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Abstract

Tree codes are combinatorial structures introduced by Schulman [Sch93] as key

ingredients in interactive coding schemes. Asymptotically-good tree codes are long

known to exist, yet their explicit construction remains a notoriously hard open

problem. Even proposing a plausible construction, without the burden of proof, is

difficult and the defining tree code property requires structure that remains elusive.

To the best of our knowledge, only one candidate appears in the literature, due to

Moore and Schulman [MS14].

We put forth a new candidate for an explicit asymptotically-good tree code. Our

construction is an extension of the vanishing rate tree code by Cohen-Haeupler-

Schulman [CHS18] combined with a vanishing distance tree code by Gelles et al.

[GHK+16]. The correctness of our construction relies on a conjecture that we intro-

duce on certain Pascal determinants indexed by the points of the Boolean hyper-

cube. We furnish evidence supporting our conjecture through numerical computa-

tion, combinatorial arguments from planar path graphs and based on well-studied

heuristics from arithmetic geometry.
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1 Introduction

Coding theory addresses the problem of communication over an imperfect channel. In

the classic setting studied in the seminal work of Shannon [Sha48], Alice wishes to com-

municate a message to Bob over a channel that may induce errors. The question then

is: how should Alice encode her message so that if the amount of errors is not excessive,

Bob can recover her message? Around the same time, Hamming [Ham50] introduced the

notion of an error-correcting code. A function C : Σk → Σn is an error-correcting code

with distance δ if for every distinct x, y ∈ Σk, the respective images C(x), C(y) have

relative Hamming distance at least δ. The rate of information transmission ρ = k
n

and

the fraction of errors corrected (roughly δ/2) are competing quantities with a tradeoff

between them. Among the most basic questions in coding theory is to obtain explicit

asymptotically good codes, that is, codes over fixed Σ with constant distance δ > 0 and

constant rate ρ > 0. By “explicit” we mean that C can be evaluated in time poly(n).

Justensen [Jus72] was the first to devise such an explicit construction. Since then, several

explicit constructions have appeared, including using algebraic geometry codes [TVZ82]

and expander graphs [SS96].

While error-correcting codes can be used to solve the problem of sending a single

message from Alice to Bob over an imperfect channel, in some settings, the two parties

interact with each other, sending multiple messages where a message depends on previous

messages that were exchanged. Interactive coding addresses the subtler problem of en-

abling such dynamic interaction over an imperfect channel. In this far more challenging

setting, standard codes do not offer a satisfactory solution.

Tree codes are powerful combinatorial structures, defined by Schulman [Sch93, Sch96]

as key ingredients for achieving interactive coding schemes. They play a role analogous to

that error-correcting codes take in the single message setting. Tree codes, as their name

suggests, are trees with certain distance properties. To give the formal definition, we set

some notation. Let T be a rooted binary tree that is endowed with an edge coloring

from some ambient color set (or alphabet) Σ. For vertices u, v of equal depth let w be

their least common ancestor and denote the distance, in edges, from u to w by `. Let

pu, pv ∈ Σ` be the sequences of colors on the path from w to u and to v, respectively. We

define h(u, v) to be the relative Hamming distance between pu and pv. Informally, h(u, v)

measures the distance between the two color sequences obtained by following the paths

from the root to each of u and v, excluding the “non-interesting” common prefix. A tree

code is any coloring that has a lower bound on this quantity. Formally,

Definition 1.1 (Tree codes [Sch93]). Let T be the complete rooted binary tree of depth

n. The tree T , together with an edge-coloring of T by a color set Σ is called a tree code
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with distance δ if for every pair of vertices u, v with equal depth it holds that h(u, v) ≥ δ.

It is not clear at all that there exists a universal constant δ > 0 such that for every n

there exists a depth-n tree code with distance δ. Namely, it is not clear that there is a

family of tree codes (Tn)n∈N, where Tn has depth n, such that the color set Σ is common

to all trees in the family, and every Tn has distance δ. We refer to such a family as a tree

code with distance δ over the color set Σ.

Three different proofs were provided by Schulman, showing that for any constant

δ < 1 there exists a tree code with alphabet size |Σ| = Oδ(1) achieving distance δ.

More recently, based on Schulman’s ideas, it was shown that there is a tree code with

only 4 colors, having positive distance (in particular, distance δ = 0.136) [CS20] and,

furthermore, 3 colors do not suffice to guarantee any constant distance δ > 0. All of

these proofs rely on the probabilistic method and thus are not explicit. The problem

of constructing asymptotically-good tree codes has drawn substantial attention [Sch94,

Bra12, MS14, Pud16, GHK+16, CHS18, NW20], but has endured as a difficult challenge.

Given this difficulty, it is natural to construct, for a given distance parameter δ > 0,

a family of tree codes (Tn)n∈N for which Tn is allowed to use some c(n) number of colors.

The goal is to obtain an asymptotically slowly-growing function c. Note that constructing

a tree code family with c(n) = 2n colors is trivial. Indeed, having so many colors at hand,

one can encode the entire path leading to a vertex on the edge preceding it, yielding dis-

tance δ = 1. In an unpublished manuscript, Evans, Klugerman and Schulman [Sch94] con-

structed a tree code with c(n) = nOδ(1) colors. The state-of-the-art construction [CHS18]

achieves c(n) = (log n)Oδ(1). See [NW20] for alternative constructions achieving the same

parameters as well as decoding algorithms, and [BH20] for an account relating [CHS18]

and [Pud16].

Despite this progress, constructing asymptotically-good tree codes is wide open. Cu-

riously, even candidate constructions are rare. This is mostly because a tree code is not

a pseudorandom object. Its defining property requires structure that remains elusive.

For this reason, even proposing a plausible construction, without the burden of proof,

requires further insight and is not an easy task. To the best of our knowledge, there is a

single candidate in the literature, due to Moore and Schulman [MS14]. The construction’s

distance property relies on an intriguing open conjecture about certain exponential sums

that the authors introduce. The Moore-Schulman conjecture was verified computationally

for small instances, and the hope is that these represent the general case.
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1.1 Our contribution

In this work we put forth a candidate construction of asymptotically-good tree codes.

Namely, for some universal constant c ≥ 1 and for every integer n ≥ 1 we give an explicit

construction of a depth-n binary tree code with c colors. The distance of the tree code is

bounded below by some constant δ > 0, independent of n, provided a conjecture that we

introduce on certain Pascal determinants associated with the points of the Boolean hy-

percube holds. We give independent supporting evidence for our conjecture: first through

the combinatorics of planar path graphs underlying our construction and then based on

well-studied heuristics from arithmetic geometry. Furthermore, we verify the conjecture

computationally on small values.

Our candidate tree code is an extension of the [CHS18] construction. We set the stage

in Section 2 with a discussion of [CHS18] followed by a description of our contributions

in Section 3. Underlying the [CHS18] construction is a key online uncertainty principle

for the Newton basis: a consequence of non-vanishing of Pascal (binomial) sub-matrix

determinants, proved by invoking the combinatorial Lindström-Gessel-Viennot lemma.

These determinants are in fact positive numbers growing exponentially with the depth of

the tree, forcing the [CHS18] construction to require poly-logarithmic number of colors.

With the intent of reducing the number of colors, one may try to work modulo a prime in

hopes the non-vanishing is still preserved. In Section 3.1 we reason the contrary is true:

it is unlikely to work for primes small enough to guarantee a constant number of colors.

There are exponentially many Pascal sub-matrix determinants, at least one of which is

likely to vanish “accidentally” modulo the chosen prime.

Our main technical contribution is an extension of the [CHS18] construction, which

we present as a candidate asymptotically-good tree code. The construction extends ideas

of [CHS18] and further makes use of the vanishing-distance tree code by Gelles et al.

[GHK+16]. An informal description of the main ideas is in Section 3.3 with a formal

treatment of the more intricate aspects deferred to Section 5. In our construction, the

role of each Pascal sub-matrix determinant is recast as a bundle of Pascal sub-matrix

determinants, parametrised by points on the Boolean hypercube of high enough dimension

(hence the term “Pascal determinant cube” in the title). We then work modulo a prime p

of appropriate size. Instead of worrying about a determinant vanishing modulo p, we only

have to worry about the whole associated cube of Pascal determinants vanishing modulo p.

Informed by computation, combinatorics and arithmetic, we formulate the Conjecture 3.1

in Section 3.2 that the cube of determinants never vanishes modulo our chosen prime. We

prove that if the conjecture (or even an asymptotic version of it, Conjecture 3.2) holds

then our construction is indeed asymptotically good.
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In Section 6, we investigate our conjecture through a combinatorial lens. Each deter-

minant bundle in the conjecture can be encoded as an integer polynomial whose evaluation

at the points of the Boolean hypercube gives the bundle. Through the Lindström-Gessel-

Viennot lemma, in Section 6.1 we prove that the polynomial never vanishes on any point

of the Boolean hypercube. For the conjecture to fail, all these exponentially many evalua-

tions must be divisible by our chosen prime number, which we reason is likely impossible

for our chosen parameters. This very scenario is reformulated in terms of Boolean func-

tions in Section 6.2, by multi-linearizing the aforementioned polynomial. Conjecture 3.1

is then rephrased as the non vanishing of an Fp-valued Boolean function, furthering our

belief in the conjecture.

In Section 7, we look to deep results from arithmetic geometry to claim the plausi-

bility of our conjecture. If the hypersurface of zeroes of the aforementioned polynomial

encoding the bundle of determinants intersects with the Boolean hypercube generically,

our conjecture should be true. Following Fouvry [Fou00], we investigate this intersection

deploying Katz-Laumon exponential sums. The bounds on Katz-Laumon sums and Fou-

vry’s point counting technique fall short of quantitatively proving our conjecture. Yet, we

show they suffice to prove a nontrivial relaxation of our conjecture: with the Boolean hy-

percube extended to hypercubes of side length ≈ p3/4. Despite falling short of proving our

conjecture, the methods are illuminating and suggest there are no arithmetic obstructions

to our conjecture.

