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Abstract

Locally decodable codes (LDCs) are error-correcting codes C : Σk → Σn that admit a local decoding
algorithm that recovers each individual bit of the message by querying only a few bits from a noisy
codeword. An important question in this line of research is to understand the optimal trade-off between
the query complexity of LDCs and their block length. Despite importance of these objects, the best
known constructions of constant query LDCs have super-polynomial length, and there is a significant gap
between the best constructions and the known lower bounds in terms of the block length.

For many applications it suffices to consider the weaker notion of relaxed LDCs (RLDCs), which
allows the local decoding algorithm to abort if by querying a few bits it detects that the input is not a
codeword. This relaxation turned out to allow decoding algorithms with constant query complexity for
codes with almost linear length. Specifically, [Ben+06] constructed an O(q)-query RLDC that encodes a
message of length k using a codeword of block length n = O(k1+1/

√
q).

In this work we improve the parameters of [Ben+06] by constructing an O(q)-query RLDC that
encodes a message of length k using a codeword of block length O(k1+1/q). This construction matches
(up to a multiplicative constant factor) the lower bounds of [KT00; Woo07] for constant query LDCs, thus
making progress toward understanding the gap between LDCs and RLDCs in the constant query regime.

In fact, our construction extends to the stronger notion of relaxed locally correctable codes (RLCCs),
introduced in [GRR18], where given a noisy codeword the correcting algorithm either recovers each
individual bit of the codeword by only reading a small part of the input, or aborts if the input is detected
to be corrupt.

Keywords: algorithmic coding theory; consistency test using random walk; reed-muller code; relaxed locally
decodable codes; relaxed locally correctable codes

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 142 (2020)



Contents
1 Introduction 3

1.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Proof overview 5
2.1 CTRW on Reed-Muller codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 PCPs of proximity and composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Preliminaries 9
3.1 Basic coding theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Reed-Muller codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Relaxed locally correctable codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Canonical PCPs of proximity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Consistency test using random walk on the Reed-Muller code 14

5 PCPs of proximity 20

6 Composition theorem and the local correcting algorithm 21
6.1 Composition theorem using CTRW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2 Constructing the composed code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.3 Local correction algorithm for the Reed-Muller part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.4 Local correction algorithm for the proof part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7 Concluding remarks and open problems 26

References 28

2



1 Introduction

Locally decodable codes (LDCs) are error-correcting codes that admit a decoding algorithm that recovers
each specific symbol of the message by reading a small number of locations in a possibly corrupted codeword.
More precisely, a locally decodable code C : Fk → Fn with local decoding radius τ ∈ [0, 1] is an error-
correcting code that admits a local decoding algorithm DC , such that given an index i ∈ [k] and a corrupted
word w ∈ Fn which is τ -close to an encoding of some message C(M), reads a small number of symbols
from w, and outputs Mi with high probability. Similarly, we have the notion of locally correctable codes
(LCCs), which are error-correcting codes that not only admit a local algorithm that decode each symbol of the
message, but are also required to correct an arbitrary symbol from the entire codeword. Locally decodable
and locally correctable codes have many applications in different areas of theoretical computer science, such
as complexity theory, coding theory, property testing, cryptography, and construction of probabilistically
checkable proof systems. For details, see the surveys [Yek12; KS17] and the references within.

Despite the importance of LDCs and LCCs, and the extensive amount of research studying these objects,
the best known construction of constant query LDCs has super-polynomial length n = exp(exp(logΩ(1)(k))),
which is achieved by the highly non-trivial constructions of [Yek08] and [Efr12]. For constant query LCCs,
the best known constructions are of exponential length, which can be achieved by some parameterization of
Reed-Muller codes. It is important to note that there is huge gap between the best known lower bounds for
the length of constant query LDCs and the length of best known constructions. Currently, the best known
lower bound on the length of LDCs says that for q ≥ 3 it must be at least k1+Ω(1/q), where q stands for the
query complexity of the local decoder. See [KT00; Woo07] for the best general lower bounds for constant
query LDCs.

Motivated by applications to probabilistically checkable proofs (PCPs), Ben-Sasson, Goldreich, Harsha,
Sudan, and Vadhan introduced in [Ben+06] the notion of relaxed locally decodable codes (RLDCs). Informally
speaking, a relaxed locally decodable code is an error-correcting code which allows the local decoding
algorithm to abort if the input codeword is corrupt, but does not allow it to err with high probability. In
particular, the decoding algorithm should always output correct symbol, if the given word is not corrupted.
Formally, a code C : Fk → Fn is an RLDC with decoding radius τ ∈ [0, 1] if it admits a relaxed local
decoding algorithm DC which given an index i ∈ [k] and a possibly corrupted codeword w ∈ Fn, makes a
small number of queries to w, and satisfies the following properties.

Completeness: If w = C(M) for some M ∈ Fk, then DwC(i) should output Mi.

Relaxed decoding: If w is τ -close to some codeword C(M) ∈ C, then DwC(i) should output either Mi or a
special abort symbol with probability at least 2/3.

This relaxation turns out to be very helpful in terms of constructing RLDCs with better block length. Indeed,
[Ben+06] constructed of a q-query RLDC with block length n = k1+O(1/

√
q).

The notion of relaxed LCCs (RLCCs), recently introduced in [GRR18], naturally extends the notion of
RLDCs. These are error-correcting codes that admit a correcting algorithm that is required to correct every
symbol of the codeword, but is allowed to abort if noticing that the given word is corrupt. More formally,
the local correcting algorithm gets an index i ∈ [n], and a (possibly corrupted) word w ∈ Fn, makes a small
number of queries to w, and satisfies the following properties.

Completeness: If w ∈ C, then DwC(i) should output wi.

Relaxed correcting: If w is τ -close to some codeword c∗ ∈ C, then DwC(i) should output either c∗i or a
special abort symbol with probability at least 2/3.
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Note that if the code C is systematic, i.e., the encoding of any message M ∈ Fk contains M in its first k
symbols, then the notion of RLCC is stronger than RLDC.

Recently, building on the ideas from [GRR18], [CGS20] constructed RLCCs whose block length matches
the RLDC construction of [Ben+06]. For the lower bounds, the only result we are aware of is the work of
Gur and Lachish [GL20], who proved that for any RLDC the block length must be at least n = k1+Ω(1/q2).

Given the gap between the best constructions and the known lower bounds, it is natural to ask the
following question:

What is the best possible trade-off between the query complexity and the block length of an RLDC?

In particular, [Ben+06] asked whether it is possible to obtain a q-query RLDC whose block length is
strictly smaller than the best known lower bound on the length of LDCs. A positive answer to their question
would show a separation between the two notions, thus proving that the relaxation is strict. See paragraph
Open Problem in the end of Section 4.2 of [Ben+06].

In this work we make progress on this problem by constructing a relaxed locally decodable code
C : FK → FN with query complexity O(q) and block length K1+O(1/q). In fact, our construction gives the
stronger notion of a relaxed locally correctable code.

Theorem 1 (Main Theorem). For every q ∈ N there exists an O(q)-query relaxed locally correctable code
C : {0, 1}K → {0, 1}N with constant relative distance and constant decoding radius, such that the block
length of C is

N = qO(q2) ·K1+O(1/q) .

Therefore, our construction improves the parameters of the O(q)-query RLDC construction of [Ben+06]
with block length N = K1+O(

√
1/q), and matches (up to a multiplicative factor in q) the lower bound of

Ω(K
1+ 1
dq/2e−1 ) for the block length of q-query LDCs [KT00; Woo07].

Remark 1.1. In this paper we prove Theorem 1 for a code C : FK → FN over a large alphabet. Specifically,
we show a code C : FK → FN satisfying Theorem 1, for a finite field F satisfying |F| ≥ cq ·K1/q, for some
cq ∈ N that depends only on q.

Using the techniques from [CGS20] it is not difficult to obtain an RLCC over the binary alphabet with
almost the same block length. Indeed, this can be done by concatenating our code over large alphabet with an
arbitrary binary code with constant rate and constant relative distance. See Section 7 for details.

1.1 Related works

RLDC and RLCC constructions: Relaxed locally decodable codes, were first introduced by [Ben+06],
motivated by applications to constructing short PCPs. Their construction has a block length equal to
N = K1+O(1/

√
q). Since that work, there were no constructions with better block length, in the constant query

complexity regime . Recently, [GRR18] introduced the related notion of relaxed locally correctable codes
(RLCCs), and constructed q-query RLCCs with block length N = poly(K). Then, [CGS20] constructed
relaxed locally correctable codes with block length matching that of [Ben+06] (up to a multiplicative constant
factor q). The construction of [CGS20] had two main components, that we also use in the current work.

Consistency test using random walk (CTRW): Informally, given a word w, and a coordinate i we wish
to correct, CTRW samples a sequence of constraints C1, C2, . . . , Ct on w, such that the domains of
Ci and Ci+1 intersect, with the guarantee that if w is close to some codeword c∗ ∈ C, but wi 6= c∗i ,
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then with high probability w will be far from satisfying at least one of the constraints. In other words,
CTRW performs a random walk on the constraints graph and checks if w is consistent with c∗ in the
i’th coordinate. We introduce this notion in detail in Section 2.1, and prove that the Reed-Muller code
admits a CTRW in Section 4.

Correctable canonical PCPPs (ccPCPP): These are PCPP systems for some specified language L satisfy-
ing the following properties: (i) for each w ∈ L there is a unique proof π(w) that satisfies the verifier
with probability 1, (ii) the verifier accepts with high probability only pairs (x, π) that are close to some
(w, π(w)) for some w ∈ L, i.e., only the pairs where x is close to some w ∈ L, and π is close to π(w),
and (iii) the set {w ◦ πw : w ∈ L} is an RLCC. Canonical proofs of proximity have been studies
in [DGG18; Par20]. We elaborate on these constructions in Section 5.

