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Abstract

We exactly characterize the average-case complexity of the polynomial-time hierarchy (PH)
by the worst-case (meta-)complexity of GapMINKTPH, i.e., an approximation version of the
problem of determining if a given string can be compressed to a short PH-oracle efficient program.
Specifically, we establish the following equivalence:

DistPH ⊆ AvgP ( i.e., PH is easy on average ) ⇐⇒ GapMINKTPH ∈ P.

In fact, our equivalence is significantly broad: A number of statements on several fundamen-
tal notions of complexity theory, such as errorless and one-sided-error average-case complex-
ity, sublinear-time-bounded and polynomial-time-bounded Kolmogorov complexity, and PH-
computable hitting set generators, are all shown to be equivalent.

Our equivalence provides fundamentally new proof techniques for analyzing average-case
complexity through the lens of meta-complexity of time-bounded Kolmogorov complexity and
resolves, as immediate corollaries, questions of equivalence among different notions of average-
case complexity of PH: low success versus high success probabilities (i.e., a hardness ampli-
fication theorem for DistPH against uniform algorithms) and errorless versus one-sided-error
average-case complexity of PH.

Our results are based on a sequence of new technical results that further develops the proof
techniques of the author’s previous work on the non-black-box worst-case to average-case reduc-
tion and unexpected hardness results for Kolmogorov complexity (FOCS’18, CCC’20, ITCS’20,
STOC’20). Among other things, we prove the following.

1. GapMINKTNP ∈ P implies P = BPP. At the core of the proof is a new black-box hitting
set generator construction whose reconstruction algorithm uses few random bits, which
also improves the approximation quality of the non-black-box worst-case to average-case
reduction without using a pseudorandom generator.

2. GapMINKTPH ∈ P implies DistPH ⊆ AvgBPP = AvgP.

3. If MINKTPH is easy on a 1/poly(n)-fraction of inputs, then GapMINKTPH ∈ P. This
improves the error tolerance of the previous non-black-box worst-case to average-case re-
duction.
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1 Introduction

Two of the mysteries of complexity theory are the average-case complexity of PH and the
computational complexity of computing time-bounded Kolmogorov complexity (referred to as meta-
complexity). These questions originate from the 1980s, when Levin [Lev86] laid the foundation of
the average-case complexity theory and Ko [Ko91] investigated the complexity of MINKT, which
is the problem of computing time-bounded Kolmogorov complexity. The exact relationship among
them has not been well understood. In this paper, we establish an interdisciplinary link between
the two subareas of complexity theory.

Main Theorem (a short version; “DistPH-completeness” of GapMINKTPH).

DistPH ⊆ AvgP ⇐⇒ GapMINKTPH ∈ P.

This equivalence connects two fundamentally different notions. On the left, the statement
DistPH ⊆ AvgP means that PH is easy on most instances. On the right, the statement GapMINKTPH ∈
P means that an efficient algorithm can compute the PH-oracle Kolmogorov complexity of every
instance. In fact, our equivalence is much larger, and it connects a number of statements on sev-
eral notions of complexity theory, including errorless and one-sided-error average-case complexity,
time-bounded Kolmogorov complexity, and PH-computable hitting set generator.

Our equivalence not only is interdisciplinary but also has significant impacts on fundamental
questions in each subarea. We review the average-case complexity theory and its open questions in
the next section, as well as the notion of time-bounded Kolmogorov complexity in the subsequent
section.

1.1 Average-Case Complexity Theory

In practice, the traditional analysis of an algorithm based on worst-case inputs can be mislead-
ing. It is often reported that modern SAT solvers can solve huge instances, notwithstanding the
NP-completeness of SAT. The main source of the disagreement between the practical performance
of an algorithm and the NP-completeness theory is that the latter notion is based on the worst-case
analysis of an algorithm; however, we cannot generate worst-case inputs, and thus never encounter
them in reality.

Pioneered by Levin [Lev86], the theory of average-case complexity aims at analyzing the per-
formance of algorithms with respect to random inputs sampled efficiently from some distribution.
Specifically, for a language L : {0, 1}∗ → {0, 1} and a family of distributions D = {Dn}n∈N,1 the pair
(L,D) is called a distributional problem. The task of the distributional problem (L,D) is to com-
pute L(x) given a random input x ∼ Dn for each instance size n ∈ N.2 Following Levin’s original
notion [Lev86], (L,D) is said to be polynomial-time-solvable on average if there exists an algorithm
A computing L such that, for some constant ε > 0, for all large n ∈ N, Ex∼Dn [tA(x)ε] ≤ O(n),
where tA(x) denotes the running time of A on input x. The class of distributional problems that
are polynomial-time-solvable on average is denoted by AvgP.

For our purpose, it is useful to use the equivalent notion of an errorless heuristic scheme. An
errorless heuristic scheme A for a distributional problem (L,D) satisfies the following: (1) A takes
an input x ∈ supp(Dn) ⊆ {0, 1}∗ and an error parameter δ ∈ (0, 1) and runs in time poly(n, 1/δ), (2)

1We identify a language L ⊆ {0, 1}∗ with its characteristic function L : {0, 1}∗ → {0, 1}.
2The support of Dn is a subset of {0, 1}∗, and it is not required to be a subset of {0, 1}n.
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A is errorless, that is, A(x, δ) ∈ {L(x),⊥}, and (3) A(x, δ) = L(x) holds with probability at least
1− δ over the choice of x ∼ Dn for any n ∈ N. It is known that (L,D) ∈ AvgP if and only if (L,D)
admits an errorless heuristic scheme. (Roughly speaking, an errorless heuristic scheme outputs ⊥
if it takes super-polynomial time to compute.) For a function δ : N → (0, 1), let AvgδP denote
the class of distributional problems (L,D) that admit an errorless heuristic algorithm with error
parameter fixed to δ(n). Further details on average-case complexity can be found in the survey of
Bogdanov and Trevisan [BT06a].

What kind of distributions should we consider? It is reasonable to focus on the distribution
from which one can generate a random instance efficiently. A family of distributions D = {Dn}n∈N
is said to be polynomial-time samplable if there exists a randomized polynomial-time algorithm
that, on input 1n, outputs a string that is distributed according to Dn. The class of polynomial-
time-samplable distributions is denoted by PSamp. For a complexity class C, let DistC denotes the
class C× PSamp of distributional problems.

The fundamental questions of average-case complexity are whether DistNP ⊆ AvgP and its
relationship with DistNP ⊆ AvgδP holds for different choices of parameters δ. It is evident that
DistNP ⊆ AvgδP implies DistNP ⊆ Avgδ′P if δ ≤ δ′. However, it is a fundamental open question to
prove the converse, depending on the choice of the error parameter δ. For example, in the extreme
case of δ(n) = 2−n, an errorless heuristic algorithm is equivalent to a worst-case solver, whose
relationship with an errorless heuristic scheme is open.

Open Question 1.1 (Worst-case versus average-case complexity of NP).

Does DistNP ⊆ AvgP imply DistNP ⊆ Avg2−nP (⇔ NP = P)?

This is one of the central questions in complexity theory, particularly because of its relationship
to cryptography. In terms of Impagliazzo’s five possible worlds, the open question corresponds to
excluding Heuristica from the possible worlds (cf. [Imp95a]). In another regime of parameters, the
question is referred to as hardness amplification.

Open Question 1.2 (Hardness amplification for NP).

Does DistNP ⊆ Avg1−1/poly(n)P imply DistNP ⊆ AvgP?

The history of hardness amplification dates back to Yao’s XOR Lemma (cf. [GNW11]); however,
it is relatively recently that Bogdanov and Safra [BS07] initiated the study of hardness amplification
in the context of errorless average-case complexity, and made progress towards Open Question 1.2
by showing that DistNP ⊆ Avg1−(logn)−1/10+o(1)P implies DistNP ⊆ AvgP.3

Another natural question is whether two-sided-error average-case complexity of NP is equivalent
to errorless average-case complexity, as raised in [Imp95a].

Open Question 1.3 (Two-sided-error versus errorless average-case complexity of NP).

Does DistNP ⊆ HeurP imply DistNP ⊆ AvgP?

Here, HeurP denotes the class of distributional problems that admit a two-sided-error heuristic
scheme. In fact, using the search-to-decision reduction for NP [BCGL92], a two-sided-error heuristic
scheme for NP can be converted to a “one-sided-error” heuristic scheme for NP that always rejects
No instances and accepts most Yes instances. In light of this, Open Question 1.3 is morally
equivalent to the following question.

3While their reduction is randomized, the reduction can be derandomized by using the pseudorandom generator
of [BFP05].
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Open Question 1.4 (One-sided-error versus errorless average-case complexity of NP).

Does DistNP ⊆ Avg1P imply DistNP ⊆ AvgP?

Here, Avg1P denotes the class of distributional problems that admit a one-sided-error heuristic
scheme. Specifically, we say that (L,D) ∈ Avg1P if there exists an algorithm A such that (1) A(x, δ)
runs in time poly(n, 1/δ), (2) L(x) = 0 implies A(x, δ) = 0, and (3) A(x, δ) = L(x) with probability
at least 1− δ over the choice of x ∼ Dn. (See Definition 3.2 for the precise definition of Avg1P.)

So far we have explained the case of DistNP. However, all corresponding questions are open
even for the Polynomial-time Hierarchy (PH). Recall that PH is a generalization of NP and is

defined as
⋃
k∈N Σp

k, where the k-th level Σp
k of PH is defined as NPΣp

k−1 and Σp
0 := P. For example,

the following is an easier question than Open Question 1.1.

Open Question 1.5 (Worst-case versus average-case complexity of PH).

Does DistPH ⊆ AvgP imply PH = P (⇔ NP = P)?

The landscape of average-case complexity is summarized in Fig. 1. The depicted implications
are trivial facts, and the converse directions correspond to the open questions mentioned above.

NP = PDistNP ⊆ AvgPDistNP ⊆ Avg1−1/poly(n)P

DistNP ⊆ Avg1PDistNP ⊆ Avg1
1−1/poly(n)P

PH = PDistPH ⊆ AvgPDistPH ⊆ Avg1−1/poly(n)P

DistPH ⊆ Avg1PDistPH ⊆ Avg1
1−1/poly(n)P
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Figure 1: The relationships between average-case complexity of NP and PH under various notions.
All implications depicted (except for our results) are trivial. The converse directions are fundamen-
tal open questions. A section of our equivalence is the four statements enclosed by the rectangle,
which resolves the open questions regarding the average-case complexity of PH.

As a part of our equivalence, we resolve the PH analogues of Open Questions 1.2 and 1.4
simultaneously.4 Specifically, we show that, if there exists a one-sided-error algorithm for DistPH
that succeeds with probability at least 1/poly(n), then there exists an errorless heuristic scheme
for DistPH.

Theorem 1.6. For any constant c > 0, if DistPH ⊆ Avg1
1−n−cP, then DistPH ⊆ AvgP.

4By using the fact that PH is closed under complement, we present in Appendix A a simple argument showing
that DistPH ⊆ Avg1P iff DistPH ⊆ AvgP. However, the same argument does not work when the failure probability is
large.
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Our proof techniques are fundamentally different from previous techniques. All previous proof
techniques of hardness amplification that we are aware of use a hardness amplification procedure
“Amp(f)” (e.g., [Lev87, Imp95b, IW97, GNW11, O’D04, HVV06, Tre05, BS07, IJK09, IJKW10]).
Specifically, a given function f is mapped to a candidate hard function Amp(f); typically, the
function is defined as Amp(f)(x1, . . . , xk) := f(x1)⊕ · · · ⊕ f(xk) as in Yao’s XOR Lemma. Then,
one designs an efficient oracle algorithm R that, given access to an oracle that solves Amp(f) on a
small fraction of inputs, solves f on a large fraction of inputs.

The proof strategy based on Amp(f) is often referred to as black-box : The oracle algorithm
R takes as oracle an arbitrary (even inefficient) heuristic algorithm for Amp(f) and solves f on
average. Such a proof technique based on a black-box hardness amplification procedure is so general
that there are a number of significant limits (e.g., [Vio05, LTW08, SV10, GSV18, FF93, BT06b]).
For example, Viola [Vio05] showed that the worst-case-to-average-case equivalence of PH (i.e., Open
Question 1.5) cannot be proved by using a black-box hardness amplification procedure.

Note that, in order to prove a hardness amplification theorem, it suffices to design a “non-black-
box” oracle algorithm R that is successful only when the oracle is efficient. Here, a reduction is
referred to as non-black-box if the proof of the correctness of the reduction uses the efficiency of
the oracle in an essential manner.

The approach of this work is not black-box,5 and our proof is based on new understanding of
average-case complexity through the meta-complexity of time-bounded Kolmogorov complexity. In
order to connect average-case complexity theory and meta-complexity theory, we employ the proof
techniques of the author’s previous work on a non-black-box worst-case-to-average-case reduction
[Hir18], which overcame another fundamental limit of black-box reductions that was presented by
Feigenbaum and Fortnow [FF93] and Bogdanov and Trevisan [BT06b]. We next review the notion
of meta-complexity.

1.2 Meta-Complexity of Time-Bounded Kolmogorov Complexity

Kolmogorov complexity enables quantifying how much a string is complex. Informally, the t-
time-bounded Kolmogorov complexity of a finite string x ∈ {0, 1}∗ is defined as the minimum size
of a program that outputs x in t steps. For a formal definition, we need to clarify the meaning
of “the size of a program” by fixing a particular interpreter. We fix an efficient universal Turing
machine U . The t-time-bounded Kolmogorov complexity Kt(x) of x is formally defined as follows.
(We adopt the definition that is meaningful even for t ≤ |x|.)

Definition 1.7. For a string x ∈ {0, 1}∗, an oracle A ⊆ {0, 1}∗, and a time bound t ∈ N ∪ {∞},

Kt,A(x) := min{ |d| | Ud,A(i) outputs xi in time t for each i ∈ [|x|+ 1] }.

Here, Ud,A(i) means the output of the universal Turing machine given random access to d and A
and i as input; xi denotes the ith bit of x if i ≤ |x| and ⊥ otherwise. We omit the superscript A if
A = ∅, and the superscript t if t =∞, respectively.

Note that time-bounded Kolmogorov complexity itself asks the complexity of a shortest program
to print a given string. Stepping back, one can ask the complexity of computing time-bounded
Kolmogorov complexity—what is called meta-complexity of time-bounded Kolmogorov complexity.

5Although the proof is non-black-box, we do not know whether our hardness amplification result itself (Theo-
rem 1.6) is subject to some black-box barrier results, such as [Vio05, LTW08]. See also Section 1.4.4.
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Although the origin of meta-complexity can be traced back to the Russian study of 1950s [Tra84],
its importance was identified only recently, especially through the study of the Minimum Circuit
Size Problem (MCSP [KC00]).6

Among the early studies on meta-complexity of time-bounded Kolmogorov complexity, Ko [Ko91]
introduced and investigated MINKT, which is the problem of deciding, given (x, 1t, 1s) as input,
whether there is a program of size at most s that prints x in time t, as well as its approximation
version which we denote by GapMINKT. The problem GapMINKT asks for approximating Kt(x)
within an additive error of O(log(|x|+ t)). Formally:

Definition 1.8. For a function τ : N×N→ N and an oracle A ⊆ {0, 1}∗, GapτMINKTA is defined
as the promise problem (ΠYes,ΠNo) such that

ΠYes := { (x, 1t, 1s) | Kt,A(x) ≤ s },
ΠNo := { (x, 1t, 1s) | Kτ(|x|,t),A(x) > s+ log τ(|x|, t) }.

We say GapMINKTA ∈ P if there exists some polynomial τ such that GapτMINKTA ∈ P. We
define MINKTA := (ΠYes, {0, 1}∗ \ΠYes).

We extend this definition to GapMINKTC for a complexity class C. We could have simply de-
fined GapMINKTPH as GapMINKTA if we had a PH-complete problem A. However, this definition
is problematic: If there exists a PH-complete problem A, then we must have PH ≤pm A ∈ Σp

k for
some constant k ∈ N, which implies the unlikely consequence that the polynomial-time hierarchy
collapses. We address this issue by introducing the definition of GapMINKTC that does not depend
on a complete problem, where C is an arbitrary complexity class.

Definition 1.9. For a complexity class C, we regard GapMINKTC as a family of problems {GapMINKTA |
A ∈ C }. We say GapMINKTC ∈ P if GapMINKTA ∈ P for any oracle A ∈ C. Similarly, we define
MINKTC := {MINKTA | A ∈ C }.

One of the central questions on GapMINKT is to classify its complexity. It is easy to observe
that GapMINKT ∈ NP, and more generally, GapMINKTA ∈ NPA for any oracle A. Thus, the
central question is to prove its NP-hardness, which would completely classify the complexity of
GapMINKT as an “NP-complete” problem.7

Open Question 1.10. Does GapMINKT ∈ P imply P = NP?

Somewhat surprisingly, the following easier question is open as well.

Open Question 1.11 (“NP-hardness” of GapMINKTPH). Does GapMINKTPH ∈ P imply P =
NP?

Readers unfamiliar with meta-complexity may wonder why it is not trivial that NP is reducible to
GapMINKTNP, or more generally, that A is reducible to GapMINKTA for any oracle A. Intuitively,
GapMINKTA seems to be more difficult than computing A. Unfortunately, there is a gap between
this intuition and actually constructing a reduction from A to GapMINKTA: The meta-complexity

6The reader is referred to the survey of Allender [All17] for more details on meta-complexity and MCSP.
7We often use the weak notion of hardness and completeness. For example, we say that a problem L is “NP-

complete” if L ∈ P implies P = NP and L ∈ NP. This property is implied by the standard NP-completeness under
polynomial-time reductions, but the converse is not necessarily true.
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of GapMINKTA refers to the complexity of minimizing the size of an A-oracle program; it is not
clear whether the task of computing A can be converted to the task of minimizing the size of an
A-oracle program. In fact, this gap—which seems to be intuitively small—is the only missing piece
for establishing the equivalence between worst-case and average-case complexity of PH.

Corollary 1.12 (of Main Theorem). Open Question 1.11 is equivalent to Open Question 1.5. That
is, “NP-hardness” of GapMINKTPH is equivalent to establishing the equivalence between worst-case
and average-case complexity of PH.

One of our main technical contributions is to partially close the gap between the tasks of
computing A and minimizing an A-oracle program: We will show that GapMINKTPH ∈ P implies
DistPH ⊆ AvgP, which can be regarded as “DistPH-hardness” of GapMINKTPH. In fact, our results
classify the complexity of GapMINKTPH as a “DistPH-complete” problem in the following sense:
DistPH ⊆ AvgP ⇐⇒ GapMINKTPH ∈ P, thereby resolving the fundamental open question of the
complexity of GapMINKTPH.

Monotonicity. There is another counterintuitive property of meta-complexity that is not well
understood—the monotonicity of meta-complexity. One might think that it is trivial that GapMINKTSAT ∈
P implies GapMINKT ∈ P. However, this was not known before this work.8

More generally, one might guess that GapMINKT should be reducible to GapMINKTA for any
oracle A via, for instance, the identity reduction that maps an instance to itself. While the identity
reduction can map any Yes instance of GapMINKT to a Yes instance of GapMINKTA, it does
not necessarily map a No instance of GapMINKT to a No instance of GapMINKTA. The identity
reduction actually works under the notion of the average-case complexity of GapMINKT [HS17],
but, in terms of worst-case complexity, the reduction may not be correct. In fact, any deterministic
reduction does not work: there exists some oracle A such that MCSP is not reducible to MCSPA

via any deterministic polynomial-time Turing reduction unless MCSP ∈ P [HW16].
Nevertheless, we establish the following monotonicity property of meta-complexity.

Theorem 1.13. Let A and B be oracles such that A is NP-hard and B ≤pT A. Then, GapMINKTA ∈
P implies GapMINKTB ∈ P

The proof of Theorem 1.13 is based on non-black-box reductions, thereby bypassing the im-
possibility result of [HW16]. At the core of the proof is the randomized non-black-box worst-
case-to-average-case reduction of [Hir18, Hir20a]. In order to derandomize it, we again use a
(deterministic) non-black-box worst-case-to-average-case reduction to construct a nearly optimal
pseudorandom generator, by making use of the NP-hardness of the oracle A. The details can be
found in Section 8.2.

1.3 Our Results

Thus far, we have explained the significance of our results mainly within each subarea of com-
plexity theory. We now guide the reader to our interdisciplinary equivalence that connects average-
case complexity, meta-complexity of time-bounded Kolmogorov complexity, and more. Since the
number of equivalent statements is large, we will explain one by one while presenting some ideas
of the proofs.

8In contrast, it is easy to observe that GapMINKTNP ∈ P implies GapMINKT ∈ P.
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Theorem 1.14 (Main results). The following (Items 1 to 12) are equivalent.

1. DistPH ⊆ AvgP.

2. GapMINKTPH ∈ P.

Our equivalence is considerably robust with respect to minor changes. For example, recall that
GapMINKTPH is the family of problems GapMINKTA for each oracle A ∈ PH. Although this
is a convenient notion, we do not have to consider every oracle A ∈ PH; alternatively, it suffices
to consider a complete problem for each level of PH. Let ΣkSAT denote the canonical complete
problem for Σp

k. Then the following is equivalent as well.

3. GapMINKTΣkSAT ∈ P for any constant k ∈ N.

The significance of our equivalence is that the robustness of meta-complexity can be transferred
to average-case complexity, the latter of which is often not resilient to modifications of success
probability or the notion of errorless to one-sided-error. The equivalence enables us to reduce the
success probability of an errorless heuristic algorithm to 1/poly(n), which establishes a hardness
amplification theorem for PH against uniform algorithms.

4. DistPH ⊆ Avg1−n−cP for some constant c > 0.

Furthermore, the equivalence extends to one-sided-error heuristic algorithms, thereby equating
the errorless and one-sided-error average-case complexity of PH. We are unaware of any existing
proof techniques that can yield such an equivalence.9

5. DistPH ⊆ Avg1
1−n−cP for some constant c > 0.

How do we establish the equivalence? Essential to our proof is to identify MINKTPH × PSamp
as a natural “DistPH-complete” family of distributional problems.10 Here, we say that a class C of
distributional problems is “DistPH-complete” if C ⊆ DistPH, and C ⊆ AvgP implies DistPH ⊆ AvgP.
We show that MINKTPH × PSamp is “DistPH-hard” even if the success probability of an errorless
heuristic algorithm is 1/poly(n).