2 Cohen-Haeupler-Schulman Tree Codes

For the sequel, it is convenient to think of a tree code as an online version of a regular

error correcting code. Recall that a tree code consists of a complete rooted, depth-n

binary tree in which each edge is labeled by a symbol from an alphabet Σ. This naturally

induces a one-to-one mapping assigning each binary string s to a path starting at the

root, where s indicates which child is taken in each of the steps. Such a path maps to a

string over Σ, namely, the concatenation of symbols along the path. This way, a tree code

T encodes any binary string s into an equally long string T (s) over Σ. This encoding has

the online property because the encoding of any prefix does not depend on later symbols.

Thus, one can view a binary tree code as an online function T : {0, 1}n → Σn. It is useful

to consider input alphabet other than binary (which corresponds to a larger arity of the

tree). In [CHS18], the input symbols are elements of Z rather then {0, 1}.
The distance property of a tree code can be phrased as follows when viewed as a

function T : Σn
in → Σn

out. For every pair of distinct strings m = (m0, . . . ,mn−1), m′ =
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(m′0, . . . ,m
′
n−1), c being the least integer such that mc 6= m′c, the following holds. For

every ` ∈ [0, n− c) (for integers a < b we write [a, b) for {a, a+ 1, . . . , b− 1}) the strings

(T (m)c, . . . , T (m)c+`), (T (m′)c, . . . , T (m′)c+`) are of Hamming distance at least δ(`+ 1).

The Newton basis. [CHS18] makes use of the Newton basis for real polynomials. This

basis consists of polynomials of the form
(
x
k

)
∈ R[x] for k ∈ N, where(

x

k

)
=
x(x− 1) · · · (x− (k − 1))

k!
.

It is easy to verify that for every d ∈ N, the set {
(
x
k

)
| k = 0, 1, . . . , d} forms a basis for

the space of univariate real polynomials of degree at most d. The feature which makes

the Newton basis suitable for constructing tree codes unlike, say the standard basis, is

its online nature with respect to N. Let m0, . . . ,mt ∈ R. Let f(x) =
∑t

i=0 aix
i be

the least degree polynomial that interpolates on the points (0,m0), . . . , (t,mt). Then,

generally, given a new point (t+ 1,mt+1), the least degree polynomial, g(x) =
∑t+1

i=0 bix
i,

that interpolates on (0,m0), . . . , (t + 1,mt+1) will have a completely different sequence

of coefficients (i.e., ai 6= bi). By contrast, using the Newton basis, the coefficients that

were already “recorded” stay intact given the new point (t + 1,mt+1). More precisely, if

f(x) =
∑t

i=0 γi
(
x
i

)
then g(x) = f(x) + γt+1

(
x
t+1

)
for some γt+1 ∈ R. Thus, for every t,

the coefficient γt is determined by m0,m1, . . . ,mt. Another convenient property of the

Newton basis, not shared by the standard basis, is that if m0, . . . ,mt are all integers, so

are the coefficients γ0, . . . , γt.

The [CHS18] tree code over the integers. In [CHS18], for every integer n ≥ 1 a

function TCZ : Zn → (Z×Z)n is constructed as follows. Given m = (m0, . . . ,mn−1) ∈ Zn,

let f ∈ R[T ] be the least degree real polynomial that interpolates on (0,m0), . . . , (n −
1,mn−1). Expand f in the Newton basis f(T ) =

∑n−1
t=0 γt

(
T
t

)
. With this notation, for

every t ∈ [0, n), define TCZ(m)t = (mt, γt). In words, at time t, both the tth input symbol

is outputted as well as the “new” coefficient γt.

Analysis. To argue about the distance of TCZ, using the fact that it is R-linear, one has

to prove that if c ∈ [0, n) is the least integer for which mc 6= 0 then for every ` ∈ [0, n−c),
at least δ-fraction of the indices in [c, c+`] satisfies that TCZ(m)t is nonzero (as a pair). If

we write, for d ∈ [0, n), fd(T ) =
∑d

t=0 γt
(
T
t

)
then the number of non-zeros in the sequence

γc, γc+1, . . . , γc+` is precisely the sparsity of fc+` in the Newton basis. This, together with

the fact that for every i ≤ t, mi = ft(i), implies that to “break” the construction TCZ,

one must come up with a sparse polynomial fc+`, with respect to the Newton basis, that
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has many roots in I = {c, c + 1, . . . , c + `}. Indeed, if fc+` is not sparse, then many of

the γ-entries of (TCZ(m)t)t∈I will be nonzero. On the other hand, if fc+` has only few

roots in I then many of the m-entries are nonzero. To this end, the main lemma proved

in [CHS18] is a bound on the numbers of distinct integral roots a real polynomial can

have as a function of its sparsity in the Newton basis.

Lemma 2.1 ([CHS18]). Let f ∈ R[T ] be a nonzero polynomial of sparsity s ≥ 1 in the

Newton basis. Let c ≥ 0 be the least integer such that f(c) 6= 0. Then, f has at most s−1

distinct roots in [c,∞) ∩ N.

Lemma 2.1 implies that if the sparsity of fc+` is s then there can be at most s − 1

zeros among the m-entries of {TCZ(m)t}t∈I , establishing TCZ has distance at least 1
2
.

The Lindström-Gessel-Viennot Lemma. Lemma 2.1 is proved using a corollary of

the Lindström-Gessel-Viennot Lemma. Let t = (t1, . . . , ts), c = (c1, . . . , cs) be strictly

increasing sequences of non-negative integers. Let Mt,c be the s× s matrix whose (i, j)th

entry is given by
(
ti
cj

)
. We write c ≤ t if ci ≤ ti for every i ∈ [s].

Lemma 2.2 ([GV85], Corollary 2). c ≤ t ⇐⇒ detMt,c 6= 0.

For more recent treatments of the LGV Lemma see [Aig07], Chapter 5.4 or [AZ18],

Chapter 25. This lemma is in fact much older, and we invite the reader to look at the

appendix of [CHS18] for more information regarding the history of this lemma.

The binary tree code. To reduce the alphabet to binary, [CHS18] proves that if for

every t, |mt| ≤ 2k for some k then |γt| ≤ 2t+k. Given a binary string m = (m0, . . . ,mn−1),

partition m to
√
n consecutive blocks of length

√
n, and interpret each block as a non-

negative integer Mi of size at most 2
√
n. At this point, the tree code over the integers

TCZ : N
√
n → (Z × Z)

√
n can be applied to M0, . . . ,M√n−1. By the above bound, |γt| ≤

2t+
√
n ≤ 22

√
n. Hence, an output symbol (mt, γt) can be encoded using 3

√
n bits. Of

course, these bits cannot be outputted “on the fly” as one must write a symbol only after

all of the
√
n bits of the corresponding input symbol have been read. This creates a

“lag” of length
√
n that can be resolved by using a depth-

√
n tree code which is obtained

recursively. As the recursive depth is O(log log n) and since for every bit read one writes

O(1) bits per recursive call, the number of bits written per input bit is O(log log n). Hence,

the poly(log n) alphabet size.
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3 Our contribution

3.1 The unlikeliness of an LGV-like lemma over small fields

The reason that the [CHS18] construction is not asymptotically-good is that their tree

code is constructed over the integers, and the alphabet reduction that is invoked has a

cost that is exponential in the depth of the recursion. The recursion’s depth is directly

affected by the magnitude of the γt symbols which, unfortunately, are exponential in t.

Taking
√
n-length blocks yields the best trade-off, resulting in depth O(log log n).

One can show that resorting to such recursion could have been avoided if the construc-

tion was carried over a prime field Fp with p = poly(n). That is, instead of outputting

γt, output its reduction modulo p. To be precise, for the construction to work, one must

take p ≥ n due to other considerations. However, as long as p < ne for some constant

e, standard techniques can be used to obtain an asymptotically-good binary tree code,

where the constant e will effect the rate of the resulted tree.

A very similar approach to this was raised by Pudlák [Pud16]. On this, we quote a

sentence from the conclusion part of [Pud16]: “This seems to be a very difficult problem

and we do not dare to conjecture that p may be of polynomial size”. At this point, Pudlák

suggest studying restricted cases for which small fields suffice and try to base tree code

constructions on such results, but we digress.

In consensus with Pudlák, we too believe that the approach of working over Fp as

suggested above is not likely to work. That is, it seems very plausible to us that the LGV

Lemma does not have an analog over a field of size poly(n). More precisely, we suspect

that for every constant e ≥ 1, there exists n0 = n0(e) such that for every n ≥ n0 and

p ≤ ne, there exists a pair t, c ∈ [0, n)s, for some s ∈ [n], satisfying c ≤ t, such that

detMt,c ≡p 0.

To get some intuition as to why we believe this is the case, fix some prime p and

s ∈ [n]. There are between
(
n
s

)
and

(
n
s

)2
pairs of sequences t, c to consider. Unless some

structure is present, one would expect that roughly 1
p
-fraction of pairs t, c would satisfy

p | detMt,c. By that heuristic, we do not expect that p can be taken much smaller than(
n
s

)
. As we are interested in s that can be as large as Ω(n), this heuristic points against

the existence of a “good” prime p = 2o(n), let alone p = poly(n).

This heuristic is supported by a computational search that we carried. Let P1 : N→ N
be the function that maps n ∈ N to the least prime p that satisfies the following property.

For every s ∈ [n] and strictly increasing sequences c = (c1, . . . , cs), t = (t1, . . . , ts) ∈ [0, n)s

with c ≤ t it holds that detMt,c 6≡p 0. Informally, P1 maps n to the smallest prime p that

is “good” for n. An exhaustive search we have conducted for hundreds of computer hours
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seems to suggest that P1(n) grows exponentially with n.

n 6 7 8 9 10 11 12 13 14 15 16

P1(n) 13 17 47 89 241 641 2,687 6,521 15,401 74,257 > 250, 000

Table 1: Values of P1(n) obtained using a computer search.

3.2 A conjecture

The informal heuristic presented above makes the point that no poly(n)-size prime is likely

to work against all exp(n) many pairs of sequences as we have no evidence for a structural

phenomena to support the seemingly unlikely alternative. The main contribution of this

work is a tree code construction–a variant of [CHS18]–whose distance analysis relies on

what we believe is a plausible statement which we put forth as a conjecture. To formally

state our conjecture some preparation is required.

