the logm factor occurs in the lower bound because of the need to have
logm geometric scales and drastically shrink the norm of x at the end of the stream. This is also optimal
given an O(ε−2 logm + log d) bit upper bound using the CountSketch data structure [11] (here we only
need a constant number of rows in the data structure of [11], since we only need to be correct on a fixed
index j. We can also first hash {1, 2, . . . , d} to a universe of size m2 using a pairwise independent hash
function specified with O(log(dm)) bits.).

No lower bound better than Ω(ε−2 + log d) was known in the bounded deletions model. We are able to
show an Ω(ε−2 logm) bit lower bound in the bounded deletions model.

Theorem 6. (Point Query Problem) Any streaming algorithm which, in the bounded deletions model, solves
the `2-Point Query Problem, requires Ω(ε−2 logm) bits of memory.

The `2-Heavy Hitters Problem. Let F2 = ‖x‖22 =
∑d
i=1 x

2
i be the second moment of the data stream.

We consider the `2-heavy hitters problem.

Definition 1. In the `2-Heavy Hitters Problem with parameter ε, one should output a set S which (1)

contains all indices i ∈ [d] for which x2
i ≥ ε2 ·F2, and (2) does not contain any i ∈ [d] for which x2

i ≤ ε2

2 ·F2.
Further, for all i ∈ S, one should output an estimate x̂i with |x̂i − xi| ≤ ε‖x‖2.

state of the streaming algorithm to Bob, who inserts xj ← xj + 1. If aj = 1, then ‖x‖∞ = 2, otherwise ‖x‖∞ = 1. Note that
1√
k
‖x‖2 < 1

2
, so from the approximate output Bob can deduce aj and thus the space complexity of the streaming algorithm,

which is Alice’s message, must be at least Ω(k), the one-way communication complexity of the Index problem.
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In the bounded deletions model, it was observed in [21] that an O(ε−2(log(1/ε)) log(dm)) bits of space
algorithm [7, 6] applies (for any constant α in the definition of the bounded deletions model). There is a
trivial Ω(ε−2 log d) lower bound just to write down the identities of the potentially ε−2 many `2-heavy hitters.
However, in the bounded deletions model, it was unknown if there was also an Ω(ε−2 logm) lower bound,
which may be much larger than Ω(ε−2 log d) if d� m.

We show an Ω(ε−2 logm) lower bound in the bounded deletions model, which together with the trivial
Ω(ε−2 log d) lower bound, implies the algorithms of [7, 6] are optimal up to a log(1/ε) factor.

Theorem 7. (`2-Heavy Hitters Problem) Any streaming algorithm which, in the bounded deletions model,
solves the `2-Heavy Hitters Problem with sufficiently large constant probability, over the private randomness,
requires Ω(ε−2 logm) bits of memory.

1.2.2 Random Order Streaming Lower Bounds

Another well-studied model is the random order model. Here, as in the turnstile model, we allow both
positive and negative updates (see Section 1.2.3 below for further discussion on the necessity of this for the
following problems), though the order of the stream is not allowed to be worst case, but rather the stream
updates arrive in a uniformly random order. Even in this model we are able to prove strong lower bounds
for both the Point Query Problem and `2-Heavy Hitters Problem:

Theorem 8. (Point Query Problem) Any streaming algorithm which, in the random order model, solves
the `2-Point Query Problem with sufficiently large constant probability, over the random order and private
randomness, requires Ω(ε−2 logm) bits of memory.

Theorem 9. (`2-Heavy Hitters Problem) Any streaming algorithm which, in the random order model, solves
the `2-Heavy Hitters Problem with sufficiently large constant probability, over the random order and private
randomness, requires Ω(ε−2 logm) bits of memory.

1.2.3 On the Tightness of the Models in Our Lower Bounds: New Upper Bounds

For the problems above, we consider if stronger lower bounds are possible in different models.
In the more general turnstile model, in the 2006 IITK Workshop on Data Streams, in Open Problem

3, Cormode2 asks whether it is possible to estimate ‖x‖∞ up to additive error 1√
k
‖x‖2 using fewer than

O(k(log d) logm) bits of memory, which was the previous upper bound.
Given that we have shown a lower bound of Ω(k logm) for this problem in the bounded deletions model,

it is natural to ask whether our lower bound can be improved to Ω(k(log d) logm) for turnstile streaming
algorithms. We show this is impossible, by giving an algorithm for solving this problem and using O(k(log k+
log logm) log(dm)) bits of memory, which works in the turnstile model and thus also the bounded deletions
model, showing our lower bound is tight up to a log k + log logm factor.

Theorem 10. (`∞-Estimtion) There is a turnstile streaming algorithm which approximates ‖x‖∞ up to addi-
tive error 1√

k
‖x‖2 with probability at least 2/3 (over the private randomness) and using O(k(log(dm))(log k+

log logm)) bits of memory.

Another natural question that Theorem 8 and Theorem 9 raise is whether our lower bounds hold even
in the more restrictive insertion-only model. Recall that stream updates have the form xij ← xij + ∆j in
general, and the insertion-only streaming model requires ∆j = 1 for all j.

We show this is impossible in the insertion-only model, at least if the stream updates are randomly
ordered. Recalling that our lower bounds Theorem 8 and Theorem 9 hold in the random order model, this
shows that our lower bounds in Theorem 8 and Theorem 9 require deletions to be allowed as well.

To show this, we give a new algorithm which solves both the `2-Heavy Hitters problem and the `2-Point
Query Problem in the insertion-only model, for randomly ordered streams.

2https://www.semanticscholar.org/paper/OPEN-PROBLEMS-IN-DATA-STREAMS-AND-RELATED-TOPICS-ON-Agarwal-Baswana/

5394ab5bf4b66bfb52f111525d6141a3226ba883
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Theorem 11. (`2-Heavy Hitters and `2-Point Query Problems) There is a streaming algorithm in the
insertion-only model, with randomly ordered updates, which, with probability at least 2/3 (over the private
randomness and the random order), solves the `2-Heavy Hitters problem and `2-Point Query Problem. For
the `2-Heavy Hitters problem, the memory is O(ε−2(log d + log2(1/ε) + log2 logm) + logm) bits. For the
`2-Point Query Problem, the memory is O(ε−2(log2(1/ε) + log2 logm) + logm+ (log(1/ε) log d)) bits.

For the `2-Heavy Hitters problem, our estimates x̂i for those i in our output set S satisfy the stronger
guarantee that x̂i = (1± ε)xi (see Section 5.1 for details).

Notice that our algorithm for `2-heavy hitters bypasses the Ω(ε−2 logm) lower bound for bounded dele-
tions for d � m. Theorem 9 also gives a separation between the turnstile model, with randomly ordered
updates, and insertion-only models with randomly ordered updates. The above theorem is stated with error
probability 1/3 for simplicity, though can be generalized to any constant failure probability.

Also, note that the previous best algorithm for heavy hitters in insertion streams, even if one assumes
a random order, was O(ε−2(log 1/ε) log(dm)) bits of memory. In addition to a worse memory bound, the
previous algorithm was not able to obtain the stronger guarantee that x̂i = (1± ε)xi for all i in the output
set.

In the Warwick Workshop on Data Summarization, Jelani Nelson explicitly poses the question for
insertion-only streams3, if one can achieve O(ε−2 log(dm)) bits of memory in insertion-only streams, namely,
if the O(log 1/ε) factor can be removed from the upper bound. Our Theorem 11 shows that this is indeed
possible in insertion-only streams, at least when the stream updates are randomly ordered. Indeed, under the
standard setting of parameters when log d = Ω(log2(1/ε)+log2 logm), our algorithm givesO(ε−2 log d+logm)
bits of memory, significantly improving the earlier O(ε−2(log(1/ε) log(dm))) bit algorithm.

1.3 Our Techniques

We start by describing the techniques involved in proving our main lower bound for the coin problem.

1.3.1 Technical Overview of our Lower Bound for the Coin Problem

The starting point for our lower bounds is Theorem 1, which states that a streaming algorithm that computes
the majority of n bits with a constant probability (≥ 0.999) requires Ω(log n) bits of memory. Note that
simple counting gives a streaming algorithm that uses exactly log n bits of memory.

The intuition for the lower bound is that a successful streaming algorithm will need to “remember”
Ω(1) bits of memory about each “scale” of its past bits. At step i the memory state Mi will remember
Ω(1) bits about each of the blocks {Xi}, {Xi−2..i−1}, {Xi−6..i−3}, {Xi−14..i−7}, etc. Here the notation
Xa..b is used to represent the input bits Xa, Xa+1, . . . , Xb. There are two main challenges in realizing this
approach: (1) coming up with the correct information-theoretic formalism (the definition of “remember”),
which is sufficiently strong for memory lower bounds and downstream applications; (2) proving the actual
lower bound on the information remembered.

Sidestepping the first challenge for a moment, let us sketch the proof of the lower bound on the information
remembered. Let us focus at scale 2j . Let t = n/2j , and let S1, . . . , St be the sums of each of the t blocks of

Xi’s (so that Sm =
∑m·2j
`=(m−1)·2j+1X`). Mm·2j represents the memory state of the the streaming algorithm

after the m-th block.
If Mm·2j contains δ � 1 information about Sm (conditioned on M(m−1)·2j ), then conditioned on Mm·2j

the sum Sm has almost full variance (i.e., Var(Sm|Mm·2j ,M(m−1)·2j ) > 2j · (1 − ε)). Conditioned on the
memory states Mm·2j , m ∈ [t], the sums Sm become independent. Therefore, if Mm·2j contains δ � 1
information about Sm (conditioned on M(m−1)·2j ) for the vast majority of m’s, then conditioned on the
Mm·2j s, the variance of the sum

∑
Sm =

∑
Xi remains close to the full variance n, which means that the

algorithm gains no advantage in estimating the majority of the Xi’s (Claim 5).
One complication of the above outline is that it shows that Mi must have Ω(1) information on average

about the block Xi−2j+1..i. However, this range actually contains j different scales. For the argument to

3See Slide 86 here: https://warwick.ac.uk/fac/sci/dcs/research/focs/conf2017/abstracts/jn-slides.pdf

6



work we need Mi to contain Ω(1) information on average about Xi−2j+1..i−α·2j for some constant α > 0.
We prove this — essentially by showing that Mi cannot have Ω(1) information about the sum of 2j bits
(low variance in the sum) if it only has information about the last α · 2j of them (Claim 4). Putting those
together, we get that Mi has Ω(1) bits of information about Ω(log n) disjoint blocks of X’s (the different
scales).

It is important to choose the correct conditioning, while defining the “information” Mi knows about X≤i.
Consider the following simple example: the streaming algorithm M samples n/104 {±1} bits and starts the
counter with their sum, that is, M1 ∼ Bin(n/104, 1/2) (this is the binomial distribution over n/104 uniformly
random ±1 bits). Then M keeps adding the input stream to the counter, that is Mi = Mi−1+Xi. M outputs
sign(Mn). It is not hard to see that this algorithm computes the majority of the Xi’s correctly with a high
constant probability. However, Mi contains almost no information about Xi (only O(1/n)). In fact, the
information between Mi and X≤i (I(Mi;X≤i)) is O(1). And hence,

∑
i I(Mi;X≤i) is O(n). However, we

show that for deterministic algorithms, even this information quantity works to show an Ω(logn) lower
bound.

For randomized algorithms that use fresh randomness at every time step, to bypass the above example,
when measuring the amount of information Mi has about Xi, we should condition on Mi−1 — this captures
the fact that when creating Mi out of Mi−1 we must store a bit capturing the value of Xi. More generally,
when measuring the mutual information between Mi and the block Xi−2j+1..i−α·2j , we condition on Mi−2j .
It appears that the most natural way to formalize this conditioning is by defining the total information cost
of a streaming algorithm as

IC(M,Un) :=

n∑
i=1

i∑
j=1

I(Mi;Xj |Mj−1). (2)

Here, Un represents the uniform distribution over {+1,−1}n and X is drawn from Un. It will be interesting
to see whether this quantity finds other streaming applications. For computing the majority, the discussion
above implies that, on average

I(Mi;Xj |Mj−1) = Ω

(
1

i− j + 1

)
.

Coming back to the first challenge, the quantity IC(M,Un) from (2) is bounded from above by
∑n
i=1H(Mi),

and can be used in direct sum contexts (with private randomness).

1.3.2 A Direct Sum Theorem and the OR of Many Copies

In this section, we give a brief overview of our lower bounds for two generalizations of the coin problem.
First, we consider a direct sum theorem for solving the coin problem for k copies. Before we delve into the
lower bound for the problem defined in Theorem 2, let us consider the following problem P1: M sees k
instances of the coin problem (Y 1, Y 2, . . . , Y k) in a stream as follows: at the i-th step, M sees the i-th input
bit for each instance, that is, Y ji ,∀j ∈ [k]. At the end, M is given a random index ` ∈ [k] and is asked to
output the majority of the `-th instance. A slight variant of the Problem P1 turns out to be a very important
special case for our applications, and we refer to this as the Simultaneous k-Coins Problem.

The notion of information cost as defined in (2) suffices to prove an Ω(n log n) information lower bound
for streaming algorithms that use private randomness. Therefore, a direct sum theorem can be readily used
to prove that any streaming algorithm M that solves P1 with probability at least 0.9999 requires Ω(k ·n log n)
information cost. A direct sum theorem just uses the fact that

n∑
i=1

i∑
j=1

k∑
l=1

I(Mi;Y
l
j |Mj−1Y

<l
j ) ≥

k∑
l=1

 n∑
i=1

i∑
j=1

I(Mi;Y
l
j |Mj−1)

 (3)

(because Y lj is independent of Y <lj ) given Mj−1). Therefore, for at least half fraction of ls,

n∑
i=1

i∑
j=1

I(Mi;Y
l
j |Mj−1) ≤ 2

k

n∑
i=1

i∑
j=1

k∑
l=1

I(Mi;Y
l
j |Mj−1Y

<l
j ).
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And for at least 9/10 fraction of ls, the success probability is at least 0.999. Let l′ be an l in the intersection,
Using M , one can obtain a streaming algorithm for solving a single instance of the coin problem, which
uses private randomness to generate the other instances (the fact that ∀j, Y j1 , Y

j
2 , . . . Y

j
n are independently

drawn is crucial for this step), has information cost equivalent to
∑n
i=1

∑i
j=1 I(Mi;Y

l
j |Mj−1) and success

probability of at least 0.999.
We stress that the direct sum theorem here is subtle. For example, we cannot give the streaming algorithm

all updates to instances `′ for `′ > ` at the end of the stream, and still prove a direct sum theorem, which
a priori one might suspect since it is reminiscent of techniques in 2-player communication complexity used
to prove lower bounds for the Augmented-Indexing problem [24]. Indeed, one can show that if k = log n
and one is given all updates to all coins `′ > ` at the end of the stream, then O(log n) bits suffice to solve
this problem, rather than the Ω(log2 n) bits one would expect from a direct sum of log n copies. Indeed, we
leave it to the reader to check that the algorithm which replaces 0 updates to the j-th coin by −104j and
1 updates to the j-th coin by 104j in the stream, and maintains a single counter of the sum of all O(log n)
scaled updates across all k coins, and then subtracts all (scaled) updates to all coins `′ > ` at the end of the
stream, can be used to determine the bias of the `-th coin with only O(log n) bits of memory.

Things get trickier for the problem defined in Theorem 2 (P2). In P2, M is not given all the k instances
in parallel, but randomly interleaved in a stream of kn independent updates, of the form Yj = (Xj , Sj),
where Sj is chosen uniformly in {1, 2, . . . , k} and Xj is chosen uniformly in {0, 1}. Proving a lower bound
for this version of the k-Coins Problem is crucial for the streaming applications downstream.

The proof of Theorem 2 is more challenging than the direct sum theorem mentioned above. One of the
difficulties faced is that the number of updates in P2 is kn instead of n, and hence to prove an Ω(k log n)
memory lower bound, we need an Ω(k2 · n log n) information lower bound on M . To prove the theorem, we
first divide the information cost of the streaming algorithm into information cost for the individual instances
as follows.

nk∑
i=1

i∑
j=1

I(Mi;Xj |Mj−1) =
∑
s∈[k]

nk∑
i=1

∑
j∈[i] and Sj=s

I(Mi;Xj |Mj−1)

Then we show, through a non-standard use of the data processing inequality, that a streaming algorithm
that solves the k-Coins Problem even when Sjs are fixed as Sj = (j−1) mod k+ 1, requires Ω(k ·n log n)
information cost each for a large fraction of individual instances, and a direct sum can be applied henceforth.
In fact, we can show the above information cost lower bound for a typical sequence {Sj}j∈[nk] when the Sj
are i.i.d. uniform in [k], hence, proving a Ω(k log n) memory lower bound and Theorem 2.

We next consider the second generalization, that is, a memory lower bound for solving the OR of k
coin problems, that is, output 1 if the majority bit of any of the k instances is 1 and 0 otherwise. In
communication complexity, the most famous information lower bound for a communication problem that
solves the OR of n instances, is that for two-party set-disjointness. [4] gave a simple lower bound of Ω(n) on
the communication required to solve set-disjointness, using a direct sum theorem. There are three steps to
using a direct sum theorem to prove such a lower bound: (1) define the information cost for a communication
protocol that decomposes into a sum of information costs on single instances; (2) show that an algorithm for
solving the OR can be used for solving a single instance; and (3) show that the information cost for solving
a single instance is large. Set-disjointness is equivalent to solving the OR of n AND instances. The authors
of [4] complete these three steps by lower bounding the information cost of any communication protocol
that solves a single instance (AND of two bits), on an input distribution which is supported on {00, 01, 10}.
However, our techniques can only be used to lower bound (2) when the input X = (X1, X2, . . . , Xn) to the
coin problem is drawn from a product distribution as M is only allowed to use private randomness.

We sidestep the above issue by changing the underlying coin problem to the following (P3). Consider the
following problem: given a sequence of n {−1,+1} bits X1, X2,. . ., Xn, output 0 if |

∑
iXi| ≤ 4

√
nα and 1

if |
∑
iXi| ≥ 4

√
nβ. We refer to this as the GapCoin(α, β) problem. We will always set α = log k and prove

our bounds for 4α ≤ β = O(log2 k). To describe our results, we focus on the case α = log k and β = 4α; the
general proof is similar. For a sequence of n ±1 integers, let S denote their sum. We say that the instance
is a 0-instance if |S| ≤ 4

√
n log k and a 1-instance if |S| ≥ 8

√
n log k. The crucial fact is that: when S is

8



the sum of n i.i.d. uniform ±1 integers, then with high probability, |S| ≤ 4
√
n log k. Thus, the probability

of a 0 instance is high under the uniform distribution on {−1,+1}n. Hence, an algorithm A for solving the
OR of k P3 problems, can be used to develop an algorithm A′ for a single instance of P3, where A′ privately
generates the other instances, to be given to A, one step at a time. Also, whenever A outputs a 0, the answer
to P3 is definitely 0 and whenever A outputs 1, with high probability, the other instances all evaluate to 0,
and hence, the answer to P3 is also 1. This completes Step (2). Step (1) is easy to show and follows similarly
to the discussion given for our direct sum theorem for P1. Step (3) is what requires significant technical

work. We prove that any streaming algorithm that solves P3 requires Ω
(

logn
(log k log log k)22

)
bits of memory.

To give a glimpse of our proof, we partition our stream into t = (log k log log k)2 blocks and use a corollary
of Theorem 1 on n/t sized blocks (the following theorem), which might be of independent interest.

Theorem 12 (Informal Version of Claim 3). Let B be a streaming algorithm (that might use private ran-
domness) of length m. Then, for ε > 0, one of two things holds:

1. Either IC(B,Um) = Ω(m logm · ε10).

2. Or there exists a distribution µ on m bits, such that

• ∀x ∈ {−1,+1}m, µ(x) ≤ 2Um(x),

• Ex∼µ[
∑
i xi] ≥ Ω

(√
m

log(1/ε)

)
, and

• ‖B(Um)−B(µ)‖1 < ε.

Recall that Um represents the uniform distribution over {−1,+1}m. Thus, for a streaming algorithm
that has low information cost, there exists a distribution µ, which has a significantly higher number of ones,
on average, compared to the uniform distribution, but B cannot distinguish between µ and the uniform
distribution. Informally, to construct µ, we strategically shift some weight from −x to x, and show that if B
could distinguish between µ and uniform, it would have “solved majority” with low information cost. Next,
we show that if there is a low information cost streaming algorithm that solves P3, then it should be able to
distinguish between µt and U tm, which would contradict Theorem 12.

When the ratio of β
α is sufficiently close to 1 in the GapCoin(α, β) problem, which is important for our

applications, we give a more direct proof of the k-OR problem, which we call the k-OR small gap problem.
The proof is via a direct reduction from the Simultaneous k-Coins Problem. Given ` ∈ [k] at the end
of the stream in an instance of the Simultaneous k-Coins Problem, we can add 4

√
n log k updates to

the `-th coin. This makes the sum of the `-th coin way more than the average, and by making the ratio β
α

subconstant (though still large enough to be meaningful in the applications), determining the solution to
the GapCoin(α, β) problem decides the majority bit of the `-th coin.

1.3.3 Technical Overview of our Algorithms

`∞-Estimation. Our algorithm is inspired from a universe reduction technique of [23], which shows for
0 < p < 2, there is a randomized oblivious linear map which takes a vector x and produces a vector y so that
with good probability, if i is a so-called `p-heavy hitter of x, then yh(i) is an `p-heavy hitter of y, where h
corresponds to a hash function defining y. The oblivious linear map is nothing other than a CountSketch
map, with stronger randomness guarantees than what is usually needed. Here we need to argue this holds
for p = 2, which in a certain sense simplifies the analysis of [23], but on the other hand, we also need to
argue that there are no entries of y that are heavy but do not correspond to any heavy hitter in x. We need
this because we need ‖y‖∞ ≈ ‖x‖∞, which was not necessary in [23].

After applying the universe reduction, we then feed y into a CountSketch data structure itself to find
all of the `2-heavy hitters of y together with good approximations to their frequencies. Taking the maximum
frequency found gives us a good approximation to ‖y‖∞, and in turn to ‖x‖∞. This can all be done in
one pass because the universe reduction and CountSketch maps are both linear and oblivious; hence, so
is their composition. The CountSketch map uses O(k(log d) logm) bits of space and finds the `2-heavy
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hitters, but since we are applying it to the vector y, which has dimension poly(k log d), we obtain overall
O(k(log k + log log d) logm) bits of space.

`2-Heavy Hitters and `2-Point Query. Our algorithm for `2-Point Query is a slight modification to our
algorithm for the `2-Heavy Hitters problem, so we only describe the latter. Our algorithms for both problems
do not use the Gaussian process and chaining-based arguments in the previous O(ε−2(log(1/ε)) log(dm))
space algorithms [7, 6]. Rather, the arguments are elementary, which could be of independent interest.

Our key subroutine Main1 assumes we know F2 and m in advance (m is the number of elements in the
stream). Our actual algorithm Main runs a constant-factor F2-estimate on the side and invokes Main1
with this F2-estimate. It creates a new instance of Main1 each time the stream length doubles, and only
maintains two instances of Main1 at a time, the current one starting from when m last doubled, and the
previous one which completed the last time m doubled. This enables us to reuse space. Since Main1 ends
up being run on a stream of length 2i for some known value of i with 2i = Θ(m), and since our F2-estimate
is a good enough constant factor approximation, by using the random order property of the stream we can
argue that the heavy hitters found by invoking Main1 on this substream contain the actual heavy hitters
for the entire stream, and no items that are sufficiently far from being heavy in the actual stream.

The idea behind our Main1 algorithm is to partition the stream into consecutive and contiguous equal-
sized blocks B1, . . . , Bt, where t ≈ ε

√
F2. This means that each Bi has size about ε−1m/

√
F2. An impor-

tant idea is that for each item j ∈ [d], we randomly assign O(log(1/ε)) numbers h1(j), . . . , hO(ln(1/ε))(j) ∈
{1, 2, . . . , t} to it. A key observation is that if f2

j ≥ ε2F2, or equivalently fj ≥ ε
√
F2, then because the stream

is randomly ordered, j has a constant probability of appearing in each block Bi. Moreover, it has probability
1−O(ε2) of appearing in a Bi for which i is one of the O(log(1/ε)) numbers which is assigned to j. We say:

Definition 2. An item j ∈ [d] is excited in Bi if j occurs in block Bi and if i is one of the O(log(1/ε))
numbers which is assigned to j.

Since there are only O(ε−2) total heavy hitters, by a union bound each heavy hitter is excited in some
Bi. Moreover, one can also show that the set Si of items j for which both j ∈ Bi and h`(j) = i for some
`, 1 ≤ ` ≤ O(log(1/ε)), has size O(ε−2 log(1/ε)) with good probability; in particular by a union bound with
constant probability, simultaneously every heavy hitter is in such a set.

We next reduce Si to at most a single element by looking at the next block Bi+1. We cannot afford
to store Si because it has size O(ε−2 log(1/ε)) and each item identifier requires O(log d) bits. Instead, we
choose another hash function g which maps the elements of Si to a range of size poly(ε−1 logm), and we
only store the hash, under g, of the items in Si. For each of these hashed identities g(j), we check if there
is a unique item j′ in Bi+1 for which g(j′) = g(j) and for which hq(j′) = i for some q ∈ [10 log(1/ε)]. It is
crucial that we also filter by ensuring that hq(j′) = i for some q ∈ [10 log(1/ε)], as otherwise since the blocks
are polynomially (in m) large there will be elements j′ for which g(j′) = g(j), since the range of g is only
poly(ε−1 logm). However, almost all of the items j in these next blocks are not excited in Bi.

