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Abstract

“Games against Nature” [Pap85] are two-player games of perfect information, in
which one player’s moves are made randomly (here, uniformly); the final payoff to the
non-random player is given by some [0, 1]-valued function of the move history. Estimat-
ing the value of such games under optimal play, and computing near-optimal strategies,
is an important goal in the study of decision-making under uncertainty, and has seen
significant research in AI and allied areas [HRTP11], with only experimental evalua-
tion of most algorithms’ performance. The problem’s PSPACE-completeness does not
rule out nontrivial algorithms. Improved algorithms with theoretical guarantees are
known in various cases where the payoff function F has special structure, and Littman,
Majercik, and Pitassi [LMP01] give a sampling-based improved algorithm for general
F , for turn-orders which restrict the number of non-random player strategies.

We study the case of general F for which the players strictly alternate with binary
moves (w1, r1, w2, r2, . . . , wn/2, rn/2)—for which the approach of [LMP01] does not im-
prove over brute force. We give a randomized algorithm to approximate the value of
such games under optimal play, and to execute near-optimal strategies. Our algorithm
achieves exponential savings over brute-force, making 2(1−δ)n queries to F for some ab-
solute constant δ > 0, and certifies a lower bound v̂ on the game value v with additive
expected error bounded as E[v − v̂] ≤ exp(−Ω(n)). (On the downside, δ is tiny and
the algorithm uses exponential space.)

Our algorithm is recursive, and bootstraps a “base case” algorithm for fixed-size
inputs. The method of recursive composition used, the specific base-case guarantees
needed, and the steps to establish these guarantees are interesting and, we feel, likely
to find uses beyond the present work.
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1 Introduction

1.1 Games against Nature

Games against Nature, as described by Papadimitriou [Pap85], are a natural and general
formulation of a ubiquitous problem: decision-making under persistent uncertainty, in sce-
narios where our knowledge of the world is continually evolving through observation. This
process is modeled in [Pap85] as a game in which a maximizing, “strategic” player takes turns
with a randomly-playing player, Nature; the strategic player’s moves are described by strings
w1, w2, . . . , wk and Nature’s random moves are described by strings r1, . . . , rk, which we will
assume are chosen uniformly. These moves alternate, and each wi is chosen with perfect
knowledge of the preceding moves w1, r1, . . . , wi−1, ri−1. The payoff to the strategic player
is then determined by some function F as a numerical value, F (w1, r1, . . . , wk, rk) ∈ [0, 1].
The function F is known to the strategic player.

In this work, we will focus on the case of “fully-alternating, binary” moves where each
wi and ri is chosen from {0, 1}. However, these games are also of interest in more general
setting where each wi, ri are bitstrings of some predetermined lengths, possibly depending
on the specification of the game F and on the value i. This framework can represent a wide
variety of practical scenarios for decision-making. It is thus natural to study the following
computational problems: given as input a description of F ,

1. Compute the (exact or approximate) expected payoff under optimal play, i.e. the
game’s value to the maximizing player—given by

val(F ) = max
w1

Er1 . . .max
wk

Erk
[

F (w1, r1, . . . , wk, rk)
]

. (1)

2. Implement an optimal or near-optimal strategy choosing next moves wi in response to
observed previous moves w1, r1, . . . , wi−1, ri−1.

These problems are usually considered in cases where the description of F is succinct.
Assume for now that F is specified by a description of a Boolean circuit CF computing F ,
a circuit of size polynomially bounded in the total bitlength of w1, r1, . . . , wk, rk.
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1.2 Related work in AI and other areas

Many probabilistic reasoning and planning tasks are considered in AI, and in allied ar-
eas including decision and control theory, constraint programming, and operations research
(see [HRTP11] for some interdisciplinary overview). One popular framework for this study is
that of Markov Decision Processes [Put94, BDH99]—an intensively-studied model in which
a strategic player’s and Nature’s moves affect a system state as described by a state au-
tomaton, and payoffs are delivered incrementally, determined by the current state. Various
algorithmic results are known, for state spaces that are either small or in some way well-
structured, see e.g., [PT87, BDG00, GKPV03]; however, these models may fail to succinctly
capture tasks in some application areas. Other existing work on more general games against
Nature, e.g., in [LMP01, Wal02, TF10, TF11, LWJ18], often studies a fairly expressive class
of functions F such as CNF formulas or more general Boolean formulas, giving mostly ex-
perimental assessments of algorithm performance; these works have adapted concepts and
techniques from classical SAT solvers. (When the move-structure and payoff function of
the game F are indicated by a Boolean formula quantified by “Exists” and “For-Random”
quantifiers, the problem is known as stochastic satisfiability [Pap85, LMP01].)

Decision-making under persistent uncertainty is also studied in a research area known as
competitive analysis of online algorithms (see, e.g., [Alb03]), in which a decision-maker views
an input string x one bit (or one “item”) at a time and must make decisions at multiple stages.
The game being played is usually completely known in advance, rather than given as input;
instead, the input x plays a role analogous to Nature’s moves, but is no longer assumed to
come from a known distribution. Instead researchers seek play-strategies for particular games
or classes of games that minimize a regret measure, comparing the algorithm’s performance
with the best performance obtainable with foreknowledge of the input x. This can be a useful
benchmark in applications, especially when a realistic distribution on Nature’s behavior is not
available. By contrast, in the current paper’s framework we assume a simple distributional
model for Nature’s play, but regard the game’s description as a variable input that must be
inspected and reasoned about.

1.3 Complexity classification, algorithms, and reductions

Even in their approximate versions, problems 1-2 above for Eq. (1) are PSPACE-complete
in the fully-alternating, binary case (where each wi, ri are a single bit). This follows from a
beautiful line of work showing the power of interactive proofs for decision problems [Bab85,
GMR89, GS86, LFKN92, Sha92]. A public-coin interactive proof system can be considered a
family of games against Nature—games designed to achieve epistemic goals through interac-
tion. These proof systems are specified by a polynomial-time Verifier: an efficient algorithm
that simultaneously generates Nature’s random moves, serves as a referee for the game, and
learns something by playing the game with an optimal strategic player.

This PSPACE-completeness result can be contrasted with the “bounded-alternation”
case where the bitstrings wi, ri are individually large but k = O(1). In this case the ap-
proximation problem is known to lie in AM [Bab85]. However, while the fully-alternating
case is “hardest” when viewed through the lens of complexity classes, such alternations may
also enable algorithmic improvements. This phenomenon appears in the related setting of
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2-player, zero-sum games with an adversarial opponent, where simple (randomized) pruning
techniques give improved exponential-time algorithms for perfect play. These techniques
yield exponential savings over brute force for binary fully-alternating games [Sni85, SW86]
and form part of the bedrock of game-playing AI. Algorithmic improvements for more general
move-bitlengths (or quantifier structure, in the framework of quantified Boolean formulas)
against adversarial opponents were given by Santhanam and Williams [SW15].

The prospect of such improvements for games against Nature was highlighted by Littman,
Majercik, and Pitassi [LMP01]. The authors gave a sampling-based evaluation approach,
called SampleEvalSSAT, and showed that, for games against Nature in which the number of
distinct strategic-player policies is relatively small (due to the structure of the players’ move-
lengths), the algorithm improves over brute force [LMP01, Sec. 2.3]. They also gave some
general search algorithms (building on [Lit99, ML99]) with empirical performance studies,
with followup work appearing in e.g. [TF10, TF11].

The expressive power of interactive proofs has also been used in other ways to explore the
“fine-grained complexity” of various algorithmic problems. For example, Williams [Wil16]
shows, among related results, that 3-round interactive proofs can yield exponential savings for
evaluating quantified Boolean formulas (with runtime 22n/3+o(n), faster than the randomized
algorithm of [Sni85]), as well as exponential-time MA proof systems improving on best known
runtimes for various NP problems, casting an interesting perspective on the study of their
exponential-time complexity.

Chen et al. [CGL+19], building on work of Abboud and Rubinstein [AR18], use Arthur-
Merlin communication protocols for space-bounded computation of Aaronson and Wigder-
son [AW09], along with some additional reductions, to show conditional hardness results for
several versions of the Longest Common Subsequence (LCS) problem for pairs of strings.
This is a polynomial-time solvable problem whose complexity has seen intensive study (see,
e.g., [RSSS19]). Both of [AR18, CGL+19], extending a project of of [AB17], also presented
evidence of the possible difficulty of obtaining certain improved deterministic approximation
algorithms for LCS, by showing they would imply breakthrough circuit lower bounds.

An important tool from [AR18], used also in [CGL+19], is an approximation-preserving
reduction from a “Tropical Tensor Similarity” problem, involving alternating Max and E

quantifiers, to LCS. This problem contains some specific structure tailored to a communi-
cation setting in the authors’ work, but the core part of the reduction applies directly to
games against Nature as in Eq. (1): If F (r, w) is Boolean-valued on n total input bits then
the reduction produces two output strings u, v each of length N = 2n, each with symbols
over an alphabet Σ of size Θ(N). The LCS of the pair is, in the fully-alternating case, of
length

√
N · val(F ).

While the overall reduction is not sublinear-time, it can be observed to have efficient
local-computability properties. Still, we are not aware of any algorithm for LCS which, in
combination with the reduction of [AR18], would yield a nontrivial speedup for computing
values of fully-alternating games against Nature. In particular these would need to have
sublinear query complexity, and current fastest approximation algorithms for large alphabet-
size ([HSSS19], see also [RSSS19]) incur linear runtime and queries while returning solutions
which, in cases where the LCS is of size ≤ N1−Ω(1), may be a multiplicative N−Ω(1) factor
smaller than optimal in expectation.
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A version of the reduction of [AR18] can also be given for the Longest Increasing Sub-
sequence (LIS) problem, guided by the combination of [AR18] and a remark in [RSSS19,
p. 1123] on a connection between LIS and LCS. On input a Boolean-valued game against
Nature F as above, not all-zero, the output is a list of N = 2n integers, each of bitlength
O(n), whose LIS is, in the fully-alternating case, of length val(F ) ·

√
N . See Section 9 for

details. Now, some nontrivial query-efficient approximation algorithms for LIS are known—
see [SS17, RSSS19] and references—but their guarantees are not interesting when the LIS is
as small as

√
N ; the algorithm of [SS17] gives fast, nontrivial multiplicative approximations

only for LIS size N1−o(1), and the algorithm of [RSSS19] on input with LIS of size N1−ε

finds a subsequence of size Ω(N1−3ε). The portion of this latter algorithm designed to han-
dle sufficiently-small LIS size (< N19/20) employs a simple subsampling idea; translating to
the setting of fully-alternating games against Nature, and working flexibly, yields an algo-
rithm nonadaptively querying a random p fraction of queries in expectation (for chosen value
p ∈ (0, 1)) and achieving an expected certified lower bound of p · val(F ) on the game value.
Such an algorithm and its analysis may also be directly verified without the LIS reduction. In
this work, we will give an N1−Ω(1)-query algorithm for approximating Eq. (1), whose approx-
imation quality is generally far better, achieving expected lower bound of (1− o(1)) · val(F )
provided val(F ) > N−o(1) = 2−o(n).

In complexity and cryptography, many interesting transformations of interactive proofs
are known, and these can usually be applied to general games against Nature as well, chang-
ing the structure of games while holding their value nearly fixed. Some such transformations
are superficially promising as algorithmic tools for the tasks 1-2 above, but there is typically
a “catch” obstructing their direct use. For example, Leshkowitz [Les18] has shown that
general interactive proofs using r(n) bits of randomness can have their round complexity
reduced to O(r(n)/ log n). But considered as a transformation on games, the blowup in
bitlength of individual moves by the strategic player is apparently too large to be of help.

1.4 Our result

In this work, we show that indeed, high alternation in games against Nature can be powerfully
exploited. We focus on the case of fully alternating, binary games against Nature, in which
the players strictly alternate making 0/1-valued moves (w1, r1, w2, r2, . . . , wn/2, rn/2), and the
payoff to the non-random player is given by a general, [0, 1]-valued function F , provided in
black-box or white-box form. We show:

Theorem 1 (Main, informal). For some absolute constant δ > 0, there is a randomized
algorithm to approximate the value of fully-alternating binary games against Nature under
optimal play, which makes 2(1−δ)n queries to the input function F , and produces a lower
bound v̂ on the game value v which satisfies E[v − v̂] ≤ exp(−Ω(n)).

The algorithm explicitly witnesses its lower bounds v̂ by exhibiting output values of F on
particular sets of inputs that imply the lower bound. From these witnesses, a full description
of a player strategy can be produced, or a next move given, also in time 2(1−δ)n.

While we assume a specific move-structure on the games we study, we believe our algo-
rithm and analysis contain powerful, flexible ideas that will have broader impact.
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The boundedness of F is essential here; if its values can be huge, then approximating
val(F ) to any reasonable additive error is as hard as needle-in-haystack search, which for
(non-quantum) black-box algorithms admits no asymptotic speedup. Similarly, we cannot
expect a speedup as above with multiplicative approximation guarantees on all inputs (out-
putting an estimate v̂ where v̂ = Θ(v) with high probability, say), even if F is bounded.

For the fully-alternating case we study, the SampleEvalSSAT algorithm of [LMP01] yields
no significant improvement over brute force, let alone one as strong as Theorem 1. We explain
this point in Sec. 10 (with observations similar to ones in [LMP01]).

A downside to our algorithm is that the value δ > 0 we obtain is tiny. We make no effort
here to optimize it, and do not opine whether a “respectable” value can be achieved by
something close to the current approach. Also, the algorithm given uses exponential space.
Reducing space usage is a natural goal for future work.

Theorem 1 can be compared to a simple (and polynomial-space) recursive algorithm of
Snir [Sni85], for which best constants in the recurrence-based analysis were obtained by Saks
and Wigderson [SW86]. This algorithm computes the value of fully alternating, n-move,
2-player games against an adversarial opponent (and with {0, 1}-valued payoff function F )
using O(2αn) queries, with α = log2((1 +

√
33)/4) ≈ .753. The constant α here was shown

to be optimal for black-box randomized algorithms (by [SW86] for “Las Vegas” zero-error
algorithms, and by Santha [San95] for bounded-error ones).

In contrast, essentially the only black-box lower bound we know for our problem is a
Θ(2n/2) bound for distinguishing values [v = 0] from [v = 1]; such a lower bound can be
proved easily by considering the problem of distinguishing the all-zero F from one of the
functions Fz(w, r) = 1[w = z], ranging over all possible z ∈ {0, 1}n/2. This lower-bound
example, in which the random variables are irrelevant, basically relies again on the difficulty
of black-box needle-in-haystack search.

Similarly, in the white-box setting, and allowing reasonably expressive classes of func-
tions F , we cannot expect an algorithm of runtime 2(.5−ε)n unless the Strong Exponential
Time Hypothesis [IP01] fails; but this also leaves us quite uncertain of the true exponential
complexity of the problem. We note that our algorithm, like that of [Sni85], has little di-
rect relation to known improved exponential-time algorithms for, say, Satisfiability of CNF
formulas, notably those of [MS85, PPZ99, Sch99], which cleverly exploit specific white-box
structure in the input. (In the cited works, bounded clause-width is exploited. Unlike our
problem, NP Satisfiability problems have no useful “black-box structure” per se for classical
algorithms to exploit, since the corresponding unstructured query problem—computing the
OR of N bits—requires Ω(N) queries for classical randomized algorithms.)

Thus, we still do not know whether fully-alternating binary games against Nature are
easier, or harder, to approximately evaluate than their adversarial counterparts!1 In view of
Theorem 1, however, we at least know that a speedup qualitatively similar to that of [Sni85,

1There is at least one sense in which playing against a random opponent is “easier”—namely, any strategy
deployed against a random opponent has value at least as large as when played against an optimal adversarial
opponent. But we are concerned with taking full advantage of the opponent’s random strategy, in games
whose payoff against an optimal opponent might be very poor. Also, the improved algorithm of [Sni85] can
be applied to {0, 1}-payoff games against Nature to determine whether their value is 1 or less than 1, but
it does not approximate games against Natures’ values or yield near-optimal play in cases when the game’s
value is less than 1.
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SW86] is possible for the games we study. We believe this is a significant finding for the
study of decision-making under certainty.

1.5 Our techniques

For binary, fully alternating games against Nature lasting n moves, the task of computing the
value of a game specified by its payoff function F can be viewed equivalently as computing
the value of a particular real arithmetic formula, alternating between layers of “Max” and
“Average” gates. (Each gate is of fanin two, with the formula a full binary tree of depth
n = 2k.) The output Max gate corresponds to the initial move by the strategic, maximizing
player; its two input Average gates correspond to the next, random move by Nature, and
so on. This alternating “Max/Average” formula, which we denote MAk, is given input x
equal to the payoff function F (with appropriate indexing), and outputs the value of the
game associated with F .2 In the body of our work, and in what follows, we will adopt this
formula-evaluation perspective. MAk is a monotone real formula, with inputs assumed to
come from [0, 1], so any subset of revealed input values naturally certifies a lower bound on
the output value, by direct evaluation of the formula (replacing unseen values with 0). We
use this basic idea throughout, and in particular, will use it to determine the final estimate
output by our algorithm, which will therefore be a lower bound on the true value.

1.5.1 All-queries algorithms and recursive composition

To describe our algorithm for estimating values MAk(x) with queries to x, we begin at a
high level. While our goal is an algorithm making few queries, almost all of our work focuses
on the design and study of “all-queries” algorithms, which probe every input-coordinate
in some order, and whose partial views of x certify progressively better lower bounds on
the “true” value MAk(x). Our final goal is to design such algorithms which reach “good”
lower bounds so quickly that we can simply halt the algorithm early. However, to bootstrap
effectively toward this goal, we will actually need approximation guarantees that are more
informative about the entire course of the algorithm’s execution. Thus, we consider all-
queries algorithms with associated epoch markers dividing up their execution, and we wish
to establish approximation guarantees at the end of each epoch. For now, one may think of
these guarantees as bounds, for all possible inputs x, on the expected gap E[v− v̂j] between
the true value v = MAk(x), and the lower bound v̂j ≤ v certified by the partial view after
the jth epoch. (This idea will need to modified later.) We note too that the epoch markers
will not be evenly spaced, but will be determined by j and k.

For a given, fixed k, an all-queries algorithm Ak for MAk can naturally serve as a sub-
routine in the evaluation of MAK-formulas on larger inputs x ∈ [0, 1]4

K

, for K > k, by an
algorithm A′

K which applies Ak to each of the subformulas of height 2k and aggregates the
results in some way. (To get strong results from the recursive use of this idea, we will want
K = k +O(1).)

2This follows from Eq. (1); we have val(F ) = Max{Avg(val(F0,0, F0,1) , val(F1,0, F1,1)}, where Fb,b′ is
the restricted game in which (w1, r1) = (b, b′), and this expands further to give the full arithmetic formula.
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Now let x ∈ [0, 1]4
K

denote the input to A′
K and let the height-2k subtrees be indexed

by i ∈ [N ] = [4ℓ], where ℓ = K − k. Let xi ∈ [0, 1]4
ℓ

be the part of x input to the ith such
subtree.

The all-queries property of Ak(x
i) helps A′

K(x) to “squeeze all the juice” from each xi,
and to avoid accumulating losses at higher levels of a recursive evaluation scheme. But
queries are expensive and making all queries to one xi before making any to another is risky,
since a given xi may not contribute much (or at all) to the value of MAK(x). Thus, our
A′

K(x) will hedge its bets and instead maintain parallel simulations of each Ak(x
i). Its goal

will be to intelligently allocate successive queries between different subroutine calls based on
what it has seen so far. (These parallel simulations, multiplied recursively, will cause our
final algorithm to use exponential space, which is a drawback to the approach.)

Since epochs are a central unit of analysis for our query algorithms, the outer algorithm
A′

K(x) will as its basic action always choose to advance one sub-input xi’s subroutine Ak(x
i),

by one entire epoch. Thus, the epochs we define also structure our recursive scheme itself.
This scheme allows the outer algorithm to prioritize more “promising”-looking inputs xi—as
we will do, by a subtle and context-sensitive criterion. However, this prioritization is done
conservatively and does not lead to runaway disparities in the number of queries allocated to
the different xi. In fact, the outer algorithm proceeds in “phases” where, after the end of each
jth phase, every Ak(x

i) has advanced by j epochs—equalizing the query counts between each
xi. Moreover, in every phase, only a single adaptive decision is made by the outer algorithm
about which subroutine to advance next! It is immediately after this adaptively-chosen query
block that the outer algorithm hopes to enjoy a nontrivial approximation guarantee for its
certified lower bound on MAK(x). Thus it is this moment, midway through the jth phase of
A′

K(x), which we select to mark the end of its jth epoch. After a final end-marker is added,
our scheme endows the execution of A′

K(x) with q + 1 epochs, if each Ak(x
i) has q epochs.

The question then becomes how to ensure good approximation guarantees at the new
epoch-markers for A′

K(x). As the jth marker for A′
K is placed within a transition between

the (j − 1)st and jth epochs for the subroutines Ak(x
i), it is natural to imagine that the

new guarantee will be obtained as some kind of weighted average between the guarantees
for the subroutines on those two epochs. And such a guarantee can certainly be attained,
even non-adaptively. For example, if A′

K(x) simply randomly selects some .75 fraction of
the values i to advance the execution of Ak(x

i) through its jth epoch (and we end the jth

epoch of A′
K(x) at this point), then it is not hard to show that A′

K will afterwards obey
an expected approximation-error bound of ≤ .25εj−1 + .75εj, where εj is an expected-error
bound assumed to hold for Ak after j epochs.

The strength of this new error bound for A′
K is, unfortunately, counterbalanced by the

query cost of advancing a .75 fraction of the subroutines Ak(x
i) by one epoch, and the

recursive composition of this scheme does not lead to strong algorithms. But a tantalizing
prospect appears: if we could achieve the same error bound as above, while advancing only a
.74 fraction of the subroutines, then this approach would indeed achieve our main goal! (To
show this, we relate the recurrences defining the epoch markers and the error bounds to tail
probabilities of Bernoulli sums, and use Chernoff bounds to identify an epoch after which the
error bound and the fraction of queries made are both small.) And this is essentially how
we proceed—with two caveats. First, the actual averaging constants involved are different,
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and the useful numerical gap is far smaller than .01. The main cause of this is that our
outer algorithm A′

K for MAK will need to work with a very large value ℓ = K − k (but still
ℓ = O(1)) to make a single, smart adaptive choice, diluting its strength.