As before, let c = (c1, . . . , cs), t = (t1, . . . , ts) ∈ [0, n)s be a pair of strictly increasing

sequences with c ≤ t. For symbolic variables X1, . . . , Xs, define the s × s (symbolic)

matrix Mt,c(X1, . . . , Xs) whose (i, j)th entry is given by
(
Xi+ti
cj

)
. Define

Φt,c(X1, . . . , Xs) , detMt,c(X1, . . . , Xs) ∈ Z[X1, . . . , Xs].

For a prime p, let Φp
t,c(X1, . . . , Xs) ∈ Fp[X1, X2, . . . , Xs] denote the reduction of Φt,c at p.

That is, every coefficient of Φt,c is taken modulo p to form Φp
t,c.

With this notation, to ensure that the [CHS18] tree code works over Fp, one must

establish that Φp
t,c(0, . . . , 0) 6= 0 for all t, c in question. Put differently, the [CHS18]

construction fails if for some pair t, c as above, Φp
t,c evaluates to 0 at the origin. Our main

contribution is an explicit construction which fails only if Φp
t,c evaluates to 0 on the entire

Boolean hypercube {0, 1}s. Equivalently, our construction is asymptotically-good if

∃(x1, . . . , xs) ∈ {0, 1}s Φt,c(x1, . . . , xs) 6≡p 0. (3.1)

3.2.1 Preliminary informal discussion on the plausibility of Equation (3.1)

To start with, consider a very informal point of view on the plausibility of Equation (3.1),

a discussion similar in spirit to the one conducted for arguing against the plausibility of

taking the [CHS18] construction over Fp. Heuristically, and very informally, one may think

of the 2s conditions in Equation (3.1) as 2s trials that are “generated by s independent

random variables” X1, . . . , Xs. Unless some structural obstruction is in place, the “event”
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in Equation (3.1) is expected to have probability of about p−s. Continuing this informal

line of reasoning, by a union bound, one would expect that for a choice of p satisfying

p−s
(
n
s

)2 � 1
n
, Equation (3.1) holds for every pair t, c ∈ [0, n)s, for every s ∈ [n]. The

latter holds by taking p� n3.

Another informal argument supporting the validity of Equation (3.1) is as follows.

Note that Φt,c has total degree d ≤ sn ≤ n2. In fact, as we only care about Φt,c restricted

to {0, 1}s, we may assume that Φp
t,c is multi-linear and so d ≤ s ≤ n. One can show that

for p > n, Φp
t,c is a nonzero polynomial; thus, by Schwartz-Zippel, Φp

t,c has at most d
p
≤ n

p

fraction of roots in Fsp. By taking, say, p ≥ n2, the roots of Φt,c occupy at most 1√
p
-fraction

of Fsp. Now, for the heuristic part, one may conjecture that {0, 1}s “looks random” to the

zero set Vt,c of Φt,c. As a weak consequence, {0, 1}s is not contained in Vt,c, which is the

content of Equation (3.1).

3.2.2 The conjecture

There is one small technical issue we need to address before presenting our formal con-

jecture. Note that if ti+1 = ti + 1 for some i then Φt,c(x1, . . . , xs) = 0 whenever xi = 1

and xi+1 = 0 for the simple reason that two of the rows of Mt,c(x1, . . . , xs) are identical.

Informally, from the heuristic point of view discussed above, when ti+1 = ti+1, the events

associated with the variables Xi, Xi+1 are dependent. To exclude these trivial roots of

Φt,c(x1, . . . , xs) we assume in the conjecture (and guarantee in the construction) that t, c

only have even entries. In Section 6.1 we prove that, having done so, Φt,c has no root

in {0, 1}s. That is, when considering t, c with even entries, Φt,c(x1, . . . , xs) 6= 0 for every

(x1, . . . , xs) ∈ {0, 1}s, and so it is only the reduction modulo p that may yield roots. With

this, we are finally ready to state our conjecture.

Conjecture 3.1 (The Pascal determinant cubes (PDC) conjecture). There exists a uni-

versal constant ep ≥ 1 such that for every integer n ≥ 1 and prime p ≥ nep the following

holds. For every s ∈ [n] and a pair of strictly increasing sequences t = (t1, . . . , ts), c =

(c1, . . . , cs) ∈ ([0, n) ∩ 2Z)s satisfying c ≤ t,

∃(x1, . . . , xs) ∈ {0, 1}s Φp
t,c(x1, . . . , xs) 6= 0.

3.2.3 Experiments supporting Conjecture 3.1

To support Conjecture 3.1 and, more fundamentally, to verify that there is no “structure”

obstructing our heuristic arguments, we ran a computer search. Let P2 : N → N be

the function that maps n ∈ N to the least prime p that satisfies the following property.

For every s ∈ [n], and every pair of strictly increasing sequences t = (t1, . . . , ts), c =
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(c1, . . . , cs) ∈ ([0, n) ∩ 2Z)s satisfying c ≤ t, it holds that Φp
t,c(x1, . . . , xs) 6= 0 for some

(x1, . . . , xs) ∈ {0, 1}s. Informally, P2 maps n to the least prime that is “good” for n in

our conjecture.

An exhaustive search we have conducted, spanned over hundreds of computer hours,

verifies at least for small numbers, that unlike P1(n), the function P2(n) grows very slowly

with n. In fact, the data collected in Table 2 shows that for 7 ≤ n ≤ 30, P2(n) equals the

least prime number p ≥ n− 1. 1

n 5 7 9 11 13 15 17 19 21 23 25 27 29

P2(n) 3 7 11 11 13 17 17 19 23 23 29 29 29

Table 2: Values of P2(n) obtained using a computer search. Note that for an even n,

P2(n) = P2(n− 1) as t, c have even entries. Thus, only the data of odd n’s is collected.

We do not expect P2(n) to grow so slowly and we certainly do not expect it to have

such a simple formula. While we could not compute P2(n) for n > 29, we were able to

show that P2(127) > 131 by eliminating the first two “potential” primes 127, 131. To

see that, say, P2(127) 6= 131 we invite the diligent reader to verify that c = (0, 4, 10),

t = (64, 68, 74) yields a counterexample. That is,∣∣∣∣∣∣∣∣∣

(
64 + x1

0

) (
64 + x1

4

) (
64 + x1

10

)
(

68 + x2

0

) (
68 + x2

4

) (
68 + x2

10

)
(

74 + x3

0

) (
74 + x3

4

) (
74 + x3

10

)
∣∣∣∣∣∣∣∣∣ ≡131 0

for every (x1, x2, x3) ∈ {0, 1}3. A counterexample also exists for s = 4. Take, c =

(0, 4, 10, 14), t = (0, 68, 74, 78).

3.2.4 Asymptotic version of Conjecture 3.1

For the informal heuristic argument used in Section 3.2.1 the point made is that while

the number of “tests” (t, c) grows exponentially with s, so does the number of “trials”

(x1, . . . , xs). Thus, when considering such a heuristic, s is thought of as an asymptotic

parameter. However, Conjecture 3.1 is stated for every s ≥ 1. While it may very well

be the case that our conjecture holds as is, we prefer to base our construction on a more

1This is tight, namely, for every n ≥ 7, P2(n) ≥ n − 1. Indeed, take p < n − 1 a prime. If p ≥ 5,

consider the sequences t = (0, p+ 1) and c = (0, 4). Note that Φp
t,c(x1, x2) =

(
p+1+x2

4

)
, and that p divides

both
(
p+1
4

)
and

(
p+2
4

)
. For p = 2, 3 one can use t = (0, 2p), c = (0, 2). By Table 2, the assertion is false

for n < 7.
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robust conjecture that avoids the possible “irregularities” that may be present for small

values of s.

A natural relaxation is to bound s from below by some parameter s0 that is may even

be allowed to grow with n. However, note that this should be done with some care. Indeed,

if Conjecture 3.1 can be falsified for some value s, it is immediately false for larger values

of s. To see this, take the counterexample c = (c1, . . . , cs), t = (t1, . . . , ts) ∈ [0, n)s and

consider c′ = (c1, . . . , cs, cs+1), t′ = (t1, . . . , ts, ts+1) ∈ [0, n)s where cs+1, ts+1 are chosen so

that ts < cs+1 ≤ ts+1. Observe that this has the effect of “embedding” Mt,c(X1, . . . , Xs)

as the top-left sub matrix of Mt′,c′(X1, . . . , Xs+1). Furthermore, all but the lowest entry

of the rightmost column are 0. In particular,

Φt′,c′(X1, . . . , Xs+1) = (−1)s
(
ts+1 +Xs+1

cs+1

)
· Φt,c(X1, . . . , Xs).

Thus, if Φt,c vanishes on {0, 1}s then Φt′,c′ vanishes on {0, 1}s+1.

The “correct” way of formalizing a relaxation of Conjecture 3.1 in which only suffi-

ciently large s are of interest is to restrict to pairs t, c for which not only s ≥ s0 but also

t1 ≥ cs0 . Observe that under this condition, counterexamples of size less than s0 cannot

be embedded as in the above discussion. We state below a variant of Conjecture 3.1 on

which our candidate constructions relies. However, when discussing our conjecture we do

not distinguish between Conjecture 3.1 and Conjecture 3.2 unless such a distinction is

essential.

Conjecture 3.2 (Asymptotic PDC conjecture). There exist universal constants ep, es ≥ 1

such that for every integer n ≥ 1 and prime p ≥ nep the following holds. For every

s ≥ s0 , (log n)es and every pair of strictly increasing sequences t = (t1, . . . , ts), c =

(c1, . . . , cs) ∈ ([0, n) ∩ 2Z)s satisfying t ≥ c and t1 ≥ cs0, it holds that

∃(x1, . . . , xs) ∈ {0, 1}s Φp
t,c(x1, . . . , xs) 6= 0.

3.2.5 Structural factors of Φt,c and its linearization

Conjecture 3.1 only concerns with the evaluation of Φt,c at the Boolean hypercube which,

recall, we prove never vanishes in Section 6.1. But, as defined, Φt,c does not encode this

in any way. In this section, we identify and remove certain factors of Φt,c that are, in a

sense, “outside” the Boolean hypercube, and so are of no interest to us.