A crucial property here is that for an actual heavy hitter j, when it is excited in a block Bi, it will also
have good probability of occurring in the next block. Since there are O(log(1/ε)) values of q, we can make
sure this happens with probability 1 − poly(ε) for one of the blocks that j is excited in. Further, we can
ensure with good probability j is the unique item with this property. The intuition is that items with very
low frequency are very unlikely to be excited in a block Bi, and then occur in the very next block. On the
other hand, there are only a small number of items with large frequency, and these items will all be excited
in blocks far away from each other since they are each only excited in a few random blocks.

An issue is that since there are mΩ(1) blocks for which we start tracking the Si, there will still be blocks
not containing a heavy hitter which pass the above test, meaning that after inspecting Bi+1, there will
be exactly one hashed identity with count equal to 1. Indeed, this happens with poly(ε) probability. To
counter this, we run a subroutine Identify to take the single hashed identifier which passed the above test
for a given block and track the actual (unhashed) identifier over the next O(ε−2 logm) blocks, counting
the number of times the item occurs. The first issue is we do not know the actual identifier at this point,
since we could not afford to store it when creating the set Si corresponding to the block Bi where this
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identifier occurred. We first look at the next 100 log(1/ε) blocks in our Identify procedure to recover the
actual identifier with probability 1− poly(ε). This probability is large enough to ensure for all blocks which
actually passed the test and contained a single heavy hitter, that we recover the corresponding heavy hitter.
However, this probability is not enough to rule out false positives. However, now that we have an actual
identifier, we count its number of occurrences over the next 4000ε−2 logm = O(ε−2 logm) blocks. At this
point, the probability a non-heavy hitter occurs in a significantly large fraction of these blocks is 1/ poly(m),
which is small enough that we can ensure there are no false positives.

One issue which arises with tracking an actual O(log d)-bit identifier over the next O(ε−2 logm) blocks,
is that we may be tracking up to O(ε−2 logm) actual identifiers at any given time, and this requires
Θ(ε−2(log d) logm) bits of space, which is too large. We fix this by enforcing that if we are ever already
tracking an actual identifier, then we do not begin tracking a new one. This may affect correctness now,
since we decide to not track some actual identifiers, and therefore may not find one of the heavy hitters.
Fortunately, because of the random order property, the locations of the heavy hitters are spread out in the
stream, and one can show under our condition that m ≥ poly(ε−1 log(d)) (as otherwise there is a simpler
algorithm we describe), that we never run into this problem.

One last problem is that we may start tracking a non-heavy hitter in the 4000ε−2 logm blocks preceding
where we start tracking a heavy hitter j, and therefore since we have already invoked Identify, we may
decide not to start tracking item j. Note that if the probability of tracking the actual identifier of a non-
heavy hitter were only poly(ε), and say, ε were not too small, then we almost certainly would start tracking
a non-heavy hitter among the 4000ε−2 logm blocks preceding that of a heavy hitter, and therefore decide
not to start tracking the heavy hitter. Fortunately though, the probability of tracking the actual identifier
of a non-heavy hitter can be shown to be at most poly(ε/ log(dm)), for a large enough polynomial, and
this probability is small enough to argue that for every heavy hitter, for any of the 4000ε−2 logm blocks
preceding it, we do not start tracking an actual identifier of some other item. Thus, when we process the
block containing the heavy hitter, we are free to start tracking its actual identifier.

Acknowledgments. We would like to thank Jelani Nelson and Huacheng Yu for their many useful com-
ments and discussions.

2 Preliminaries

First, we define some notation used in the paper. For a, b ≥ 0, a
√
b represents b1/a. For a positive integer n,

we use [n] to denote the set {1, 2, . . . , n}. Mostly through the paper, we will use capital letters to denote
random variables, for example, X and Y . Given a sequence of random variables, X1, X2, . . . , Xn, we use the
notation Xa..b (for 1 ≤ a < b ≤ n) to represent the set {Xa, Xa+1, . . . , Xb} of random variables. Further, we
use X≤i, X>i, X−i and Xa..b∩S to represent the set {Xj}j≤i, {Xj}j>i, {X1, . . . , Xn} \ {i} and {Xj}j∈[a,b]∩S
of random variables respectively (if the random variable X0 is non empty, then the sets are defined according
starting with X0). We sometimes use these notations in superscripts when the indexing of the random
variables is done in the subscript. Given a random variable X, we use the notation x ∼ X to denote the
process that X takes value x with probability Pr[X = x]. We use the notation x ∈R S to represent that x
is drawn uniformly at random from the set S. We use Var[X|Y ] and Var[X|Y = y] to denote the expected
variance of the random variable X conditioned on Y , and conditioned on the event Y = y, respectively. To
represent the distribution of X conditioned on Y = y, we will use the notation Xy. Throughout the paper,
we will denote bits by the sets {0, 1} and {−1,+1} interchangeably. We assume log is base 2 unless specified
otherwise.

We use Stirling’s approximation [32] for factorials in the paper, which states that4

√
2πnn+ 1

2 e−n ≤ n! ≤ enn+ 1
2 e−n.

4Here, e, known as the Euler’s number, is a mathematical constant, and the base of the natural logarithm.
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We use Un to represent the uniform distribution on {−1,+1}n. Ber(p) represents the distribution on
{0, 1} with the probability of 1 being p. Bin(k, p) denotes the Binomial distribution over k bits where each bit
is 1 with probability p and 0 otherwise. Bin(k, p) is just the distribution of the sum of k i.i.d. (independently
and identically distributed) random variables from Ber(p). We use the following facts about the binomial
distribution in the paper.

We also use the following fact about the entropy of the Bin(n, 1/2) distribution [1]:

H(Bin(n, 1/2)) =
1

2
log2(π · e · n/2) +O(1/n).

Next, we give a brief prelude to the tools used from information theory. For a probability distribution
P : X → [0, 1], H(P ) =

∑
x∈X P (x) log2(1/P (x)) represents the entropy of the distribution P . We also use

H(X) to denote the entropy of the the random variable X. I(X;Y |Z) represents the mutual information
between X and Y conditioned on the random variable Z. I(X;Y |Z) = H(X|Z) − H(X|Y, Z), where
H(X|Y ) = Ey∼YH(X|Y = y). Next, we describe some of the properties of mutual information used in the
paper.

1. (Chain Rule) I(AB;C) = I(A;C) + I(B;C|A).

2. If I(D;B|A,C) = 0, then I(A;B|C) ≥ I(A;B|C,D).

3. If I(D;B|C) = 0, then I(A;B|C) ≤ I(A;B|C,D).

Property 1 follows from the chain rule for entropy (H). Properties 2 and 3 follow from the observation that

I(A;B|C) + I(D;B|A,C) = I(AD;B|C) = I(D;B|C) + I(A;B|C,D).

As mutual information is non-negative, if I(D;B|A,C) = 0, then I(A;B|C) ≥ I(A;B|C,D) (because
I(D;B|C) ≥ 0) and if I(D;B|C) = 0, then I(A;B|C) ≤ I(A;B|C,D).

Given two distributions P,Q : X → [0, 1], the KL-Divergence from Q to P is defined as

D (P‖Q) =
∑
x∈X

P (x) log2

(
P (x)

Q(x)

)
.

Given two distributions P,Q : X → [0, 1], ‖P −Q‖1 =
∑
x∈X |P (x)−Q(x)| represents the distance between

the two distributions. We use Pinsker’s inequality5, which states that,

‖P −Q‖1 ≤
√

2 D (P‖Q).

We will also use the following relationship between mutual information I(X;Y ) and the KL-Divergence,
which can be easily verified by plugging in the definitions:

I(X;Y ) = Ey∼Y D (Xy‖X) .

In words, the mutual information between random variables X and Y is the expected KL-Divergence from
the distribution X to the distribution of X conditioned on Y = y.

We will also make use of the following chaining inequality from [6]:

Lemma 1. (Lemma 9 of [6], restated) If k = Ω(1/ε2), and Π is a k × n matrix of i.i.d. random variables
uniform in {+1,−1} (or even 8-wise independence suffices), then

E[supt |‖Πf (t)‖22 − k‖f (t)‖22|] ≤ εk‖f (m)‖22,

where f (1), . . . , f (m) are the frequency vectors of an n-dimentional insertion-only stream. Here f (t) represents
the frequency vector after the first t updates.

5https://www.cs.bgu.ac.il/~asml162/wiki.files/pollard-pinsker.pdf.
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Here, ‖x‖2 represents the `2-norm of x, that is, ‖x‖22 =
∑
i x

2
i .

Next, we define some of the terms used in the paper in relation to streaming algorithms. Let M denote
the sequence of states of a streaming algorithm on a stream of length n, defined as follows: Mi represents
the memory state of the algorithm after i steps. We can treat Mi as a random variable that depends on the
input stream and the randomness used by the streaming algorithm. We say M uses private randomness, if
at all time steps, it only has access to independent sources of randomness. In fact, we prove lower bounds
for all sequences of messages (random variables) M = M0,M1, ...,Mn of the form Mi = Mi(Mi−1, Xi, Ri)
where Ri is the private randomness used at step i. Here, Mi can be an arbitrary function of Mi−1, Xi and
the Ris, and does not need to be defined by a low-space streaming algorithm. For the sake of our lower
bounds, we will refer to streaming algorithms as encompassing such sequences of messages. We simulate the
streaming algorithm M by an n-party communication protocol, where the i-th party, denoted Pi, receives
the i-th input of the stream. Communication is allowed only from Pi to Pi+1 for all i ∈ [n−1]. To obtain an
n-party protocol from a streaming algorithm M , given X1 (the first input of the stream), P1 can simulate
the first step of the streaming algorithm by using private randomness and X1. After the simulation, P1 sends
the memory state m1 as its message to P2, and so on. Given mi and Xi+1, Pi+1 can simulate the (i+ 1)-st
step of M using private randomness and send mi+1 as its message to Pi+2. Pn outputs what the streaming
algorithm outputs. We define a new notion of information cost for such an n-party communication protocol
(B):

IC(B,µ) :=

n∑
i=1

i∑
j=1

I(Bi;Xj |Bj−1),

where Xi represents the input to party Pi, X = (X1, . . . , Xn) is drawn from the distribution µ, and Bi
represents the message sent by Pi to Pi+1. Bi depends on Bi−1, Xi and the private randomness used
by Pi (we will refer to B0 as the random variable generating the starting message for party P1). In this
paper, we will sometimes treat M as a communication protocol without the reduction mentioned above.
We define further notions of information cost for n-party protocols as needed subsequently in the paper.
As noted in Remark 1, for streaming algorithms M that only use private randomness, we show that when
X = (X1, . . . , Xn) is drawn from the uniform distribution over {0, 1}n, then

n∑
i=1

i∑
j=1

I(Mi;Xj |Mj−1) ≤
n∑
i=1

|Mi| ≤ n · (space used by M),

where |Mi| is the length of the i-th message, which is at most the memory used by M . Thus, we can lower
bound the space required by M to perform a task by lower bounding the information cost of any such n-party
protocol that performs the same task.

3 Lower Bounds

In this section, we prove our main lower bound for the coin problem, and then extend it to a number of direct
sum like variants which will be useful for the streaming applications. We start with a subsection collecting
non-standard lemmas about the binomial distribution. We then prove a “one-scale” version of our lower
bound, which only gives an Ω(n) information lower bound (Ω(1) lower bound on memory) for the streaming
coin problem. We finally extend this to a “log n-scales” lower bound, giving us our ultimate Ω(log n) bit
memory lower bound.

3.1 Variance-Information Properties of the Binomial Distribution

Our first claim concerns how conditioning affects the variance of a binomial random variable.

Claim 1 (The Effect of Conditioning on Variance). There is a universal constant C1 > 0 such that the
following holds. Let X ∼ Bin(k, 1/2), and let E be an event with Pr[E] = ε (for ε < 1/2). Then

E[(X − k/2)2|E] ≤ C1k log(1/ε). (4)
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Proof. This is a corollary of Hoeffding’s inequality, which asserts

Pr[(X − k/2)2 ≥ tk] ≤ 2e−2t.

Therefore, Pr[(X − k/2)2 ≥ c ln(1/ε)k] ≤ 2ε2c. And for ε < 1/2,

E
[
(X − k/2)2 · 1(X−k/2)2>ln(1/ε)k

]
≤

k∑
c=1

(c+ 1) ln(1/ε)k · 2ε2c = O(kε2 log(1/ε)).

The next claim is more involved, and argues that if a random variable Y reveals low information about
a binomial random variable X, then X still has high variance conditioned on a typical value of Y . One of
the key insights of our overall strategy is using variance as a convenient measure of uncertainty of the sum
of bits, and relating it to how much information is revealed about the input. The proof of the next claim
uses Claim 1.

Let φ denote the function φ(ε) :=
√
ε log(1/ε). Note that φ(ε)→ 0 as ε→ 0. Let εφ = 1

e2 . Observe that,
φ is monotonically increasing and concave on the interval [0, εφ] (it is in fact concave everywhere but we do
not need this).

Claim 2 (Low Information implies High Variance). Let X ∼ Bin(k, 1/2) be a binomial random variable,
and let Y be any random variable. Then, for all k ≥ 1, if

I(X;Y ) ≤ ε ≤ 2εφ,

then
Ey Var[X|Y = y] ≥ (1− C2φ(ε/2)) · (k/4),

for a universal constant C2 ≥ 1.

Proof. We have
ε ≥ I(X;Y ) = EyD (Xy‖X) .

Recall that Xy represents the distribution of X conditioned on the event Y = y. Note that with probability
≥ 1− ε/(2εφ) over the choice of Y , we have D (Xy‖X) ≤ 2εφ. Consider now a fixed y such that

D (Xy‖X) = δ ≤ 2εφ.

By Pinsker’s Inequality, we have
‖Xy −X‖1 ≤

√
2δ.

As X ∼ Bin(k, 1/2) is a binomial random variable, Var(X) = k/4. We next prove that Var(Xy), given that

‖Xy −X‖1 ≤
√

2δ, is not much less than k/4. For this, we define another random variable Z which has the
following joint distribution with X. Let I = {x | Pr[X = x] ≤ Pr[Xy = x]}.

Pr[Z = z,X = x] =


Pr[X = x] if x ∈ I and z = x

Pr[Xy = x] if x /∈ I and z = x

Pr[X = x]− Pr[Xy = x] if x /∈ I and z = ⊥
0 otherwise

It is easy to see that: for each value of x, Pr[Z = x] = min{Pr[X = x],Pr[Xy = x]}. And, Pr[Z = ⊥] =

‖Xy −X‖1/2 ≤
√
δ/2. Let E be the event that Z = ⊥. Denote

η := Pr[E] = ‖Xy −X‖1/2 ≤
√
δ/2.

Let X1, Z1 and X2, Z2 be two independent sets of random variables with the above defined joint distribution.
Let E1 and E2 be the corresponding events. Then we have (as η < 1/2)

Var(Xy) =
1

2
· Ex1,x2∼Xy (x1 − x2)2
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≥ 1

2
· Ez1∼Z1,z2∼Z2

(z1 − z2)2 · 1z1 6=⊥∧z2 6=⊥ (for all z 6= ⊥, Pr[Z = z] ≤ Pr[Xy = z])

=
1

2
· Ex1∼X1,x2∼X2

(x1 − x2)2 · 1¬E1∧¬E2
(conditioned on event ¬E, Z is equal to X)

= k/4− 1

2
· Ex1∼X1,x2∼X2

(x1 − x2)2 · 1E1∨E2

≥ k/4− Ex1∼X1,x2∼X2
(x1 − x2)2 · 1E1

= k/4− Ex1∼X1,x2∼X2
((x1 − k/2)− (x2 − k/2))2 · 1E1

= k/4− Ex1∼X1(x1 − k/2)2 · 1E1 − Pr[E1] · Ex2∼X2(x2 − k/2)2

≥ k/4− C1kη log(1/η)− kη/4 (using Claim 1 and that Pr[E1] = η)

> k/4− C ′kη log(1/η2) (for large enough constant C ′ and η < 1/2)

= k/4− C ′k · φ(η2)

≥ k/4− C ′k · φ(δ/2).

The last inequality holds since φ is monotone increasing on [0, εφ], and δ/2 belongs to this interval. Next,
we use the concavity of the function φ on [0, εφ] to obtain:

Ey∼Y Var(Xy) ≥ Ey∼Y Var(Xy) · 1D(Xy‖X)≤2εφ

≥ Ey∼Y 1D(Xy‖X)≤2εφ ·
(
k/4− C ′k · φ

(
1

2
D (Xy‖X)

))
≥ Pr[D (Xy‖X) ≤ 2εφ] ·

(
k/4− C ′k · φ

(
1

2
· Ey∼Y [D (Xy‖X) | D (Xy‖X) ≤ 2εφ]

))
≥ (1− ε/(2εφ)) · (k/4− C ′k · φ(ε/2))

≥ (1− C2φ(ε/2)) · (k/4)

The third from last inequality follows using the concavity of the function φ on the interval [0, εφ]. The second
to last inequality follows from the fact that Ey∼Y [D (Xy‖X) | D (Xy‖X) ≤ 2εφ] ≤ Ey∼Y [D (Xy‖X)] ≤ ε and
that φ is monotone increasing on [0, εφ]. The last inequality follows, for a large enough constant C2 ≥ 1,
since φ(ε) ≥ ε (for ε ≤ 2εφ).

Claim 2 implies the following simple corollary involving an additional independent random variable ∆.
Intuitively, the next claim shows that if the variance of the binomial random variable X conditioned on a
typical value of Y = y is a constant factor smaller than without the conditioning, then Y must contain
information about the magnitude of X. To formalize the notion of “Y containing information about the
magnitude of X”, we claim that not just I(X;Y ) > ε, but even if we add a Binomial random variable ∆ of
magnitude comparable with that of X, the mutual information I(X + ∆;Y ) > ε is still non-vanishing. We
will need this stronger statement later in the lower bound proof.

Claim 3 (Corollary of Low Information implies High Variance). Let k be an integer, and let ζ > 0 and
m < ζk. Let X ∼ Bin(k, 1/2) be a binomial random variable, and let Y be any random variable. In addition,
let ∆ ∼ Bin(m, 1/2) be distributed independently from X and Y . Then if

I(X + ∆;Y ) ≤ ε ≤ 2εφ,

then
Ey Var[X|Y = y] ≥ (1− C2φ(ε/2)− ζ) · (k/4).

Proof. By Claim 2 we have that

Ey Var[X + ∆|Y = y] ≥ (1− C2φ(ε/2)) · ((k + ζk)/4) ≥ (1− C2φ(ε/2)) · (k/4).

Since ∆ is independent of X and Y , we have

Ey Var[X|Y = y] = Ey Var[X + ∆|Y = y]−Var(∆) ≥ (1− C2φ(ε/2)− ζ) · (k/4).
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One additional ingredient we will need in our proof is the following claim. One should think of S and T
as intermediate messages Pb and Pa in the n-party communication protocol, with T being the message sent
by a party a < b. The claim then lower bounds, conditioned on T , how much information S (or message
sent by party b) reveals about a subset of the input stream from a + 1 to b, given that it reveals a lot of
information about the sum of these bits plus noise (Zk+1, ..., Zk+m). Note that the noise is what makes this
lower bound go through — this is why we needed the stronger lower bound on I(X + ∆;Y ) and not just on
I(X;Y ) in Claim 3.

Claim 4 (Relating Information of Individual Bits to the Sum). Let k and m be integers. Let {Zi}k+m
i=1 be

i.i.d. ∼ Ber(1/2) and let W =
∑k+m
i=1 Zi. Let S, T be any random variables such that (1) T is independent

of all Zi’s (that is, I(T ;Z1, ..., Zk+m) = 0); (2) S and T are independent from Zk+1, . . . , Zk+m, even when
conditioned on Z≤k (that is, I(ST ;Zk+1, ..., Zk+m|Z≤k) = 0). Let t ≤ k be an integer. Then

I(Z1, . . . , Zk−t;S|T ) ≥ I(W ;S|T )− C4 ·
t

m
, (5)

where C4 > 0 is a universal constant.

Proof. We have

I(W ;S|T ) + I(Z≤k−t;S|TW ) = I(W,Z≤k−t;S|T ) = I(Z≤k−t;S|T ) + I(W ;S|Z≤k−tT ),

and, therefore,

I(Z≤k−t;S|T ) = I(W ;S|T ) + I(Z≤k−t;S|WT )− I(W ;S|Z≤k−tT )

≥ I(W ;S|T )− I(W ;S|Z≤k−tT )

≥ I(W ;S|T )− I(W ;S,Zk−t+1..k|Z≤k−tT )

= I(W ;S|T )− I(W ;Zk−t+1..k|Z≤k−tT )− I(W ;S|Z≤kT )

= I(W ;S|T )− I(W ;Zk−t+1..k|Z≤k−tT ) (because I(W ;S|Z≤kT ) = 0 as explained below)

= I(W ;S|T )− I(W ;Zk−t+1..k|Z≤k−t). (T is independent of all Zis; explained below)

The second to last equality follows from the following calculations:

I(W ;S|Z≤kT ) ≤ I(W,Zk+1, ..., Zk+m;S|Z≤kT )

= I(Zk+1, ..., Zk+m;S|Z≤kT ) + I(W ;S|Z≤k+mT ) (Chain rule)

≤ I(Zk+1, ..., Zk+m;ST |Z≤k) + 0 (W is determined by Z≤k+m)

= 0.

Next, using the chain rule,

I(W ;Zk−t+1..k|Z≤k−tT ) + I(T ;Zk−t+1..k|Z≤k−t) = I(WT ;Zk−t+1..k|Z≤k−t)
= I(W ;Zk−t+1..k|Z≤k−t) + I(T ;Zk−t+1..k|Z≤k−tW ).

As I(T ;Zk−t+1..k|Z≤k−t) = 0 and I(T ;Zk−t+1..k|Z≤k−tW ) = 0, the last equality follows.
Observe that the expression I(W ;Zk−t+1..k|Z≤k−t) is in terms of i.i.d. Bernoulli variables. We have

H(Bin(n, 1/2)) =
1

2
log2(π · e · n/2) +O(1/n),

and thus

I(W ;Zk−t+1..k|Z≤k−t) = H(Bin(t+m, 1/2))−H(Bin(m, 1/2))

=
1

2
log2(1 + t/m) +O(1/m) < C4 · t/m,

for a universal constant C4 > 0.
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Reiterating, for the above claim to give non-trivial lower bounds on the information between S and
subset of individual bits Z1, ..., Zk−t, it is important that, even though S is independent of Zk+1, ..., Zk+m,

I(S;
∑k
i=1 Zi+

∑k+m
i=k+1 Zi|T ) is high, where

∑k+m
i=k+1 Zi is just noise to S. Without the addition of noise, the

claim does not hold as S can be the parity of the bits Z1, ..., Zk and thus reveal no information about this
subset of bits. Getting ahead of ourselves, this then allows us to partition the bits of the input stream into
subsets forming Ω(log n) scales and showing that any streaming algorithm computing majority must reveal
information about each of these “subsets” or scales.

3.2 Warmup: a Lower Bound at a Single Scale

Let X1, . . . , Xn be a stream of uniform i.i.d. bits. Let a streaming algorithm M be a sequence of messages
of the form Mi =Mi(Mi−1, Xi, Ri) where Ri is the private randomness used by the streaming algorithm M
at step i; see Section 2 for further background. Let |Mi| be the length of the i-th message. Usually we will
treat M0 as empty but the proofs hold if M0 is a random variable dictating the starting message for M1.
For deterministic algorithms, M0 and Ris are empty.

We start by proving a lower bound of Ω(n) for the n-party communication problem that “computes
majority”, and thus an Ω(1) lower bound on the memory of a streaming algorithm. The lower bound is
parameterized by scale k and holds for many scales.

The first claim below is technical, and the reader should think of the Si as corresponding to states of
the streaming algorithm at t equispaced positions in the stream, while the Xi will correspond to the sum
of input bits between these successive states. Intuitively the claim shows that if on average most states do
not reveal much information about the sum of bits (plus noise) before it, even conditioned on all previous
states, then the final variance of the sum of all bits in the stream is large.

Claim 5 (Low Average Information Across Blocks Implies High Variance). Let k be an integer. Let
X1, . . . , Xt be independent random variables such that Xi ∼ Bin(ki, 1/2), where ki ≥ k,∀i ∈ [t]. Let
S0, S1, . . . , St be random variables such that (1) Xi is independent of S<i, and (2) conditioned on Si,
(X≤i, S<i) are independent from (X>i, S>i). Let ζ > 0, and let m ≤ ζk be an integer. Let ∆1, . . . ,∆t

be i.i.d. ∼ Bin(m, 1/2) and independent of the X’s and the S’s. Let

Ii := I(Si;Xi + ∆i|S<i),

and

Ī :=
1

t

t∑
i=1

Ii.

If Ī ≤ εφ, then

Es0∼S0,St∼St Var

[
t∑
i=1

Xi

∣∣∣∣∣ St = st, S0 = s0

]
≥ (1− C3φ(Ī)− ζ) · (kt)/4 (6)

for some universal constant C3 ≥ 1.

Observe that for the above claim to hold, conditioned on Si, we want (X≤i, S<i) to be independent
of (X>i, S>i). If Si represents the message sent by player i in the n-party communication protocol, the
condition holds only when players are deterministic or only use private randomness.

Proof. Observe first that additional conditioning can only reduce variance in expectation, and that if we fix
all the Si’s, the Xi’s become mutually independent. We have

Es0,st∼S0,St Var

[
t∑
i=1

Xi

∣∣∣∣∣ St = st, S0 = s0

]
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≥ Es0...st∼S0...St Var

[
t∑
i=1

Xi

∣∣∣∣∣ S0 = s0, S1 = s1, S2 = s2, . . . , St = st

]

= E~s
t∑
i=1

Var[Xi|~s]

= E~s
t∑
i=1

Var[Xi|si, s<i] (Xi is independent of S>i conditioned on Si)

=

t∑
i=1

Es<iEsi|s<i Var[Xi|si, s<i].