Lower bounds: For lower bounds, the only bound we are aware of is that of [GL20], who proved that any

q-query relaxed locally decodable code must have a block length N ≥ K1+Ω( 1
q2

).
For the strict notion of locally decodable codes, it is known by [KT00; Woo07] that for q ≥ 3 any

q-query LDC must have block length N ≥ Ω(K
1+ 1
dq/2e−1 ). For q = 3 a slightly stronger bound of

N ≥ Ω(K2/ log(K)) is known, and furthermore, for 3-query linear LDC the block length must be N ≥
Ω(K2/ log log(K)) [Woo07]. For q = 2 [KW03] proved an exponential lower bound of N ≥ exp(Ω(K)).
See also [Des+02; Gol+02; Oba02; WW05; Woo10] for more related work on lower bounds for LDCs.

1.2 Organization

The rest of the paper is organized as follows. In Section 2, we informally discuss the construction and the
correcting algorithm. In this discussion we focus on decoding the symbols corresponding to the message,
i.e., on showing that the code is an RLDC. Section 3 introduces the formal definitions and notations we will
use in the proof of Theorem 1. We present the notion of consistency test using random walk in Section 4,
and prove that the Reed-Muller code admits such test. In Section 5 we present the PCPPs we will use in our
construction, and state the properties needed for the correcting algorithm. In Section 6 we prove Theorem 1
by proving a composition theorem, which combines the instantiation of the Reed-Muller code with PCPPs
from the previous sections.

2 Proof overview

In this section we informally describe our code construction. Roughly speaking, our construction consists of
two parts:

The Reed-Muller encoding: Given a message M ∈ FK , its Reed-Muller encoding is the evaluation of an
m-variate polynomial of degree at most d over F, whose coefficients are determined by the message
we wish to encode.

Proofs of proximity: The second part of the encoding consists of the concatenation of PCPPs, each claiming
that a certain restriction of the first part agrees with some Reed-Muller codeword.

Specifically, given a message M ∈ FK , we first encode it using the Reed-Muller encoding RMF(m, d),
where m roughly corresponds to the query complexity of our RLDC, and the field is large enough so that the
distance of the Reed-Muller code, which is equal to 1− d

|F| , is some constant, say 3/4. That is, the first part of
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the encoding corresponds to an evaluation of some polynomial f : Fm → F of degree at most d. The second
part of the encoding consists of a sequence of PCPPs claiming that the restrictions of a the Reed-Muller part
to some carefully chosen planes in Fm are evaluations of some low-degree polynomial.

The planes we choose are of the form P
~a,~h,~h′ = {~a + t · ~h + s · ~h′ : t, s ∈ F}, where ~a ∈ Fm, and

~h,~h′ ∈ Hm for some H subfield of F. We will call such planes H-planes. In order to obtain the RLDC with
the desired parameters, we choose the field H so that F is the extension of H of degree [F : H] = m. It will be
convenient to think of H as a field and think of F as a vector space of H of dimension m (augmented with the
multiplicative structure on F). Indeed, the saving in the block length of the RLDC we obtain crucially relies
on the fact that we ask for PCPPs for only a small collection of planes, and not all planes in Fm. The actual
constraints required to be certified by the PCPPs are slightly more complicated, and we describe the next.

The constraints of the first type correspond to H-planes P and points ~x ∈ P . For each such pair (P, ~x)
the code will contain a PCPP certifying that (i) the restriction of the Reed-Muller part to P is close to an
evaluation of some polynomial of total degree at most d, (ii) and furthermore, this polynomial agrees with the
value of the Reed-Muller part on ~x. In order to define it formally, we introduce the following notation.

Notation 2.1. Let F be a finite field of size n. Fix f : Fm → F, a plane P in Fm, and a point ~x ∈ P . Denote
f

(~x)
|P = f|P ◦ (f(~x))n

2
. That is, the length of f (~x)

|P is 2 · n2, and it consists of f|P concatenated with n2

repetitions of f(~x).

Given the notation above, if f is the first part of the codeword, corresponding to the Reed-Muller encoding
of the message, then the PCPP for the pair (P, ~x) is expected to be the proof of proximity claiming that f (~x)

|P
is close to the language

RM
(~x)
|P = {Q ◦ (Q(~x))(n2) : Q is the evaluation of a degree-d polynomial on P} ⊆ F2n2

. (1)

Note that by repeating the symbol Q(~x) for n2 times, the definition indeed puts weight 1/2 on the constraint
that the input f|P is close to some low-degree polynomial Q, and puts weight 1/2 of the constraint f(~x) =
Q(~x). In particular, if f|P is δ-close to some bivariate low degree polynomial Q for some small δ > 0, but
f(~x) 6= Q(~x), then f|P is at least (1− d

|F| − δ)/2-far from any bivariate low degree polynomial on P .
The constraints of second type correspond to H-planes P and lines ` ⊆ P . For each such pair (P, `)

the code will contain a PCPP certifying that (i) the restriction of the Reed-Muller part to P is close to an
evaluation of some polynomial of total degree at most d, (ii) and furthermore, this polynomial is close to f|`.
(In particular, this implies that f|` is close to some low-degree polynomial.)

Next, we introduce the notation analogous to Notation 2.1 replacing the points with lines.

Notation 2.2. Let F be a finite field of size n. Fix f : Fm → F, a plane P in Fm, and a line ` ⊆ P . Denote by
f

(`)
|P = f|P ◦ (f|`)

n. That is, the length of f (`)
|P is 2 · n2, and it consists of f|P concatenated with n repetitions

of f|`.

If f is the Reed-Muller part of the codeword, corresponding to the Reed-Muller encoding of the message,
then the PCPP for the pair (P, `) is expected to be the proof of proximity claiming that f (`)

|P is close to the
language

RM
(`)
|P = {Q ◦ (Q|`)

n : Q is the evaluation of some degree-d polynomial on P} ⊆ F2n2
. (2)

Again, similarly to the first part, repeating the evaluation of Q|` for n times puts weight 1/2 on the constraint
that the input f|P is a close to some low-degree polynomial Q, and puts weight 1/2 of the constraint f|` is
close to Q|`.
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With the proofs specified above, we now sketch the local correcting algorithm for the code. Below we
only focus on correcting symbols from the Reed-Muller part. Correcting the symbols from the PCPP part
follows a rather straightforward adaptation of the techniques from [CGS20], and we omit them from the
overview.

Given a word w ∈ FN and an index i ∈ [N ] of w corresponding to the Reed-Muller part of the codeword,
let f : Fm → F be the Reed-Muller part of w, and let ~x ∈ Fm be the input to f corresponding to the index i.
The local decoder works in two steps.

Consistency test using random walk: In the first step the correcting algorithm invokes a procedure we call
consistency test using a random walk (CTRW) for the Reed-Muller code. This step creates a sequence
of H-planes of length (m+ 1), where each plane defines a constraint checking that the restriction of w
to the plane is low-degree. Hence, we get m+ 1 constraints, each depending on n2 symbols.

Composition using proofs of proximity: Then, instead of reading the entire plane for each constraint, we
use the PCPPs from the second part of the codeword to reduce the arity of each constraint to O(1),
thus reducing the total query complexity of the correcting algorithm to q = O(m). That is, for each
constraint we invoke the corresponding PCPP verifier to check that the restrictions of f to each of these
planes is (close to) a low-degree polynomial. If at least one of the verifiers rejects, then the word f
must be corrupt, and hence the correcting algorithm returns ⊥. Otherwise, if all the PCPP verifiers
accept, the correcting algorithm returns f(~x).

In particular, if f is a correct Reed-Muller encoding, then the algorithm will always return f(~x), and the
main part of the analysis is to show that if f is close to some Q∗ ∈ RMF(m, d), but f(~x) 6= Q∗(~x), then the
correcting algorithm catches an inconsistency, and returns ⊥ with some constant probability. See Section 6.3
for details.

The key step in the analysis says that if f is close to some codeword Q∗ ∈ RM but f(~x) 6= Q∗(~x), then
with high probability f will be far from a low degree polynomial on at least one of these planes, where “far”
corresponds to the notion of distances defined by the languages RM(~x)

|P and RM
(`)
|P . In particular, if on one

of the planes f is far from the corresponding language, then the PCPP verifier will catch this with constant
probability, thus causing the correcting algorithm to return ⊥. We discuss this part in detail below.

It is important to emphasize that the main focus of this work is constructing a correcting algorithm for
the Reed-Muller part. Using the techniques developed in [CGS20], it is rather straightforward to design the
algorithm for correcting symbols from the PCPPs part of the code. See Section 6.4 for details.

2.1 CTRW on Reed-Muller codes

Below we define the notion of consistency test using random walk (CTRW) for the Reed-Muller code. This
notion is a slight modification of the notion originally defined in [CGS20] for general codes. In this paper we
define it only for the Reed-Muller code. Given a word f : Fm → F and some ~x ∈ Fm, the goal of the test is
to make sure that f(~x) is consistent with the codeword of Reed-Muller code closest to f . [CGS20] describe a
CTRW for the tensor power C⊗m of an arbitrary codes C with good distance (e.g., Reed-Solomon). The
CTRW they describe works by starting from the point we wish to correct, and choosing an axis-parallel line
`1 containing the starting point. The test continues by choosing a sequence of random axis-parallel lines
`2, `3, . . . `t, such that each `i intersects the previous one, `i−1, until reaching a uniformly random coordinate
of the tensor code. That is, the length of the sequence t denotes the mixing time of the corresponding random
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walk. The predicates are defined in the natural way; namely, the test expects to see a codeword of C on each
line it reads.

In this work, we present a CTRW for the Reed-Muller code, which is a variant of the CTRW described
above. The main differences compared to the description above are that (i) the test chooses a sequence
of planes P1,P3, . . .Pt (and not lines), (ii) and every two planes intersect on a line (and not on a point).
Roughly speaking, the algorithm works as follows.

1. Given a point ~x ∈ Fm the test picks a uniformly random H-plane P0 containing ~x.

2. Given P0, the test chooses a random line `1 ⊆ P0, and then chooses another random H-plane P1 ⊆ Fm
containing `1.

3. Given P1, the test chooses a random line `2 ⊆ P1, and then chooses another random H-plane P2 ⊆ Fm
containing `2.

4. The algorithm continues for some predefined number of iterations, choosing P0,P1,P2, . . .Pt. Roughly
speaking, the number of iterations is equal to the mixing time of the corresponding Markov chain. More
specifically, the process continues until a uniformly random point in Pt is close to a uniform point in Fm.