6. Dist(MINKTPH) := MINKTPH × PSamp ⊆ Avg1−n−cP for some constant c > 0.

The reason why we are able to show the equivalence between one-sided-error and errorless
average-case complexity is that Dist(MINKTPH) is “DistPH-hard” in an even stronger sense. If
coMINKTPH admits a one-sided-error heuristic algorithm, then DistPH admits an errorless heuris-
tic algorithm. Here, coC denotes the complement of C for a class C.

7. coMINKTPH × PSamp ⊆ Avg1
1−n−cP for some constant c > 0.

9The standard techniques of error-correcting codes yield such an equivalence for high complexity classes such as
PSPACE and EXP. For example, two-sided-error average-case and worst-case complexity of PSPACE are equivalent
[STV01, TV07], and so is the one-sided-error average-case complexity. However, the proof technique is not applicable
to PH [Vio05]. We also mention that there is a simple argument that works if the failure probability is small (cf.
Appendix A).

10We mention that it is easy to construct an artificial DistPH-complete family of distributional problems [SY96].
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Next, we explain how to resolve the issue of monotonicity. As mentioned before, the meta-
complexity of GapMINKTA is not necessarily monotone increasing with respect to A. In our
previous work [Hir20a], we introduced the notion of “non-disjoint” promise problems so that the
monotonicity can be incorporated into the definition of a problem itself.

Specifically, let Gap(KPH vs K) denote (a family of) the promise problems whose Yes instances
are those of GapMINKTPH and No instances are those of GapMINKT (see Definition 8.3 for a
precise definition). This is not a standard promise problem in the sense that, under the plausible
assumption that ENP 6= E, there exists an instance that is simultaneously a Yes and No instance,
and thus Gap(KPH vs K) is not a disjoint pair of languages; in this case, any algorithm—not
only a polynomial-time algorithm but also literally any algorithm—cannot solve Gap(KPH vs K).
Nevertheless, under the assumption that DistPH ⊆ AvgP, there exists a polynomial-time algorithm
that solves the “non-disjoint” promise problem.

8. Gap(KPH vs K) ∈ P.

The mathematical properties of the meta-complexity of Gap(KA vs K) are better and more
intuitive than GapMINKTA. For example, it is not hard to see that there is a many-one reduction
from Gap(KA vs K) to Gap(KB vs K) for any oracles A ≤pT B (cf. Lemma 8.14), which serves as
a key property for proving the monotonicity of meta-complexity (Theorem 1.13). Moreover, the
identity map reduces GapMINKTPH to Gap(KPH vs K) (cf. Fact 8.4), and thus the latter problem
is a harder problem, which explains the implication from Item 8 to 2.

The question is—how can we show that there exists a polynomial-time algorithm that can solve
the “non-disjoint” promise problem which we believe no algorithm can solve? A short answer is
that MINKTPH is inherently a meta-computational problem that encodes a computation as its
instance.11 This enables us to show that, under the assumption that GapMINKTPH ∈ P, for any
oracle A ∈ PH, there exists a polynomial τA such that KτA(|x|,t)(x) ≤ Kt,A(x) + log τA(|x|, t) for any
x ∈ {0, 1}∗ and any t ∈ N, in which case Gap(KPH vs K) is indeed a disjoint promise problem.

One of the key components of the proof is to bridge the gap from the one-sided-error average-case
complexity of coMINKTPH×PSamp to the worst-case meta-complexity of Gap(KPH vs K), that is,
the implication from Item 7 to Item 8. The gap can be closed by using the proof techniques of the
non-black-box worst-case-to-average-case reductions of [Hir18, Hir20a]. Unfortunately, the previous
worst-case-to-average-case reductions are not error-tolerant, and require the success probability of a
one-sided-error heuristic algorithm to be at least 1−1/poly(n). We need to reduce the requirement
of the success probability to 1/poly(n).

One of the technical contributions of this work is to make the reductions error-tolerant. The
main bottleneck of the previous reductions is the existence of the time parameter t: In the previous
reductions, an instance (x, 1t, 1s) was reduced to some instance (x′, 1t

′
, 1s
′
), where t′ = poly(n, t)

and n = |x|. Because we require solving GapMINKTPH for every time parameter t ∈ N, it was also
required that a heuristic algorithm solves (x′, 1t

′
, 1s
′
) for every time parameter t′, which can be

ensured if the success probability of the heuristic algorithm is assumed to be at least 1−1/poly(n).
A new insight of this work is that the time bound can be fixed to t := nγ , where γ > 0 is an

arbitrary constant and n is the length of x. For a function t : N → N, let GapMINKTPH[t = t(n)]
denote the version of GapMINKTPH, where the time bound is fixed to t(|x|) on input (x, 1s). The
following is equivalent, for any constant γ > 0.

9. GapMINKTPH[t = nγ ] ∈ P.

11More specifically, the instances encode some relationships among complexity classes. See Section 2.1.3.
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For example, one can regard GapMINKTPH[t = n1/10] or GapMINKTPH[t = n100] as a problem
that characterizes the average-case complexity of PH. We mention in passing that GapMINKTPH[t =
nγ ] for γ ∈ (0, 1) can be regarded as a sublinear -time-bounded Kolmogorov complexity, which is
reminiscent of MKTP [ABK+06b, AHK17]. Here, MKTP is the problem of, given an input x,
computing the trade-off KT(x) := min{Kt(x) + t | t ∈ N } between a description length and a
(sublinear-)time bound.

We have explained the equivalence that connects average-case complexity and meta-complexity
of time-bounded Kolmogorov complexity. Our equivalence even extends to the non-existence of
a hitting set generator, which is one of the fundamental notions of complexity theory. Recall
that a family of functions H = {Hn : {0, 1}s(n) → {0, 1}n}n∈N is said to be a hitting set gener-
ator (HSG) secure against a complexity class C if, for every C ∈ C, for infinitely many n ∈ N,
Prw∼{0,1}n [C(w) = 1] ≥ 1/4 implies that C(Hn(z)) = 1 for some z ∈ {0, 1}s(n).

As observed in [HW20], it is not hard to see that the existence of a PH-computable hitting set
generator implies DistPH 6⊆ AvgP. Surprisingly, we establish the converse direction.

10. There exists no hitting set generator H = {Hn : {0, 1}n−1 → {0, 1}n}n∈N computable in
polynomial time with PH oracle that is secure against P, and P = ZPP.12

We note that the notion of hitting set generator considered here is cryptographic as opposed to
complexity-theoretic. The latter notion is suitable for derandomizing one-sided-error randomized
algorithms, and allows the computational resource for computing a hitting set generator to be larger
than its adversary. In contrast, we require that a hitting set generator H is computable in a fixed
polynomial time (with PH oracle) and H is secure against an arbitrary polynomial-time adversary.

One of the central questions about cryptographic hitting set generators is whether one can ex-
tend its seed. It is well known that a cryptographic pseudorandom generator G = {Gn : {0, 1}n−1 →
{0, 1}n}n∈N that extends its seed by one bit can be stretched to poly(n) bits. However, the corre-
sponding question on a hitting set generator is open, as raised by Rudich [Rud97]. We make the
first progress towards resolving the question, by showing that the seed of a PH-computable HSG
can be extended by 1 bit (¬Item 10) if and only if it can be extended by O(log n) bits (¬Item 11).

11. For some constant c > 0, there exists no PH-computable hitting set generator H = {Hn :
{0, 1}n−c logn → {0, 1}n}n∈N that is secure against P, and P = ZPP.

Another natural question regarding a polynomial-time-computable HSG is whether it is equiv-
alent to a sublinear-time-computable HSG. Specifically, for any constant γ > 0, we say that a
HSG H = {Hn : {0, 1}s(n) → {0, 1}n}n∈N is computable in time nγ if, given random access to
z ∈ {0, 1}s(n) and an index i ∈ [n], one can compute the ith bit of Hn(z) in time nγ . We show that
the following is equivalent for any constant γ > 0.

12. For some constant c > 0, for any constant k ∈ N, there exists no hitting set generator
H = {Hn : {0, 1}n−c logn → {0, 1}n}n∈N computable in time nγ with ΣkSAT oracle that is
secure against P, and P = ZPP.

For example, the non-existence of a PH-oracle n1/10-computable HSG (for γ := 1/10) and that of
a PH-oracle n100-computable HSG (for γ := 100) are equivalent. This is a rather counterintuitive

12For some technical reason, we include in Item 10 the mild derandomization assumption that P = ZPP. In
particular, Item 10 is equivalent to Items 1 to 9 under the assumption that P = ZPP.
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result: Naively, one can imagine that, if the time bound n1/10 is increased to n100, more strings can
be computed, and thus a hitting set generator should become more secure. As a consequence, one
might guess that Item 12 should not be equivalent to the non-existence of PH-computable hitting
set generators. This intuition turns out to be not correct.

Instead, it is instructive to consider Item 12 as a HSG analogue of the pseudorandom function
generator construction of Goldreich, Goldwasser, and Micali [GGM86], from which it follows that
any poly(n)-time computable PRG can be converted to an nγ-time computable PRG, where n
denotes the output length of PRGs. ♦

Fig. 2 summarizes some important statements and our proof strategies. On the top half of the
figure are the statements on average-case complexity. On the bottom half of the figure are the
statements on worst-case meta-complexity. The essential steps in our proof are to connect these
fundamentally different statements.

worst-case complexity

average-case complexity

1. DistPH ⊆ AvgP7. Dist(coMINKTPH) ⊆ Avg1
1−n−cP

8. Gap(KPH vs K) ∈ P
2. GapMINKTPH ∈ P

3. GapMINKTΣkSAT ∈ P

Figure 2: Some statements in the equivalence of the main theorem. The main technical implications
are highlighted in red.

One crucial step that brings us from the average-case-complexity world to the worst-case meta-
complexity world is the following, which provides the non-black-box error-tolerant worst-case-to-
average-case reduction and improves [Hir18, Hir20a].

Theorem 1.15 (Item 7 ⇒ 8). Let c > 0 be any constant and A be any NP-hard oracle.13 If
{coMINKTA} × PSamp ⊆ Avg1

1−n−cP, then Gap(KA vs K) ∈ P.

Due to the barrier of Bogdanov and Trevisan [BT06b], this step cannot be regarded as a (black-
box) worst-case-to-average-case reduction (see [Hir18, HW20] for detailed discussion); thereby it
crosses the boundary from the average-case world to the worst-case meta-complexity world.

Another crucial step that brings us from the worst-case meta-complexity world to the average-
complexity world is the following, which establishes “DistPH-hardness” of GapMINKTPH by build-
ing on the ideas developed in [Hir20c, Hir20b].

Theorem 1.16 (Item 3⇒ 1). Let A be any Σp
k-hard problem for some k ∈ N. If GapMINKTA ∈ P,

then DistΣp
k ⊆ AvgP.

Since our hardness amplification theorem for PH (Theorem 1.6) is a statement purely on average-
case complexity, it is natural to ask whether we can simplify our proof to provide a purely average-
case complexity-theoretic argument. Note that Theorem 1.16 provides an “average-case-to-worst-
case” reduction. If we could interpret this reduction as an average-case-to-average-case reduction,

13The NP-hardness of A is used to construct an explicit pseudorandom generator of logarithmic seed length secure
against linear-sized circuits. In particular, under the plausible assumption that E 6⊆

⋂
ε>0 i.o.SIZE(2εn) [IW97],

Theorem 1.15 holds for any oracle A.
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then we would have obtained an average-case complexity-theoretic proof easily. Surprisingly, the
reduction of Theorem 1.16 cannot be regarded as an average-case-to-average-case reduction for any
k ≥ 2, and it is essential to cross the boundary from the worst-case meta-complexity world to
the average-case world. It is this interplay between average-case complexity and worst-case meta-
complexity that enables resolving the fundamental open questions. The details will be explained
in Section 2.2 under the name of the “Sp

2-barrier”.
Both of Theorems 1.15 and 1.16 make use of the existence of a (complexity-theoretic) pseudo-

random generator. In fact, one of our main technical contributions is to prove P = BPP under the
assumptions that any one of Items 1 to 12 holds. For example:

Theorem 1.17 (BPP-hardness). Let A be any NP-hard oracle. If GapMINKTA ∈ P, then P =
BPP.

Fig. 3 summarizes the relationship among statements on different levels of PH.

DistPH ⊆ AvgP

DistΣp
2 ⊆ AvgP

DistNP ⊆ AvgP

GapMINKTPH ∈ P

GapMINKTNP ∈ P

GapMINKT ∈ P

Theorem 1.15

Theorem 1.16

Theorem 1.15

Theorem 1.15

Theorem 1.16

Theorem 1.16

Figure 3: The relationships between GapMINKTC for C ∈ {P,NP,PH} and average-case complex-
ity.

1.3.1 Meta-Complexity is Indispensable for Average-Case Complexity

Our results have important consequences to the open questions mentioned before.
As mentioned in Open Question 1.10, the fundamental open question of GapMINKT is to prove

its “NP-completeness”. In our previous work [Hir18, Hir20a], we showed that Open Question 1.10
is sufficient for equating the worst-case and average-case complexity of NP (i.e., Open Question 1.10
implies Open Question 1.1). The results of [Hir18] overcame the significant barrier of Bogdanov
and Trevisan [BT06b]: No non-adaptive black-box reduction can reduce NP-complete problems to
DistNP (unless PH collapses) nor reduce GapMINKT to DistNP (unless GapMINKT ∈ coNP/poly);
in contrast, the proof techniques of [Hir18] are non-black-box. However, it is possible that adaptive
reductions can also bypass the barrier of [BT06b], and it was not clear at all whether proving
NP-hardness of meta-computational problems is really necessarily for resolving Open Question 1.1.

The results of this work indicate that we cannot resolve Open Question 1.1 without resolving
“NP-hardness” of GapMINKTPH (Open Question 1.11); therefore, meta-complexity is indispensable
for studying average-case complexity. To summarize, using informal notations such as NP ≤ DistPH
(meaning that DistPH ⊆ AvgP =⇒ NP = P), we have the following relationships among open
questions.
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Corollary 1.18. Open Question 1.10 (NP ≤ GapMINKT) =⇒ Open Question 1.1 (NP ≤ DistNP)
=⇒ Open Question 1.5 (NP ≤ DistPH) ⇐⇒ Open Question 1.11 (NP ≤ GapMINKTPH).

1.3.2 A New Approach Towards Hardness Amplification for NP

There are oracles relative to which Open Questions 1.1 and 1.10 do not hold, as constructed by
Ko [Ko91] and Impagliazzo [Imp11], respectively. Therefore, we need to develop a non-relativizing
proof technique in order to resolve these open questions. In light of this, we propose an open
question that is less challenging but still has an important consequence:

Open Question 1.19 (“DistNP-hardness” of GapMINKT). Does GapMINKT ∈ P implies DistNP ⊆
AvgP?

Open Question 1.19 provides a completely new approach towards improving the hardness am-
plification result of Bogdanov and Safra [BS07] from 1/(log n)1/10 to 1/poly(n). Specifically:

Corollary 1.20 (of Theorem 1.15). Open Question 1.19 implies Open Question 1.2 (i.e., the
hardness amplification theorem for NP).14

Note that Theorem 1.16 shows “DistNP-hardness” of GapMINKTNP; Open Question 1.19 asks
whether the NP-oracle can be eliminated. It should be also noted that Open Question 1.19 would
classify the complexity of GapMINKT as a “DistNP-complete” problem in light of Theorem 1.15.

1.4 Related Work

We present several previous works that are closely related to this work as well as impacts of our
results to theirs.

1.4.1 From Average-Case Complexity to Meta-Complexity

In the area of meta-complexity, the proof techniques of average-case complexity have been
often exploited. Using random self-reducibility and downward self-reducibility of some PSPACE-
complete problem [TV07], Allender, Buhrman, Koucký, van Melkebeek, Ronneburger [ABK+06b]

showed that PSPACE ⊆ ZPPMCSPPSPACE
, and the same proof technique shows that PSPACE ⊆

ZPPGapMINKTPSPACE
. Combining their results with the BPP-hardness (Theorem 1.17), we immedi-

ately obtain “PSPACE-completeness” of GapMINKTPSPACE under deterministic reductions.

Corollary 1.21. GapMINKTPSPACE ∈ P if and only if PSPACE = P.

Proof Sketch. If GapMINKTPSPACE ∈ P, [ABK+06b] implies PSPACE = ZPP. By Theorem 1.17,
we also have ZPP ⊆ BPP = P. �

Impagliazzo, Kabanets, and Volkovich [IKV18] generalized the result of [ABK+06b] to C ⊆
BPPGapMINKTC

for any C ∈ {⊕P,P#P,PP}. As in Corollary 1.21, Theorem 1.17 enables improving
their hardness results under randomized reductions to “deterministic reductions.”

Corollary 1.22. Let C ∈ {BPP⊕P,P#P,PP}. If GapMINKTC ∈ P, then C = P.

14To be more precise, it is a corollary of Theorem 6.5 and Lemma 8.9.
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Proof Sketch. Since C includes NP (where NP ⊆ BPP⊕P is due to [VV86]),15 we can apply Theo-
rem 1.17 and obtain P = BPP; thus, [IKV18] implies C ⊆ BPP = P. �

1.4.2 From Kolmogorov Complexity to Average-Case Complexity

Previously, Kolmogorov complexity (instead of its meta-complexity) was considered as a fun-
damental tool for analyzing average-case complexity. For example, Li and Vitányi [LV92] used
Kolmogorov complexity to define a (not computable) distribution under which the average-case
and worst-case complexity are equivalent.

Antunes and Fortnow [AF09] characterized the running time of average-case algorithms by
using the notion of computational depth. The computational depth (with time bound t) of a string
x is defined as cdt(x) := Kt(x) − K(x), whose notion was introduced by Antunes, Fortnow, van
Melkebeek, and Vinodchandran [AFvMV06]. Under the assumption that exponential time is not
infinitely often in sub-exponential space, it was shown in [AF09] that, for all polynomial p, the

running time of A is bounded by 2cdp(|x|)(x)+O(log |x|) for any input x if and only if A runs in
average-case polynomial time with respect to any distribution µ ∈ PSamp.

We emphasize the fundamental differences between these previous results and this work. Our
work characterizes average-case complexity via the meta-complexity of time-bounded Kolmogorov
complexity, whereas the previous results characterize average-case complexity via Kolmogorov com-
plexity itself. It should be also noted that the result of [AF09] is a conditional result, whereas our
equivalence is unconditional, for which we make significant technical contributions.

1.4.3 Cryptographic Hitting Set Generator

Santhanam [San20] posed the Universality Conjecture, under which a “succinct” hitting set
generator can be extended arbitrary. The conjecture cannot be refuted unless one-way functions
fail to exist, and, at the same time, its solvability remains unclear. It is left as an interesting
research direction to make progress towards the Universality Conjecture using the proof techniques
behind Theorem 1.14, which shows that a PH-computable hitting set generator can be slightly
extended.

1.4.4 Hardness Amplification

We mention some previous works on hardness amplification. Impagliazzo, Jaiswal, Kabanets,
and Wigderson [IJK09, IJKW10] showed a uniform version of Yao’s XOR lemma; in particular,
it was shown that, if PNP

‖ × {U} ⊆ Heur1/2+1/poly(n)BPP, then PNP
‖ × {U} ⊆ Heur1/poly(n)BPP.

Bogdanov and Safra [BS07] proved a non-uniform and errorless version of Yao’s XOR lemma, and
showed that if C × {U} ⊆ Avg1−1/poly(n)P/poly then C × {U} ⊆ AvgP/poly for any class C closed
under taking XORs.

Note that, if there were a uniform and errorless version of Yao’s XOR lemma, it would have
provided an alternative proof of the PH analogue of Open Question 1.2 (i.e., the hardness ampli-
fication theorem for PH against uniform algorithms). However, it was noted in [Wat15] that the
proof techniques of [IJK09, IJKW10] “do not seem to apply to the errorless setting.”

15Since it is not known whether NP ⊆ ⊕P, we do not know whether Corollary 1.22 holds for C = ⊕P.
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2 Proof Techniques

We present more details of our proof techniques. The following are highlights of our new
technical contributions.

Derandomization (BPP-hardness)
If GapMINKTNP ∈ P, then P = BPP (Theorem 1.17).

DistPH-hardness
If GapMINKTPH ∈ P, then DistPH ⊆ AvgBPP = AvgP (Theorem 1.16).

Error-tolerant worst-case-to-average-case reduction
If coMINKTPH × PSamp ⊆ Avg1

1−1/poly(n)P, then Gap(KPH vs K) ∈ P (Theorem 1.15).

These results are explained in the following subsections.

2.1 Derandomization

A large disparity between the statements that GapMINKTPH ∈ P and that DistPH ⊆ AvgP is
that the latter statement implies P = BPP [BFP05] whereas it was not known whether the former
implies P = BPP. In order to establish the equivalence, we need to develop a proof technique that
yields the same consequence.

Theorem 1.17. If GapMINKTNP ∈ P, then P = BPP.

2.1.1 Background

Before explaining its proof, we emphasize again that Theorem 1.17 is a highly non-trivial re-
sult. If GapMINKTNP is NP-hard, then we will obtain P = NP (under the assumption that
GapMINKTNP ∈ P), and consequently BPP ⊆ NPNP ⊆ P. However, GapMINKTNP asks for the
meta-complexity of minimizing an NP-oracle program, and the relationship between the “plain
complexity” of NP and the meta-complexity of GapMINKTNP is not obvious at all. Nevertheless,
we were able to “extract” the plain complexity of BPP from the meta-complexity of GapMINKTNP

via a deterministic reduction. In fact, Theorem 1.17 is one of the most technical components in
this paper.