We will treat each term of this sum separately. For any fixed i, if

Ii = I(Xi + ∆i;Si|S<i) = I(Xi + ∆i;SiS<i)− I(Xi + ∆i;S<i) = I(Xi + ∆i;SiS<i) ≤ εφ,

then
Es<iEsi|s<i Var[Xi|si, s<i] ≥ (1− C2φ(Ii/2)− ζ) · (ki/4) ≥ (1− C2φ(Ii)− ζ) · (k/4)

by Claim 3. The number of i’s such that Ii < εφ is at least t · (1 − Ī/εφ). Among those, the average value
of Ii is at most Ī, and by concavity of φ we have

t∑
i=1

Es<iEsi|s<i Var[Xi|si, s<i] ≥ t · (1− Ī/εφ) · (1− C2φ(Ī)− ζ) · (k/4) ≥ (1− C3φ(Ī)− ζ) · (kt)/4,

where, here again, the second inequality follows from φ(Ī) ≥ Ī and C3 ≥ 1 being a large enough constant.

This allows us to prove the following key lemma, which applies to all streaming protocols (randomized
using only private randomness or deterministic). Intuitively this lemma says that if the output of the n-party
communication protocol manages to non-trivially reduce the variance of the sum, which it does by reducing
the squared expectation of the bias, then the total information that the protocol has about the subset of
input bits at scale k must be Ω(n).

Lemma 2 (Variance Reduction of the Algorithm Implies High Information at One Scale). For all ε >
c′n−1/20, there exist δ2 ≥ c′′ε4 and α ≥ c6ε5, such that

EMn

E[( n∑
i=1

Xi − n/2

) ∣∣∣∣∣ Mn

]2
 > εn (7)

implies that for all integers 1/α < k ≤ nε/3, the following holds:

n∑
j=1

I(Mj ;Xj−k+1..j−dαke|Mj−k) > δ2n. (8)

Here, c′ > 0 is a large constant and c′′, c6 > 0 are small enough constants.

Proof. Since

EMn

E
( n∑

i=1

Xi − n/2

)2
∣∣∣∣∣∣ Mn

 = E

( n∑
i=1

Xi − n/2

)2
 =

n

4
,

we have that (7) is equivalent to

Emn∼Mn Var

[
n∑
i=1

Xi

∣∣∣∣∣ Mn = mn

]
< (1/4− ε) · n. (9)
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Let t = bn/kc − 1 > 2/ε. For s ∈ {1, . . . , k}, consider t blocks of length k starting from location s. Let
B1, . . . , Bt be their sums. Formally,

Bi =

s+ik−1∑
j=s+(i−1)k

Xj .

Denote
Si := Ms+ik−1,

for i = 0, . . . , t, so that Si is the message sent after block i. From (9) we have

(1/4− ε/2) · tk > (1/4− ε) · n > Emn∼Mn Var

[
n∑
i=1

Xi

∣∣∣∣∣ Mn = mn

]

≥ Emn∼Mn;(s0,st)∼(S0,St)|mn Var

[
n∑
i=1

Xi

∣∣∣∣∣ mn, s0, st

]

= Emn,s0,st Var

[
s−1∑
i=1

Xi +

t∑
i=1

Bi +

n∑
i=s+tk

Xi

∣∣∣∣∣ mn, s0, st

]

≥ Emn,s0,st Var

[
t∑
i=1

Bi

∣∣∣∣∣ mn, s0, st

]
(
∑t
i=1Bi is independent of X<s,X≥s+tk conditioned on S0, St,Mn)

= Es0,st Var

[
t∑
i=1

Bi

∣∣∣∣∣ s0, st

]
.

Next, observe that the Si’s and the Bi’s satisfy the conditions of Claim 5. Set ζ = ε, and kε/2 < m < kε.
Let ∆i be i.i.d. ∼ Bin(m, 1/2) random variables. Then Claim 5 implies that

1

t

t∑
i=1

I(Si;Bi + ∆i|S<i) > φ−1(ε/C3) =: δ1 > 0. (10)

Otherwise, if 1
t

∑t
i=1 I(Si;Bi + ∆i|S<i) < φ−1(ε/C3)6, then using Claim 5,

Es0,st Var

[
t∑
i=1

Bi

∣∣∣∣∣ s0, st

]
≥ (1− ε− ε)kt

4
,

contradicting the calculations above. As φ(δ1) ≤ 4δ
1
4
1 , δ1 ≥

(
ε

4C3

)4

. Note that

I(Si;Bi + ∆i|S<i) = I(Si;Bi + ∆i|Si−1). (conditioned on Si−1, S<i−1 and Si, Bi + ∆i are independent)

Let α := δ1ε
8C4

> 0. Let r = dαke. Then, by Claim 4 we have

I(Si;Bi + ∆i|Si−1) = I(Ms+ik−1;Bi + ∆i|Ms+(i−1)k−1)

≤ I(Ms+ik−1;Xs+(i−1)k..s+ik−1−r|Ms+(i−1)k−1) + C4 ·
r

m
(Claim 4)

< I(Ms+ik−1;Xs+(i−1)k..s+ik−1−r|Ms+(i−1)k−1) +
δ1
2
. (m > kε/2, r ≤ 2αk)

6Here, φ−1 is a function from (0, 1] to (0, εφ]. As φ is monotonically increasing on (0, εφ] and φ(εφ) > 1, φ−1 is well defined.
Thus, φ−1(x) ≤ εφ by definition.
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In the second to last inequality we use Claim 4 with parameters S = Ms+ik−1, Z1, .., Zk = Xs+(i−1)k, ..., Xs+ik,∑k+m
j=k+1 Zj = ∆i, and T = Ms+(i−1)k−1. Therefore, by (10),

t∑
i=1

I(Ms+ik−1;Xs+(i−1)k..s+ik−1−r|Ms+(i−1)k−1) >
δ1t

2
. (11)

Summing up (11) over s = 1, . . . , k (and letting Mi−1, Xi be empty for i ≤ 0), we get

n∑
j=1

I(Mj ;Xj−k+1..j−dαke|M≤j−k) >
δ1tk

2
>
δ1n

3
=: δ2n. (12)

Next, we show the bounds on α and δ2. α = δ1ε
8C4
≥ c6ε

5 for small enough constant c6 > 0. δ2 = δ1/3 ≥
c′′ε4 for a small enough constant c′′ > 0.

3.3 An Ω(log n) Lower Bound for the Coin Problem by Combining All Scales

We can now use our lower bound at a single scale in Lemma 2 to glue together Ω(log n) scales. Here we
use a parameter α to split the input bits into Ω(log n) geometrically growing disjoint intervals, and apply
our Ω(1) single scale lower bound at each scale. We first prove Theorem 13, which concerns the variance-
information tradeoff of a deterministic streaming algorithm, and then conclude a memory usage lower bound
for computing majority from it. We eventually also prove an information cost lower bound for randomized
algorithms that only use private randomness (as discussed in Section 2).

Theorem 13 (Formal statement of Theorem 1). For any ε > c′n−
1
20 , there exists δ ≥ c′′′ε5 (for a small

enough constant c′′′ > 0 and a large enough constant c′ > 0) such that if

n∑
i=1

I(Mi;X≤i) ≤ δn log n, (13)

(where Mi is deterministic function of X≤i), then

EMn

E[( n∑
i=1

Xi − n/2

) ∣∣∣∣∣ Mn

]2
 ≤ εn. (14)

Note that, when the conditioning on Mn is outside of the square, we have:

EMn

E
( n∑

i=1

Xi − n/2

)2
∣∣∣∣∣∣ Mn

 = E

( n∑
i=1

Xi − n/2

)2
 =

n

4
.

Therefore, using the definition of variance, (14) is equivalent to

Emn∼Mn
Var

[
n∑
i=1

Xi

∣∣∣∣∣ Mn = mn

]
≥ (1/4− ε) · n. (15)

Proof of Theorem 13. Let M be a streaming algorithm as in the statement of the theorem, such that (14)
does not hold. That is,

EMn

E[( n∑
i=1

Xi − n/2

) ∣∣∣∣∣ Mn

]2
 > εn. (16)
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By Lemma 2 this implies that there exists δ2 ≥ c′′ε4 and α ≥ c6ε
5 (c′′, c6 > 0 are constants) such that

for all integers α−1 < k ≤ nε/3,

n∑
j=1

I(Mj ;Xj−k+1..j−dαke|Mj−k) > δ2n. (17)

By the assumption that Mj−k is a deterministic function of X≤j−k we have

I(Mj ;Xj−k+1..j−dαke|Mj−k) ≤ I(Mj ;X≤j−k, Xj−k+1..j−dαke|Mj−k)

= I(Mj ;X≤j−k|Mj−k) + I(Mj ;Xj−k+1..j−dαke|Mj−k, X≤j−k)

= I(Mj ;Xj−k+1..j−dαke|X≤j−k).

I(Mj ;X≤j−k|Mj−k) = 0 as Mj is independent of X≤j−k given the message sent by the (j − k)-th player
Mj−k. Thus, (17) implies:

n∑
j=1

I(Mj ;Xj−k+1..j−dαke|X≤j−k) > δ2n. (18)

Let k1 := bnε/3c, and ki+1 := dαkie for i = 1..`, where ` = blog n/(2 log 1/α)c. As α ≥ c5ε
5 for a small

enough constant c5 > 0, αl+1k1 > 1 for all ε > c′n−1/20 for a large enough constant c′ > 0.
We have, by the chain rule and (18),

n∑
j=1

I(Mj ;X≤j) ≥
n∑
j=1

∑̀
i=1

I(Mj ;Xj−ki+1..j−ki+1
|X≤j−ki) (Chain rule)

=
∑̀
i=1

n∑
j=1

I(Mj ;Xj−ki+1..j−ki+1
|X≤j−ki)

>
∑̀
i=1

δ2n

= δ2n` =: δn log n,

completing the proof. Here, δ ≥ δ2/(4 log 1/α) (for ε > c′n−1/20). Therefore, δ ≥ c′′′ε5 for a small enough
constant c′′′ > 0.

We next show that since I(Mi;X≤i) ≤ |Mi|, Theorem 13 in fact implies that no deterministic streaming
algorithm with o(log n) bits of memory can estimate the majority of n bits with a large enough constant
advantage 1− γ, where, e.g., γ = 1/1000.

To do this, we use the next claim, Claim 6, to describe the advantage of a successful streaming algorithm.
This advantage meets the requirement of Theorem 13, which then implies that if the streaming algorithm were
to use o(log n) bits of memory, it would give an n-party communication protocol with total communication
o(n log n), contradicting that the communication must be at least δn log n bits by Theorem 13.

Claim 6 (Computing Majority requires Ω(log n) bits — Matching Advantages). Let M be a streaming
algorithm, possibly using randomness, that computes the majority of n i.i.d. bits, X1, X2, . . . , Xn ∼ Ber(1/2),
with probability at least 999/1000 over the inputs (and the randomness). Then,

EMn

E[( n∑
i=1

Xi − n/2

) ∣∣∣∣∣ Mn

]2
 = Pr[Mn = 0] · E

[(
n∑
i=1

Xi − n/2

) ∣∣∣∣∣ Mn = 0

]2

+ Pr[Mn = 1] · E

[(
n∑
i=1

Xi − n/2

) ∣∣∣∣∣ Mn = 1

]2

= Ω(n)
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Proof. Given x ∈ {0, 1}n, let p(x) be the probability that M outputs 1 on x. As M is correct with probability
at least 999/1000, for large enough n,

1

2n

 ∑
x:
∑
i xi≥n/2

p(x) +
∑

x:
∑
i xi<n/2

(1− p(x))

 ≥ 999/1000

=⇒ 1

2n

 ∑
x:
∑
i xi>n/2

p(x)−
∑

x:
∑
i xi<n/2

p(x)

 ≥ 498/1000 (19)

Next we show that

E

[
n∑
i=1

Xi − n/2

∣∣∣∣∣Mn = 1

]
= Ω(

√
n)

which proves the claim as Pr[Mn = 1] ≥ 498/1000 (using Equation (19)). We have:

E

[
n∑
i=1

Xi − n/2

∣∣∣∣∣Mn = 1

]
=

∑
x∈{0,1}n p(x) (

∑n
i=1 xi − n/2)∑

x∈{0,1}n p(x)

≥ 1

2n

 ∑
x:
∑
i xi≥n/2

p(x)

∣∣∣∣∣
n∑
i=1

xi − n/2

∣∣∣∣∣− ∑
x:
∑
i xi<n/2

p(x)

∣∣∣∣∣
n∑
i=1

xi − n/2

∣∣∣∣∣
 . (20)

Let y ∈ [0, n/2) be such that 497/1000 ≤ 1
2n |{x : n/2 ≤

∑
i xi ≤ n/2 + y}| ≤ 498/1000 (such a y exists for all

large enough n). Using a Chernoff bound, we can show that PrX∈R{0,1}n
[∑

iXi ≥ n/2 +
√

3
2 ln 1000

2

√
n
]
≤

2/1000 and hence, y ≤
√

3
2 ln 1000

2

√
n.

It is easy to see that, when satisfying Inequality (19), E [
∑n
i=1Xi − n/2|Mn = 1] (Expression (20)) is

greater than the following quantity

1

2n

 ∑
x : n/2≤

∑
i xi≤n/2+y

∣∣∣∣∣
n∑
i=1

xi − n/2

∣∣∣∣∣− ∑
x : 0≤

∑
i xi<n/2−y

∣∣∣∣∣
n∑
i=1

xi − n/2

∣∣∣∣∣


=
1

2 · 2n
∑

x∈{0,1}n

∣∣∣∣∣
n∑
i=1

xi − n/2

∣∣∣∣∣− 2

2n

∑
x : n/2+y<

∑
i xi≤n

∣∣∣∣∣
n∑
i=1

xi − n/2

∣∣∣∣∣ . (21)

Before lower bounding E [
∑n
i=1Xi − n/2|Mn = 1] using the above expression, we need the following standard

calculation of mean absolute deviation of a Bin(n, 1/2) random variable [5]:

Ex∈R{0,1}n

∣∣∣∣∣
n∑
i=1

xi − n/2

∣∣∣∣∣ =
1

2n
· n ·

(
n− 1

bn/2c

)
≥ n

2 · 2n

(
2bn/2c
bn/2c

)
.

For the sake completeness, we also show the calculation in Appendix A. Thus, we have that

1

2 · 2n
∑

x∈{0,1}n

∣∣∣∣∣
n∑
i=1

xi − n/2

∣∣∣∣∣ ≥ n

2

(
2bn/2c
bn/2c

)
2 · 2n

≥ n

4

√
2π · 22bn/2c+1/2

e2
√
bn/2c · 2n

(Stirling’s approximation; see Section 2)

≥
√
π

2
√

2e2

√
n (2

1
2 · 22bn/2c+1/2 ≥ 2n and bn/2c ≤ n/2)
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≥ 0.084
√
n. (22)

Let

y′ =

√
3

2
ln

1000

2

√
n

and p(c) = PrX∈R{0,1}n [
∑
iXi ≥ n/2 + cy′]. Using a Chernoff bound, p(c) ≤ (2/1000)c

2

. Therefore,

2

2n

∑
x : y<

∑
i xi−n/2≤n/2

(
n∑
i=1

xi − n/2

)
≤ 2

2n

∑
x : y<

∑
i xi−n/2≤y′

(
n∑
i=1

xi − n/2

)

+ 2

√
n∑

c=1

(c+ 1)y′(p(c)− p(c+ 1))

≤ 2y′

 3

1000
+

√
n∑

c=1

(c+ 1)(p(c)− p(c+ 1))


≤ 2y′

 3

1000
+ p(1) +

√
n∑

c=1

p(c)


≤ 2y′

 5

1000
+

√
n∑

c=1

(2/1000)c
2


≤ 2y′

(
5

1000
+

2

998

)
= 2

√
3

2
ln

1000

2

(
5

1000
+

2

998

)√
n

≤ 0.043
√
n (23)

Substituting Inequalities (22) and (23) in Expression (21) proves the claim.

Thus far, our discussion has focused on deterministic streaming algorithms. Note that memory lower
bounds for such algorithms suffice for proving lower bounds also for randomized streaming algorithms. This is
because the input is distributional, so one can always fix the private randomness of the streaming algorithm.

Nevertheless, for our subsequent direct sum theorems, it will be useful to have a lower bound on the
information cost (rather than just the memory) of streaming algorithms which use private randomness. The
following corollary bounds the information cost and also works for streaming algorithms which use private
randomness.

Corollary 14 (Information Lower Bound for Randomized Algorithms). For all ε > c′n−
1
20 , there exists

δ ≥ c′′′ε5 (for small enough constant c′′′ > 0 and large enough constant c′ > 0), such that if

n∑
i=1

i∑
j=1

I(Mi;Xj |Mj−1) ≤ δn log n, (24)

then

EMn

E[( n∑
i=1

Xi − n/2

) ∣∣∣∣∣ Mn

]2
 ≤ εn. (25)
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Remark 1. Next note that

i∑
j=1

I(Mi;Xj |Mj−1) ≤
i∑

j=1

I(Mi;Xj |X<j ,M<j−1,Mj−1)

≤
i∑

j=1

I(Mi;Xj |X<j ,M<j−1,Mj−1) + I(Mi;Mj−1|X<j ,M<j−1)

=

i∑
j=1

(I(Mi;Xj ,Mj−1|X<j ,M<j−1)

= I(Mi;X≤i,M<i) (Chain rule)

≤ |Mi|,

so this measure of information does indeed lower bound the message size. The first inequality holds using
Property 3 of mutual information (mentioned in Section 2), as

I(X<j ,M<j−1;Xj |Mj−1) = 0.

As,
∑i
j=1 I(Mi;Xj |Mj−1) ≤ |Mi|, Corollary 14 and Claim 6 together imply that no streaming algorithm

that uses private randomness with o(log n) bits of memory can estimate the majority of n bits with a
large enough constant advantage (999/1000). Indeed, such an algorithm would give rise to an n-player
communication protocol with total communication o(n log n), contradicting that the communication must
be at least δn log n bits, by the above theorem.

Proof of Corollary 14. The proof is similar to the proof of Theorem 13, and uses the following relation

between I(Mj ;Xj−k+1..j−dαke|Mj−k) and
∑j−dαke
i=j−k+1 I(Mj ;Xi|Mi−1):

I(Mj ;Xj−k+1..j−dαke|Mj−k) =

j−dαke∑
i=j−k+1

I(Mj ;Xi|Mj−k, X(j−k+1)..(i−1)) (Chain rule)

≤
j−dαke∑
i=j−k+1

I(Mj ,Mi−1;Xi|Mj−k, X(j−k+1)..(i−1))

=

j−dαke∑
i=j−k+1

I(Mj ;Xi|Mj−k, X(j−k+1)..(i−1),Mi−1)

+

j−dαke∑
i=j−k+1

I(Mi−1;Xi|Mj−k, X(j−k+1)..(i−1))

=

j−dαke∑
i=j−k+1

I(Mj ;Xi|Mj−k, X(j−k+1)..(i−1),Mi−1) + 0

=

j−dαke∑
i=j−k+1

I(Mj ;Xi|Mi−1).

The last equality follows (from Property 2 and 3 of mutual information) because

I(Mj−k, X(j−k+1)..(i−1);Xi|Mi−1) = 0
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and

I(Mj−k, X(j−k+1)..(i−1);Xi|Mi−1,Mj) = 0.
(conditioned on Mi−1, X≤i−1,Mj−k are independent of Xi,Mj)

Let M be a streaming algorithm (possibly using private randomness) as in the statement of the corollary,
such that (25) does not hold. That is,

EMn

E[( n∑
i=1

Xi − n/2

) ∣∣∣∣∣ Mn

]2
 > εn. (26)

By Lemma 2 this implies that there exists δ2 ≥ c′′ε4 and α ≥ c6ε
5 (c′′, c6 > 0 are constants) such that

for all integers α−1 < k ≤ nε/3,

n∑
j=1

I(Mj ;Xj−k+1..j−dαke|Mj−k) > δ2n. (27)

The derived relation above implies:

n∑
j=1

j−dαke∑
i=j−k+1

I(Mj ;Xi|Mi−1) > δ2n. (28)

Let k1 := bnε/3c, and ki+1 := dαkie for i = 1..`, where ` = blog n/(2 log 1/α)c. As α ≥ c5ε
5 for a small

enough constant c5 > 0, αl+1k1 > 1 for all ε > c′n−1/20 for a large enough constant c′ > 0.
We have, by (28),

n∑
j=1

i∑
i=1

I(Mj ;Xi|Mi−1) ≥
n∑
j=1

j−kl+1∑
i=j−k1+1

I(Mj ;Xi|Mi−1)

=

l∑
h=1

n∑
j=1

j−kh+1∑
i=j−kh+1

I(Mj ;Xi|Mi−1)

>
∑̀
i=1

δ2n

= δ2n` =: δn log n,

completing the proof. Here, δ ≥ δ2/(4 log 1/α) (for ε > c′n−1/20). Therefore, δ ≥ c′′′ε5 for a small enough
constant c′′′ > 0.

Next, we modify the proof of Corollary 14 after Equation (28) by taking l = blog n/(4 log 1/α)c instead
of blog n/(2 log 1/α)c, to conclude the following corollary.

Corollary 15. Let M be a length-n streaming algorithm (possibly using private randomness). For all
constants ε > 0, there exists δ > 0 (for all n ≥ cε, where cε > 0 is a large enough constant depending on ε),
such that if

n∑
i=1

i−2
√
n∑

j=1

I(Mi;Xj |Mj−1) ≤ δn log n, (29)

then

EMn

E[( n∑
i=1

Xi − n/2

) ∣∣∣∣∣ Mn

]2
 ≤ εn. (30)
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Proof. Let l = blog n/(4 log 1/α)c. For all constants ε > 0, independent of n and α = Ω(ε5), we have
αl+1k1 ≥ 2

√
n (for all n ≥ cε, where cε > 0 is a large enough constant depending on ε). Here, ki for

i = 1, ..., (blog n/(4 log 1/α)c + 1) is as defined in the proof of Corollary 14. Therefore, kl+1 ≥ 2
√
n and

following the proof of Corollary 14, if Equation (30) doesn’t hold, we get

n∑
i=1

i−2
√
n∑

j=1

I(Mi;Xj |Mj−1) ≥
n∑
j=1

j−kl+1∑
i=j−k1+1

I(Mj ;Xi|Mi−1)

=

l∑
h=1

n∑
j=1

j−kh+1∑
i=j−kh+1

I(Mj ;Xi|Mi−1)

>
∑̀
i=1

δ2n

= Ω(n log n).

The last expression follows because l ≥ log n/(8 log 1/α) for large enough n.

3.4 k-Coins Problem

We now extend our lower bound results to solving more than one copy of the coin problem. Recall the
problem: let {Yi}kni=1 be updates of the form (Xi, si), where Xi ∼ Ber(1/2) and si ∈R [k]. Thus, k instances
to the coin problem are interleaved in the input stream. We refer to the sequence {si}i∈[nk] as the order
of the stream dictating how the k instances are interleaved. We consider two formulations of the k-Coins
Problem. First, we show that for a fixed good order, any streaming algorithm solving a good fraction of
the k instances of the coin problem requires Ω(k log n) bits of memory. Second, we show that even when
the order is random, that is si ∈R [k],∀i ∈ [nk], then any streaming algorithm solving k instances of the
coin problem requires Ω(k log n) bits of memory. Given an order {si}i∈[nk], for all s ∈ [k], let Zs ⊂ [kn] be
the set of i for which si = s. Let qs : [|Zs|] → [nk] be defined as follows: qs(i) = j if Xj is the i-th element
corresponding to the s-th instance of the coin problem (sj = s).

We next define the notion of a good order, which says that all coins have enough coin flips and that they
are well-spaced throughout the interleaved stream.

Definition 3 (Good Order). An order {si}i∈[nk] is called good if for all s ∈ [k],

|Zs| ≥ n/2,

and for all s ∈ [k],
√
n ≤ t and t < j ≤ |Zs|,

qs(j)− qs(j − t) ≥
k

2
t.

Remark 2. A random order {si ∈R [k]}i∈[nk] is a good order with probability at least 1−n2k3e−
√
n/6−ke−n/8.

This can be shown using the following calculations. Fix w such that
√
n

2 k ≤ w ≤ nk, s ∈ [k] and
w ≤ j′ ≤ nk. Let Z1, ..., Zw be i.i.d. Ber(1/k) random variables. Then,

Pr
{si∈R[k]}i∈[nk]

[
|{i | j′ − w + 1 ≤ i ≤ j′ and si = s}| ≥ 2w

k

]
= Pr

[
w∑
i=1

Zi ≥
2w

k

]
.

As E[
∑w
i=1 Zi] = w/k, using Chernoff bounds,

Pr

[
w∑
i=1

Zi ≥
2w

k

]
≤ e− w

3k ≤ e−
√
n/6.
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Therefore, by a union bound,

Pr
{si∈R[k]}i∈[nk]

[
|{i | j′ − w + 1 ≤ i ≤ j′ and si = s}| < 2w

k
, ∀
√
nk/2 ≤ w ≤ nk, s ∈ [k], w ≤ j′ ≤ nk

]
≥ 1− n2k3e−

√
n/6.

Note that for a fixed s ∈ [k],
√
n ≤ t and t < j ≤ |Zs|, if qs(j)− qs(j− t) < k

2 t, then for w = kt/2, j′ = qs(j),
|{i | j′ − w + 1 ≤ i ≤ j′ and si = s}| ≥ t.