Second, to make the above plan succeed, we will actually need to replace error bounds
E[v − v̂j] ≤ εj associated with epoch-markers, with exponential-moment bounds of the form

E[exp(s(v − v̂j))] ≤ esεj ,

for some s > 0. In fact we will need such bounds with particular s-values that are specific to
j, and sufficiently large compared to the gap εj− εj−1 (the product of the two should exceed
a large constant). These types of bounds imply powerful well-behavedness of the error when
s is sufficiently large; and despite their form, these bounds are tractable to work with due
to a basic independence property maintained between our subroutines.

Furthermore, the “averaging behavior” of the formula MAℓ will help the execution of
A′

K(x) to obey exponential-moment bounds at its epoch-markers with s-values significantly
larger than those holding for the subroutines Ak(x

i). This boost is important because the
minimum values among the error gaps εj − εj−1 also become smaller at higher levels of
our recursive scheme. In our whole approach it appears unavoidable to contend with such
error gaps that are arbitrarily small compared to 4ℓ (the number of inputs to our fixed-sized
reference formula MAℓ)—even if our final goal was a more modest additive .1-approximation
to the value of games against Nature. Thus it is somewhat surprising that our approach
works at all, and in hindsight, the use of exponential-moment bounds with s-values large
compared to the gaps is well-motivated as a countermeasure to this challenge.

There is an inherent tension in our use of exponential-moment bounds: while such bounds
are stronger and can be more useful when s is large, it is only when s is somewhat small that
these bounds can be effectively “aggregated” over different outcomes of a random variable to
yield new and useful bounds.3 We use two methods to cope with this. First, we use Jensen’s
inequality to convert our bounds from higher to lower s-values at appropriate points in our
analysis.

Second, we use care in our timing of the adaptive choice of query block made by the
outer algorithm A′

K(x). We do so after advancing not a .75 fraction, but a 1 − Θ(N−1/2)
fraction, of the subroutines Ak(x

i) by one epoch, where N = 4ℓ. Actually, it seems merely
helpful in several respects that this fraction be large (intuitively, it means we have learned
a great deal about the jth-epoch increments on the executions of Ak(x

i) for the various i,
which helps us make a good adaptive choice). But it is apparently critical that the fraction
not be too close to 1, because we cannot allow the minimum separation εj−εj−1 to decay too
quickly with the recursion depth. This is because we are only able to grow the value s in our
exponential-moment bounds by (at most) about a

√
N factor per layer of recursion—which

is related to the fact that MAℓ is only N−.5-Lipschitz.
We believe our use of exponential-moment bounds is not just a technical detail, but

actually helps to illuminate the behavior of our algorithm in generating progressively more-
concentrated estimates at higher stages of recursion, and to explain how such concentration

3A bit more concretely: a weighted average such as pesa + (1 − p)esb, with a > b, is sufficiently close to
es(pa+(1−p)b) for our purposes, provided s(a− b) is somewhat small. Our simple tool here is Lemma 3.
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helps it succeed. It may also provide useful guidance for future work in related contexts.
(While exponential-moment bounds are widely used to prove concentration properties for
the analysis of randomized algorithms, and of algorithms on random inputs [DP09], we are
not aware of previous applications with strong similarity to our work.)

1.5.2 Steepeners

We now look more closely into the behavior of the “outer” algorithm A′
K(x) above and how

it makes its crucial adaptive choice in each jth epoch of its operation. Recall that A′
K(x)

maintains parallel simulations of Ak(x
i), an all-queries algorithm for MAk, on each sub-input

xi to a height-2k subtree. The queries of Ak(x
i) during its first (j− 1) epochs together yield

a certified lower bound on the value zi := MAk(x
i); call this lower bound Xi ∈ [0, 1], and

let Yi ≥ Xi be the corresponding lower bound after j epochs. Our outer algorithm uses
fresh randomness in each simulation, so the pair (Xi, Yi) is independent of all other such
pairs. Moreover, each of (zi −Xi) and (zi − Yi) will obey an exponential-moment bound by
assumption.

We call triples (X, Y, z) of vectors of random variables obeying the above properties
ensembles. To guide A′

K , we design a special type of all-queries algorithm for MAℓ = MAK−k

(for our large, but fixed ℓ = O(1)) that enjoys a performance guarantee for all ensembles
for which the exponent s is large enough (relative to the quantity εj − εj−1, as described
earlier). This algorithm is given the values X at the outset as “baseline advice”, and queries
the N coordinates of Y one at a time, making a single adaptive query toward the end of its
operation (as its tth query for t = N −Θ(

√
N), in fact). Its goal is to maximize the certified

lower bound v̂ for MAℓ(Y ) implied by the “baseline” values X, superimposed by the first t
queries to Y . We call an algorithm achieving a nontrivial guarantee here (expressed as an
exponential-moment bound on (MAℓ(z) − v̂)) a steepener—it “steepens” the rate of ascent
toward the final value MAℓ(Y ) across its first t queries, compared to a näıve approach.

The value MAℓ(z) is nicely characterized as MAℓ(z) = maxT Avgi∈T (zi), taken over a
natural family of subsets T of inputs which we call M-trees ; these consist of

√
N coordinates

each, and in the games-against-Nature view, correspond to strategies.4 In the design and
analysis of our steepener algorithm, a central concern is whether our adaptive tth query to
Y is made inside T ∗, an optimal M-tree for the input z (this subset is not known to the
algorithm). After making t − 1 queries to Y in a semi-random way, the tth query is chosen
from one of two candidates i, j. These are chosen in such a way that at most one can come
from T ∗. The algorithm inspects the surroundings of the i coordinate in the partial view
of Y so far over the baseline X. It essentially looks for signs marking this coordinate as
“special”—which can be very roughly interpreted as “likely to come from T ∗”—in which
case i is selected; otherwise j is chosen by default.5

Before discussing our specific decision rule, we give a brief upshot of its analysis. First, in
the event where neither i nor j is in T ∗ (as occurs most often), we are actually “lucky” in that

4The above was basically observed in [LMP01, Pap85], and pointed out to me by Rahul Santhanam.
5There is some notional resemblance between our approach here and an improved randomized, zero-error

query algorithm of Magniez et al. [MNS+16] for the (exact) Recursive Majority-of-3 problem, in that their
algorithm forms “predictions” for the values of certain nodes and uses these to drive decisions. The details
appear very different, however.
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we have made sufficiently many queries to T ∗ already to get satisfactory bounds regardless
of the adaptive decision’s outcome. If instead j ∈ T ∗ (which we call the “j-critical case”),
we essentially show that most possible values for i will be rejected, causing Yj to receive
the adaptive query as desired. In the trickier “i-critical case” (i ∈ T ∗), we show something
weaker but still sufficient: in a “substantial bulk” of cases (under an appropriate exponential
measure), it holds that either Yi receives the adaptive query, or an appreciable portion of
the gap (zi−Xi) is not “felt” as a contribution to the gap (MAℓ(z)− v̂), so that a failure to
query Yi would not be as harmful to the estimate v̂ as it might näıvely appear. (We mention
that our actual disjunctive analysis here in the i-critical case seems to rely, for its needed
quantitative strength, on the use of exponential-moment bounds. More specifically, these
bounds’ useful properties for our work, when s is large, are identified in Lemmas 5 and 6.)

As for the decision rule, we adaptively query Yi if at least one of three “special” selection-
conditions hold for the path Pi from the output gate to input i, considered on the “hybrid”
input u which superimposes the partial view of Y after t − 1 queries upon the baseline X.
The path Pi is called “dominant” for u at a Max gate g, if it passes through g to the larger-
valued of its two input/child Avg gates. As a first selection-condition, if Pi is dominant on
more than, say, a .51 fraction of its Max gates, then (as the input size N is large) this is a
fairly strong sign that i is “special” and worthy of the adaptive tth query.

To motivate a further selection-condition, we consider cases in which the previous one
fails to apply. If i ∈ T ∗ but Pi does not have the “.51-dominant” property on u, let us
consider the derived input ũ in which ui = Xi is replaced with zi. If i is not part of every
optimal M-tree for input ũ, then a decrement of coordinate i from zi down to Xi does not
reduce the MAℓ-value, and in this case we can be content not to query Yi for our adaptive
tth query.

On the other hand, if i is in each optimal M-tree for ũ, then Pi is dominant at each
Max gate on ũ. To study this situation, we will define the “decisiveness” of a Max gate on
a given input, as a certain “height-normalized” multiple of the gap between its two input
values. (To build intuition: if a path Pi is dominant at each Max gate, then incrementing
input i by θ will increase the decisiveness of each such gate by θ.) Then the aforementioned
decrement of coordinate i can be seen to reduce the MAℓ-value only proportionally to (N−.5

times) the minimum decisiveness of Pi on ũ. At the same time, the total decrement must be
proportional to the near-median decisiveness along the same path, in order to destroy this
path’s dominance on a .49 fraction of these gates. If the gap between these two decisiveness
values is large, then enough of the coordinate decrement is not felt as loss in MAℓ-value, and
again we are content not to query Yi for our adaptive tth query.

Thus we are led to worry about the case where the minimum and near-median decisiveness
along Pi on ũ are near-equal. But overall, we need only worry if this happens for sufficiently
many possible values of i. Now strictly speaking, we need to clarify relative to which partial
conditioning this holds, and exercise care since ũ is defined relative to i. Such concerns make
the i-critical case subtle, but we pass over details here and just suggest the main idea. We
recenter our analysis on û, which is ũ with the ith coordinate zi replaced by Yi, and now
consider i as undetermined (but we condition on i ∈ T ∗; in fact it could be almost any
index in T ∗). Focusing on our “worrisome” case sketched above, consider an outcome to the
vectors (X, Y ), determining û, for which:
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1. Most paths Pi with i ∈ T ∗ are dominant for û at all Max gates; and,

2. Most such paths also have minimum decisiveness (on û) nearly equal to their near-
median decisiveness.

By an analysis of random walks from the root/output gate, and constrained to end at an
input i with i ∈ T ∗, we conclude that most such Pi also have many “pendant” Max gates
(adjacent to Pi, as a sibling to one of its Max gates) whose decisiveness is also nearly equal
to the minimum decisiveness on Pi itself.

Consider one such Pi for û, and now imagine i = i is selected and Yi is decremented down
to Xi, yielding the input u seen by our steepener algorithm before the adaptive tth query. If
this decrement is significantly larger than the minimum decisiveness dmin for Pi on û, then
an appreciable portion of this decrement is not felt as loss in MAℓ-value, and our algorithm
can be content not to adaptively query i. But if the decrement is very nearly equal to Pi’s
minimum decisiveness, then one can show that the quantity S−

i (u), measuring the sum of
decisiveness values of all Max gates on which Pi is non-dominant, is small compared to dmin,
and thus also small compared to the decisiveness (for u) of many Max gates pendant to
Pi—whose decisiveness values are, moreover, all nearly equal.

It is this type of observable property for Pi on u that we identify as our next “special”
one, and use to define our second selection-condition (to make the adaptive tth query to Yi).
Crucially, we also show (by another, similar analysis of random walks on trees) that this
selection-condition is unlikely to be met by Pi in the j-critical case (where we should query
j ∈ T ∗ instead), a case in which i is essentially uniform over ≈ N/2 possible values.

A third selection-condition for querying Yi concerns a relatively short initial segment of
Pi on u starting from the root. The third condition is less central, but facilitates our random-
walk-based analysis of the other two conditions. This completes our sketch description and
motivation for the steepener algorithm we provide. We have glossed over some significant
aspects of its analysis, but we believe the above represents the most important core ideas of
our approach.

1.6 Organization of the paper

In Section 2, we give preliminaries including background and definitions for query algorithms
and the MAk function, and some useful probabilistic inequalities. We also define some of
our key concepts, including ensembles, steepeners, epoch-based error bounds for algorithms,
and our main method of epoch-based recursive composition.

In Section 3, we show that the existence of good steepeners, in combination with our
recursive composition scheme, suffice to give the improved algorithm claimed in this work.
Sections 4- 8 then show that such steepeners do exist.

In Section 4, we make a basic but careful study of MAk formulas, and in particular, of the
effect of decrementing a single input coordinate value. Section 4 also includes some lemmas
on random walks in binary trees, that will be used to analyze the behavior of MAk formulas.

In Section 5, we give our steepener candidate construction. In Section 6, we provide the
high-level framework for its analysis.
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Section 7 studies the “j-critical case” mentioned in the Introduction, and Section 8 is
devoted to the i-critical case, completing the proof of the main result. Finally, Section 9 de-
scribes the aforementioned reduction from MAk to the Longest Increasing Subsequence prob-
lem, and Section 10 discusses the limitations of the SampleEvalSSAT algorithm of [LMP01]
for the fully-alternating case we study.
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2 Preliminaries and core concepts

We will often use exp(x) to denote ex, and use either 1S or 1[S] as the indicator random
variable for an event S, e.g. 1[X>.2]. If X is a finitely-supported random variable, we use
supp(X) = {x : Pr[X = x] > 0} to indicate its support.

2.1 The Max-Average function; M-trees

For any integer k ≥ 0, we define the Max-Average function on N := 4k variables xi ∈ R, for
i ∈ [N ]. For k = 0 we have N = 1 and we simply take MA0(x1) := x1. Inductively, for k > 0
we break the input vector into four equal-sized parts, x = (xa, xb, xc, xd), and define

MAk(x) := Max{ Avg(MAk−1(x
a),MAk−1(x

b)) , Avg(MAk−1(x
c),MAk−1(x

d)) } ,

using the notation
Avg(u, v) := .5(u+ v) .

(In terms of indices, we use xa = (x1, . . . , xN/4), . . . , x
b = (xN/4+1, . . . , xN/2), and so on.)

Thus, MAk computes a real arithmetic formula with the shape of a full binary tree, composed
of alternating layers of Max and Avg gates (k layers of each), with Avg gates closest to the
inputs and a Max gate at the root.

This function is interesting for the special case of Boolean inputs, for which the real-
valued output lies in [0, 1]. In this setting, the Max-Average function is a relative of the
commonly-studied balanced AND/OR function on 4k Boolean variables, which can defined
similarly to the above but with min (or equivalently ∧) in place of Avg. Our general study
in this work will be of MAk applied to inputs from [0, 1]N .

We state some simple, useful properties of the Max/Avg function.
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Proposition 1. For N = 4k and random variables X1, . . . , XN (not necessarily indepen-
dent), we have

E[MAk(X1, . . . , XN)] ≥ MAk(E[X1], . . . ,E[XN ]) .

The proposition follows readily from the facts that E[Avg(X, Y )] = Avg(E[X],E[Y ]) and
E[Max(X, Y )] ≥ Max(E[X],E[Y ]).

Proposition 2. For N = 4k, c ∈ R, and x ∈ R
N , we have MAk(x1 + c, . . . , xN + c) =

MAk(x) + c.

Let N = 4k with k > 0. Let T denote the full binary formula for MAk composed of
Max-gates, Avg-gates, and variable-gates x1, . . . , xN ; we also freely regard T as a directed
graph with edges going from a gate g to each of its input gates (opposite to the flow of values
in a computation; the input gates to g are regarded as its children in T). We let

Pj = (pj,0, pj,1, . . . , pj,2k) (2)

denote the path from the root r = pj,0 (an output Max gate) to input gate xj = pj,2k. Each
of the vertices pj,0, pj,2, . . . , pj,2k−2 along this path of even depth are Max gates (excepting
the input gate pj,2k = xj), the odd-depth ones being Avg gates.

The next definition is essentially a special case of the “policies” studied in [LMP01],
and used for a characterization similar to Prop. 4 below. (See also what are referred to as
“admissible subtrees” in [Pap85]. I thank Rahul Santhanam for noting Def. 1 and Props. 3-4
below before learning of [LMP01].)

Definition 1. An M-tree is a subset T of [N ], regarded as a subset of variable-gate indices,
specifiable by a selection function sel giving, for each Max gate g = Max(h, h′) in T, a
“selected child” sel(g) ∈ {h, h′}. The associated T = Tsel is defined as the set of i ∈ [N ] for
which every step along Pi from some Max gate g goes to sel(g).

We also define, for T as above, the canonical partial selection function sel′ which
agrees with sel on all Max gates g lying on a path Pi with i ∈ T , and is undefined elsewhere.

Intuitively one might regard T as consisting of the union of paths Pi, ranging over i ∈ T ;
however, it is convenient to formally take T as just the variable-gate indices of these paths’
endpoints. The selection function sel is not unique for a given T , since its values off of the
union of Pi, i ∈ T , are irrelevant, but the canonical partial selection functions are in 1-to-1
correspondence with M-trees T .

The next Propositions are easily verified by induction on k.

Proposition 3. Every M-tree is of size
√
N .

Proposition 4. For every y ∈ R
N , we have

MAk(y) = max
T

Avgi∈T (yi) ,

where T ranges over all M-trees of [N ] and where Avgi∈T (yi) =
1
|T |
∑

i∈T yi.

If MAk(y) = Avgi∈T ∗(yi), we say that the M-tree T ∗ is optimal for y. (There may be
more than one such M-tree.)
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2.2 Query algorithms and certified lower bounds

We presume familiarity with (deterministic and randomized) query algorithms applied to
Boolean inputs. We will further consider query algorithms applied to real-valued inputs.
Our basic model makes no restriction on the decision rules used to determine the next query
(which in principle could be arbitrarily complex); however, the actual algorithms we describe
will have fairly efficiently-computable rules.

The key subroutines we define, “steepeners”, will be such query algorithms which also
take advice, called “baseline advice”, as defined below.

Definition 2 (Query algorithms with baseline advice). Fix N = 4ℓ. A query algorithm
with baseline advice is a possibly-randomized algorithm A = Ax(y) that is given unlimited
access to a “baseline advice” vector x ∈ [0, 1]N and query access to an unknown y ∈ [0, 1]N ,
with the promise x ≤ y.

A is called an all-queries algorithm (with baseline advice) if it always queries every
coordinate of y, for all such pairs x ≤ y.

(We will generally use an “ℓ” in the input size, N = 4ℓ, in contexts when the input is
expected to be given to a “steepener”—a particular type of query algorithm with baseline
advice which will act on a fixed-size input 4ℓ = O(1) for a suitable large constant ℓ.)

The progress of query algorithms computing a monotone function f(y) with baseline
advice x will be measured using the lower bounds certified by their partial view relative to
the known baseline advice, as in the following definition.

Definition 3. For w ∈ {[0, 1] ∪ {∗}}N , let

[w ց 0N ] ∈ [0, 1]N

be w with all ∗ entries replaced by 0s. Now, suppose f : [0, 1]N → R
≥0 is a monotone,

nonnegative real-valued function (in our applications this will be MAℓ). Observe that f([w ց
0N ]) is a lower bound on f(y) for all y ∈ [0, 1]N agreeing with w on the non-∗ entries of
w. Moreover, it is the largest possible such lower bound. We call this the lower bound
certified for f by w, and let

LBf (w) := f([w ց 0N ])

denote this value.
Similarly, if w is as above and x ∈ [0, 1]N satisfies xi ≤ wi whenever wi 6= ∗, then we let

[w ց x] be w with all entries wi = ∗ replaced with the corresponding xi. We let

LBf (w; x) := f([w ց x]) ,

and note that LBf (w; x) is the largest possible lower bound on f(y) valid for all y ∈ [0, 1]N

satisfying y ≥ x and agreeing with w on the non-∗ entries of w. We call this the lower
bound certified for f by w relative to baseline x.
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2.3 Exponential-moment bounds

We use evaluations of the moment-generating function MU(s) := E[exp(sU)] of a random
variable U ; such functions are an important tool in probability theory. We will refer to this
function’s value on a particular s as the s-exponential moment of U , although this is
non-standard. We will be interested in variables whose s-exponential moments are bounded:

Definition 4. Let U be a nonnegative random variable, and s > 0. For β ∈ R we say that
U is (s, β)-small if

E[exp(sU)] ≤ esβ .

We say that U is (+∞, β)-small if it is (s, β)-small for all finite s > 0. Finally, we say that
U is (0, β)-small if E[U ] ≤ β.

Proposition 5. U is (+∞, β)-small if and only if Pr[U ≤ β] = 1.

Proof. If Pr[U ≤ β] = 1 then for any finite s > 0 we have exp(sU) ≤ esβ, so U is (s, β)-small.
On the other hand, if Pr[U ≤ β] < 1 then there is some ε ∈ (0, 1) such that Pr[U >

β + ε] > ε. Letting s := 1/ε2, we have

E[exp(sU)] ≥ ε · exp(s(β + ε)) = (ε exp(1/ε)) · esβ > esβ ,

so U is not (s, β)-small.

An “s-normalized” statement of the smallness condition (for finite s > 0) would equiva-
lently say 1

s
ln (E[exp(sU)]) ≤ β. We have the following standard fact:

Proposition 6. If s ∈ (0,+∞] and U is (s, β)-small, and if 0 < s′ < s, then U is (s′, β)-
small.

Proof. The s = +∞ case holds by definition. Now suppose s is finite. We have

esβ ≥ E[exp(sU)] = E

[

(exp(s′U))s/s
′
]

≥ E [exp(s′U)]
s/s′

,

using Jensen’s inequality. Raising the (positive) left- and right-hand sides above to the s′/s
power yields the desired result.

This also justifies our definition of (+∞, β)-smallness. Exponent values s under discussion
will henceforth be assumed finite unless explicitly noted. Also, we defined the s = 0 case of
smallness only for comparison’s sake, to indicate a relation between ordinary expectations
and exponential moments. One can show by a similar use of Jensen’s inequality that (s, β)-
smallness for s > 0 implies (0, β)-smallness. On the other hand, for bounded U ∈ [−1, 1] and
for s ∈ (0, 1), in the requirement 1

s
lnE[exp(sU)] ≤ β the left-hand side equals

s−1 ln
(

E[1 + sU +O(s2)]
)

= s−1 ln(1 + sE[U ] +O(s2)) = E[U ] +O(s) ,

which approaches E[U ] as s → 0. Thus the s = 0 case of the definition “fits in” fairly
naturally, at least in the bounded case which is our focus.
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2.4 Some probabilistic inequalities

Here we collect some facts about random variables for later use, including the following forms
of the Chernoff bound.