For sequences t, c as in Conjecture 3.1, consider the matrix Mt,c(X1, . . . , Xs). Take

distinct i, j ∈ [s] with i > j. The substitution Xi = Xj + tj − ti turns the ith and jth rows

identical, resulting in an identically zero determinant. By the Hilbert’s Nullstellensatz,

11



Xi − Xj + ti − tj divides Φt,c(X1, . . . , Xs) in Q[X1, . . . , Xs]. Therefore the determinant

polynomial is of the form

Φt,c(X1, . . . , Xs) = Ξt,c(X1, . . . , Xs) ·
∏
i>j

(Xi −Xj + ti − tj)

for some polynomial Ξt,c[X1, . . . , Xs] ∈ Q[X1, . . . , Xs]. In fact, Ξt,c[X1, . . . , Xs] is in

Z[X1, . . . , Xs] by Gauss’s lemma, since Φt,c and the structural factor are both princi-

pal. Thus, we can consider reduction modulo a prime p. Since ti, tj are distinct even

numbers in [0, n), the structural factors do not vanish at any point of the Boolean hy-

percube, even when reduced modulo a prime p > n. Therefore, studying the zeros of Φp
t,c

in the Boolean hypercube is equivalent to studying those of Ξt,c, even modulo a prime

p > n.

Observe that the linearization of the univariate polynomial
(
X+t
c

)
, for c ≥ 1 takes the

nice form (
X + t

c

)
=

(
t

c− 1

)
X +

(
t

c

)
as can be seen using Pascal’s identity. In Section 6.2 we take these ideas a step further

and obtain a reformulation of Conjecture 3.1 which, informally, states that a certain

polynomial Ψp
t,c is nonzero (as an element of the ring Fp[X1, . . . , Xs]). That is to say, while

the [CHS18] tree code fails over Fp if a certain polynomial has a root at the origin, via its

reformulation, Conjecture 3.1 is false only if a certain polynomial is the zero polynomial.

An asymptotic version, equivalent to Conjecture 3.2 is immediate.

In Section 7 we suggest a stronger variant of Conjecture 3.1 and further study the

plausibility of Conjecture 3.1 and its stronger variant based on deep results in arithmetic

geometry. In particular, we reason about the distribution of values attain by Φt,c on the

Boolean hypercube by considering the exponential sum∑
(x1,...,xs)∈{0,1}s

ζΦt,c(x1,...,xs)
p ,

where ζp is a pth root of unity in C, and collect computational data in Table 3. However, we

wrap up this preliminary discussion on our conjecture and its variants. In the next section

we go back to the problem of constructing tree codes, and give an informal presentation

of our construction and its analysis, based on Conjecture 3.1 or, more precisely, based on

the asymptotic variant, Conjecture 3.2.

3.3 The candidate tree code

Our candidate construction is a variant of the construction discussed in Section 2. In fact,

for obtaining distance larger than 1
2
, [CHS18] modified their original construction so that
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at time t, not one but some r ≥ 1 number of evaluations of the “current” polynomial ft

is recorded. This enabled them to achieve distance 1− 1
r+1

. Our candidate construction

is closely related to that variant. We make use of this idea of multiple evaluations not

for improving the distance, but rather for relaxing the analysis so that it is plausible that

the reduction modulo a small prime p yields non-vanishing distance and, in particular,

follows by Conjecture 3.2.

Recall, however, that Conjecture 3.2 holds only for pairs of length s ≥ s0 for which

t1 ≥ cs0 . Therefore, we need to introduce some mechanism to the construction so that its

correctness does not rely on the behaviour when applied with small values of s (nor on

invalid pairs). To this end, we make use of an explicit tree code construction by [GHK+16].

For every n ≥ 1, an explicit tree code TC′ : [n2]n → [2n2]n having distance 1
logn

is given

(see Corollary 5.3 for a precise statement). Although TC′ has a vanishing distance, it

suffices for our needs as we will not use TC′ directly for arguing about the distance; rather,

we invoke TC′ to guarantee some structure on the polynomials we need to analyze.

Take p > 2n2 a prime, and think of TC′ : [n2]n → Fnp in the natural way. Our

construction proceeds as follows. Given m = (m0,m1, . . . ,mn−1) ∈ [n2]n we first apply

TC′ to obtain
(
γ0, γ2, γ4, . . . , γ2(n−1)

)
= TC′(m). For t ∈ [0, n), we define ft(T ) ∈ Fp[T ] by

ft(T ) =
∑t

i=0 γ2i

(
T
2i

)
. At time t ∈ [0, n), our tree code TC : [n2]n → (F3

p)
n outputs

TC(m)t = (γ2t, ft(2t), ft(2t+ 1)) .

As mentioned, as the alphabet is of size poly(n), standard techniques can then be used

to obtain an explicit binary tree code with comparable parameters. We thus have,

Theorem 3.3. Assume that Conjecture 3.2 holds with parameters ep, es. Then, there

exist c = c(ep, es) ∈ N and δ = δ(ep, es) ∈ (0, 1) such that the following holds. For every

n ∈ N there exists an explicit tree code TC : {0, 1}n → [c]n with distance δ.

3.3.1 Sketch of the analysis

As for the analysis, consider distinct m = (m0,m1, . . . ,mn−1), m′ = (m′0,m
′
1, . . . ,m

′
n−1),

and let c ∈ [0, n) be the least integer for which mc 6= m′c. By the property of TC′ we

get that for every ` ∈ [0, n − c), when restricted to [c, c + `], the strings γ = TC(m),

γ′ = TC(m′) are of distance s ≥ `
logn

. In particular, when considering ` ≥ (log n)e for

some constant e > 1, we have that s ≥ (log n)e−1. Let us assume this bound on ` for the

moment. Observe now that, by construction, s is precisely the sparsity of the polynomial

g(T ) = fc+`(T )− f ′c+`(T ) with respect to the Newton basis. Thus, we can write

g(T ) =
s∑
j=1

γ2cj

(
T

2cj

)
,
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where c = c1 < c2 < · · · < cs ≤ c+ ` < n.

We wish to bound the number of integers t ∈ [c, c+ `] for which g(2t) = g(2t+ 1) = 0

as indeed for every such t, TC(m)t and TC(m′)t agree when projected to the last two

entries of the triplet. To get a bound of b on such indices t, the natural approach is to

assume the existence of some t1 < t2 < · · · < tb in [c, c + `] with g(2ti) = g(2ti + 1) = 0

for every i ∈ [b], and try to get a contradiction via Conjecture 3.2 for a sufficiently large

value b. Recall, however, that for the conjecture it is required that t ≥ c which is not

necessarily the case. In [CHS18] this technical issue is resolved by observing that one can

restrict to the longest prefixes (c1, c2, . . . , cs1), (t1, t2, . . . , ts1) of the original sequences for

which ci ≤ ti for every i ∈ [s1]. Such s1 exists as c1 ≤ t1.

Our analysis is a somewhat trickier as we can only invoke Conjecture 3.2 starting from

some s0 (and under some restriction on the pair). In particular, in the notation of Con-

jecture 3.2, we have s0 = (log(2n))es , and it may very well be the case that the longest

prefix length s1 < s0. To overcome this, and to satisfy the hypothesis of Conjecture 3.2,

we first prove a bound of s on the number of ti’s in [cs0 , c + `] rather than in [c, c + `].

This can be done based on Conjecture 3.2 using a similar argument to that of [CHS18]

who invoke the LGV Lemma.

To bound the number of the remaining ti’s, namely, those in [c, cs0 ] we bound the

length of this interval. Had c1, . . . , cs0 been arbitrary, the interval’s length could have

been unbounded. However, recall that by construction, c1, . . . , cs0 are the indices in [c, cs0 ]

for which TC′(m),TC′(m′) disagree. Since TC′ has distance 1
logn

it follows that s0 ≥
cs0−c
logn

,

and so the interval’s length is bounded by

cs0 − c ≤ s0 log n ≤ (log (2n))es+1.

Hence, the total number of ti’s is bounded by s+(log (2n))es+1, and so the distance between

TC(m) and TC(m′) when restricted to [c, c+ `] is at least max(s, `− (s+ (log (2n))es+1)).

By taking ` sufficiently large, the latter approaches `
2
.

In the discussion above, we assumed ` is sufficiently large. In particular, ` > `0 =

(log n)e for some constant e. To resolve this “lag”, namely, to handle also smaller val-

ues of `, we use a standard technique in which an explicit tree code of length O(`0) is

concatenated with the construction above.

4 Preliminaries

Let n ≥ 1 be an integer and Σ some (finite or infinite) set. For a string x = (x1, . . . , xn) ∈
Σn and integers 1 ≤ a ≤ b ≤ n, we let x[a,b] denote the substring (xa, . . . , xb). Given
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x, y ∈ Σn, we write dist(x, y) for their Hamming distance. For an integer n ≥ 1 write [n]

for {1, 2, . . . , n}. For integers a < b we denote [a, b) = {a, a + 1, . . . , b − 1}. We use the

conventions that the natural numbers are N = {0, 1, 2, . . .}, and that
(
a
b

)
= 0 for integers

0 ≤ a < b.

Tree codes, as their name suggest, are trees with certain distance properties. However,

as discussed in Section 2, we use an equivalent definition of tree codes that more explicitly

specifies their online characteristic. Recall that a function f : Σn
in → Σn

out is said to be

online if for every i ∈ [n] and x ∈ Σn
in, f(x)i is determined by x1, . . . , xi. For a pair of

distinct x, y ∈ Σn, we define split(x, y) as the least integer s ∈ [n] such that xs 6= ys.

Definition 4.1 ([Sch93]). An online function TC : Σn
in → Σn

out is a tree code with distance

δ if for every distinct x, y ∈ Σn
in, with c = split(x, y), and every ` ∈ [0, n− c),

dist
(
TC(x)[c,c+`],TC(y)[s,s+`]

)
≥ δ(`+ 1).

We refer to n as the depth of TC. We refer to Σin,Σout as the input alphabet and output

alphabet, respectively.

We are interested in some further properties of tree codes.

Definition 4.2. Let TC : Σn
in → Σn

out be a tree code.