For the first part of the good order, again let Z1, ..., Znk be i.i.d. Ber(1/k) random variables. Then, for
a fixed s ∈ [k], using Chernoff bounds,

Pr [|Zs| < n/2] = Pr

[
nk∑
i=1

Zi < n/2

]
≤ e−n8 . (31)

Using a union bound, the claim in the remark follows.

Remark 3. The order {si}i∈[nk] such that si = ((i− 1) mod k) + 1, is a good order.

This remark follows since, for all s ∈ [k], we have |Zs| = n, and for all
√
n ≤ t and t < j ≤ n,

qs(j)− qs(j − t) = kt.
We prove the following variance-information tradeoff for any streaming algorithm that is given k instances

of the coin problem as a stream of nk updates of the form (Xi, si) where Xi ∼ Ber(1/2),∀i ∈ [nk] and
{si}i∈[nk] is a fixed good order.

Theorem 16. Let M be an nk-length streaming algorithm (that possibly uses private randomness) for the
k-Coins Problem with a fixed good order {si}i∈[nk] (Definition 3). For all constants ε > 0, there exists
δ > 0, such that if

EMnk

E[(∑
i∈Zs

Xi − |Zs|/2

) ∣∣∣∣∣ Mnk

]2
 > ε|Zs| (32)

for at least 1/2 fraction of s ∈ [k], then

nk∑
i=1

i∑
j=1

I(Mi;Xj |Mj−1) > δnk2 log n (33)

Proof. We prove the theorem using a reduction to Corollary 15. Let

S = {s | s ∈ [k] and Equation (32) holds for s}.

Thus, |S| ≥ k/2. For all s ∈ S, we prove that

nk∑
i=1

∑
j∈[i]∩Zs

I(Mi;Xj |Mj−1) > Ω(nk log n) (34)

and as

nk∑
i=1

i∑
j=1

I(Mi;Xj |Mj−1) =

nk∑
i=1

∑
s∈[k]

∑
j∈[i]∩Zs

I(Mi;Xj |Mj−1)

≥
nk∑
i=1

∑
s∈S

∑
j∈[i]∩Zs

I(Mi;Xj |Mj−1)
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=
∑
s∈S

nk∑
i=1

∑
j∈[i]∩Zs

I(Mi;Xj |Mj−1),

the theorem follows. To prove Equation (34), for all s ∈ S, using M , we construct a |Zs|-length stream-
ing algorithm Ms for the coin problem as follows. Given a total of |Zs| ≥ n/2 i.i.d. uniform {0, 1} bits
X ′1, ..., X

′
|Zs| in a stream, Ms generates k instances of the coin problem by embedding X ′1, ..., X

′
|Zs| as the

s-th instance and using private randomness to generate the bits for the remaining k − 1 instances. At the
i-th step, Ms reads X ′i, simulates M for layers qs(i) to qs(i + 1) − 1, and sends Mqs(i+1)−1 as the message
to the next step. As {si}i∈[nk] is fixed, Ms, at the i-th step, can generate the input to M for layers qs(i)
to qs(i + 1) − 1 ((Xj , sj)j∈{qs(i),...,qs(i+1)−1}) using only private randomness and X ′i ({si}i∈[nk] and M are
hardwired in the mapping Ms

i+1). Therefore, ∀ 0 < i < |Zs|,Ms
i = Mqs(i+1)−1 and Ms

|Zs| = Mnk. Also,

EMs
|Zs|

E
|Zs|∑

i=1

X ′i − |Zs|/2

 ∣∣∣∣∣∣ Ms
|Zs|

2
 = EMnk

E[(∑
i∈Zs

Xi − |Zs|/2

) ∣∣∣∣∣ Mnk

]2
 > ε|Zs|.

Therefore, Corollary 15 implies that, for large enough n and because |Zs| ≥ n/2 and 2
√
|Zs| >

√
n:

|Zs|∑
i=1

i−
√
n∑

j=1

I(Ms
i ;X ′j |Ms

j−1) > Ω(n log n). (35)

Note that (assuming qs(|Zs|+ 1) = nk + 1)

|Zs|∑
i=1

i−
√
n∑

j=1

I(Ms
i ;X ′j |Ms

j−1) =

|Zs|∑
i=1

i−
√
n∑

j=1

I(Mqs(i+1)−1;Xqs(j)|Mqs(j)−1)) (36)

Next, we analyze the quantity
∑|Zs|
i=1

∑i−
√
n

j=1 I(Mqs(i+1)−1;Xqs(j)|Mqs(j)−1)). First, we prove the following
fact, which is a data processing inequality for streaming:

Fact 1. Let M be a streaming algorithm using only private randomness. Then for all i1 ≥ i2 ≥ j > 0,

I(Mi1 ;Xj |Mj−1) ≤ I(Mi2 ;Xj |Mj−1).

Proof. Using the fact that conditioned on Mi2 , Mi1 is independent of Xj ,Mj−1, the proof follows as below.

I(Mi1 ;Xj |Mj−1) ≤ I(Mi2 ,Mi1 ;Xj |Mj−1)

= I(Mi2 ;Xj |Mj−1) + I(Mi1 ;Xj |Mj−1,Mi2)

= I(Mi2 ;Xj |Mj−1)

Because, qs(i+ 1)− 1 ≥ qs(i), we get

|Zs|∑
i=1

i−
√
n∑

j=1

I(Mqs(i+1)−1;Xqs(j)|Mqs(j)−1)) ≤
|Zs|∑
i=1

i−
√
n∑

j=1

I(Mqs(i);Xqs(j)|Mqs(j)−1)

=

|Zs|∑
j=1

|Zs|∑
i=j+

√
n

I(Mqs(i);Xqs(j)|Mqs(j)−1).

Next, we prove that

|Zs|∑
j=1

|Zs|∑
i=j+

√
n

I(Mqs(i);Xqs(j)|Mqs(j)−1) ≤ 2

k

∑
j∈Zs

nk∑
i=j

I(Mi;Xj |Mj−1), (37)
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which along with Equation (35) and (36), implies Equation (34).
In fact, we prove that ∀j ∈ [|Zs|],

|Zs|∑
i=j+

√
n

I(Mqs(i);Xqs(j)|Mqs(j)−1) ≤ 2

k

nk∑
i=qs(j)

I(Mi;Xqs(j)|Mqs(j)−1) (38)

and summing over j gives Equation (37). Fix j ∈ [|Zs|]. Let

I1(g) = {i | j +
√
n ≤ i ≤ |Zs| and I(Mqs(i);Xqs(j)|Mqs(j)−1) ≥ g}.

Similarly, let
I2(g) = {i | qs(j) ≤ i ≤ nk and I(Mi;Xqs(j)|Mqs(j)−1) ≥ g}.

Claim 7. For all g ∈ [0, 1], |I1(g)| ≤ 2
k |I2(g)|.

Proof. Let i1 be the largest index in the set I1 (assuming I1 6= ∅, otherwise the claim is trivially true). By
definition, i1 − j ≥

√
n. Using Fact 1, ∀i : qs(j) ≤ i ≤ qs(i1),

g ≤ I(Mqs(i1);Xqs(j)|Mqs(j)−1) ≤ I(Mi;Xqs(j)|Mqs(j)−1).

As the order {si}i∈[nk] is good, by Definition 3,

|I2(g)| = qs(i1)− qs(j) + 1 ≥ k

2
(i1 − j) >

k

2
(i1 − (j +

√
n) + 1) =

k

2
|I1(g)|

Let u > 0 be a positive integer. Then for all u,

u∑
g=1

|I1(g/u)| · 1

u
=

|Zs|∑
i=j+

√
n

bu · I(Mqs(i);Xqs(j)|Mqs(j)−1)c · 1

u
.

Therefore for all u,
u∑
g=1

|I1(g/u)| · 1

u
≤

|Zs|∑
i=j+

√
n

I(Mqs(i);Xqs(j)|Mqs(j)−1)

and
|Zs|∑

i=j+
√
n

I(Mqs(i);Xqs(j)|Mqs(j)−1)−
|Zs|∑

i=j+
√
n

1

u
≤

u∑
g=1

|I1(g/u)| · 1

u
. (39)

Similarly, we can show that

u∑
g=1

|I2(g/u)| · 1

u
≤

nk∑
i=qs(j)

I(Mi;Xqs(j)|Mqs(j)−1) (40)

Using Claim 7 together with Equations (39),(40), we get

|Zs|∑
i=j+

√
n

I(Mqs(i);Xqs(j)|Mqs(j)−1)−
|Zs|∑

i=j+
√
n

1

u
≤ 2

k

nk∑
i=qs(j)

I(Mi;Xqs(j)|Mqs(j)−1).

As u can be made arbitrarily large, Equation (38) follows, and this completes the proof.

Next, using Theorem 16, we prove the following corollary.
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Corollary 17. Fix a good order {si}i∈[nk]. Suppose we are given a sequence of kn i.i.d. stream updates,
the j-th of which has the form Yj = (Xj , sj), where Xj is chosen uniformly in {0, 1}. We interpret this
as k independent instances of the coin problem, where the s-th instance of the coin problem consists of the
sequence of bits Xqs(i), . . . , Xqs(|Zs|). Suppose there is a streaming algorithm M which, given an ` ∈R [k] at
the end of the stream, outputs the majority bit of the `-th instance of the coin problem with probability at
least 1− 1

2000 . Then the algorithm uses Ω(k log n) bits of memory.

Here, the probability of success is over the input stream, the private randomness used by M , and ` ∈R [k].
When the order {si}i∈[nk] is such that si = ((i− 1) mod k) + 1 (which is a good order — Remark 3), then
we refer to the above defined k-Coins Problem for this order as the Simultaneous k-Coins Problem.

Proof. We let Mnk represent the memory state of the the streaming algorithm after seeing the nk updates.
Let M ` be the memory state after reading the index (`) at the end of the stream. As M succeeds with
probability at least 1 − 1/2000 in outputting the majority of the `-th instance, when ` ∈R [k], then for at
least a 1/2 fraction of ` ∈ [k], M succeeds in outputting the majority with probability at least 1 − 1/1000,
where the probability is over the input stream and the private randomness used by M . Let L be the set of
indices ` for which the last statement is true. Then, for all ` ∈ L, Claim 6 implies that (considering all the
other k − 1 instances as randomness):

EM`

E
|Z`|∑

i=1

Xq`(i) − |Z`|/2

 ∣∣∣∣∣∣ M `

2
 = Ω(|Z`|).

Note that

EM`

E
|Z`|∑

i=1

Xq`(i) − |Z`|/2

 ∣∣∣∣∣∣ M `

2
 ≤ EM`,Mnk

E
|Z`|∑

i=1

Xq`(i) − |Z`|/2

 ∣∣∣∣∣∣ M `,Mnk

2


= EMnk

E
|Z`|∑

i=1

Xq`(i) − |Z`|/2

 ∣∣∣∣∣∣ Mnk

2
 .

The last equality follows because conditioned on Mnk,
∑|Z`|
i=1 Xq`(i) is independent of M `. Therefore, for at

least a half fraction of ` ∈ [k], Equation (32) holds, and thus, using Theorem 16,

nk∑
i=1

i∑
j=1

I(Mi;Xj |Mj−1) ≥ Ω(nk2 log n).

Using Remark 1,
∑nk
i=1 |Mi| ≥ Ω(nk2 log n), and hence, M uses at least Ω(k log n) bits of memory.

Next, we show that any streaming algorithm that solves the k-Coins Problem for a random order
{si ∈R [k]}i∈[nk] requires Ω(k log n) memory.

Corollary 18 (Formal statement of Theorem 2). Suppose we are given a sequence of kn i.i.d. stream
updates, the j-th of which has the form Yj = (Xj , sj), where Xj is chosen uniformly in {0, 1} and sj is
chosen uniformly in [k]. We interpret this as k independent instances of the coin problem, where the s-th
instance of the coin problem consists of the sequence of bits Xj1 , . . . , Xjr , if and only if sjt = s,∀1 ≤ t ≤ r.
Suppose there is a streaming algorithm M which, given an ` ∈R [k] at the end of the stream, outputs the
majority bit of the `-th instance of the coin problem with probability at least 1 − 1

4000 . Then the algorithm

uses Ω(k log n) bits of memory (for k ≤ 2n
0.1

).

Here, the probability of success is over the updates, including the random order of the stream, ` ∈R [k]
and the private randomness used by M .
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Proof. As M succeeds with at least 1 − 1/4000 overall probability, for at least a 1/2-fraction of the orders
{si ∈R [k]}i∈[nk], M succeeds in outputting the majority with probability at least 1 − 1/2000, where the
probability is over {Xi}i∈[nk], `, and the private randomness. Using Remark 2, with probability at least

1− n2k3e−
√
n/6 − ke−n/8 ≥ 1− 1

4n
, (for k ≤ 2n

0.1

and large enough n)

a random order is a good order. Therefore, there exists a good order {si}i∈[nk], such that M solves the k-

Coins Problem for that order with probability at least 1− 1
2000 . Using Corollary 17, M requires Ω(k log n)

bits of memory.

3.5 Lower Bounds for the Gap Coin Problem

In this section we consider the following problem: given a sequence of n {−1,+1} bits X1, X2,. . ., Xn, output
0 if |

∑
iXi| ≤ 4

√
nα and 1 if |

∑
iXi| ≥ 4

√
nβ. We refer to this as the GapCoin(α, β) problem. Recall Un

represents the uniform distribution over {−1,+1}n.
In Theorem 19, we use a hybrid argument along with Lemma 3, which might be of independent interest,

to prove hardness of solving the GapCoin(α, β) problem for when β/α can be as large as poly(log n).
We in fact show the hardness of solving the GapCoin(α, β) problem, even under the promise that the

sequence of n bits X1,..., Xn satisfy the following property for γ = 10β log β.

Promise 1 (Input is balanced at all times). For γ > 0, sequence of n {−1,+1} bits x1, x2, . . . , xn is
γ-balanced at all times if for i ∈ {1, ..., n}, ∣∣∣∣∣

i∑
i1=1

xi1

∣∣∣∣∣ ≤ γ√n
Theorem 19. Let M be a streaming algorithm (that might use private randomness) which, under the promise
that the input stream x1, ..., xn ∈ {−1,+1}n satisfies Promise 1 for γ = 10β log β, outputs, with probability
at least 2/3 over the private randomness, the answer 0 on every input with |

∑
i xi| ≤ 4

√
nα and 1 on every

input with |
∑
i xi| > 4

√
nβ. Then there exists a constant δ > 0 (for α ≥ 1 and c2 ≤ β ≤ poly(log n), where

c2 > 0 is a large enough constant) such that,

n∑
i=1

i∑
j=1

I(Mi;Xj |Mj−1) > δn log n/(β log2 β)11,

where X is drawn from Un.

We will use the following lemma to prove the theorem above. Given a streaming algorithm B (possibly
using private randomness) on n′ bits, let

IC(B,Un′) =

n′∑
i=1

i∑
j=1

I(Bi;Xj |Bj−1)

when X is drawn from Un′ .

Lemma 3 (Formal statement of Theorem 12). Let B be a (probabilistic) streaming algorithm of block of
length m. Let 0 < ε < 1

30 . Then, there exists a universal constant c0 > 0, such that one of two things holds:

1. IC(B,Um) > c0 ·m(logm) · ε10.

2. There exists a distribution µ on m bits, such that

• ∀x ∈ {−1,+1}m, µ(x) ≤ 2Um(x),
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• Ex∼µ[
∑
i xi] ≥ Ω

(√
m

log(1/ε)

)
, and

• ‖B(Um)−B(µ)‖1 < ε.

Proof. Let d ≥ 1 be such that

Ex∼Um
[
|
∑
i xi|

d
√
m
· 1|∑i xi|≥d

√
m

]
≤ ε

5
.

We prove that d = O(
√

log(1/ε)). Using a Chernoff bound, for c > 0, we have that

Pr
x∼Um

[
|
∑
i

xi| ≥ c · d
√
m

]
≤ 2e−c

2 d2

6 .

Let p(c) = Prx∼Um [|
∑
i xi| ≥ c · d

√
m]. Then,

Ex∼Um
[
|
∑
i xi|

d
√
m
· 1|∑i xi|≥d

√
m

]
≤

√
m∑

c=1

(c+ 1) Pr
x∼Um

[
cd
√
m ≤ |

∑
i

xi| ≤ (c+ 1)d
√
m

]

=

√
m∑

c=1

(c+ 1) (p(c)− p(c+ 1))

= p(1) +

√
m∑

c=1

p(c) ≤

√
m∑

c=1

2p(c) ≤

√
m∑

c=1

4e−c
2 d2

6

It is easy to see that for ε ≤ 1/30 and d = 6
√

log(1/ε),
∑√m
c=1 4e−c

2 d2

6 ≤ ε/5.

Definition of µ: Let trunc : R→ [−1, 1] be defined as trunc(p) = max(min(p, 1),−1). Next, we define the
distribution µ as follows:

µ(x) := Um(x) ·
(

1 + trunc

(∑
i xi

d
√
m

))
.

It is easy to see that ∀x, µ(x) ≤ 2Um(x).

Lower bound on Ex∼µ[
∑
i xi]:

Ex∼µ[
∑
i

xi] =
∑

x∈{−1,1}m
Um(x) ·

(
1 + trunc

(∑
i xi

d
√
m

))
·

(∑
i

xi

)

=
∑

x∈{−1,1}m
Um(x) · trunc

(∑
i xi

d
√
m

)
·

(∑
i

xi

)

≥ Ex∼Um
[

(
∑
i xi)

2

d
√
m
· 1|∑i xi|≤d

√
m

]
As Ex∼Um

[
(
∑
i xi)

2

d
√
m
· 1|∑i xi|≤d

√
m

]
+ Ex∼Um

[
(
∑
i xi)

2

d
√
m
· 1|∑i xi|>d

√
m

]
= Ex∼Um

[
(
∑
i xi)

2

d
√
m

]
,

Ex∼Um
[

(
∑
i xi)

2

d
√
m
· 1|∑i xi|≤d

√
m

]
=

√
m

d
− Ex∼Um

[
(
∑
i xi)

2

d
√
m
· 1|∑i xi|>d

√
m

]
(41)
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We show that Ex∼Um
[

(
∑
i xi)

2

d
√
m
· 1|∑i xi|>d

√
m

]
≤ ε

√
m
d for d = 6

√
log(1/ε) and ε ≤ 1

30 . Substituting in

Equation (41), we get Ex∼Um
[

(
∑
i xi)

2

d
√
m
· 1|∑i xi|≤d

√
m

]
≥ Ω

(√
m

log(1/ε)

)
.

Ex∼Um
[

(
∑
i xi)

2

d
√
m
· 1|∑i xi|>d

√
m

]
≤

√
m∑

c=1

(c+ 1)2d
√
m Pr
x∼Um

[
cd
√
m ≤ |

∑
i

xi| ≤ (c+ 1)d
√
m

]

= d
√
m

√
m∑

c=1

(c+ 1)2 (p(c)− p(c+ 1))

= d
√
m

4p(1) +

√
m∑

c=2

(2c+ 1)p(c)

 ≤ 4d
√
m

√
m∑

c=1

cp(c)

≤ 4d
√
m

√
m∑

c=1

ce−c
2 d2

6 ≤ 4d
√
m

e−
d2

6

(1− e− d
2

6 )2

= 4d
√
m

ε6

(1− ε6)2
≤ ε
√
m

d

The last inequality follows from the fact that 6ε
√

log(1/ε) ≤ 1 for ε ≤ 1/30.

Upper bound on ‖B(Um)−B(µ)‖1: We calculate ‖B(Um)−B(µ)‖1 given that IC(B,Um) < c0 ·m logm ·
ε10 (the following upper bound works for any starting distribution of B0).

‖B(Um)−B(µ)‖1 =
∑
v

∣∣∣∣∣∣
∑

x∈{−1,1}m
(Um(x)− µ(x)) · Pr[B(x) = v]

∣∣∣∣∣∣
=
∑
v

∣∣∣∣∣∣
∑

x∈{−1,1}m
Um(x) · trunc

(∑
i xi

d
√
m

)
· Pr[B(x) = v]

∣∣∣∣∣∣
≤
∑
v

∣∣∣∣∣∣
∑

x∈{−1,1}m
Um(x) ·

∑
i xi

d
√
m
· Pr[B(x) = v]

∣∣∣∣∣∣
+
∑
v

∣∣∣∣∣∣
∑

x∈{−1,1}m
Um(x) ·

(
trunc

(∑
i xi

d
√
m

)
−
∑
i xi

d
√
m

)
· Pr[B(x) = v]

∣∣∣∣∣∣
≤
∑
v

∣∣∣∣∣∣
∑

x∈{−1,1}m
Um(x) ·

∑
i xi

d
√
m
· Pr[B(x) = v]

∣∣∣∣∣∣
+

∑
x∈{−1,1}m

Um(x) ·
∣∣∣∣trunc

(∑
i xi

d
√
m

)
−
∑
i xi

d
√
m

∣∣∣∣ ·
(∑

v

Pr[B(x) = v]

)

≤
∑
v

∣∣∣∣∣∣
∑

x∈{−1,1}m
Um(x) ·

∑
i xi

d
√
m
· Pr[B(x) = v]

∣∣∣∣∣∣+ Ex∼Um
[
|
∑
i xi|

d
√
m
· 1|∑i xi|>d

√
m

]

≤ 1

d
√
m
· Ev∼Bm

∣∣∣∣∣Ex∼Um
[∑

i

xi

∣∣∣∣∣ B(x) = v

]∣∣∣∣∣+
ε

5
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≤ 1

d
√
m
·

√√√√Ev∼Bm

(
Ex∼Um

[∑
i

xi

∣∣∣∣∣ B(x) = v

])2

+
ε

5

Corollary 14 shows that if IC(B,Um) < δ′ ·m logm, then

Ev∼Bm

Ex∼Um
[

n∑
i=1

xi

∣∣∣∣∣ B(x) = v

]2
 ≤ 4ε′m

for δ′ = c′′′ε′5 where c′′′ > 0 is a small enough constant.

Therefore, for δ′ = c′′′
(
ε2

16

)5

, if IC(B,Um) < δ′ ·m logm, then

Ev∼Bm

Ex∼Um
[

n∑
i=1

xi

∣∣∣∣∣ B(x) = v

]2
 ≤ 1

4
ε2m

and hence, for c0 = c′′′/165,

‖B(Um)−B(µ)‖1 ≤
1

d
√
m

√
1

4
ε2m+

ε

5
< ε

Proof of Theorem 19. Let δ = c0
2·1010 . Let M be a streaming algorithm which outputs 0 with probability

at least 2/3 on every input with |
∑
iXi| ≤ 4

√
nα and 1 with probability at least 2/3 on every input

with |
∑
iXi| > 4

√
nβ, when the input satisfies Promise 1 with γ = 10β log β, such that I(M,Un) <

δn log n/(β log2 β)11.
Partition the stream of length n into t = β log2 β blocks of length m = n/t (as β ≤ poly(log n), m ≥

√
n).

Define a sequence of distributions Di = Di,1 ×Di,2 × . . .×Di,t, i ∈ {0, . . . , t} on n bits as follows:

Di,l = Um,∀1 ≤ l ≤ t− i and Di,l = µ,∀t− i < l ≤ t

Using Lemma 3 with parameters m = n/t and ε = 1
10t (Corollary 14 works for this regime of ε as ε =

Ω(1/poly(log n))), we first show that

‖M(Dt)−M(D0)‖1 ≤
1

10
.

Let Bi (i ∈ {1, . . . , t}) be a (probabilistic) streaming algorithm of block of length m equivalent to subprogram
of M on (i− 1) ·m+ 1 to i ·m bits (Bij = M(i−1)·m+j (j ∈ [m]), Bi0 is a random variable independent of the

input to Bi equivalent to M(i−1)·m under the uniform distribution over the first (i− 1) ·m bits).

I(M,Un) =

n∑
i=1

i∑
j=1

(I(Mi;Xj |Mj−1)) ≥
l·m∑

i=(l−1)·m+1

i∑
j=(l−1)·m+1

(I(Mi;Xj |Mj−1))

= I(Bl, Um)

Recall, δ = c0
2·1010 and ε = 1

10t . Therefore,

I(Bl, Um) ≤ δn log n

(β log2 β)11
≤ c0

2 · 1010
·mt · 2 logm · 1

t11
= c0 ·m logm · ε10
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and through Lemma 3, we have that ‖Bl(Um) − Bl(µ)‖1 ≤ ε, where Bl0 is M(l−1)·m under the uniform
distribution over the first (l − 1) ·m bits and the private randomness used.

By definition, both Dt−l+1 and Dt−l have uniform distribution over the first (l− 1) ·m bits. Since Bl0 is
M(l−1)·m under the uniform distribution over the first (l− 1) ·m, ‖Mlm(Dt−l+1)−Mlm(Dt−l)‖1 ≤ ε (where
Mlm represents the lm-th message). Since the last (t − l)m bits are drawn from the same distribution for
Dt−l+1 and Dt−l, the statistical distance of the output cannot increase. Hence, ‖M(Dt−l+1)−M(Dt−l)‖1 ≤ ε
and by the triangle inequality, ‖M(Dt)−M(D0)‖1 ≤ 1

10 .
Next, we prove that if M succeeds with the probability mentioned above conditioned on the promise,

then ‖M(Dt)−M(D0)‖1 > 1/10, which then gives a contradiction and proves the theorem.