Lemma 1. If B1, . . . , Bn are Bernoulli random variables with expectation p ∈ [0, 1], then
for δ > 0,

1. Pr[ B1 + . . .+ Bn ≥ (1 + δ)pn ] ≤ [eδ/(1 + δ)1+δ]pn ,

2. Pr[ B1 + . . .+ Bn ≤ (1− δ)pn ] ≤ [e−δ/(1− δ)1−δ]pn .

Our next lemma gives conditions to bound the expected product of two random variables.

Lemma 2. Suppose A,B are nonnegative-valued random variables, that W is an event,
and let t be a random variable over a finite set T, such that t is independent of W and
E[AB|W ∧ t = τ ] = E[A|W ∧ τ ] · E[B|W ∧ τ ] for any outcome τ ∈ supp(t). Assume
E[A|W ] ≤ a and that E[B|W ∧ τ ] ≤ b for any τ ∈ supp(t). Let b′ ∈ [0, b) and p ∈ [0, 1) be
given.

Let S ⊂ supp(t) be a subset of values such that E[B|W ∧ t = τ ] ≤ b′ for any τ /∈ S. Also
suppose that E[1[τ∈S] · A|W ] ≤ pa. Then, E[AB|W ] ≤ a[pb+ (1− p)b′].

Proof. Implicitly restricting our sums to within supp(T), and letting expectations be over
τ ∼ t (a distribution unaffected by conditioning on W ), we have

E[AB|W ] =
∑

τ

Pr[t = τ ] · E[AB|W ∧ τ ]

=

(

∑

τ∈S
Pr[t = τ ] · E[AB|W ∧ τ ]

)

+

(

∑

τ /∈S
Pr[t = τ ] · E[AB|W ∧ τ ]

)

=

(

∑

τ∈S
Pr[t = τ ] · E[A|W ∧ τ ] · E[B|W ∧ τ ]

)

+

(

∑

τ /∈S
Pr[t = τ ] · E[A|W ∧ τ ] · E[B|W ∧ τ ]

)

≤
(

∑

τ∈S
Pr[t = τ ] · E[A|W ∧ τ ] · b

)

+

(

∑

τ /∈S
Pr[t = τ ] · E[A|W ∧ τ ] · b′

)

= b · E[1[τ∈S] · A|W ] + b′ · E[1[τ /∈S] · A|W ]

= b · E[1[τ∈S] · A|W ] + b′ · (E[A|W ]− E[1[τ∈S] · A|W ])

≤ b(pa) + b′(1− p)a

= a[pb+ (1− p)b′] ,

the last inequality using b > b′ and E[A|W ] ≤ a.

The remaining facts in this section relate to exponential-moment bounds. We do not
attempt to optimize constants involved beyond our direct needs. The first lemma will help
us to bound moments of a mixture of random variables for which individual moment bounds
are known.
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Lemma 3. Suppose x < y and that y − x ≤ .1. Then, for q ∈ [0, 1], we have

qey + (1− q)ex ≤ exp [1.1qy + (1− 1.1q)x] .

This result’s strength depends on the bounds ex, ey being relatively close to each other,
which in the application will mean that the exponent s in our smallness conditions must be
sufficiently small (relative to other quantities) before the Lemma can be used.

Proof of Lemma 3. For t ∈ [−.1, .1] we have et ≤ 1 + t+ t2. Also, et ≥ 1 + t for all t. Using
these relations, and letting ε := y − x ≤ .1, we have

qey + (1− q)ex = ex[(1− q) + qey−x]

≤ ex[(1− q) + q(1 + ε+ ε2)]

= ex[1 + qε(1 + ε)]

≤ ex[1 + (1.1q)ε]

≤ exe1.1q(y−x)

= exp[1.1qx+ (1− 1.1q)x+ 1.1q(y − x)]

= exp [1.1qy + (1− 1.1q)x] .

The property of (s, β)-smallness of a random variable U imposes stronger control on U
when s is larger. The next lemma extends the message of Prop. 6, by saying that exponential-
moment bounds with respect to a higher exponent implies some measure-concentration be-
havior for a lower exponent.

Lemma 4. If U ≥ 0 is (s, β)-small for some finite s > 0 and C > 1, and if ρ > 0, then

E
[

1[U>β+ρ] · exp((s/C)U)
]

≤ e(s/C)(β−(C−1)ρ) .

Proof. Using our smallness assumption, we have

esβ ≥ E[exp(sU)]

≥ E
[

1[U>β+ρ] · exp((s/C)U) · exp((1− 1/C)s(β + ρ))
]

= exp((1− 1/C)s(β + ρ)) · E
[

1[U>β+ρ] · exp((s/C)U)
]

,

and then dividing both sides by exp((1− 1/C)s(β + ρ)) gives the result.

Next, we use Lemma 4 to get a related statement about a family of small random vari-
ables. The use of Lemma 5 below is one of two tools where we seem to rely on exponential-
moment bounds (with s sufficiently large), as opposed to plain expected values.

Lemma 5. Let m > 106. Suppose U1, . . . , Um ≥ 0 are independent random variables, where
each Ui is (s, β)-small, for some s ≥ 1000. More strongly, we assume s∆ ≥ 1000 for some
∆ ∈ (0, 1]. Define Hi as the indicator variable for the event [Ui > β+.06∆], and H :=

∑

i Hi.
Then,

E

[

1[H≥.02m] · exp
(

10−4s

(

∑

i

Ui

))]

≤ exp((10−4s)(β − 5.88∆)m) .
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Proof. Take ρ := .06∆ ≤ .06 and ν := .02. We have

1[H≥νm] ≤
∑

S⊆[m],|S|=( m
⌊νm⌋)

∏

i∈S
Hi . (3)

Now fix any S as above. Using independence of the Ui and regrouping, we have

E

[(

∏

i∈S
Hi

)

· exp
(

10−4s

(

∑

i

Ui

))]

=

(

∏

i∈S
E[exp(10−4sUi) ·Hi]

)

·





∏

j /∈S
E[exp(10−4sUi)]





≤ exp(10−4s(β − 999ρ))|S| · exp(10−4sβ)m−|S|

= exp[m(10−4s)β − 999ρ|S|]
≤ exp[m(10−4s)β − 999ρ(νm− 1)]

≤ exp[(10−4s)(β − 998νρ)m] ,

the first inequality by Lemma 4 (with C = 104) applied to the variables Ui with i ∈ S, and
the last inequality using νm > 104. Then, using Eq. (3) and linearity of expectation, we
have

E

[

1[H≥νm] · exp
(

10−4s

(

∑

i

Ui

))]

≤
∑

S⊆[m],|S|=( m
⌊νm⌋)

exp((10−4s)(β − 998νρ)m) .

Applying a standard estimate,

(

m

⌊νm⌋

)

≤
(

em

⌊νm⌋

)⌊νm⌋
≤ (1.1e/ν)νm = exp (ν ln(1.1e/ν)m)

(where we again used νm > 104). Applying this, we have
(

m

⌊νm⌋

)

· exp[(10−4s)(β − 998νρ)m] ≤ exp[(10−4s)(β − 998νρ)m+ ν ln(1.1e/ν)m]

which is at most exp((10−4s)(β − 98ρ)m) = exp((10−4s)(β − 5.88∆)m) as claimed in the
Lemma, provided that

ν ln(1.1e/ν)m ≤? 900νρ(10−4s)m .

Cancelling and plugging in our chosen values, this is equivalent to

ln(55e) ≤? 900(.06 · 10−4)(s∆) ,

and as s∆ ≥ 1000, this inequality holds true.

The next (fairly specific and application-tailored) lemma studies a quantity U +W −R,
in which the nonnegative random variable R can be lower-bounded when U + W is either
“too big” or “too small”. We show that then U +W −R will obey an exponential-moment
bound noticeably smaller than that of U +W . The lemma requires that the exponent s, in
initial assumed smallness bounds for U and U +W , should be sufficiently large relative to
other values. This is our second core motivation for using exponential-moment bounds.

20



Lemma 6 (U/W -savings lemma). Suppose nonnegative random variables U,W ≥ 0 are
given, where U is (β, s)-small and U +W is (α, s)-small, for some (α, β, s) with s > 0 and
α > β ≥ 0. Let ∆ := α− β.

Let S, r > 0 be given. Define (nonnegative) random variables

R1 := 1[U+W<S+r] ·W , R2 := 1[U+W≥S] · (U +W − S) .

Let us further assume that:

A1. s∆ ≥ 1000,

A2. r ≥ .95∆.

Then the random variable
Q := U +W −Max(R1, R2)

is (.01s, α− .93∆)-small.

Proof. We always have U +W −R2 ≤ S, so Q is certainly (.01s, S)-small. If S ≤ α− .93∆,
then we are done. So assume S > α− .93∆, and thus (by assumption A2) S+ r > α+ .02∆.

We bound U +W −R1 using the expression

U +W −R1 =
(

1[U+W<S+r] + 1[U+W≥S+r]

)

(U +W −R1)

≤ 1[U+W<S+r] · U + 1[U+W≥S+r] · (U +W )

≤ U + 1[U+W≥α+.02∆] · (U +W ) . (4)

where in the first inequality we applied the definition of R1. From Eq. (4), and using that
U is (s, β)-small (hence also (.01s, β)-small, by Prop. 6), we have

E[exp(.01sQ)] ≤ E[exp(.01s(U+W−R1))] ≤ e.01sβ + E[1[U+W≥α+.02∆] ·exp(.01s(U+W ))] .
(5)

By Lemma 4 applied to the (s, α)-small random variable U +W (with C = 100, and with α
in place of β in that Lemma and ρ := .02∆), we have

E[1[U+W≥α+.02∆] · exp(.01s(U +W ))] ≤ e.01s(α−99(.02∆)) ≤ e.01sβ .

Combining this with Eq. (5), and using assumption A1 and ln 2 < .7 ≤ .01s · (.07∆), we have

E[exp(.01sQ)] ≤ 2 · e.01sβ ≤ e(.01s)(.07∆) · e(.01s)β = e.01s(α−.93∆) ,

and again Q is (.01s, α− .93∆)-small.

2.5 Ensembles

The following definition will be a main object of study. We consider particular triples of
related inputs (X, Y, z) to MAℓ:

Definition 5 (Ensembles). Fix N = 4ℓ and values 0 ≤ β < α ≤ 1, as well as a value s > 0,
which may be +∞. An (α, β, s)-ensemble over N input variables is a tuple (X, Y, z), where:
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1. z ∈ [0, 1]N is a fixed vector;

2. (X, Y ) are a pair of vector-valued random variables, each with support in [0, 1]N , and
obeying X ≤ Y ≤ z coordinate-wise;

3. each coordinate tuple (Xi, Yi) takes finitely many possible values, and is independent of
{(Xj, Yj)}j 6=i, although Xi need not be independent of Yi;

4. for each such tuple, (zi −Xi) is (s, α)-small and (zi − Yi) is (s, β)-small. That is (for
the case where s <∞),

E[exp(s(zi −Xi))] ≤ esα and E[exp(s(zi − Yi))] ≤ esβ .

Item 4 constrains Xi and Yi to be “typically close” to zi, which in our application is
regarded as a “true” value for the ith coordinate.

2.6 Steepeners

In this section we describe our key type of “base case” algorithm (using baseline advice) for
approximating MAℓ with useful guarantees; we call such an algorithm a “steepener”.

Definition 6 (Steepeners). Assume N = 4ℓ ≥ 1021, and let e := 230
√
N + 1 < N/2.

Consider an all-queries algorithm A = Ax(y) with baseline advice for a fixed input size

N = 4ℓ. Assume that Ax(y), given advice string x ≤ y, makes (N − e) queries to y, yielding
a partial view y∗ ∈ {[0, 1] ∪ {∗}}N , before making the remaining e queries.

Suppose α > β ≥ 0 and s, s′ ∈ (0,+∞), and c ∈ (0, 1).
We say that A as above is a c-steepener, with respect to the 4-tuple (α, β, s, s′) if,

for every (α, β, s)-ensemble (X, Y, z), when the advice/input pair are generated as (x, y) ∼
(X, Y ) then we have the s′-exponential-moment bound

E[ exp(s′(MAℓ(z)− LBMAℓ
(y∗;X)) ] ≤ exp

(

s′
[

e− c

N
· α +

N − e+ c

N
· β
])

. (6)

Here the expectation is over the randomness in (X, Y ) and any random choices by A.

Thus the algorithm makes all N queries to Y (which is useful in our application), but
its steepener property only concerns the partial view after N − e queries. We will exhibit
steepeners for certain 4-tuples featuring a large exponent boost, s′ = 10−4

√
N · s≫ s, which

will be a key source of progress.
To gain familiarity with the definition, note that a c-steepener for 4-tuple (α, β, s1, s

′
1)

is automatically one for (α, β, s2, s
′
2) if s2 ≥ s1 and s′2 ≤ s′1. This follows directly from

Proposition 6—the set of ensembles for which the algorithm must succeed only shrinks, and
the definition of “success” for a given ensemble becomes more lenient.

Def. 6 makes sense for other values of e, but we will only construct a steepener for
e = 230

√
N + 1 (showing that a single construction succeeds for various tuples (α, β, s, s′)).

This value of e is chosen so that e≪ N yet also e−c
N
·α≫ α/

√
N . In our recursive application
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of the steepener, the latter constraint helps us to avoid facing ensemble parameters (α, β, s)
for which our steepener construction may not succeed.

Because of the large constant in our choice of e (which still needs to be smaller than N),
N needs to be very large; and for other reasons6, we will take a still-larger value, N = 410

10

.
This certainly weakens the running-time bound in the final application.

2.7 Defect and epochs of query algorithms

The following definitions help us study the incremental progress of query algorithms in
computing certified lower bounds for the Max-Average function MAk.

Definition 7. Fix N = 4k, and let A = A(y) be a randomized query algorithm on a length-N
input y ∈ [0, 1]N .

• For t ∈ [0, N ] and input y, let ut = view(y; t) ∈ {[0, 1] ∪ {∗}}N be the (random) string
describing the partial view of y gained by A after t queries. (If A makes only t′ < t
queries, then we take ut := ut′).

• Again for fixed t, y as above, we define the accrued value after t steps (with respect
to MAk), a random variable denoted Valt, as

Valt := LBMAk
(ut) ∈ [0, 1] ,

the lower-bound certified by A’s view after t queries have been made. We also define
the defect after t steps by

Deft := MAk(y)− Valt .

Note that these form a non-increasing sequence, with Def0 = MAk(y).

Definition 8 (Epochs and defect bounds). Let A be as in the previous definition.

• If A always (on all inputs and random choices) makes all N queries (in some order),
we call A an all-queries algorithm, similarly to Def. 2 but this time without baseline
advice.

• If T = (t0, . . . , tm) with

0 = t0 < t1 < . . . < tm = N

are a collection of values (for some m ≥ 1), we refer to the values t0, . . . , tm as epoch-
markers, and for j ∈ [m] we regard the (tj−1+1)th through (tj)

th queries made by the
algorithm as belonging to the jth epoch with respect to T . (Thus the m + 1 markers
define m epochs.)

6(arising from the need for concentration properties of random walks along the formula for MAℓ; see
Lemmas 16 and 22)
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• Suppose s0, . . . , sm > 0 are given (here allowing the value +∞ to appear), and

P = {(t0, s0, ε0), . . . , (tm, sm, εm)}

are a collection of triples (tj, sj, εj) with T = (t0, . . . , tm) a valid set of epoch-markers,
and that each εj ∈ [0, 1]. We say that A obeys the defect bounds P (with respect
to MAk) if for each j ∈ [0,m] and all inputs y ∈ [0, 1]N , the random variable

Deftj

(defined with respect to y, over the randomness in the execution of A(y)) is (sj, εj)-
small as in Def. 4.

2.8 Epoch-based recursive composition of algorithms

Definition 9 (Composed algorithms). The form of recursive composition we will use applies
within the following setting. Let us fix:

• Values N1 = 4ℓ, N2 = 4k, and m ∈ [1, N2];

• An all-queries algorithm A1 = Ax
1(y) with baseline advice x and input y ≥ x, both

vectors in [0, 1]N1;

• An all-queries algorithm A2(w) making queries to w ∈ [0, 1]N2 (both A1 and A2 may
be randomized);

• A collection T = (t0, . . . , tm−1, tm), satisfying

0 = t0 < t1 < . . . < tm = N2 ,

of epoch-markers for the N2-query algorithm A2.

We then define the composed query algorithm A′ = comp(A1, A2; T ), an all-queries
algorithm working on input z ∈ [0, 1]N1·N2, as follows. We first describe the high-level frame-
work, then fully specify the algorithm.

• First, we regard z as having the indexing z = (z1, . . . , zN1), where each zi ∈ [0, 1]N2.

• A′ maintains parallel simulations of the executions of A2(z
i), for each i ∈ [N1]. Each

such simulation uses an independent source of randomness. Letting U t ∈ {[0, 1] ∪
∗}N1·N2 denote the overall partial view of A′ after t queries (t < N1N2), the algorithm
chooses a next-query target group index j = j(t) ∈ [N1] as a function of t and U t.

• The simulation of A2(z
j) is then advanced by a single query; we also describe this as

allocating a query to A2(z
j). (Our rule will only choose the index j if zj has not yet

been fully queried in the simulation.)

• This process continues for N1N2 steps, after which all of z has been queried.
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It remains to give the selection rule for the next-query target group based upon (t, U t).
The query indices t ∈ [N1N2] are divided into m Phases,7 where Phase r ∈ [1,m] consists
of the queries whose index t lies in [tr−1N1 + 1, trN1].

Phase r in turn consists of N1 sub-Phases, each consisting of (tr− tr−1) queries. Phase
r is described in the box below.

Phase r of algorithm A′ = comp(A1, A2; T ):

// Precondition: each of the simulations of A2(z
1), . . . , A2(z

N1) have been allocated exactly

// tr−1 queries so far, yielding some partial view vi ∈ {[0, 1]∪{∗}}N2 of zi for each i ∈ [N1].

1. For each i ∈ [N1], let xi := LBMAk
(vi);

// xi ∈ [0, 1] is computable from the algorithm’s partial view at the outset of Phase r

2. Simulate the complete execution of query algorithm Ax
1(y), taking baseline advice x as

defined above, and with values y ∈ [0, 1]N1 computed upon request in the course of the
simulation, as follows:

• If the simulation of Ax
1(y) chooses to query yi for position i ∈ [N1], advance the

simulation of A2(z
i) by (tr − tr−1) queries, yielding a new partial view wi of zi;

and let yi := LBMAk
(wi).

// Each such block of (tr − tr−1) queries forms a sub-Phase, of which there are
N1 in Phase r;

// In each such sub-Phase, the selected index i ∈ [N ] is chosen as the next-query
target group (tr − tr−1) times in succession;

// After Step 2, each zi has received tr queries, extending the Precondition.

Definition 10 (“Near-endpoint” epoch-markers for composed algorithms). Assume N1 ≥
1021. Let A′ = comp(A1, A2; T ) be a composed algorithm as in Def. 9, an all-queries algo-
rithm on input size N1N2, with T = (t0, . . . , tm−1, tm) a collection of epoch-markers in [0, N2]
for A2. Let e := 230

√
N1 + 1 < N1/2.

Define a collection T ′ := (t′0, . . . , t
′
m, t

′
m+1) of epoch-markers in [0, N1N2] for A

′ by letting
t′0 = 0, t′m+1 := N1N2, and for r ∈ [1,m], let

t′r := tr−1N1 + (N1 − e)(tr − tr−1) = (N1 − e)tr + e · tr−1 . (7)

Thus if A2 is equipped (by T ) with m epochs, then T ′ equips A′ with m + 1 epochs.
Note that for r ∈ [1,m], the (t′r)

th query of A′ finishes the (N1 − e)th sub-Phase of Phase
r, at which point all but e of the sub-inputs z1, . . . , zN1 have received a block of (tr − tr−1)
queries in that Phase.

7While we will define epochs to analyze our recursively composed algorithms (Def. 10), the chosen epoch-
markers will not coincide with the endpoints of these “Phases”—hence the use of a distinct term here.

25



3 Fast approximation for MAk from steepeners

3.1 Defect bounds for composition with a steepener

Lemma 7. Let A′ = comp(A1, A2; T ) be as in Definition 9, for N1 = 4ℓ, N2 = 4k; here
T = (t0, . . . , tm) for some m ∈ [1, N2]. Let s0, . . . , sm > 0 be given, with s0 = sm = +∞ and
with sr finite for any 1 < r < m; along with finite values s̃1, . . . , s̃m > 0 satisfying

s̃r ≤ min(sr−1 , sr) , for r ∈ [1,m] . (8)

• Suppose that A2 (with respect to MAk) obeys the defect bounds

P = {(t0, s0, ε0), (t1, s1, ε1), . . . , (tm, sm, εm)}

with epoch-markers from T , and for values ε0 = 1 > ε1 > . . . > εm = 0. (Recall that
t0 = 0, tm = N2, and note that these initial and final defect bounds hold trivially.)

• Suppose too that there are finite values s′1, . . . , s
′
m > 0 and some c ∈ (0, 1) such that,

for each r ∈ [1,m], the algorithm A1 is a c-steepener for N = N1 with respect to the
4-tuple

(α, β, s, s′) := (εr−1 , εr , s̃r , s′r) .

Then, A′ (with respect to MAk+ℓ) obeys the defect bounds

P ′ = { (t′0, ε′0, s′0), (t′1, ε
′
1, s

′
1), . . . , (t′m+1, ε

′
m+1, s

′
m+1) } ,

where:

• s′1, . . . , s
′
m are as given, and we introduce s′0 = s′m+1 := +∞;

• T ′ = (t′0, . . . , t
′
m+1) are as in Definition 10 for A′;

• ε′0 := 1, ε′m+1 := 0, and for r ∈ [1,m], we take

ε′r :=

(

230
√
N1 + 1− c

N1

)

· εr−1 +

(

N1 − 230
√
N1 − 1 + c

N1

)

· εr . (9)

Proof. The first and last claimed defect bounds in P ′ are immediate, concerning the certified
lower bounds after no queries and all queries, respectively. Now fix r ∈ [1,m], and let
z = (z1, . . . , zN1) ∈ [0, 1]N1N2 be any fixed input to A′. Let U1, . . . , UN1 be the random
variables, each supported on {[0, 1]∪{∗}}N2 , describing the partial view for A′ of z1, . . . , zN1

respectively after Phase r− 1. Similarly, let V 1, . . . , V N1 be random variables describing the
views of these strings after Phase r.