• We say that TC is a binary tree code if Σin = {0, 1}.

• We say that TC is explicit if it can be evaluated on every input m ∈ Σn
in in polynomial

time in the bit complexity of m.

5 Proof of Theorem 3.3

In this section we present our candidate tree code and prove Theorem 3.3. Our construc-

tion is obtained in several steps, where the main part is to construct a relaxation of tree

codes, called a lagged tree code. Informally, this is a tree code whose distance property

holds only after a certain time interval.

Definition 5.1 ([CHS18]). An online function TC : Σn
in → Σn

out is a lagged tree code

with lag `0 and distance δ if for every distinct x, y ∈ Σn
in, with s = split(x, y), and every

` ∈ [`0, n− s),

dist
(
TC(x)[s,s+`],TC(y)[s,s+`]

)
≥ δ(`+ 1).
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Note that a tree code is a lagged tree code with lag parameter `0 = 0. It is straight-

forward to transform any lag-`0 tree code to a tree code using a second tree code of

length O(`0). Our construction of lagged tree codes, given below by Proposition 5.4,

has lag `0 = poly(log n). A result by Braverman [Bra12] provides, for every constant

ε ∈ (0, 1) and integer m an asymptotically-good tree code of length m in time 2O(mε).

Thus, asymptotically-good tree codes of length `0 can be obtained in time poly(n). The

obtained tree code (as well as the lagged tree code that is given by Proposition 5.4) is over

a poly(n)-size alphabet. It is well-known how to reduce the alphabet to binary, obtaining

tree codes with comparable parameters (see, e.g., [Pud16], Proposition 3.1).

In light of the discussion above, we turn to present our candidate construction of

poly(log n)-lagged tree codes over poly(n)-size alphabet. Our construction makes use of

a tree code construction by [GHK+16].

Lemma 5.2 (Lemma 5.1 in [GHK+16]). There exists an absolute constant k0 ∈ N such

that the following hold for every ε > 0 and integers k, n ∈ N such that k0·logn
ε
≤ k ≤ n.

There exists an explicit tree code C : Σk
in → Σk

out with Σin = {0, 1} logn
ε , Σout = {0, 1} logn

ε
+1,

rate ρ′ = 1
1+ε/ logn

and relative distance at least δ′ = 1
1+2 log(n)/ε

.

The following is a straightforward corollary of Lemma 5.2 obtained by taking ε = 1
2
.

Note that the factors of 4 and 8 in the alphabet size of TC′ in Corollary 5.3 are for

obtaining a tree code for every n, not just a power of two as in Lemma 5.2.

Corollary 5.3. There exists a universal constant n0 ≥ 1 such that for every integer

n ≥ n0 there exists an explicit tree code TC′ : [4n2]n → [8n2]n with distance δ = 1
5 logn

.

Given an integer n ≥ n0 we proceed as follows. Let p be the least prime number larger

than max(8n2, (2n)ep), where ep is the constant from Conjecture 3.2. By Corollary 5.3,

there exists an explicit tree code TC′ : [4n2]n → [8n2]n with distance 1
5 logn

. As p > 8n2 we

can embed the output symbols of TC′ in Fp by identifying them with the field elements

1, . . . , 8n2 of Fp. Hence, we may think of TC′ as a function of the form TC′ : [4n2]n → Fnp .

Define the function TC : [4n2]n → (F3
p)
n as follows. Let m = (m0,m1, . . . ,mn−1) ∈

[4n2]n. Compute

TC′(m) = (γ0, γ2, γ4, . . . , γ2(n−1)) ∈ Fnp .

For t = 0, 1, . . . , n− 1 define the polynomial ft(T ) ∈ Fp[T ] by

ft(T ) =
t∑
i=0

γ2i

(
T

2i

)
. (5.1)

Finally, for t = 0, 1, . . . , n− 1, define

TC(m)t = (γ2t, ft(2t), ft(2t+ 1)) . (5.2)
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Proposition 5.4. Assume that Conjecture 3.2 holds with parameters ep, es. Then, TC

as defined in Equation (5.2) is an `0-lagged tree code, where `0 = 15(log (2n))es+1, having

distance 1
3

and rate at least 1
2 max(2,ep)

.

Proof. That the rate is bounded below by 1
2 max(2,ep)

is a straightforward calculation.

We turn to analyze the distance. Note that TC is not linear and so, for the distance

analysis, we consider two distinct messages. Let m = (m0, . . . ,mn−1) ∈ [4n2]n and

m′ = (m′0, . . . ,m
′
n−1) ∈ [4n2]n distinct. Let 0 ≤ c ≤ n − 1 be the least integer for

which mc 6= m′c, and let ` ∈ [`0, n− c). Denote

γ = (γ0, γ2, . . . , γ2(n−1)) = TC′(m),

γ′ = (γ′0, γ
′
2, . . . , γ

′
2(n−1)) = TC′(m′).

Since TC′ has distance 1
5 logn

it holds that

s , dist
(
γ[c,c+`], γ

′
[c,c+`]

)
= dist

(
(γ2c, γ2(c+1), . . . , γ2(c+`)), (γ

′
2c, γ

′
2(c+1), . . . , γ

′
2(c+`))

)
≥ `+ 1

5 log n
.

As ` ≥ `0 we have that s > s0, where s0 , (log(2n))es .

Similarly to Equation (5.1), we define for t = 0, 1, . . . , n − 1 the polynomial f ′t(T ) ∈
Fp[T ] by

f ′t(T ) =
t∑
i=0

γ′2i

(
T

2i

)
.

Observe that s is precisely the sparsity of fc+`(T ) − f ′c+`(T ) with respect to the Newton

basis. Let c ≤ c1 < c2 < · · · < cs ≤ c+ ` be all the integers such that γ2cj 6= γ′2cj for every

j ∈ [s]. As TC′ is a tree code (with nonzero distance) γ2c = TC′(m)c 6= TC′(m′)c = γ′2c,

and so c1 = c. By denoting γ′′i = γi − γ′i, one can write the polynomial fc+`(T )− f ′c+`(T )

as

g(T ) =
s∑
j=1

γ′′2cj

(
T

2cj

)
.

Define

Z = {t ∈ [c, c+ `] | g(2t) = g(2t+ 1) = 0}.

Claim 5.5. Assuming Conjecture 3.2, |Z ∩ [cs0 , c+ `]| < s.

Proof. Assume by way of contradiction that there are distinct integers t1, . . . , ts ∈ [cs0 , c+

`] such that

∀i ∈ [s] g(2ti) = g(2ti + 1) = 0. (5.3)
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Assume further that t1 < · · · < ts. Let s1 ∈ {s0, s0 + 1, . . . , s} be the largest integer with

the property that for every i ∈ {s0, s0 + 1, . . . , s1}, ti ≥ ci. Note that s1 is well-defined as

ts0 ≥ cs0 (and so the maximum is taken over a non-empty, finite, set). Let M(X1, . . . , Xs1)

be the s1 × s1 matrix whose (i, j)th entry is

Mi,j(X1, . . . , Xs1) =

(
Xi + 2ti

2cj

)
,

where X1, . . . , Xs1 are formal variables. Let Φ ∈ Fp[X1, . . . , Xs1 ] be the polynomial that

is given by

Φ(X1, . . . , Xs1) = detM(X1, . . . , Xs1).

Denote t = (2t1, . . . , 2ts1) and c = (2c1, . . . , 2cs1). Note that Φ as defined above is

precisely Φt,c in the notation of Conjecture 3.2. Clearly, t, c ∈ ([0, 2n)∩2Z)s1 . We turn to

show that c ≤ t. Indeed, for i ∈ {s0, s0 + 1, . . . , s1} we have that ti ≥ ci by the definition

of s1. Moreover, recall that for every i ∈ [s], ti ≥ cs0 , and so, for i < s0 we have that

ti ≥ cs0 > ci. Recall that p ≥ (2n)ep , s1 ≥ s0 = (log(2n))es , and 2t1 ≥ 2cs0 . Thus, the

hypothesis of Conjecture 3.2 is met with s, n in the notation the conjecture taken to be s1

and 2n in our notation, respectively. Therefore, assuming the validity of Conjecture 3.2

we conclude the existence of (x1, . . . , xs1) ∈ {0, 1}s1 such that Φ(x1, . . . , xs1) 6= 0 in Fp.
We now use (x1, . . . , xs1) to get a contradiction. Let Γ ∈ Fs1p be the vector with ith

entry Γi = γ′′2ci . Observe that Γ is a nonzero vector. To see this, consider its first entry

Γ1 = γ′′2c1 = γ′′2c. Recall that γ′′2c = γ2c − γ′2c. As TC′ is a tree code (with distance larger

than 0) and since mc 6= m′c we have that γ2c = TC′(m)c 6= TC′(m′)c = γ′2c. Thus, Γ1 6= 0.

Since Φ(x1, . . . , xs1) 6= 0 we have thatM(x1, . . . , xs1) is nonsingular, and soM(x1, . . . , xs1)Γ

is a nonzero vector. Let then i ∈ [s1] be such that (M(x1, . . . , xs1)Γ)i 6= 0. Note that

(M(x1, . . . , xs1)Γ)i =

s1∑
j=1

γ′′2cj

(
xi + 2ti

2cj

)
. (5.4)

Assume for the moment that s1 < s. As i ≤ s1 we have that i < s and so we may

refer to ti+1. As xi ∈ {0, 1}, we have that 2ti + xi ≤ 2ti + 1 < 2ti+1. Hence, as i ≤ s1,

2ti+xi < 2ts1+1. By the definition of s1 we have that ts1+1 < cs1+1, and so 2ti+xi < 2cs1+1.

Hence,
(
xi+2ti

2cj

)
= 0 for all j ∈ {s1 + 1, . . . , s}. Thus,

s1∑
j=1

γ′′2cj

(
xi + 2ti

2cj

)
=

s∑
j=1

γ′′2cj

(
xi + 2ti

2cj

)
= g(2ti + xi). (5.5)

Equation (5.5) trivially follows also when s1 = s, and so it holds in general, namely,

without any assumption on s1. Equations (5.4) and (5.5) together imply that

g(2ti + xi) = (M(x1, . . . , xs1)Γ)i 6= 0
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which, as xi ∈ {0, 1}, stands in contradiction to Equation (5.3), and thus proving the

claim.