‖M(Dt)−M(D0)‖1 = 2 · | Pr
x∼Dt

[M(x) = 0]− Pr
x∼D0

[M(x) = 0]|

First we calculate the probability that x ∼ D0 (and x ∼ Dt) satisfies Promise 1 with γ = 10β log β. When
x is drawn from the uniform distribution, a standard use of the so-called reflection principle for random walks
[29]7 that

Pr
x∼Un

max
i∈[n]

i∑
j=1

xj ≥ l

 ≤ 2 Pr
x∼Un

 n∑
j=1

xj ≥ l

 .
Therefore, the probability that x ∼ Un satisfies Promise 1 with γ = 10β log β is at least (using a Chernoff
bound)

1− 2 Pr
x∼Un

| n∑
j=1

xj | ≥ 10β log β
√
n

 ≥ 1− 4e−(10β log β)2/6 ≥ 1− 4e−16β2

(42)

To calculate the probability that x ∼ Dt satisfies Promise 1 with γ = 10β log β, we first calculate the
probability p that x ∼ µ does not satisfy Promise 1 with γ = 10β log β/

√
t. As for all i ∈ [t], j ∈ [n/t],∣∣∣∣∣∣

n/t(i−1)+j∑
g=1

xg

∣∣∣∣∣∣ ≤
 i−1∑
h=1

∣∣∣∣∣∣
n/t(h)∑

g=n/t(h−1)+1

xg

∣∣∣∣∣∣
+

∣∣∣∣∣∣
n/t(i−1)+j∑
g=n/t(i−1)+1

xg

∣∣∣∣∣∣ ,
the probability that x ∼ Dt satisfies Promise 1 with γ = 10β log β is at least 1−pt. As µ(x) ≤ 2Um(x) (where
m = n/t), p is at most 2 times the probability that x ∈ Um does not satisfy Promise 1 with γ = 10β log β/

√
t,

which is at most 8e−(10β log β)2/6t. Therefore, the probability that x ∼ D0 (and x ∼ Dt) satisfies Promise 1
with γ = 10β log β is at least (for β ≥ 2):

1− 8te−(100β2)(log β)2/6β log2 β ≥ 99/100.

Then Prx∼D0
[M(x) = 0] ≥ 2

3 · (Prx∼Un [|
∑
i xi| ≤ 4

√
nα]− 1/100). Using a Chernoff bound (for α ≥ 1),

Pr
x∼Un

[|
∑
i

xi| ≤ 4
√
nα] ≥ 1− 2e−

(4α)2

6 ≥ 0.85.

Therefore, Prx∼D0 [M(x) = 0] ≥ 2
3 · (0.85− 1/100) ≥ 1

2 . Next, we calculate Prx∼Dt [M(x) = 0]:

Pr
x∼Dt

[M(x) = 0] = 1− Pr
x∼Dt

[M(x) = 1] ≤ 1− 2

3
·

(
Pr
x∼Dt

[∣∣∣∣∣∑
i

xi

∣∣∣∣∣ ≥ 4
√
nβ

]
− 1/100

)
. (43)

Recall Dt = µ× µ× . . .× µ. Using Lemma 3 (for β ≥ 2),

Ex∼Dt [
∑
i

xi] = Ω

(
t ·
√

m

log(1/ε)

)
= Ω

(
√
n ·

√
t

log(1/ε)

)
= Ω

√n ·
√
β log2 β

log β

 = Ω
(√

nβ ·
√

log β
)
.

7See, e.g., the bijection argument in Claim 4.4. in https://web.ma.utexas.edu/users/gordanz/notes/lecture4.pdf.
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Next, we compute the variance of the random variable |X ′| when X ′ is drawn from the distribution Dt. As
∀x, µ(x) ≤ 2Um(x):

VarX′∼µ[|X ′|] ≤ EX′∼µ[|X ′|2] ≤ 2 · EX′∼Um [|X ′|2] = 2m.

As Dt = µ×µ×. . .×µ, VarX′∼Dt [|X ′|] = t·VarX′∼µ[|X ′|] ≤ 2mt = 2n. Therefore, by Chebyshev’s inequality
(for β ≥ c2 where c2 > 0 is a large enough constant for which EX′∼Dt [|X ′|] ≥ 8

√
nβ),

Pr
x∼Dt

[∣∣∣∣∣∑
i

xi

∣∣∣∣∣ ≥ 4
√
nβ

]
≥ 1− 2n

(4
√
nβ)2

>
91

100
.

Substituting in Equation (43), we obtain Prx∼Dt [M(x) = 0] < 1− 2
3 · (

91
100 − 1/100) = 2

5 . Hence,

‖M(Dt)−M(D0)‖1 > 2

∣∣∣∣12 − 2

5

∣∣∣∣ = 1/5.

3.6 k-OR Promise Problem

We now consider the problem of determining the OR of multiple copies of the coin problem, and show
hardness even when the input is promised to have certain nice properties.

Consider the following k-OR problem: given k sequences of n {−1,+1} bits Xj
1 , X

j
2 ,. . ., Xj

n, j ∈
{1, 2, . . . , k}, output 0 if ∀j, |

∑
iX

j
i | ≤ 4

√
n log k and 1 if ∃j ∈ [k], |

∑
iX

j
i | ≥ 4

√
n log k. We show

Theorem 20 for any streaming algorithm that solves the k-OR promise problem, when Yi = (X1
i , . . . , X

k
i ) is

given as the i-th element of the stream, even if only when the input stream satisfies the following promise
for a large enough constant Cnorm.

Promise 2 (Input has small norm at all times). k sequences of n {−1,+1} bits each, xj1, x
j
2, . . . , x

j
n, j ∈ [k],

have Cnorm-small norm at all times if for i ∈ {1, ..., n},

k∑
j=1

(
i∑

i1=1

xji1

)2

≤ Cnorm · k · n

Remark 4. Given k sequences of n bits each, Xj
1 , X

j
2 , . . . , X

j
n, j ∈ [k], such that ∀i ∈ [n], j ∈ [k], Xj

i are
i.i.d. uniform from {−1,+1}, these sequences satisfy Promise 2 with Cnorm = C with probability at least
1− 1√

k
, where C > 0 is a large enough constant.

Proof. We will make use of a chaining inequality stated in Lemma 1. To do so, we apply Lemma 1 on
the vectors f (1) = (1, 0, . . . , 0), f (2) = (1, 1, 0, . . . , 0), f (3) = (1, 1, 1, 0, . . . , 0), . . . , f (n) = (1, 1, . . . , 1). Such
vectors define an insertion only stream, as needed to apply Lemma 1. We let Π denote the k × n matrix of
the k sequences of n bits. As the k sequences are i.i.d. uniformly from {−1,+1}n, Π is a k × n matrix of

i.i.d. random variables uniform in {−1,+1}. Observe that ‖Πf (i)‖22 is precisely
∑k
j=1

(∑i
i1=1 x

j
i1

)2

, when

xj1, x
j
2, . . . , x

j
n, j ∈ [k] are the k sequences. By Lemma 1, there exists ε = Θ(1/

√
k) such that for all i ∈ [n],∣∣∣∣∣∣

k∑
j=1

(
i∑

i1=1

xji1

)2

− k · i

∣∣∣∣∣∣ ≤ εkn.
Using a Markov bound, with probability 1− 1√

k
, simultaneously for all i, we have that

k∑
j=1

(
i∑

i1=1

xji1

)2

= O(kn).

The remark follows for a large enough constant C > 0.
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Theorem 20. There exists a large enough constant C ′ > 0 for which the following is true. Let M be a
streaming algorithm which, under the promise that the k sequences of n bits, xj1, x

j
2,. . ., xjn, j ∈ {1, 2, . . . , k},

satisfy Promise 2 for Cnorm = C ′, outputs 0 with probability at least 3/4 on every 0 input of the k-OR
problem, and 1 with probability at least 3/4 on every 1 input. Then there exists a constant c > 08 (for
c3 < k < n where c3 > 0 is a large enough constant) such that,

n∑
i=1

i∑
j=1

(I(Mi;Yj |Mj−1)) > Ω(k · n log n/(log k log log k)c).

Here, ∀i ∈ [n], Yi = (X1
i , ..., X

k
i ) is i.i.d. uniformly from {−1,+1}k.

As observed after Corollary 14,

n∑
i=1

i∑
j=1

I(Mi;Yj |Mj−1) ≤
n∑
i=1

|Mi|.

Therefore, M uses at least Ω(k log n/(log k log log k)c) memory.

Proof. Using M , we construct a streaming algorithm M ′ that, on the stream x′1, x
′
2, . . . , x

′
n, outputs 0 with

probability at least 2/3 on every input with |
∑
i x
′
i| ≤ 4

√
n log k and 1 with probability at least 2/3 on

every input with |
∑
i x
′
i| ≥ 4

√
n log2 k whenever x′1, ..., x

′
n satisfy Promise 1 with γ = 20 log2 k log log k. For

X ′ ∼ Un, we show that M ′ satisfies

n∑
i=1

i∑
j=1

I(M ′i ;X
′
j |M ′j−1) ≤ 1

k
·
n∑
i=1

i∑
j=1

I(Mi;Yj |Mj−1)

Thus, the theorem follows from Theorem 19 by taking α = log k and β = log2 k (as long as k ≥ c3, where
c3 > 0 is a large enough constant for which log2 k ≥ c2). The information quantity can be written as

n∑
i=1

i∑
j=1

I(Mi;Yj |Mj−1) =

n∑
i=1

i∑
j=1

I(Mi;X
1
j , X

2
j , . . . , X

k
j |Mj−1)

=

n∑
i=1

i∑
j=1

k∑
l=1

I(Mi;X
l
j |Mj−1, X

<l
j )

=

k∑
l=1

n∑
i=1

i∑
j=1

I(Mi;X
l
j |Mj−1, X

<l
j )

Therefore, there exists l ∈ [k] such that

n∑
i=1

i∑
j=1

I(Mi;X
l
j |Mj−1, X

<l
j ) ≤ 1

k
·
n∑
i=1

i∑
j=1

I(Mi;Yj |Mj−1) (44)

Given a stream X ′ of n {−1,+1} bits X ′1, . . . , X
′
n, M ′, using private randomness, creates k−1 sequences

of n i.i.d. uniform on {−1,+1} random bits (named X1, . . . , X l−1, X l+1, . . . , Xk). M ′ runs M on the k
sequences with X ′ embedded as the lth sequence and outputs as M outputs. M ′ at the ith step, generates
X1
i , . . . , X

l−1
i , X l+1

i , . . . , Xk
i , simulates the ith step of M with X l

i = X ′i, and only remembers Mi.
We only need to calculate the success probability of M ′ on input x′1, ..., x

′
n satisfying Promise 1 with

γ = 20 log2 k log log k. Also, M ′ can trust M ’s output only when it generates k − 1 sequences such that the

8c = 22.
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k sequences altogether satisfy the Promise 2 for Cnorm = C ′ (where C ′ is a large enough constant). As each
of the k − 1 sequences are drawn from Un, using Remark 4, the k − 1 sequences satisfy the Promise 2 for
Cnorm = C with probability at least 1− 1√

k−1
. As the l-th sequence, x′1, ..., x

′
n, satisfies Promise 1 with γ =

20 log2 k log log k, the norm of the k sequences (at any time) is changed by at most (20 log2 k log log k)2n ≤
400kn (k > c3 where c3 > 0 is a large enough constant). Therefore, for C ′ = C + 400, the k sequences
altogether satisfy the Promise 2 for Cnorm = C ′, with probability at least 1− 1√

k−1
.

Rephrasing, M ′ runs M on an input satisfying Promise 2 for Cnorm = C ′, with probability at least
1 − 1√

k−1
. Next, we calculate the probability that M ′ outputs 0 when |

∑
i x
′
i| ≤ 4

√
n log k and x′1, ..., x

′
n

satisfies Promise 1 with γ = 20 log2 k log log k. It is at least equal to the probability that M ′ generates
a 0 input for the k-OR problem for M (that satisfies the promise) multiplied by the probability that M
outputs 0 on this 0 input. By a Chernoff bound for n i.i.d. Bernoulli(1/2) random variables, we have that
∀j ∈ [k]− {l},

Pr

[∣∣∣∣∣∑
i

Xj
i

∣∣∣∣∣ > 4
√
n log k

]
≤ 2 · e−

16 log k
n ·n6 ≤ 2

k3
. (45)

Therefore, by a union bound, the probability that M ′ generates a 0 input (for M) satisfying the promise for
the k-OR problem is at least

1− 2 · k − 1

k3
− 1√

k − 1
≥ 17/18,

where k ≥ c3 for c3 > 0 a large enough constant. Thus, the probability that M ′ outputs 0 when |
∑
i x
′
i| ≤

4
√
n log k, under the promise 1, is at least 17/18 · 3/4 ≥ 2/3.
Next, we calculate the probability that M ′ outputs 1 when |

∑
i x
′
i| ≥ 4

√
n log k and x′1, ..., x

′
n satisfies

Promise 1 with γ = 20 log2 k log log k. As M ′ would always generate a 1 input for the k-OR problem for M
and an input that satisfies the promise with probability 1− 1/

√
k − 1, the probability that M ′ outputs 1 is

at least
3

4

(
1− 1√

k − 1

)
≥ 2/3.

Next, we prove an information bound for the streaming algorithm M ′.

n∑
i=1

i∑
j=1

I(M ′i ;X
′
j |M ′j−1)

=

n∑
i=1

i∑
j=1

I(Mi;X
l
j |Mj−1)

=

n∑
i=1

i∑
j=1

I(X<l
j ;X l

j |Mj−1) + I(Mi;X
l
j |Mj−1, X

<l
j )− I(X<l

j ;X l
j |Mj−1,Mi)

≤
n∑
i=1

i∑
j=1

I(Mi;X
l
j |Mj−1, X

<l
j )

≤ 1

k
·
n∑
i=1

i∑
j=1

I(Mi;Yj |Mj−1)

The first inequality follows from the fact that I(X<l
j ;X l

j |Mj−1) = 0. The last inequality follows from
Equation (44).

The k-OR problem can be easily solved by storing the counts of all the sequences in O(k log n) memory.
In Theorem 20, we prove an Ω(k log n/poly(log k)) memory lower bound (tight up to poly(log k) factors) for
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any streaming algorithm that solves the k-OR Problem for gap (β/α) as large as log k. In the following
theorem, using a simple reduction from the Simultaneous k-Coins Problem, we in fact prove a tight
Ω(k log n) memory lower bound for any streaming algorithm that solves the k-OR Problem but for gaps

(β/α) of at most
(

1 + 1
4Cgap

√
log k

)2

(where Cgap > 0 is a large enough fixed constant).

Consider the following k-OR small gap problem: given k sequences of n {−1,+1} bits Xj
1 , X

j
2 ,. . ., Xj

n,

j ∈ {1, 2, . . . , k}, output 0 if ∀j, |
∑
iX

j
i | ≤ 4

√
n log k and 1 if ∃j ∈ [k], |

∑
iX

j
i | ≥ 4

√
n log k +

√
n

Cgap
. For a

large enough fixed constant Cgap > 0, we prove Theorem 21 for any streaming algorithm which solves the
k-OR small gap problem, even if only when the input stream satisfies Promise 2 for a large enough constant
Cnorm.

Theorem 21. There exists a large enough constant C ′ > 0 for which the following holds. Let M be a
streaming algorithm which, under the promise that the k input sequences of n bits, xj1, x

j
2,. . ., xjn, j ∈

{1, 2, . . . , k}, satisfy Promise 2 for Cnorm = C ′, outputs 0 with probability at least 1− 10−4 on every 0 input
of the k-OR small gap problem, and 1 with probability at least 1−10−4 on every 1 input, then (for c4 < k ≤ n
where c4 > 0 is a large enough constant) M requires Ω(k log n) memory.

Proof. Using M , we construct a streaming algorithm M ′ that solves the Simultaneous k-Coins Problem
on n′ ≥ n/2 bits, with probability at least 1− 1

2000 , and uses O(k+log n) memory in addition to the memory
used by M . Hence, Corollary 17 implies the theorem. Let n′ = n − 4

√
n log k (n′ ≥ n/2 for large enough

n). M ′ is given a kn′ bit input X ′1, ..., X
′
kn′ ∈ {0, 1}kn

′
in a stream, such that X ′i belongs to the ((i − 1)

mod k + 1)th instance of the k-Coins Problem. M ′ constructs the input stream for M as follows. For all
i ∈ [n′], Yi = (2X ′(i−1)k+1 − 1, 2X ′(i−1)k+2 − 1, ..., 2X ′i·k − 1), that is, ∀j ∈ [k], i ∈ [n′], Xj

i = 2X ′(i−1)k+j − 1

(this step requires an additional k memory bits to remember the input bits for k layers). After kn′ steps,
M ′ is given ` ∈ [k] and it needs to output the majority of the `-th instance. For the next n − n′ steps, M ′

adds Yi = (1, 1, ..., 1) when (i mod 2) = 0, and Yi = (−1,−1, ...1, ...,−1) when (i mod 2) = 1 to the input
stream for M (this step requires an additional O(log n) memory bits). That is, M ′ adds 4

√
n log k 1s to the

`-th sequence, and 1s and −1s alternatively to the rest of the sequences (the total is 0).
We first calculate the probability that M ′ generates an input satisfying Promise 2 for Cnorm = C ′ (for a

large enough constant C ′ > 0). The k sequences that are input to M in the first n′ layers are i.i.d. uniformly
from {−1,+1}n′ and hence, using Remark 4, they satisfy Promise 2 for Cnorm = C with probability at least
1− 1√

k
. Note that, for i > n′,

k∑
j=1

(
i∑

i1=1

xji1

)2

=

k∑
j=1

 n′∑
i1=1

xji1 +

i∑
i1=n′+1

xji1

2

≤ 2 ·
k∑
j=1


 n′∑
i1=1

xji1

2

+

(
i∑

i1=n′+1

xji1

)2
 .

And as ∀j 6= `, |
∑i
i1=n′+1 x

j
i1
| ≤ 1 and for j = `, |

∑i
i1=n′+1 x

j
i1
| ≤ 4

√
n log k, for all i > n′,

k∑
j=1

(
i∑

i1=1

xji1

)2

≤ 2C · k · n+ 2k + 16n log k = O(kn).

Therefore, the input to M satisfies Promise 2 for Cnorm = C ′ (for a large enough constant C ′ > 0), with
probability at least 1− 1√

k−1
.

M ′ outputs whatever M outputs. Next, we calculate the probability that M ′ outputs the correct answer
to the majority of the `-th instance. M ′ runs M on a 0 input if for all j 6= `,

|
n′∑
i=1

xji | ≤ 4
√
n log k, (46)
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and 8
√
n log k ≤

∑n′

i=1 x
`
i ≤ 0 (majority of `-th instance is 0). M ′ runs M on a 1 input if

√
n

Cgap
≤
∑n′

i=1 x
`
i

(majority of `-th instance is 1).
Using a Chernoff bound as in Equation (45) and a union bound, the probability that {Xj

i }j∈[k],i∈[n′]

satisfies Inequality 46 is at least 1− 2(k−1)
k3 . Next, using a Chernoff bound,

Pr

8
√
n log k ≤

n′∑
i=1

X`
i ≤ 0

 ≥ 1

2
− e−64 log k/6 ≥ 1

2
− k−8. (47)

There exists a large enough constant Cgap > 0 such that

Pr

 √n
Cgap

≤
n′∑
i=1

X`
i

 ≥ 1

2
− 10−4. (48)

This is because for all s ∈ [n],

Pr

 n′∑
i=1

X`
i = s

 ≤ Pr

 n′∑
i=1

X`
i = 0

 = O(1/
√
n′) = O(1/

√
n).

M outputs the correct answer with probability at least 1 − 10−4 (over the private randomness) whenever
the input satisfies Promise 2 for Cnorm = C ′ and is a valid 0 or a 1 input. Whenever Equation (46), and
Equation (47) or Equation (48) are satisfied and the input to M satisfies Promise 2 for Cnorm = C ′, the
expected outcome from M agrees with the correct answer of M ′. Therefore, M ′ outputs correctly with
probability at least

(1− 10−4) ·
(

1− 1√
k − 1

− 2(k − 1)

k3
− k−8 − 10−4

)
,

which is greater than 1− 1
2000 for k > c4 where c4 > 0 is a large enough constant.

4 Data Stream Applications

We apply our lower bounds for the coin problem to a number of data stream problems. Our communication
lower bounds give new bounds in a number of different data stream models.

4.1 Lower Bounds with Bounded Deletions

Recall that in the bounded deletions model, at all times in the stream, the norm ‖x‖2 is never a constant
factor less than its value at any earlier point in the stream. We will not explicitly state this constant
factor, but will prove lower bounds for various problems in bounded deletion streams for some constant
factor. Also, we will assume the streaming algorithm succeeds with sufficiently large constant probability
for the lower bounds to hold, where in this subsection the probability is taken over its internal randomness.
For all algorithms in this section, this can be achieved by repeating the algorithm a constant number of
times and taking the median estimate (in the case of `2-heavy hitters, we take the median estimate of each
item). Throughout we assume, unless stated otherwise, that the parameter ε for approximation is such that
c′′ < ε−2 ≤ min{m, d}0.9 (or c′′ < k ≤ min{m, d}0.9) where m is the length of the stream, d is the dimension
of the vector x and c′′ > 0 is a large enough constant. For an integer v, we also use the notation xi ← xi + v
to represent |v| consecutive v

|v| updates to xi.
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`∞-Estimation.

Theorem 22. (‖x‖∞-Approximation) Any streaming algorithm M in the bounded deletions model which
outputs a number Z satisfying

‖x‖∞ −
‖x‖2√
k
≤ Z ≤ γ‖x‖∞ +

‖x‖2√
k

with sufficiently large constant probability over its private randomness, requires Ω(k logm) bits of memory

if γ = 1, and Ω
(

k logm
polylog(k)

)
bits of memory9 for any 1 < γ ≤ c′

√
log k (where c′ > 0 is a small enough

constant) and c′′ < k ≤ min{m0.5, d} (where c′′ > 0 is a large enough constant).

Proof. We prove the lower bound via a reduction from the k-OR problem for k′ = ck sequences of n bits,
where c > 0 is a sufficiently small constant.

Given an input stream to the k-OR problem on k′ sequences, we construct a streaming algorithm M ′

that creates a stream of updates to x, the underlying d-dimensional vector, and outputs the correct answer
using the approximation that M returns. Thus, if the k-OR problem is hard for low-memory algorithms,
the approximation of ‖x‖∞ is also hard. Each of the k′ coins of the k-OR problem corresponds to one of the
k′ coordinates of x, and the updates to that coin correspond to the corresponding stream updates to that
coordinate of x. Before making the updates corresponding to the k-OR problem, we add

√
n 1s each to an

additional k′ coordinates (assuming 2k′ ≤ k ≤ d). That is, xi ← xi +
√
n for k′ + 1 ≤ i ≤ 2k′.

Under the promise of the k-OR problem (Promise 2) and due to the additional k′ coordinates, we have
that the resulting stream satisfies the bounded deletions property, and that ‖x‖2 = Θ(

√
nk′) at all times

during the stream.
If γ = 1 we reduce from the k-OR small gap problem, using Theorem 21. In this case, in the underlying

GapCoin(α, β) problem, we have α = log k′ and (β/α) =
(

1 + 1
4Cgap

√
log k′

)2

, where Cgap is the constant

defined in the k-OR small gap problem in Theorem 21. Otherwise, γ > 1 and we choose α = log k′ and
β = log2 k′. For such a choice of β, we claim that the following inequality holds for all x generated under
the promise for the k-OR problem:

4
√
nβ > 4γ

√
nα+

2‖x‖2√
k
. (49)

Notice that since γ > 1 and ‖x‖2 = O(
√
nk′) under the promise (k′ = ck for small enough constant c > 0),

there exists β = O(γ2 log k) that satisfies this inequality. Since we also assume that γ ≤ c′
√

log k, in this
case we have that O(γ2 log k) ≤ O(c′ log2 k) ≤ log2 k′ (for small enough constant c′ > 0 and large enough k),
and thus β = log2 k′ suffices. Therefore, we apply Theorem 20 for this choice of α = log k′ and β = log2 k′.

Although we have chosen α and β to satisfy (49) when γ > 1, we claim that our choice of α and β when
γ = 1 also satisfies (49). Observe that

4
√
nβ = 4

√
nα

(
1 +

1

4Cgap
√

log k′

)
= 4
√
nα+

√
n

Cgap
.

Consequently, 4
√
nβ − 4

√
nα =

√
n

Cgap
> 2‖x‖2√

k
for k′ = ck for a sufficiently small constant c > 0. Indeed, to

see this inequality, since ‖x‖2 = O(
√
nk′) we have 2‖x‖2√

k
= O(

√
cn), and for c > 0 sufficiently small, this is

at most
√
n

Cgap
, and so (49) holds also for γ = 1.

If the GapCoin(α, β) problem evaluates to 1, then ‖x‖∞ ≥ 4
√
nβ. In this case if the streaming algorithm

succeeds, then

Z ≥ ‖x‖∞ −
‖x‖2√
k

9Ω
(

k logm
(log k log log k)22

)
to be precise.
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≥ 4
√
nβ − ‖x‖2√

k

> 4γ
√
nα+

‖x‖2√
k
,

where we have used (49). On the other hand, if the GapCoin(α, β) problem evaluates to 0, then ‖x‖∞ ≤
4
√
nα, and so

Z ≤ γ‖x‖∞ +
‖x‖2√
k

≤ 4γ
√
nα+

‖x‖2√
k

Thus, from the output of the streaming algorithm, we can solve the GapCoin(α, β) problem. Noting that the
stream length m = nk and that we assume m/k > m0.5 (n > k), we have log n = Θ(logm). The conclusion
now follows by applying Theorem 21 when γ = 1 and Theorem 20 when γ > 1.

Our next three applications all make use of the following claim, which is that a certain stream generated
using the input to the Simultaneous k-Coins problem satisfies the bounded deletions property.