Let X = (X1, . . . , XN1
) be the random variable, supported on [0, 1]N1 , where Xi :=

LBMAk
(U i). Similarly let Y = (Y1, . . . , YN1

) be given by Yi := LBMAk
(V i). Then:

• Each pair (Xi, Yi) is independent of {(Xj, Yj)}j 6=i. This is because each simulated
execution of A2(z

j) (by A′, ranging over j ∈ [N1]) uses a separate source of randomness,
and the number of queries to zj after Phases r − 1 and r are each predetermined;
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• For each i, we have Xi ≤ Yi ≤ ζi, where ζi := MAk(z
i);

• The random variable (ζi − Xi) is (sr−1, εr−1)-small. To see this, note that the sim-
ulation of A2(z

i) has made tr−1 queries to zi after the first r − 1 Phases, and recall
that A2, by assumption, obeys the defect bounds in P—in particular, that given by
(tr−1, εr−1, sr−1). Then, by our assumption in Eq. (8) and using Prop. 6, (ζi − Xi) is
also (s̃r, εr−1)-small.

Similarly, (ζi − Yi) is (sr, εr)-small, and also (s̃r, εr)-small.

From this, we conclude that (X, Y, ζ) is an (α, β, s)-ensemble for N := N1, where ζ =
(ζ1, . . . , ζN1

) and
α := εr−1 , β := εr , s := s̃r .

Furthermore, during Phase r, A′ precisely simulates the execution of AX
1 (Y ) with input

Y and baseline advice X. After t′r = (N1− 230
√
N1− 1)tr + (230

√
N1 +1) · tr−1 total queries

have been made by A′, this simulation has advanced by (N1−230
√
N1−1) simulated queries.

Letting M ⊂ [N1] be the (230
√
N1 + 1) missing/unmade queries in this simulation, A′ has

the current view U i of zi for i ∈ M and V j of zj for j /∈ M . The accrued value Valt′r for

A′, that is, the lower bound on MAk+ℓ(z) certified by the current partial view U
t′r of the full

input z, is therefore

Valt′r = MAk+ℓ

(

U
t′r
)

= MAℓ(Ŵ ) ,

where Ŵ ∈ [0, 1]N1 has Ŵi := Xi for i ∈ M and Ŵj := Yj for j /∈ M . The defect Deft′r for
A′ is

Deft′r = MAk+ℓ(z)− Valt′r = MAℓ(ζ)−MAℓ(Ŵ ) . (10)

By our assumptions, AX
1 (Y ) is a c-steepener for (α, β, s, s′), with α, β, s as above and s′ := s′r.

Also,MAk(Ŵ ) represents the certified lower bound ofAX
1 (Y ) onMAk(Y ) after (N1−230

√
N1−

1) simulated queries during Phase r. We thus have

E[exp(s′ ·Deft′r)] ≤ exp (s′ (κ · α + (1− κ) · β)) ,

using Eq. (10) and the definition of steepeners. This shows that A′ obeys the defect bound
(with respect to MAk+ℓ) given by (t′r, ε

′
r, s

′
r). As r ∈ [1,m] was arbitrary and we checked the

cases r ∈ {0,m+ 1}, we see that A′ obeys all of P ′, proving the Lemma.

3.2 Recursive self-composition of a steepener

In this section we show how a steepener working for a sufficiently broad ensemble class allows
us to obtain a query-efficient approximation algorithm for MAk.

Definition 11. We say that all-queries algorithm A = Ax(y) with baseline advice, taking
fixed input size N = 4ℓ ≥ 1021, is an admissible steepener if, for some fixed c ∈ (0, 1), it
is a c-steepener for all 4-tuples in the family

{ (α, β, s, s′) : s∆ = 1000 , s′ = 10−4
√
N · s }

where for each such tuple we use ∆ := α− β.
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Definition 12. Say that an all-queries algorithm A = Ax(y) with baseline advice, taking
fixed input size N = 4ℓ ≥ 1021, is nicely constructive if it can be simulated by a RAM
algorithm with black-box access to x, y, advancing one query to y at a time, in which

1. The algorithm makes O(1) additions, subtractions, scalar multiplications, and real-
number comparisons, plus O(1) logical-control operations per query;

2. If the entries of x, y ∈ [0, 1]N have decimal expansions of length w, then all numerical
values produced in the simulation have decimal expansions of length w +O(1);

3. After every tth simulated query yielding partial view yt ∈ ([0, 1]∪{∗})N of y, the RAM
algorithm produces the current certified lower bound LBMAℓ

(yt; x) relative to baseline
x.

Theorem 2. Suppose that an admissible steepener A exists, and is nicely constructive. Then,

1. There exists an absolute constant δ ∈ (0, .5) and, for every N = 4k, a randomized query
algorithm A∗

N(z) which, on input z ∈ [0, 1]N , makes t = t(N) ≤ O(N1−δ) queries to
z, yielding a partial view ut ∈ ([0, 1] ∪ {∗})N , and satisfies the expected-approximation
guarantee

E[ LBMAk
(ut) ] ≥ MAk(z)−O(N−δ) .

Moreover, these algorithms can be simulated by a fixed randomized RAM algorithm

M z(k, w) with oracle access to z ∈ [0, 1]N , whose entries are of decimal length ≤ w.
The algorithm M z(k, w) makes t(N) black-box queries to z and uses poly(k, w) ·N1−δ

computational steps (and a storage-space bound of the same form).

2. From ut as output above, we can also directly compute in time poly(k, w) · t(N) a
description of a partial selection function sel∗, defined on all Max gates g = Max(h, h′)
lying on some path Pi with ut 6= ∗. This function selects an Avg input gate from {h, h′}
whose value on [ut ց 0N ] is largest among the two.

Any selection function sel which is consistent with sel∗, defines an M-tree T which
satisfies Avgi∈T (zi) ≥ LBMAk

(ut).

In the remainder of this section we prove Theorem 2. Sections 4-8 will be devoted to
building and analyzing the steepener needed to apply this result. Its existence is asserted
in Theorem 3, whose combination with Theorem 2 yields Theorem 2’s conclusion uncondi-
tionally. This is our main result, also described in Theorem 1 from the Introduction; the
connection here obtaining near-optimal strategies, uses the natural correspondence between
M-trees in the MAk formula on input z, and strategic-player strategies in the associated game
F .

Definition 13 (Compositional families of algorithms). Suppose A1 = Ax
1(y) is an all-queries

algorithm taking baseline advice for the fixed input size N = N1 = 4ℓ ≥ 1021. We use A1

to define a sequence of (advice-free) all-queries algorithms Âq for q ≥ 0, where Âq(y) takes
inputs y ∈ [0, 1]Nq with

Nq := N q
1 = 4qℓ .
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These algorithms are defined in conjunction with a family {Tq}q≥0 of sets of epoch-markers,

where Tq is a set of epoch-markers for Âq in [0, Nq].

We let Â0 be the algorithm on 40 = 1 input coordinate y1 that simply makes its query. We
let T0 := (0, 1), the two epoch-markers designating a single, 1-query epoch for an execution
of Â0.

We then extend our definition inductively for q ≥ 1 by letting

Âq = comp(A1, Âq−1; Tq−1) , (11)

and letting Tq be defined as the derived set T ′ produced by Def. 10 for the composed algorithm

A′ = Âq from its defining expression in Eq. (11).
Recall that in Def. 10, the derived set of epoch-markers contains one more value than the

starting set. Thus each Tq has q + 2 values, which we denote by

Tq = (tq,0, tq,1, . . . , tq,q+1)

where tq,0 = 0 and tq,q+1 = Nq. With these values Tq delimits q + 1 epochs for Âq. Also,
using Eq. (7), the remaining terms obey the recurrence

tq,r = (N1− 230
√

N1− 1) · tq−1,r + (230
√

N1 +1) · tq−1,r−1 for q ≥ 1 , r ∈ [1, q] . (12)

The next lemma points out the efficient-computability properties of these composed fam-
ilies.

Lemma 8. Let A1 = Ax
1(y) be as in Def. 13 for fixed input size N1 = 4ℓ. Assume that A1

is nicely constructive (Def. 12). Then, there exists an algorithm Bz(k, w, t) expecting inputs
k = qℓ for some q ≥ 1, integers w > 0, t ∈ [1, 4k], and oracle access to z ∈ [0, 1]N for
N = 4qℓ, whose entries are of decimal length at most w. On these inputs, Bz(k, w, t) runs
for

T ≤ poly(q, w) · t
computational steps, and simulates the first t queries of Âq(z), where Âq is as induced by A1

in Def. 13.

Proof. The algorithmB works directly based on the inductive definition Âq = comp(A1; Âq−1; Tq−1),
with reference to Def. 9. First, it explicitly computes all relevant values {tq′,r}q′≤q,r′∈[0,q′+1]

and associated sets of epoch-markers T0, . . . , Tq, in time poly(q), using Eq. (12).

A rooted, directed tree H of nodes is then produced, beginning with a node for (Âq, z).

We maintain the invariant that, after t′ ∈ [1, t] simulated queries of Âq(z), a node is created
for every sub-input z′ of z of any length 4q

′ℓ (corresponding to the input to a sub-formula
of MAk) for which the corresponding simulated instance of Âq′(z

′) has been allocated some

number t′′ ≥ 1 of queries so far in the operation of Âq(z). We then say that z′ is “active”.

Moreover, each such node (Âq′ , z
′) is equipped with an explicit simulation of the top level of

Âq′ = comp(A1; Âq′−1; Tq′−1) on input z′, in which t′′ queries have been made by A1 and the
corresponding real-valued inputs to A1 produced.
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The node created for such (Âq′ , z
′) is assigned as children in H the nodes (Âq′−1, z

′′) for
sub-inputs z′′ of z′ of size 4(q

′−1)ℓ, as these nodes are created. Nodes are not created for
sub-inputs until they become active.

Each top-level query allocated in Âq induces q − 1 more simulated queries along a path
in H, leading to the creation of at most q − 1 additional nodes in H. Each corresponding
simulation of some Âq′ can be advanced in poly(q, w) computational steps, as A1 is nicely
constructive (and using the efficiently-computable action of the composition scheme of Def. 9,
and the fact that all real numbers involved in this simulation have decimal expansion length
O(q + w)). The Lemma follows.

Next, to help analyze families arising from Def. (13), we will arithmetically define families
of parameters εq,r, along with associated values ∆q,r , s0q,r.

Definition 14. For the values N ≥ 1021 and c ∈ (0, 1) given for the admissible steepener
assumed in Theorem 2, define

κ :=
230
√
N + 1− c

N
.

Define
{ εq,r }q≥0,r∈Z ,

as follows. Let ε0,r := 1 for r ≤ 0 and ε0,r := 0 for r ≥ 1. Then, for q ≥ 1, inductively let

εq,r := κ · εq−1,r−1 + (1− κ)εq−1,r . (13)

We also define the associated family

∆q,r := εq,r−1 − εq,r , (q ≥ 0, r ∈ Z) .

While we define εq,r for all q ≥ 0, r ∈ Z, only the range r ∈ [0, q + 1] will have meaning
for us; the remaining values are just introduced to handle boundary cases more smoothly.
The following facts are easily verified using Eq. (13) and the base case for q = 0:

Proposition 7. 1. For each q ≥ 0, the sequence {εq,r} is nonincreasing in r.

2. The family { ∆q,r }q≥0,r∈Z obeys

∆q,r = κ∆q−1,r−1 + (1− κ)∆q−1,r for all q ≥ 1 , r ∈ Z .

From this Proposition, one sees that each term ∆q,r with r ∈ [1, q + 1] gains a nonzero
contribution stemming from the base-case term ∆0,1 = 1 − 0 = 1, while others receive only
0-contributions from base-case terms ∆0,r′ = 0 for r′ 6= 1. Thus,

Proposition 8. For each q ≥ 0, we have ∆q,r > 0 if r ∈ [1, q + 1], and ∆q,r = 0 otherwise.

Our goal in defining the quantities above is to show:
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Lemma 9. If A1 = Ast is chosen as an admissible steepener for value N = N1 ≥ 1021, then
for each q ≥ 0, the algorithm Âq (as in Def. 13) obeys defect bounds of form

Pq = { (tq,r, sq,r, εq,r) }r∈[0,q+1] (14)

for MAk (on all inputs), where k = kq satisfies Nq = 4k, and the {tq,r} and {εq,r} are as in
Defs. 13 and 14, respectively; and for some sequence sq,0, . . . , sq,q+1, in which

1. sq,0 = sq,q+1 = +∞,

2. For r ∈ [1, q] we have 0 < sq,1 < +∞,

3. For each r ∈ [1, q + 1], we have ∆q,r ·min(sq,r−1 , sq,r) ≥ 1000.

We will then use this result to prove Theorem 2.

Proof of Lemma 9. We prove the statement using induction on q ≥ 0. For q = 0, the
assertion is simply that Â0 obeys defect bounds P0 = {(0, 1,+∞), (1, 0,+∞)}, items 1-3
then being easily checked. This is immediate from the definitions: in any execution of A1(y)
for y = y1 ∈ [0, 1], we always have Def0 ≤ 1 and Def1 = 0.

Now let q ≥ 1 and assume the statement proved for values q′ < q. We will apply Lemma 7
to Âq = comp(A1, Âq−1; Tq−1), and to the epoch bounds Pq−1 inductively assumed to hold for

Âq−1. For each r ∈ [1, q] and successive pair (tq−1,r−1, sq−1,r−1, εq−1,r−1) , (tq−1,r, sq−1,r, εq−1,r)
in Pq−1, we let

s̃r := 1000/∆q−1,r ,

which by item 3 of our inductive assumption satisfies s̃r ≤ min(sq−1,r−1 , sq−1,r). Also,
define

s′r := 10−4
√

N1 · s̃r for r ∈ [1, q] .

Note that, as A1 is an admissible steepener (and using ∆q−1,r = εq−1,r−1 − εq−1,r), it is a
c-steepener for each 4-tuple

(εq−1,r−1 , εq−1,r , s̃r , s
′
r) .

Thus, the assumptions of Lemma 7 (with m := q) are met by

A1 , Âq−1 , P := Pq−1 , { s̃r, s′r }r∈[1,q] .

From that Lemma, we infer that Âq obeys defect bounds

P ′
q = { (tq,r , s′r , εq,r) }r∈[0,q+1]

where tq,r, εq,r are as in the desired bounds Pq (by Eqs. (13) and (9)), and where we let
s′0 = s′q+1 := +∞.

We will show that for r ∈ [1, q + 1],

∆q,r ·min(s′r−1 , s′r) ≥ 1000 . (15)

We will then be justified in taking sq,r := s′r and Pq := P ′
q as the needed defect bounds for

Âq, meeting the needed item 3 in the Lemma and extending the inductive hypothesis.
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Recall that, from Prop. 7, we have

∆q,r = κ∆q−1,r−1 + (1− κ)∆q−1,r . (16)

We have 230/
√
N1 < κ < .1 from the largeness of N1, so it follows from Eq. (16) that

∆q,r ≥ max
(

230∆q−1,r−1/
√

N1 , .9∆q−1,r

)

.

Next, if r ∈ [2, q], then ∆q−1,r−1 > 0 and we have

1/∆q,r ≤ min

(√
N1

230
· 1

∆q−1,r−1

,
1

.9

1

∆q−1,r

)

. (17)

Using the first bound in Eq. (17), we have

s′r−1 = 10−4
√

N1 · s̃r−1

= .1
√

N1/∆q−1,r−1

≥ (.1
√

N1) · (230/
√

N1)/∆q,r

≥ 1000/∆q,r ,

as needed. In the case r = 1, we have s′r−1 = +∞ and the above inequality holds as well.
Similarly, from κ < .1 and Eq. (17) we have ∆q,r ≥ .9∆q−1,r, so that, if r ≤ q, we find

that

s′r = .1
√

N1/∆q−1,r

≥ (.1
√

N1) · .9/∆q,r

≥ 1000/∆q,r .

If r = q+1, then s′r = +∞ and the above inequality again holds. This establishes Eq. (15) for
r ∈ [1, q + 1] and extends the inductive hypothesis to the value q, completing the proof.

Proof of Theorem 2. (1.) First, consider input size Nq, for an arbitrary value q ≥ 1. The

algorithm Âq given by q-fold composition of an admissible steepener, as studied in Lemma 9,
is an all-queries algorithm, but we will show that the defect bounds Pq it obeys (as given in
that Lemma) are powerful enough that it may simply be halted early to yield the desired
fast approximation algorithm for MAk, where Nq = 4k.

The two recurrences for the parameters tq,r and εq,r appearing in Pq are similar, and for
comparison’s sake we increase their similarity by “scaling down” the epoch-markers. Using

fq,r := tq,r/Nq = tq,r/N
q
1 ,

and transforming from Eq. (12), we obtain

fq,r =
230
√
N + 1

N1

· fq−1,r−1 +
N1 − 230

√
N − 1

N1

· fq−1,r for q ≥ 1 , r ∈ [1, q] . (18)
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Next, let
gq,r := 1− fq,r ,

and note that {gq,r} obeys the same recurrence as {fq,r}, but unlike these values, {gq,r}
shares the same base cases and boundary conditions as {εq,r} (here restricted to the range
r ∈ [0, q + 1]): both are instances of the recurrence

Pq,r = a · Pq−1,r−1 + (1− a) · Pq−1,r for q ≥ 1 , r ∈ [1, q] . (19)

with base cases P0,0 = 1, P0,1 = 0 and obeying boundary conditions Pq,0 = 1, Pq,q+1 = 0 for
q ≥ 1. They differ only in the value of a ∈ (0, 1)—crucially, this value is smaller for {εq,r}.

We now review the classical recurrence of Eq. (19); we use the natural probabilistic
interpretation. For q ≥ 1, consider a random sum

Sq =
∑

i∈[1,q]
Zi

of q independent 0/1 Bernoulli trials, where each Zi is a-biased. (We also let S0 ≡ 0.) Define

P̂q,r := Pr[ Sq ≥ r ] ,

and note that {P̂q,r}q≥0,r∈[0,q+1] obeys Eq. (19) and the base cases and boundary conditions

given for {Pq,r}. Thus, Pq,r ≡ P̂q,r.
No sum-free, “closed-form” expression seems to be known for these tail probabilities.

However, it follows from Chernoff bounds applied to each of the Sq that, for any fixed value
of a ∈ (0, 1) and any fixed δ > 0, we have

P̂q,r ≥ 1− exp(−Ωa,δ(q)) if r ≤ (a− δ)q ,

P̂q,r ≤ exp(−Ωa,δ(q)) if r ≥ (a+ δ)q .

In the recurrence for gq,r, identical to that of fq,r in Eq. (18), we have a constant a =

a1 =
230

√
N1+1

N1

. In the recurrence of Eq. (13) for εq,r, we have the value a = a2 = a1 − c/N1.
Now let

r = R(q) :=

⌈

a1 + a2
2

· q
⌉

,

we have
εq,R(q) ≤ exp(−Ω(q)) , while gq,R(q) ≥ 1− exp(−Ω(q)) .

Thus
fq,R(q) ≤ exp(−Ω(q)) , i.e.,

tq,R(q) ≤ N q
1 · exp(−Ω(q)) = (N q

1 )
1−Ω(1) ,

using N1 = O(1).
The upshot is as follows: on input z ∈ [0, 1]Nq where Nq = N q

1 = 4k, if we halt our
algorithm Aq(z) after t := tq,R(q) steps and use the certified lower bound

LBMAk
(ut)
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where ut is the partial view of z after t queries, our query complexity is N
1−Ω(1)
q and our

additive error MAk(z) − LBMAk
(ut) is (s, εq,R(q))-small for some s > 0; in particular, by

Jensen’s inequality, this implies

E[MAk(z)− LBMAk
(ut)] ≤ εq,R(q) ≤ N−Ω(1)

q .

This yields our main goal for input lengths of form N = Nq for q ≥ 1. This covers all values
of form N = 4hℓ, where N1 = 4ℓ.

For general input lengths N = 4k, we can write 4k = 4hℓ+h′
= Nh · 4h′

where N1 = 4ℓ and
0 ≤ h′ < ℓ = O(1). Breaking an input vector z up and writing

MAk(z) = MAhℓ+h′

(

z1, . . . , z4
h′
)

= MAh′

(

MAhℓ

(

z1
)

, . . . ,MAhℓ

(

z4
h′
))

we use our algorithm Ah on each of the 4h
′
input blocks, yielding certified lower bounds LBi

on each MAhℓ (z
i), with E[LBi] ≤ exp(−Ω(h)); the value

LB′ := MAh′(LB1, . . . , LB4h
′ )

is then a certified lower bound for MAk(z). Also, we have

E[MAh′(LB1, . . . , LB4h
′ )] ≥ MAh′(E[LB1], . . . ,E[LB4h

′ ])

≥ MAh′

(

MAhℓ(z
1)− τ, . . . ,MAhℓ

(

z4
h′
)

− τ
)

= MAk(z)− τ ,

for a value τ ≤ exp(−Ω(h)). (Above, we used Propositions 1 and 2.) Then, using the
fact that ℓ = O(1), we also have E[LB′] ≥ MAk(z) − N−Ω(1). Thus we achieve the desired
algorithm for general N = 4k.

(2.) This item can be obtained easily by a subsequent computation on ut which, for
every i for which ut

i 6= ∗, computes every gate value along Pi on input [ut ց 0N ]. This
computation proceeds directly from the aforementioned input gates i, working toward the
root/output values according to the gate definitions; we substitute 0 for the value of every
wire not on some such path Pi.

The partial selection function sel∗ is as described in item 2. Its guarantee in the item
follows directly from the definitions.