There is a significant technical barrier that we need to overcome. It has been deemed that de-
terministic reductions are too restricted notions to extract plain complexity from meta-complexity.
For example, Buhrman and Mayordomo [BM97] showed that EXP 6= PRKt(n) , where t(n) := 2n

2
and

RKt(n) denotes the set {x ∈ {0, 1}∗ | Kt(|x|)(x) ≥ |x| } of time-bounded-Kolmogorov-random strings.
As a consequence, we cannot prove ZPP ≤pT RKt(n) without resolving the notorious open question
EXP 6= ZPP. Similarly, Murray and Williams [MW17] showed that ZPP ≤pm MCSP implies that
EXP 6= ZPP.16

It is instructive to recall the ideas behind [BM97, MW17] in order to explain why deterministic
reductions are significantly restricted. The main reason is that a deterministic reduction cannot
produce any string with high Kolmogorov complexity. To be more specific, let 1n be an input
to a (nonadaptive) deterministic polynomial-time reduction M , and consider an arbitrary query

16The relationship between [BM97] and [MW17] can be found in [HW16]. See also [SS20] for recent results.
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q that M can yield on input 1n. The query q can be described by using the program M , the
input length n, and the index of the queries, whose description length is O(log n); thus, we always
have Kt(q) = O(log n) for a sufficiently large t, and thus q 6∈ RKt(n) for any query q such that
|q| > O(log n). This means that any nonadaptive deterministic polynomial-time reduction cannot
extract any useful information on whether q ∈ RKt(n) for any long query q.

Based on this intuition, Allender, Buhrman, and Koucký [ABK06a] and Allender [All12] pro-
posed several conjectures on the limits of hardness results of (resource-unbounded) Kolmogorov
complexity, which, if true, would establish severe limits that plain complexity cannot be extracted
from meta-complexity.17

In our previous works [Hir20c, Hir20b], we presented unexpected hardness results that refute
these conjectures under plausible complexity-theoretic assumptions. We prove Theorem 1.17 based
on the proof ideas developed in [Hir18, Hir20a, Hir20c, Hir20b]. In order to improve the efficiency of
reductions, we will require a new black-box hitting set generator construction whose reconstruction
algorithm uses few random bits.

2.1.2 Proof Outline

We outline the proof of Theorem 1.17. The starting point is the result of Buhrman, Fortnow,
and Pavan [BFP05] that shows that, if DistNP ⊆ AvgP, then P = BPP. In fact, their result
is stronger: There exists an explicit (complexity-theoretic) pseudorandom generator G = {Gn :
{0, 1}O(logn) → {0, 1}n}n∈N secure against linear-sized circuits. Note that, once a pseudorandom
generator with logarithmic seed length is constructed, we can derandomize any BPP-computation
by trying all the possible seeds z ∈ {0, 1}O(logn) and using Gn(z) as the source of randomness. We
will also show (and need) a stronger result that GapMINKTNP ∈ P implies the existence of a nearly
optimal pseudorandom generator.

We review the proof of [BFP05] below. Their proof relies on the following two results:

1. If DistNP ⊆ AvgP then E = NE [BCGL92].

2. If DistNP ⊆ AvgP then pr-MA = NP [KS04].

It was shown in [BFP05] that these results imply the existence of a nearly optimal pseudorandom
generator. (Proof Sketch: E ⊆ i.o.SIZE(2o(n)) implies E ⊆ i.o.MATIME(2o(n)) = i.o.NTIME(2o(n)),
which contradicts E = NE and the deterministic time hierarchy theorem.)

Our plan is to replace the assumption that DistNP ⊆ AvgP of Items 1 and 2 with one that
GapMINKTNP ∈ P. It is not hard to see that GapMINKTNP ∈ P implies pr-MA = NP, which
establishes the GapMINKTNP analogue of Item 2. Indeed, as shown in [ABK+06b], in order to
nondeterministically derandomize pr-MA, one can guess a hard function f , verify the hardness of f
using GapMINKT, and derandomize pr-MA by using standard pseudorandom generator construc-
tions Gf (such as [NW94, IW97]) based on a hard function f .

In contrast, the GapMINKTNP analogue of Item 1 is much more technically difficult. At the
core of Theorem 1.17 is the following new hardness result under deterministic reductions.

Theorem 5.1. ENP is reducible to GapMINKTNP via a deterministic nonadaptive E-reduction. In
particular, ENP = E holds if GapMINKTNP ∈ P.

17Allender, Friedman, and Gasarch [AFG13] made remarkable progress by showing that any computable language
that is reducible to the set of prefix-free Kolmogorov-random strings under deterministic polynomial-time nonadaptive
reductions (irrespective of the choice of prefix-free universal Turing machines) is in PSPACE.
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Interestingly, this result bypasses the technical barrier mentioned before: The reduction of
Theorem 5.1 extracts useful information from short queries to GapMINKTNP oracle. On the other
hand, it is difficult to prove a similar hardness result for problems on “subpolynomial”-time-bounded
Kolmogorov complexity, such as MKTPNP or MCSPNP.

Proposition 2.1 (see [Hir20b]). If ENP is reducible to either MCSPNP or MKTPNP via a deter-
ministic nonadaptive E-reduction, then EXP 6= ZPP.

2.1.3 Meta-Computational View of ENP versus E

Below, we explain the idea of the new ENP-hardness of GapMINKTNP under E-reductions
(Theorem 5.1). For simplicity, we explain the idea of the proof that shows ENP = E under the
assumption that GapMINKTNP ∈ P.

What we aim to understand is the relationship between the two complexity classes: One is ENP

and the other is E. It is useful to view the relationship from the meta-computational perspective.
Specifically, stepping back, let us rephrase the question of ENP versus E as the question of time-
bounded Kolmogorov complexity. Using the fact that ENP = E if and only if ENP ⊆ E/O(n)
[BH92, Hir15], it is not hard to observe the following.

Fact 2.2. Assume that, for all A ∈ NP, there exists some polynomial τ such that, for any t ∈ N
and any family of strings {xN ∈ {0, 1}N}N∈N with Kt,A(xN ) = O(logN), it holds that Kτ(N,t)(x) =
O(logN). Then, ENP = E.

Proof. Consider any function f = {fn}n∈N ∈ ENP. Let xN ∈ {0, 1}N be the truth table of
fn : {0, 1}n → {0, 1}, where n := logN . Since f ∈ ENP, the truth table xN can be described
by using the description of N in polynomial time with NP oracle; that is, Kt,A(xN ) = O(logN) for
some A ∈ NP and some t = poly(N). By the assumption, it follows that Kpoly(N)(xN ) = O(logN);
therefore, there exists some description dN of length O(logN) such that the universal Turing ma-
chine UdN computes each bit of xN in time poly(N). This means that there exists a machine that
takes an advice string dN of length O(logN) = O(n), runs in time NO(1) = 2O(n), and computes
fn, which means that ENP ⊆ E/O(n). �

Fact 2.2 reveals the relationship between the assumption that GapMINKTNP ∈ P and the
conclusion that ENP = E. Assuming that the meta-complexity of GapMINKTNP is easy, we would
like to extract a “plain complexity” statement that Kpoly(|x|,t)(x) ≤ O(Kt,NP(x)) for any x such that
Kt,NP(x) = O(log |x|).

With this view in mind, it turns out that the non-black-box worst-case-to-average-case reduction
of [Hir18, Hir20a] is useful.

Theorem 2.3 ([Hir20a]). Let A be any oracle. Assume that there exists an explicit pseudoran-
dom generator G = {Gn : {0, 1}O(logn) → {0, 1}n}n∈N secure against linear-sized circuits, and
that there exists an errorless heuristic polynomial-time algorithm that solves MINKTA. Then,
Gap(KA vs K) ∈ P.

The statement of Theorem 2.3 is purely meta-complexity-theoretic. It establishes the con-
nection between two meta-computational problems MINKTA and Gap(KA vs K). Neverthe-
less, from the “non-disjoint” property of Gap(KA vs K), we can immediately extract the infor-
mation on plain complexity: Specifically, the statement that Gap(KA vs K) ∈ P implies that
Kpoly(|x|,t)(x) ≤ Kt,A(x) +O(log(|x|+ t)) for any x ∈ {0, 1}∗ and t ∈ N.
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A demerit of Theorem 2.3 is that it is a conditional result that relies on the existence of a nearly
optimal pseudorandom generator. Recall that we aim to construct a pseudorandom generator in the
end; therefore, Theorem 2.3 is clearly not useful for our purpose. Without using a pseudorandom
generator, the approximation quality of the non-black-box worst-case-to-average-case reduction of
[Hir18] is significantly worse.

Theorem 2.4 (Implicit in [Hir18, Hir20a]). Let A be any oracle. If MINKTA ∈ P, then Kpoly(|x|,t)(x) ≤
σ(|x|,Kt,A(x)), where σ(n, s) := s+O(

√
s log n+ log2 n).

In particular, we obtain Kpoly(|x|,t)(x) = O(log2 |x|) for any x such that Kt,A(x) = O(log |x|).
Using the meta-complexity view of Fact 2.2, it follows from Theorem 2.4 that ENP ⊆ E/O(n2) if
GapMINKTNP ∈ P. Unfortunately, this is not efficient enough for constructing a pseudorandom
generator with logarithmic seed length. At the core of Theorem 5.1 is the following improvement.

Theorem 8.1. Let A be an oracle. Assume either GapMINKTA ∈ P or (coMINKTA,D) ∈
Avg1

1/4mP for any efficiently samplable distribution D.18 Then, there exists a polynomial-time
algorithm that solves the following promise problem Π = (ΠYes,ΠNo).

ΠYes := { (x, 1t, 1s) | Kt,A(x) ≤ s and s ≤ 2log1/3 |x| },

ΠNo := { (x, 1t, 1s) | Kτ(|x|,t)(x) > σ(|x|, t, s) and s ≤ 2log1/3 |x| },

where σ(n, t, s) := 2s+O(log nt) and τ is some polynomial.

To compare Theorem 8.1 with [Hir18], the worst-case to average-case reduction of [Hir18] is a
randomized reduction that achieves σ(n, s) = s+O(

√
s log n+log2 n). Theorem 8.1 is a deterministic

reduction, and moreover it achieves a smaller σ if s ≤ log2 n.

Corollary 2.5. Under the same assumption of Theorem 8.1, Kτ(|x|,t)(x) ≤ 2Kt,A(x) + O(log |x|)
holds for any t ∈ N and any x ∈ {0, 1}∗ such that Kt,A(x) ≤ 2log1/3 |x|.

Proof. Define s := Kt,A(x). Since there exists some algorithm that solves Π = (ΠYes,ΠNo), the
promise problem must be disjoint; that is, ΠYes ∩ ΠNo = ∅. Since (x, 1t, 1s) ∈ ΠYes, we obtain
(x, 1t, 1s) 6∈ ΠNo, from which the result follows. �

This enables us to show that GapMINKTNP ∈ P implies Kpoly(|x|,t)(x) = O(log |x|) for any x
such that Kt,NP(x) = O(log |x|), and thus ENP ⊆ E follows from Fact 2.2.

2.1.4 Improved Black-Box Hitting Set Generator Construction

It remains to explain how to prove Theorem 8.1. A tool to connect plain complexity and
meta-complexity is a black-box hitting set generator construction.

The standard construction of a complexity-theoretic hitting set generator (or a pseudorandom
generator of, e.g., [NW94, IW97]) can be regarded as a “black-box” procedure H that takes an
arbitrary candidate hard function f and a seed z, and outputs a pseudorandom sequence H(f, z).
Let us identify a function f : {0, 1}logn → {0, 1} with its truth table f ∈ {0, 1}n, and let H : {0, 1}n×
{0, 1}d → {0, 1}m be a black-box hitting set generator construction. Then, the security of a
candidate hitting set generator H(f, -) : {0, 1}d → {0, 1}m is established as follows. There exists

18In fact, the former assumption is stronger than the latter in some sense; see Lemma 8.2
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some efficient “reconstruction procedure” R(-) associated with H such that, given any function
D : {0, 1}m → {0, 1} that avoids H(f, -) (which means that D violates the condition of the security
of H(f, -)), the reconstruction procedure RD(α) computes f for some advice string α ∈ {0, 1}a.
In particular, if f is a hard function that cannot be computed by a small circuit, then D cannot
be a small circuit. This shows the security of the hitting set generator H(f, -) based on a hard
function f . It was shown in [Hir20a] that any black-box hitting set generator construction yields a
non-black-box worst-case to average-case reduction analogous to Theorem 8.1.

However, the parameters that are required to achieve the approximation quality of Theorem 8.1
are considerably stringent. We need to construct a black-box hitting set generator with advice
complexity a = O(m) when m = O(log n). The main technical component of Theorem 5.1 is to
construct such a hitting set generator:

Theorem 4.3. For any sufficiently large n,m ∈ N such that m ≤ 2n, there exists a function
H : {0, 1}n×{0, 1}d → {0, 1}m and a deterministic reconstruction procedure R(-) : {0, 1}a → {0, 1}n,
where d = O(log n + log3m) and a = 2m + O(log n + log3m), such that, for any x ∈ {0, 1}n and
any function D : {0, 1}m → {0, 1} that avoids H(x, -), there exists an advice string α such that
RD(α) = x. Moreover, H can be computed in time poly(n) and RD can be computed in time
poly(n) with oracle access to D.

Using Theorem 4.3, we can prove Theorem 5.1 as follows. Using GapMINKTNP oracle, we
define an efficient algorithm D that avoids H(f, -) for any function f ∈ ENP.19 Theorem 4.3 implies
that f ∈ ED/O(n) = E/O(n). We conclude that ENP ⊆ E/O(n), which is equivalent to ENP = E.
The details are presented in Section 5.

It should be noted that, usually, the reconstruction algorithm RD(-) takes random bits in
addition to an advice string. For our applications, it is crucial that a reconstruction algorithm
is deterministic, or, in other words, random bits must be counted as the length of advice. In
contrast, for the purpose of constructing a hitting set generator based on a hard function, we do
not need to count the number of random bits as advice complexity, since random bits can be fixed
as a non-uniform advice of a circuit (as in, e.g., [Uma09]). Consequently, we could not find any
previous black-box hitting set generator whose reconstruction procedure uses O(m) random bits
and an advice string of length O(m) for m = O(log n) in the literature (e.g., [SU05, ISW06, TUZ07,
Uma09]).

Nonetheless, we were able to construct the hitting set generator of Theorem 4.3 by combining
the ideas of Umans [Uma09] and Ta-Shma, Umans, and Zuckerman [TUZ07]. Common to the
ideas of [Uma09, TUZ07] is to iteratively compose a black-box construction with itself. Based on
iterated compositions, Umans [Uma09] presented an “optimal” hitting set generator construction
(which is not enough for our purpose because of the randomness complexity of the reconstruction
algorithm). Ta-Shma, Umans, and Zuckerman [TUZ07] constructed an extractor, which is a weaker
object than a black-box pseudorandom generator construction, as shown in the insightful work of
Trevisan [Tre01].

The parameters achieved in [TUZ07] would have been enough for our applications. Unfortu-
nately, they only constructed an extractor, which is an information-theoretic object and does not
yield a black-box hitting set generator construction. Our main technical contribution is to make
the composition of [TUZ07] work while maintaining the property of a hitting set generator.

19For a function f : {0, 1}n → {0, 1}, D avoids H : {0, 1}2
n

× {0, 1}d → {0, 1}m of Theorem 4.3 in time 2O(n),
where m = O(n).

21



Roughly speaking, the extractor Ext of [TUZ07] is constructed as follows. [TUZ07] first con-
structs a lossless condenser Cn that takes an input x of length n, and compresses x to a string
of length n1/2m while maintaining the min-entropy of the input distribution and using O(log n)
random bits. Composing the condenser Cn with itself K := log(log n/ logm) times, the condenser
C ′ := CmO(1) ◦· · ·◦Cn1/4m1+1/2 ◦Cn1/2m◦Cn that compresses an n-bit string to an mO(1)-bit string is
constructed. In the last step, Ext is constructed by composing the condenser C ′ with an extractor
that extracts m random bits from the mO(1)-bit strings. The key idea behind the composition is
that the randomness used by C ′ is at most

∑
k≤K O(2−k log n + logm) = O(log n) bits, which is

better than directly constructing a condenser that compresses n-bit strings to mO(1)-bit strings.
We construct our hitting set generator in a similar approach. In our case, however, it is essential

that we do not apply Yao’s distinguisher-to-next-bit-predictor transformation (which costs m ran-
dom bits to the reconstruction procedure) for each composition step. Since there are ω(1) rounds
of compositions, we cannot spend O(log n) random bits per round. We overcome this difficulty as
follows. First, using randomness efficient sampling (specifically, a hitter that uses m + O(log n)
random bits [Gol11]), we repeat Yao’s distinguisher-to-next-bit-predictor transformation so that
the transformation succeeds with high probability. Then, at each composition step, we reuse the
randomness of the reconstruction procedure, thereby spending at most m + O(log n) random bits
in the overall steps. The randomness of the reconstruction procedure can be reused because we can
apply a union bound to upper-bound a failure probability. The main difficulty in the proof is to
find a right definition of a black-box hitting set generator construction to enable the composition
with a small overhead. The definition can be found in Definition 4.1, and the details of the proof
are presented in Section 4.

We briefly mention the relationship between our proof techniques and previous works on meta-
complexity. It is common to use a black-box construction of pseudorandom generators in order
to analyze meta-complexity, as first systematically explored by the work of Allender, Buhrman,
Koucký, van Melkebeek, and Ronneburger [ABK+06b] (as well as subsequent works such as [CIKK16,
OS17, HS17]). However, a typical construction of pseudorandom generators requires a significant
amount of non-uniformity or randomness in the reconstruction procedure, which makes hardness
reductions highly non-uniform or randomized. What is crucial for this work and the recent work
[Hir20b] is to minimize the amount of non-uniformity, which enables us to show hardness results
under uniform and deterministic reductions.

2.2 DistPH-Hardness of GapMINKTPH

We explain the proof ideas of DistPH-hardness of GapMINKTPH.

Theorem 1.16. If GapMINKTPH ∈ P, then DistPH ⊆ AvgP.

This result improves and significantly generalizes the result of our previous work [Hir20b] that
shows that GapMINKTNP ∈ BPP implies DistNP ⊆ HeurBPP. Specifically, our result is a hardness
result under the errorless notion (HeurBPP versus AvgBPP or AvgP). Furthermore, we generalize
DistNP-hardness to DistPH-hardness.

One might feel that it should be easy to extend DistNP-hardness of GapMINKTNP to DistPH-
hardness of GapMINKTPH. However, we emphasize that these hardness results are fundamen-
tally different from the perspective of black-box reductions, and we need to overcome the “Sp

2-
barrier”: briefly, the DistNP-hardness can be regarded as an average-case-to-average-case reduction,
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whereas the DistPH-hardness is an average-case-to-worst-case reduction and cannot be regarded as
an average-case-to-average-case reduction.

First, as a special case, observe that we need to reduce any tally language L ⊆ {1}∗ in PH to
GapMINKTPH. (Indeed, any sparse language must be solved exactly by considering a samplable
distribution that is supported on a sparse language, as in [BCGL92].) By a padding argument,
whether one can reduce a tally language in PH to GapMINKTPH is equivalent to whether the
linear-exponential-time hierarchy EH is reducible to GapMINKTPH via a linear-exponential-time
reduction (i.e., E-reduction).

With this view in mind, the starting point is the unexpected hardness results of [Hir20c] that
refuted Allender’s conjecture [All12]. Specifically, it was shown that EXPH ⊆ EXPRK

‖ , where RK

is the set of (resource-unbounded) Kolmogorov-random strings and EXP‖ stands for nonadaptive

exponential-time reductions, and that Sexp
2 is exactly characterized by

⋂
D EXPD‖ , where the in-

tersection is taken over all one-sided-error heuristic oracles D for RK. (More formally, D is an
arbitrary dense subset of RK; however, it is useful to consider D as a one-sided-error heuristic
algorithm for RK, which are essentially equivalent.)

By a padding argument, the proofs of [Hir20c] can be translated to a quasi-polynomial-time
reduction from any tally language in PH to RK. This is not efficient enough. However, it was shown
in [Hir20b] that the running time can be optimized using a “k-wise direct product generator” DPk,
which is a black-box pseudorandom generator construction that achieves nearly optimal advice
complexity.

For any n, k ∈ N, the k-wise direct product generator DPk : {0, 1}n × {0, 1}d → {0, 1}d+k

is defined as DPk(x, z̄) = (z1, · · · , zk, x̂(z1), · · · , x̂(zk)) for x ∈ {0, 1}n and z̄ := (z1, · · · , zk) ∈
({0, 1}O(logn))k, where x̂ denotes an error-corrected version of x and x̂(zi) denotes the zith bit
of x̂. This is essentially a degenerated case of the Nisan–Wigderson pseudorandom generator
[NW94],20 and thus the security of DPk can be easily proved using a standard hybrid argument.
The important property of the simple pseudorandom generator construction DPk is that it achieves
the nearly optimal advice complexity of k+O(log k). Indeed, Trevisan and Vadhan [TV07] showed
that the advice complexity of any black-box pseudorandom generator construction must be at least
(d+ k)− d−O(1) = k −O(1), using its connection to an extractor. (Note that, unlike the advice
complexity considered in Section 2.1.4, we do not count as advice complexity the number of random
bits used by a reconstruction procedure.) The construction DPk was a principal tool for improving
the approximation quality of non-black-box worst-case to average-case reductions, as in [Hir20a]
(i.e., Theorem 2.3), and will be used again in Section 2.3.

2.2.1 An Exposition of DistNP-Hardness

Using the fact that the advice complexity of DPk is small, we review the DistNP-hardness result
of GapMINKTNP shown in [Hir20b]. For simplicity, we assume that the oracle is MINKTNP, i.e.,
the exact version of GapMINKTNP. Without loss of generality, it suffices to show the hardness
result under the uniform distribution, owing to a result of Impagliazzo and Levin [IL90]. Consider
a random input x ∼ {0, 1}n. Let V (x, y) be an NP verifier that takes nondeterministic bits y,
and we aim to simulate V on average. The important property of a random input x is that the
computational depth cdt(x) of x is small. Indeed, cdt(x) := Kt(x)−K(x) ≈ n− n = 0 holds with

20The standard definition of the Nisan–Wigderson generator does not include the seed in the output; however, the
generator remains secure even if the seed is included in the output [KvMS12].