Consider an instance of the Simultaneous k-Coins problem. Let x be an underlying d-dimensional
vector in a stream, initialized to 0d, where we assume d ≥ (k + 1). We identify an input, which is 1 or 0, in
the i-th copy of the Simultaneous k-Coins problem, with an update to the i-th coordinate of x, where
xi ← xi + 1 if the update is a +1, or xi ← xi − 1 if the update is a 0. We start the stream by performing
the update xk+1 ← xk+1 +

√
kn. We then update x as defined by the above update rule given the inputs to

the Simultaneous k-Coins problem. At the end of the stream, for some index j ∈ {1, 2, . . . , k}, we add
a single number of any value to coordinate xj .

We call this a simultaneous stream.

Claim 8. (Bounded Deletion Property for Simultaneous k-Coins Problem) For any constant δ > 0,
for k greater than a sufficiently large constant (depending on δ), the probability that a simultaneous stream
satisfies the bounded deletions property is at least 1− δ.

Proof. We will make use of the chaining inequality stated in Lemma 1. Let α be a sufficiently small constant
to be determined. We show that at any times t′ and t in the stream, with t′ > t, we have ‖x(t′)‖22 ≥ α‖x(t)‖22,
where x(t) is the value of the vector x after receiving t stream updates. To do so, we apply Lemma 1 on
the vectors f (1) = (1, 0, . . . , 0), f (2) = (1, 1, 0, . . . , 0), f (3) = (1, 1, 1, 0, . . . , 0), . . . , f (n) = (1, 1, . . . , 1). Such
vectors define an insertion only stream, as needed to apply Lemma 1. We let Π denote the k × n matrix of
inputs to the Simultaneous k-Coins problem. Observe that ‖Πf (i)‖22 is precisely ‖x(ik)‖22 − x2

k+1, where

x(ik) denotes the underlying vector x after having seen exactly i · k updates, for an integer i. By Lemma 1
and a Markov bound (and using that εk = Θ(

√
k)), with probability 1−O(1/

√
k), simultaneously for all i,

we have that ‖x(ik)‖22 − x2
k+1 = O(kn). Let us call this event G and condition on it.

Next, notice that
|‖x(ik)‖22 − ‖x(ik+`)‖22| ≤ 2‖x(ik)‖2

√
k + k = O(k

√
n+ k),

for any integer ` ∈ {0, 1, 2, . . . , k − 1}. It follows that ‖xt‖22 − x2
k+1 = O(kn) at all times t in the stream.

Notice though that x2
k+1 = kn at all times after the initial insertion at the beginning of the stream, and

consequently, with probability 1−O(1/
√
k) (greater than 1− δ/2), our stream satisfies the bounded deletion

property with a small enough constant α.
Finally, at the end of the stream, we add a number of any value v to a coordinate xj . Observe that if v

has the same sign as xj , this only increases ‖x‖2, and so the bounded deletions property still holds. On the
other hand, if v has the opposite sign as xj , then this is equivalent to first reducing the current xj to 0, and
then replacing the value from 0 to v + xj . By choosing a large enough constant C > 0, we have that, right
before adding the value v, that |xj | ≤ C

√
n with arbitrarily large constant probability (greater than 1−δ/2).
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Thus, by the triangle inequality, reducing xj to 0 decreases the norm of x by at most C
√
n. However, since

we have ‖x‖2 ≥
√
kn right before adding the value v, it follows that we still have ‖x‖2 = Θ(

√
kn) (for

sufficiently large k depending on C and hence δ) after reducing xj to 0, so the bounded deletions property
still holds. Finally, adding v + xj to coordinate xj only increases ‖x‖2, so the bounded deletions property
holds at the end of the stream as well.

We now use Claim 8 to prove lower bounds in the bounded deletions model for other problems.

`2-Estimation. In [21], it was asked if one could obtain an upper bound better than O((logm)/ε2) memory
for `2-estimation in the bounded deletions model, namely, if the `2-norm of the input vector never drops
by more than an α-fraction of what it is at any earlier point in the stream. The only known lower bound
is Ω((log(1/α))/ε2). Here we show a lower bound of Ω((logm)/ε2) even for constant α, thus resolving the
question in [21] in the negative.

Theorem 23. Any streaming algorithm in the bounded deletions model which, with sufficiently large constant
probability, outputs a number Z = (1± ε)‖x‖22 at the end of the stream, for every set of stream updates and
ε smaller than a small enough constant, requires Ω((logm)/ε2) bits of memory.

Proof. We reduce from the Simultaneous k-Coins problem for a value k = Θ( 1
ε2δ ) (k + 1 ≤ d), where

δ > 0 is a sufficiently small constant. We create a simultaneous stream as defined above. In our case, the
last player has the index j in the Simultaneous k-Coins problem and adds the value C

√
kn to xj at

the end of the stream, where C > 1 will be an arbitrarily large constant. By Claim 8, for large enough k,
with arbitrarily large constant probability (1 − δ), the simultaneous stream satisfies the bounded deletions
property.

Suppose the output of the streaming algorithm is in (1± c′ε)‖x‖22 with probability at least 1− δ, where
c′ > 0 is an arbitrarily small constant. We will show an Ω(ε−2 logm) memory lower bound for streaming
algorithms achieving such an approximation. It will then follow that by rescaling ε by ε/c′, we will have an
Ω(ε−2 logm) lower bound for algorithms outputting a number in (1 ± ε)‖x‖22. Let E be the event that the
streaming algorithm succeeds in outputting a number in (1± c′ε)‖x‖22.

Right before adding C
√
kn to xj , let Xj be the current value of the j-th coordinate of x. By the

anti-concentration of the binomial distribution (which follows from Stirling’s approximation given in Section
2) and assuming k is greater than a sufficiently large constant, it follows that there is a sufficiently small
constant γ > 0 (depending on δ) for which

Pr[
√
kn ≥ |Xj | > γ

√
n] ≥ 1− δ. (50)

Here δ > 0 is as above. Note that (50) holds for any choice of C > 1, provided k is sufficiently large. Let F
denote the event that

√
kn ≥ |Xj | > γ

√
n.

If F occurs, then if Xj ≥ 0, we have:

(C
√
kn+Xj)

2 ≥ (C
√
k + γ)2n. (51)

On the other hand, if Xj < 0, we have:

(C
√
kn+Xj)

2 ≤ (C
√
k − γ)2n. (52)

Note that C > 1 and so given event F , we have that C
√
kn+Xj is positive.

Let x−j be the vector at the end of the stream, excluding the j-th coordinate. Observe that ‖x−j‖22 =
‖S · 1n‖22, where S ∈ {−1, 1}(k−1)×n is uniformly random, and 1n is a vector of all 1s. It follows by standard
sketching guarantees for estimating the Euclidean norm of a vector in a stream (see, e.g., the proof of
Theorem 2.2 of [2], where the first and second moments of ‖S · 1n‖22 are calculated), and our choice of
k =

(
Θ( 1

ε2δ )
)
, that

Pr[‖x−j‖22 = (1± ε)n(k − 1)] ≥ 1− δ.
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Let us call this event G.
By a union bound, Pr[E ∧ F ∧ G] ≥ 1 − 3δ. We condition on E ∧ F ∧ G occurring in what follows. A

deterministic case analysis then finishes the proof:

Case: Xj ≥ 0: In this case,

‖x‖22 ≥ nk − n− εnk + (C
√
k + γ)2n

≥ nk − εnk + C2kn+ 2C
√
kγn+ γ2n

≥ (C2nk + nk) + (2C
√
kγn− εnk − n) + γ2n.

Case: Xj < 0: In this case,

‖x‖22 ≤ nk + εnk + (C
√
k − γ)2n

≤ nk + εnk + C2kn− 2C
√
kγn+ γ2n

≤ (C2nk + nk)− (2C
√
kγn− εnk) + γ2n.

We can make C an arbitrarily large constant, depending on an already fixed γ (this will only affect our
choice of c′ below, and ultimately degrade our lower bound by a constant factor). Note also εnk = Θ(

√
kn).

By making C an arbitrarily large constant, we have that if Xj ≥ 0, then ‖x‖22 ≥ (C2nk+ nk) +C
√
kγn.

On the other hand, if Xj < 0, then ‖x‖22 ≤ (C2nk+nk)−C
√
kγn. Using that C

√
kγn = Θ(ε) · (C2nk+nk),

it follows that a data stream algorithm which provides a (1 ± c′ε)-approximation to ‖x‖22 for a sufficiently
small constant c′ > 0, can distinguish the two cases. Consequently, it can solve the Simultaneous k-Coins
problem with probability 1 − 4δ, and requires Ω(ε−2 log n) bits of memory (Corollary 17). Noting that
m = nk here (k ≤ m0.9), we see that such an algorithm requires Ω(ε−2 logm) bits of memory. Rescaling ε
by c′ completes the proof.

Point Query. By using the distributional version of the Simultaneous k-Coins problem, we are able
to show an Ω(ε−2 logm) bit lower bound in the bounded deletions model. This is also optimal given an
O(ε−2 logm) bit upper bound using the CountSketch data structure [11] (here we only need a constant
number of rows in the data structure of [11], since we only need to be correct on a fixed index j).

Theorem 24. (Point Query Problem) Any streaming algorithm which, in the bounded deletions model,
with sufficiently large constant probability, solves the `2-Point Query Problem, requires Ω(ε−2 logm) bits of
memory for small enough ε.

Proof. We reduce from the Simultaneous k-Coins problem for a value k = Θ(ε−2), creating a simulta-
neous stream as defined above. In our case, the last player has the index j in Simultaneous k-Coins and
adds nothing to xj at the end of the stream. By Claim 8, for large enough ε−2 (such that k = c′ε−2, for
a sufficiently small constant c′ > 0 to be determined later, still has k being large), with arbitrarily large
constant probability, the simultaneous stream satisfies the bounded deletions property.

We have E[F2] = kn, and thus by a Markov bound, with probability at least 1 − c2, ‖x‖2 ≤ (1/c)
√
kn,

where c > 0 is an arbitrarily small constant. Let us call this event E . Under the event E , for any given ε,
one can choose a sufficiently small constant value of c′ > 0, where k = c′ε−2, for which ε‖x‖2 < δ

√
n, for a

sufficiently small constant δ > 0
The last player holds an index j ∈ {1, 2, . . . , k}, and computes the output E of the streaming algorithm

on query j, which produces an estimate x̂j with |x̂j−xj | ≤ ε‖x‖2 with arbitrarily large constant probability.
Let us call this latter event F .

Given the occurrence of events E and F , as well as the bounded deletions property, it follows that we
learn the sum on the j-th coin up to additive error at most δ

√
n for an arbitrarily small constant δ > 0

(and thus obtain a constant success probability arbitrarily close to 1 for outputting the majority on the j-th
coin). Consequently, we can solve the Simultaneous k-Coins problem with arbitrarily large constant
probability. Hence, the streaming algorithm must use Ω(k · log n) bits of memory (Corollary 17), which is
Ω(k · logm) bits of memory since m = k · n and we assume m/k > m0.1.
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`2-Heavy Hitters. We next show an Ω(ε−2 logm) lower bound in the bounded deletions model for the
`2-Heavy Hitters problem, which together with the trivial Ω(ε−2 log d) lower bound, implies the algorithms
of [6, 7] are optimal up to a log(1/ε) factor, given the observation of [21] that these algorithms apply in the
bounded deletions model (where as usual, the parameter α in the bounded deletions model is a constant).

Theorem 25 (`2-Heavy Hitters Problem). Any streaming algorithm which, in the bounded deletions model,
solves the `2-Heavy Hitters Problem with sufficiently large constant probability, requires Ω(ε−2 logm) bits of
memory.

Proof. We reduce from the Simultaneous k-Coins problem for a value k = Θ(ε−2), creating a simulta-
neous stream as defined above. In our case, again the last player has the index j in Simultaneous k-Coins
problem and adds nothing to xj at the end of the stream. By Claim 8, for large enough ε−2 (such that
k = c′ε−2, for sufficiently small constant c′ > 0 to be determined later, is still large), with arbitrarily large
constant probability, the simultaneous stream satisfies the bounded deletions property.

We have that E[F2] = kn, and thus by a Markov bound, with probability at least 1−c2, ‖x‖2 ≤ (1/c)
√
kn,

where c > 0 is an arbitrarily small constant. Let us call this event E . Under the event E , one can choose a
sufficiently small constant value of c′ > 0, where k = c′ε−2, for which ε‖x‖2 < δ

√
n, for a sufficiently small

constant δ > 0.
The last player holds an index j ∈ {1, 2, . . . , k}, and computes the output of the streaming algorithm. By

the guarantee of the streaming algorithm, we have that from the output we can produce an estimate x̂j with
|x̂j − xj | ≤ δ

√
n with arbitrarily large constant probability. Indeed, by the `2-Heavy Hitters guarantee, we

have that either j is in the output set of the heavy hitters algorithm, in which case its estimate x̂j satisfies
this guarantee, or it is not in the output set, in which case the estimate x̂j = 0 satisfies this guarantee. Let
us call the event that x̂j satisfies this guarantee the event F .

Given the occurrence of events E and F , as well as the bounded deletions property, it follows that we
learn the sum on the j-th coin up to additive error at most δ

√
n for an arbitrarily small constant δ > 0.

Consequently, we can solve the Simultaneous k-Coins problem problem with arbitrarily large constant
probability. Hence, the streaming algorithm must use Ω(k · log n) bits of memory (Corollary 17), which is
Ω(k · logm) bits of memory since m = k · n and we assume m/k > m0.1.

4.2 Lower Bounds in the Random Order Model

Point Query. We next show the first optimal Ω(ε−2 logm) lower bound for the `2-Point Query Problem
if the stream (of insertions and deletions) occurs in a random order.

Theorem 26. Any streaming algorithm in the random order model which succeeds with sufficiently large
constant probability, over the random order and private randomness, in solving the `2-Point Query Problem
requires Ω(ε−2 logm) bits of memory.

Proof. We reduce from the k-Coins Problem for the random order for a value k = Θ(ε−2) (Corollary 18).
Let x be the underlying d-dimensional vector in the stream, initialized to 0d, where we assume d ≥ k. We
identify an input, which is 1 or 0, in the i-th copy of the k-Coins Problem with an update to the i-th
coordinate of x, where xi ← xi + 1 if the update is a +1, or xi ← xi− 1 if the update is a 0. By definition of
the k-Coins Problem for random order, the updates in the stream, even when the set of updates are fixed,
appear in a uniformly random order. Using Equation (31), we observe with probability at least 1−k · e−n/8,
the number of updates to each coordinate is at least n/2. Let us call this event G.

The last player for the k-Coins Problem holds an index j ∈ {1, 2, . . . , k}, and computes the output E of
the streaming algorithm for the `2-Point Query Problem, on query j, which produces x̂j with |x̂j−xj | ≤ ε‖x‖2
with arbitrarily large constant probability over the random order and internal randomness. Let us call this
latter event E .

We have E[F2] = kn, and thus by a Markov bound, with probability at least 1 − c2, ‖x‖2 ≤ (1/c)
√
kn,

where c > 0 is an arbitrarily small constant. Let us call this event F . Under the event F , one can choose a
sufficiently small constant value of c′ > 0, where k = c′ε−2, such that ε

√
F 2 < δ

√
n, for a sufficiently small
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constant δ > 0. Thus, under events E and F , we learn the sum on the j-th coin up to additive error of at
most δ

√
n for an arbitrarily small constant δ > 0. Under G, learning the sum on the j-th coin up to additive

error at most δ
√
n identifies the majority of the jth instance, with arbitrarily large constant probability,

for small enough δ. In all, we can solve the k-Coins problem (under events E , F and G) with arbitrarily
large constant probability. Hence, the streaming algorithm must use Ω(k · log n) bits of memory, which is
Ω(k · logm) bits of memory since m = k · n and we assume m/k = m0.1.

`2-Heavy Hitters. We next show an Ω(ε−2 logm) bit lower bound for the `2-Heavy Hitters Problem.

Theorem 27. Any streaming algorithm which, in the random order model, solves the `2-Heavy Hitters
Problem with sufficiently large constant probability, over the random order and private randomness, requires
Ω(ε−2 logm) bits of memory.

Proof. We again reduce from the k-Coins problem for a random order for a value k = Θ(ε−2) (Corollary
18). Let x be the underlying d-dimensional vector in the stream, initialized to 0d, where we assume d ≥ k.
We identify an input, which is 1 or 0, in the i-th copy of the k-Coins problem with an update to the i-th
coordinate of x, where xi ← xi + 1 if the update is a +1, or xi ← xi − 1 if the update is a 0. By definition
of the k-Coins Problem for a random order, the updates in the stream, even when the set of updates
are fixed, appear in a uniformly random order. Using Equation (31), we observe with probability at least
1− k · e−n/8, the number of updates to each coordinate is at least n/2. Let us call this event G.

We have E[F2] = kn, and thus by a Markov bound, with probability at least 1 − c2, ‖x‖2 ≤ (1/c)
√
kn,

where c > 0 is an arbitrarily small constant. Let us call this event F . Under the event F , one can choose a
sufficiently small constant value of c′ > 0, where k = c′ε−2, such that ε

√
F 2 < δ

√
n, for a sufficiently small

constant δ > 0.
The last player for the k-Coins problem holds an index j ∈ {1, 2, . . . , k}, and computes the output of

the streaming algorithm for the `2-Heavy Hitters Problem. By the guarantee of the streaming algorithm,
we have that from the output we can produce an estimate x̂j with |x̂j − xj | ≤ δ

√
n with arbitrarily large

constant probability. Indeed, by the `2-Heavy Hitters guarantee, we have that either j is in the output set of
the heavy hitters algorithm, in which case its estimate x̂j satisfies this guarantee, or it is not in the output
set, in which case the estimate x̂j = 0 satisfies this guarantee. Let us call the event that x̂j satisfies this
guarantee event E .

It follows that we learn the sum on the j-th coin up to additive error at most δ
√
n for an arbitrarily

small constant δ > 0. Under G, learning the sum on the j-th coin up to additive error at most δ
√
n

identifies the majority of the j-th instance, with arbitrarily large constant probability, for small enough
δ. In all, we can solve the k-Coins problem (under events E , F and G) with arbitrarily large constant
probability. Consequently, we can solve the k-Coins problem with arbitrarily large constant probability.
Hence, the streaming algorithm must use Ω(k · log n) bits of memory, which is Ω(k · logm) bits of memory
since m = k · n, and we assume m/k = m0.1.

5 Algorithms

5.1 `2-Heavy Hitters and Point Query in Random Order Streams

We use F2 to denote
∑n
i=1 x

2
i . We consider, as is standard, the setting in which each stream update is of

the form xi ← xi + 1 for some value of i. We describe an algorithm for solving a stronger problem than
the `2-Heavy Hitters Problem in the random order model; this version will be useful for the `2-Point Query
Problem as well, which we describe later in this section. It is strengthened in that we achieve relative error
for each of the frequencies output, rather than just additive error, without incurring any additional overhead
in memory.

Since each update in the stream has the form xi ← xi+1, we can think of being given a stream a1, . . . , am
with each ai ∈ [d] = {1, 2, . . . , d}, and that the stream is given to us in a random order. We show how to
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achieve an algorithm which, with probability at least 4/5, outputs a set S ⊆ {1, 2, . . . , d} such that for all
i ∈ [d],

1. if x2
i ≥ ε2F2, then i ∈ S. Further, for all i ∈ S, we output an estimate x̂i with x̂i = (1± ε)xi, and

2. if x2
i ≤ ε2

2 F2, then i 6∈ S.

The probability of 4/5 can be increased to any constant strictly less than 1 with minor modifications.
We first describe our main algorithm Main1(F̃2,m, a1, . . . , am) assuming we are given an estimate F̃2

for which F2 ≤ F̃2 ≤ 1.1F2, as well as given m = F1 =
∑d
i=1 xi. We later give our main algorithm Main

which works without being given F̃2 and m.
We start with the intuition for our first algorithm Main1. The algorithm takes in the above values F̃2 and

m, together with the stream elements a1, . . . , am one at a time. The variable H denotes the output, which
we initialize to the empty set. The algorithm then breaks the stream into t contiguous blocks B1, . . . , Bt. It
defines hash functions h1, . . . , h10 ln(1/ε) with the following meaning. For each item j, if h`(j) = i, then Bi is
one of the 10 ln(1/ε) blocks assigned to item j. If further j actually occurs in the block Bi, then j is excited
in Bi, as per the definition of excited; see Definition 2. The set Si is used to store the elements j that are
excited in Bi. For memory considerations, we do not store the actual item identities j in Si, but rather only
their hashed values, under a hash function g. We also initialize a flag ci(g(aj)) to 1 for each hash of an item
j that was excited in block Bi; this flag is useful when processing future blocks. Note also that the variable
ei for block i is used to indicate an error, namely, that there were too many items in block Bi that were
excited, in which case ei = 1 informs us that we should not pay attention to block Bi going forward in the
stream.

When processing a block Bi, we check to see if there is an item j in Bi which has a hash value equal to
k (and that hq(j) = i− 1 for some q ∈ [10 ln(1/ε)]), and for which k is also in Si−1. Note that heavy items
are likely to occur in most blocks, and so for many values of i, a heavy item will occur in both Bi−1 and Bi.
Moreover, this should also be the case for a few blocks Bi−1 in which the heavy item is excited. When doing
this check, we also check that there was no error indicated in block Bi−1, namely, that ei−1 = 0. In this
case, we flag the hash value k, setting ci−1(k) = ci−1(k) + 1. Finally, after processing Bi, we check if there
was exactly one item in Si−1 that was flagged while processing the i-th block. If so, then it is likely to be a
heavy hitter, as it is very unlikely for non-heavy items to occur in consecutive blocks. However, it is still the
case that with probability poly(ε), a non-heavy hitter may pass these checks. Thus, we really need to make
sure the item is a heavy hitter, so we initialize an instance of our Identify subroutine to verify this fact.

We next explain the pseudocode for our Identify subroutine. We initialize an identity variable id which
indicates the identity of the item we are tracking. We then check, walking through the next 100 ln(1/ε)
blocks, if there is a unique item j which occurs in one of those blocks and with the hash value (under g)
equal to value k, which was an input to the Identify subroutine. We keep checking such blocks until we
find the first such identity j, or fail to find one. While looking at 100 ln(1/ε) blocks is enough to obtain an
error probability of poly(ε), this error probability is not enough to rule out false positives over a stream of
length poly(m), if m is very large compared to ε. Having passed this test, we then check if item j occurs
in a (1 − 1/e) fraction of the the next 4000ε−2 lnm blocks; if it does then we have that with probability
1 − 1/poly(m), that j really is a heavy hitter. We do not want to directly run this high probability test
without first passing the lower probability test, for memory considerations; this is why we have a two-stage
check. We note that, while we perform this latter check, we also obtain a very precise estimate to the count
of item j, which is included in our output.

Finally we explain the pseudocode for our Main algorithm. We maintain an approximate value F̃
(k)
2 of

F2 at each time k. We also maintain a counter to keep track of k. Each time k increases additively by the
next power of 2, we initialize a new instance of Main1, denoted Main1i. Note that the reason for doing
this is that we always run our instances of Main1 on a value of m which is within a factor of 2 of the actual

value of m, and also because of the random order property, the value F̃
(k)
2 when a new instance of Main1 is

invoked is a good estimate for the actual F2-value of the substream that Main1 is invoked on. Note that if
the stream ends before the i-th instance of Main1 has completed, we return the output Hi−1 of the previous
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instance of Main1. We also discard memory contents associated with earlier Hj , for j < i− 1, as they are
not needed for the output, and allow us to reuse memory.

We now formally give the pseudocode and analysis for our algorithms.

Algorithm 1 Main1(F̃2,m, a1, . . . , am) algorithm given F̃2 and m

1: H ← ∅
2: Partition the stream into t = ε

√
F̃2 contiguous blocks each of length F1

ε
√
F̃2

. Denote them by B1, . . . , Bt

3: Let h1, . . . , h10 ln(1/ε) : [n]→ [t] and g : [n]→ [ε−13 ln2(dm)] all be chosen independently from each other,
and each function is drawn randomly from a pairwise independent family of hash functions.

4: while processing block Bi, do
5: Si ← ∅; ei = 0; initialize ci to a vector of all 0s.
6: First process all of the items aj ∈ Bi.
7: while processing item aj , do
8: If ei = 0 and hq(aj) = i for some q ∈ [10 ln(1/ε)], then Si ← Si ∪ {g(aj)}
9: If |Si| > 100ε−2 ln(1/ε), then ei = 1

10: If g(aj) ∈ Si−1, hq(aj) = i− 1 for some q ∈ [10 ln(1/ε)] and ei−1 = 0,
11: then ci−1(g(aj)) = ci−1(g(aj)) + 1
12: end while
13: if ei−1 = 0, and there is a unique k ∈ Si−1 with ci−1(k) = 1 then
14: if there is no Identify instance already running (and not yet completed) and |H| ≤ 2ε−2 then
15: H ← H∪ Identify({hq}q, g, i, k,m, a

iF1/(ε
√
F̃2)+1

, . . . , am)

16: end if
17: end if
18: end while

Finally, we put it all together with our main algorithm Main. Let F2-sketch be an algorithm which, for

any particular time k in the stream, succeeds with probability at least 99/100 in returning an estimate F̃
(k)
2

with F
(k)
2 ≤ F̃

(k)
2 ≤ 1.01F

(k)
2 , where F

(k)
2 is the F2 value after processing the first k stream elements. Note

that the algorithm succeeds at any particular time with probability 99/100, but not necessarily at all times
k; however this suffices for our purposes. The algorithm of [3] achieves this in O(log(dm)) bits of space.