4 On the structure of MAk inputs

Throughout Section 4, let N = 4k, with k ≥ 1. Here we study the behavior of the MAk

function under changes to its inputs, and give definitions that will help us state and analyze
our steepener construction in Section 5.
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4.1 Preliminary lemmas on random walks

Our first lemma of this section does not directly treat the MAk formula, but will be used
later to analyze that formula’s behavior under random experiments. Our lemma discusses a
scenario in which we take a random path down a binary tree having certain vertices “marked”.
It bounds the probability that our path hits many marked vertices, while simultaneously
having only a few “near-misses” in which the path approaches, but does not contain, a marked
vertex. The lemma’s bound is chosen for simplicity, and doesn’t aim to be comprehensive or
best-possible.

Throughout this subsection, let H be a full, balanced binary tree of depth d ≥ 1 with
designated root vertex r. (Thus, H has 2d leaves.) For a leaf node v, let Pv be the unique
path in H from r to v. Say that a vertex v′ “hangs from” Pv if v′ is not in Pv, but has a
neighbor (parent) on Pv.

8

Lemma 10. Let M be a subset of the non-leaf, non-root vertices of H (M is the “marked”
set). For a, b ≥ 0, let Q(a, b) denote the probability, over a uniformly chosen leaf v, that Pv

contains at least a marked vertices, while at most b marked vertices hang from Pv. Then,
Q(.45d, .1d) ≤ (.998)d.

Proof of Lemma 10. Regard v as being selected by sequentially generating Pv as a random
walk down H, starting at the root r. To clarify our reasoning we describe this process being
driven by two sequences of i.i.d. Bernoulli random variables, call them U1, U2, . . . , Ud and
V1, . . . , Vd (each equal to 0 or 1 with equal probability). The walk is generated as follows:

Random-walk experiment on H:

1. Initialize the “current node” vc := r;

2. While vc is non-leaf:

• If vc has either zero or two marked children, and is the ith such vertex visited,
then let the next step of Pv be determined as the left or right child according to
Ui (with 0 = left, say);

• Else (vc has exactly one marked child, and is the jth such vertex visited), let
the next step of Pv be determined as the left or right child according to Vj; only
this time, with Vj = 0 selecting the unmarked child, and 1 the marked child.

3. Let v be the final, leaf-vertex value taken by vc.

It is clear that the walk is uniform over paths Pv, as desired. Now, if Pv is to contain at
least .45d marked vertices, and have at most .1d hanging marked vertices, then, first of all,
the walk must visit at most .1d vertices having two marked children. At least .35d of the
marked vertices on Pv must therefore be reached in a step from a vertex v′ having exactly

8(Later we will discuss “pendant” gates in MA formulas, a closely-related notion held distinct by the
different term.)
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one marked child. Also, at most .1d steps from a v′′ with one marked child can land on the
unmarked child. Thus we must have V1 + . . . + V⌈.35d⌉ ≥ .25d. This occurs with probability
at most (.998)d, by a Chernoff bound (item 1 of Lemma 1, with p = .5, δ > .2).

The next lemma is a variation, with the same basic reasoning involved. Its statement is
again chosen for simplicity.

Lemma 11. Let Mgood and Mbad be two disjoint subsets of the non-leaf, non-root vertices
(the “marked” set). Assume that if v′ ∈ Mgood, and if v′′ is the (unique) sibling in H of v′,
then at least one child of v′′ is in Mbad.

Let R(a, b) denote the probability, over a uniformly chosen leaf v, that Pv contains at least
a vertices from Mgood, and contains at most b vertices from Mbad. Then, R(a, .1a) ≤ (.998)a.

Proof. This time we use a different probabilistic experiment to generate Pv in a sequential
fashion, as follows. Namely, each time the current vertex vc has one or more child in Mgood,
we generate the next two successive steps of our path with a random variable V j taking values
in {0, 1}2; each outcome is equally likely and corresponds to a distinct 2-step continuation,
with outcome 00 always made to correspond to a continuation landing on a vertex in Mbad.

We use random variable V j for the jth such generative 2-step process. When vc has no
children in Mgood, we drive the walk for one step using Ui-variables, with Ui driving the ith

such step, as in the previous Lemma’s proof.
One can observe that, for the Lemma’s outcome of interest to occur,

1. Each of V 1, . . . , V ⌈a/2⌉ must be used to drive the walk (since each such use acquires
at most 2 vertices from Mgood for Pv, and no step driven by Ui-variables acquires an
Mgood vertex); and,

2. At most .1a of V 1, . . . , V ⌈a/2⌉ may take on the value 00 (since when item 1 holds, each
such outcome adds to the number of vertices on Pv lying in Mbad).

Letting Wi = 1[V i=00], these Bernoulli variables are i.i.d. with expectation p = .25. By our
observations, R(a, .1a) ≤ Pr[W1 + . . .+W⌈a/2⌉ ≤ .1a], and the Lemma follows from another
Chernoff bound (this time item 2 of Lemma 1).

4.2 Slack, dominance, and vanguard coordinates

Recall thatT denotes the formula forMAk and is regarded as a directed graph whose outgoing
edges from a gate g go to each of its input/children gates.

Definition 15. Fix an input y ∈ [0, 1]N to MAk.

• For a gate g ∈ T, let g(y) ∈ [0, 1] denote its value in the computation on y.

• If g is a Max gate with Avg-gate children (i.e., inputs) h and h′, we define the slack
of g with respect to h (on y) in a height-dependent way, as

Slack(g;h, y) := 2q · (h(y)− h′(y)) ,

where 2q is the height of g (i.e., g is at distance 2q from the input-variable gates in
T). Thus Slack(g, h′; y) = −Slack(g;h, y).
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• We define the decisiveness of a Max gate g as above on y as

Dec(g; y) := |Slack(g;h, y)|

(the choice of child h here is irrelevant). We also say gate g is δ-decisive on y (for
value δ > 0) if Dec(g; y) ≥ δ.

• For a path Pj as in Eq. (2), fix attention to a Max node g = pj,2s ∈ T, at height 2(k−s)
above the variable nodes, and with input Avg-gate children h, h′. Here, assume that
h = pj,2s+1 is the successor of g on the path Pj. For δ > 0, say that Pj is δ-dominant
at pj,2s if Slack(g;h, y) ≥ δ, and δ-beaten at pj,2s if Slack(g;h, y) ≤ −δ.
We also simply say that Pj is dominant at pj,2s if Slack(g;h, y) > 0, beaten at pj,2s

if this slack is negative, or tied if the slack is 0.

• Define the vanguard of y, denoted

Van(y) ⊂ [N ] ,

as the set of all j ∈ [N ] for which Pj is dominant at each of its k Max nodes pj,2s, for
s ∈ [0, k − 1].

• For δ > 0, define the δ-decisive vanguard of y, denoted

Vanδ(y) ⊆ Van(y) ⊂ [N ] ,

as the set of all j ∈ [N ] for which Pj is δ-dominant at each of its k Max nodes pj,2s,
for s ∈ [0, k − 1].

• For a path Pj as above and integer s ∈ [0, k−2], suppose that the Avg-node h = pj,2s+1

has Max nodes g = pj,2(s+1) and some g′ (not in Pj) as children in T. We then say
that g′ is pendant to Pj at h.

The next propositions are immediate from the definitions.

Proposition 9. Van(y) consists of exactly those i ∈ [N ] which are contained in every optimal
M-tree for y. In particular, this implies |Van(y)| ≤

√
N .

Proposition 10. Suppose that i, j ∈ [N ] are distinct indices both in the M-tree T , for some
δ > 0. Let m ∈ [0, k] be the largest value for which pi,m = pj,m (the paths Pi, Pj diverge on
their (m+ 1)st steps).

Then m = 2t − 1 is odd (pi,m is an Avg gate). Moreover, if m < k − 1 then the (Max)
gate pj,m+1 is pendant to Pi at p

i,m.

4.3 On reducing coordinate values

Definition 16. For u ∈ {R ∪ {∗}}N and i ∈ [N ], a ∈ R, let u[i ← a] be u with its ith

coordinate set to a.
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We study the effect of decrementing a single coordinate. Our first such lemma concerns
the effect of a “sufficiently small” decrement to the ith input coordinate.

Lemma 12. Let y ∈ [0, 1]N , and let i ∈ [N ] with yi > 0. Let δ ∈ (0, yi].

1. If i ∈ Van(y) and moreover, all Max gates g along Pi have Dec(g; y) ≥ δ (i.e., if
i ∈ Vanδ(y)), then for each g = pi,2t along Pi (t ∈ [0, k − 1]), we have the relation

g(y[i← yi − δ]) = g(y)− 2−(k−t) · δ ,

Also, Pi is not beaten at g on y[i← yi − δ], and

Dec(g; y[i← yi − δ]) = Dec(g; y)− δ .

2. Next, suppose i /∈ Van(y), and let t ∈ [0, k − 1] be maximal for which g = pi,2t is
not dominant for Pi on y. Suppose that δ ≤ Dec(pi,2t

′
; y) for each t′ > t (a vacuous

requirement if t = k − 1). Then for all such t′ > t

pi,2t
′

(y[i← yi − δ]) = pi,2t
′

(y)− 2−(k−t′)δ

and
Dec(pi,2t

′

; y[i← yi − δ]) = Dec(pi,2t
′

; y)− δ ,

and Pi is not beaten at pi,2t
′
; while for pi,2t we have

pi,2t(y[i← yi − δ]) = pi,2t(y) , Dec(pi,2t; y[i← yi − δ]) = Dec(pi,2t; y) + δ ,

and Pi is beaten at pi,2t.

Moreover, for s < t, we have

pi,2s(y[i← yi − δ]) = pi,2s(y) , Dec(pi,2s; y[i← yi − δ]) = Dec(pi,2s; y) ,

and the dominant/tied/beaten status of Pi at p
i,s does not change.

Proof. (1.) We prove by induction on d = 0, 1, . . . , k that

pi,2(k−d)(y[i← yi − δ]) = pi,2(k−d)(y)− 2−dδ .

For d = 0 this is just the statement that the ith input gate decreases in value by δ, which is
immediate. Now let d > 0 and assume the statement true for smaller values. Inspecting the
formula, we can write the functional relation

pi,2(k−d) = Max(h1, h2) (20)

where
h1 = .5(pi,2(k−(d−1)) + g1)

is one of the two Avg gates inputting to the Max gate pi,2(k−d). By assumption in item 2
and our definitions of t′ and δ,

h1(y) ≥ h2(y) + 2−d ·Dec(pi,2(k−d); y) ≥ h2(y) + 2−d · δ .
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Using our inductive assumption (and the fact that g1 does not depend on input i),

h1(y[i← (yi − δ)]) = .5
(

pi,2(k−(d−1))(y[i← (yi − δ)]) + g1(y[i← (yi − δ)]
)

= .5
(

pi,2(k−(d−1))(y)− 2−(d−1)δ + g1(y)
)

= .5
(

pi,2(k−(d−1))(y) + g1(y)
)

− 2−dδ

= h1(y)− 2−dδ ,

which is at least as large as h2(y) = h2(y[i ← yi − δ]). Using Eq. (20), this extends the
induction to the value d. At the same time, our analysis showed that Pi is not beaten at
pi,2(k−d) on y[i ← yi − δ], and it follows from the calculations that Dec(g; y[i ← yi − δ]) =
Dec(g; y)− δ. This proves the other parts of item 1 as well.

(2.) The statements for values t′ > t are proved using an induction identical to that in
item 1, except that we consider only d = 0, 1, . . . , k − t− 1.

For the value t, we write pi,2t = Max(h1, h2), where h1 = .5(pi,2(t+1)) + g′) lies on Pi. By
our assumption on t in item 2, h2(y) ≥ h1(y). Decreasing the ith coordinate cannot change
this property or the value of h2, so the value of pi,2t is unchanged, as claimed. Furthermore,
our statement for t′ = t+1 implies that in replacing yi with yi−δ, the gate pi,2(t+1)) decreases
in value by 2−(k−(t+1))δ; so that h1 decreases in value by 2−(k−t)δ; this establishes that Pi is
beaten at pi,2t on y[i← yi − δ], and gives the claim about the decisiveness at pi,2t.

For s < t, our fact that pi,2t(y[i ← yi − δ]) = pi,2t(y) implies that both input values to
pi,2s are unchanged, so that both the value and the decisiveness at pi,2s are unaffected, as
claimed; as is the dominance status for Pi. This proves item 2.

Definition 17. Fix an input y ∈ [0, 1]N to MAk. Let i ∈ [N ], and let Bi be the set of Max
gates g = pi,2s on Pi for which Pi is beaten at g on y. Define

S−
i (y) :=

∑

g∈Bi

Dec(g; y) .

For occasional use we also define

S̃−
i (y) :=

∑

g∈Bi,g 6=pi,0

Dec(g; y)

as the sum omitting the root gate r = pi,0 (if Pi is beaten at r).

The next Lemma collects some consequences of Lemma 12 for the effect of a “larger”, more
general coordinate decrement. It shows that the effect of a decrement to the ith coordinate
“splits”, in a precise way, between an effect on the MAk-value, and an effect on the S−

i -value.
It also bounds the possible reduction in MAk-value, and gives sufficient conditions for gates
on Pi to remain dominant.

Lemma 13. Let y ∈ [0, 1]N and suppose 0 ≤ y′i < yi. Then

1. We have

yi − y′i = (S−
i (y[i← y′i])− S−

i (y)) + 2k[MAk(y)−MAk(y[i← y′i])] . (21)
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2. If i ∈ Van(y), and δ0 > 0 is the largest value such that i ∈ Vanδ0(y), then MAk(y[i ←
y′i]) ≥ MAk(y)− δ0/2

k.

If yi − y′i ≥ δ0, then MAk(y[i← y′i]) = MAk(y)− δ0/2
k.

If i /∈ Van(y), then MAk(y[i← y′i]) = MAk(y).

3. If Pi is dominant at pi,2t for y, with Dec(pi,2t; y) > yi− y′i, then Pi is also dominant at
pi,2t for y[i← y′i].

4. If i ∈ Van(y) and δ0 is as in item 1, and if Pi is dominant at pi,2t
′
for y for t′ =

0, 1, . . . , t, and each such t′ satisfies Dec(pi,2t
′
; y) > δ0, then Pi is also dominant at pi,2t

for y[i← y′i], regardless of the magnitude of (yi − y′i).

Proof. If i ∈ Vanδ(y), where δ := yi− y′i, then by applying item 1 of Lemma 12, Pi is beaten
at no Max gates on y[i ← y′i], so that S−

i (y[i ← y′i]) = S−
i (y) = 0. Item 1 also tells us that

this decrement decreases the value of pi,0 by 2−kδ, which implies Eq. (21), as well as item 2
above, in this case.

Next, suppose i /∈ Vanδ(y) but that i ∈ Van(y) (so that S−
i (y) = 0), and let pi,2t be a

Max gate on Pi of minimal decisiveness value Dec(pi,2t; y) = δ0 > 0 (this agrees with the
definition in item 2). We first consider the “mini-decrement” where we replace yi with yi−δ0.
Lemma 12, item 1 tells us that the effect of this mini-decrement is to reduce the value of each
gate pi,2t

′
by δ02

−(k−t′); in particular the value of pi,0, which computes the MAk-value of the
input, decreases by δ02

−k. Also, item 1 tells us that each decisiveness value along Pi reduces
by δ0; in particular, the decisiveness value for pi,2t reduces to 0, so that Pi is not dominant
there on y[i ← yi − δ0], and i /∈ Van(y[i ← yi − δ0]). This vanguard non-membership can
only persist after further decrements to the ith coordinate.

We then decompose the remaining decrement amount, namely (yi − y′i) − δ0 > 0, into
a series of “mini-decrements”, each small enough for item 2 of Lemma 12 to apply. Each
mini-decrement amount is chosen as the largest possible for which that item applies—a
mini-decrement which, by inspection, has the effect of either increasing the number of non-
dominant Max gates along Pi, or completing the overall decrement from yi to y′i.

Lemma 12’s item 2 informs us that each mini-decrement in this process, by an amount δ′,
has the effect of increasing the S−

i -value by δ′. It also tells us that the MAk-value (computed
at pi,0) does not change. If we let δ1, . . . , δm be the mini-decrement amounts for these steps,
it follows that the final S−

i -value is δ1 + . . .+ δm, so that

(S−
i (y[i← y′i])− S−

i (y)) + 2k[MAk(y)−MAk(y[i← y′i])] =
∑

j≥1

δi + 2k(2−kδ0)

=
∑

j≥0

δj

= yi − y′i ,

giving Eq. (21). Item 2 also holds in this case from our observations.
Finally, the case where i /∈ Van(y) is analyzed in the same way as the previous case, except

omitting the initial mini-decrement δ0. The mini-decrements δ1, . . . , δm now contribute to
any preexisting S−

i -value on y, as shown by a fully analogous calculation.
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This proves items 1 and 2. Item 3 is easily obtained along the way, by noting that
(in view of Lemma 12, item 1) each mini-decrement above by an amount δ′ decreases the
decisiveness at pi,2t by δ′, without changing the dominance of Pi at p

i,2t. For item 4, we note
that in the sequence of mini-decrements δ0, δ1, . . . , δm described above, the gates pi,2t

′
(for

t′ ∈ [0, t]) remain dominant after the initial δ0 mini-decrement (by Lemma 12, item 1), and
thereafter their dominance status is not changed (by repeated application of the last part of
Lemma 12, item 2).

5 Construction of steepeners

5.1 A-trees and the distribution Γ

Recall that a steepener, as in Def. 6, is an all-queries algorithm Ax
st(y) with baseline advice

that satisfies a certain performance guarantee.
In brief, our candidate steepener construction Ax

st(y) will: choose a set I of N − 230
√
N

coordinates; query y on all but two of them, call these i, j; and then, as its key choice,
adaptively decide which of these two to query next, before querying all remaining coordinates.
Here we develop some terminology and give a suitable distribution Γ over possible outcomes
to (I, i, j) as above.

Definition 18. An A-tree is a subset T of [N ], regarded as a subset of variable-gate indices.
It is specified by a “selection function” sel = selT giving, for each Avg gate h = Avg(g, g′)
in T, a “selected child” sel(h) ∈ {g, g′}. Then T = Tsel is defined as the set of i ∈ [N ] for
which every step in Pi from any Avg gate h goes to sel(h). (The function sel is not unique
for a given A-tree T .)

Definition 19. A 230
√
N-extended A-tree is a subset T ′ of [N ], regarded as a subset of

variable-gate indices. It is specified by a (non-unique) “selection function” sel = selT ′ giving,
for each Avg gate h = Avg(g, g′) at distance at least 61 from the root Max gate in T (i.e.,
excluding the topmost 30 layers of Avg nodes), a “selected child” sel(h) ∈ {g, g′}. Then
T ′ = T ′

sel is defined as the set of i ∈ [N ] for which every step in Pi from any Avg gate h at
distance at least 61 from the root gate, goes to sel(h).

Thus a 230
√
N -extended A-tree is of size 230

√
N , and as a subset of [N ], can be viewed

as a particular type of (disjoint) union of 230 ordinary A-trees. Its main useful property for
us is the following:

Proposition 11. If T is any M-tree and T ′ a 230
√
N-extended A-tree, we have |T∩T ′| = 230.

Definition 20. Let N = 4k and i, j ∈ [N ]. We write

i ⊥ j

(a symmetric relation) to indicate that the paths Pi, Pj diverge at the root Max gate g =
Max(h, h′). That is, one of these paths continues through the Avg gate h and the other
through h′.

We write S ⊥ j (or, j ⊥ S) to indicate that i ⊥ j for all i ∈ S. Note that if S = T is an
M-tree and a single i ∈ T satisfies i ⊥ j, then in fact T ⊥ j.
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Definition 21. Define a distribution Γ = (I, i, j) over sets I ⊂ [N ] and pairs i, j ∈ I as
follows.

• Let T̂ be a 230
√
N-extended A-tree on [N ], chosen by uniformly generating a selection

function sel on all Avg nodes at distance at least 61 from the root in T.

• Let I := [N ]− T̂ .

• Let i, j ∈ I be chosen uniformly from I subject to the condition i ⊥ j.

For brevity, we will say that a tuple (I, j, i) is Γ-supported if it is a possible outcome to
(I, j, i); and similarly we’ll say that (I, j) is Γ-supported if it’s a possible partial outcome to
(I, j).

We collect some easy facts about Γ above:

Proposition 12. In the distribution Γ,

1. i, j are individually uniform over [N ];

2. i, j are individually uniform over I conditioned on [I = I];

3. Conditioned on [(I, i) = (I, i)], the value j is uniform over the (N − 230
√
N)/2 indices

i ∈ I for which i ⊥ j. The analogous statement holds with i, j interchanged;

4. |I ∩ T | =
√
N − 230 for any M-tree T (using Prop. 11), and any such T contains at

most one of i, j.

5.2 Description of steepener candidate

Let C1 := 1000. Let ℓ := 1010 and N := 4ℓ. Let e := 230
√
N + 1.

42



Algorithm Ast = Ax
st(y): on input y ∈ [0, 1]N and advice x ∈ [0, 1]N (with x ≤ y),

1. Let (I, i, j) ∼ Γ be chosen (as in Def. 21), independently of x, y. Let Ast make its first
N − e− 1 queries (in ascending-index order) to (y)I−{i,j}.

2. Let u be the resulting “hybrid input”, agreeing with y on I−{i, j} and with x elsewhere.

We choose to query coordinate i at step N − e if at least one of the following
“Selection-Conditions” holds of u and i:

(a) The path Pi is dominant (with respect to input u) at each of its C1 Max gates
pi,0, pi,2, . . . , pi,2(C1−1) closest to the output gate r = pi,0; or,

(b) The path Pi has more than .51ℓ Max gates where it is dominant with respect to
u; or,

(c) There exists a positive value

γ > .001 · S−
i (u) ≥ 0 (22)

and a set G of at least .01ℓ Max gates g pendant to Pi, such that for each g ∈ G
we have

Dec(g; u) ∈ [γ, 1000γ] . (23)

(Simplifying observation: if such γ,G exist, then γ can be chosen as the smallest
value Dec(g; u) of any Max gate g in our chosen set G.)

Otherwise (if i fails Selection-Conditions (a), (b), and (c)), we query coordinate j at

step N − e. We let k1 ∈ {i, j} be the index chosen for the (N − e)th query, and let
k2 ∈ {i, j} be the sole coordinate in I not queried after N − e steps.