23



high probability for any time bound t.
We present an algorithm that simulates V (x, y) in time 2cdt(x)+O(logn) for some t := poly(n)

and for every x of length n, as expected from the work of Antunes and Fortnow [AF09] (cf.
Section 1.4.2).21 Let yx denote the lexicographically first NP certificate such that V (x, yx) = 1.
Consider the candidate pseudorandom generator DPk(yx, -) instantiated with yx as a candidate
hard function, where k is a parameter chosen later. Since yx can be computed in polynomial time
with NP oracle, for any z̄ ∈ {0, 1}d and for most w ∼ {0, 1}d+k, for a sufficiently large polynomial
t = poly(n), it holds that22

K2t,NP(x,DPk(yx, z̄)) ≤ Kt,NP(x) + d+O(log n),

K(x,w) ≥ K(x) + d+ k −O(log n),

where the second inequality follows from the symmetry of information of (resource-unbounded)
Kolmogorov complexity. By choosing k := Kt,NP(x)−K(x) +O(log n) = cdt,NP(x) +O(log n) and
defining the function D as D(w) := 0 iff K2t,NP(x,w) ≤ Kt,NP(x) + d + O(log n), we obtain that
D is a distinguisher for DPk(yx, -). Therefore, by the reconstruction property of DPk(yx, -), there
exists an advice string of length roughly k that enables the reconstruction of yx. Exhaustively
trying all the advice strings in time 2k+O(logn) ≤ 2cdt(x)+O(logn), one can find the certificate yx,
whose correctness can be verified using V . (In fact, the running time is faster, and it runs in time

2cdt,NP(x)+O(logn).)

2.2.2 Sp
2-Barrier

A couple of remarks on the DistNP-hardness are in order. Firstly, it is not difficult to make
the heuristic algorithm an errorless randomized algorithm. Indeed, one can verify that D is a
distinguisher by randomly sampling w and verifying that D(w) = 1 holds with high probability,
in which case the algorithm can enumerate the first certificate yx for sure. Therefore, DistNP ⊆
AvgBPPD holds for any oracle D that solves GapMINKTNP. Secondly, the randomized algorithm
BPP can be derandomized using the pseudorandom generator constructed in Section 2.1; therefore,
DistNP ⊆ AvgBPP = AvgP if GapMINKTNP ∈ P.23

Lastly and most importantly, one can observe that the reduction to GapMINKTNP actually
works even for any (black-box) one-sided-error heuristic algorithm D that solves coGapMINKTNP

or RK on average. Using the characterization that Sexp
2 =

⋂
D EXPD‖ [Hir20c], it is not hard to

observe that the reduction of Section 2.2.1 can be simulated by an Sp
2-type computation on a unary

input.24 Here, Sp
2 denotes the second level of the symmetric hierarchy, and PNP ⊆ Sp

2 ⊆ ZPPNP

[Can96, RS98, Cai07]. In order to extend the DistNP-hardness to DistPH-hardness, we must develop
a fundamentally different reduction that overcomes the Sp

2-barrier of black-box reductions.

21We use the notion of computational depth for illustration purposes only, and do not use it in the actual proof.
22Kt,NP(x) is an informal notation that should be regarded as Kt,SAT(x).
23In fact, the number of random bits used by the reduction is at most polylog(n). Thus, the reduction can be

regarded as a deterministic quasi-polynomial-time reduction without using the pseudorandom generator.
24Indeed, two competing provers send candidate one-sided-error heuristic algorithms D1, D2, respectively (by

enumerating all the input-and-answer pairs), a verifier checks if D1 and D2 accept most inputs, and then runs
the reduction with oracle D1 ∧ D2, which is guaranteed to be a one-sided-error algorithm. Since the reduction of
Section 2.2.1 can be regarded as a deterministic quasi-polynomial-time reduction, the running time of the Sp

2-type
simulation is quasi-polynomial.
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2.2.3 DistPH-Hardness

Now we explain the idea of the reduction that proves the DistPH-hardness of GapMINKTPH

and overcomes the Sp
2-barrier. For simplicity, we present DistΣp

2-hardness of MINKTPH. Let L ∈ Σp
2

and V (x, y, z) be a Σp
2-type verifier such that x ∈ L if and only if ∃y,∀z, V (x, y, z) = 1. Our goal

is to simulate V on average.
A basic proof idea is reminiscent of the result of [Hir20c] showing that EXPH ⊆ EXPRK

‖ . Specif-

ically, we take small lists Lx,Lx,y such that x ∈ L if and only if ∃y ∈ Lx,∀z ∈ Lx,y, V (x, y, z) = 1.25

Note that, if the lists are small and efficiently computable, we can easily simulate V by trying every
y ∈ Lx and z ∈ Lx,y. The question is how to define these lists.

A First Attempt. Following the idea of DistNP-hardness of Section 2.2.1, the first attempt would
be to define the list Lx as the output of all the possible outputs of the reconstruction procedure given
the distinguisher D as oracle. Note that the size of the list is approximately at most |Lx| . 2cdt(x).
We can define the list Lx,y in the exactly same way so that |Lx,y| . 2cdt(x,y). Unfortunately, this
approach is problematic. There may exist y ∈ Lx such that cdt(x, y) ≥ |y|, which is significantly
large; as a consequence, the list Lx,y becomes too large to be enumerated efficiently.

Our Solution. We resolve this issue as follows. We define a partial list L′x of Lx as { y ∈ Lx |
Kt,PH(x, y) ≤ |x|+O(log n) }. The key idea behind this definition is that we do not have to consider
every candidate y. Recall that the goal is to simulate ∃y,∀z, V (x, y, z) = 1, and thus it suffices to
find the lexicographically first certificate yx. In particular, we have Kt,PH(x, y) ≤ |x| + O(log n)
for some large t and y := yx. We check this condition, and we take the partial list L′x of the
certificates y that passed the test. We then define Lx,y as before, except that we only consider
y ∈ L′x. The correctness of this algorithm can be proved easily (i.e., x ∈ L if and only if ∃y ∈
L′x, ∀z ∈ Lx,y, V (x, y, z) = 1).

In order to bound the running time of the reduction, we need to claim that the size |Lx,y| of
the list Lx,y is not large for any y ∈ L′x. This can be shown for a random input x ∼ {0, 1}n
as follows. Recall that K(x) ≈ n holds with high probability by a simple counting argument.
Therefore, cdt,PH(x, y) = Kt,PH(x, y)−K(x, y) . n+O(log n)−n = O(log n), from which it follows

that |Lx,y| . 2cdt,PH(x,y) = nO(1) as desired.

Sp
2-Barrier Finally, let us see why our DistPH-hardness reduction overcomes the Sp

2-barrier dis-
cussed earlier. Specifically, we explain the reason why the reduction is not a “black-box” reduction
that works for any one-sided-error heuristic algorithm. The reason is that the partial list L′x cannot
be defined with a one-sided-error heuristic oracle that solves coMINKTPH. Indeed, what is crucial
in the reduction above is to reject every y such that Kt,PH(x, y) > |x| + O(log n). Although this
is possible with a MINKTPH oracle, it is not necessarily possible with a one-sided-error heuristic
oracle for coMINKTPH.

2.3 Error-Tolerant Worst-Case-To-Average-Case Reduction

The proof techniques (and the previous result of Theorem 2.3 [Hir20a]) presented so far are
sufficient to show the equivalence between DistPH ⊆ AvgP and GapMINKTPH ∈ P. However, they

25In [Hir20c], the lists Lx and Lx,y are defined as all the truth tables of circuits of size p(|x|) and q(|x|), respectively,
where p and q are polynomials such that p� q.

25



are insufficient for obtaining the hardness amplification theorem for PH. We now explain the error-
tolerant non-black-box worst-case-to-average-case reduction, which brings us from the average-case
complexity world to the worst-case complexity world.

Theorem 1.15. Let c > 0 be any constant and A be any NP-hard oracle. If {coMINKTA} ×
PSamp ⊆ Avg1

1−n−cP, then Gap(KA vs K) ∈ P.

First, the pseudorandom generator constructed in Section 2.1 (under the assumption that
GapMINKTNP ∈ P) can be obtained here as well. Thus, in the remainder of the proof sketch,
we make use of a nearly optimal pseudorandom generator G = {Gn : {0, 1}O(logn) → {0, 1}n}n∈N.

As explained in Section 1.3, the improvement is due to the fact that the time bound t of MINKT
can actually be fixed to nγ , where γ > 0 is an arbitrary constant. Consider a version of MINKT
whose parameters are fixed as follows.

Definition 2.6. For functions t, s : N → N and an oracle A, let MINKTA[t = t(n), s = s(n)]
denote the language {x ∈ {0, 1}∗ | Kt(|x|),A(x) ≤ s(|x|) }.

Then, we show a non-black-box worst-case-to-average-case reduction from Gap(KA vs K) to the
distributional problem (coMINKTA[t = nγ , s = n − log(n/δ(n))],U), where U = {Un}n∈N denotes
the family of the uniform distributions Un over {0, 1}n.

Lemma 8.9. Let γ > 0 be any constant, δ : N → (0, 1) be any function such that δ(n)−1 = nO(1),
and A be any oracle. Assume that (coMINKTA[t = nγ , s = n− log(n/δ(n))],U) ∈ Avg1

1−δ(n)P and

that there exists a nearly optimal pseudorandom generator. Then, Gap(KA vs K) ∈ P.

We emphasize that the existence of a pseudorandom generator in the assumption of Lemma 8.9
is essential for the proof; without the existence of a pseudorandom generator, we do not know how
to prove the correctness of a randomized reduction. In fact, we make use of the pseudorandom
generator thrice—once for derandomizing the randomized non-black-box reductions, once for de-
randomizing a reconstruction algorithm (which enables us to improve the approximation quality of
Gap(KA vs K)), and once for making the time bound t large.

We review the proof idea of Theorem 2.3 [Hir20a]. The key is to use the k-wise direct product
generator DPk : {0, 1}n × {0, 1}d → {0, 1}d+k that achieves the nearly optimal advice complexity.
Let (x, 1t, 1s) be an input to Gap(KA vs K). The reduction is a simple randomized reduction that
maps the instance (x, 1t, 1s) to an instance (DPk(x, z), 1

t′ , 1d+k−2) of coMINKTA, where n := |x|,
k := s+O(log n), t′ = poly(n, t), and z ∼ {0, 1}d.

The correctness of the reduction can be proved using the reconstruction property of DPk and
the existence of a pseudorandom generator. Roughly speaking, the idea of the reduction is that the
instance x of length n is mapped to a compressed instance DPk(x, z) of length d+s+O(log n). It is
easy to see that any instance x that can be compressed to s bits is mapped to an instance DPk(x, z)
that can be compressed. Conversely, if x cannot be compressed, DPk(x, z) cannot be distinguished
from the uniform distribution by the one-sided-error heuristic algorithm coMINKTA, which can
be proved using the reconstruction property. Note here that the reconstruction procedure of DPk
uses a significant amount of d = O(k log n) random bits; using the nearly optimal pseudorandom
generator, one can reduce the randomness, which enables us to improve the approximation error of
GapMINKTA from an O(log n)-factor approximation to an additive error of O(log n).

Note that the time parameter t is mapped to some t′. In order to solve Gap(KA vs K) on an
instance (x, 1t, 1s) for every t, it was previously assumed that the heuristic algorithm for coMINKTA

succeeds for every t′, which is the reason why the required success probability was significantly large.
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2.3.1 A Padding Argument

Now, we would like to extend the reduction of [Hir20a] described above to a reduction to
coMINKTA[t = nγ , s = s(n)]. For simplicity, we describe the case when s(n) = n− 2 and γ = 2.

The main idea is to use a padding argument. In fact, it is easy to see that GapMINKT ∈ P if
and only if GapMINKT[t = n2] ∈ P: Given an instance (x, 1t, 1s) of GapMINKTA, one can map it
to an instance (x1t, 1s+O(logn)) of GapMINKT[t = n2]. Since the length of the string x1t is at least
t, x1t can be compressed in t2 time steps (see Proposition 3.6 for a formal proof).

The padding argument that maps x to x1t works in the worst-case-to-worst-case reduction.
However, the same padding argument does not work in the case of worst-case-to-average-case
reductions. For this, we instead pad the length of x by mapping x to x · w, where w is a string
chosen at random from a uniform distribution.

More precisely, we map an instance (x, 1t, 1s) of GapMINKTA to an instance DPk(x, z) · w of
coMINKTA[t = n2, s = n − 2], where w ∼ {0, 1}t. The correctness of the reduction can be shown
roughly as follows. If x can be compressed to s bits, then DPk(x, z)·w can be compressed to a string
of approximate length s+ d+ t < k+ d+ t− 2; thus, DPk(x, z) ·w is rejected by a one-sided-error
heuristic algorithm D for coMINKTA (by choosing k :≈ s). Conversely, if x cannot be compressed,
then D cannot distinguish DPk(x, z) · w from the uniform distribution, which can be shown by
derandomizing the choice of random bits w as well as z. A formal proof is presented in Section 8.

2.3.2 Practically Generating Hard NP Instances?

Finally, we note that the error-tolerant worst-case-to-average-case reduction could be used to
practically generate hard NP instances. Specifically, under the plausible assumptions that there
exist (cryptographic and complexity-theoretic) pseudorandom generators, a (1−1/poly(n))-fraction
of instances of MINKT require super-polynomial time to solve.

Corollary 2.7 (of Lemma 8.9). Assume that E 6⊆
⋂
ε>0 i.o.SIZE(2εn) and GapMINKT 6∈ P. Let

c > 0 be any constant. Then, for any algorithm M that solves MINKT[t = n1/10, s = n−(c+1) log n]
and any polynomial p, for infinitely many n ∈ N, with probability at least 1 − n−c over the choice
of x ∼ {0, 1}n, tM (x) ≥ p(n) holds, where tM (x) denotes the running time of M on input x.

Proof. Define L := MINKT[t = n1/10, s = n− (c+ 1) log n]. Assume, for sake of contradiction, that
there exist a constant c, a polynomial p, and an algorithm M such that M solves L and

Pr
x∼{0,1}n

[tM (x) ≥ p(n)] < 1− n−c (1)

for all large n ∈ N. Define an algorithm M ′ so that M ′(x) := M(x) if M halts on input x ∈ {0, 1}n
in time p(n); otherwise, M ′(x) := ⊥. Then, M ′ is an errorless heuristic algorithm for (L,U), and
its failure probability is less than 1−n−c by Eq. (1). Therefore, (L,U) ∈ Avg1−n−cP ⊆ Avg1

1−n−cP.
The circuit lower bound assumption E 6⊆

⋂
ε>0 i.o.SIZE(2εn) implies the existence of a nearly

optimal pseudorandom generator [IW97]. Therefore, we can apply Lemma 8.9 and conclude that
GapMINKT = Gap(K vs K) ∈ P, which is a contradiction. �

The assumption that GapMINKT 6∈ P is relatively mild. For example, any one of the following
assumptions implies GapMINKT 6∈ P: SZK 6⊆ BPP [AD17], the existence of cryptographic pseu-
dorandom generators, the existence of (auxiliary-input) one-way functions [HILL99], unsolvability
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of Random 3SAT in polynomial time [HS17], or more generally, the existence of a cryptographic
hitting set generator [Hir18].

2.4 Organization and Proof of the Main Theorem

Here, we provide a proof of the main theorem and explain the organization of the remainder of
the paper.

Proof of Theorem 1.14. (Item 1 ⇒ 4), (Item 4 ⇒ 6), (Item 6 ⇒ 7), (Item 1 ⇒ 5), (Item 5 ⇒ 7),
(Item 8 ⇒ 2), and (Item 2 ⇒ 3) are obvious from the definitions.

(Item 7⇒ 8) follows from the error-tolerant non-black-box worst-case-to-average-case reduction
(Theorem 1.15), whose proof is given in Section 8.

(Item 3 ⇒ 1) follows from the DistPH-hardness of GapMINKTPH (Theorem 1.16), whose proof
is given in Section 7.

(Item 2 ⇔ 9) follows from the simple padding argument (Proposition 3.6).
(Item 1 ⇒ 10) follows from Fact 3.7 and Theorem 6.5, the latter of which implies P = BPP.

Such a derandomization statement is proved in Section 6 based on the ENP-hardness of Section 5.
(Item 10 ⇒ 11) and (Item 11 ⇒ 12) are obvious.
(Item 12 ⇒ 3) follows from Theorem 8.10. �

3 Preliminaries

For a language L ⊆ {0, 1}∗, let coL denote the complement of L, i.e., coL := {0, 1}∗ \ L. Let
coC denote { coL | L ∈ C } for a class C of languages. A promise problem Π is a pair (ΠYes,ΠNo)
of languages ΠYes,ΠNo ⊆ {0, 1}∗. Unlike in the standard definition, we do not require that ΠYes ∩
ΠNo = ∅. A promise problem Π is said to be solved by an algorithm A if A accepts any instance in
ΠYes and rejects any instance in ΠNo, from which it follows that ΠYes∩ΠNo = ∅. If ΠYes = coΠNo,
we identify Π with the language ΠYes. For a semantic class C, such as BPP and MA, we denote its
promise version by pr-C; we often identify C with pr-C for a syntactic class C.

3.1 Pseudorandomness

A family of functions G = {Gn : {0, 1}s(n) → {0, 1}n}n∈N is said to be a pseudorandom gen-
erator ε-secure against a class C if every C ∈ C is ε-fooled by G. Here, we say that G ε-fools a
function C : {0, 1}n → {0, 1} if |Prz∼{0,1}s(n) [C(Gn(z)) = 1] − Prw∼{0,1}n [C(w) = 1]| < ε. A func-
tion C : {0, 1}n → {0, 1} is said to ε-distinguish G (from the uniform distribution) if G does not
ε-fool C. By default, we choose ε := 1/n.

In this paper, we mainly consider a complexity-theoretic pseudorandom generator, which has
more computational resources than the adversary. This notion of pseudorandom generator is not
useful for cryptography, but it is sufficient for derandomizing two-sided-error randomized algo-
rithms. Specifically, a pseudorandom generator is said to be explicit if there exists a deterministic
algorithm that takes a seed z ∈ {0, 1}s(n) and n ∈ N and outputs Gn(z) in time 2O(s(n)) · nO(1) for
any n ∈ N. We call an explicit pseudorandom generator G = {Gn : {0, 1}O(logn) → {0, 1}n}n∈N
secure against linear-sized circuits a nearly optimal pseudorandom generator.

In contrast, we mainly consider a (cryptographic) hitting set generator that has less compu-
tational resources than the adversary. A family of functions H = {Hn : {0, 1}s(n) → {0, 1}n}n∈N
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is said to be a hitting set generator ε-secure against a complexity class C if no algorithm C ∈ C
ε-avoids H. Here, we say that C ∈ C ε-avoids H if, for all large n ∈ N, C(Hn(z)) = 0 for every
z ∈ {0, 1}s(n) and Prw∼{0,1}n [C(w) = 1] ≥ ε. Let Im(Hn) denote the image {Hn(z) | z ∈ {0, 1}s(n) }
of Hn. The condition that C ε-avoids H is equivalent to saying that, for all large n ∈ N, C rejects
every z ∈ Im(Hn) and accepts an ε-fraction of inputs. By default, we choose ε := 1/4 and often
omit the parameter ε.

3.2 Average-Case Complexity

Below, we review the notions of AvgP,AvgBPP, and Avg1P and observe that AvgBPP can be
derandomized under the assumption that there exists a nearly optimal pseudorandom generator.

Definition 3.1 (Randomized Errorless Heuristic Scheme [BT06a]). Let (L,D) be a distributional
problem. A randomized algorithm A is said to be a randomized errorless heuristic scheme for (L,D)
if

1. A(x, δ, n) halts in time poly(n/δ) for every n ∈ N, x ∈ supp(Dn) and δ−1 ∈ N,

2. PrA [A(x, δ, n) 6∈ {L(x),⊥}] ≤ 1/8 for every n ∈ N, x ∈ supp(Dn) and δ−1 ∈ N, and

3. Prx∼Dn [PrA [A(x, δ, n) = ⊥] ≥ 1/8] ≤ δ for every n, δ−1 ∈ N.

The parameter δ and 1− δ are referred to as the failure and success probabilities, respectively.
If, in addition, the algorithm A is deterministic, A is said to be a deterministic errorless heuristic

scheme.
The class AvgP (resp., AvgBPP) is defined as the class of distributional problems for which there

exists a deterministic (resp., randomized) errorless heuristic scheme. For a function δ : N → N,
the class AvgδP is defined as the class of distributional problems (L,D) for which there exists a
poly(n)-time deterministic errorless algorithm with failure probability δ(n) when inputs are sampled
from Dn for each n ∈ N.

We consider only the family {Dn}n∈N of distributions such that there is an efficient algorithm
that takes x ∈ supp(Dn) and computes n; in this case, the input n of A(x, δ, n) is redundant; thus,
we omit the input n in the rest of the paper.

We define a one-sided-error variant of heuristic algorithms as follows.

Definition 3.2 (One-sided-error Heuristic Scheme). For a distributional problem (L,D), a polynomial-
time algorithm A is said to be a one-sided-error heuristic scheme for (L,D) if

1. A(x, δ) halts in time poly(n/δ) for every n ∈ N, x ∈ supp(Dn) and δ−1 ∈ N,

2. L(x) = 0 implies A(x, δ) = 0 for every n ∈ N, x ∈ supp(Dn) and δ−1 ∈ N, and

3. Prx∼Dn [A(x, δ) = L(x)] ≥ 1− δ for every n, δ−1 ∈ N.

For a function δ : N → (0, 1), an algorithm A is said to be a polynomial-time one-sided-error
heuristic algorithm for (L,D) with failure probability δ if

1. A(x) halts in time poly(n) for every n ∈ N and x ∈ supp(Dn),

2. L(x) = 0 implies A(x) = 0 for every n ∈ N and x ∈ supp(Dn), and
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3. Prx∼Dn [A(x) = L(x)] ≥ 1− δ(n) for every n ∈ N.

Avg1P is defined as the class of distributional problems for which there exists a one-sided-error
heuristic scheme. For a function δ : N → (0, 1), Avg1

δP is defined as the class of distributional
problems for which there exists a polynomial-time one-sided-error heuristic scheme with failure
probability δ.

It is easy to observe that the existence of an errorless heuristic algorithm is stronger than that
of a one-sided-error heuristic algorithm.

Fact 3.3. AvgP ⊆ Avg1P and AvgδP ⊆ Avg1
δP for every δ : N→ (0, 1).

Proof Sketch. Given an errorless heuristic algorithm A, a one-sided-error heuristic algorithm A′ can
be defined as A′(x) = 1 if A(x) = 1 and A′(x) = 0 if A(x) ∈ {0,⊥}. �

Proposition 3.4. Suppose that there exists an explicit pseudorandom generator G := {Gn :
{0, 1}O(logn) → {0, 1}n}n∈N secure against linear-sized circuits. Then, AvgP = AvgBPP.