Our algorithm Main described above will be run assuming that m ≥ poly((log d)ε−1). Here m is the
value of F1 at the end of the stream. If this condition does not hold, then we can hash [d] to poly((log d)ε−1)
and run the CountSketch streaming algorithm [11] on the hashed items. Note that with arbitrarily large
constant probability, all of the distinct items in the stream will have distinct hashed identities. In addition,
we maintain a heap data structure, as in [11], with the top O(1/ε2) actual (non-hashed) identities in [d]. The
CountSketch data structure uses O(ε−2(log(1/ε)+log log d) logm) = O(ε−2(log(1/ε)+log log d)(log(1/ε+
log log d))) bits of space to run on the hashed identities and to store counters in the stream. Given our heap,
we can recover the actual identities using O(ε−2 log d) bits of memory. Note that here it is essential that
distinct items in the stream have distinct hashed identities. This gives O(ε−2(log d + log2(1/ε))) total bits
of space, which will be within our budget.

This space bound is sufficient for us, so in our analysis below, we will assume that m ≥ poly((log d)ε−1)
for a sufficiently large polynomial.

We note that for the `2-Point Query Problem, when m < poly((log d)ε−1) we do not need to store the
actual identities, so we do not need the additional heap data structure above. Indeed, given a query j,
we compute its hash value, and then obtain an approximation to its count using the CountSketch data
structure on hashed identities using O(ε−2(log2(1/ε) + log2 log(dm))) bits of memory, as described above.

Space Complexity. We start by bounding the overall memory required of Main(a1, . . . , am).

Theorem 28. Main(a1, . . . , am) can be implemented using O(ε−2(log d + log2(1/ε) + log2 logm) + logm)
bits of space.
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Algorithm 2 Identify({hq}q, g, i, k,m, a
iF1/(ε

√
F̃2)+1

, . . . , am) subroutine

1: id← ∅ and ` = 1
2: repeat
3: if |{j ∈ Bi+` | g(j) = k and hq(j) = i− 1 for some q ∈ [10 ln(1/ε)]}| = 1 then
4: id← j
5: else `← `+ 1.
6: end if
7: until id 6= ∅ or ` > 100 ln(1/ε).
8: if id = ∅ then,
9: return ∅.

10: end if
11: p = 4000ε−2 lnm.
12: Let ξ be the number of occurrences of id in the multiset ]pv=1Bi+`+v.
13: if ξ ≥ (1.01/

√
2)p then,

14: x̂id = ε
√
F̃2

p · ξ.
15: return (id, x̂id)
16: else return ∅.
17: end if

Algorithm 3 Main(a1, . . . , am) algorithm

1: Initialize an instance of an F2-sketch with F̃
(k)
2 being its output at time k

2: while processing ak, if k =
∑i−1
j=0 2j for an i ≥ 1 do,

3: Let Hi−1 be the output of Maini−1 with parameter ε
10 , or if i = 1 let H0 = a1

4: Initialize an instance Main1i(1.01 · F̃ (k)
2 , 2i, ak+1, ak+2, . . . ak+2i) with parameter ε

10
5: Discard Hi−2 and the corresponding memory contents associated with the Main1i−2 instance
6: end while
7: At the end of the stream, let i be largest for which we are running an instance of Main1i

8: Return those (j, m2i · x̂j) in Hi−1 for which m
2i · x̂j ≥ (1− ε/5)ε

√
F̃

(m)
2

1.01

49



Proof. We use O(log(dm)) bits of memory for the F2-sketch described above.
Next, note that if m ≤ poly((log d)ε−1), then using the analysis for CountSketch discussed above, the

total memory is as claimed. Otherwise, we can assume that m > poly((log d)ε−1) for a sufficiently large
polynomial.

Line 1 takes O(logm) bits of space [6], and we can maintain the counter k with O(logm) bits of space.
For the remaining steps, because of the discarding of previous instances of Main1, the space is at most twice

the space complexity of MAIN1i(F̃
(k)
2 , 2i, at, . . . , am), maximized over i.

To bound the space complexity of Main1(F̃
(k)
2 , 2i, at, . . . , am), note that we can store all of the hq and

g using O((log d) log(1/ε)) bits, since they are drawn from pairwise independent hash function families and
1 ≤ q ≤ 10 ln(1/ε). Here we use the standard fact that functions from such families can be stored with
O(log d) bits [9].

In the while loop in line 4 of Main1, because of the filtering in the while loop in line 7, each Si satisfies
|Si| ≤ 100ε−2 ln(1/ε), and moreover, each element g(aj) ∈ Si can be stored using O(log(1/ε)+log logm) bits.
Consequently, each Si can be stored using O(ε−2(log(1/ε))(log(1/ε)+ log logm)) bits. Because of line 12, we
only need to maintain the last two sets Si−1 and Si, giving a total of O(ε−2(log(1/ε)(log(1/ε) + log logm)))
bits for storing both Si−1 and Si in the stream.

It remains to analyze the space complexity of line 14. While processing block Bi, at most one instance of
Identify will be created. It is not hard to see that Identify can be implemented using O((log d)(log(1/ε))+
log logm) bits of space to store {hq}q, g, i, k, as well as a few counters. Notice also that a given instance of
Identify will be executed over the next 4000ε−2 lnm blocks, but we enforce in line 13 that there is never
more than one instance of Identify running at any time during the stream.

Finally, we must account for the memory required to store H in the stream. Note that we enforce that
|H| ≤ 2ε−2 + 1 in line 13, and so this also takes O(ε−2 log d) bits of space.

In total, we meet the desired space bound.

Correctness. We will need a tail bound for hypergeometric random variables, which follows from negative
dependence.

Fact 2. (Theorem 4 of [20]) Suppose we draw n balls from an urn with M green balls and N total balls. Let
i be the number of green balls we draw. For ε > 0 less than a sufficiently small constant,

Pr

[∣∣∣∣i− nM

N

∣∣∣∣ > ε
nM

N

]
≤ 2e−

ε2

3
nM
N .

Notice that E[i] = nM
N in Fact 2, so this is similar to the usual multiplicative Chernoff bound.

Before showing correctness of Main1(F̃2,m, a1, . . . , am) and Main(a1, . . . , am), we establish properties
of our Identify({hq}q, g, i, k,m, a

iF1/(ε
√
F̃2)+1

, . . . , am) subroutine. This is needed in our analysis of Main1

and Main.
Let HH be the set of items j for which x2

j ≥ ε2F2, i.e., the actual heavy hitters.

The Identify Subroutine. We first argue that items with small frequencies are never returned by any
invocation of Identify.

Lemma 4. (No False Positives) With probability 1− 1/m, there is no instance invoked of

Identify({hq}q, g, i, k,m, a
iF1/(ε

√
F̃2)+1

, . . . , am) which ever returns an element j 6= ∅ for which x2
j ≤ ε2F2

2 .

Proof. Consider an instance Identify({hq}q, g, i, k,m, a
iF1/(ε

√
F̃2)+1

, . . . , am). In order for j 6= ∅ and x2
j ≤

ε2F2

2 , we must have that id = j in line 4 of the subroutine.
Thus, to prove the lemma, it suffices to show that, with probability 1 − 1/m, simultaneously for every

sequence of 4000ε−2 lnm blocks Bz+1, Bz+2, . . . , Bz+4000ε−2 lnm, the number of occurrences of such a j among
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these blocks is less than (1.01/
√

2) ·4000ε−2 lnm. This implies that in line 11 of any invocation of Identify,

if an element j 6= ∅ is returned, then necessarily x2
j >

ε2F2

2 .

Fix an arbitrary j with x2
j ≤ ε2F2

2 and an arbitrary sequence of 4000ε−2 lnm blocks, denoted by
Bz+1, Bz+2, . . . , Bz+4000ε−2 lnm. Let ξ be the total number of occurrences of j in the multiset union of
Bz+1, Bz+2, . . . , Bz+4000ε−2 lnm.

Note that ξ is hypergeometrically distributed, where there are M = xj occurrences of item j among

N = m items, and we select n = m

ε
√
F̃2

· 4000ε−2 lnm = 4000m lnm

ε3
√
F̃2

of them. Note that nM
N =

4000xj lnm

ε3
√
F̃2

≤

(4000/
√

2)ε−2 lnm, using that xj ≤ ε
√
F2/2 ≤ ε

√
F̃2/2.

By Fact 2,

Pr[Y ≥ (1 + γ)
nM

N
] ≤ 2e−2γ2 nM

N

≤ 2e−2γ2(4000/
√

2)ε−2 lnm

≤ 1

m6
,

where γ > 0 is an arbitrarily small constant and the 1/m6 is arbitrary. We choose γ so that

Pr[ξ ≥ 4000 · (1.01/
√

2)ε−2 lnm] ≤ 1

m6
.

There are at most m sequences of 4000ε−2 lnm contiguous blocks. Also, the number of items j is at most m,

and so the lemma follows by a union bound over all pairs of sequences of blocks and all j with x2
j ≤ ε2F2

2 .

Corollary 29. (|H| is Small) With probability 1− 1/m, at all times during the stream we have |H| ≤ 2ε−2.

Proof. By Lemma 4, with probability at least 1 − 1/m, throughout the entire stream any item j added

to H necessarily satisfies x2
j ≥ ε2F2

2 . Since there can be at most 2ε−2 distinct such items j, the corollary
follows.

We next argue that heavy hitters occur many times in streaks of consecutive blocks.

Lemma 5. (Heavy Hitters Occur in Streaks) With probability 1− 1/m.05, simultaneously for every j ∈ HH
and every sequence of 4000ε−2 lnm consecutive blocks Bz+1, . . . , Bz+4000ε−2 lnm, item j occurs in at least
4000 · (1.01/

√
2)ε−2 lnm of these blocks.

Proof. Fix an arbitrary j ∈ HH and an arbitrary sequence of 4000ε−2 lnm blocksBz+1, Bz+2, . . . , Bz+4000ε−2 lnm.
Since j ∈ HH, x2

j ≥ εF2.
As in the proof of Lemma 4, ξ is hypergeometrically distributed, where there are M = xj occurrences of

item j among N = m items, and we select n = m

ε
√
F̃2

· 4000ε−2 lnm = 4000m lnm

ε3
√
F̃2

of them. Note that

nM

N
=

4000xj lnm

ε3
√
F̃2

≥ 4000√
1.01

· ε−2 lnm,

using that xj ≥ ε
√
F2 ≥ ε

√
F̃2/1.01.

By Fact 2,

Pr

[
Y ≤ (1− γ)

nM

N

]
≤ 2e−2γ2 nM

N

≤ 2e−2γ2(4000/
√

2)ε−2 lnm

≤ 1

m6
,
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where γ > 0 is an arbitrarily small constant and the 1/m6 is arbitrary. We choose γ so that Pr[ξ ≥
4000 · (1.01/

√
2)ε−2 lnm] ≥ 1− 1

m6 .
As in the proof of Lemma 4, the number of sequences of 4000ε−2 lnm blocks is at most m. Also, the

number of heavy hitters j is at most ε−2, which is at most mC , for an arbitrarily small constant C > 0,
assuming m ≥ poly((log d)ε−1) for a sufficiently large polynomial. The lemma now follows by a union bound
over all pairs of sequences of 4000ε−2 lnm blocks and heavy hitters.

Lemma 6. With probability 1 − 1/m98, for every j for which x2
j ≥ ε2

2 F2 and for every sequence of p =

4000ε−2 lnm contiguous blocks in the stream, the number ξ of occurrences of j in total in the multiset union
]pv=1Bi+`+v of these blocks sastisfies:

ξ = (1± ε) · p · xj
ε
√
F̃2

.

Proof. Fix a j for which x2
j ≥ ε2

2 F2 and consider any sequence of 4000ε−2 lnm contiguous blocks in the
stream.

We apply Fact 2 with the N of that fact equal to our m, the M of that fact equal to our xj for some j,

the n of that fact equal to pm

ε
√
F̃2

= (4000 lnm)m

ε3
√
F̃2

.

Then,

Pr

[
ξ = (1± ε) p · xj

ε
√
F̃2

]
≤ 2e−

ε2

3
nM
N (53)

= 2e
− ε23 ·

4000ε−2 lnm√
1.1 (54)

<
1

m100
, (55)

using that xj ≥ ε
√
F2 ≥ ε

√
F̃2/
√

1.1. We can union bound over the at most 2ε−2 such different j and at most
m such contiguous blocks to conclude that this holds simultaneously for all such j and all such contiguous
sequences of blocks with probability at least 1− 1/m98, using that m > 2ε−2.

The Main1 Algorithm. We next show the correctness of Main1(F2,m, a1, . . . , am) given F2 and m in
advance. The following is the formal version of Definition 2 given earlier.

Definition 4. For a block Bi, an element j ∈ Bi is said to be excited if hq(j) = i for some q ∈ [10 ln(1/ε)].

The next lemma is our main technical lemma concering our algorithm.

Lemma 7. (Heavy Hitters Included in the Sets Si, and Identify is Invoked on Every Heavy Hitter) With
probability at least 39/40, simultaneously for all j ∈ HH, there is some q ∈ [10 ln(1/ε)] for which:

1. hq(j) = i and for which both ei = 0 and g(j) ∈ Si after processing Bi in line 10

2. g(j) is the unique value k ∈ Si with ci(k) = 1

3. when line 14 is invoked on k = g(j), there is no Identify instance already running (and not yet
completed), and the value of |H| will be at most 2ε−2.

Proof. Note by Corollary 29, with probability at least 1 − 1/m, at all times during the stream we have
|H| ≤ 2ε−2, so we will assume this holds and add 1/m to our final error probability.

We now fix a j ∈ HH, and show the events in the lemma statement hold. We will later apply a union
bound over all j ∈ HH.

We define a sequence of events in this proof. It will be convenient to define I to be the set of blocks i for
which hq(j) = i for some q ∈ [10 ln(1/ε)]. Note that here we are fixing a particular j ∈ HH, and the lemma
concerns a particular j ∈ HH.

For a block Bi, we let seq(Bi) denote the set of 4000ε−2 lnm blocks immediately preceding Bi, including
Bi.
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Event E. For any i, the expected number of excited items in a block Bi is

|Bi|10 ln(1/ε)

t
=
ε−1F1 · 10 ln(1/ε)

εF̃2

≤ 10ε−2 ln(1/ε),

since F2 ≥ F1 and F̃2 ≥ F2. Conditioned on an item j′ in a block Bi being excited, the event that an item
j′′ 6= j′ in Bi is excited is negatively correlated, since each hq is drawn from a pairwise-independent hash
function family and also if j′ occurs in Bi then j′′ ≤ j′ is less likely to occur in Bi. Therefore, if X is the
number of excited items in Bi, then Var[X] ≤ 10ε−2 ln(1/ε). By Chebyshev’s inequality,

Pr[|X–E[X]| > 90ε−2 ln(1/ε)] ≤ 10ε−2 ln(1/ε)ε4

8100 ln2(1/ε)
=

ε2

810 ln(1/ε)
.

Finally, note that Si is the set of g(aj) for those aj that are excited, and so the size of Si is at most the
number of excited items in Bi. This shows that ei = 0. Since there are 10 ln(1/ε) choices of q, it follows by
a union bound that ei = 0 for every i ∈ I, with probability at least 1− ε2/81.

For any i, let Y be the number of excited items in seq(Bi). Then E[Y ] ≤ 10ε−2 ln(1/ε) · 4000ε−2 lnm,
and again since the covariance is non-positive, Var[Y ] ≤ 40000ε−4 ln(1/ε) lnm. By Chebyshev’s inequality

Pr[|Y −E[Y ]| > 9 ·10 ·4000ε−4 ln(1/ε) lnm] ≤ 10 · 4000ε−4 ln(1/ε) lnm

81 · 102 · 4000 · ε−8 ln2(1/ε) ln2m
≤ ε4

81 · 10 · 4000 ln(1/ε) lnm
.

Since there are 10 ln(1/ε) choices of q, it follows by a union bound that with probability at least ε4

81·4000 lnm
that for every i ∈ I, there at most 100 · 4000ε−4 ln(1/ε) lnm excited items in seq(Bi).

We define the event E to be that

1. ei = 0 for each i ∈ I, and

2. the number of excited items in block Bi is at most 100ε−2 ln(1/ε) for every i ∈ I

3. the number of excited items in seq(Bi) is at most 100 · 4000 · ε−4 ln(1/ε) lnm, for every i ∈ I.

By the above,

Pr[E ] ≥ 1− ε2/81− ε4

81 · 4000 lnm
≥ 1− ε2/80. (56)

We condition on E in what follows and add ε2/80 to the overall error probability.
Note that conditioned on E , we also have |Si| ≤ 100ε−2 ln(1/ε) for each i for which hq(j) = i for some q

(since if the number of excited items is at most 100ε−2 ln(1/ε), then this also upper bounds each |Si|.)

Event F . We next define the event F , which is very similar to event E . The same calculation shows that
the expected number of items j′ in Bi+1 for which hq(j′) = i for some q is

|Bi+1|10 ln(1/ε)

t
≤ 10ε−2 ln(1/ε).

Conditioned on an item j′ in a block Bi+1 satisfying hq(j′) = i for some q, the event that an item j′′ 6= j′ in
Bi+1 also sastisfies hq(j′′) = i for some q is independent since each hq is drawn from a pairwise-independent
hash function family. Therefore, if X is the number of items j′ in Bi+1 for which hq(j′) = i for some q, we
have Var[X] ≤ 10ε−2 ln(1/ε). By Chebyshev’s inequality,

Pr[|X–E[X]| > 90ε−2 ln(1/ε)] ≤ 10ε−2 ln(1/ε)ε4

8100ε−4 ln2(1/ε)
=

ε2

810 ln(1/ε)
.
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By a union bound over q ∈ [10 ln(1/ε)], for all i ∈ I the number of items j′ in Bi+1 for which hq(j′) = i is
at most 100ε−2 ln(1/ε).

We will also need to reason about seq(Bi) for each i ∈ I. For a given such i, let Y be the number of items j′

in Br+1, for some Br in seq(Bi), for which hq(j′) = r for some q. We have E[Y ] ≤ 10ε−2 ln(1/ε)·4000ε−2 lnm,
and again by Chebyshev’s inequality (using negative association):

Pr[|Y −E[Y ]| > 90ε−4 ln(1/ε) · 4000 lnm] ≤ 10ε−4 ln(1/ε) · 4000 lnm

8100ε−8 ln2(1/ε)40002 ln2m
=

ε4

810 ln(1/ε)4000 lnm
.

Union bounding over all i ∈ I, we have that with probability at least 1 − ε4

810 ln(m) , simultaneously for all

i ∈ I, the number of items j′ in Br+1 for some Br in seq(Bi) for which hq(j′) = t for some q is at most
100ε−4 ln(1/ε) · 4000 lnm.

We define the event F to be that:

1. for all i ∈ I, the number of items j′ in Bi+1 for which hq(j′) = i is at most 100ε−2 ln(1/ε).

2. for all i ∈ I, the total number of items j′ in Br+1 for some Br in seq(Bi), for which hq(j′) = r for
some q and some r, is at most 100ε−4 ln(1/ε) · 4000 lnm.

By a union bound,

Pr[F ] ≥ 1− ε2/81− ε4/(810 ln(m)) (57)

We condition on F in what follows and add ε2/81 + ε4/(810 ln(m)) to the overall error probability.
Note that event F is needed because there could be an item j′ ∈ Bi+1 for which hq(j′) = i for some q,

but j′ does not actually occur in Bi. In this case, there would be a problem if g(j′) = g(j′′) for an item j′′

which is excited in Bi.

Event G. Let r be the index of a block Br occurring in seq(Bi) for some i ∈ I. Let W be the set of items
j′ for which either j′ is excited in Br for which hq(j) = r for some q, or j′ is in Br+1 and hq(j′) = r for some
q. In other words, W is the union of the set of items j′ that are excited in some block in seq(Bi) (including
Bi) for some i ∈ I, together with the set of items j′ for which j′ occurs in Br+1 and hq(j′) = r for some Br
occuring in seq(Bi) for some i ∈ I.

We now define the following event G: the hash values g(j′) for all j′ ∈W are distinct. Because of events
E and F , the size of W is at most O(ε−4 ln2(1/ε) lnm). Since the range of g is ε−13 ln2m, the probability
there exist two items j′ 6= j′′ ∈W which hash to the same value under g is much less than, say, ε3, and thus,

Pr[G] ≥ 1− ε3. (58)

We condition on G in what follows and add ε3 to the overall error probability.
One consequence of E ∧ F ∧ G is the following. Consider each item j′ that occurs in Br+1 and satisfies

hq(j′) = r for some q, where here r ∈ seq(Bi) for some i ∈ I. Then if g(j′) ∈ Sr, then j′ is excited in Br.
This event says it cannot be that there is an item j′ which occurs in Br+1 which has a hash value g(j′)
which occurs in Sr, unless j′ is excited in Br, meaning, j′ must also occur in Br rather than just having a
hash value g(j′) which is equal to some g(j′′) for a j′′ 6= j′ which is excited in Br. Indeed, this follows since
g(j′′) and g(j′) are distinct, because both j′′ and j′ belong to W and j′′ 6= j′.

Although we will show below that it is likely that ci(k) = 1 where k = g(j) and j occurs in Bi+1 for some
i ∈ I (recall we have fixed the heavy hitter j for now, and will later perform a union bound over all heavy
hitters j), the worry is that there may be some k′ 6= k for which ci(k′) is also equal to 1, causing the second
conclusion of the lemma not to hold. We rule this out by simply arguing that there is no j′ for which j′ is
excited in Bi and j′ occurs in Bi+1, for any i ∈ I. In fact, to conclude the third part of the lemma, we will
need this not only to hold for the Bi for i ∈ I, but also for all Br in seq(Bi) for some i ∈ I.
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Event H. Consider the event H that for all j′ 6= j for which x2
j′ ≥ ε12F2 and for all q, q′ ∈ [10 ln(1/ε)],

we have |hq(j) − hq′(j′)| > 4000ε−2 lnm. Note that this in particular implies hq(j) 6= hq
′
(j′), which would

suffice for the second part of the lemma, though we need this stronger form for the third part of the lemma.

The chance that |hq(j) − hq′(j′)| ≤ 4000ε−2 lnm for a fixed j′, q and q′ is at most 2 · 4000ε−2 lnm
t , and

therefore the probability that H does not occur is at most:

O(ε−12) ·O(ln2(1/ε)) · 4000 lnm

t
≤ ε3,

where the inequality holds since t = ε
√
F̃2, which by our assumption is at least a sufficiently large poly((lnm)/ε).

Consequently

Pr[H] ≥ 1− ε3. (59)

We condition on H in what follows and add ε3 to the overall error probability.
Note that H rules out the possibility that a “heavy” j′ is excited in one of the same blocks as j, i.e., a

block i ∈ I. In fact, it is not even excited in seq(Bi) for any i ∈ I.

Event I. There will naturally be items of small frequency that are excited in a block Bi in which j is
excited, or a block Br in seq(Bi) for some i ∈ I. However, it is very unlikely such items occur in two
consecutive blocks. We now create an event I to capture this, so we escape this possibility.

For an item j′ with x2
j′ < ε12F2, its expected number of occurrences in any particular block Br is at most

xj′

t =
xj′

ε
√
F̃2

= ε5

ln2m
, say, since F2 (and thus F̃2) is a sufficiently large poly((lnm)/ε). This quantity also

bounds the probability that j′ occurs in Br.
Now fix an i ∈ I. Over the blocks Br in seq(Bi), the expected number of j′ ∈ Br with x2

j′ < ε12F2 that
are excited in Br and for which j′ ∈ Br+1 is at most

O(ε−4 ln(1/ε) lnm) · ε5/ ln2m = O((ε ln(1/ε))/ lnm),

using that the number of excited items in seq(Bi) is O(ε−4 ln(1/ε) lnm) because event E occurs, and that
conditioned on j′ being excited in Bi, the probability that j′ ∈ Bi+1 is O(ε5), since the events that j′ ∈ Bi
and j′ ∈ Bi+1 are negatively correlated (and independent of satisfying hq(j′) = i for some q ∈ [10 ln(1/ε)]).
Union bounding over all i ∈ I, the probability there exists an i ∈ I and an r in seq(Bi) for which there is a
j′ with x2

j′ < ε12F2 for which j′ is excited in Br and j′ ∈ Br+1 is at most O(ε ln2(1/ε)).

Let I be the event that there exists an i ∈ I and an r in seq(Bi) for which there is a j′ with x2
j′ < ε12F2

for which j′ is excited in Br and j′ occurs in Bi+1. Thus,

Pr[I] ≥ 1−O(ε ln2(1/ε)). (60)

Given events E ,F ,G,H, and I, for each i ∈ I and each r in seq(Bi), we have that there is no item j′ 6= j for
which j′ occurs in Br+1 and j′ is excited in Br. This in particular implies there is no instance of Identify
already running (and not yet completed) after processing Bi+1 for each i ∈ I.

Event J . It only remains to show that j occurs in one of the Bi for which hq(j) = i (i.e., the set I), and
that j also occurs in Bi+1. Fix two consecutive blocks Ba and Ba+1. The probability that j occurs in both
of these blocks is at least (1− probability j doesn’t occur in at least one of the blocks):

1− 2 · (1− xj/F1)
F1

ε
√
F̃2 ≥ 1− 2 · (1− ε

√
F2/F1)

F1

ε
√
F̃2

≥ (1− 2e−1/1.1)

≥ 0.19,

where we used that F̃2 ≤ 1.1F2.
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Now, with probability 1− O(ε3), we have that for all q 6= q′, |hq(j)− hq′(j)| ≥ 1, given our assumption
that F1 ≥ poly(ε−1) for a sufficiently large polynomial. Given this, there are 10 ln(1/ε) disjoint pairs
(Bhq(j), Bhq(j)+1) of blocks.