3. The remaining e queries to y are made in ascending-index order.

We note that the Selection-Conditions were touched upon in the order (b), (c), (a) in
Section 1.5.2 (with (a) described as “less central”).

5.3 Efficient computability

Claim 1. Ax
st(y) is a nicely constructive all-queries algorithm, in the sense of Def. 12.

The Claim follows directly from our description of Ast and distribution Γ (which can be
sampled from in poly(N) time from its definition); and from the definitions of dominance,
S−
i (u), and Dec(g; u), along with the simplifying observation that allows us to test Selection-

Condition (c) by trying a finite number of candidate values γ.
Claim 1 can be refined to more carefully bound the per-query computation costs, but the

above statement is enough to help prove the asymptotic results in Claim 8, leading to the
efficient-simulation properties in Theorem 2.
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6 Steepener analysis: first steps

Our goal in the following sections is to prove:

Theorem 3. For our choice N := 410
10

, the algorithm Ast in Section 5 is an admissible
steepener (as in Def. 11).

Combined with Theorem 2, this will achieve our main goal of the paper.
To prove Theorem 3, for any given 4-tuple (α, β, s0, s

′ = 10−4
√
Ns0) as in Def. 11, where

s0∆ = s0(α− β) = 1000 ,

and for any (α, β, s0)-ensemble
Ens = (X, Y, z) ,

as in Def. 5, we must show that Eq. (6) holds. (We use “s0” because we will be considering
exponential moments with several different exponents, and wish to emphasize that this value
is our starting point.) In the remainder of our work we fix attention upon one such ensemble,
and study the behavior of AX

st(Y ) on its first N − e queries as treated in Eq. (6). We now
give some central definitions for our analysis.

Definition 22. We define some random variables, determined by the outcomes of (X, Y )
and the execution of AX

st(Y ):

1. Let y∗ ∈ ([0, 1]∪{∗})N be the partial view of Y for algorithm AX
st(Y ) after N−e queries

and let
u′ := u[k1 ← Yk1

] = [y∗ ց X]

be its partial view of Y relative to baseline X after N−e queries. Note that by definition,

MAℓ(u
′) = LBMAℓ

(y∗;X) .

2. Let
T ∗ ⊂ [N ]

be an optimal M-tree for input z ∈ [0, 1]N to MAℓ, i.e., one for which MAℓ(z) =
Avge∈T ∗(ze). (We arbitrarily choose and fix one such M-tree throughout the analysis.)

3. Define
R :=

√
N · [MAℓ(u

′)− Avge∈T ∗(ue)] ,

noting that R ≥ 0 since MAℓ is monotone, u′ ≥ u, and MAℓ(u) ≥ Avge∈T ∗(ue).

6.1 Exponential quantities of interest; main claimed bounds

Next we lay out a flexible, general definition with which to study exponential moments of
different quantities associated with an execution of AX

st(Y ):
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Definition 23. 1. For S ⊆ [N ], and for (X, Y ) ∼ Ens as presented to Ast, we define the
random variables

GX
S := exp

(

10−4s0

(

∑

e∈S
(ze −Xe)

))

, GY
S := exp

(

10−4s0

(

∑

e∈S
(ze − Ye)

))

.

2. Also define the random variable

V := GY
(T ∗∩I)−{i,j} ·GX

(T ∗−I)∪(T ∗∩{i,j}) · exp(−10−4s0R) ,

noting that, by definition of u, u′, R, we have

V = exp

(

10−4s0

((

∑

e∈T ∗

(ze − ue)

)

−R

))

= exp
(

10−4s0
√
N (MAℓ(z)−MAℓ(u

′))
)

.

Our central goal of establishing Eq. (6) for AX(Y ) on Ens = (X, Y, z), thus corresponds
precisely to showing

E[V ] ≤ exp

(

10−4s0
√
N ·

[

N − e+ c

N
· β +

e− c

N
· α
])

= exp

(

10−4s0

[(√
N − 230 − 1− c√

N

)

· β +

(

230 +
1− c√

N

)

· α
])

. (24)

Our proof essentially consists of three parts, aimed at proving the following three bounds.

Claim 2. E[V |i, j /∈ T ∗] ≤ exp
[

10−4s0((
√
N − 230)β + 230α)

]

.

Claim 3. We have

E[V |i ∈ T ∗] ≤ exp
[

10−4s0((
√
N − 230 − 1 + .65)β + (230 + 1− .65)α)

]

.

Claim 4. We have

E[V |j ∈ T ∗] ≤ exp
[

10−4s0

(

(
√
N − 230 − 1 + .88)β + (230 + 1− .88)α

)]

.

The first claim above is simplest, and is proved below. The other two (particularly
Claim 3) are more involved; we prove Claim 3 in Section 8 and Claim 4 in Section 7.
Proving these claims will allow us to finish the argument, as follows:

Proof of Theorem 3. We claim that

E[V ] = Pr[i ∈ T ∗] · E[V |i ∈ T ∗] + Pr[j ∈ T ∗] · E[V |j ∈ T ∗] + Pr[i, j /∈ T ∗] · E[V |i, j /∈ T ∗]

= N−.5 · { E[V |i ∈ T ∗] + E[V |j ∈ T ∗] }+ (1− 2N−.5) · E[V |i, j /∈ T ∗] . (25)

Above, the first equality holds since i, j cannot both be in T ∗, and the second holds because
i, j are individually uniform over I (Prop. 12) and

|T ∗ ∩ I|
|I| =

√
N − 230

N − 230
√
N

= N−.5 .
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Let ai, aj, a∅ denote the expected-value upper bounds provided by Claims 3, 4, and 2 respec-
tively; from Eq. (25) we have

E[V ] ≤ N−.5 · { ai + aj }+ (1− 2N−.5) · a∅ (26)

≤ 2N−.5ai + (1− 2N−.5)a∅ ,

with the last step (which is crude but suffices for our purpose) holding since ai ≥ aj.
Next, we make use of Lemma 3. Writing ai = ey > ex = a∅, we have

y − x = 10−4s0(.35∆) ≤ .1 ,

the last step since s0∆ = 1000. So we can conclude from Lemma 3 (with q := 2N−.5) that

2N−.5ai + (1− 2N−.5)a∅ ≤ exp[1.1qy + (1− 1.1q)x]

= exp[x+ 1.1q(y − x)]

= exp
[

(10−4s0) · [(
√
N − 230)β + 230α) + .77∆/

√
N ]
]

= exp
[

(10−4s0) · [(
√
N − 230 − .77/

√
N)β + (230 + .77/

√
N)α]

]

,

which establishes Eq. (24) and therefore Eq. (6), with c = .33.

Now, as promised, we prove Claim 2.

Proof of Claim 2. Fix any outcome I = I that can occur conditioned on [i, j /∈ T ∗] (actually
this conditioning does not affect the support or distribution of I, though we will not need
this fact). Under the extended conditioning [I = I ∧ i, j /∈ T ∗], the random variable V
satisfies

V ≤ exp



(10−4s0)





∑

e∈T ∗∩I
(ze − Ye) +

∑

e∈(T ∗−I)

(ze −Xe)









=
∏

e∈T ∗∩I
exp

[

(10−4s0)(ze − Ye)
]

·
∏

e∈(T ∗−I)

exp
[

(10−4s0)(ze −Xe)
]

,

using the fact that R ≥ 0. Using the independence of the ensemble coordinates, it follows
that

E[V |I = I ∧ i, j /∈ T ∗] ≤
∏

e∈T ∗∩I
E[e(10

−4s0)(ze−Ye)] ·
∏

e∈(T ∗−I)

E[e(10
−4s0)(ze−Xe)]

≤ exp
(

(10−4s0)β
)|T ∗∩I| · exp

(

(10−4s0)α
)|T ∗−I|

,

since (X, Y, z) is an (α, β, s0)-ensemble and therefore also (by Prop. 6) a (α, β, 10−4s0)-
ensemble. The last line is exp[(10−4s0)((

√
N − 230)β + 230α)], since |T ∗ ∩ I| =

√
N − 230

(Prop. 12).
As I = I was an arbitrary possible further outcome to I, this proves Claim 2.
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6.2 Conditions for lower-bounding R

We will identify several conditions under which R from Def. 22 can be lower-bounded, which
(with further work) will allow us to analyze the random variable V and establish the Steep-
ener property. Here, we give the two most basic such conditions, with which other more
specific conditions will be identified later. The first such condition is that our “key” (N−e)th
query is made to a coordinate in T ∗ (as in Def. 22).

Lemma 14. R ≥ 1[k1∈T ∗] · (Yk1
−Xk1

).

Proof. In the event [k1 ∈ T ∗] we have u′
k1

= Yk1
, which implies MAℓ(u

′) − AvgT ∗(ue) ≥
AvgT ∗(u′

e)− AvgT ∗(ue) = (Yk1
−Xk1

)/
√
N .

The second source of lower-bounds on R is from the event that one of i or j lies in T ∗,
but that this coordinate i is not in the vanguard set Van(u) for u, and in fact has positive
sum of negative slacks appearing along Pi(u).

Lemma 15. R ≥ 1[i∈T ∗] · S−
i (u) + 1[j∈T ∗] · S−

j (u).

Proof. We first consider the i coordinate. By Lemma 13, with u[i← zi] taking the role of y
and y′ := u, we have

zi −Xi = (S−
i (u)− S−

i (u[i← zi])) + 2ℓ[MAℓ(u[i← zi])−MAℓ(u)]

≥ S−
i (u) + 2ℓ[MAℓ(u[i← zi])−MAℓ(u)] . (27)

Then,

MAℓ(u
′) ≥ MAℓ(u)

= MAℓ(u[i← zi])− [MAℓ(u[i← zi])−MAℓ(u)]

≥
[

MAℓ(z) + (zi −Xi)/
√
N − Avge∈T ∗(ze − ue)

]

− [MAℓ(u[i← zi])−MAℓ(u)]

≥ [MAℓ(z) − Avge∈T ∗(ze − ue)] + S−
i (u)/

√
N ,

where we used Eq. (27) in the last step. Thus,

R ≥ 1[i∈T ∗] · S−
i (u) .

The same reasoning applies to the coordinate j, giving the analogous inequality with j in
place of i; then, as i, j can never both lie in T ∗ (since i ⊥ j and T ∗ is an M-tree), we infer
the stronger statement of the Lemma.

6.3 Contexts

Here we describe natural partial outcomes to the coordinates of (X, Y ) ∼ Ens.

Definition 24. 1. For i ∈ [N ], an i-context is a pair of vectors (x′, y′), each with coor-
dinates indexed by the set [N ]− {i}, for which the joint outcome

(X)[N ]−{i} = x′ , (Y )[N ]−{i} = y′

is supported under (X, Y ) ∼ Ens.
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2. For contrast, by an Ens-outcome we will simply mean a full outcome (x, y) to (X, Y ),
supported under Ens.

3. For an Ens-outcome (x, y), the i-context associated with (x, y) is the projection

x′ := (x)[N ]−{i} , y′ := (y)[N ]−{i} .

4. For brevity, in an execution of AX
st(Y ), we denote conditioning on a joint outcome to

(I, j) = (I, j) and upon the j-context (x′, y′) with the event notation

[I, j, x′, y′] =
[

(I, j) = (I, j) ∧ (X)[N ]−{j} = x′ ∧ (Y )[N ]−{j} = y′
]

.

We chiefly use it in conditional expectations, e.g. E[U |I, j, x′, y′]. We also sometimes
condition additionally on [i = i], e.g. using E[U |I, j, i, x′, y′]. We use similar notation
when (x′, y′) is an i-context (not a j-context), when this is clear from the surrounding
discussion.

5. Also for brevity, when an index i is clear from the discussion, we write (x′, y′) ∼ Ens
to indicate that the i-context (x′, y′) is sampled as ((X)[N ]−{i}, (Y )[N ]−{i}).

7 Steepener analysis: the “j-critical” case

In the execution of AX(Y ) on (X, Y ) drawn from Ens, let us fix an index

j ∈ T ∗

and a Γ-supported partial outcome [(I, j) = (I, j)]; we refer to such a partial outcome, in
which j ∈ T ∗, as “j-critical”. Given, additionally, a j-context (x′, y′), we will give a sufficient
condition on possible further outcomes [i = i] under which it is forced that [j = k1], that
is, under which i is not chosen for the (N − e)th query. The conclusion [j = k1] in turn
implies that R ≥ (Yj − Xj), by Lemma 14 and the fact that j ∈ T ∗. Then, we will argue
that, regardless of the choice of (x′, y′) as above, almost all possible values for i obey this
condition—a finding that will play a key role in establishing Claim 4.

7.1 Variant-conditions

Definition 25. Given a Γ-supported pair (I, j) with j ∈ T ∗, a j-context (x′, y′), and for
a given i ∈ I with i ⊥ T ∗, we define a set of “Variant-Conditions” for i. (These are
variants of the Selection-Conditions from the algorithm Ast.)

First, arbitrarily fix any further outcome [Xj = x̃j] possible under the ensemble Ens, and
let û′ be the input defined (independent of i) by û′

j := x̃j, and that elsewhere agrees with y′

on index set I − {j} and with x′ on other coordinates. We define the Variant-Conditions in
terms of this û′. Let us say that i obeys the Variant-Condition:

(a)’ if Pi is dominant with respect to û′ at gates pi,2t for t ∈ [1, C1 − 1];9

9Note that here we exclude the root pi,0, in distinction to Selection-Condition (a) in Ast.
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(b)’ if Pi is dominant with respect to û′ on at least .51ℓ − 1 Max gates among pi,2t for
t ∈ [1, ℓ− 1];

(c)’ if (recalling notation from Def. 17) there exists a positive value

γ > .001 · S̃−
i (û

′) ≥ 0 ,

and a set G of at least .01ℓ Max gates pendant to Pi, such that for each g ∈ G,

Dec(g; û′) ∈ [γ, 1000γ] . (28)

Definition 26. [Type-1 bad index sets] Given Γ-supported pair (I, j) with j ∈ T ∗ and a
j-context (x′, y′), define the set

B1
I,j,x′,y′ := {i ∈ I : i ⊥ j ∧ i obeys one or more of Variant-Conditions (a)’-(c)’} ,

the Conditions defined with respect to (I, j, x′, y′).

Claim 5. Suppose that for Γ-supported (I, j) with j ∈ T ∗ and j-context (x′, y′) we have
i /∈ B1

I,j,x′,y′. Then in the execution of AX
st(Y ), we have the implication

[(I, j, x′, y′) ∧ i = i] =⇒ R ≥ Yj −Xj ,

Proof. By Lemma 14, it suffices to show that under our assumptions,

[(I, j, x′, y′) ∧ i = i] =⇒ [k1 = j] . (29)

Suppose that some possible joint outcome to (X, Y ) and execution of AX
st(Y ) satisfies

[(I, j, x′, y′) ∧ i = i] ∧ [k1 = i] .

We will argue that i obeys one or more of Variant-Conditions (a)’-(c)’, contrary to the
assumption i /∈ B1

I,j,x′,y′ . This will prove Eq. (29) since k1 ∈ {i, j}.
The condition [k1 = i] is triggered for AX

st(Y ) precisely when the pair (u, i) obeys one of
Selection-Conditions (a)-(c), with u as in the algorithm definition. Let (Xj, Yj) = (xj, yj) in
the outcome under consideration. Letting u be as in AX

st(Y ) in this execution, define

û := u[i← y′i] ,

an input obtained by incrementing u on coordinate i from x′
i to y′i. As the formula defining

MAℓ is monotone, any gate g along the path Pi takes on at least as large a value under input
û as under u; while any gate g not lying on Pi takes the same values on both inputs. Thus
for every Max gate g on Pi for which Pi is dominant on input u, Pi is also dominant at g on
û. Similarly, we also have that S−

i (û) ≤ S−
i (u) (the contribution to this sum from any gate

g cannot increase by passing from u to û).
Next, note that, for û′ defined with respect to I, j, x′, y′ as in Def. 25, we have

û′ = û[j ← x̃j] ,
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a change in a single coordinate (that may be an increase or decrease). As i ⊥ j, the paths
Pi and Pj have only the root gate r = pi,0 in common; changing the input from û to û′ can
affect the dominance of Pi for its Max gates only at this root gate. It follows directly that,
if (u, i) obey Selection-Condition (a) (respectively, (b)) in the execution of AX

st(Y ), then i
obeys Variant-Condition (a)’ (respectively, (b)’) for (I, j, x′, y′). (Observe that in each case
the possible loss of a dominant root gate for Pi is tolerated—the root gate is ignored by
Variant-Condition (a)’, while the threshold number of dominant gates is lower by one in
Variant-Condition (b)’ compared to Selection-Condition (b).)

The quantity S̃−
i (û

′) from Def. 17, which ignores the root gate, is unaffected by the
change—we have

S̃−
i (û

′) = S̃−
i (û) ≤ S−

i (û) ≤ S−
i (u) .

And, all Max gates g′ pendant to Pi have no dependence upon coordinates i and j, and thus
satisfy Dec(g′; u) = Dec(g′; û′). From this, we see that, if (u, i) obey Selection-Condition
(c) as witnessed by gate set G and value γ, the same pair (G, γ) witness that û′ obeys
Variant-Condition (c)’. This completes the proof.

Lemma 16. For (I, j, x′, y′) as in Def. 26 we have

|B1
I,j,x′,y′ | ≤ .01(N − 230

√
N)/2 .

Proof. The number of i ∈ I with i ⊥ j that obey Variant-Condition (a)’ for (I, j, x′, y′) is
bounded by the total number of i ∈ [N ] with i ⊥ j whose paths Pi are dominant with respect
to û′ (an input independent of i) on gates pi,2t for t ∈ [1, C1− 1]. Such paths must pass from
this pi,2t to a child Avg gate with strictly larger value on û′ (of the two children). Then,
simple counting reveals there are at most 2−(C1−1) ·N/2 ≤ 2−(C1−2) · (N − 230

√
N)/2 such i,

where we used the largeness of N ≥ 1021.
Similarly, the number of i ∈ I, i ⊥ j obeying Variant-Condition (b)’ is at most ρN/2 ≤

2ρ(N − 230
√
N)/2, where ρ ∈ (0, 1) is defined, for i.i.d. .5-biased Bernoulli variables

W1, . . . ,Wℓ−1, by
ρ = Pr[W1 + . . .+Wℓ−1 ≥ .51ℓ− 1] .

As ℓ > 500, we have .51ℓ− 1 > .505(ℓ− 1). By Lemma 1, item 1 (with n = ℓ− 1, p = .5, δ ≥
.01), we get

ρ ≤
[

e.01

(1.01)1.01

].5(ℓ−1)

< (1− 10−5)ℓ−1 .

Variant-Condition (c)’ needs more work to analyze. For our fixed (x′, y′, I, j), if i obeys
Variant-Condition (c)’ and t ∈ [0, ℓ − 2], say that (c)’ is “triggered by t” (an event we
also denote Et) if in Variant-Condition (c)’, the set G of Max gates (pendant to Pi) can be

chosen so that its closest gate g0 ∈ G to the root r, is pendant to Pi at the Avg node pî,2t+1.
If (c)’ is to hold for i, it must clearly be triggered by at least one such t.

We now upper-bound Pr[Et] over an index î ∈ [N ] chosen uniformly subject to î ⊥ j, for
each t. A union bound over these t will lead to an upper-bound on the number of i obeying
(c)’. (The additional constraint in the definition of B1

I,j,x′,y′ that i ∈ I cannot increase the
overall count.)
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So fix such a t, consider our î ⊥ j as chosen by a descending random walk, and condition
on any possible outcome for the Max gate pî,2(t+1), which determines pî,2t+1 and the Max
gate g0 ∈ G with which (c)’ is triggered by t. Let γ0 := Dec(g0; û). Say that a Max gate g
in T is “g0-similar” if

Dec(g; û) ∈
[ γ0
1000

, 1000 · γ0
]

.

Say that Pî “approaches” a Max gate g if the parent of g′ lies in Pi. Say that Pî “runs
afoul” of Max gate g if g lies on Pî, and Pî is beaten at g with respect to û. If (c)’ is to

be triggered by t (under our conditioning on pî,2(t+1)), then the random path Pî must, after

passing through pî,2(t+1), approach at least .01ℓ Max gates which are g0-similar.
However, the path Pî must also run afoul of few such gates. For, each such step increases

the sum S̃−
î
(û) by at least γ0/1000. If Pî runs afoul of more than 106 such gates, this rules

out any possible value of γ in (c)’ for a set G that is to include g0.

For our above settings of t and pî,2(t+1), let us define H as the full subtree, rooted at
pî,2(t+1), of the MAℓ formula tree T. Now,

• Let Mgood be the set of all Max gates in H that are sibling to a g0-similar Max gate;

• Let Mbad be the set of all Avg gates h in H whose parent gate g = max(h, h′) is
g0-similar, with h(û) < h′(û).

Note that these two marked sets obey the assumptions of Lemma 11. Also, our work above
implies that for (c)’ to be triggered by t, when Pî passes through the node pî,2(t+1), the
path Pî (whose restriction to H is a uniform path to a leaf) must contain at least a := .01ℓ
vertices of Mgood, and at most 106 elements of Mbad (which is < .1a, since ℓ = 1010). By

Lemma 11, this occurs with probability ≤ (.998).01ℓ. As pî,2(t+1) was arbitrary, we conclude
Pr[Et] ≤ (.998).01ℓ.

Then, the probability that (c)’ is triggered by any t ∈ [0, ℓ − 2] is ≤ ℓ(.998).01ℓ. The
number of i ∈ I, i ⊥ j obeying (c)’ is therefore at most ≤ ℓ(.998).01ℓ(N/2) ≤ 2ℓ(.998).01ℓ(N−
230
√
N)/2. Summing our bounds for (a)’, (b)’, (c)’ , the total number of indices i ∈ B1

I,j,x′,y′

is at most
[

2−(C1−2) + (1− 10−5)ℓ−1 + 2ℓ(.998).01ℓ
]

· (N − 230
√
N)/2 < .01(N − 230

√
N)/2 ,

the inequality holding since C1 = 1000, ℓ = 1010. This proves the Lemma.