Proof. Let (L,D) ∈ AvgBPP and let A be a randomized errorless heuristic scheme for (L,D)
that uses m := poly(|x|/δ) random bits on input (x, δ). Define B as a deterministic algorithm
that, on input (x, δ), outputs the majority of A(x, δ;Gm(z)) ∈ {0, 1,⊥} over the choice of z ∈
{0, 1}O(log(|x|/δ)) (here, A(x, δ;w) denotes the output of A on input (x, δ) and random bits w ∈
{0, 1}m). Since Gm is explicit, B can be implemented as an algorithm that runs in time poly(|x|/δ).

We claim below that B is a deterministic errorless heuristic scheme for (L,D). First, we show
that B does not make any error. Indeed, by Item 2 of Definition 3.1,

Pr
z

[A(x, δ;Gm(z)) ∈ {L(x),⊥}] ≥ Pr
w

[A(x, δ;w) ∈ {L(x),⊥}]− o(1) ≥ 7/8− o(1) > 2/3,

which means that the incorrect answer 1−L(x) cannot be the majority of A(x, δ;Gm(z)) ∈ {0, 1,⊥}.
Second, we show that Prx∼Dn [B(x, δ) = ⊥] ≤ δ for every n, δ−1 ∈ N. Indeed, by Item 3 of Defini-
tion 3.1, with probability at least 1−δ over the choice of x ∼ Dn, it holds that Prw [A(x, δ;w) = ⊥] <
1/8. By the security of the pseudorandom generator,

Pr
z

[A(x, δ;Gm(z)) = ⊥] ≤ Pr
w

[A(x, δ;w) = ⊥] + o(1) ≤ 1/8 + o(1) < 1/3,

from which it follows that ⊥ is not the majority of A(x, δ;Gm(z)) ∈ {0, 1,⊥}. �

3.3 Basic Facts

Here, we prove some basic facts. The following is the fundamental principle of Kolmogorov-
randomness. (A string x is said to be Kolmogorov-random if K(x) ≥ s(|x|), where s : N → N is
some threshold, such as s(n) := n− 1.)

Fact 3.5 (standard counting argument). For any s ≥ 1, the number of strings x ∈ {0, 1}∗ such
that K(x) < s is less than 2s.

Proof. The number of programs of length less than s is at most
∑s−1

i=0 2i < 2s. �
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A simple padding argument shows the equivalence between sublinear-time-bounded Kolmogorov
complexity and polynomial-time-bounded Kolmogorov complexity:

Proposition 3.6 (Item 2 ⇔ 9 of Theorem 1.14). For any oracle A and any constant γ > 0,
GapMINKTA ∈ P if and only if GapMINKTA[t = nγ ] ∈ P

Proof. It is obvious that GapMINKTA[t = nγ ] is reducible to GapMINKTA. Conversely, let
GapτMINKTA ∈ P for some polynomial. Let (x, 1t, 1s) be an instance of GapMINKTA, and map
it to (x1m, 1s+O(logn)) for m := (t+O(log n))1/γ , where n := |x|. We claim that this is a many-one
reduction to GapτMINKTA. Since

K(n+m)γ ,A(x1m) ≤ Kt+O(logn),A(x1m) ≤ Kt,A(x) +O(log n),

any Yes instance of GapMINKTA is mapped to a Yes instance of GapτMINKTA. Similarly,

Kτ ′(n,t),A(x) ≤ Kτ(n+m,t)+O(logn),A(x) ≤ Kτ(n+m,t),A(x1m) +O(log n)

holds for a large polynomial τ ′. Therefore, if Kτ ′(n,t),A(x) > s+log τ ′(n, t), then Kτ(n+m,t),A(x1m)+
O(log n)− log τ ′(n, t) > s. By choosing sufficiently large τ ′, we obtain Kτ(n+m,t),A(x1m)+ log τ(n+
m, t) > s+O(log n), which means that (x1m, 1s+O(logn)) is a No instance of GapτMINKTA. �

We observe that the existence of a PA-computable hitting set generator implies average-case
hardness of DistNPA.

Fact 3.7. Let A be any oracle. If DistNPA ⊆ Avg1/4P, then no PA-computable hitting set generator

H = {Hn : {0, 1}n−1 → {0, 1}n}n∈N is (1/4)-secure against P.

Proof. Consider L := Im(H) = {x ∈ {0, 1}∗ | x = Hn(z) for some z ∈ {0, 1}n−1 }. Since H is
computable in polynomial time with oracle A, the language L is in NPA. Therefore, (L,U) ∈
DistNPA ⊆ Avg1/4P. Let M be a polynomial-time errorless heuristic algorithm for (L,U) with
failure probability 1/4. Define a polynomial-time machine M ′ such that M ′(x) := 0 if M(x) ∈
{1,⊥}, and M ′(x) := 1 if M(x) = 0 for each x ∈ {0, 1}∗.

We claim that M ′ (1/4)-avoids H. For every n ∈ N and z ∈ {0, 1}n−1, Hn(z) ∈ L; thus
M(Hn(z)) 6= 0 and Hn(z) is rejected by M ′. Moreover,

Pr
w∼{0,1}n

[
M ′(w) = 1

]
= Pr
w∼{0,1}n

[M(w) 6= ⊥]− Pr
w∼{0,1}n

[M(w) = 1]

≥ 3

4
− 1

2
=

1

4
,

where the last inequality uses the fact that Prw [M(w) = 1] ≤ Prw [w ∈ L] ≤ 1/2. �

4 Improved Black-Box Hitting Set Generator Construction

In this section, we construct a black-box hitting set generator whose reconstruction algorithm
uses few random bits and seed length and advice complexity are small. More specifically, in the
following definition, we aim to minimize the randomness complexity r, seed length d, advice com-
plexity a, and list complexity L.
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Definition 4.1 (Black-box Hitting Set Generator Construction; BB-HSG). A triple (H,A,R),
where

• H : {0, 1}n × {0, 1}d → {0, 1}m is called a HSG function,

• A : {0, 1}n × {0, 1}d → {0, 1}a is called an advice function, and

• RD : {0, 1}a × {0, 1}d × {0, 1}r → ({0, 1}n)L is called a reconstruction procedure, it takes an
oracle D : {0, 1}m → {0, 1}, and its output ({0, 1}n)L is regarded as the set of L n-bit strings,

is called a black-box hitting set generator construction (BB-HSG) with advantage ε and error
probability δ if, for any x ∈ {0, 1}n and any D : {0, 1}m → {0, 1} that ε-avoids H(x, -) : {0, 1}d →
{0, 1}m, it holds that

Pr
w∼{0,1}r

[
∃z ∈ {0, 1}d, x ∈ RD(A(x, z), z, w)

]
≥ 1− δ.

The parameters are called as follows: a is the advice complexity, d is the seed length, r is the
randomness complexity, and L is the list complexity.

We say that a BB-HSG (H,A,R(-)) is explicit if there exists a poly(n)-time algorithm for
computing H and A and a poly(n)-time D-oracle algorithm for computing RD for any oracle D.
We implicitly assume that a BB-HSG is always explicit.

It is important to minimize 2a+d+r · L for the following reason.

Proposition 4.2. Let (H : {0, 1}n×{0, 1}d → {0, 1}m, A,R) be a BB-HSG. Then, for every func-
tion D : {0, 1}m → {0, 1}, there exists a list LD of n-bit strings such that, for any x ∈ {0, 1}n such
that D ε-avoids H(x, -), the list LD contains x and the size of LD is at most 2a+d+r · L.

Proof. LD is defined as
⋃
{RD(α, z, w) | α ∈ {0, 1}a, z ∈ {0, 1}d, w ∈ {0, 1}r }. �

The entire section is devoted to proving the following result.

Theorem 4.3. For any sufficiently large n,m ∈ N such that m ≤ 2n, there exists a BB-HSG
(H,A,R) such that

H : {0, 1}n × {0, 1}d → {0, 1}m,
A : {0, 1}n × {0, 1}d → {0, 1}m,

R(-) : {0, 1}m × {0, 1}d × {0, 1}r → ({0, 1}n)L,

where the advice complexity is a := m, seed length is d = O(log n+ log3m), randomness complexity
is r = m + O(log n), advantage is ε = 1/m, error probability is δ = o(1), and list complexity is
L = nO(1).

The significance of Theorem 4.3 is that 2a+d+r · L ≤ poly(n) holds for m = O(log n). By
Proposition 4.2, this means that, using an oracle D, one can efficiently compute a list of poly(n)
strings that contains all strings x ∈ {0, 1}n such that D ε-avoids H(x, -). More generally, we obtain
the following corollary.
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Corollary 4.4. For any sufficiently large n,m ∈ N such that m ≤ 2n, there exists a function
H : {0, 1}n × {0, 1}d → {0, 1}m, where d = O(log n + log3m), such that, for every function
D : {0, 1}m → {0, 1}, there exists a list LD ⊆ {0, 1}n of n-bit strings such that x ∈ LD holds

for every x ∈ {0, 1}n such that D avoids H(x, -), and |LD| ≤ 22m+O(logn+log3m). Moreover, the
function H can be computed in time poly(n), and each element of the list LD can be computed in
time poly(n) given the index of the element as input and oracle access to D.

4.1 Composition Theorem

Following [Uma09], it is useful to consider an advice function A : {0, 1}n × {0, 1}d → {0, 1}a as
a compressor that takes n-bit input and compresses it to an a-bit string, ignoring the d-bit seed
(i.e., d := 0); similarly, a reconstruction function R(-) : {0, 1}a × {0, 1}d × {0, 1}r → ({0, 1}n)L can
be regarded as a decompressor when d = r = 0, L = 1. In this simplified case, we define the com-
position of BB-HSGs (H1, A1 : {0, 1}n → {0, 1}a1 , R1 : {0, 1}a1 → {0, 1}n) and (H2, A2 : {0, 1}a1 →
{0, 1}a2 , R2 : {0, 1}a2 → {0, 1}a1) as the BB-HSG (H2, A2, R2)◦(H1, A1, R1) := (H,A2◦A1, R1◦R2)
for some H. The general definition is given below.

Theorem 4.5 (Composition Theorem). Assume that, for each i ∈ {1, 2}, (Hi, Ai, Ri) is a BB-HSG
such that

Hi : {0, 1}ni × {0, 1}di → {0, 1}m,
Ai : {0, 1}ni × {0, 1}di → {0, 1}ai ,

R
(-)
i : {0, 1}ai × {0, 1}di × {0, 1}r → ({0, 1}ni)Li ,

with advantage ε and error probability δi, where a1 = n2. Define the composition of (H1, A1, R1)
and (H2, A2, R2) to be (H,A,R), denoted by (H2, A2, R2)◦ (H1, A1, R1), where d := d1 +d2 + 1 and

H : {0, 1}n1 × {0, 1}d → {0, 1}m,
A : {0, 1}n1 × {0, 1}d → {0, 1}a2 ,

R(-) : {0, 1}a2 × {0, 1}d × {0, 1}r → ({0, 1}n1)L1L2 ,

are defined as

H(x, (z1, z2, 0)) := H1(x, z1),

H(x, (z1, z2, 1)) := H2(A1(x, z1), z2)

A(x, (z1, z2, i)) := A2(A1(x, z1), z2),

RD(α, (z1, z2, i), w) := {x′ ∈ RD1 (y′, z1, w) | y′ ∈ RD2 (α, z2, w) }

for any z1 ∈ {0, 1}d1 , z2 ∈ {0, 1}d2 and i ∈ {0, 1}. Then, (H,A,R) is a BB-HSG with advantage ε
and error probability δ1 + 2d1δ2.

We emphasize that the randomness w ∈ {0, 1}r of R can be reused in the composition above.

Proof. Fix an arbitrary string x ∈ {0, 1}n. Assume that a function D : {0, 1}m → {0, 1} ε-avoids
H(x, -) : {0, 1}d → {0, 1}m. Since Im(H(x, -)) = Im(H1(x, -)) ∪ Im(H2(A1(x, -), -)), D ε-avoids
H1(x, -) and H2(A1(x, z1), -) for every z1 ∈ {0, 1}d1 .
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Therefore,

Pr
w

[
∀z1, x 6∈ RD1 (A1(x, z1), z1, w)

]
≤ δ1, and

Pr
w

[
∀z2, y 6∈ RD2 (A2(y, z2), z2, w)

]
≤ δ2

for any y ∈ Im(A1(x, -)).
In order to apply a union bound, we claim the following for any w ∈ {0, 1}r.

Claim 4.6. Assume that x 6∈ RD(A(x, z), z, w) for any z = (z1, z2, i) ∈ {0, 1}d1+d2+1. Then, either
∀z1, x 6∈ RD1 (A1(x, z1), z1, w) or ∃z1, ∀z2, yz1 6∈ RD2 (A2(yz1 , z2), z2, w), where yz1 := A1(x, z1).

We prove the contrapositive of Claim 4.6. Assume that ∃z1, x ∈ RD1 (A1(x, z1), z1, w) and
∀z′1,∃z2, yz′1 ∈ R

D
2 (A2(yz′1 , z2), z2, w). Take the z1 in the first statement and define z′1 := z1 and

y := yz1 = A1(x, z1). Since

A(x, z) = A2(A1(x, z1), z2) = A2(y, z2),

we have
RD(A(x, z), z, w) = {x′ ∈ RD1 (y′, z1, w) | y′ ∈ RD2 (A2(y, z2), z2, w) },

which contains x because the condition is satisfied for x′ := x and y′ := y. This completes the
proof of Claim 4.6.

By using a union bound, we obtain

Pr
w

[
∀z, x 6∈ RD(A(x, z), z, w)

]
≤ Pr

w

[
∀z1, x 6∈ RD1 (A1(x, z1), z1, w)

]
+ Pr

w

[
∃z1,∀z2, yz1 6∈ RD2 (A2(yz1 , z2), z2, w)

]
≤ δ1 +

∑
y∈Im(A1(x,-))

Pr
w

[
∀z2, y 6∈ RD2 (A2(y, z2), z2, w)

]
≤ δ1 + 2d1δ2,

as desired. �

4.2 Basic Constructions of BB-HSGs

We now describe two constructions of BB-HSGs that are building blocks for our final construc-
tion.

Theorem 4.7. For any constant α > 0 and any sufficiently large parameters n,m, δ−1 ∈ N such
that m ≤ 2n, there exists a BB-HSG (H,A,R) such that

H : {0, 1}n × {0, 1}d → {0, 1}m,
A : {0, 1}n × {0, 1}d → {0, 1}a,

R(-) : {0, 1}a × {0, 1}d × {0, 1}r → ({0, 1}n)L,

with randomness complexity r = m + O(log(1/δ)), advantage ε = 1/m, error probability δ, list
complexity L = poly(m) · log(1/δ), and one of the following parameter settings:
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1. d = O(log n) and a ≤ nαm.

2. d = O(log3 n) and a ≤ m.

Both constructions are based on an improvement of Trevisan’s extractor [Tre01] given by Raz,
Reingold, and Vadhan [RRV02]. We will modify the constructions using the randomness efficient
construction of a hitter so that the error probability is reduced to δ. The following lemma reduces
the error probability.

Lemma 4.8. Let (H,A,R0) be a BB-HSG with error probability 1− ε0, randomness complexity r0,
and list complexity L0. Then, there exists a BB-HSG (H,A,R) with error probability δ, randomness
complexity r := r0 +O(log(1/δ)), and list complexity L = O(L0 · log(1/δ)/ε0).

This lemma is an immediate consequence of the existence of a hitter.

Lemma 4.9 (Hitter; see [Gol11, Appendix C]). For any parameters n ∈ N, ε, δ > 0, there exists
an efficiently computable function Hit : {0, 1}n+O(log(1/δ))× [L]→ {0, 1}n (called a hitter) such that
L = O(log(1/δ)/ε) and for any subset H ⊆ {0, 1}n of size at least ε2n,

Pr
z

[∃k ∈ [L], Hit(z, k) ∈ H] ≥ 1− δ.

Proof of Lemma 4.8. Using the hitter of Lemma 4.9, we defineRD(α, z, w) :=
⋃
k∈[L′]R

D
0 (α, z,Hit(w, k))

for any α ∈ {0, 1}a, z ∈ {0, 1}d, w ∈ {0, 1}r, where L′ = O(log(1/δ)/ε0) and r = r0 + O(log(1/δ)).
By the property of the BB-HSG (H,A,R0), for any x ∈ {0, 1}n and any oracle D : {0, 1}m → {0, 1}
that ε-avoids H(x, -), we have

Pr
w0∼{0,1}r0

[
∃z ∈ {0, 1}d, x ∈ RD0 (A(x, z), z, w0)

]
≥ ε0.

It follows from the property of Hit that

Pr
w∼{0,1}r

[
∃k ∈ [L′], ∃z ∈ {0, 1}d, x ∈ RD0 (A(x, z), z,Hit(w, k))

]
≥ 1− δ.

Equivalently,

Pr
w∼{0,1}r

[
∃z ∈ {0, 1}d, x ∈ RD(A(x, z), z, w)

]
≥ 1− δ.

�

We now describe the construction of Trevisan’s extractor [Tre01, RRV02]. Let us first recall the
notion of weak design.

Lemma 4.10 (Weak design [RRV02]). For any constant α > 0 and any sufficiently large parameters
d, `,m ∈ N, there exists a “ weak design” S1, · · · , Sm ⊆ [d] such that |Si| = ` and

∑
j<i 2|Si∩Sj | ≤

ρ · (m− 1) for any i ∈ [m] if either

1. ρ := 2α` and d = O(`/α), or

2. ρ := 1 and d = O(`2 · logm).
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Moreover, the weak design can be computed in time poly(m, d) given the parameters (d, `,m, ρ) as
input.

We also require a list-decodable error-correcting code, which can be constructed by concatenat-
ing the Reed-Solomon code and Hadamard code.

Lemma 4.11 ([Sud97]; see, e.g., [Vad12]). For any parameters n, ε, there exists a function Enc: {0, 1}n →
{0, 1}n̂ such that

• n̂ = 2` for some integer ` ∈ N and n̂ ≤ poly(n, 1/ε),

• Enc is computable in time poly(n, 1/ε), and

• given y ∈ {0, 1}n̂, one can find a list of size poly(1/ε) that contains all the strings x ∈ {0, 1}n
such that y and Enc(x) agree on at least a (1/2 + ε)-fraction of coordinates.

For a string z ∈ {0, 1}d and a subset S ⊆ [d], let zS denote (zi)i∈S ∈ {0, 1}S , i.e., the |S|-bit
string that can be obtained by concatenating zi for all i ∈ S (in increasing order of i).

We are now ready to describe the construction of Theorem 4.7.

HSG function H : {0, 1}n × {0, 1}d → {0, 1}m.
For x ∈ {0, 1}n and z ∈ {0, 1}d, we define H(x, z) as follows. Take the error-correcting

code Enc: {0, 1}n → {0, 1}2` of Lemma 4.11 with the parameter ε0 := 1/2m2; then, we have
` = O(log n + logm) = O(log n). Let x̂ : {0, 1}` → {0, 1} be the function whose truth table

is Enc(x) ∈ {0, 1}2` (i.e., x̂ maps z ∈ {0, 1}` to the zth bit of Enc(x)). Take the weak design
S1, · · · , Sm ⊆ [d] of Lemma 4.10. Then, H(x, z) is defined as (x̂(zSi) | i ∈ [m]).

Advice function A : {0, 1}n × {0, 1}d → {0, 1}a.
For x ∈ {0, 1}n and z′ ∈ {0, 1}d, the advice A(x, z′) is defined as follows. Regard the seed
z′ ∈ {0, 1}d as (i, z[d]\Si) ∈ [m] × {0, 1}d−`. (This is possible because dlogme + d − ` ≤ d.)

Each bit of the advice A(x, z′) is indexed by the set Ii := {(j, zSi∩Sj ) ∈ [i− 1]×{0, 1}|Si∩Sj |}.
The size of Ii is at most

∑
j<i 2|Si∩Sj | ≤ ρ · (m− 1) =: a. For each (j, zSi∩Sj ) ∈ Ii, we write

down x̂(zSj ) as one bit of A(x, z′). That is, A(x, z′) :=
(
x̂(zSj ) | (j, zSi∩Sj ) ∈ Ii

)
.

Reconstruction function RD0 : {0, 1}a × {0, 1}d × {0, 1}m → ({0, 1}n)L0.
We describe a basic reconstruction procedure RD0 with error probability 1 − ε0, where ε0 :=
1/2m2. By using Lemma 4.8, we convert R0 to R : {0, 1}a × {0, 1}d × {0, 1}m+O(log(1/δ)) →
({0, 1}n)L, whose list complexity is L = O((L0 log(1/δ))/ε0).

RD0 is defined as follows. Given α ∈ {0, 1}a, (i, z[d]\Si) ∈ [m] × {0, 1}d−`, and w ∈ {0, 1}m as
input, we identify the advice α with the function α : Ii → {0, 1} by identifying Ii with [a].
We define y : {0, 1}` → {0, 1} as

y(zSi) := D(α(1, zSi∩S1), . . . , α(i− 1, zSi∩Si−1), wi, wi+1, . . . , wm)⊕ wi

for any zSi ∈ {0, 1}`. The output of RD0 is defined as the list of all strings x ∈ {0, 1}n such that
x̂ and y agree on a (1/2 + ε0)-fraction of inputs. This can be efficiently computed using the
list-decoding algorithm of Lemma 4.11. The list complexity L0 is poly(1/ε0) = mO(1). The list
complexity L of the final reconstruction procedure R is O((L0 log(1/δ))/ε0) = mO(1) ·log(1/δ).
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The correctness of the construction (H,A,R0) is ensured by the following lemma.

Lemma 4.12 (Yao [Yao82]; Nisan and Wigderson [NW94]). The construction (H,A,R0) described
above is a BB-HSG with advantage ε = 1/m and error probability 1− ε0.