5. The constraints defined for each Pi are the natural constraints; namely checking that the restriction of f to
Pi is a polynomial of degree at most d.

One of the important parameters, directly affecting the query complexity of our construction is the mixing
time of the random walk. Indeed, as explained above, the query complexity of our RLDC is proportional to
the mixing time of the random walk. We prove that if [F : H] = m, then the mixing time is upper bounded by
m. In order to prove this we use the following claim, saying that if F is the field extension of H of degree
m, and ~h1, . . . ,~hm ∈ Hm and t1, . . . , tm ∈ F are sampled uniformly, independently from each other, then∑m

i=1 ti · ~hi is close to a uniformly random point in Fm. See Claim 3.5 for the exact statement.

As explained above, the key step of the analysis is to prove that if f is close to some codeword Q∗ ∈ RM
but f(~x) 6= Q∗(~x), then with high probability at least one of the predicates defined will be violated.
Specifically, we prove that with high probability the violation will be in the following strong sense.

Theorem 2.3 (informal, see Theorem 4.3). If f is close to some codeword Q∗ ∈ RM but f(~x) 6= Q∗(~x),
then with high probability

1. either f (~x)
|P0

is Ω(1)-far from RM
(~x)
|P0

,

2. or f (`i)
|Pi

is Ω(1)-far from RM
(`i)
|Pi

for some i ∈ [m].

Indeed, this strong notion of violation allows us to use the proofs of proximity in order to reduce the
query complexity to O(1) queries for each i ∈ [m]. We discuss proofs of proximity next.

2.2 PCPs of proximity and composition

The second building block we use in this work is the notion of probabilistic checkable proofs of proximity
(PCPPs). PCPPs were first introduced in [Ben+06] and [DR04]. Informally speaking, a PCPP verifier for a
language L, gets an oracle access to an input x and a proof π claiming that x is close to some element of L.
The verifier queries x and π in some small number of (random) locations, and decides whether to accept or
reject. The completeness and soundness properties of a PCPP are as follows.
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Completeness: If x ∈ L, then there exists a proof causing the verifier to accept with probability 1.

Soundness: If x is far from L, then no proof can make the verifier to accept with probability more than 1/2.

In fact, we will use the slightly stronger notion of canonical PCPP (cPCPP) systems. These are PCPP
systems satisfying the following completeness and soundness properties. For completeness, we demand that
for each w in the language there is a unique canonical proof π(w) that causes the verifier to accept with
probability 1. For soundness, the demand is that the only pairs (x, π) that are accepted by the verifier with
high probability are those where x is close to some w ∈ L and π is close to π(w). Such proof system have
been studies in [DGG18; Par20], who proved that such proof systems exist for every language in P .

Furthermore, for our purposes we will demand a stronger notion of correctable canonical PCPP systems
(ccPCPP). These are canonical PCPP systems where the set {w ◦ π∗(w) : w ∈ L} is a q-query RLCC for
some parameter q, with π∗(w) denoting the canonical proof for w ∈ L. It was shown in [CGS20] how to
construct ccPCPP by combining a cPCPP system with any systematic RLCC. Informally speaking, for every
w ∈ L, and its canonical proof π(w), we define π∗(w) by encoding w ◦ π(w) using a systematic RLCC. The
verifier for the new proof system is defined in a straightforward manner. See [CGS20] for details.

The PCPPs we use throughout this work, are the proofs of two types, certifying that

1. f (~x)
|P is close to RM

(~x)
|P for some plane P and some ~x ∈ P , and

2. f (`)
|P is close to RM

(`)
|P for some plane P and some line ` ⊆ P .

Indeed, it is easy to see that the first type of proofs checks that (i) the restriction of f to P is close to an
evaluation of some polynomial Q∗ of total degree at most d, (ii) and f(~x) = Q∗(~x). Similarly, the second
type proof certifies that (i) the restriction of f to P is close to an evaluation of some polynomial Q∗ of total
degree at most d, (ii) and f|` is close to Q∗|`.

These notions of distance go together well with the guarantees we have for CTRW in Theorem 2.3.
This allows us to compose CTRW with the PCPPs to obtain a correcting algorithm with query complexity
q = O(m). Informally speaking, the composition theorem works as follows. We first run the CTRW to obtain
a collection of m+ 1 constraints on the planes P0,P1, . . . ,Pm. By Theorem 2.3, we have the guarantee that
with high probability either f (~x)

|P0
is Ω(1)-far from RM

(~x)
|P0

, or f (`i)
|Pi

is Ω(1)-far from RM
(`i)
|Pi

for some i ∈ [m].

Then, instead of actually reading the values of f on all these planes, we run the PCPP verifier on f (~x)
|P0

to

check that it is close to RM
(~x)
|P0

, and running the PCPP verifier on each of the f (`i)
|Pi

to check that they are

close to RM
(`i)
|Pi

. Each execution of the PCPP verifier makes O(1) queries to f and to the proof, and thus the

total query complexity will be indeed O(m). As for soundness, if f (~x)
|P0

is Ω(1)-far from RM
(~x)
|P0

, or f (`i)
|Pi

is

Ω(1)-far from RM
(`i)
|Pi

for some i ∈ [m], then the corresponding verifier will notice an inconsistency with
constant probability, causing the decoder to output ⊥.

We discuss proofs of proximity in Section 5. The composition is discussed in Section 6.

3 Preliminaries

We begin with standard notation. The relative distance between two strings x, y ∈ Σn is defined as

dist(x, y) :=
|{i ∈ [n] : xi 6= yi}|

n
.
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If dist(x, y) ≤ ε, we say that x is ε-close to y; otherwise we say that x is ε-far from y. For a non-empty set
S ⊆ Σn define the distance of x from S as dist(x, S) := miny∈S dist(x, y). If dist(x, S) ≤ ε, we say that x
is ε-close to S; otherwise we say that x is ε-far from S.

We will also need a more general notion of a distance, allowing different coordinates to have different
weight. In particular, we will need the distance that gives constant weight to a particular subset of the
coordinates, and spreads the rest of the weight uniformly between all coordinates.

Definition 3.1. Fix n ∈ N and an alphabet Σ. For a set A ⊆ [n] define the distance distA between two
strings x, y ∈ Σn as

distA(x, y) =
|{i ∈ A : xi 6= yi}|

2|A|
+
|{i ∈ [n] : xi 6= yi}|

2n
.

In particular, if x differs from y on δ|A| coordinates in A, then distA(x, y) is at least δ2 + δ|A|
2n .

We define distA between a string x ∈ Σn and a set S ⊆ Σn as

distA(x, S) = min
y∈S

distA(x, y) .

Remark 3.2. This definition generalizes the definition of [CGS20] of distk for a coordinate k ∈ [n]. Indeed,
the notion of distk for a coordinate k ∈ [n] corresponds to the singleton set A = {k}.

When the set A is a singleton A = {k} we will write distk(x, y) to denote dist{k}(x, y), and we will
write distk(x, S) to denote dist{k}(x, S).

3.1 Basic coding theory

Let k < n be positive integers, and let Σ be an alphabet. An error correcting codeC : Σk → Σn is an injective
mapping from messages of length k over the alphabet Σ to codewords of length n. The parameter k is called
the message length of the code, and n is its block length (which we view as a function of k). The rate of the
code is defined as k/n, and the relative distance of the code is defined as minM 6=M ′∈Σk dist(C(M), C(M ′)).
We sometimes abuse the notation and use C to denote the set of all of its codewords, i.e., identify the code
with {C(M) : M ∈ Σk} ⊆ Σn.
Linear codes. Let F be a finite field. A code C : Fk → Fn is linear if it is an F-linear map from Fk
to Fn. In this case the set of codewords C is a subspace of Fn, and the message length of C is also the
dimension of the subspace. It is a standard fact that for any linear code C, the relative distance of C is equal
to minx∈C\{0n} dist(x, 0n).

3.2 Reed-Muller codes

Reed-Muller codes [Mul54] are among the most well studied error correcting codes, with many theoretical
and practical applications in different areas of computer science and information theory. Let F be a finite
field of order |F| = n, and let d and m be integers. The code RMF(m, d) is the linear code whose codewords
are the evaluations of polynomials f : Fm → F of total degree at most d over F. We will allow ourselves to
write RM(m, d), since the field is fixed throughout the paper. We will also sometimes omit the parameters m
and d, and simply write RM, when the parameters are clear from the context.

In this paper we consider the setting of parameters where d < |F| = n. It is well known that for d < n the
relative distance of RMF(m, d) is 1− d

n . The dimension of RM can be computed by counting the number of

10



monomials of total degree at most d. For d < n the number of such monomials is
(
d+m
m

)
≥ (d+m

m )m > ( dm)m.

Since the length of each codeword is nm, it follows that the rate of the code is (d+m
d )
nm > ( d

mn)m.

Definition 3.3. For ~x, ~y ∈ Fm denote by `~x,~y the line

`~x,~y = {~x+ t · ~y : t ∈ F} .

Also, for ~x, ~y, ~z ∈ Fm denote by P~x,~y,~z the plane

P~x,~y,~z = {~x+ t · ~y + s · ~z : t, s ∈ F} .

An important property of RM(m, d) (and multivariate low-degree polynomials, in general) that we use
throughout this work is that their restrictions to lines and planes in Fm are also polynomials of degree at most
d. In other words, if f ∈ RM(m, d), and ` is a line (P is a plane) in Fm, then the restriction of f to ` (or to
P) is a codeword of the Reed-Muller code of the same degree and lower dimension.

The following lemma is a standard lemma in the PCP literature, saying that random lines sample well the
space Fm.

Lemma 3.4. Let F be a finite field. For any subset A ⊆ F2 of density µ = |A|/|F2|, and for any ε > 0 it
holds that

Pr
~x∈F2,~y∈F2

[∣∣∣∣ |`~x,~y ∩A||`~x,~y|
− µ

∣∣∣∣ > ε

]
≤ 1

|F|
· µ
ε2

.