Claim 5.6. |Z| ≤ s+ 5(log (2n))es+1.

Proof. As TC′ is a tree code with distance 1
5 logn

, we have that

s0 = dist
(

(γ2c1 , γ2(c1+1), . . . , γ2cs0
), (γ′2c1 , γ

′
2(c1+1), . . . , γ

′
2cs0

)
)

= dist
(
TC′(m)[c1,cs0 ]

,TC′(m′)[c1,cs0 ]

)
≥ cs0 − c1 + 1

5 log n

≥ cs0 − c
5 log n

.

Now, s0 = (log (2n))es , and so

cs0 − c ≤ 5(log n)(log (2n))es ≤ 5(log (2n))es+1.

This, together with Claim 5.5, implies that

|Z| ≤ (cs0 − c) + |Z ∩ [cs0 , c+ `]|
≤ s+ 5(log (2n))es+1.

Claim 5.7. For every t ∈ [c, c+ `] and x ∈ {0, 1},

g(2t+ x) = ft(2t+ x)− f ′t(2t+ x).

Proof. Recall that c1, . . . , cs are precisely the indices in [c, c+`] for which γ and γ′ disagree.

More precisely, for i ∈ [c, c + `], γ2i 6= γ′2i if and only i ∈ {c1, . . . , cs}. Hence, for every

t ∈ [c, c+ `] and x ∈ {0, 1},

ft(2t+ x)− f ′t(2t+ x) =
t∑
i=0

(γ2i − γ′2i)
(

2t+ x

2i

)
=
∑
j∈[s]
cj≤t

γ′′2cj

(
2t+ x

2cj

)

=
s∑
j=1

γ′′2cj

(
2t+ x

2cj

)
= g(2t+ x),

where the penultimate equality follows since
(

2t+x
2cj

)
= 0 for every j ∈ [s] for which cj > t.

Indeed, if cj > t then 2cj ≥ 2t+ 2 and so
(

2t
2cj

)
=
(

2t+1
2cj

)
= 0.
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By Claim 5.7, t ∈ Z if and only if the last two entries of TC(m)t, namely, ft(2t), ft(2t+

1), agree with the corresponding entries, f ′t(2t), f
′
t(2t+ 1), of TC(m′)t. As the third entry

of TC(m) and TC(m′), when restricted to [c, c+ `], disagree on exactly s indices, we have

that the number of indices t ∈ [c, c + `] for which TC(m)t 6= TC(m′)t (as a triplet) is

bounded below by

max (s, `+ 1− |Z|) ≥ max
(
s, `+ 1− s− 5(log (2n))es+1)

)
≥ `− 5(log (2n))es+1 + 1

2

≥ `+ 1

3
,

where the last inequality follows since ` ≥ `0 = 15(log (2n))es+1.

6 Combinatorics corroborating Conjecture 3.1

6.1 Non-vanishing of Φt,c on the Boolean hypercube

In this section we prove that the integer polynomial Φt,c as in Conjecture 3.1 does not

vanish on any point of the Boolean hypercube. To this end, we make use of ideas similar

to those used by [CHS18] to prove that Φt,c has no root at the origin. Fix sequences t, c as

in Conjecture 3.1 for the remainder of this section. Consider a directed acyclic graph G =

(V,E) with edge weights {w(e) | e ∈ E} coming from a commutative ring with identity,

along with two ordered vertex sets R = {R1, R2, . . . , Rd}, C = {C1, C2, . . . , Cd} ⊆ V of

the same cardinality d. Associated to it is the path matrix M : the square matrix indexed

by R,C with the R ∈ R, C ∈ C entry

MR,C ,
∏

P :R→C

w(P )

where the product is taken over all paths P from R to C and the weight w(P ) is the

product of edge weights in the path P . Paths of length 0 are included and given the

weight 1. A path system P from R to C consists of a permutation σ ∈ Sd and a set of

paths {Pi : Ri → Cσ(i) | i ∈ [d]}. Let sgn(P) denote the sign of σ and w(P) denote the

product of the weights
∏d

i=1 w(Pi). The path system is called vertex disjoint if its set of

paths are vertex disjoint.

The LGV Lemma is the expression for the determinant of the path matrix M in terms
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of the underlying path graph

det(M) =
∑

vertex disjoint
path systems P

sgn(P)w(P).

Gessel and Viennot applied it to path graphs cut out from the square lattice and proved

the non vanishing theorem for determinants of Pascal submatrices. We next show a non

vanishing of determinants central to our construction using the same path graph but with

vertices relabelled.
0

1

2

3

4
R1

ti + xi
Ri

1

2

3
C1

cj
Cj

Ri

. Cj

.

1

1
Pti+xi−1,cj−1

Pti+xi−1,cj

Number of Ri → Cj paths

Pti+xi,cj = Pti+xi−1,cj−1 + Pti+xi−1,cj

Lemma 6.1. For all strictly increasing non negative integer sequences c = (c1, . . . , cs), t =

(t1, . . . , ts) such that c ≤ t and ti is even for all i ∈ [s], and ∀(x1, x2, . . . , xs) ∈ {0, 1}s,

Φt,c(x1, . . . , xs) 6= 0.

Proof. Fix numbers c1, . . . , cs, t1, . . . , ts, x1, . . . , xs as in the statement. Consider the di-

rected acyclic graph below with unit edge weights and distinguished (in red) vertex subsets

{R1, R2, . . . , Rs} and {C1, C2, . . . , Cs}. The (t1 + x1)th vertex on the first column is la-

belled R1, the (t2 + x2)th vertex on the first column is labelled R2 and so on. The labels

Ris are well defined, for (ti +xi)s are distinct as tis are even and xis are in {0, 1}. The cth1
vertex on the diagonal is labelled C1, the cth2 vertex on the diagonal is labelled C2 and so

on. To illustrate, t1 = 4, x1 = 0, c1 = 3 in the diagram. The horizontal edges are directed

from left to right and the vertical edges from bottom to top.
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Since all the edge weights are 1, the (i, j)th entry Mi,j of the path matrix is the

number of paths Pti+xi,cj from Ri to Cj. This satisfies the two term recurrence Pti+xi,cj =

Pti+xi−1,cj−1 +Pti+xi−1,cj as evident from the picture on the right. This is Pascal’s identity

for binomials. The boundary conditions
(
ti+xi

0

)
= 1 and

(
ti+xi
ci

)
= 1 for ti + xi = ci

are consistent with the path formulation. We conclude that the associated path matrix is

Mt,c =
{(

ti+xi
cj

) ∣∣∣ i, j ∈ [s]
}
, whose determinant Φt,c(x1, . . . , xs) is in question. The planar

geometry forces all vertex disjoint path systems to have the identity permutation, which

has sign 1. Hence the determinant is a positive number provided there is at least one

vertex disjoint path system. By the condition ti + xi ≥ ci for all i, there is at least one,

namely for each Ri → Ci, traverse ci edges right before turning up.

6.2 Reformulation of Conjecture 3.1

In this section we provide a reformulation of Conjecture 3.1. Fix sequences t, c as in Con-

jecture 3.1. Consider the variety Xt,c of intersection of the hypercube and the hypersurface

generated by Φt,c. The variety Xt,c is generated by the ideal

It,c :=
〈
Φt,c(X1, X2, . . . , Xs), X

2
1 −X1, . . . , X

2
s −Xs

〉
.

Clearly, the intersection variety is zero dimensional (or empty), since the hypercube

is zero dimensional and Φt,c is nonzero. The degree of the polynomial defining the hyper-

surface can be reduced through the relations carving out the hypercube as follows. Let

Ψt,c(X1, X2, . . . , Xs) ∈ Z[X1, X2, . . . , Xs] be the unique lift of

Φt,c[X1, X2, . . . , Xs] mod
〈
X2

1 −X1, X
2
2 −X2, . . . , X

2
s −Xs

〉
with degree in each variable at most 1. Informally, Ψt,c is merely Φt,c with every indetermi-

nate X∗i replaced by Xi. The ∗ in the superscript denotes some positive exponent. Since

Φt,c is nonzero, so is Ψt,c. The respective hypersurfaces generated by Φt,c and Ψt,c have

the same intersection with the Boolean hypercube and hence we can work with either.

We will proceed with Ψt,c as it has the form

Ψt,c(X1, X2, . . . , Xs) =
∑

b=(b1,b2,...,bs)∈{0,1}s
abX

b1
1 X

b2
2 . . . Xbs

s

familiar to Boolean functional analysts with possibly smaller degrees. Further, restricting

to the Boolean cube removed the structural factors that concerned us in Section 3.2.5

from Ψt,c. Let

Ψp
t,c ∈ Fp[X1, X2, . . . , Xs]

be the reduction of Ψt,c modulo the prime p.
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Conjecture 3.1 amounts to Ψp
t,c being a nonzero polynomial. This is, at least one of the

coefficients ab mod p, b ∈ {0, 1}s is nonzero. Equivalently, at least one of the evaluations

Ψp
t,c(e), e ∈ {0, 1}s ⊂ Fsp is nonzero. Below we choose to reformulate the asymptotic

version, Conjecture 3.2.

Conjecture 6.2 (Conjecture 3.2 reformulated). There exist universal constants ep, es ≥ 1

such that for every integer n ≥ 1, prime p ≥ nep, and s ≥ (log n)es the following holds. For

every pair of strictly increasing sequences t = (t1, . . . , ts), c = (c1, . . . , cs) ∈ ([0, n) ∩ 2Z)s

satisfying c ≤ t, it holds that Ψp
t,c(X1, X2, . . . , Xs) is nonzero.

7 Arithmetic geometry heuristics supporting Con-

jecture 3.1

We laboured through the whole previous section trying to argue that the restriction Ψt,c

to the Boolean hypercube of Φt,c is not identically zero modulo our chosen prime p. Our

starting observation this section is that the reduction Φp
t,c of Φt,c is non zero, since Φt,c is

primitive (it is apparent from the defining equation that the highest total degree term of

Φt,c is monic). Therefore, the zeroes of Φp
t,c define a hypersurface (that is, of codimension

1). We study the intersection of the Boolean hypercube sitting inside Fsp with this hy-

persurface using arithmetic geometry. Our analysis falls short of proving Conjecture 3.1

owing the failure to control some error terms. But we will prove Conjecture 3.1 holds

when relaxed to accommodate hypercubes of side length growing with p.