Proof. Fix a string x ∈ {0, 1}n and an oracle D that ε-avoids H(x, -). We have Prw [D(w) = 1] ≥ ε
and D(H(x, z)) = 0 for every z ∈ {0, 1}d. For i ∈ {0, . . . ,m}, define the ith hybrid distribution
as Hi ≡ x̂(zS1) · · · x̂(zSi) · wi+1 · · ·wm with z ∼ {0, 1}d and w ∼ {0, 1}m. Since H0 ≡ w and
Hm ≡ H(x, z), we obtain E [D(H0)−D(Hm)] ≥ ε. Choosing i ∼ [m] randomly,

ε

m
≤ E [D(Hi−1)−D(Hi)]

=
1

2
E [D(Hi)] +

1

2
E [D(Hi−1) | wi 6= x̂(zSi)]− E [D(Hi)]

=
1

2
E [D(Hi−1) | wi 6= x̂(zSi)]−

1

2
E [D(Hi)],

where the first equality uses the case analysis on whether wi = x̂(zSi) or not. Similarly,

Pr [D(Hi−1)⊕ wi = x̂(zSi)] =
1

2
Pr [D(Hi) = 0] +

1

2
Pr [D(Hi−1) = 1 | wi 6= x̂(zSi)]

=
1

2
+

1

2
E [D(Hi−1) | wi 6= x̂(zSi)]−

1

2
E [D(Hi)]

≥ 1

2
+

ε

m
=

1

2
+ 2ε0.

Therefore,

Pr
w

[
∃z′, x ∈ RD0

(
A(x, z′), z′, w

)]
≥ Pr

w,z′

[
x ∈ RD0

(
A(x, z′), z′, w

)]
≥ Pr

w,i,z[d]\Si

[
Pr
zSi

[D(Hi−1)⊕ wi = x̂(zSi)] ≥
1

2
+ ε0

]
≥ ε0.

�

Choosing the parameter ρ appropriately and combining Lemma 4.12 and Lemma 4.8, we obtain
Theorem 4.7. Specifically, we have the following.

1. If we choose ρ := 2α` as the parameter of the weak design in Lemma 4.10, the advice com-
plexity is a = ρ · (m− 1) = 2α` · (m− 1) ≤ nO(α)m, where O(-) hides some universal constant
that does not depend on α > 0. By choosing α > 0 as a small constant, the seed length is
d = O(`/α) = O(log n).

2. If we choose ρ := 1, the advice complexity is a = ρ · (m− 1) = m− 1 and the seed length is
d = O(`2 · logm) = O(log3 n).

4.3 Composing Basic Constructions

We now compose the basic construction given in Item 1 of Theorem 4.7 with itself several times,
and reduce the advice complexity a to m3. Then we will compose it with Item 2 of Theorem 4.7
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and further reduce the advice complexity from m3 to m, which will complete the construction of
Theorem 4.3.

The following lemma composes Item 1 of Theorem 4.7 with itself approximately O(log log n)
times.

Lemma 4.13. For any sufficiently large parameters n,m ∈ N such that m2 ≤ n, there exists a BB-
HSG (H : {0, 1}n×{0, 1}d → {0, 1}m, A,R) with advice complexity a = m3, randomness complexity
r = m+O(log n), seed length d = O(log n), advantage ε = 1/m, error probability δ = o(1), and list
complexity L = poly(n).

Proof. Fix a parameter m. Let α := 1/2. We define a sequence {nk}k∈N as n0 := n and nk+1 =
nαk ·m for any k ∈ N. Note that

nk = nαk−1 ·m = nα
2

k−2 ·mα ·m = · · · ≤ nαk0 ·m1+α+α2+··· = nα
k ·m1/(1−α).

For each k ∈ N, let (Hk, Ak : {0, 1}nk × {0, 1}dk → {0, 1}ak , Rk) be the BB-HSG construction of
Item 1 of Theorem 4.7, where ak = nαk · m = nk+1, dk = c log nk, and list complexity Lk =
mc · log(1/δ′) for some universal constant c > 0. Choose the error parameter δ′ := 1/nc+1.
Applying the Composition Theorem, we inductively define (H≤0, A≤0, R≤0) := (H0, A0, R0) and
(H≤k+1, A≤k+1, R≤k+1) := (Hk+1, Ak+1, Rk+1) ◦ (H≤k, A≤k, R≤k) for any k ∈ N. This is well de-
fined because the advice complexity a≤k of A≤k is equal to ak; thus, A≤k can be composed with
Ak+1, whose input length nk+1 is equal to ak.

We stop the process atK := log(log n/ logm) ≤ log n/ logm and define (H,A,R) := (H≤K , A≤K , R≤K).

The advice complexity of (H,A,R) is a := aK = nK+1 ≤ n2−K−1 · m2 ≤ m3, seed length is
d = d≤K = dK + d≤K−1 + 1 =

∑K
k=0 dk +K ≤

∑K
k=0(cαk log n+O(logm)) = O(log n), error prob-

ability is δ = δ≤K = δ≤K−1 + 2d≤K−1δ′ = δ′
∑K

k=1 2d≤k−1 ≤ n−c−1Knc = o(1), and list complexity

is L = L≤K = LKL≤K−1 =
∏K
k=0 Lk = mcK(log(1/δ′))K ≤ nO(1). �

Finally, we compose the BB-HSG of Lemma 4.13 with Item 2 of Theorem 4.7.

Proof of Theorem 4.3. If m2 ≥ n, the BB-HSG of Item 2 of Theorem 4.7 achieves the parameters
stated in Theorem 4.3. Otherwise, let (H1 : {0, 1}n × {0, 1}d1 → {0, 1}m, A1, R1) be the BB-HSG
of Lemma 4.13. Let (H2 : {0, 1}m3 × {0, 1}d2 → {0, 1}m, A2, R2) be the BB-HSG of Item 2 of
Theorem 4.7 for δ2 = o(2−d1). Note that the advice complexity of (H1, A1, R1) is m3 and that of
(H2, A2, R2) is m. Thus, using the Composition Theorem, we can define (H,A,R) := (H2, A2, R2)◦
(H1, A1, R1), whose advice complexity is m, seed length is d1 + d2 + 1 = O(log n + log3m), error
probability is δ1 + 2d1δ2 = o(1), and list complexity is nO(1). �

5 Hardness Under Deterministic Reductions

Using the BB-HSG of Theorem 4.3, we present the ENP-hardness result of GapMINKTNP. It
is possible to provide a proof of the ENP-hardness as a corollary of the non-black-box worst-case-
to-average-case reduction given in Theorem 8.1, as explained in Section 2.1.3; however, here we
present a self-contained and succinct proof.

Theorem 5.1. For any NP-hard oracle A and any polynomial τ : N× N→ N, ENP is reducible to
GapτMINKTA via a deterministic nonadaptive E-reduction.
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Proof. Let L ∈ ENP. Then, there exist a language S ∈ NP with an nc-time NP-verifier V and a
t(n)-time oracle machine M such that MS(x) = L(x) for every x ∈ {0, 1}∗ and t(n) = 2O(n), where
c is some constant.

Fix any input x ∈ {0, 1}∗ of length n. Define a function fx : [t(n)] → {0, 1}t(n)c such that, for
each i ∈ [t(n)], fx(i) is the lexicographically first NP-certificate for q ∈ S (we define fx(i) := 1t(n)c

if q 6∈ S), where q is the ith query that MS makes on input x. Note that the truth table of fx can
be computed in time 2O(n) given an input x and access to the NP-hard oracle A.

Let B be an oracle that is consistent with GapτMINKTA. The proof consists of two parts.

Claim 5.2. 1. Given nonadaptive oracle access to B, one can efficiently compute the list of
2O(n) functions f ′ : [t(n)]→ {0, 1}t(n)c, one of which is guaranteed to be fx.

2. Given a list L of 2O(n) functions f ′, one of which is guaranteed to be fx, one can compute L
in time 2O(n).

It is clear that Theorem 5.1 follows from Claim 5.2; we briefly note that the idea behind
Claim 5.2 is that ENP has an exponential-time selector [BH92, Hir15].

We first prove Item 2. Let L be a list of functions such that fx ∈ L. We can simulate the query
q of the machine MS as follows. Let i ∈ [t(n)] be the index of the query q. Observe that q ∈ S
if and only if there exists a function f ∈ L such that f(i) is a certificate for q ∈ S. Indeed, fx
is guaranteed to be in the list L, and fx(i) is a certificate for q ∈ S if any. Therefore, we answer
Yes to the ith query q if and only if V (q, f(i)) accepts for some f ∈ L. This simulation takes time
2O(n), which completes the proof of Item 2.

It remains to prove Item 1. Identify fx : [t(n)] → {0, 1}t(n)c with a string fx ∈ {0, 1}t(n)c+1

in a canonical manner. Let N := t(n)c+1 = 2O(n), m = O(n) be a parameter chosen later, and
H : {0, 1}N × {0, 1}d → {0, 1}m be the BB-HSG from Corollary 4.4. Since d = O(logN + log3m),
there exists some universal constant (independent of the choice of m) such that d ≤ c1n for all large
n. We claim that Kt′(n),A(H(fx, z)) ≤ |z|+ |x|+O(log n) for every z ∈ {0, 1}d, where t′(n) = 2c2n

for some constant c2 independent of m. Indeed, the output of H(fx, z) can be described with n,
x ∈ {0, 1}n, and z ∈ {0, 1}d by computing fx with the NP-hard oracle A in time 2O(n) and then
computing H(fx, z) in time poly(N) = 2O(n); therefore, for all large n,

Kt′(n),A(H(fx, z)) ≤ d+ n+O(log n) ≤ (c1 + 2)n.

We now choose m = O(n) large enough so that (c1 +2)n+log τ(m, t′(n)) < m/2. A simple counting
argument shows that Kτ(m,t′(n)),A(w) ≥ KA(w) ≥ m/2 for a (1 − o(1))-fraction of w ∈ {0, 1}m.
In particular, the oracle B rejects (w, 1t

′(n), 1(c1+2)n) for most w ∈ {0, 1}m, whereas B accepts
(H(fx, z), 1

t′(n), 1(c1+2)n) for every z ∈ {0, 1}d. This means that H(fx, -) is 1
2 -avoided by the

function D : {0, 1}m → {0, 1} defined as D(w) := ¬B(w, 1t
′(n), 1(c1+2)n). By the reconstruction

property of the BB-HSG H (Corollary 4.4), there exists a D-oracle poly(N)-time algorithm ED

that outputs a list LD such that fx ∈ LD. The D-oracle algorithm ED can be modified to a

B-oracle algorithm E′B by defining E′B(x) := EB(-,1t
′(n),1(c1+2)n)(x). Finally, observe that E′B and

ED are nonadaptive oracle algorithms since there are 2m possible queries to D : {0, 1}m → {0, 1},
all of which can be asked beforehand in time 2O(m) = 2O(n). �

We emphasize that the reduction of Theorem 5.1 is nonadaptive because the number of possible
queries is small. In contrast, the reconstruction procedure of the BB-HSG of Theorem 4.3 itself is
adaptive because of the composition of the BB-HSGs.
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Since the number of possible queries is small, we can easily extend Theorem 5.1 to the case of
average-case assumptions.

Theorem 5.3. Let A be any NP-oracle. If {coMINKTA} × PSamp ⊆ Avg1
1−2−nP, then ENP = E.

Proof. Let L ∈ ENP. For each n ∈ N, let Qn denote the set of queries that the E-reduction (to
GapMINKTA) of Theorem 5.1 makes. By inspecting the proof of Theorem 5.1, one can observe
that Qn ⊆ { (x, 1t(|x|), 1s(|x|)) | x ∈ {0, 1}O(n) } for some functions t(n′) = 2O(n′) and s(n′) = O(n′).

We define the family of distributions D = {Dn}n∈N as follows. For each n ∈ N, let xn :=
(bin(n), 1t(|bin(n)|), 1s(|bin(n)|)), where bin(n) denotes the nth string in {0, 1}∗, and define the distri-
bution Dn such that supp(Dn) = {xn}. The length of xn is |xn| = O(log n)+2O(logn) ≤ nO(1); thus,
the distribution D is polynomial-time samplable.

Let L := coMINKTA. By the assumption, there exists a polynomial-time one-sided-error heuris-
tic algorithm M for (coMINKTA,D) with success probability 2−n on inputs from Dn for any n ∈ N.
By the definition of one-sided-error heuristic algorithms, we have Prx∼Dn [M(x) = L(x)] ≥ 2−n > 0
for every n ∈ N. Since Dn is supported only on {xn}, we obtain M(xn) = L(xn). This means that
M solves L = coMINKTA on any input in {xn | n ∈ N }. Finally, observe that

⋃
n∈NQn ⊆ {xn |

n ∈ N }, from which it follows that ¬M solves MINKTA on
⋃
n∈NQn; by running the reduction of

Theorem 5.1 with the oracle ¬M , we obtain ENP = E. �

6 Constructing Pseudorandom Generators

In this section, we construct a nearly optimal pseudorandom generator under the assumption
that any one of Items 1 to 9 of Theorem 1.14 is true. (We defer the corresponding results for
Items 10 to 12 to Section 8.)

6.1 Exposition of the PRG Construction from Heuristics for NP

We review the pseudorandom generator construction of Buhrman, Fortnow, and Pavan [BFP05]
from DistNP ⊆ AvgP, and then we observe that the construction works even under the assumption
that Dist(coNP) admits a one-sided-error heuristic algorithm with low success probability.

Theorem 6.1 ([BFP05]). If DistNP ⊆ AvgP, then there exists a nearly optimal pseudorandom
generator.

The proof of Theorem 6.1 relies on the following two results.

1. If DistNP ⊆ AvgP, then E = NE [BCGL92].

2. If DistNP ⊆ AvgP, then pr-MA = NP [KS04].

These results are sufficient to obtain a nearly optimal pseudorandom generator, as shown in the
following lemma.

Lemma 6.2 (Implicit in [BFP05]). Assume that E = NE and pr-MA = NP. Then, there exists
a nearly optimal pseudorandom generator G := {Gn : {0, 1}O(logn) → {0, 1}n}n∈N (secure against
linear-sized circuits).
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Proof Sketch. By the theorem of Impagliazzo and Wigderson [IW97], it suffices to show that E 6⊆
i.o.SIZE(2εn) for some constant ε > 0. Here, for a complexity class C, i.o.C is defined as the class of
languages L ⊆ {0, 1}∗ such that there exists some language L′ ∈ C such that L∩{0, 1}n = L′∩{0, 1}n
for infinitely many n ∈ N. Let i.o.SIZE(2o(n)) denote

⋂
ε>0 i.o.SIZE(2εn).

Assume, for a contradiction, that E ⊆ i.o.SIZE(2o(n)). As in [BFP05], by using an efficient PCP
system for E, it follows that E ⊆ i.o.MATIME(2o(n)). That is, a prover sends a circuit C of size 2o(n)

that encodes a computation path of E, and then a verifier checks it using a verifier for the PCP
system with random access to the circuit C.

By applying a padding argument to pr-MA = NP (whose proof is given later in Proposi-
tion 6.4), we obtain i.o.MATIME(2o(n)) = i.o.NTIME(2o(n)). Therefore, E ⊆ i.o.MATIME(2o(n)) =
i.o.NTIME(2o(n)).

However, this contradicts the following Proposition 6.3 and the assumption that NE ⊆ E. �

Proposition 6.3 ([IKW02]). If NE ⊆ E, then E 6⊆ i.o.NTIME(2n).

Proof. We first claim that NTIME(2n) ⊆ DTIME(22cn) for some constant c. Take the following
canonical NE-complete problem L: (M,x) ∈ L if and only if there exists some nondeterministic
path on which the nondeterministic machine M accepts x in time 22|x|. Since L ∈ NE ⊆ E, there
exist a constant c and a 2cn-time deterministic algorithm that computes L on inputs of length n.
Now, take any problem R ∈ NTIME(2n), and let MR be the O(2n)-time nondeterministic machine
that decides R. Since R is linear-time-reducible to L via the map x 7→ (MR, x), we conclude that R
can be computed in time 2c·(|MR|+n) ≤ 22cn. Therefore, we have i.o.NTIME(2n) ⊆ i.o.DTIME(22cn).

On the other hand, the time hierarchy theorem implies that E 6⊆ i.o.DTIME(22cn); thus, E 6⊆
i.o.NTIME(2n). �

A similar argument based on a complete problem enables us to use a padding argument to
pr-MA, which completes the proof of Lemma 6.2.

Proposition 6.4. pr-MA = NP implies i.o.MATIME(2o(n)) = i.o.NTIME(2o(n)).

Proof. Take a pr-MA-complete problem Π under linear-time reductions, which can be constructed
by using a Turing machine in a standard manner. Then, Π ∈ NTIME(nk) for some fixed constant
k. Let ε > 0 be an arbitrary constant. For any problem L in MATIME(2εn), let L′ := {x012εn |
x ∈ L } be a padded version of L. Then, L′ ∈ MATIME(n); thus, L′ is linear-time reducible to
Π ∈ NTIME(nk), so L′ ∈ NTIME(nk). It follows that L ∈ NTIME(2kεn), where k is a constant
independent of ε > 0. �

6.2 PRG from Heuristics with Low Success Probability

It is easy to extend the result of [BFP05] to the case of a one-sided-errorless heuristic algorithm
for Dist(coNP) with low success probability.

Theorem 6.5. If Dist(coNP) ⊆ Avg1
1−2−nP, then there exists a nearly optimal pseudorandom

generator.

We observe below that the results of [BCGL92, KS04] can be extended to the case when the
assumption is Dist(coNP) ⊆ Avg1

1−2−nP.
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Proposition 6.6 ([BCGL92]). If Dist(coNP) ⊆ Avg1
1−2−nP, then E = NE.

Proof. Consider the family of distributions T := {Tn}n∈N such that Tn samples a string 1n with
probability 1 for each n ∈ N. It is clear that T is efficiently samplable.

Let L ∈ NE. Consider a padded version L′ of L defined as L′ := { 1n | n ∈ N, bin(n) ∈ L },
where bin : N→ {0, 1}∗ denotes the bijection that maps an integer i ∈ N to the ith string of {0, 1}∗
in lexicographical order. It is easy to observe that coL′ ∈ coNP.

Since (L′, T ) ∈ Dist(coNP) ⊆ Avg1
1−2−nP, there exists some polynomial-time one-sided-error

heuristic algorithm A such that Prx∼Tn [A(x) = coL′(x)] ≥ 2−n for every n ∈ N. This is equivalent
to saying that A(1n) = coL′(1n); thus, L′ ∈ P, which implies that L ∈ E. �

Proposition 6.7 ([KS04]). If Dist(coNP) ⊆ Avg1
1−2−nP, then pr-MA = NP.

Proof. Let D := {U2n}n∈N, where Un is the uniform distribution on {0, 1}n. Consider the lan-
guage L := {x ∈ {0, 1}∗ | K|x|

2
(x) ≥ |x|/4 }. Since (L,D) ∈ Dist(coNP) ⊆ Avg1

1−2−nP, there
exists a one-sided-error heuristic algorithm A such that A rejects every x ∈ {0, 1}∗ \ L and
Prx∼{0,1}2n [A(x) = L(x)] ≥ 2−n for every n ∈ N.

We claim that, for any n ∈ N, there exists x ∈ {0, 1}2n such that A(x) = 1. Otherwise, we
have Prx∼{0,1}2n [L(x) = 0] ≥ 2−n. However, by the standard counting argument (Fact 3.5), we

also have Prx∼{0,1}2n [L(x) = 0] ≤ 22n/4−2n < 2−n, which is a contradiction.
Now, consider any MA-algorithm M . One can nondeterministically derandomize M as follows.

Guess x and check if A(x) = 1. If A(x) = 0, then reject and halt immediately. Otherwise, we use
x to construct a pseudorandom generator as in [IW97, KvM02] and derandomize the rest of the
MA-algorithm M . �

Proof of Theorem 6.5. This is immediate from Propositions 6.6 and 6.7 and Lemma 6.2. �

6.3 PRG from MINKTNP

We now show that GapMINKTNP ∈ P implies the existence of a nearly optimal pseudorandom
generator, which implies P = BPP.

Theorem 6.8. Let A be any NP-hard problem. If GapMINKTA ∈ P, then there exists an explicit
pseudorandom generator G := {Gn : {0, 1}O(logn) → {0, 1}n}n∈N secure against linear-sized circuits.

Using the fact that GapMINKTA serves as an oracle that tests the hardness of a function (as
in [KS04, ABK+06b]), it is not hard to observe the following.

Proposition 6.9. Let A be any oracle. Assume either GapMINKTA ∈ P or {coMINKTA} ×
PSamp ⊆ Avg1

1−2−nP. Then, pr-MA = NP.

Proof. When {coMINKTA} × PSamp admits a one-sided-error heuristic algorithm, define L :=
{x ∈ {0, 1}∗ | K|x|2,A(x) ≥ |x|/4 }; then, the remainder of the proof is exactly the same as that of
Proposition 6.7.

Similarly, when GapMINKTA ∈ P, one can take an algorithm M for GapMINKTA and consider
a language L := {x ∈ {0, 1}∗ | M(x, 1|x|

2
, 1|x|/4) = 0 }. It is clear that any string with low circuit

complexity is not in L and there exists some string in L, which can be used to derandomize pr-MA.
�
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Proof of Theorem 6.8. Assume that GapMINKTA ∈ P. By Theorem 5.1, we obtain NE ⊆ ENP ⊆
EGapMINKTA = E. Moreover, by Proposition 6.9, we have pr-MA = NP. Applying Lemma 6.2, we
obtain a nearly optimal pseudorandom generator. �

One can use a similar argument, i.e., replacing Theorem 5.1 with Theorem 5.3, to prove the
following.

Theorem 6.10. Let A be any NP-oracle. If {coMINKTA}×PSamp ⊆ Avg1
1−2−nP, then there exists

a nearly optimal pseudorandom generator.

7 DistPH-hardness of GapMINKTPH

This section is devoted to proving the DistPH-hardness of GapMINKTPH. One of the important
components of the proof is the k-wise direct product generator, which achieves nearly optimal advice
complexity.

Theorem 7.1 (k-wise direct product generator [Hir20b, Hir20a]). For any parameters n, k ∈ N
and ε > 0 such that k ≤ 2n, there exists a “black-box pseudorandom generator construction”
(DP, A(-), R(-)) satisfying the following.

1. DP: {0, 1}n × {0, 1}d → {0, 1}d+k.

2. AD : {0, 1}n × {0, 1}r → {0, 1}a.

3. RD : {0, 1}a × {0, 1}r → {0, 1}n for any function D : {0, 1}d+k → {0, 1}.

4. The seed length d is at most O(k ·log(n/ε)), the advice complexity a is at most k+O(log(k/ε)),
the randomness complexity r is at most poly(n/ε), and DP, AD, and RD are computable in
time poly(n/ε).