Proof. For each t ∈ F, let Xt be an indicator random variable for the event ~x+ t · ~y ∈ A. Since each point
is a uniform point in the plane, we have E[Xt] = Pr[Xt = 1] = µ, Therefore, denoting X =

∑
t∈FXt, it

follows that E[`~x,~y ∩A] = E[X] = µ · |F|.
We are interested in bounding the deviation of X =

∑
tXt from its expectation. We do it by bounding

the variance of X . Note first that Var[Xt] = µ− µ2 ≤ µ. By the pairwise independence of the points on a
line, it follows that Var[X] =

∑
t∈FVar[Xt] ≤ µ · |F|. Therefore, by applying Chebyshev’s inequality we

get

Pr

[∣∣∣∣ |`~x,~y ∩A||`~x,~y|
− µ

∣∣∣∣ > ε

]
= Pr [|X − µ|F|| > ε|F|] ≤ Var[X]

(ε|F|)2
≤ µ

|F| · ε2
,

as required.

The following claim will be an important step in our analysis.

Claim 3.5. Let m ∈ N be a parameter, let H be a finite field, and let F be its extension of degree m. Let
~h1, . . . ,~hm ∈ Hm and t1, . . . , tm ∈ F be chosen independently uniformly at random from their domains.

Then for any set A ⊆ Fm of size |A| = α · |Fm| it holds that

Pr

[
m∑
i=1

ti · ~hi ∈ A

]
≤ α+ 2/H .

Proof. In order to prove the claim let us introduce some notation. We write each element in F as an m-
dimensional row vector over H. Also, we will represent an element ~x ∈ Fm as a m ×m matrix over H,
where the i’th row represents ~xi ∈ F, the i’th coordinate of ~x. Using this notation we need to prove that
the random matrix corresponding to the sum

∑m
i=1 ti · ~hi is close to a random matrix with entries chosen

uniformly from H independently from each other.

11



Using the notation above, write each ti ∈ F as a row vector (ti,1, . . . , ti,m) ∈ Hm. Observe that for any
vector ~hi = (~hi,1, . . . ,~hi,m)T ∈ Hm we can represent ti · ~hi ∈ Fm as the outer product

ti · ~hi =


ti,1 · ~hi,1 ti,2 · ~hi,1 . . . ti,m · ~hi,1
ti,1 · ~hi,2 ti,2 · ~hi,2 . . . ti,m · ~hi,2

...
...

. . .
...

ti,1 · ~hi,m ti,2 · ~hi,m . . . ti,m · ~hi,m

 =


~hi,1
~hi,2

...
~hi,m

 · [ti,1 ti,2 . . . ti,m
]

Therefore, the sum
∑m

i=1 ti · ~hi is represented as

m∑
i=1


~hi,1
~hi,2

...
~hi,m

 · [ti,1 ti,2 . . . ti,m
]

= H · T ,

where H is the m×m matrix with Hi,j = ~hj,i, and T is the m×m matrix with Ti,j = ti,j . That is, the sum∑m
i=1 ti · ~hi is represented as a product of two uniformly random matrices over H.
Next we show that if H,T ∈ Hm×m are chosen uniformly at random and independently, then for any

collection A of matrices of size |A| = α · |Hm2 | it holds that Pr[H · T ∈ A] ≤ α+ 2/H. Indeed,

Pr[H · T ∈ A] ≤ Pr[H · T ∈ A|H is invertible] + Pr[H is not invertible] .

If H is invertible, then for a uniformly random T ∈ Hm×m the probability that H · T ∈ A is exactly α, and
it is easy to check that Pr[H is not invertible] =

∑m
i=1

1
|H|i ≤

2
|H| .

3.3 Relaxed locally correctable codes

Following the discussion in the introduction, we provide a formal definition of relaxed LCCs, and state some
related basic facts and known results.

Definition 3.6 (Relaxed LCC). Let C : ΣK → ΣN be an error correcting code with relative distance δ, and
let q ∈ N, τcor ∈ (0, δ/2),and ε ∈ (0, 1] be parameters. Let D be a randomized algorithm that gets an
oracle access to an input w ∈ Σn and an explicit access to an index i ∈ [n]. We say that D is a q-query
relaxed local correction algorithm for C with correction radius τcor and soundness ε if for all inputs the
algorithm D reads explicitly the coordinate i ∈ [N ], reads at most q (random) coordinates in w, and satisfies
the following conditions.

1. For every w ∈ C, and every coordinate i ∈ [N ] it holds that Pr[Dw(i) = wi] = 1.

2. For every w ∈ Σn that is τcor-close to some codeword c∗ ∈ C and every coordinate i ∈ [N ] it holds that
Pr[Dw(i) ∈ {c∗i ,⊥}] ≥ ε, where ⊥ 6∈ Σ is a special abort symbol.

The code C is said to be a (τcor, ε)-relaxed locally correctable code (RLCC) with query complexity q if it
admits a q-query relaxed local correction algorithm with correction radius τcor and soundness ε.

Observation 3.7. Note that for systematic codes it is clear from Definition 3.6 that RLCC is a stronger
notion than RLDC, as it allows the local correction algorithm not only to decode each symbol of the message,
but also each symbol of the codeword itself. That is, any systematic RLCC is also an RLDC with the same
parameters.
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Finally, we recall the following theorem of Chiesa, Gur, and Shinkar [CGS20].

Theorem 3.8 ([CGS20]). For any finite field F, and parametersK, q ∈ N, there exists an explicit construction
of a systematic linear code CCGS : FK → FN with block length N = qO(

√
q) ·K1+O(1/

√
q) and constant

relative distance, that is a q-query RLCC with constant correction radius τcor = Ω(1), and constant soundness
ε = Ω(1).

3.4 Canonical PCPs of proximity

Next we define the notions of probabilistically checkable proofs of proximity, and the variants that we will
need in this paper.

Definition 3.9 (PCP of proximity). A q-query PCP of proximity (PCPP) verifier for a language L ⊆ Σ∗

with soundness εPCPP with respect the to proximity parameter ρ, is a polynomial-time randomized algorithm
V that receives oracle access to an input x ∈ Σn and a proof π. The verifier makes at most q queries to x ◦ π
and has the following properties:

Completeness: For every x ∈ L there exists a proof π such that Pr[V x,π = ACCEPT ] = 1.

Soundness: If x is ρ-far from L, then for every proof π it holds that Pr[V x,π = ACCEPT ] ≤ εPCPP .

A canonical PCPP (cPCPP) is a PCPP in which every instance in the language has a canonical accepting
proof. Formally, a canonical PCPP is defined as follows.

Definition 3.10 (Canonical PCPP). A q-query canonical PCPP verifier for a language L ⊆ Σ∗ with
soundness εPCPP with respect to proximity parameter ρ, is a polynomial-time randomized algorithm V that
gets oracle access to an input x ∈ Σn and a proof π. The verifier makes at most q queries to x ◦ π, and
satisfies the following conditions:

Canonical completeness: For every w ∈ L there exists a unique (canonical) proof π(w) for which
Pr[V w,π(w) = ACCEPT ] = 1.

Canonical soundness: For every x ∈ Σn and proof π such that

δ(x, π) , min
w∈L

{
max

(
dist(x,w)

n
,

dist(π, π(w))

len(n)

)}
> ρ , (3)

it holds that Pr[V x,π = ACCEPT ] ≤ εPCPP .

The following result on canonical PCPPs was proved in [DGG18] and [Par20].

Theorem 3.11 ([DGG18; Par20]). Let ρ > 0 be a proximity parameter. For every language in L ∈ P there
exists a polynomial len : N→ N and a canonical PCPP verifier for L satisfying the following properties.

1. For all x ∈ L of length |x| = n the length of the canonical proof π(x) is |π(x)| = len(n).

2. The query complexity of the PCPP verifier is q = O(1/ρ).

3. The PCPP verifier for L has perfect completeness and soundness ε = 1/2 for proximity parameter ρ (with
respect to the uniform distance measure).
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Next, we define the stronger notion of correctable canonical PCPPs (ccPCPP), originally defined in
[CGS20]. A ccPCPP system is a canonical PCPP system that in addition to allowing the verifier to be able to
locally verify the validity of the given proof, it also admits a local correction algorithm that locally corrects
potentially corrupted symbols of the canonical proof. Formally, the ccPCPP is defined as follows.

Definition 3.12 (Correctable canonical PCPP). A language L ⊆ Σ∗ is said to admit a ccPCPP with query
complexity q and soundness εPCPP with respect to the proximity parameter ρ, and correcting soundness ε
for correcting radius τcor if it satisfies the following conditions.

1. L admits a q-query canonical PCPP verifier for L satisfying the conditions in Definition 3.10 with
soundness εPCPP with respect to the proximity parameter ρ.

2. The code ΠL = {w ◦ π(w) : w ∈ L} is a (τcor, ε)-RLCC with query complexity q, where π(w) is the
canonical proof for w ∈ L from Definition 3.10.

4 Consistency test using random walk on the Reed-Muller code

Below we define the notion of consistency test using random walk (CTRW). This notion has been originally
defined in [CGS20] for tensor powers of general codes. In this paper we focus on CTRW for the Reed-Muller
code.

Informally speaking, a consistency test using random walk for Reed-Muller code RM = RMF(m, d) is
a randomized algorithm that gets a word f : Fm → F, which is close to some codeword Q∗ ∈ RM, and an
index ~x ∈ Fm as an input, and its goal is to check whether f(~x) = Q∗(~x). In other words, it checks whether
the value of f at ~x is consistent with the close codeword Q∗. Below we formally describe the random process.

Definition 4.1 (Consistency test using H-plane-line random walk on RMF(m, d)). Let H be a field, and let
F be a field extension of H. Let RM = RMF(m, d) be the Reed-Muller code. An r-steps consistency test
using H-plane-line random walk on RM is a randomized algorithm that gets as input the evaluation table
of some f : Fm → F and a coordinate ~x ∈ Fm, and works as in Algorithm 1.

We say that CTRW has perfect completeness and (τ, ρ, ε)-robust soundness if it satisfies the following
guarantees.
Perfect completeness: If f ∈ RM, then Pr[CTRWf (~x) = ACCEPT ] = 1 for all ~x ∈ Fm.
(τ, ρ, ε)-robust soundness: If f is τ -close to some Q∗ ∈ RM, but f(~x) 6= Q∗(~x), then

Pr[dist~x(f|P0
,RM|P0

) ≥ ρ ∨ ∃i ∈ [r] such that dist`i(f|Pi
,RM|Pi

) ≥ ρ] ≥ ε .