7.2 Exponential-moment bounds

Lemma 17. Let (I, j) be Γ-supported with j ∈ T ∗. Consider a j-context sampled as (x′, y′) ∼
Ens, and for each i ∈ I with i ⊥ j, define

ζI,ji := E(x′,y′)∼Ens

[

1[i ∈ B1
I,j,x′,y′ ] ·GY

(T ∗∩I)−{j} ·GX
T ∗−I

]

. (30)

Then, averaging over i, we have

2

N − 230
√
N

∑

i∈I:i⊥T ∗

ζI,ji ≤ .01 · exp
(

10−4s0

[

(
√
N − (230 + 1))β + 230α

])

.

51



Proof. The quantity GY
(T ∗∩I)−{j} ·GX

T ∗−I is identical for every i ∈ I with i ⊥ T ∗; thus

∑

i∈I:i⊥T ∗

ζI,ji = E(x′,y′)∼Ens

[

|B1
I,j,x′,y′ | ·GY

(T ∗∩I)−{j} ·GX
T ∗−I

]

≤ .01
(N − 230

√
N)

2

∏

e∈(T ∗∩I)−{j}
E[exp(10−4s0(ze − Ye))] ·

∏

e∈(T ∗−I)

E[exp(10−4s0(ze −Xe))] ,

using our size bound from the conclusion of Lemma 16 and the ensemble independence
property. As an (α, β, s0)-ensemble, and therefore (Prop. 6) an (α, β, 10−4s0)-ensemble, the
above is at most

.01
(N − 230

√
N)

2
· exp

(

10−4s0

[

(
√
N − (230 + 1))β + 230α

])

,

from which the conclusion follows.

Proof of Claim 4. Conditioned on [j ∈ T ∗], the pair (I, j) is uniform over its possible out-
comes for which j ∈ T ∗ ∩ I. Letting Γ∗ be the induced distribution on such pairs, we have

E[V |j ∈ T ∗] = E(I,j)∼Γ∗ [ E[V |(I, j) = (I, j)] ] . (31)

Fix any such (I, j). Conditioned on this pair, i is uniform over i ∈ I for which i ⊥ T ∗. Thus

E[V |(I, j) = (I, j)] =
2

N − 230
√
N

∑

i∈I,i⊥T ∗

E[V |(I, i, j) = (I, i, j)] , (32)

since |{i ∈ I : i ⊥ T ∗}| = |I|/2 = (N − 230
√
N)/2.

We fix i ∈ I with i ⊥ T ∗, and further expand E[V |(I, i, j) = (I, j, i)], which we also
denote E[V |I, j, i] = E[V |W ] where we let W := [(I, i, j) = (I, j, i)]. Note that conditioned
on W , we have

V = AB , where

A := GY
(T ∗∩I)−{j} ·GX

T ∗−I , B := exp(10−4s0(zj − xj −R)) .

Preparing for an application of Lemma 2 (under our fixed I, j, i), let us consider the
auxiliary random variable t := (x′, y′) giving the j-context associated with the outcome
(X, Y ) ∼ Ens. Let S := {(x′, y′) : i ∈ B1

I,j,x′,y′}. This t is independent of W . We have, by
our definitions,

E[1[(x′, y′) ∈ S] · A|W ] = ζI,ji ,

as defined in Lemma 17, using that the expectation in Eq. (30) is of a variable unaffected
by (I, j, i) and hence by W .

Let us suppose for the moment that our fixed i satisfies

ζI,ji ≤ .1





∏

e∈(T ∗∩I)−{j}
E[exp(10−4s0(ze − Ye))]









∏

e∈(T ∗−I)

E[exp(10−4s0(ze −Xe))]



 ,
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which if true also gives ζI,ji ≤ p · a, where

p := .1 , a := exp
(

10−4s0((
√
N − 230 − 1)β + 230α)

)

,

and where we note E[A|W ] ≤ a by the ensemble conditions. The random variable B has
expected value at most b := e10

−4s0α conditioned on [W ∧ t = (x′, y′)] for any j-context, and

at most b′ := e10
−4s0β conditioned upon [W ∧ t = (x′, y′)] for any j-context (x′, y′) satisfying

i /∈ B1
I,j,x′,y′ (by Lemma 5). Moreover, using the ensemble property, A,B are independent

conditional upon [W ∧ t := (x′, y′)], for any outcome to t, which determines the value of A.
We can thus use Lemma 2 applied to E[AB|W ] = E[V |I, j, i] with the values given, to find

E[V |I, j, i] ≤ a[pb+ (1− p)b′] . (33)

Now letting b = ef , b′ = eg, we have f−g = (10−4s0)∆ = (10−4s0)(α−β) ≤ .1. By Lemma 3
and the definitions of b, b′, we have

pb+ (1− p)b′ ≤ exp
[

10−4s0 (1.1(.1)α + (1− 1.1(.1))β)
]

.

Then from Eq. (33) and our value of a, we have

E[V |I, j, i] ≤ exp
[

10−4s0((
√
N − (230 + 1))β + 230α)

]

· exp
[

10−4s0 (.11α + .89β)
]

= exp
[

10−4s0((
√
N − 230 − .11)β + (230 + .11)α)

]

. (34)

Recall that we assumed in the above that ζI,ji ≤ .1. However, by Lemma 17 and a Markov
bound, at most a .1 fraction of all i ⊥ T ∗ with i ∈ I satisfy ζI,ji > .1. And even for such i,
we have

E[V |I, j, i] ≤ E
[

GY
(T ∗∩I)−{j} ·GX

(T ∗−I)∪{j}
]

≤ exp
[

10−4s0((
√
N − 230 − 1)β + (230 + 1)α)

]

.

Combining this with Eqs. (32) and (34), we have

E[V |(I, j) = (I, j)] ≤ .1eµ + .9eν (35)

where

µ := 10−4s0((
√
N−230−1)β+(230+1)α) , ν := 10−4s0((

√
N−230−.11)β+(230+.11)α) ,

and 0 < µ− ν ≤ 10−4s0∆ ≤ .1. By another application of Lemma 3, from Eq. (35) we get

E[V |(I, j) = (I, j)] ≤ exp (.11µ+ .89ν))

≤ exp
[

10−4s0

(

(
√
N − 230 − .22)β + (230 + .22)α

)]

= exp
[

10−4s0

(

(
√
N − 230 − 1 + .88)β + (230 + 1− .88)α

)]

.

The outcomes I and j ∈ T ∗ ∩ I were arbitrary. Thus, from Eq. (31), we get the same upper
bound on E[V |j ∈ T ∗], as needed, proving Claim 4.
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8 Steepener analysis: the “i-critical” case

Our goal in this Section is to prove Claim 3.
For Γ-supported outcomes [(I, j) = (I, j)] with

j ⊥ T ∗ ,

our focus is on analyzing further possible partial outcomes [i = i] with i ∈ T ∗ ∩ I. Next we
lay out some important terms for this study.

Definition 27. Let (I, j, i) be Γ-supported and satisfy

i ∈ T ∗ ∩ I .

Relative to a given i-context (x′, y′), we define the following (using Def. 15):

1. Let
ũ ∈ [0, 1]N

be the input agreeing with y′ on index set I−{i, j}, with x′ on index set {j}∪([N ]−I),
and setting ũi := zi.

In the case where i ∈ Van(ũ), we define additional quantities as follows:

2. let 0 ≤ d0 ≤ d1 ≤ . . . ≤ dℓ−1 be the multiset of values { Dec(pi,2t; ũ) }t∈[0,ℓ−1], listed in
ascending value (not according to their order of appearance along Pi).

3. Let γ̃ be a maximal value having an associated set G of at least .01ℓ Max gates pendant
to Pi, with each g ∈ G satisfying

Dec(g; ũ) ∈ [γ̃, 1000γ̃] .

If no such value exists, let γ̃ := ⊥.

We now establish several conditions in which the quantity R from Def. 22 can be lower-
bounded in the “i-critical” case under discussion.

Lemma 18. Let (I, j, i, x′, y′, ũ) be as in Def. 27. Conditioned on

(I, i, j) = (I, i, j) , (X)[N ]−{i} = x′ , (Y )[N ]−{i} = y′ ,

we have the following items.

0. If i /∈ Van(ũ), then R ≥ zi −Xi.

Else, for the remaining items assume i ∈ Van(ũ). For d0, . . . , dℓ as in Def. 27, we have:

1. R ≥ 1[zi−Xi≥d0] · (zi −Xi − d0).

2. R ≥ 1[zi−Xi<df ] · (Yi −Xi), where f := ⌈.49ℓ⌉;
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3. If d0 is not equal to Dec(pi,2t; ũ) for any t ∈ [0, C1− 1] (i.e., the minimum decisiveness
along Pi does not appear among the C1 Max gates nearest the root), then R ≥ (Yi−Xi).

4. Regardless of whether the condition in item 3 holds, if γ̃ 6= ⊥, then we have R ≥
1[zi−Xi<d0+1000γ̃] · (Yi −Xi).

Proof. In all the items, we will use the basic “coordinate-decrement” relation

u = ũ[i← Xi] , (36)

valid under the conditioning given by [I, j, i, x′, y′].

(0.) If i /∈ Van(ũ), then MAℓ(u) = MAℓ(ũ) by Lemma 13, item 2. Now,

MAℓ(ũ) ≥ Avge∈T ∗(ũe) = Avge∈T ∗(ue) + (zi −Xi)/
√
N .

Also, we always have MAℓ(u
′) = MAℓ(u[k1 ← Yk1

]) ≥ MAℓ(u). Thus R ≥ zi−Xi, as claimed.
Henceforth we assume i ∈ Van(ũ).

(1.) Suppose zi −Xi ≥ d0. We have

MAℓ(u
′) ≥ MAℓ(u) ≥ MAℓ(ũ)− d0/

√
N ≥ Avge∈T ∗(ue) + (ũi − ui − d0)/

√
N ,

where for the second inequality we used Lemma 13, item 2, with δ0 := d0 > 0. From this we
get

R ≥ ũi − ui − d0 = zi −Xi − d0 ,

as needed.

(2.) Now suppose zi−Xi < df . Applying Lemma 13, item 3 to the coordinate decrement
in Eq. (36), we see that each Max gate pi,2t on Pi for which Dec(pi,2t; ũ) ≥ df , the path Pi is
still dominant on pi,2t for input u. By our choice of f , fewer than .49ℓ Max gates on Pi are
non-dominant on u.

Thus under the conditioning [I, i, j, x′, y′] (and under our additional assumption in item
1), Selection-Condition (b) holds of u and i in the execution of AX

st(Y ), so that we have
[k1 = i]. It then holds that

MAℓ(u
′) ≥ Avge∈T ∗(u′

e) = Avge∈T ∗(ue) + (Yi −Xi)/
√
N .

R ≥ Yi −Xi follows by work analogous to that in item 0.

(3.) By Lemma 13, item 4, our assumptions imply that Pi is dominant at each Max gate
pi,2t for t ∈ [0, C1 − 1] not only on input ũ, but on u = ũ[i ← Xi] as well. Thus, under our
conditioning and assumptions, Selection-Condition (a) holds for u and i in the execution of
AX

st(Y ), so that [k1 = i], and then the lower bound on R follows as in item 2 above.

(4.) Suppose zi −Xi < d0 + 1000γ̃. By Lemma 13, item 1 applied to u = ũ[i← Zi],

zi −Xi = (S−
i (u)− S−

i (ũ)) +
√
N(MAℓ(ũ)−MAℓ(u))

= S−
i (u) +

√
N(MAℓ(ũ)−MAℓ(u)) , (37)
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since i ∈ Van(ũ) implies that S−
i (ũ) = 0.

If zi −Xi ≤ d0 then zi −Xi =
√
N(MAℓ(ũ) −MAℓ(u)) by Lemma 12, item 1 applied to

the root gate pi,0. Then, Eq. (37) yields S−
i (u) = 0. Otherwise,

√
N(MAℓ(ũ)−MAℓ(u)) = d0

by Lemma 13, item 2; so that S−
i (u) < 1000γ̃, i.e. γ̃ > .001 · S−

i (u).
Now, both the gates in G, and the subformulas rooted at these gates, don’t depend on

input i and so take the same values on u as on ũ. Thus, on u with [i = i] they fulfill the
assumptions of Selection-Condition (c) in AX

st(Y ) under our conditioning. As in earlier items,
this implies [k1 = i] and R ≥ Yi −Xi.

8.1 Bad type-2 contexts

For a fixed i ∈ T ∗∩I, i ⊥ j, we now define a criterion for an i-context (x′, y′) to be considered
“bad”, thus defining a subsetB2

I,j,i of such contexts. Essentially, the bad contexts we identify
are those for which none of Lemma 18’s items directly give a useful lower bound on R.

Our approach here should be compared with that used in Section 7. In each case we are
using contexts (partial outcomes) as a useful “backdrop” to highlight a critical coordinate
and identify cases in which the conditional expectation of V is nontrivially small. The
backdrops’ details differ, however, as we identify different sources of savings. In Section 7
we directly defined a set of (type-1) bad index set associated with a given j-context. Here
we first define a set of bad i-contexts—but will also use this definition to induce a definition
of (type-2) bad index sets associated with full Ens-outcomes.

Definition 28 (Bad (type-2) contexts and sets). Let (I, j, i) be Γ-supported and satisfy
i ∈ T ∗ ∩ I. We define B2

I,j,i, the set of “bad” (type-2) i-contexts relative to (I, j, i), as
the set of i-contexts (x′, y′) for which all of the following are true:

0. i ∈ Van(ũ);

1. d0 > α− .93∆;

2. d0 does appear as d0 = Dec(pi,2t; ũ) for some t ∈ [0, C1 − 1];

3. df − d0 < .95∆;

4. either γ̃ = ⊥ , or 1000γ̃ < .95∆.

Also, for each Ens-outcome (x, y), we define the (type-2) “bad” set

B2
I,j,x,y ⊆ T ∗ ∩ I

as the set of indices i ∈ T ∗∩I for which the associated i-context (x̂i, ŷi) = ((x)[N ]−{i}, (y)[N ]−{i})
satisfies (x̂i, ŷi) ∈ B2

I,j,i.

The main significance of Def. 28 for bounding exponential moments is as follows:

Lemma 19. Let (I, j, i) be Γ-supported, with i ∈ T ∗ ∩ I. Let (x′, y′) be an i-context, and let
ũ be as in Def. 27 relative to (I, j, i, x′, y′). Define the random variable

Q̂ := zi −Xi −R .
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For conditional expectations of form

E

[

exp(10−4s0Q̂)|I, j, i, x′, y′
]

= E

[

exp(10−4s0Q̂)

∣

∣

∣

∣

(I, j, i) = (I, j, i) , (X)[N ]−{i} = x′ , (Y )[N ]−{i} = y′
]

we have the implication

(x′, y′) /∈ B
2
I,j,i =⇒ E

[

exp(10−4s0Q̂)|I, j, i, x′, y′
]

≤ exp
[

10−4s0(α− .93∆)
]

.

Proof. Given (x′, y′) /∈ B2
I,j,i , we ask which is the lowest-numbered item in Def. 28 to be

violated by (x′, y′). The options are analyzed as follows.
(0.) First, suppose i /∈ Van(ũ). From item 0 of Lemma 18, under the given conditioning

we have zi −Xi −R ≤ 0, from which the conclusion certainly follows (using that Ens is an
(α, β, s0)-ensemble and therefore also an (α, β, 10−4s0)-ensemble.

Henceforth, we assume i ∈ Van(ũ).

(1.) If d0 ≤ α − .93∆, then from item 1 of Lemma 18, under the given conditioning we
have zi −Xi −R ≤ d0, and again the conclusion follows.

(2.) From item 3 of Lemma 18, under the given conditioning we have zi−Xi−R ≤ zi−Yi,
and the latter quantity, which is unaffected by the conditioning, is (10−4s0, β)-small.

(3.) Under no conditioning, define random variables

U := zi − Yi , W := Yi −Xi ,

Considering s0-exponential moments now (rather than 10−4s0-exponential ones), we have

E[exp(s0U)] ≤ es0β , E[exp(s0(U +W ))] ≤ es0α

by the ensemble assumptions on Xi, Yi.
Next, with reference to the fixed pair ũ, i, we define values

S := d0 , r := df − d0 ,

where f := ⌈.49ℓ⌉. Also define random variables

R1 := 1[zi−Xi<df ] · (Yi −Xi) = 1[U+W<S+r] ·W

and
R2 := 1[zi−Xi≥d0] · (zi −Xi − d0) = 1[U+W≥S] · (U +W − S) .

Let
Q := U +W −Max(R1, R2) .

As s0∆ = 1000, and by our assumption that (x′, y′) violates item 3 (so that r ≥ .95∆), the
assumptions A1-A2 of Lemma 6 are met. Thus,

E[exp(.01s0Q)] ≤ exp [.01s0(α− .93∆)] .
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We now pass to a lower exponent: by Prop. 6, we then also have

E[exp(10−4s0Q)] ≤ exp
[

10−4s0(α− .93∆)
]

. (38)

Now, we need to apply our unconditioned analysis of Q to the analysis of Q̂ under
conditioning [I, i, j, x′, y′]. Note that (as ũ, i are fixed) Q is a function solely of the random
variables Xi, Yi. Also, the conditioning [I, i, j, x′, y′] does not affect the distribution of Xi, Yi

(by the independence property of our ensemble (X, Y )), and recalling that the i-coordinate
is omitted in the i-context (x′, y′)).

Now under this conditioning, we have Q̂ = U +W − R. By Lemma 18, items 1 and 2,
under the same conditioning we have R ≥ Max(R1, R2). Also, s0 > 0, so we conclude that

E[exp(10−4s0Q̂)|I, j, i, x′, y′] ≤ E[exp(10−4s0Q)|I, j, i, x′, y′] = E[exp(10−4s0Q)] .

With Eq. (38), this proves item 3.

(4.) The proof is completely analogous to that of item 3, with U,W defined as before,
except that this time we instead define

S := d0 , r := 1000γ̃ ,

and we let
R1 := 1[zi−Xi<d0+1000γ̃] · (Yi −Xi) = 1[U+W<S+r] ·W

and
R2 := 1[zi−Xi≥d0] · (zi −Xi − d0) = 1[U+W≥S] · (U +W − S) .

We use these terms as before, but with items 1 and 4 of Lemma 18 instead of items 1-2.

8.2 Exceptional outcomes and contexts

In Lemma 19 we have established useful bounds under conditioning upon i-critical partial
outcomes (I, j, i) and i-contexts which are not “bad”. Now we wish to show that such bad
contexts are in a useful sense “rare”. Our basic approach for doing so is to show that for
a “large” set10 of full Ens-outcomes (x, y), the following favorable property holds: most of
the possible choices i ∈ T ∗ ∩ I induce an associated i-context (x′, y′) = ((x)N−{i}, (y)N−{i})
that is not in the “bad” set B2

I,j,i from Def. 28.
Certain “exceptional” Ens-outcomes and contexts may not have the favorable property

described above, and pose a challenge for our analysis; we define them next, and by showing
them to be “small” under an exponential measure, we will bound their impact on our overall
analysis.

Definition 29 (Exceptional outcomes and contexts). Fix any Γ-supported outcome (I, j) =
(I, j) for Γ that satisfies j ⊥ T ∗.

10(large under an appropriate exponential measure, that is)
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1. Let us say that an Ens-outcome to (X, Y ) given by (x, y) is (I, j)-exceptional, and
write (x, y) ∈ XI,j (a subset of outcomes), if there are at least 1 + .02(

√
N − 230 − 1)

coordinates e ∈ T ∗ ∩ I for which

ze − ye > β + .06∆ .

2. Also, for i ∈ T ∗ ∩ I with i ⊥ j and an i-context (x′, y′), let us say that (x′, y′) is
(I, j, i)-exceptional, and write (x′, y′) ∈ XI,j,i, if there are at least .02(

√
N − 230 − 1)

coordinates e ∈ (T ∗ ∩ I)− {i} for which ze − y′e > β + .06∆.

Note that if Ens-outcome (x, y) is (I, j)-exceptional, then its associated i-context is
(I, j, i)-exceptional; the converse may fail.

Next, for fixed Γ-supported (I, j) with j ⊥ T ∗, and for i ∈ T ∗ ∩ I, we will upper-bound
the contribution to the expected value of the quantity GY

(T ∗∩I)−{i} · GX
T ∗−I , from i-contexts

which are exceptional. Note that the above quantity is fully determined by the i-context
associated with (X, Y ).

Lemma 20. For any fixed pair (I, j) possible under Γ with j ⊥ T ∗ and i ∈ T ∗ ∩ I, we have

E(x′,y′)∼Ens

[

1[(x′, y′) ∈ XI,j,i] ·GY
(T ∗∩I)−{i} ·GX

T ∗−I

]

≤
10−10 · exp[10−4s0(β(

√
N − 230 − 1) + 230 · α)] . (39)

Proof. The quantity GX
T ∗−I is (using the independence property of Ens) independent of

GY
(T ∗∩I)−{i} and of the membership condition 1[(x′, y′) ∈ XI,j,i], which is determined by

variables with coordinates in (T ∗ ∩ I)− {i}. We have (again by independence)

E[GX
T ∗−I ] =

∏

e∈T ∗−I

E[exp(10−4s0(ze − x′
e))] ≤ (e10

−4s0α)|T
∗−I| = e10

−4s0(230α) . (40)

Next, we apply Lemma 5 to the family { Ue = (ze − y′e) }(T ∗∩I)−{i}, a set of size m :=√
N − 230 − 1. Note that the event [H ≥ .02m] in this case corresponds precisely to the

outcome [(x′, y′) ∈ XI,j,i]. By Lemma 5, then, we have

E
[

1[(x′, y′) ∈ XI,j,i] ·GY
(T ∗∩I)−{i}

]

≤ exp[10−4s0(β − 5.88∆)(
√
N − 230 − 1)] ,

which combined with Eq. (40) and the independence property gives

E(x′,y′)∼Ens

[

1[(x′, y′) ∈ XI,j,i] ·GY
(T ∗∩I)−{i} ·GX

T ∗−I

]

≤
exp[−10−4s0(5.88∆)(

√
N − 230 − 1)] · exp[10−4s0(β(

√
N − 230 − 1) + 230 · α)] . (41)

As s0∆ = 1000 and
√
N > 1010, the first factor appearing on the right-hand side is tiny:

exp[−10−4s0(5.88∆)(
√
N − 230 − 1)] < 10−10. This yields Eq. (39).
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8.3 Size bounds for (type-2) bad sets

The membership of an index i ∈ T ∗ in the bad set B2
I,j,x,y is determined by properties of the

input ũ (which depends on i and zi). Since such inputs are distinct for each i, it is tricky to
reason directly about the size of B2

I,j,x,y. Thus we introduce a more convenient “surrogate”

set below called B̂I,j,x,y for the case when (x, y) are non-exceptional (the only case where we
seek a bound on |B2

I,j,x,y|), and relate it to our bad set in Lemma 21.