It is convenient to be ambitious and target stronger versions of Conjecture 3.1 (or its

asymptotic variant, Conjecture 3.2) which, arguably, are even more natural. First, the

distribution of values obtained by evaluating Φp
t,c on the Boolean hypercube {0, 1}s, for

any t, c in question, is fairly balanced when p is taken sufficiently large compared to n.

More precisely, we postulate the following conjecture.

Conjecture 7.1 (Strong form, value distribution). There exist universal constants ep, es ≥
1 and β ∈ (0, 1) such that for every integer n ≥ 1, prime p ≥ nep, and s ≥ (log n)es

the following holds. For every pair of strictly increasing sequences t = (t1, . . . , ts), c =

(c1, . . . , cs) ∈ ([0, n) ∩ 2Z)s satisfying c ≤ t, it holds that∣∣∣ ∑
(x1,...,xs)∈{0,1}s

ζΦt,c(x1,...,xs)
p

∣∣∣ ≤ 2βs, (7.1)

where ζp is a pth root of unity in C.
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When the prime p exceeds the height of Φt,c, the sum concentrates in a wedge above

the positive real axis disturbing the equidistribution. Despite not stating explicitly, we

are only interested in (and only claim the conjecture) when p is small compared to the

height of Φt,c. What really concerns us is the distribution of zeroes

Φt,c(Fp, 2) :=
{

(x1, x2, . . . , xs) ∈ {0, 1}s ⊂ Fsp
∣∣∣ Φp

t,c(x1, x2, . . . , xs) = 0
}

of Φp
t,c on the Boolean hypercube; suggesting another strengthening of Conjecture 3.2.

Conjecture 7.2 (Strong form, point count). There exist universal constants ep, es ≥ 1

and β ∈ (0, 1) such that for every integer n ≥ 1, prime p ≥ nep, and s ≥ (log n)es

the following holds. For every pair of strictly increasing sequences t = (t1, . . . , ts), c =

(c1, . . . , cs) ∈ ([0, n) ∩ 2Z)s satisfying c ≤ t, it holds that

|Φt,c(Fp, 2)| ≤ 2βs. (7.2)

We have gathered some data using a computer program to shed some more light on

the exponential sum in Conjecture 7.1. Table 3 collects the maximum value, over pairs

t, c in question, of the exponential sum’s modulus for n = 25. The prime p is taken to

be 29, 59, 619. Recall that, according to Table 2, P2(25) = 29, and so 29 is the smallest

prime of interest. The primes 59 and 619 are chosen primes in the order of 2n and n2,

respectively. Figure 1 gives the visual comparison.

s 2 3 4 5 6 7 8 9 10 11 12 13

p = 29 .994 .988 .902 .778 .703 .587 .482 .452 .346 .230 .098 .036

p = 59 .996 .996 .948 .784 .638 .493 .360 .285 .178 .131 .044 .014

p = 619 .999 .998 .961 .894 .644 .565 .439 .278 .169 .096 .044 .014

Table 3: Data examining the effect of increasing p, for n = 25, over the entire range of

the parameter s. Here, the maximum, over pairs t, c in question, of the exponential sum’s

modulus is considered.

Table 4 compares the third row of Table 2 with the average value over pairs t, c in

question, of the exponential sum for n = 25 and p = 619. A visualization is given

by Figure 2. The point of this experiment is to get a sense of whether extreme pairs t, c–

those that maximize the modulus of the exponential sum–are typical. Here, as perhaps is

expected, the data collected points to the negative. It would be interesting if a bound on

the average over t, c of the respective exponential sum can be proven.

Note that the exponential sums corresponding to small values of s are close 1, and

computational evidence suggests that they approach 1 as n increases. This may suggest
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Figure 1: Visual comparison of the data given by Table 3. The blue, red and yellow lines

correspond to p = 29, 59, 619, respectively

s 2 3 4 5 6 7 8 9 10 11 12 13

max .999 .998 .961 .894 .644 .565 .439 .278 .169 .096 .044 .014

typical .497 .349 .248 .178 .128 .093 .067 .049 .036 .026 .019 .014

Table 4: Comparison between the typical and extreme behaviour of the exponential sum

computed for n = 25, p = 619. The first row is as in Table 3 whereas the second row is

the average taken over t, c of the same exponential sum.

that considering the asymptotic variant, Conjecture 3.2, is crucial and that Conjecture 3.1

might be falsified for small values of s, e.g., s = 3. Somewhat surprisingly, by the

computational evidence, increasing p, for a fixed n, has the effect of increasing the modulus

of the exponential sum for small values of s. The reason for this is that for a small s,

the available computational evidence suggests that all, or almost all, 2s values attained

are close (though not equal). Hence, by increasing the prime p, the wedge formed gets

smaller; as a result, the modulus of the exponential sum gets larger. For larger values of

s it seems that no such “clustering” is possible and so increasing p has the expected effect

of decreasing the exponential sum. It is hard to read from the very few data points where

such a threshold, if exists, appears. A reasonable guess is that s should satisfy 2s � p.

To see this effect analytically, consider the case s = 2. To get an exponential sum with

a large modulus, one can try to get two consecutive roots of unity, each of multiplicity

two. To achieve this, consider t = (0, t) and c = (0, c) and note that Φt,c(x1, x2) =
(
t+x2
c

)
.
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Figure 2: Visual comparison of the data given by Table 4.

Thus, for a choice of t that satisfies(
t+ 1

c

)
−
(
t

c

)
≡p 1, (7.3)

we get two such consecutive roots, and the corresponding exponential sum is then ω =

2ζkp + 2ζk+1
p , where k =

(
t
c

)
. Hence,

|ω|2 = 8

(
1 + cos

2π

p

)
≈ 16

(
1− π2

p2

)
.

Thus,
|ω|
4
≈ 1− π2

2p2
.

This example shows that the maximum modulus of the exponential sum approaches 1 for

s = 2. It is worth mentioning that for s = 2, Conjecture 3.1 provably holds for p > n,

and so, despite the convergence, 1 is not attainable.

7.1 Pascal determinant hypersurfaces

Using arithmetic geometry, we next argue for the rarity of zeroes as stated in Conjec-

ture 7.2. We start with the most naive yet convincing argument. Before addressing the

intersection with the Boolean hypercube, consider the Fp-rational points

Φt,c(Fp) :=
{
w ∈ Fp

∣∣∣ Φp
t,c(w) = 0

}
on the hypersurface of dimension s−1 and degree ≤ ns in isolation. The Schwartz-Zippel

Lemma implies

|Φt,c(Fp)| ≤ nsps−1.
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If Φp
t,c is irreducible or if it has only a few (say Np

t,c) irreducible components, the Lang-Weil

bound gives the improved estimate [LW54]∣∣|Φt,c(Fp)| −Np
t,c p

s−1
∣∣ = (ns− 1)(ns− 2)ps−3/2 +O(nsps−2).

With the unimportant structured factors removed from Φt,c, the remaining Ξt,c (which

is also primitive, by Gauss’s lemma) also has non zero reduction Ξp
t,c. It is not always

irreducible. For instance, if the index sets t, c are such that cj < tj+1 for some j, the the

vertex disjoint paths connecting the first j vertices are decoupled from the rest: resulting in

a factorization of Ξt,c. But for the factorization induced by such decouplings, the reduction

Ξp
t,c is likely to be irreducible. Better still, if (the homogenization of) Ξp

t,c is irreducible

and defines a smooth projective variety, then deep results arising from Deligne’s proof of

the Weil conjectures [Del74, Thèoréme 8.1] imply the full “square root cancellation”∣∣|Ξt,c(Fp)| − ps−1
∣∣ = O(bs−1p

s−1
2 )

where bs−1 ≤ 1
2
s(s+ 1)(sn)s is the s− 1th Betti number. To derive our heuristic estimate,

Schwartz-Zippel will suffice.

For ease of exposition, we will use Φt,c in the ensuing analysis, even though Ξp
t,c offers

some minor gains degree wise. In spirit, the probability Φp
t,c is zero at a point in Fsp

is centred at
Np

t,c

p
with an error term depending on the smoothness. Irrespective of the

smoothness, the error term is negligible compared to the estimate for p a big enough

polynomial in n. We hypothesise that the hypersurface intersects generically with the the

Boolean hypercube and the number of intersection points is bounded as

|Φt,c(Fp, 2)| ≈ |Φt,c(Fp)|
(

2

p

)s
. (7.4)

By the Schwartz-Zippel lemma

|Φt,c(Fp, 2)| ≈ |Φt,c(Fp)|
(

2

p

)s
= O

(
ns2s

p

)
. (7.5)

suggesting Conjecture 7.2 holds for p > n2.

7.2 Bertini Theorems

A natural tool in studying intersection geometries is the Bertini theorem over finite fields

[Poo04]. Informally, a dimension k smooth variety with zeta function ζ intersected with

a random hypersurface remains smooth (of one fewer dimension) with probability 1
ζ(k+1)

.

Our determinant hypersurfaces may be cast in the role of random hypersurfaces to gain in-

tuition. But the hypercube presents challenges, being zero dimensional with 2s irreducible
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components. We could take a point (trivially smooth) in the hypercube in isolation and

intersect it with our determinant hypersurface. Heuristically, with probability 1
ζ(1)

= 1
p+1

the intersection is of dimension −1, that is, empty. So we expect to get an accidental zero

with probability around 1
p+1

, consistent with our previous arguments. Beyond natural

speculation, we do not know how to argue for independence, while calling upon Bertini’s

theorem one point at a time. Instead, we will look to exponential sums.

7.3 Katz-Laumon exponential sums

Through arithmetic geometric bounds on exponential sums, we argue our determinant

hypersurfaces intersect generically with the Boolean hypercube. We show Conjecture 3.1

holds when relaxed to allow hypercubes of length (larger than 2) growing with the prime.