Here dist~x and dist`i are as in Definition 3.1.

Remark 4.2. Note that the soundness condition above is equivalent to checking that

Pr[dist(f
(~x)
|P0
,RM

(~x)
|P0

) ≥ ρ ∨ ∃i ∈ [r] such that dist(f
(`i)
|Pi

,RM
(`i)
|Pi

) ≥ ρ] ≥ ε .

Next, we show that the Reed-Muller code admits an m-steps consistency test using H-plane-line random
walk with constant robust soundness.

Theorem 4.3. For integer parameters d,m ≥ 2, let H be a prime field, and let F be field extension of H of
degree [F : H] = m such that |F| ≥ 2md. Denote the size of F by n = |F|. Let RM = RMF(m, d) be the
Reed-Muller code over the field F, so that the distance of the code is δRM ≥ 1− 1/2m ≥ 3/4. Then, for any
τ ≤ δRM/2 and ρ ≤ δRM/8 the m-steps consistency test using H-plane-line random walk on RM has perfect

completeness and (τ, ρ, ε)−robust soundness, with ε =
(

1− 4
|F|

)m
−

τ+ 2
|H|

δRM−2ρ .
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Algorithm 1: H-plane-line CTRW for the m−dimensional Reed-Muller code
Input: f : Fm → F, ~x ∈ Fm

1 Pick ~h0,~h
′
0 ∈ Hm uniformly at random, and let ~x0 = ~x

2 Let P0 = P
~x0,~h0,~h′0

be a random H-plane passing through ~x

3 for i = 1 to r do
4 Sample si−1, s

′
i−1 ∈ F uniformly and independently

5 Let ~xi = ~xi−1 + si−1 · ~hi−1 + s′i−1 · ~h′i−1 be a uniformly random point in Pi−1

6 Sample ti−1, t
′
i−1 ∈ F uniformly and independently, and let ~hi = ti−1 · ~hi−1 + t′i−1 · ~h′i−1

7 Let `i = `
~xi,~hi

= {~xi + t · ~hi : t ∈ F} be a random line in Pi−1

8 Pick ~h′i ∈ Hm uniformly at random
9 Let Pi = P

~xi,~hi,~h′i

10 if f|Pi
is an evaluation of a polynomial of total degree at most d for all 0 ≤ i ≤ r then

11 return ACCEPT
12 else
13 return REJECT

Proof. Consider an r-steps consistency test using random walk on RM as in Algorithm 1. By construction,
it is clear that whenever f ∈ RM, the algorithm accepts. It remains to prove the robust soundness of the
algorithm. Assume that f is τ−close to some Q∗ ∈ RM. Note that since RM is a linear code, without loss of
generality, we may assume that Q∗ is all-zeros codeword. Indeed, if f is τ -close to some non-zero codeword
Q∗, then we can consider the word f ′ = f −Q∗, which is τ -close to the all-zeros codeword, and behavior of
the algorithm on both of these cases are the same. Hence, from now on we will assume that f(~x) 6= 0, and f
is τ−close to the all-zeros codeword. Below, we show that when running Algorithm 1 on such f , then for
any choice of P0 we have either

dist~x(f|P0
,RM|P0

) ≥ ρ (4)

or

Pr[∃i ∈ [r] s.t. dist`i(f|Pi
,RM|Pi

) ≥ ρ] ≥
(

1− 4

|F|

)r
−

τ + 2
|H|

δRM − 2ρ
. (5)

It is clear that each of Eq. (4) and Eq. (5) proves Theorem 4.3.
Clearly, if dist~x(f|P0

,RM|P0
) ≥ ρ, then we are done. Hence, let us assume that dist~x(f|P0

,RM|P0
) < ρ.

In particular, since f(~x) 6= 0, ρ ≤ δRM/8, and dist~x(f|P0
,RM|P0

) < ρ, it follows that f|P0
is 2ρ-close to

some non-zero codeword of RM|P0
, and hence f|P0

contains at least (δRM − 2ρ)n2 non-zero entries. For the
rest of the proof we focus on proving Eq. (5) assuming that f|P0

contains at least (δRM − 2ρ)n2 non-zero
entries.

In order to prove it, we introduce the events Ei and Fi.

Definition 4.4. For i ∈ [r] denote by Ei the event that f|`i has at least 2ρn non-zeros, and f|Pi
has less than

(δRM − 2ρ)n2 non-zeros. For i ∈ [r] denote by Fi the event that f|`i has at least 2ρn non-zeros, and f|Pi
has

at least (δRM − 2ρ)n2 non-zeros.

The following are the key observations about the event Ei

Observation 4.5. If Ei holds and ρ ≤ δRM/4, then
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1. dist`i(f|Pi
,0) ≥ ρ, since f|`i has at least 2ρn non-zeros.

2. dist`i(f|Pi
, Q) ≥ ρ for all Q ∈ RM \ {0}, since f|Pi

has less than 2ρn2 non-zeros.

In particular, if Ei holds, then dist`i(f|Pi
,RM|Pi

) ≥ ρ.

For each i ∈ [r] denote
εi = Pr[(∧i−1

j=0Fj)
∧
Ei] .

Observe that the events corresponding to εi’s are disjoint, and hence

Pr[∃i ∈ [r] s.t. dist`i(f|Pi
,RM|Pi

) ≥ ρ] ≥
r∑
i=1

εi .

The following two lemmas are the key steps in the proof of Theorem 4.3.

Lemma 4.6. For a uniformly random point ~z ∈ Pm we have Pr[f(~z) 6= 0] ≤ τ + 2
|H| .

Lemma 4.7. If dist~x(f|P0
,RM|P0

) < ρ, then Pr[(∧ri=1Fi)] > (1− 4
|F|)

r −
∑r

i=1 εi for all r ≥ 1.

We postpone the proofs of the lemmas for now, and proceed with the proof of Theorem 4.3 assuming the
lemmas.

Note that if we choose a uniformly random ~z ∈ Pm, then

Pr[f(~z) 6= 0] ≥ Pr[(∧mi=1Fi) ∧ f(~z) 6= 0] = Pr[(∧mi=1Fi)] · Pr[f(~z) 6= 0 | ∧mi=1Fi]

≥ Pr[(∧mi=1Fi)] · (δRM − 2ρ) ,

where the last inequality is by noting that if we condition on ∧mi=1Fi, then f|Pm
has at least (δRM − 2ρ)n2

non-zeros, and hence Pr[f(~z) 6= 0 | ∧mi=1Fi] ≥ (δRM − 2ρ). Therefore, by Lemma 4.6 and Lemma 4.7 it
follows that

τ +
2

|H|
≥ Pr[f(~z) 6= 0] ≥ Pr[(∧mi=1Fi)] · (δRM − 2ρ) ≥

((
1− 4

|F|

)m
−

m∑
i=1

εi

)
· (δRM − 2ρ) , (6)

and hence

Pr[∃i ∈ [m] s.t. dist`i(f|Pi
,RM|Pi

) ≥ ρ] ≥
m∑
i=1

εi ≥
(

1− 4

|F|

)m
−

τ + 2
|H|

δRM − 2ρ
.

This completes the proof of Theorem 4.3.

We now return to the proof of Lemma 4.6.

Proof of Lemma 4.6. Fix ~x0 in Algorithm 1, and consider the independent choices of {si, s′i ∈ F}mi=0,
{ti, t′i ∈ F}mi=0, and {~h′i ∈ Hm}mi=1.

Note first that for all i ∈ [m] we have

~hi = (

i−1∏
j=0

tj) · ~h0 +

i−1∑
u=0

(t′u ·
i−1∏

j=u+1

tj) · ~h′u .
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We prove this by induction. Indeed, by Algorithm 1, we have ~h1 = t0 · ~h0 + t′0 · ~h′0. For the induction step,
assume that the equation holds for some i ∈ [m− 1]. Then for i+ 1 we have

~hi+1 = ti · ~hi + t′i · ~h′i

= ti ·

(

i−1∏
j=0

tj) · ~h0 +

i−1∑
u=0

(t′u ·
i−1∏

j=u+1

tj) · ~h′u

+ t′i · ~h′i

= (
i∏

j=0

tj) · ~h0 + ti

 i−1∑
u=0

(t′u ·
i−1∏

j=u+1

tj) · ~h′u

+ t′i · ~h′i

= (
i∏

j=0

tj) · ~h0 +

 i−1∑
u=0

(t′u ·
i∏

j=u+1

tj) · ~h′u

+ t′i · ~h′i

= (

i∏
j=0

tj) · ~h0 +

i∑
u=0

(t′u ·
i∏

j=u+1

tj) · ~h′u ,

which concludes the induction step. Note that the first equation comes from the definition in Algorithm 1 and
second equation follows from the induction hypothesis.

Also, for all i ∈ [m] we have

~xi = ~x0 +

i−1∑
j=0

sj~hj +

i−1∑
j=0

s′j
~h′j .

Again, we prove this by induction. By Algorithm 1, we have ~x1 = ~x0 + s0 · ~h0 + s′0 · ~h′0. For the induction
step, if we assume that the equation holds for some i ∈ [m− 1], then for i+ 1 we have

~xi+1 = ~xi + si · ~hi + s′i · ~h′i

=

~x0 +

i−1∑
j=0

sj~hj +

i−1∑
j=0

s′j
~h′j

+ si · ~hi + s′i · ~h′i

= ~x0 +

i∑
j=0

sj~hj +
i∑

j=0

s′j
~h′j

This, completes the induction step. Note that the first equation comes from the definition in Algorithm 1 and
second equation follows from the induction hypothesis.