5. For any function D that ε-distinguishes the output distribution of DP(x, -) from the uniform
distribution, it holds that

Pr
w

[RD(AD(x,w), w) = x] ≥ 3/4.

We remark that, unlike the notion of BB-HSG defined in Definition 4.1, we allow the advice
function A to have oracle access to D. This is simply for amplifying the success probability so that
later proofs are clearer. This is contrary to Definition 4.1 and the Composition Theorem, in which
it was important that A does not have oracle access to D.

Proof Sketch. The pseudorandom generator construction is defined as

DP(x, z̄) := z1 · · · zk · x̂(z1) · · · x̂(zk),

where x̂ := Enc(x) ∈ {0, 1}2` is an error-corrected version of x (Lemma 4.11), z̄ = (z1, · · · , zk) ∈
({0, 1}`)k = {0, 1}d, and d := `k = O(k log(n/ε)). The security of DP can be proved by using a
standard hybrid argument, as in [NW94].

We note that the success probability of the reconstruction procedure can be amplified without
costing the advice complexity significantly. Specifically, one can use the standard hybrid argument
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to construct a reconstruction procedure RD0 and AD0 : {0, 1}n × {0, 1}r0 → {0, 1}a such that a =
k +O(log(k/ε)) and

Pr
w0

[
RD0 (AD0 (x,w0), w0) = x

]
≥ ε

2k

for any function D that ε-distinguishes DP(x, -). Then, the success probability of the recon-
struction procedure (RD0 , A

D
0 ) can be amplified to 3/4 by repeating it m = O(k/ε) times and

providing the successful index as advice; a formal description follows. Let m = O(k/ε) and
define AD : {0, 1}n × ({0, 1}r0)m → {0, 1}a+logm such that AD(x, (w1, · · · , wm)) is equal to the
pair (AD0 (x,wi), i), where i ∈ [m] is the first index i such that RD0 (AD0 (x,wi), wi) = x. Define
RD : {0, 1}a+logm × ({0, 1}r0)m → {0, 1}n such that RD((α, i), (w1, · · · , wm)) := RD0 (α,wi). �

As a consequence, given any oracle D that distinguishes DP(x, -) from the uniform distribution,
one can enumerate a list of Õ(2k) strings that contain x by a randomized algorithm, which we
call the “Enumeration Lemma”. In order to simplify the proof of DistPH-hardness, we will use its
derandomized version.

Corollary 7.2 (Derandomized Enumeration Lemma). Assume that there exists a nearly optimal
pseudorandom generator. Then, there exist a polynomial-time-computable family of functions DP =
{DPn,k : {0, 1}n×{0, 1}d → {0, 1}d+k}k≤2n, where d = O(k log n), and a polynomial-time algorithm

E that, given (1n, 12k , D) as input, where D : {0, 1}d+k → {0, 1} is a circuit, outputs a list L ⊆
{0, 1}n such that x ∈ L holds for any string x ∈ {0, 1}n such that D (1/4)-distinguishes DPn,k(x, -).

Proof. Let DPn,k be the k-wise direct product generator of Theorem 7.1 with parameter ε :=
1/4, and let A(-), R(-) be its advice and reconstruction functions, respectively. The algorithm

E takes 1n, 12k , and (the description of) a circuit D : {0, 1}d+k → {0, 1} and outputs the list
L := {RD(α,Gm(z)) | α ∈ {0, 1}k+O(log k), z ∈ {0, 1}O(logm) }, where Gm : {0, 1}O(logm) → {0, 1}m
is a nearly optimal pseudorandom generator secure against O(m)-size circuits. Here, m is chosen
later so that it is larger than the randomness complexity r, and the reconstruction procedure
RD(α,Gm(z)) uses the first r bits of Gm(z) as the source of randomness.

Fix any string x ∈ {0, 1}n such that D (1/4)-distinguishes DPn,k(x, -). Consider the statistical
test Tx : {0, 1}r → {0, 1} defined as

Tx(w) := 1 ⇐⇒ RD(AD(x,w), w) = x

for any w ∈ {0, 1}r. Note that Tx can be computed by a circuit of size poly(n, size(D)), where
size(D) denotes the size of the circuit D. We choose m large enough so that m ≥ size(Tx). By the
security of the pseudorandom generator Gm, it follows that

Pr
z

[
RD(AD(x,Gm(z)), Gm(z)) = x

]
≥ Pr

w

[
RD(AD(x,w), w) = x

]
− o(1) ≥ 3/4− o(1).

In particular, there exists some z ∈ {0, 1}O(logm) such that RD(AD(x,Gm(z)), Gm(z)) = x. Choos-
ing α := AD(x,Gm(z)), we have x ∈ L as desired. The running time of E is poly(m,n, 2k) =
poly(n, 2k, size(D)). �

In order to prove DistPH-hardness, without loss of generality, we can assume that the distribu-
tion is uniform owing to the following.
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Lemma 7.3 (Impagliazzo and Levin [IL90]; see also [BT06a]). Let A be any oracle and U =
{Un}n∈N denote the family of the uniform distributions Un over {0, 1}n. If NPA × {U} ⊆ AvgZPP,
then DistNPA ⊆ AvgZPP.

Proof Sketch. Under the assumption that NP × {U} ⊆ AvgZPP, one can invert any distributional
one-way function [HILL99, IL89]. Let (L,D) ∈ DistNPA and S be a polynomial-time sampler for
D. One can reduce the task of solving (L,D) to the task of solving (L◦S,U) via the map x 7→ I(x),
where I is an inverter for the candidate distributional one-way function S. �

We also require the fact that K(xy) ≥ K(x) + |y| − O(log(|x| + |y|)) for most strings y, which
follows from the symmetry of information.

Lemma 7.4. There exists a universal constant c0 such that, for all large n,m ∈ N with m ≤ n and
any string x ∈ {0, 1}n, it holds that

K(xy) ≥ K(x) +m− c0 log n

for at least half of the strings y ∈ {0, 1}m.

Proof. The symmetry of information for Kolmogorov complexity [ZL70] implies that

K(xy) ≥ K(x) + K(y | x)−O(log n).

By a simple counting argument (Fact 3.5), we have Pry∼{0,1}m [K(y | x) ≥ m− 1] ≥ 1/2. �

Now, we are ready to present the DistPH-hardness result for GapMINKTPH.

Reminder of Theorem 1.16. Let A be any Σp
k-hard problem for some k ∈ N. If GapMINKTA ∈

P, then DistΣp
k ⊆ AvgP.

Proof of Theorem 1.16. Since the theorem is trivial if k = 0, we assume k > 0, in which case Theo-
rem 6.8 implies the existence of a nearly optimal pseudorandom generatorG = {Gn : {0, 1}O(logn) →
{0, 1}n}n∈N. By Proposition 3.4 and Lemma 7.3, it suffices to show that (L,U) ∈ AvgBPP = AvgP
for any L ∈ Σp

k. However, it is rather complicated to analyze the success probability of AvgBPP;
therefore, for simplicity, we present a deterministic errorless heuristic algorithm that makes use of
the nearly optimal pseudorandom generator.

Let τ be some polynomial such that GapτMINKTA ∈ P, and let B be a polynomial-time
algorithm that solves GapτMINKTA.

Fix any L ∈ Σp
k and let V be a Σp

k-verifier for L; that is, using the notation that Qi := ∃ if i is
odd and Qi := ∀ otherwise, we have

x ∈ L ⇐⇒ ∃y1, ∀y2,∃y3, . . . ,Qkyk, V (x, y1, y2, . . . , yk) = 1,

for any x ∈ {0, 1}∗, where yi ∈ {0, 1}v(|x|) for some polynomial v. Since the oracle A is Σp
k-hard,

there exists an algorithm that, given (x, y1, . . . , yi−1) as input and oracle access to A, computes the
lexicographically first yi such that Qi+1yi+1, . . . ,Qkyk, V (x, y1, . . . , yk) = i mod 2 in time |x|cV ,
where cV is some universal constant and i ∈ [k].

We now describe an errorless heuristic scheme M for (L,U). Let (x, δ) be the input to M , where
x ∈ {0, 1}∗ is a string of length n ∈ N and δ ∈ (0, 1) is an error parameter. The algorithm M is
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defined recursively, as in Algorithm 1. Algorithm 1 uses the derandomized enumeration procedure
E of Corollary 7.2 associated with the κ-wise direct product generator DPv(n),κ. The basic idea

behind Algorithm 1 is to replace the quantifiers Q1y1 ∈ {0, 1}v(n), . . . ,Qkyk ∈ {0, 1}v(n) with the
quantifiers over the elements in the list enumerated by the algorithm E.

Algorithm 1 Errorless heuristic scheme M

Input: a string x ∈ {0, 1}∗ of length n and error parameter δ ∈ (0, 1).

1: Let κ := cκ log(n/δ) and m := n+ kv(n) +O(κ log n).
2: Let t1 := 2ncV , ti+1 := 2τ(m, ti).
3: Output Enumerate(1).

4: function Enumerate(i ∈ N, y1, . . . , yi−1 ∈ {0, 1}v(n))
5: if i = k + 1 then
6: return V (x, y1, . . . , yk).
7: end if
8: Define a circuit D : {0, 1}d+κ → {0, 1} as D(w) := 1−B(xy1 · · · yi−1w, 1

ti , 1n+d+κ/4).
9: if Check(D) = “fail” then

10: Output ⊥ and halt immediately.
11: end if
12: Run E on input (1v(n), 12κ , D) to obtain a list Li ⊆ {0, 1}v(n).
13: Let L′i := { yi ∈ Li | B(xy1 · · · yi, 1ti , 1n+2i log ti) = 1 }.
14: return Qiyi ∈ L′i,enumerate(i+ 1, y1, . . . , yi) = 1.
15: end function

16: function Check(D)
17: Compute p := Pru∼{0,1}O(log s) [D(Gs(u)) = 1], where s := size(D).
18: return “fail” if p ≤ 3/8; otherwise, return “ok”.
19: end function

First, we claim that the algorithm M outputs some value on most inputs x ∈ {0, 1}n.

Claim 7.5. Prx∼{0,1}n [M(x, δ) = ⊥] ≤ δ.

Proof. Consider the set R := {x ∈ {0, 1}n | KA(x) ≥ n− log 1/δ } of Kolmogorov-random strings.
By the standard counting argument (Fact 3.5), it holds that Prx∼{0,1}n [x ∈ R] ≥ 1− δ. We claim
that M(x, δ) 6= ⊥ for any x ∈ R. To this end, it suffices to claim that Prw [D(w) = 1] ≥ 1/2 for any
circuit D defined in Line 8. By definition, D(w) = 1 if and only if B(xy1 · · · yi−1w, 1

ti , 1n+d+κ/4) =
0. Since B solves GapτMINKTA and Kτ(m,ti),A(xy1 · · · yi−1w) ≥ KA(xy1 · · · yi−1w), any w such
that KA(xy1 · · · yi−1w) > n+ d+ κ/4 + log τ(m, ti) is accepted by D; note here that the parameter
m is chosen so that m ≥ |xy1 · · · yi−1w|. For at least half of the w ∈ {0, 1}d+κ, we have

KA(xy1 · · · yi−1w) ≥ KA(xw)−O(log n)

≥ KA(x) + |w| −O(log n) ( by Lemma 7.4, for a half of w )

≥ n− log 1/δ + d+ κ−O(log n)

> n+ d+ κ/2

> n+ d+ κ/4 + log τ(m, ti),
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where the last two inequalities hold for any i ∈ [k] by choosing sufficiently large constant cκ.
Therefore,

Pr
w

[D(w) = 1] ≥ 1/2,

from which it follows that Check(D) = “ok”. �
Consider Line 13, where the algorithm takes the partial list L′i of Li. We observe that the list

L′i does not contain any string with high Kolmogorov complexity.

Claim 7.6. For any i ∈ [k] and for the list L′i in the algorithm M , any string yi ∈ L′i satisfies

Kti+1/2,A(xy1 · · · yi) = Kτ(m,ti),A(xy1 · · · yi) ≤ n+ (2i+ 1) log ti+1,

where y1, · · · , yi−1 are arbitrary arguments in Enumerate.

Proof. Since B(xy1 · · · yi, 1ti , 1n+2i log ti) = 1, the instance (xy1 · · · yi, 1ti , 1n+2i log ti) is not a No
instance of GapτMINKTA. Therefore, Kτ(m,ti),A(xy1 · · · yi) ≤ n+ 2i log ti + log τ(m, ti) ≤ n+ (2i+
1) log ti+1. �

Next, we claim that the algorithm M does not err. Suppose that M outputs some value in
{0, 1}. This means that, at Line 12 during the execution of M , we have Check(D) 6= “fail”,
and thus Prw [D(w) = 1] ≥ 1/4. Under this condition, the Derandomized Enumeration Lemma
guarantees that the list Li contains any yi ∈ {0, 1}v(n) such that D avoids DPv(n),κ(yi, -).

Let x ∈ L. In this case, we claim that M outputs 1. The correctness is established by choosing
i := k in the following claim.

Claim 7.7. Assume x ∈ L. For any i ∈ {0, · · · , k},

Q1y1 ∈ L′1, . . . ,Qiyi ∈ L′i,Qi+1yi+1 ∈ {0, 1}v(n), . . . ,Qkyk ∈ {0, 1}v(n), V (x, y1, . . . , yk) = 1. (2)

Here, L′i is the list defined in Line 13 and depends on y1, . . . , yi−1.

We note that the correctness proof for the case when x 6∈ L is essentially the same except that
the statement of Eq. (2) is negated; thus, we omit the proof and focus on proving Claim 7.7 for the
remainder of the proof.

We prove Claim 7.7 by induction on i = 0, · · · , k. When i = 0, the claim follows from the
assumption that x ∈ L. Assume that the claim is correct up to i− 1, which means that

Q1y1 ∈ L′1, . . . ,Qi−1yi−1 ∈ L′i−1,Qiyi ∈ {0, 1}v(n), . . . ,Qkyk ∈ {0, 1}v(n), V (x, y1, . . . , yk) = 1.

Fix any y1 ∈ L′1, . . . , yi−1 ∈ L′i−1 such thatQiyi ∈ {0, 1}v(n), . . . ,Qkyk ∈ {0, 1}v(n), V (x, y1, . . . , yk) =
1. If Qi = ∀, the claim is clearly true. Thus, we consider the case when Qi = ∃. Let y∗i be the
lexicographically first yi ∈ {0, 1}v(n) such that

Qi+1yi+1 ∈ {0, 1}v(n), . . . ,Qkyk ∈ {0, 1}v(n), V (x, y1, . . . , yk) = 1. (3)

To complete the induction step, it suffices to prove the following.

Claim 7.8. y∗i ∈ Li, and moreover, y∗i ∈ L′i.
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Proof. We first prove y∗i ∈ Li. By the Derandomized Enumeration Lemma, it suffices to show
that D rejects DPv(n),κ(y∗i , z) for any z ∈ {0, 1}d. The string xy1 . . . yi−1 · DPv(n),κ(y∗i , z) can
be printed with oracle A by first describing xy1 . . . yi−1 using Claim 7.6 and then computing the
lexicographically first y∗i such that Eq. (3) holds. Therefore,

Kti,A(xy1 . . . yi−1 ·DPv(n),κ(y∗i , z))

≤Kti/2,A(xy1 . . . yi−1) + |z|+O(log n)

≤n+ (2i− 1) log ti +O(log n) + d

≤n+ d+ κ/4.

It follows that B accepts (xy1 . . . yi−1 ·DPv(n),κ(y∗i , z), 1
ti , 1n+d+κ/4); thus, D rejects DPv(n),κ(y∗i , z)

for every z.
Having established that y∗i ∈ Li, we claim that y∗i ∈ L′i. This holds because

Kti,A(xy1 . . . yi−1y
∗
i )

≤Kti/2,A(xy1 . . . yi−1) +O(log n)

≤n+ (2i− 1) log ti +O(log n)

≤n+ 2i log ti.

�
�

8 Error-Tolerant Worst-Case-to-Average-Case Reduction

In this section, we present a proof of an error-tolerant non-black-box worst-case-to-average-case
reduction. First, it is instructive to recall the proof techniques of [Hir18, Hir20a] that convert any
black-box hitting set generator construction to non-black-box worst-case to average-case reductions
for MINKT. Based on the new black-box hitting set generator construction of Theorem 4.3, we
obtain an improved quality of approximation for a certain range of parameters.

Theorem 8.1. Let A be any oracle. Assume either GapMINKTA ∈ P or (coMINKTA,D) ∈
Avg1

1/4mP for any efficiently samplable distribution D. Then, there exists a polynomial-time algo-
rithm that solves the following promise problem Π = (ΠYes,ΠNo).

ΠYes := { (x, 1t, 1s) | Kt,A(x) ≤ s and s ≤ 2log1/3 |x| },

ΠNo := { (x, 1t, 1s) | Kτ(|x|,t)(x) > σ(|x|, t, s) and s ≤ 2log1/3 |x| },

where σ(n, t, s) := 2s+O(log nt) and τ is some polynomial.

Following [Hir18], for any constant c > 0, we define the family of distributions Dc := {Dcm}m∈N
so that Dcm is the distribution of (x, 1t, 1s) with t ∼ [m], x ∼ {0, 1}m−t, and s := |x| − c logm.
We first prove that computing Kolmogorov complexity on average is easier than approximating
Kolmogorov complexity in the worst case.

Lemma 8.2. Let A be any oracle. If GapMINKTA ∈ P, then (MINKTA,Dc) ∈ Avg1/4mP for some
constant c > 0.
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Proof. Let M be a polynomial-time algorithm that solves GapτMINKTA for some polynomial τ .
Define an algorithm M ′ that takes (x, 1t, 1s) as input so that M ′(x, 1t, 1s) := ⊥ if M(x, 1t, 1s) = 1;
otherwise, M ′(x, 1t, 1s) := 0.

We claim that M ′ is an errorless algorithm for coMINKT. Assume that M ′(x, 1t, 1s) = 0.
This happens only if M(x, 1t, 1s) = 0, which implies that Kt,A(x) > s. Therefore, we obtain
(x, 1t, 1s) 6∈ MINKT.

We claim that the failure probability of M ′ over (x, 1t, 1s) ∼ Dcm is at most 1/4m for some
constant c. Observe that M ′ outputs ⊥ only if (x, 1t, 1s) is not a No instance of GapτMINKTA;
thus, it suffices to show that Kτ(|x|+t),A(x) ≤ s+log τ(|x|+ t) with probability at most 1/4m. Since
|x| + t = m and s = |x| − c logm, we have s + log τ(|x| + t) ≤ |x| − 2 logm by choosing c large
enough. Therefore,

Pr
(x,1t,1s)∼Dcm

[
Kτ(m),A(x) ≤ s+ log τ(m)

]
≤ 1

4m

for a sufficiently large m. �

Proof of Theorem 8.1. By Lemma 8.2 and Fact 3.3, it suffices to show the conclusion of Theorem 8.1
when (coMINKTA,D) ∈ Avg1

1/4kP, where D := Dc for some constant c > 0. Let M be a one-

sided-error heuristic algorithm for (coMINKTA, {Dk}k∈N) with success probability 1−1/4k. Then,
for any k ∈ N and any t ∈ [k], the probability that M fails to compute coMINKTA on input
(x, 1t, 1|x|−c log k) over the choice of x ∼ {0, 1}k−t is at most 1/4. Since the fraction of x such that
(x, 1t, 1|x|−c log k) is a No instance of coMINKTA is at most 1/2 (by Fact 3.5), we obtain

Pr
x∼{0,1}k−t

[M(x, 1t, 1|x|−c log k) = 1] ≥ 3/4− 1/2 ≥ 1/4. (4)

We now describe an algorithm M ′ for solving Π. Let (x, 1t, 1s) ∈ {0, 1}∗ be an input and
n := |x|. Take the BB-HSG H : {0, 1}n × {0, 1}d → {0, 1}m of Corollary 4.4 for m := s+ c′ log n+

c log(n + t), where c′ is some large constant chosen later. Since m ≤ 2log1/3 n + O(log n) and
d = O(log n+ log3m) = O(log n), there exist some polynomial τ0 and some large constant c′ such
that

Kτ0(n,t),A(H(x, z)) ≤ Kt,A(x) + c′ log n (5)

for any z ∈ {0, 1}d. The algorithmM ′ is defined asM ′(x, 1t, 1s) := 1 if and only ifM(H(x, z), 1τ0(n,t),
1m−c log(n+t)) = 0 for any z ∈ {0, 1}d.

We claim the correctness of the algorithm. Let (x, 1t, 1s) ∈ ΠYes. By Eq. (5), for any z ∈ {0, 1}d,
the instance (H(x, z), 1τ0(n,t), 1m−c log(n+t)) is a No instance of coMINKT and is always rejected by
the one-sided-error heuristic algorithm M . Thus, M ′ accepts any (x, 1t, 1s) ∈ ΠYes.

Conversely, suppose that M ′ accepts an input (x, 1t, 1s). By definition, this means that the
function D : {0, 1}m → {0, 1} defined as D(w) := M(w, 1τ0(n,t), 1m−c log(n+t)) rejects H(x, z) for
every z ∈ {0, 1}d. It follows from Eq. (4) that D (1/4)-avoids H(x, -). By the reconstruction

property of H, there exists a list LD of size 22m+O(logn+log3m) = 22s+O(lognt) containing x such
that x can be printed in time poly(n, t) given the index of x as input. Therefore,

Kτ(n,t)(x) ≤ 2s+O(log nt)

holds for some polynomial τ , which means that (x, 1t, 1s) 6∈ ΠNo. �
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Note that the promise problem defined in Theorem 8.1 is not necessarily disjoint. This motivates
us to define the “non-disjoint” promise problem version of GapMINKTA as follows.

Definition 8.3. For any oracle A and any function τ : N×N→ N, the promise problem Gapτ (KA vs K)
is defined as the pair

(GapτMINKTA
Yes,GapτMINKTNo),

where, for a promise problem Π, ΠYes and ΠNo denote the sets of the Yes and No instances
of Π, respectively. We say Gap(KA vs K) ∈ P if there exists some polynomial τ such that
Gapτ (KA vs K) ∈ P. For a complexity class C, we say Gap(KC vs K) ∈ P if Gap(KA vs K) ∈ P
for every A ∈ C.