Quantitatively, the bounds attained fall short of proving Conjecture 3.1. Yet, the methods

are illuminating and suggest there are no arithmetic obstructions to our conjectures.

The key ingredient is the Katz-Laumon sum [KL85]. Building on Grothendieck’s foun-

dational trace formula for `−adic cohomology and Deligne’s proof of the Weil conjectures,

Katz and Laumon studied certain trigonometric sums over arbitrary high dimensional va-

rieties over finite fields, parametrized by auxiliary points. They proved square root can-

cellation without any strong geometric assumption (such as smoothness) on the variety,

for almost all choices of the parameter. Fouvry [Fou00] and Fouvry-Katz [FK01] extended

Katz and Laumon’s theorem to obtain a stratified theorem, a special case of which we

now state.

Let Θ(X1, X2, . . . , Xs) ∈ Z[X1, X2, . . . , Xs] be an integer polynomial and Θ(Fp) ⊂ Fsp
its set of Fp points. Katz-Laumon sums take the form

SΘ
h,p ,

∑
(x1,x2,...,xs)∈Θ(Fp)

ζh1x1+h2x2+...+hsxs
p (7.6)

for some parameter h = (h1, h2, . . . , hs) ∈ Fsp, where ζp is a complex primitive pth root of

unity. Their sums apply in far greater generality: it could be over an arbitrary variety

(defined by a set of polynomials), not merely hypersurfaces. Further, the sums could be

twisted by a multiplicative character, but we digress. Katz and Laumon prove that there

exists a constant CΘ (depending on Θ, s but independent of p) and a sequence of affine

integer varieties As
Z ⊃ X1 ⊃ · · · ⊃ Xj · · · ⊃ Xs (where Xj is of dimension ≤ s − j) such

that ∣∣SΘ
h,p

∣∣ ≤ CΘ p
s−1
2

+ j−1
2 (7.7)

for all h ∈ Fnp \ Xj(Fp) excluded from the Fp points on (the ≤ s − j dimensional) Xj.

If the choice of h evades Xj(Fp) (implying it is also outside X1, X2, . . . , Xj−1), then the
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bounds reflect that; providing a stratification.

A remarkable aspect of Katz-Laumon sums is that (for h outside the exceptional vari-

eties, which is for most h) they guarantee square root cancellation without any smoothness

assumptions on the variety summed over! Further, the exceptional varieties are defined

as sub-schemes of the integers, they do not depend on the choice of prime p.

7.4 Fouvry’s point counting in hypercubes

Fouvry applied Katz-Laumon sums to count points of a variety on hypercubes (Boolean

or more general). Fouvry and Katz extended this approach and proved better bounds

provided more is assumed about the geometry of the variety. We next recount their

techniques catered to our needs: dealing with our hypersurfaces Φt,c(Fp) intersecting

with the Boolean hypercube. The approach is to develop a Fourier series expansion of the

point counting function on the Boolean hypercube. The starting point is the characteristic

function

IB(w) :=
1

p

∑
u∈{0,1}

∑
h∈Fp

ζh(w−u)
p (7.8)

for the interval {0, 1} (in Fp seen as an additive group). It is indeed the characteristic

function, for we can check (noting the sum over Fp is non zero only if u = w)

IB(w) =

1, w ∈ {0, 1}

0, w ∈ Fp \ {0, 1}.

For a positive number b < p, let Φt,c(Fp, b) denote the points of Φt,c(Fp) in the hy-

percube {0, 1, . . . , b − 1}s ⊂ Fsp of side length b. The number of points in the Boolean

hypercube is

|Φt,c(Fp, 2)| =
∑

(x1,x2,...,xs)∈Φt,c(Fp)

s∏
i=1

IB(xi)

=
1

ps

∑
(x1,x2,...,xs)∈Φt,c(Fp)

s∏
i=1

∑
ui∈{0,1}

∑
hi∈Fp

ζhi(xi−ui)p

=
1

ps

∑
(h1,h2,...,hs)∈Fsp

 s∏
i=1

∑
ui∈{0,1}

ζ−hiuip

 ∑
(x1,x2,...,xs)∈Φt,c(Fp)

ζh1x1+h2x2+...+hsxs
p

=
1

ps

∑
(h1,h2,...,hs)∈Fsp

S
Φt,c

h,p

s∏
i=1

(
1 + ζ−hip

)
. (7.9)
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This expression is best viewed as a Fourier series for counting points in the intersection.

The dominant term indexed by h = (0, 0, . . . , 0) is precisely our desired generic intersection

hypothesis estimate in Equation (7.4)

1

ps
S

Φt,c

0,p

(
s∏
i=1

2

)
=

(
2

p

)s
|Φt,c(Fp)| .

The Fourier series error term in Equation (7.9)

εpt,c ,
1

ps

∑
06=h∈Fsp

S
Φt,c

h,p

s∏
i=1

(
1 + ζ−hip

)
≤ 1

ps

∑
06=h∈Fsp

∣∣∣SΦt,c

h,p

∣∣∣ s∏
i=1

(
1 + ζ−hip

)
is far more delicate and calls for the stratification (in Equation (7.7)) to expand as

εpt,c ≤
1

ps

 ∑
h∈Fsp\X1(Fp)

∣∣∣SΦt,c

h,p

∣∣∣ s∏
i=1

(
1 + ζ−hip

)
+

s∑
j=1

∑
h∈Xj(Fp)\Xj+1(Fp)

∣∣∣SΦt,c

h,p

∣∣∣ s∏
i=1

(
1 + ζ−hip

)
where the dimension of Xj is at most s− j and for h ∈ Xj(Fp) \Xj+1(Fp),∣∣∣SΦt,c

h,p

∣∣∣ = O
(
p
s−1
2

+ j−1
2

)
.

Therefore,

εpt,c =
1

ps
O

p(s−1)/2
∑

h∈Fsp\X1(Fp)

s∏
i=1

(
1 + ζ−hip

)
+

s∑
j=2

p
s+j−2

2

∑
h∈Xj(Fp)\Xj+1(Fp)

s∏
i=1

(
1 + ζ−hip

) .

One last ingredient is Fouvry’s bound [Fou00, Equation 2.6]

∑
h∈V (Fp)

s∏
i=1

(
1 + ζ−hip

)
= O(pk2s−k(log p)k) (7.10)

for any k-dimensional variety V (Fp) ⊆ Fsp. Since Φt,c is not a linear polynomial (apart

from the trivial case when t and c are singleton sets), by [Fou00, Corollary 1.4], the

exceptional variety Xs is such that Xs(Fp) = {(0, 0, . . . , 0)}, implying

εpt,c =
1

ps
O

(
p(s−1)/2ps(log p)s +

s−1∑
j=2

p
s+j−2

2 2jps−j(log p)s−j

)

= O

(
p(s−1)/2(log p)s +

2s−1 log p
√
p

)
.
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Adding up the error and the estimate,

|Φt,c(Fp, 2)| =
(

2

p

)s
|Φt,c(Fp)|+O

(
p(s−1)/2(log p)s +

2s−1 log p
√
p

)
. (7.11)

Our ultimate goal is to claim the right hand side is strictly less that 2s, which would

prove Conjecture 3.1. However, p(s−1)/2 is too large and muddies the estimate. Factors

contributing to such large error terms are: (i) weak bounds on
∣∣∣SΦt,c

h,p

∣∣∣ (for non zero h), (ii)

ignoring the signs of S
Φt,c

h,p which contribute to cancellation; and (iii) Fouvry’s cancellation

bound in Equation (7.10). Weakness in these bounds is also amplified by the form of the

Fourier series. Further, the constant from the bound on
∣∣∣SΦt,c

h,p

∣∣∣ hidden under O() depends

on Φt,c. For large enough p, this constant can be uniformly bounded depending only on

the degree of Φt,c [Fou00, § III].

The bounds are good enough if the hypercube side length is extended to b > 2, since

Fouvry [Fou00] shows for every Φt,c, for large enough p,

|Φt,c(Fp, b)| =
(
b

p

)s
|Φt,c(Fp)|+O

(
p(s−1)/2(log p)s +

bs−1 log p
√
p

)
. (7.12)

From the Schwartz-Zippel lemma bound Equation (7.5) on |Φt,c(Fp)| ,

|Φt,c(Fp, b)| ≤
ns2s

p
+O

(
p(s−1)/2(log p)s +

bs−1 log p
√
p

)
.

For b � p3/4, |Φt,c(Fp, b)| � bs. Fouvry’s theorem applies to arbitrary varieties and the

“for large enough p” clause is primarily in place to ensure the defining polynomials do not

identically vanish modulo p. To us, Φp
t,c is non zero, so the bounds should hold uniformly

for all p. Therefore, with some work to ensure uniformity of bounds, these methods

prove Conjecture 7.2 when relaxed to Boolean cubes of length growing b� p3/4.

We believe the large error term in Equation (7.11) and Fouvry’s theorem Equa-

tion (7.12) to be artefacts of proof techniques and not intrinsic to the quantities. The

primary lesson we advocate from these arithemtic geometric techniques is qualitative and

not quantitative. There should be no arithmetic obstruction to equidistribution of the

zeroes of the hypersurfaces defined by our determinant polynomials in the Boolean hy-

percube, as claimed in the strong form of our conjecture. To paraphrase Fouvry and

Katz [FK01]: “We are concerned with the equidistribution on points of V (Fp) in small

boxes, where V is a closed subscheme of As
Z want to have a precise evaluation of |V (Fp, b)|

where V (Fp, b) is the set of points of V (Fp) with all their coordinates in {0, 1, . . . , b− 1}.
If some natural hypothesis concerning V are satisfied, heuristic considerations lead to the

estimation

|V (Fp, b)| ≈ |V (Fp)|
(
b

p

)s
(7.13)
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for p and b tending to ∞. The question is to find an inequality between p and b to en-

sure the uniformity of Equation (7.13)”. The natural hypothesis refers to V not being

contained in a hyperplane, which is easy to ensure in our context. Our strong form Con-

jecture 7.2 is akin to the same heuristic holding for the Boolean hypercube (b = 2), a

prime p a large enough polynomial in n and a dimension s big enough to ensure 2s � p.
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