Let Pm = P
~xm,~hm,~h′m

Note that we can sample ~z ∈ Pm uniformly by choosing sm, s′m ∈ F, and letting
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~z = ~xm + sm · ~hm + s′m
~h′m. Therefore,

~z =

(
~x0 +

m∑
i=0

si~hi

)
+

(
m∑
r=0

s′r
~h′r

)

=

~x0 + s0
~h0 +

m∑
i=1

si

(
i−1∏
j=0

tj) · ~h0 +
i−1∑
r=0

(t′r ·
i−1∏

j=r+1

tj) · ~h′r

+

(
m∑
r=0

s′r
~h′r

)

=

~x0 + (s0 +
m∑
i=1

si(
i−1∏
j=0

tj)) · ~h0

+
m∑
i=1

si

 i−1∑
r=0

(t′r ·
i−1∏

j=r+1

tj) · ~h′r

+

(
m∑
r=0

s′r
~h′r

)

=

~x0 + (s0 +
m∑
i=1

si(
i−1∏
j=0

tj)) · ~h0

+
m∑
r=0

 m∑
i=r+1

(sit
′
r ·

i−1∏
j=r+1

tj) + s′r

~h′r .
Next, we fix all random choices except for {s′r} and {~h′r}, and apply Claim 3.5. Let A be the set of indices
~x such that f(~x) 6= 0. Since f is τ -close to all-zeros codeword, it immediately follows that |A| = τ · |Fm|.
Since each s′r is chosen uniformly at random from F, and each ~h′r is chosen uniformly at random from Hm,
by applying Claim 3.5 with respect to A, we have

Pr[f(~z) 6= 0] = Pr

~x0 + (s0 +

m∑
i=1

si(

i−1∏
j=0

tj)) · ~h0

+

m∑
r=0

 m∑
i=r+1

(sit
′
r ·

i−1∏
j=r+1

tj) + s′r

~h′r ∈ A


≤ τ +
2

H
,

which completes the proof of Lemma 4.6.

Next we prove Lemma 4.7.

Proof of Lemma 4.7. We lower-bound the value of Pr[(∧ri=1Fi)] by peeling off one Fi at a time. Observe
that for every i ∈ [r] we have

Pr[(∧i−1
j=1Fj) ∧ `i has at least 2ρn non-zeros] = Pr[(∧i−1

j=1Fj) ∧ Fi] + Pr[(∧i−1
j=1Fj) ∧ Ei]

= Pr[(∧ij=1Fj)] + εi . (7)

We will use the following claim.

Claim 4.8. For all i ∈ [r] if ρ ≤ δRM/8, then Pr[`i has at least 2ρn non-zeros | ∧i−1
j=1Fj ] ≥

(
1− 4

|F|

)
.

Proof. The proof is rather immediate from Lemma 3.4. Let Pi−1 = P~xi−1,hi−1,h′i−1
be the plane chosen

by Algorithm 1 in the iteration i − 1. Note that conditioning on (∧i−1
j=1Fj) implies that f|Pi−1

has at least
(δRM − 2ρ)n2 non-zeros.1

1This follows only from conditioning on Fi−1, and the other Fj’s are irrelevant.
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Since `i is a uniformly random line in Pi−1, by Lemma 3.4 it follows that

Pr[f|`i has less than 2ρn non-zeros] ≤ 1

|F|
· δRM − 2ρ

(δRM − 2ρ− 2ρ)2

≤ 4

|F|
,

where the last inequality is by the assumption that ρ ≤ δRM/8 and δRM ≥ 3/4. This completes the proof of
Claim 4.8.

By applying Claim 4.8 we get

Pr[(∧i−1
j=1Fj) ∧ `i has at least 2ρn non-zeros] = Pr[(∧i−1

j=1Fj)] · Pr[`i has at least 2ρn non-zeros | ∧i−1
j=1Fj ]

≥ Pr[(∧i−1
j=1Fj)] ·

(
1− 4

|F|

)
. (8)

Combining Eq. (7) with Eq. (8) together we get

Pr[(∧ij=1Fj)] ≥ Pr[(∧i−1
j=1Fj)] ·

(
1− 4

|F|

)
− εi . (9)

By exactly the same argument, using the assumption that f|P0
contains at least (δRM − 2ρ)n2 non-zeros, it

follows that
Pr[F1] ≥ 1− 4

|F|
− ε1 . (10)

The rest of the proof follows by induction, peeling off one Fi at a time, and applying Eq. (9).

Pr[(∧ri=1Fi)] ≥ Pr[(∧r−1
i=1Fi)] ·

(
1− 4

|F|

)
− εr

≥

(
Pr[(∧r−2

i=1Fi)] ·
(

1− 4

|F|

)
− εr−1

)(
1− 4

|F|

)
− εr

= Pr[(∧r−2
i=1Fi)] ·

(
1− 4

|F|

)2

−
(

1− 4

|F|

)
εr−1 − εr

≥ . . .

≥ Pr[F1] ·
(

1− 4

|F|

)r−1

−
r∑
i=1

(
1− 4

|F|

)r−i
· εi

≥
(

1− 4

|F|
− ε1

)
·
(

1− 4

|F|

)r−1

−
r∑
i=1

(
1− 4

|F|

)r−i
· εi

= (1− 4

|F|
)r −

r∑
i=1

(
1− 4

|F|

)r−i
· εi

> (1− 4

|F|
)r −

r∑
i=1

εi .

We get that Pr[(∧ri=1Fi)] > (1− 4
|F|)

r −
∑r

i=1 εi, which concludes Lemma 4.7.
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5 PCPs of proximity

In this section we explain how to construct PCPP systems for the languages RM(~x)
|P and RM

(`)
|P defined in

Eqs. (1) and (2). Note that since all planes in Fm are isomorphic, we may think of each RM
(~x)
|P and RM

(`)
|P

as the language RMF(2, d) of bivariate polynomials of total degree at most d, concatenated with repetitions
of their values at ~x and ` respectively. Following Notation 2.1 and Notation 2.2, we make the following
definition.

Definition 5.1. Let F be a field of size |F| = n, and let f : F2 → F be an F-valued function. Let ~x ∈ F2 be a
point in F2, ` ⊆ F2 be the line ` = `~x1,~x2 = {~x1 + t · ~x2 : t ∈ F} for some ~x1, ~x2 ∈ F2.

• Define f (~x) to be the concatenation of f with n2 repetitions of the value of f at the point ~x, i.e., f (~x) =
f ◦ (f(~x))n

2
.

• Define f (`) to be the concatenation of f with n repetitions of the restriction of f to line `, i.e., f (`) =
f ◦ (f|`)

n.

Define RM(~x) = RM
(~x)
F (2, d) = {Q(~x) : Q ∈ RMF(2, d)} and RM(`) = RM

(`)
F (2, d) = {Q(`) : Q ∈

RMF(2, d)}.
Note that given an oracle access to f we can query every coordinate of f (~x) and f (`) by querying one

coordinate of f . In particular, any PCPP system for f (~x) can be emulated when given access to f without
increasing the query complexity of the proof system.

The following observation is immediate from Definition 5.1.

Observation 5.2. Let F be a field of size |F| = n, Let ~x ∈ F2 be a point in F2, ` ⊆ F2 be the line
` = `~x1,~x2 = {~x1 + t · ~x2 : t ∈ F} for some ~x1, ~x2 ∈ F2. Then for any f : F2 → F we have

dist~x(f,RM) = dist(f (~x),RM(~x)) and dist`(f,RM) = dist(f (`),RM(`)) .

It is clear that the languages RM(`) and RM(~x) can be solved in polynomial time. Therefore, by Theorem
6.1 in [CGS20], these languages admit a ccPCPP with the appropriate parameters.

Theorem 5.3 (Canonical PCPP for RM). Let F be a finite field and let d ∈ N be a parameter. Let L be either
RM

(`)
F (2, d) or RM(~x)

F (2, d). Then L admits a ccPCPP with the following parameters

1. The ccPCPP verifier has perfect completeness and soundness εPCPP = 0.5 for any proximity parameter
ρ > 0.

2. The query complexity of the verifier is q = O(1/ρ).

3. The length of canonical proof π(f) for f ∈ L of length n is len(n) = poly(n).

4. The language ΠL = {f ◦ π(f) : f ∈ L} is a (τcor, εinRLCC)-RLCC with query complexity q = O(1),
constant correction radius τcor = Ω(1), and constant soundness ε = Ω(1).

Informally speaking, in order to prove Theorem 5.3 [CGS20] start with a cPCPP system from Theo-
rem 3.11, and for every w ∈ L, and a canonical proof π(w), define a correctable proof π∗(w) by encoding
w ◦ π(w) using a systematic RLCC with constant distance and polynomial block length (e.g., the one from
[GRR18] or [CGS20]). Since the RLCC is systematic, the encoding is of the form w ◦π(w) ◦π′(w) for some
string π′(w) of length poly(|w|). Then, define the canonical proof to be π∗(w) = π(w) ◦ π′(w). It is rather
straightforward to define a verifier that will satisfy the requirements of Theorem 5.3. We omit the details
from here, and refer the interested reader to Theorem 6.1 in [CGS20].

20



6 Composition theorem and the local correcting algorithm

In this section we present a composition theorem used to combine the CTRW for Reed-Muller codes with
appropriate PCPPs. This composition theorem immediately implies the statement of Theorem 1, albeit for a
large alphabet.

6.1 Composition theorem using CTRW

Below we prove that if RMF(m, d) admits an m-steps CTRW, then it can be composed with a PCPP system
with appropriate parameters to obtain an RLCC with query complexity O(m). The composition theorem
that we present is a slightly modified version of the composition theorem presented in [CGS20]. The main
difference compared to [CGS20] is that we consider two types of PCPP proofs for RM.

Theorem 6.1 (Composition theorem for Reed-Muller codes). Let F be a finite field of size |F| = n, let
m, d ∈ N be parameters, and let δRM = 1 − d

n . Suppose that H is a subfield of F such that [F : H] = m.
Consider the following components.

• Reed-Muller code RMF(m, d) : FK → Fnm
that admits an m-steps H-plane-line-CTRW with the follow-

ing parameters.

1. CTRW has perfect completeness and (τ, ρ, εRW )-robust soundness.

2. The total number of predicates (of both types) defined for the CTRW is at most B.

• Canonical PCPP systems for languages of the form RM
(~x)
|P and RM

(`)
|P with the following properties.

1. For each f (~x)
|P ∈ RM

(~x)
|P the length of the canonical proof is at most len(2n2).