It is easy to see that Gap(KA vs K) is a harder problem than GapMINKTA.

Fact 8.4. For any oracle A, if Gap(KA vs K) ∈ P, then GapMINKTA ∈ P.

Proof. Since GapτMINKTA
No ⊆ GapτMINKTNo, the identity reduction maps any No instance of

GapτMINKTA to that of Gapτ (KA vs K). �

We will first present the error-tolerant worst-case-to-average-case reduction as a reduction to
the task of avoiding a hitting set generator. Let us define the sublinear-time computability of a
hitting set generator such that it is compatible with the definition of time-bounded Kolmogorov
complexity.

Definition 8.5. Let s, t : N → N. A family of functions H = {Hn : {0, 1}s(n) → {0, 1}n}n∈N
is said to be computable in time t(n) with oracle A if there exists an oracle algorithm M such
that, for every n ∈ N and every seed z ∈ {0, 1}s(n), given i as input, random access to each bit
of (n, z), and oracle access to A, it outputs the ith bit of Hn(z) for any i ∈ [n] in time t(n) (i.e.,
M (n,z),A(i) = Hn(z)i).

We observe that a one-sided-error heuristic algorithm for coMINKT is essentially equivalent
to avoiding a hitting set generator. While we omit a direct proof of the converse direction of
Lemma 8.6, it is implied by the worst-case-to-average-case reduction.

Lemma 8.6. Let δ : N → (0, 1), t : N → N be any functions. Let A be any oracle. Assume that
(coMINKTA[t = t(n), s = n − log(n/δ(n))],U) ∈ Avg1

1−δ(n)P. Then, no hitting set generator

H = {Hn : {0, 1}n−log(n/δ(n))−O(logn) → {0, 1}n}n∈N computable in time t(n) with oracle A is
(1− o(1)) · δ(n)-secure against P.

Proof. Assume, for a contradiction, that there exists a hitting set generator

H = {Hn : {0, 1}n−log(n/δ(n))−O(logn) → {0, 1}n}n∈N

computable in time t(n) with oracle A. By the definition of the computability of H (Definition 8.5),
we have

Kt(n),A(Hn(z)) ≤ |z|+O(log n) < n− log(n/δ(n)). (6)

Let L := coMINKTA[t = t(n), s = n − log(n/δ(n))], and let A be a one-sided-error heuristic
algorithm for (L,U) ∈ Avg1

1−δ(n)P. We claim that H is (1 − o(1)) · δ(n)-avoided by A, which
will complete the proof. By Eq. (6), Hn(z) is a No instance of L; therefore, A(Hn(z)) = 0.

50



On the other hand, consider a string w ∼ {0, 1}n chosen uniformly at random. By Fact 3.5,
Prw [L(w) = 0] ≤ 2δ(n)/n holds. Therefore,

Pr
w

[A(w) = 1] ≥ Pr
w

[A(w) = L(w)]− Pr
w

[L(w) = 0] ≥ δ(n)− 2δ(n)/n ≥ (1− o(1)) · δ(n).

�

Now, we present the error-tolerant non-black-box worst-case-to-average-case reduction that re-
duces Gap(KA vs K) to the task of avoiding a hitting set generator.

Theorem 8.7. Let c, c′, γ > 0 be any constants, and let A be any oracle. Assume that, for any
family of functions H = {Hn : {0, 1}n−c′ logn → {0, 1}n}n∈N computable in time nγ with oracle A,
there exists a polynomial-time algorithm M that n−c-avoids H. Assume that there also exists an
explicit pseudorandom generator G = {Gn : {0, 1}O(logn) → {0, 1}n}n∈N secure against linear-sized
circuits. Then, Gap(KA vs K) ∈ P.

Proof of Theorem 8.7. Under the assumption that there exists a nearly optimal pseudorandom
generator, we have pr-BPP = P. Thus, it suffices to show that Gapτ (KA vs K) ∈ pr-coRP ⊆ P for
some polynomial τ .

In brief, we take H as the A-oracle universal Turing machine running in time nγ . More formally,
for each n ∈ N and each z ∈ {0, 1}n−c′ logn, define the ith bit of Hn(z) ∈ {0, 1}n as the output of
U (n,z),A(i) if it halts in nγ steps and 0 otherwise, for each i ∈ [n]. The resulting hitting set generator
H is computable in time Õ(nγ), where the overhead is for counting time steps. By applying the
assumption (for a slightly larger γ), there exists a polynomial-time machine M0 that n−c-avoids H.
By the construction, any string x ∈ {0, 1}n such that Knγ ,A(x) ≤ n−c′ log n−O(log n) is contained
in the image of Hn.

We now describe a one-sided-error randomized algorithm M1 for solving Gapτ (KA vs K). Let
(x, 1t, 1s) be an input, where x ∈ {0, 1}∗ is a string of length n ∈ N and t, s ∈ N. Let k ∈ N, ε > 0
be some parameters chosen later, and take the k-wise direct product generator (DP: {0, 1}n ×
{0, 1}d → {0, 1}d+k, A,R) of Theorem 7.1. Let ρ ≤ (t + poly(n))1/γ be some parameter chosen
later. The randomized algorithm M1 picks z ∼ {0, 1}d and w ∼ {0, 1}ρ, and accepts if and only if
M0(DP(x, z) · w) = 0. Let N := d+ k + ρ be the input length of M0.

We claim the correctness of the algorithm M1 below.

Claim 8.8.

1. If Kt,A(x) ≤ s, then M1(x, 1t, 1s) accepts with probability 1.

2. If Kτ(n,t)(x) > s+ log τ(n, t), then M1(x, 1t, 1s) rejects with probability at least N−c/2.

Since M1 is a one-sided-error algorithm, the success probability can be amplified by repeating
the computation of M1 for independent random coin flips. Therefore, Claim 8.8 implies that
Gapτ (KA vs K) ∈ pr-coRP, and it now remains to prove Claim 8.8.

We first prove Item 1. Assume Kt,A(x) ≤ s. Fix any z ∈ {0, 1}d and w ∈ {0, 1}ρ.
We prove that Kt′,A(DP(x, z)·w) ≤ N−c′ logN−O(logN), where t′ = |DP(x, z)·w|γ = Nγ ≥ ργ

for appropriate choices of the parameters k, ρ. Each bit of the string DP(x, z) ·w can be described
by z ∈ {0, 1}d, w ∈ {0, 1}ρ, and the program P of size Kt,A(x) for describing x as follows: Given
an index i ∈ [d+ k + ρ], random access to the descriptions (z, w, P ), and oracle access to A, if
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i ≤ d+ k, compute the output x of the program P and output the ith bit of DP(x, z); if i > d+ k,
simply output the (i−d−k)th bit of w. Since DP can be computed in time poly(n), it follows that

Kt+poly(n),A(DP(x, z) · w) ≤ d+ Kt,A(x) + ρ+O(log n)

≤ d+ s+ ρ+O(log n),

where the additive term O(log n) comes from a self-delimiting encoding of the tuple (z, w, P ). By
setting ρ := (t+ poly(n))1/γ and k := s+O(c′ logN), we have

Kt′,A(DP(x, z) · w) ≤ d+ k + ρ− c′ logN −O(logN) = N − c′ logN −O(logN) (7)

as desired.
By the definition of H, the string DP(x, z) ·w is in the image of HN ; thus, it is rejected by M0.

Therefore, M1 accepts (x, 1t, 1s), which completes the proof of Item 1.
We now prove Item 2 by its contrapositive. Assume that M1(x, 1s, 1t) rejects with probability

less than N−c/2. This means that

Pr
zw∼{0,1}d+ρ

[M0(DP(x, z) · w) = 1] <
1

2
·N−c.

Take the secure pseudorandom generator Gm : {0, 1}O(logm) → {0, 1}ρ,26 where m ≤ poly(n) is
chosen large enough so that m ≥ 8N c, m ≥ ρ, and m is larger than the size of a circuit simulating
M0(-) on inputs of length N . Since Gm (N−c/8)-fools M0(DP(x, z) · -) for any x, z, it follows that

Pr
zw0∼{0,1}d+O(logm)

[M0(DP(x, z) ·Gm(w0)) = 1] <
3

8
·N−c.

On the other hand, since M0 N
−c-avoids HN , we also have

Pr
w′w∼{0,1}d+k+ρ

[
M0(w′ · w) = 1

]
≥ N−c.

By using the security of the pseudorandom generator Gm, it follows that

Pr
w′w0∼{0,1}d+k+O(logm)

[
M0(w′ ·Gm(w0)) = 1

]
≥ 7

8
·N−c.

Therefore,

Pr
w′,w0

[
M0(w′ ·Gm(w0)) = 1

]
− Pr
z,w0

[M0(DP(x, z) ·Gm(w0)) = 1] ≥ 1

2
·N−c.

By an averaging argument, there exists w0 ∈ {0, 1}O(logm) such that

Pr
w′

[
M0(w′ ·Gm(w0)) = 1

]
− Pr

z
[M0(DP(x, z) ·Gm(w0)) = 1] ≥ 1

2
·N−c.

This means that, for the function D : {0, 1}d+k → {0, 1} defined as D(w′) := M0(w′ ·Gm(w0)), the
black-box PRG construction DP(x, -) is (N−c/2)-distinguished by D. Choosing ε := N−c/2, by the
reconstruction property of DP (Theorem 7.1),

Pr
w′∼{0,1}r

[
RD(AD(x,w′), w′) = x

]
≥ 3

4
, (8)

26The output length of Gm is m, but we only use the first ρ bits.
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where the advice complexity a is at most k + O(log(k/ε)) = s + O(logN). Now, we derandomize
the random choice of w′ of Eq. (8) using the secure pseudorandom generator Gm′ : {0, 1}O(logm′) →
{0, 1}r, where m′ is chosen later. To this end, we define a statistical test T : {0, 1}r → {0, 1} as
T (w′) := 1 iff RD(AD(x,w′), w′) = x for each w′ ∈ {0, 1}r. By inspection, one can observe that
the function T can be computed by a circuit of size poly(N). We choose m′ ≥ poly(N) so that Gm′

o(1)-fools T . Then, it follows from Eq. (8) that

Pr
w′0∼{0,1}O(logm′)

[
RD(AD(x,Gm′(w

′
0)), Gm′(w

′
0)) = x

]
≥ 3

4
− o(1).

In particular, there exists some seed w′0 ∈ {0, 1}O(logm′) such that RD(α,Gm′(w
′
0)) = x for the

advice string α := AD(x,Gm′(w
′
0)) ∈ {0, 1}a.

Now, we present a program P ′ of size s+ log τ(n, t) that describes x. The program P ′ takes the
advice string α = AD(x,Gm′(w

′
0)) and the random bits w0 ∈ {0, 1}O(logm) and w′0 ∈ {0, 1}O(logm′)

(as well as parameters such as N, k), and it computes and outputs RD(α,Gm′(w
′
0)) for D(-) :=

M0(- ·Gm(w0)). This program outputs x in polynomial time; thus,

Kτ0(n,t)(x) ≤ a+O(logN) ≤ s+O(logN)

for some polynomial τ0. By choosing a polynomial τ(n, t) larger than τ0(n, t) and 2O(logN), we
obtain

Kτ(n,t)(x) ≤ s+ log τ(n, t).

This completes the proof of Claim 8.8. �

Lemma 8.9. Let γ > 0 be any constant, δ : N → (0, 1) be any function such that δ(n)−1 = nO(1),
and A be any oracle. Assume that (coMINKTA[t = nγ , s = n− log(n/δ(n))],U) ∈ Avg1

1−δ(n)P and

that there exists a nearly optimal pseudorandom generator. Then, Gap(KA vs K) ∈ P.

Proof. This follows by combining Lemma 8.6 and Theorem 8.7. �

We have now arrived at the final error-tolerant non-black-box worst-case-to-average-case reduc-
tion.

Reminder of Theorem 1.15. Let c > 0 be any constant and A be any NP-hard oracle. If
{coMINKTA} × PSamp ⊆ Avg1

1−n−cP, then Gap(KA vs K) ∈ P.

Proof. Using Theorem 6.10, we can construct a nearly optimal pseudorandom generator. The result
follows by combining this with Lemma 8.9. �

8.1 A Relationship with Hitting Set Generators

In order to include statements on hitting set generators in our equivalence, we prove the follow-
ing.

Theorem 8.10. Let A be any NP-hard oracle, and let γ > 0 be any constant. Assume that P =
ZPP, and that, for some constant c, no hitting set generator H = {Hn : {0, 1}n−c logn → {0, 1}n}n∈N
computable in time nγ with oracle A is secure against P. Then, Gap(KA vs K) ∈ P.
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Proof. Under the assumption, we prove that there exists a nearly optimal pseudorandom generator;
then, the result immediately follows from Theorem 8.7.

In order to construct a pseudorandom generator, we first prove the following.

Claim 8.11. Under the assumptions, ENP ⊆ BPE.

Proof. The idea of the proof is the same as that of Theorem 5.1. We present a randomized reduction
from ENP to the task of avoiding some hitting set generator. Let L ∈ ENP. Fix any input x ∈ {0, 1}∗
of length n. As in Theorem 5.1, one can take a function fx : {0, 1}O(n) → {0, 1}∗ computable in
ENP ⊆ EA such that L can be computed in time 2O(n) if one can efficiently enumerate a list of 2O(n)

functions that contains fx. Therefore, our goal is to show that there exists a 2O(n)-time randomized
algorithm that, on input x, outputs a list L that contains fx with high probability. Let N := 2O(n)

be the size of the truth table of fx, and identify fx with its truth table fx ∈ {0, 1}N .
Take the BB-HSG H ′ : {0, 1}N × {0, 1}d → {0, 1}m of Corollary 4.4, where d = O(logN +

log3m) = O(logN) andm = O(logN) = O(n) is a parameter chosen later. ChooseN ′ = 2O(n) large
enough so that fx is computable in time (N ′)γ/2 with oracle A. Consider the hitting set generator
HN ′ : {0, 1}N

′−c logN ′ → {0, 1}N ′ defined as HN ′(x, z, w) := H ′(fx, z) · w, where z ∈ {0, 1}d and
w ∈ {0, 1}N ′−m. To make it well defined, we must ensure that n + d + (N ′ −m) ≤ N ′ − c logN ′,
which is satisfied by choosing sufficiently large m = O(n).

One can observe that HN ′ is computable in time (N ′)γ with oracle A: given an index i ∈ [N ′]
and random access to (x, z, w) (as well as oracle access to A), if i′ ≤ m, output the i′th bit of
H ′(fx, z) in time (N ′)γ/2; otherwise, output the (m− i′)th bit of w.

By the assumption, there exists a poly(N ′)-time algorithm M that avoids HN ′ . Using M , we
claim that H ′ can also be avoided by the randomized algorithm M ′ defined as M ′(u) := M(u,w)
for a randomly chosen w ∼ {0, 1}N ′−m and for u ∈ {0, 1}m. For any z ∈ {0, 1}d, we have H ′(fx, z) ·
w = HN ′(x, z, w); thus, H ′(fx, z) · w is contained in the image of HN ′ , which is rejected by M ′.
On the other hand, Pru,M ′ [M

′(u) = 1] = Pru,w [M(u,w) = 1] ≥ 1
4 . By an averaging argument,

Prw
[
Pru [M(u,w) = 1] ≥ 1

8

]
≥ 1

8 . Thus, M(-, w) (1/8)-avoids H ′ for at least a (1/8)-fraction of w.
By the reconstruction property, with probability at least (1/8) over the choice of w, there exists

a list LD(-,w) containing fx that can be computed in time 2O(n). The success probability can be
amplified by repeating this and taking the union of the produced lists. �

Claim 8.12. Under the assumptions, ENP ⊆ BPE = ZPE = E and pr-MA = NP.

Proof. One can easily show that BPE = ZPE as follows. Define a function Hn : {0, 1}nγ/2 → {0, 1}n
such that Hn(C) is the truth table of the function computed by a circuit represented by C. By
avoiding this function, one can test whether a function has high circuit complexity, which enables
us to partially derandomize BPP to ZPP by picking a random function f , testing its hardness, and
using it as a hard function for a pseudorandom generator construction of [IW97]. By a padding
argument and the assumption that ZPP = P, we also have BPE = ZPE = E. Similarly, one can
prove pr-MA = NP (in the same way as for Proposition 6.9). �

Therefore, we have ENP ⊆ E and pr-MA = NP, from which one can construct a pseudorandom
generator (Lemma 6.2). �
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8.2 Monotonicity of Meta-Complexity

We prove the monotonicity of meta-complexity:

Reminder of Theorem 1.13. Let A and B be oracles such that A is NP-hard and B ≤pT A.
Then, GapMINKTA ∈ P implies GapMINKTB ∈ P

We need two simple facts. First, we observe that if approximating time-bounded Kolmogorov
complexity is easy in the worst case, then computing time-bounded Kolmogorov complexity exactly
is easy on average. (The proof idea is essentially the same with Lemma 8.2.)

Lemma 8.13. Let A be any oracle. If GapMINKTA ∈ P, then there exists a function δ : N→ (0, 1)
such that δ(n)−1 = nΘ(1) and

(MINKTA[t = n, s = n− log(n/δ(n))],U) ∈ Avgo(1)P.

Proof. By the assumption, there exists a polynomial τ such that GapτMINKTA ∈ P. Let M be a
polynomial-time algorithm that solves GapτMINKTA. Define δ(n) := τ(n, n).

We claim that an algorithm M ′ defined below is an errorless heuristic algorithm for L :=
MINKTA[t = n, s = n − log(n/δ(n))]. M ′ takes an input x ∼ {0, 1}n, defines t := n and s :=
n − log(n · τ(n, t)) = n − log(n/δ(n)), and simulates M on input (x, 1t, 1s). M ′ outputs ⊥ if
M(x, 1t, 1s) = 1; otherwise, M ′ outputs 0.

We claim that M ′ is errorless. If M ′(x) = 0, we have M(x, 1t, 1s) = 0, which implies that
Kt,A(x) > s; thus, x 6∈ L.

We claim that the error probability of M ′ is small. M ′ outputs ⊥ only if M(x, 1t, 1s) = 1,
in which case (x, 1t, 1s) is not a No instance of GapτMINKTA; that is, K(x) ≤ Kτ(n,t)(x) ≤
s+ log τ(n, t) = n− log n. Therefore, Prx∼{0,1}n [M ′(x) = ⊥] ≤ Prx [K(x) ≤ n− log n] = o(1). �

Second, we observe that the complexity of Gap(KA vs K) is monotone with respect to A.

Lemma 8.14. If B ≤pT A and Gap(KA vs K) ∈ P, then Gap(KB vs K) ∈ P.

Proof Sketch. Since B is reducible to A, there exists a polynomial p such that Kp(n,t),A(x) ≤
Kt,B(x) + O(1) for any x ∈ {0, 1}∗ and t ∈ N. Given an instance (x, 1t, 1s) of Gap(KB vs K), one
can reduce it to an instance (x, 1p(n,t), 1s+O(1)) of Gap(KA vs K). �

Proof of Theorem 1.13. Assume GapMINKTA ∈ P. Using NP-hardness of A and Theorem 6.8, we
obtain a nearly optimal pseudorandom generator. By Lemma 8.13, we obtain an errorless heuristic
algorithm for (MINKTA[t = n, s = n − log(n/δ(n))],U), where δ(n)−1 is some polynomial. These
results enable us to apply Lemma 8.9 and obtain Gap(KA vs K) ∈ P. Using Lemma 8.14, we obtain
Gap(KB vs K) ∈ P, which implies GapMINKTB ∈ P by Fact 8.4. �

A One-Sided-Error versus Errorless

In this section, we present a simple argument proving that the existence of a one-sided-error
heuristic scheme for C is equivalent to that of an errorless heuristic scheme for C, where C is an
arbitrary complexity class closed under taking the complement.
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Proposition A.1. Let C be an arbitrary complexity class such that C = coC. Then, DistC ⊆ AvgP
if and only if DistC ⊆ Avg1P

Proof. The “only if” part is obvious. To prove the converse direction, we prove the following.

Claim A.2. Let (L,D) be any distributional problem and δ : N → (0, 1/2) be any function. If
(L,D) ∈ Avg1

δP and (coL,D) ∈ Avg1
δP, then (L,D) ∈ Avg2δP.

Proof. Let M1 be a one-sided-error algorithm for (L,D) ∈ Avg1
δP and ¬M0 be a one-sided-error

algorithm for (coL,D) ∈ Avg1
δP. This means that M1 rejects every No instance and accepts most

Yes instances of L, and that M0 accepts every Yes instance and rejects most No instances of L.
We define an algorithm M as M(x) := 1 if M1(x) = 1, M(x) := 0 if M0(x) = 0, and M(x) := ⊥
otherwise. It is clear that M is an errorless algorithm for L.

We then bound the failure probability of M . If M(x) = ⊥, then we have M1(x) = 0 and
M0(x) = 1; since L(x) = 0 or L(x) = 1, we must have either M1(x) = 0 and L(x) = 1 or M0(x) = 1
and L(x) = 0. The probabilities that these events occur can be bounded by the failure probabilities
δ of M1 and M0, respectively. Therefore, for any n ∈ N,

Pr
x∼Dn

[M(x) = ⊥] ≤ Pr
x∼Dn

[M1(x) 6= L(x)] + Pr
x∼Dn

[M0(x) 6= L(x)] ≤ 2δ(n).

�
Proposition A.1 is an immediate corollary of the claim above. �

We note that the same argument does not work when the failure probability δ of a one-sided-
error algorithm is at least 1/2. In fact, it is easy to construct a counterexample of Claim A.2 when
δ ≥ 1/2, as in the next claim.

Fact A.3. Let δ ≥ 1/2 be any constant. There exists a distributional problem (L,U) such that
(L,U) ∈ Avg1

δP, (coL,U) ∈ Avg1
δP, and (L,U) 6∈ AvgP.

Proof Sketch. Take a balanced language L such that (L,U) 6∈ AvgP; for example, we define L ∩
{0, 1}n as a uniformly-at-random subset of size 2n−1 for each n ∈ N. Then, an algorithm M1 that
always outputs 0 is a one-sided-error heuristic algorithm with failure probability δ for (L,U); thus,
(L,U) ∈ Avg1

δP. Similarly, (coL,U) ∈ Avg1
δP. �
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