Note that under conditioning of j not occurring in both of particular r pairs of blocks, for any 0 ≤ r <
10 ln(1/ε), the probability that j occurs in another pair of block only increases. Let B′ be the set of these
r pairs of blocks and B̄′ the rest of the blocks. Let x′ be the number of occurrences of j in B̄′. The note
holds because the probability that j occurs consecutively in a pair of block in B̄′ increases with increasing
x′ and the probability that j does not occur consecutively in any of the r pairs of blocks also increases with
increasing x′.

Thus, the probability that j does not occur in both blocks in any of these 10 ln(1/ε) pairs is at most

(1− 0.19)10 ln(1/ε) ≤ ε2.1.

Let J be the event that j occurs in one of the Bi for i ∈ I, and also in Bi+1. Thus,

Pr[J ] ≥ 1−O(ε3)− ε2.1. (61)

Putting It All Together. By (56), (57), (58), (59), (60), (61), and also union bounding over the event
K that |H| ≤ 2ε−2 at all times during the stream, which occurs with probability at least 1− 1/m, we have:

Pr[E ∧ F ∧ G ∧H∧ I ∧J ∧K] ≥ 1− ε2

81
− ε2

81
−O(ε3)−O(ε3)−O(ε3 ln2(1/ε)−O(ε3)− ε2.1 − 1

m
≥ 1− ε2

40
,

provided ε is less than a sufficiently small constant.
If these events occur, then the three conclusions of the lemma hold for this particular j ∈ HH. Finally,

since there are at most ε−2 different j ∈ HH, we can union bound over all of them to conclude that the

lemma holds with probability at least 1− ε−2 · ε
2

40 = 39
40 , as desired.

We conclude this subsubsection with the following theorem.

Theorem 30. (Main1 is a Correct Algorithm) With probability at least 9/10, Main1(F2,m, a1, . . . , am)

outputs a set H which contains a pair (j, x̂j) for every j for which x2
j ≥ ε2F2, and no j for which x2

j ≤ ε2

2 F2.
Further, if (j, x̂j) is in H, then x̂j = (1± ε)xj.

Proof. First, by Lemma 4, with probability 1− 1/m, we never return an element j for which x2
j ≤ ε2

2 F2.

Given this, it follows by Lemma 6, with probability 1− 1/m98, if (j, x̂j) is in H, then x̂j = (1± ε)xj .
Next, by Lemma 7, with probability at least 39/40, simultaneously for all j ∈ HH, Identify will be

invoked in line 14. By Lemma 5, with probability at least 1 − 1/m.05, every heavy hitter will occur in at
least 4000ε−2(1− 1.1/e) lnm of the next blocks after Identify is invoked. By a union bound, both of these
events occur with probability at least 39/40− 1/m.05 ≥ 38/39, for large enough m.

Fix a j ∈ HH. It only remains to show in line 3 of Identify, there will be a block among the 100 ln(1/ε)
blocks after the i-th block, if hq(j) = i for some q ∈ [10 ln(1/ε)], for which j occurs in the block and there
is no j′ 6= j in the block for which g(j′) = g(j) and hq

′
(j′) = i for some q′ ∈ [10 ln(1/ε)]. Further, this holds

for the first block for which there is a j′ occurring in the block for which g(j′) = g(j) and hq
′
(j′) = i.

Notice that the total number of distinct stream items in these 100 ln(1/ε) blocks is at most |Bi|100 ln(1/ε) =
100 ln(1/ε)F1

ε
√
F2

. For an item j′, the probability that hq
′
(j′) = i for some q′ ∈ [10 ln(1/ε)] is at most (10 ln(1/ε))/t,

and so the expected number of items j′ for which hq
′
(j′) = i for some q′ ∈ [10 ln(1/ε)] is

100 ln(1/ε)F1

ε
√
F2

· 10 ln(1/ε)

t
≤ (1000 ln2 1/ε)F1

ε2F2
≤ 1000ε−2 ln2(1/ε).

If X is the number of items j′ for which hq
′
(j′) = i for some q′ ∈ [10 ln(1/ε)], then E[X] ≤ 1000ε−2 ln2(1/ε),

and since h is drawn from a pairwise independent family, Var[X] ≤ 1000ε−2 ln2(1/ε). So by Chebyshev’s
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inequality, X = O(ε−2 ln2(1/ε)) with probability 1 − O(ε2/ ln2(1/ε)). Since g is independent of the hq and
drawn from a pairwise independent family with range size ε−13 ln2m, all of these items are perfectly hashed
under g with probability larger than 1− ε−3 − O(ε2/ ln2(1/ε)). Given this, in order for line 3 to succeed, it
follows that we just need that for one of the 100 ln(1/ε) blocks processed in line 3, the heavy hitter j occurs.
Since conditioned on not occurring in one block, j is only more likely to occur in another, the probability it
does not occur in all 100 ln(1/ε) iterations is at most

(1− xj/F1)
100F1 ln(1/ε)

ε
√
F2 ≤ e−100 ln(1/ε) = ε100.

Hence, for a given heavy hitter j, line 3 succeeds with probability at least 1− ε3 −O(ε2/ ln2(1/ε))− ε100 ≥
1 − O(ε2/ ln2(1/ε)). By a union bound, this holds simultaneously for every heavy hitter j with probability
at least 1−O(1/ ln2(1/ε)).

The theorem thus follows, with error probability at most 1/m+1/m98+1/39+O(1/ ln2(1/ε)) ≤ 1/10.

The Main Algorithm. We now show the correctness of our overall algorithm Main(a1, . . . , am).

Theorem 31. (Main is a Correct Algorithm) With probability at least 4/5, Main(a1, . . . , am) outputs a set

H which contains every j for which x2
j ≥ ε2F2 and no j for which x2

j ≤ ε2

2 F2.

Proof. Let i be the largest integer for which Main1i−1 has completed. Note that i is a deterministic function
of m. Note that Hi−1 was the output of Main1i−1.

Notice that Main1i−1 starts at stream position 2i−1 and is run on a stream of 2i−1 updates. The

algorithm Main1i−1 is given 1.01 · F̃ (k)
2 as input, where k = 2i−1 − 1.

A Concentrated Second Moment Estimate. Let A be the event that the argument 1.01 · F̃ (k)
2 given

to Main1i−1 satisfies

F
[k+1,k+2i−1]
2 ≤ 1.01 · F̃ (k)

2 ≤ 1.1F
[k+1,k+2i−1]
2 , (62)

where F
[k+1,k+2i−1]
2 =

∑
j∈[n](x

i−1
j )2, where xi−1

j represents the number of occurrences of item j from k+ 1

to k + 2i−1. We first bound Pr[A].

The intervals [1, k] and [k+ 2, k+ 2i−1] have the same length and F
[1,k]
2 and F

[k+2,k+2i−1]
2 are identically

distributed random variables on 2i−1 − 1 updates. Let us call an instance of this random variable X. We
first show that X is concentrated around its expectation. Let Xj be the number of occurrences of item j in
an interval of length 2i−1 − 1. Let X =

∑
j X

2
j .

Note that Xj is hypergeometrically distributed with expectation xj · 2
i−1−1
m . Note that E[Xj ] = 2i−1−1

m xj ,
and by our choice of i, this is Θ(xj). Say an index j is large if E[Xj ] = ω(lnm).

We apply Fact 2 to a large j to conclude,

Pr[Xj = (1± γ)E[Xj ]] ≥ 1− 2 · e−2γ2E[Xj ]

≥ 1− 1

m2
,

where the m2 is arbitrary and γ > 0 is an arbitrarily small constant. Thus, by a union bound over the
items j that occur at least once in the stream, of which there can be at most m items, we have that with

probability 1− 1/m, simultaneously for all j for which xj = ω(lnm), we have Xj = (1± γ) · 2i−1−1
m xj , and

thus

X2
j = (1± 3γ) ·

(
2i−1 − 1

m

)2

x2
j . (63)
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Let B be the event that simultaneously for all large j, we have that (63) holds. Then,

Pr[B] ≥ 1− 1

m
.

Let us refer to all non-large indices j as small items. Let Y =
∑

small j X
2
j . The X2

j are negatively
correlated, and consequently

Var[Y ] ≤
∑

small j

Var[X2
j ] ≤

∑
small j

E[X4
j ] = O(m ln3m),

again using that we only need to sum over small j that occur at least once in the stream, and there can be
at most m such items.

Thus, by Chebyshev’s inequality,

Pr[|Y −E[Y ]| ≥
√
m ln2m] = o(1).

Let C be the event that |Y −E[Y ]| <
√
m ln2m. Then, Pr[C] = 1− o(1).

Write X =
∑

large j X
2
j + Y . By a union bound over events B and C, we have that with probability at

least 1− 1/m− o(1),

X = (1± 3γ)E[
∑
j

X2
j ]±

√
m ln2m.

Note that E[
∑
j X

2
j ] ≥ E[

∑
j Xj ] = Ω(m), since 2i−1 − 1 = Ω(m), and E[

∑
j Xj ] = 2i−1 − 1. It follows

that with probability 1− 1/m− o(1),

X = (1± 4γ)E[
∑
j

X2
j ].

Now let Y =
∑
j Y

2
j where Yj is the number of occurrences of item j in an interval of length 2i−1. Then

Y ∈ [X,X + 2
√
X + 1]. It follows from E[X] = Ω(m) that with probability 1− 1/m− o(1),

Y = (1± 4γ)E[
∑
j

X2
j ].

Note that Y and F
[k+1,k+2i−1]
2 are identically distributed. Thus, with probability 1− 1/m− o(1), we have

F
[k+1,k+2i−1]
2 = (1± 4γ)E[

∑
j

X2
j ]. (64)

By standard guarantees of the F2-sketch [3], with probability 99/100,

1.001 · F [1,k]
2 ≤ 1.01F̃

(k)
2 ≤ 1.011F

[1,k]
2 , (65)

and with probability 1− 1/m− o(1),

F
[1,k]
2 = (1± 4γ)E[

∑
j

X2
j ]. (66)

Putting (64), (65), and (66) together, for a sufficiently small constant γ > 0, we have the condition of event
A. It follows that Pr[A] ≥ 99/100− o(1).
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Showing that Main1i−1 succeeds. Let E be the event that Main1i−1 succeeds with parameter ε
10 ,

namely, Main1i−1 outputs a set Hi−1 which contains every j for which (xi−1
j )2 ≥ ε2

100 ·F
[k+1,k+2i−1]
2 and no

j for which (xi−1
j )2 ≤ ε2

200F
[k+1,k+2i−1]
2 . Moreover, for every (j, x̂j) in Hi−1, we have x̂j = (1± ε/10)xi−1

j .
This amounts to understanding when event A occurs, and how its occurrence conditions the underlying

random permutation.
We first bound Pr[E | A]. Note that conditioning on A may also bias the random order Π of the stream,

since although the F2-sketch has its own private randomness and succeeds on every stream with probability
at least 99/100, it may succeed a little bit more on certain streams than on others.

Note that for any two stream orderings π, π′, we can apply Bayes rule to conclude:

Pr[Π = π | A]

Pr[Π = π′ | A]
=

Pr[Π = π | A] Pr[A]

Pr[Π = π′ | A] Pr[A]

=
Pr[A | Π = pi] Pr[Π = pi]

Pr[A | Π = π′] Pr[Π = π′]

≥
99
100

1

=
99

100
. (67)

By Theorem 30, for any argument 1.01 · F̃ (k)
2 given to Main1i−1, if it satisfies (62), then the probability

that Main1i−1 succeeds, over the uniform distribution Π, is at least 9/10. Conditioned on A, we have

that the argument 1.01 · F̃ (k)
2 given to Main1i−1 satisfies (62), and (67) implies that the distribution of Π

conditioned on A has total variation distance at most 1/100 from the uniform distribution on Π. Hence,
Pr[E | A] ≥ 9/10− 1/100.

Consequently, using our earlier bound on Pr[A],

Pr[E ] ≥ Pr[E ∧ A] = Pr[E | A] · Pr[A] ≥
(

9

10
− 1

100

)
·
(

99

100
− o(1)

)
≥ 17

20
.

Note that with probability 99/100, we have

√
F 2 ≤

√
F̃

(m)
2 ≤ 1.01

√
F 2.

Let F be the event that:
√
F 2 ≤

√
F̃

(m)
2 ≤ 1.01

√
F 2.

Main is a correct algorithm. If E occurs, then Main1i−1 succeeds, that is, Main1i−1 succeeds with

parameter ε
10 , namely, Main1i−1 outputs a set Hi−1 which contains every j for which (xi−1

j )2 ≥ ε2

100 ·
F

[k+1,k+2i−1]
2 and no j for which

(xi−1
j )2 ≤ ε2

200
F

[k+1,k+2i−1]
2 . (68)

Further, if (j, x̂j) is in Hi−1, then x̂j = (1± ε/10)xi−1
j .

Let H ′ be the set of j such that xj ≥ ε
40

√
m (HH ⊆ H ′). Next, we calculate the probability that

m
2i−1 ·xi−1

j = (1± ε/10)xj . Using Fact 2, this probability is at least 1−2e−
ε2

300

xj
4 ≥ 1− ε4

m2 , for a fixed j ∈ H ′.
Using union bound, m

2i−1 · xi−1
j = (1 ± ε/10)xj , for all j ∈ H ′ with probability at least 1 − ε2. We call this

event G. As 2i−1 ≥ m/4, F
[k+1,k+2i−1]
2 ≥ m/4.

ε

10
√

2

√
F

[k+1,k+2i−1]
2 >

ε

40

√
m,
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and therefore under events E and G, Hi−1 ⊆ H ′. Thus, under G and E , for all j ∈ Hi−1,

m

2i−1
· x̂j =

(
1± ε

5

)
xj .

Showing all j ∈ HH are output by Main: We first explain why event E , together with the event F
and G occurring, implies for all j ∈ HH, we have j ∈ Hi−1. This is because (as 2i−1 ≥ m/4):

xi−1
j ≥ 2i−1

m
· (1− ε/10) · xj ≥

2i−1

m
· (1− ε/10) · ε

√
F2 ≥

ε

4
· (1− ε/10)

√
F

[k+1,k+2i−1]
2

. Consequently, j ∈ Hi−1. Notice that this holds for all j ∈ HH. Because of events E , G and F occurring,
we have that for a j ∈ HH that

m

2i−1
· x̂j ≥ (1− ε/5)xj ≥ (1− ε/5)ε

√
F2 ≥ (1− ε/5)ε

√
F̃

(m)
2

1.01
. (69)

Therefore, every j ∈ HH is returned in Line 8 of Main.

Showing no j for which x2
j ≤ ε2

2 F2 is output by Main: It remains to show there is no j for which

x2
j ≤ ε2

2 F2 is output by Main. In this case Line 8 of Main will check if m
2i−1 x̂j ≥ (1− ε/5)ε

√
F̃

(m)
2

1.01 .

Since F̃
(m)
2 ≥

√
F2 conditioned on F occurring, this holds only if m

2i−1 x̂j ≥ (1 − ε/5)ε
√
F 2

1.01 , but because
event E and G holds (and j ∈ Hi−1), this implies

xj ≥
1− ε/5
1 + ε/5

ε

√
F 2

1.01
.

The latter cannot hold, because for ε less than a sufficiently small constant, it would contradict that x2
j ≤

ε2

2 F2.
The overall error probability is 3

20 + ε2 + 1
100 , to union bound over either E or F or G not occurring. This

error probability is at most 1/5, which completes the proof of the theorem.

`2-Point Query. In the `2-Point Query Problem, at the end of the stream we are given an index j and
asked to output an estimate x̂j such that x̂j = xj ± ε

√
F2 with probability at least 4/5. As an immediate

corollary of our algorithm for `2-Heavy Hitters we obtain an algorithm for `2-Point Query. Indeed, if S is
the set output by Main, if S does not contain the query j, then we can simply output 0. If Main succeeds,
then if j /∈ S, then xj ≤ ε

√
F2, and so x̂j = 0 is a correct answer. On the other hand, if j ∈ S, then the

estimate x̂j returned by Main is guaranteed to satisfy x̂j = (1 ± ε)xj = xj ± εxj = xj ± ε
√
F2, using that

xj ≤
√
F2 for all j.

The total memory required is as given by Theorem 28, namely, O(ε−2(ln d+ ln2(1/ε) + ln2 lnm) + lnm).
However, unlike for the `2-Heavy Hitters Problem, in the `2-Point Query Problem, the dependence on ln d
is unnecessary. Here we give a simple way of removing this term from the algorithm’s space complexity.

Corollary 32. The `2-Point Query Problem can be solved in O(ε−2(ln2(1/ε)+ln2 lnm)+lnm+(ln(1/ε) ln d))
bits of memory.

Proof. The only modification we make to our algorithm for the `2-Heavy Hitters Problem is in line 14 of
Main1, where instead of adding a non-empty output (id, x̂id) to our output set H, we choose a pairwise
independent hash function τ : [d] → [200/ε2], and instead add (τ(id), x̂id) to our output set H. From
the proof of Theorem 28 that this reduces the memory to O(ε−2(ln2(1/ε + ln2 lnm)) + lnm), up to the
memory required for storing the hash functions. The hash functions can be stored using O(ln(1/ε) ln d) bits
of memory. See also the discussion above Theorem 28 on handling the case m ≤ poly(ε−2 ln d), in which
case we also achieve this memory bound.
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When given an index j at the end of the stream, we can compute τ(j) and check if there is a pair of
the form (τ(j), v) for some value v in the output H of Main. If so, we output v, otherwise we output 0.
Note that if j /∈ HH, then the probability τ(j) ∈ {τ(j′) | (j′, v′) ∈ H for some v′} is at most 1

100 , since
|H| ≤ 2

ε2 . Thus, with probability at least 99
100 , we output 0, which is a correct answer if j /∈ HH. Otherwise,

if j ∈ HH, with probability 99
100 , conditioned on Main succeeding, there will be a unique pair (τ(j), v) ∈ H

with first coordinate equal to τ(j). In this case, we again succeed given that Main succeeds. The overall
success probability is therefore at least 4/5 − 1/100 ≥ 2/3, union bounding over the failure probability of
Main and collisions under the hash function τ .

5.2 `∞-Estimation in Turnstile Streams

We consider the problem of estimating ‖x‖∞ up to additive error 1√
k
‖x‖2. The best upper bound for this

problem in the turnstile model involves finding the so-called `2-heavy hitters, and has space O(k(log d) logm).
We observe that we can reduce this to O(k(log k + log logm) log(dm)) bits in the turnstile model.

Theorem 33. (‖x‖∞-Approximation) There is a turnstile streaming algorithm which approximates ‖x‖∞
up to additive error 1√

k
‖x‖2 with probability at least 2/3 and using O(k(log(dm))(log k + log logm)) bits of

memory.

Proof. The proof is inspired from a universe reduction technique of [23], which shows for 0 < p < 2, there
is a randomized oblivious linear map which takes a vector x and produces a vector y so that with good
probability, if i is a so-called `p-heavy hitter of x, then yh(i) is an `p-heavy hitter of y, where h corresponds
to a hash function defining y. Here, we need to argue this holds for p = 2, which in a certain sense simplifies
the analysis of [23], but on the other hand, we also need to argue that there are no spurious heavy hitters,
i.e., entries of y that are heavy but do not correspond to any heavy hitter in x, which was not needed in [23].

Let N = poly(k log d) be a sufficiently large polynomial. Let h : [d] → [N ] be drawn from a pairwise
independent family, and let σ : [d]→ {−1, 1} be drawn from an O(log k+ log log d)-wise independent family.
Let yj =

∑
i|h(i)=j σ(i)xi.

The event E. We call an item i for which x2
i ≥ 1

C(C′)2k2 log2N
‖x‖22 a large item, otherwise it is small. Here

C,C ′ > 0 are sufficiently large constants. The choice for these constants will soon become apparent. For N
large enough, we have the event E that every large item i goes to its own separate hash bucket. There are
only O(k2 log2N) large items and so if N = Ω(k4 log4N), then event E happens with probability at least
99/100. We condition on E in what follows.

The event F . Let i1, . . . , ir be the large items and let j1, . . . , jr be the coordinates of y containing a large
item. Let F be the event that for each coordinate j of y:

1. if there is no large item i with h(i) = j, then y2
j ≤ 8

C′k‖x‖
2
2,

2. if there is a single large item i` with h(i`) = j`, then |yj` − σ(i`)xi` |2 ≤ 8
C′k‖x‖

2
2.

To bound Pr[F ], let Zj =
∑
small i δ(h(i) = j)x2

i . Then E[Zj ] =
‖x‖22
N . Also,

Var[Z2
j ] =

∑
small i

E[δ(h(i) = j)2]x4
i +

∑
small i6=i′

E[δ(h(i) = j)δ(h(i′) = j)]x2
ix

2
i′ −E2[Zj ]

≤ 1

N

∑
small i

x4
i

≤ 1

N
max
small i

x2
i

∑
small i

x2
i

≤ 1

NC(C ′)2k2 log2N
‖x‖42
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By Chebyshev’s inequality,

Pr[Zj ≥
1

C ′k logN
‖x‖22] ≤ (C ′)2k2(log2N)‖x‖42

C(C ′)2Nk2(log2N)‖x‖42
≤ 1

CN
.

By a union bound this holds simultaneously for all N values of j with probability at least 1− 1/C. We call
this event F1 and condition on this in what follows.

We now use the following lemma:

Lemma 8. (Lemma 17 of [23]) For x ∈ Rn, λ > 0, with λ2 a multiple of 8, and random z ∈ {−1, 1}n drawn

from a (λ2/4)-wise independent family, Pr[|〈x, z〉|2 > λ2‖x‖22] < 2−λ
2/4.

Setting λ2 = 8 logN in Lemma 8, it follows that with probability 1−1/N , simultaneously for all j ∈ [N ],

1. if yj does not contain a large item, then

y2
j ≤ Zj · 8 logN ≤ 8 logN

C ′k logN
‖x‖22 =

8

C ′k
‖x‖22.

2. if yj does contain a large item j`, then

(yj` − σ(i`)xi`)
2 ≤ Zj · 8 logN ≤ 8 logN

C ′k logN
‖x‖22 ≤

8

C ′k
‖x‖22.

It follows that Pr[F ] ≥ 1− 1/C − 1/N ≥ 99/100, by choosing C > 0 to be a sufficiently large constant.

The Event G. Note that E[‖y‖22] = ‖x‖22, and since y can be viewed as the image of a CountSketch map
(with more independence than required on the hash functions h and σ), we have that Pr[‖y‖22 ≥ (1+ε)‖x‖22] ≤
1/(ε2N) ≤ 1/100, by choosing N to be sufficiently large (see, e.g., [34] for background on CountSketch
for estimating the 2-norm).

The Event H. We apply the CountSketch data structure to y. Note that this is a composition of
oblivious linear maps on x, and each map can be specified with limited independent hash functions (we
detail the space usage below) so can be maintained in a stream. Since y is only N -dimensional, we have
the guarantee that CountSketch approximates each yj up to additive error 1

100
√
k
‖y|‖2 ≤ 1

99
√
k
‖x‖2 using

O(k(logN) logm) = O(k(log log d+ log k) logm) bits of memory (see, e.g., Section 1.3.2 of [16]; the claimed
space bound follows by setting δ = 1/poly(d) and applying a union bound over all coordinates of y), and
failure probability 1/N , which can be made at most 1/100. Here we use the event G.

Putting it all together. Note that events E ,F ,G, and H all simultaneously occur with probability at
least 1− 4/100, which we condition on.

Let zj be the estimate CountSketch gives to yj . Then

|zj − yj | ≤
1

99
√
k
‖x‖2,

simultaneously for all j.
We also have that y2

j ≤ 8
C′k‖x‖

2
2 if there is no large item i with h(i) = j. By setting C ′ ≥ 800, we have

|yj | ≤ 1
10
√
k
‖x‖2. Consequently, |zj | ≤ 1

2
√
k
‖x‖2.

On the other hand if there is a large item i with h(i) = j, then |yj | = |xi| ± 1
10
√
k
‖x‖2 by choosing

C ′ ≥ 800. Consequently, |zj | = |xi| ± 1
2
√
k
‖x‖2.

It follows that ‖z‖∞ = ‖x‖∞ ± 1√
k
‖x‖2 with probability at least 24/25, so we can use ‖z‖∞ as our

estimator to solve this problem.
For the total memory, we use O(k(log log d + log k) logm) bits of memory to store the CountSketch

data structure, O(log d) bits to store h, and O(log(d)(log log d+ log k)) bits to store σ.
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A Absolute Deviation from Mean for Binomial Random Variable

In this section, we prove that

Ex∈{0,1}n

∣∣∣∣∣
n∑
i=1

xi − n/2

∣∣∣∣∣ =
1

2n
· n ·

(
n− 1

bn/2c

)
using the following calculations on binomial coefficients.

∑
x∈{0,1}n

∣∣∣∣∣
n∑
i=1

xi − n/2

∣∣∣∣∣ = 2 ·
bn/2c∑
i=0

n!

(n− i)!i!
· (n/2− i)

= n ·
bn/2c∑
i=0

n!

(n− i)!i!
− 2 ·

bn/2c∑
i=0

n!

(n− i)!i!
· i

= n ·
bn/2c∑
i=0

(
n

i

)
− 2n ·

bn/2c−1∑
j=0

(
n− 1

j

)
.

When n is odd the above expression is equivalent to

n · 2n−1 − 2n · 1

2
·
(

2n−1 −
(

n− 1

(n− 1)/2

))
= n ·

(
n− 1

(n− 1)/2

)
= n ·

(
n− 1

bn/2c

)
,

and when n is even, it is equivalent to

n · 1

2
·
(

2n +

(
n

n/2

))
− n · 2n−1 =

n

2

(
n

n/2

)
= n ·

(
n− 1

bn/2c

)
.
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