2. For each f (`)
|P ∈ RM

(`)
|P the length of the canonical proof is at most len(2n2).

3. The verifier has query complexity qPCPP, perfect completeness, soundness εPCPP < 1 for proximity
parameter ρ.

4. The codes Π
RM

(~x)
|P

= {f (~x)
|P ◦ π(f

(~x)
|P ) : f

(~x)
|P ∈ RM

(~x)
|P } and Π

RM
(`)
|P

= {f (`)
|P ◦ π(f

(`)
|P ) : f

(`)
|P ∈ RM

(`)
|P }

are (2ρ, εinRLCC)-RLCC with query complexity qPCPP.

Then, there exists a code Ccomp : FK → FN with block lengthN ≤ nm+2B · len(2n2) and relative distance
at least 1

2

(
1− d

n

)
.

The code Ccomp is a (τcor, εRLCC)-RLCC with query complexity qRLCC = (m+ 3) · qPCPP, where the
decoding radius of Ccomp is τcor = τ/4 and the soundness is

εRLCC = min

(
εRW · (1− εPCPP ) · δRM

2
,
εinRLCC

2

)
.

Before proceeding with the proof of Theorem 6.1, we show how it implies Theorem 1.

Proof of Theorem 1. Given a sufficiently large parameter qRLCC specifying the desired query complexity of
an RLCC, let m = b qRLCC

qPCPP
c − 1 ≥ 2, and let d ≥ 16m. Choose a prime field H, such that (4d)1/m ≤ |H| ≤

2 · (4d)1/m. Finally, we let F be the degree-m extension of H, and let n = |F|. In particular, by the choice of
d we have |H| ≥ 16, and the relative distance of RMF(m, d) is δRM = 1− d

n = 1− d
|H|m ≥ 1− d

4d ≥ 3/4.
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By Theorem 4.3, the RMF(m, d) admits an m-steps H-plane-line-CTRW with perfect completeness and
(τ, ρ, εRW )-robust soundness, with τ = δRM/2, ρ = δRM/8, and soundness parameter

εRW =

(
1− 4

|F|

)m
−

τ + 2
|H|

δRM − 2ρ
> 1−4m

|F|
−δ/2 + 1/8

3δ/4
≥ 1− 4m

4 · 16m
−3/8 + 1/8

9/16
≥ 1

16
− m

16m
= Ω(1) .

Furthermore, by a simple counting, the total number of predicates (of both types) defined for the CTRW is
B ≤ 2nm · |H|2m · n2 = 2nm+4.

For the canonical PCPP component, by Theorem 5.3 the ccPCPP system has perfect completeness,
constant soundness with respect to ρ = δRM/8, query complexity qPCPP = O(1/ρ) = O(1/δRM) = O(1),
and the length of the canonical proof is len(2n2) = poly(n).

Therefore, by Theorem 6.1 we obtain a qRLCC-query (τcor, εRLCC)-RLCC Ccomp : FK → FN with
constant relative distance, τcor = Ω(1), εRLCC = Ω(1), where the message length of the code is K =(
d+m
m

)
≥
(
d
m

)m
, and its block length is N ≤ nm + 2B · len(2n2) ≤ nm + 4nm+4 · poly(n). By plugging

in the parameters we get

N = nm+O(1) ≤ (2m · 4d)m+O(1) = (4m · 2m)m+O(1) ·
(
d

m

)m+O(1)

= 2O(m2) ·K1+O(1/m) ,

and relative distance is at least 1
2

(
1− d

n

)
≥ 3/8. This completes the proof of Theorem 1.

The rest of this section is devoting to the proof of Theorem 6.1.

6.2 Constructing the composed code

Constructing the composed code Ccomp: Given the components in the statement of Theorem 6.1, the
composed code Ccomp : FK → FN is obtained by concatenating several repetitions of the Reed-Muller
encoding of the message with the canonical proofs of proximity.

Specifically, given a message M ∈ FK , we first let QRM = RM(M) be encoding of M using RM(m, d).
The final encoding Ccomp(M) consists of the following three parts:

Ccomp(M) = RMrep ◦ΠPoint ◦ΠLine ,

descried below.

1. RMrep consists of t = dB · len(2n2)/nme repetitions of QRM, where t ≥ 1 is the minimal integer so
that t · nm ≥ B · len(2n2). Although these repetitions look rather artificial, they make sure that the
Reed-Muller part of the encoding will constitute a constant fraction of the codeword Ccomp(M).

2. ΠPoint is the concatenation of proofs of proximity π(P,~x) (as per the ccPCPPs in the hypothesis of the
theorem) for each H-plane P and for each point ~x ∈ P . That is, each such π(P,~x) is the canonical proof

for the assertion that (QRM)
(~x)
|P ∈ RM

(~x)
|P .

Note that since Ccomp(M) contains many copies of QRM, each π(P,~x) is expected to be the canonical
proof for all the copies.

3. ΠLine is the concatenation of proofs of proximity π(P,`) (as per the ccPCPPs in the hypothesis of the
theorem) for each H-plane P and for each line ` ⊆ P . Each such π(P,`) is the canonical proof for the

assertion that (QRM)
(`)
|P ∈ RM

(`)
|P .
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Again, since Ccomp(M) contains many copies of QRM, each π(P,`) is expected to be the canonical proof
for all the copies.

Parameters of Ccomp: Note that the total block length of the encoding is N = t · nm +B · len(2n2) ≤
nm + 2B · len(2n2).

As for the relative distance of Ccomp, if the relative distance of RMF(m, d) is δRM, then, the relative
distance of the RMrep part is also δRM. Furthermore, since the length of the RMrep part is at least half of the
total block length, it follows that the relative distance of Ccomp is at least δRM/2.

6.3 Local correction algorithm for the Reed-Muller part

Below we present the local correcting algorithm for Ccomp for the RMrep part of the code. Given a word
w ∈ FN write w = f rep ◦ΠPoint ◦ΠLine, where f rep is (expected to be) the t copies of some Reed-Muller
codeword, and ΠPoint,ΠLine are the proofs as described above.

Let i ∈ [N ] be the coordinate in the RMrep part of the code, which corresponds to some ~x ∈ Fm of (one
of the copies of) the Reed-Muller encoding. The local correcting algorithm works as follows.

Algorithm 2: Local correcting algorithm for the RMrep part
Input: w = f rep ◦ΠPoint ◦ΠLine, i ∈ [N ]

1 Let ~x ∈ Fm be the index corresponding to the i’th coordinate of the RM encoding
2 Sample r ∈ [t] uniformly at random, and let f : Fm → F be the substring of f rep corresponding to

the r-th copy of the base codeword
3 Run the m-steps H-Line-Plane-CTRW from Algorithm 1 on the input (f, ~x)
4 Let P0,P1, . . . ,Pm be the planes sampled by CTRW, and let `1, . . . , `m be the sampled lines

5 Run the cPCPP verifier on π(P0,~x) to check that f (~x)
|P0

is ρ-close to RM
(~x)
|P0

6 for j = 1 to m do
7 Run the cPCPP verifier on π(Pj ,`j) to check that f (`j)

|Pj
is ρ-close to RM

(`j)

|Pj

8 if Step 5 accepts and all iterations of Step 7 accept then
9 return f(~x)

10 else
11 return ⊥

Query complexity: The total number of queries made in Algorithm 2 is clearly upper bounded by (m+
1) · qPCPP from Lines 5 and 7 of the algorithm.

Proof of correctness: By the description of the algorithm, it is clear that if the input is a non-corrupted
codeword, i.e., w ∈ Ccomp then for any ~x∗ ∈ Fm, the algorithm always returns the correct answer.

Now, assume that the input w = f rep ◦ΠPoint ◦ΠLine is τcor-close to some codeword W ∗ ∈ Ccomp, and
suppose that the RMrep part of W ∗ consists of t copies of some degree-d polynomial Q∗ ∈ RM. We will
show that Pr[DwAlgorithm 2(i) ∈ {Q∗(~x),⊥}] ≥ εRLCC .

Note that since w is τcor-close to W ∗, and the length of f rep is at least 1/2 of the total block length, it
follows that f rep is 2τcor-close to the t repetitions of Q∗. Denote Wclose to be the event that dist(f,Q∗) ≤
4τcor = τ for the random copy f in the RMrep part sampled in Line 2 of the algorithm. Then, by Markov’s
inequality Pr[Wclose] ≥ 1/2. Therefore,

Pr[DwAlgorithm 2(i) ∈ {Q∗(~x),⊥}] ≥ 1/2 · Pr[DwAlgorithm 2(i) ∈ {Q∗(~x),⊥}|Wclose] .
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From now on, let us condition on the event Wclose, and focus on the term Pr[DwAlgorithm 2(i) ∈
{Q∗(~x),⊥}|Wclose]. Furthermore, let us fix the choice of f and consider the following two cases.

Case 1: f(~x) = Q∗(~x). Noting that DwAlgorithm 2(i) always outputs either f(~x) or ⊥ it follows that by
conditioning on such f we have

Pr[DwAlgorithm 2(i) ∈ {Q∗(~x),⊥}|Wclose, f(~x) = Q∗(~x)] = 1 .

Case 2: f(~x) 6= Q∗(~x). In this case since CTRW admits (τ, ρ, εRW )-robust soundness, it follows that

Pr[dist~x(f|P0
,RM|P0

) ≥ ρ ∨ ∃j ∈ [m] such that dist`j (f|Pj
,RM|Pj

) ≥ ρ] ≥ εRW .

Therefore, when running the cPCPP verifier for which the local view is ρ-far from the corresponding predicate,
the verifier will reject with probability at least 1 − εPCPP , and hence the decoder will output ⊥ with the
same probability. Therefore, we can lower bound the second term by

Pr[DwAlgorithm 2(i) ∈ {Q∗(~x),⊥}|Wclose, f(~x) 6= Q∗(~x)] ≥ εRW (1− εPCPP ) .

Putting all together, we conclude

Pr[DwAlgorithm 2(i) ∈ {Q∗(~x),⊥} ≥ εRW · (1− εPCPP )

2
≥ εRLCC .

This completes the proof of correctness of the algorithm for the RMrep part of the code.

6.4 Local correction algorithm for the proof part

Next, we present the correction algorithm for the cPCPP proofs part of the code. Let w = f rep ◦ΠPoint ◦
ΠLine ∈ FN be a given word, and let i ∈ [N ] be a coordinate in the ΠPoint part of the proof. The correction
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algorithm works as follows. (If i belongs to the ΠLine part, the correction algorithm is analogous.)

Algorithm 3: Local correction for the PCPP part Π

Input: w = f rep ◦ΠPoint ◦ΠLine, i ∈ [N ]
1 Sample r ∈ [t] uniformly at random, and let f : Fm → F be the substring of f rep corresponding to

the r-th copy of the base codeword
2 if i is a coordinate in ΠPoint then
3 Let P? and ~x? ∈ P? be the plane and the point such that i is a coordinate of π = π(P?,~x?)

4 Run the cPCPP verifier to check that dist(f
(~x?)
|P? ,RM

(~x?)
|P? ) ≤ ρ

5 if Step 4 rejects then
6 return ⊥

7 else
8 Let P? and `? ⊆ P? be the plane and the line such that i is a coordinate of π = π(P?,`?)

9 Run the cPCPP verifier to check that dist(f
(`?)
|P? ,RM

(`?)
|P? ) ≤ ρ

10 if Step 9 rejects then
11 return ⊥

12 Choose a uniformly random ~x0 ∈ P?
13 Run the m-steps H-Line-Plane-CTRW from Algorithm 1 on the input (f, ~x0)
14 Let P0,P1, . . . ,Pm be the planes sampled by CTRW, and let `1, . . . , `m be the sampled lines

15 Run the cPCPP verifier on π(P0,~x0) to check that f (~x0)
|P0

is ρ-close to RM
(~x0)
|P0

16 for j = 1 to m do
17 Run the cPCPP verifier on π(Pj ,`j) to check that f (`j)

|Pj
is ρ-close to RM

(`j)

|Pj

18 if Steps 15 or 17 reject then
19 return ⊥
20 if i is a coordinate in ΠPoint then
21 Run the local corrector of the inner ccPCPP on f (~x?)

|P? ◦ π(P?,~x?) to correct wi
22 return the value obtained in Step 21

23 else
24 Run the local corrector of the inner ccPCPP on f (`?)

|P? ◦ π(P?,`?) to correct wi
25 return the value obtained in Step 24

Query complexity: The total number of queries is upper bounded by (i) qPCPP queries in Step 4 or in Step
9, (ii) at most (m+ 1) · qPCPP queries in Steps 15 and 17, and (iii) at most qPCPP queries in Step 21 or Step
24 . Therefore, the total query complexity is upper bounded by (m+ 3) · qPCPP, as required.

Proof of correctness: By the description of the algorithm, it is clear that if w ∈ Ccomp, then for any index
i ∈ [N ] in the proof part, the algorithm always returns the correct answer wi.

We assume from now on that the input w ∈ FN is τcor-close to some codeword W ∗ ∈ Ccomp, and
suppose that the RMrep part of W ∗ consists of t copies of some degree-d polynomial Q∗ ∈ RM. As in the
previous part, since w is τcor-close to W ∗, and the length of f rep is at least 1/2 of the total block length, it
follows that f rep is 2τcor-close to the t repetitions of Q∗. Therefore, for the random copy f in the RMrep

part sampled in Line 1 of the algorithm, we have Pr[dist(f,Q∗) ≤ 4τcor = τ ] ≥ 1/2. From now on let us
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condition on the event dist(f,Q∗) ≤ τ .

Let us assume that the coordinate i ∈ N we wish to decode belongs to some π(P?,~x?). The following
claim completes the analysis of the correcting algorithm.

Claim 6.2. If Pr[DwAlgorithm 3(i) = ⊥] < εRLCC , then Pr[DwAlgorithm 3(i) = W ∗i ] > εinRLCC
2 .

Proof. Since Algorithm 3 returns⊥ with probability less than εRLCC in Step 6, the PCPP verifier for π(P?,~x?)

in Step 4 accepts with probability at least 1 − εRLCC > εPCPP . Thus, there is some bivariate degree-d
polynomial Q′ : P? → F (not necessarily equal to Q∗|P?) such that

1. dist(f
(~x?)
|P? , Q

′(~x?)
|P? ) ≤ ρ, and hence dist(f|P? , Q′|P?) ≤ 2ρ,

2. and π(P?,~x?) is ρ-close to the canonical proof π(Q′
(~x?)
|P? ).

Next, we use the assumption that Algorithm 3 returns ⊥ with probability less than εRLCC in Steps 15
or 17. That is, when running H-plane-line CTRW from a uniformly random ~x0 ∈ P?, and then running the
corresponding cPCPPs, with probability at least 1− εRLCC all cPCPP verifiers accept. For each ~z ∈ P? let p~z
be the probability that both Step 15 and Step 17 accept when starting from ~z. Then E[p~z] > 1− εRLCC , and
hence for at least (1− δRM/2)n2 starting points ~z ∈ P? we have p~z ≥ 1− 2εRLCC

δRM
≥ 1− εRW (1− εPCPP ).

Therefore, by the analysis of the correcting algorithm for the RMrep part, for more than (1 − δRM/2)n2

starting points ~z ∈ P? it holds that f(~z) = Q∗(~z). Indeed, by case 2 of the analysis if f(~z) 6= Q∗(~z), then
p~z < 1− εRW (1− εPCPP ). Therefore, dist(f|P? , Q∗|P?) < δRM/2.

Combining with the conclusion from the previous step that dist(f|P? , Q′|P?) ≤ 2ρ it follows that
dist(Q∗|P? , Q′|P?) < 2ρ + δRM/2 ≤ δRM. Thus, since RMF(m, d) has distance δRM we conclude that
Q∗|P = Q′|P .

So far we showed that if Algorithm 3 returns ⊥ with probability less than εRLCC and f is τ -close to
Q∗ (which happens with probability at least 1/2), then f|P? is 2ρ-close to Q∗|P? , and π(P?,~x?) is ρ-close to

π(Q∗
(~x?)
|P? ), the canonical proof of Q∗(~x

?)
|P? . Therefore, the local correction algorithm for the inner ccPCPP

applied on (f|P? ◦ π(P?,~x?)) in Step 21 returns either W ∗i or ⊥ with probability at least εinRLCC . Therefore,

Pr[DwAlgorithm 3(i) ∈ {W ∗i ,⊥}] ≥ Pr[Step 22 returns W ∗i or ⊥|dist(f,Q∗) ≤ τ ] · Pr[dist(f,Q∗) ≤ τ ]

≥ εinRLCC
2

,

as required.

We proved correctness of the local correction algorithm assuming that the coordinate i ∈ N we wish to
decode belongs to some π(P?,~x?). For the case when i belongs to π(P?,`?), the analysis is exactly the same.
This concludes the proof of Theorem 6.1.

7 Concluding remarks and open problems

In this paper we constructed an O(q)-query RLDC C : FK → FN with block length N = qO(q2) ·K1+O(1/q),
assuming that the field is large enough, namely, assuming that |F| ≥ cq ·K1/q. Using standard techniques it is
possible to obtain a binary RLDC with similar parameters. This can be done by concatenating our code with
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an arbitrary binary code with constant rate and constant relative distance. Indeed, this transformation appears
in [CGS20, Appendix A], who showed how concatenating CTRW-based RLDC over large alphabet with a
good binary code gives a binary RLDC that essentially inherits the block length and the query complexity of
the RLDC over large alphabet. Below we provide the proof sketch, explaining how the concatenation works.

Proof sketch. Suppose that we want to construct a short binary RLCC. Let CRLCC : FK → FN be the RLCC
over some field F with the desired block length, and let Cbin : {0, 1}K′ → {0, 1}N ′ be an error-correcting
code with constant rate and constant distance. We also assume that field F is chosen so that |F| = 2K

′
. (To

satisfy this condition, one can simply set H to be a field of characteristic 2.) This assumption will allow us to
have a bijection between each symbol of F and binary string of length K ′.

We construct the binary concatenated code Cconcat : {0, 1}K·K′ → {0, 1}N ·N ′ as follows. Given a
message M ∈ {0, 1}K·K′ , we first convert it to an string in M ′ ∈ FK in the natural way. Then, we encode
M ′ using CRLCC to obtain a codeword c∗ ∈ CRLCC . Finally, we encode each symbol of c∗ using Cbin to
get the final codeword c ∈ {0, 1}N ·N ′ .

To prove that the concatenated code is an RLCC, Chiesa, Gur, and Shinkar proved in [CGS20, Theorem
A.4] that if CRLCC admits an r-steps CTRW with some soundness guarantees, then Cconcat admits an
r-steps CTRW with related soundness guarantees. The CTRW on the concatenated code Cconcat emulates
the CTRW on CRLCC by sampling planes for the CTRW on the Reed-Muller code, and instead of reading
the symbols from F, it reads the binary encodings of all symbols belonging to these planes.

Indeed, it is not difficult to see that if CRLCC admits an r-steps CTRW with some soundness guarantees,
then so does the concatenated code. We omit the details, and refer the interested reader to Appendix A
in [CGS20].

We conclude the paper with several open problems we leave for future research.

1. The most fundamental open problem regarding RLDCs/RLCCs is to understand the optimal trade-off
between the query complexity of LDCs and their block length in the constant query regime. It is plausible
that the lower bound of [GL20] can be improved to K1+Ω(1/q), although we do not have any evidence for
this.

2. As discussed in the intoduction, [Ben+06] asked whether it is possible to prove a separation between
LDCs and RLDCs. Understanding the trade-off between the query complexity and the block length is one
possible way to show such separation.

3. Another interesting open problem is to construct an RLDC/RLCC with constant rate and small query
complexity. In particular, it is plausible that there exist polylog(N)-query RLDCs with N = O(K).

4. Also, it would be interesting to construct RLDCs/RLCCs using high-dimensional expanders [KM17;
DK17; Dik+18; KO18]. Since there are several definitions of high-dimensional expanders, it would
be interesting to state the sufficient properties of high-dimensional expanders required for RLDCs. We
believe this approach can be useful in constructing constant rate RLDCs with small query complexity.
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