Definition 30. Let (I, j) be Γ-supported, with j ⊥ T ∗.

• Fix any non-(I, j)-exceptional Ens-outcome, (x, y) /∈ XI,j. We define11

û ∈ [0, 1]N

as the input which agrees with x on {j} ∪ ([N ]− I), and with y on I − {j}.

• Define
B̂I,j,x,y ⊆ T ∗ ∩ I

as the set of i ∈ T ∗ ∩ I for which all of the following conditions hold (these are related
to the conditions of Def. 28):

0. i ∈ Van(û);

For the next items, we assume i ∈ Van(û) and for such i, we let

d̂i,0 ≤ d̂i,1 ≤ . . . ≤ d̂i,ℓ−1

denote the values { Dec(pi,2t; û) }t∈[0,ℓ−1] listed in ascending order of value.

1. The smallest value d̂i,0 ≥ .01∆;

2. The value d̂i,0 appears as d̂i,0 = Dec(pi,2t; û) for some t ∈ [0, C1 − 1];

3. For f := ⌈.49ℓ⌉, we have

d̂i,f − d̂i,0 < .95∆ .

4. There are fewer than .01ℓ Max gates g pendant to Pi whose decisiveness value
satisfies

Dec(g; û) ∈ [d̂i,0, 1000d̂i,0] .

Lemma 21. For (I, j, x, y) as in Def. 30, we have

B2
I,j,x,y ⊆ B̂I,j,x,y ∪ {i ∈ T ∗ ∩ I : zi − yi > β + .06∆} .

11(while the definition is closely similar to the input û considered in proving Lemma 5 in Section 7, the
surrounding details are different and the notation’s current scope is restricted to Section 8)
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Proof. In the proof, we fix any i ∈ T ∗ ∩ I for which

zi − yi ≤ β + .06∆ ,

and assume that i /∈ B̂I,j,x,y. We’ll show the associated i-context (x′, y′) := ((x)[N ]−{i}, (y)[N ]−{i})
satisfies (x′, y′) /∈ B2

I,j,i, and thus (by definition) i /∈ B2
I,j,x,y, which proves the Lemma. Let

ũ be as determined by (x′, y′), i as in Def. 27. In what follows, we will repeatedly use the
coordinate-decrement relation, in which the ith coordinate is reduced by an amount zi − yi:

û = ũ[i← yi] .

Now, we do case analysis, based on the lowest-numbered item violated by i in Def. 30:

(0.) First, suppose i /∈ Van(û). Then, we claim that on input ũ, either i /∈ Van(û), or,
at least one Max gate pi,2t along Pi has Dec(p

i,2t; ũ) ≤ β + .06∆ = α − .94∆. In either case
(x′, y′) violates one of items 0-1 of Def. 28.

To show the claim, suppose not. Then after the decrement of coordinate i from zi (on
ũ) to yi (on û), for which zi − yi ≤ β + .06∆ by initial assumption, each such pi,2t would
remain dominant for Pi on û. This is seen by appealing to item 1 of Lemma 12. We then
have i ∈ Van(û), which is a contradiction.

In the remaining items, we assume i ∈ Van(û), so that d̂i,0 ≤ . . . ≤ d̂i,ℓ−1 are defined.

(1.) Next, assume d̂i,0 < .01∆. If pi,2t is a Max gate on Pi with Dec(pi,2t; û) = d̂i,0, we find

(again by Lemma 12, item 1) that Dec(pi,2t; ũ) = d̂i,0+(zi−yi) < .01∆+β+.06∆ = α−.93∆,
so that the value d0 associated with ũ is also less than α − .93∆, and item 1 of Def. 28 is
violated by (x′, y′).

(2.) Next, assume the smallest decisiveness value along Pi on input û, namely d̂i,0, does

not appear as d̂i,0 = Dec(pi,2t; û) for any t ∈ [0, C1 − 1]. By Lemma 12, item 1, the values
Dec(pi,2t; ũ) are equal to Dec(pi,2t; û) + (zi − yi) for each t ∈ [0, ℓ− 1], and considered in the
ascending order, we also have

dh = d̂i,h + (zi − yi) . (42)

In particular the smallest such value, d0, cannot appear as Dec(p
i,2t; û) for any t ∈ [0, C1−1].

Thus item 2 of Def. 28 is violated by (x′, y′).

(3.) Next, assume d̂i,f − d̂i,0 ≥ .95∆. Then in light of Eq. (42), which holds here for the
same reason as in case 2, we also have df − d0 ≥ .95∆, and item 3 of Def. 28 is violated by
(x′, y′).

(4.) Finally, assume i obeys item 1 but fails item 4 of Def. 30: there exist at least .01ℓ
Max gates g pendant to Pi whose decisiveness value satisfies Dec(g; û) ∈ [d̂i,0, 1000d̂i,0]. Let
γ0 be the minimum such value over all these g; by our assumption γ0 ≥ .01∆.

For each such g (which is pendant to, but not on Pi) we have Dec(g; ũ) = Dec(g; û) since
ũ and û are equal on the subformula rooted at g. Thus, in Def. 27, we have γ̃ 6= ⊥ and
γ̃ ≥ γ0 ≥ .01∆, so that 1000γ̃ ≥ 10∆, and item 4 of Def. 28 is violated by (x′, y′).
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Lemma 22. For (I, j, x, y) as in Def. 30, we have

∣

∣

∣
B̂I,j,x,y ∪ {i ∈ T ∗ ∩ I : zi − yi > β + .06∆}

∣

∣

∣
≤ .021 · |T ∗ ∩ I| = .021(

√
N − 230) .

By Lemma 21, the same upper bound holds for |B2
I,j,x,y|.

Proof. Let Z := {i ∈ T ∗ ∩ I : zi − yi > β + .06∆}. As (x, y) /∈ XI,j , we have (by definition)

|Z| < 1 + .02(
√
N − 230 − 1) .

Our strategy to bound the size of B̂I,j,x,y ⊆ T ∗∩I will involve reasoning about an index e
selected uniformly from T ∗. This distribution, while not exactly uniform on T ∗ ∩ I, is quite
close since |T ∗ − I| = 230 ≪

√
N = |T ∗|, and we will be able to apply our findings.

It will be convenient to define an auxiliary tree rather than working with the full MAℓ-
formula tree T, since our e as above is constrained to lie in T ∗. Let H be the full binary
tree of height d := ℓ whose leaf vertices are all input variables with coordinates e ∈ T ∗, and
whose non-leaf vertices are Max gates g lying on some path Pe with e ∈ T ∗. For any such
g = Max(h, h′), as children of g in H we take g1 and g2 where, if h = selT ∗(g) is the selected
child of g in T ∗, we have h = Avg(g1, g2).

To analyze H, we use the terminology given for such trees in Sec. 4.1 before Lemma 10.
First, we have a direct correspondence between paths Pe in with e ∈ T ∗, and paths Pe in H;
a uniformly chosen e ∈ T ∗ can equivalently sampled by taking a uniformly random path Pe

in H from the root to a leaf input gate, of index e. Moreover, the Max gates encountered
on this path in H will be precisely those lying on Pe. Also, the Max gates hanging from Pe

in H, are precisely those Max gates pendant to Pe in T. These observations will help us to
get useful bounds by applying Lemma 10.

For a non-leaf node v in H (corresponding to some Max gate g in T), say that v is deep
if g is at distance more than 2C1 from the root gate in T (and so, g is not one of the first
C1 Max gates encountered on the path from the root to g itself). For each deep v, we define
a quantity

Dmin(v) := min{ Dec(pe,2t; û) }t∈[0,C1−1] ,

where e ∈ T ∗ is an index for which Pe passes through g; which such e is used does not affect
our definition.

Next, we define some “marked” subsets of (non-leaf) vertices in H. Let K be defined
as the set of non-leaf nodes v in H (corresponding to some Max gate g in T) for which
at least one of the following conditions hold:

1. g is a non-root gate, and there exists some Max gate g′ appearing above g on a path
Pe′ with e′ ∈ T ∗ that passes through g, such that Pe′ is not dominant at g′ with respect
to û; or,

2. Dec(g; û) < .01∆ ; or,

3. v is deep, and Dec(g; û) < Dmin(v).

62



Claim 6. If e ∈ (T ∗ ∩ I), and the associated path Pe in H contains any non-leaf vertex
v ∈ K, then e /∈ B̂I,j,x,y.

Proof of Claim 6. If any v on Pe fails item 1 in the definition of K, then Pe must pass
through a vertex v′ corresponding to a Max gate g′, for which Pe is non-dominant with
respect to û. Thus e fails item 0 in the membership criteria for B̂I,j,x,y.

The same reasoning and conclusion holds if we simply assume e /∈ Van(û); so we may
henceforth assume that e ∈ Van(û), with associated values d̂e,0, . . . , d̂e,ℓ−1 as in Def. 30. If

option 2 in the definition of K holds for some g on Pe, then d̂e,0 ≤ Dec(g; û) < .01∆, so that

e must fail item 1 in the membership criteria for B̂I,j,x,y, and again e /∈ B̂I,j,x,y.

Finally, suppose option 3 defining K holds for g on Pe. Then, d̂i,0 ≤ Dec(g; û) < Dmin(v),

and by the definition of Dmin(v) we see that e fails item 2 for membership in B̂I,j,x,y.

Define a second set M (possibly overlapping with K) of marked non-leaf nodes v in H
(again, each with a corresponding Max gate g in T), by

M := {v : v is deep, and Dec(g; û) ∈ [Dmin(v), 101 ·Dmin(v)] } .

Claim 7. Assume e ∈ (T ∗ ∩ I). The conclusion e /∈ B̂I,j,x,y then follows from either one of
the following further conditions:

1. Pe passes through fewer than .49ℓ− C1 vertices in M ; or,

2. More than .01ℓ vertices in M are hanging from Pe.

Proof of Claim 7. If Pe contains any v ∈ K then we have the desired conclusion by Claim 6.
So assume in the remainder that Pe does not intersect K.

In particular:

• The absence on Pe of any v for which item 1 definingK is met, implies that e ∈ Van(û),
and d̂e,0, . . . , d̂e,ℓ−1 are defined;

• The fact that item 2 defining K is not met by any non-leaf vertex on Pe, implies that
d̂e,0 ≥ .01∆;

• The fact that item 3 defining K is not met on Pe, implies that

Dmin(v) = d̂e,0 (43)

for any deep (non-leaf) v on Pe.

With these points in hand, we consider the two possible further assumptions of our Claim
in turn:

(1.) Let J1 be the set of Max gates g on Pe with

Dec(g; û) ∈ [d̂e,0 , d̂e,0 +∆] .

As d̂e,0 ≥ .01∆, the interval above is contained in [d̂e,0 , 101 · d̂e,0]. Any (deep, non-leaf)

v ∈ M appearing on Pe, has Dmin(v) = d̂e,0. If the corresponding Max gate g lies in J1, we
then find that Dec(g; û) ∈ [Dmin(v), 101 ·Dmin(v)], and v ∈M .
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Thus |J1| ≤ |M | + C1, after accounting for the first C1 Max gates g along Pe, whose
corresponding vertices on Pe might lie in J1 −M . Our assumption in item 1 then implies
that

|J1| < .49ℓ .

For f = ⌈.49ℓ⌉ as in Def. 30, we conclude that

d̂e,f > d̂e,0 +∆ ,

so that e violates item 3 in Def. 30, and e /∈ B̂I,j,x,y as claimed.

(2.) Under the alternative assumption in item 2 of Claim 7, let M ′ ⊆ M be the more
than .01ℓ vertices in M hanging from Pe. Each v′ ∈M ′ is deep and, as it hangs from Pe (and
using Eq. (43)), satisfies Dmin(v

′) = d̂e,0. Letting G be the set of Max gates corresponding
to M ′ in T, we observe that each g ∈ G is pendant to Pe and satisfies

Dec(g; û) ∈ [d̂e,0, 101d̂e,0] ,

which implies that e violates item 4 of Def. 30 for membership in B̂I,j,x,y.

Using Claim 7, we finish the proof of Lemma 22. First, recall that a uniformly chosen leaf
of H corresponds to a uniformly selected e from T ∗. Lemma 10 (with d := ℓ) tells us that
the probability Pe contains at least .45ℓ marked vertices, while having at most .1ℓ marked
vertices hanging from Pv, is ≤ (.998)ℓ, which for our large ℓ = 1010 is ≤ .0001.

Thus, the number of such e is at most .0001
√
N , so by Claim 7, |B̂I,j,x,y| ≤ .0001

√
N .

Then (using N ≥ 1021),

|B̂I,j,x,y ∪ Z| ≤ .0001
√
N + .02(

√
N − 230 − 1) ≤ .021(

√
N − 230) .

8.4 Exponential-moment bounds

Lemma 23. For each Γ-supported (I, j, i) with i ∈ T ∗ ∩ I, consider the i-context

(x̂i, ŷi) := ((x)[N ]−{i}, (y)[N ]−{i})

associated with Ens-outcome (x, y), and define

ηI,ji := E(x,y)∼Ens

[

1[(x̂i, ŷi) ∈ B
2
I,j,i − XI,j,i ] ·GY

(T ∗∩I)−{i} ·GX
T ∗−I

]

. (44)

Then, averaging over i ∈ T ∗ ∩ I, we have the bound

1√
N − 230

∑

i∈T ∗∩I
ηI,ji ·E[exp(10−4s0(zi − Yi))] ≤

.021

(

∏

e∈T ∗∩I
E[exp(10−4s0(ze − Ye))]

)(

∏

e∈T ∗−I

E[exp(10−4s0(ze −Xe))]

)

.
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Proof. For our fixed I, j, we sample the outcome (X, Y ) = (x, y) ∼ Ens, and simultaneously
for each i ∈ T ∗ ∩ I we consider the associated i-context (x̂i, ŷi) as above.

The quantity GY
(T ∗∩I) ·GX

T ∗−I is equal to GY
(T ∗∩I)−{i} ·GX

T ∗−I · exp(10−4s0(zi− yi)) for each

i ∈ T ∗ ∩ I. Both GY
(T ∗∩I)−{i} and (x̂i, ŷi) are independent of yi, so from Eq. (44) defining ηI,ji

we obtain

E(x,y)∼Ens

[

1[(x̂i, ŷi) ∈ B
2
I,j,i − XI,j,i ] ·GY

(T ∗∩I) ·GX
T ∗−I

]

= ηI,ji · E[exp(10−4s0(zi − Yi))] .
(45)

By our initial observations after Def. 29, we have

(x̂i, ŷi) /∈ XI,j,i =⇒ (x, y) /∈ XI,j .

Then, using Def. 28 defining type-2 bad contexts and sets, it holds too that

(x̂i, ŷi) ∈ B
2
I,j,i − XI,j,i =⇒

[

(x, y) /∈ XI,j ∧ i ∈ B2
I,j,x,y

]

.

Thus, from Eq. (45),

ηI,ji · E[exp(10−4s0(zi − Yi))] ≤ E
[

1[(x, y) /∈ XI,j ∧ i ∈ B2
I,j,x,y] ·GY

(T ∗∩I) ·GX
T ∗−I

]

.

Averaging over i ∈ T ∗ ∩I,
1√

N − 230

∑

i∈T ∗∩I
ηI,ji · E[ exp(10−4s0(zi − Yi))] ≤

1√
N − 230

∑

i∈T ∗∩I
E
[

1[(x, y) /∈ XI,j ∧ i ∈ B2
I,j,x,y] ·GY

(T ∗∩I) ·GX
T ∗−I

]

=
1√

N − 230
E

[

GY
(T ∗∩I) ·GX

T ∗−I ·
∑

i∈T ∗∩I
1[(x, y) /∈ XI,j ∧ i ∈ B2

I,j,x,y]

]

≤ 1√
N − 230

E
[

GY
(T ∗∩I) ·GX

T ∗−I · |B2
I,j,x,y|

]

≤ .021 · E[GY
(T ∗∩I) ·GX

T ∗−I ]

(by Lemma 22)

= .021
∏

e∈T ∗∩I
E[exp(10−4s0(ze − Ye))] ·

∏

e∈T ∗−I

E[exp(10−4s0(ze −Xe))] ,

as claimed (using independence of coordinates in the last step).

Proof of Claim 3. After conditioning on [i ∈ T ∗], the pair (I, j) is uniform over its possible
outcomes for which j ⊥ T ∗, and letting Γ′ be the induced distribution on such pairs, we have

E[V |i ∈ T ∗] = E(I,j)∼Γ′ [ E[V |(I, j) = (I, j) ∧ i ∈ T ∗] ] . (46)

Fix any such (I, j) with j ⊥ T ∗. Conditioned on [(I, i) = (I, j) ∧ i ∈ T ∗], the value i is
uniform over T ∗ ∩ I, a set of size

√
N − 230. Thus,

E[V |(I, j) = (I, j) ∧ i ∈ T ∗] =
1√

N − 230

∑

i∈T ∗∩I
E[V |(I, j, i) = (I, j, i)] . (47)
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We fix i ∈ T ∗ ∩ I and further expand E[V |(I, j, i) = (I, j, i)], hereafter denoted E[V |I, j, i].
Note that under this conditioning (using the fact that i ∈ T ∗ ∩ I, j ∈ I − T ∗), we have

V = GY
(T ∗∩I)−{i} ·GX

T ∗−I · exp(10−4s0(zi − xi −R)) .

With an eye toward Lemmas 20 and 23, we let (x′, y′) be the i-context associated with
outcome (X, Y ), and we define

• ai,1 := E

[

1[(x′, y′) ∈ XI,j,i] ·GY
(T ∗∩I)−{i} ·GX

T ∗−I

]

,

• ai,2 := E

[

1[(x′, y′) ∈ B2
I,j,i − XI,j,i] ·GY

(T ∗∩I)−{i} ·GX
T ∗−I

]

= ηI,ji ,

• ai,3 := E

[

1[(x′, y′) /∈ (B2
I,j,i ∪ XI,j,i)] ·GY

(T ∗∩I)−{i} ·GX
T ∗−I

]

,

noting that the quantity satisfies

ai,1 + ai,2 + ai,3 = E[GY
(T ∗∩I)−{i} ·GX

T ∗−I ] ≤ exp[10−4s0((
√
N − 230 − 1)β + 230α)] .

Now, under any conditioning on the i-context (x′, y′), the ensemble property (which
extends to exponent 10−4s0, by Prop. 6) and the nonnegativity of R tell us that

E[exp(10−4s0(zi−xi−R))|I, j, i, x′, y′] ≤ E[exp(10−4s0(zi−Xi))] ≤ exp(10−4s0α) . (48)

Further, upon conditioning on any (x′, y′) /∈ (B2
I,j,i ∪ XI,j,i), we have

E[exp(10−4s0(zi − xi −R))|I, j, i, x′, y′] ≤ exp[10−4s0(α− .93∆)] ,

by Lemma 19.
By Lemma 20, we have

ai,1 ≤ 10−10 exp[10−4s0((
√
N − 230 − 1)β + 230α)] .

Let us now suppose that

ηI,ji · E[exp(10−4s0(zi −Xi))] ≤√
.021

∏

e∈T ∗∩I
E[exp(10−4s0(ze − y′e))] ·

∏

e∈T ∗−I

E[exp(10−4s0(ze − x′
e))] (49)

or equivalently ai,2 = ηI,ji ≤
√
.021·E[GY

(T ∗∩I)−{i}·GX
I−T ∗ ], which is at most

√
.021·exp(10−4s0[(

√
N−

230 − 1)β + 230α]). Then,

E[1[(x′, y′) ∈ B
2
I,j,i∪XI,j,i]·GY

(T ∗∩I)−{i}·GX
I−T ∗ ] ≤ (10−10+

√
.021) exp(10−4s0[(

√
N−2−30−1)β+230α]) .

We can then apply Lemma 2, to the event W = [(I, j, i) = (I, j, i)] and random variables

t := ((X)[N ]−{i}, (Y )[N ]−{i}) , A := GY
(T ∗∩I)−{i} ·GX

T ∗−I , B := exp(10−4s0(zi−xi−R)) ,

66



noting that A,B are independent conditional upon [W ∧ (x′, y′)], for any outcome to t
(which determines the value of A). We take as the set S, for Lemma 2, the set of i-contexts
B2

I,j,i ∪ XI,j,i (a subset of the set supp(t) of all i-contexts supported by Ens), and with

a := exp(10−4s0((
√
N − 230 − 1)β + 230α)) ,

b := e10
−4s0α , b′ := e10

−4s0(α−.93∆) ,

and
p := 10−10 +

√
.021 < .145 ,

to find that

E[V |I, j, i] = E[AB|W ]

≤ a[pb+ (1− p)b′] .

Regarding b, b′ as ef , eg respectively, we have f − g = (10−4s0α) − 10−4s0(α − .93∆) =
10−4(.93)s0∆ < .1, since s0∆ = 1000. Thus, we can apply Lemma 3 to the above, to find
that (for i satisfying Eq. (49))

E[V |I, j, i] ≤ a · exp[1.1p(10−4s0α) + (1− 1.1p)(10−4s0(α− .93∆))]

= a · exp[10−4s0(α− (1− 1.1p)(.93∆))]

≤ a · exp[10−4s0(α− .78∆)] . (50)

Let b′′ := exp[10−4s0(α− .78∆)].

Now by Lemma 23 combined with a Markov bound, at least a .85 fraction of all i ∈ T ∗∩I
satisfy Eq. (49) and thus Eq. (50). And, all other i ∈ T ∗ ∩ I at least satisfy

E[V |I, j, i] ≤ E[GY
(T ∗∩I) ·GX

(T ∗−I)∪{i}] ≤ exp[s((
√
N − 230)β + (230 + 1)α)] = ab ,

since i ∈ T ∗, j /∈ T ∗. From these bounds and Eq. (47), then, we infer

E[V |(I, j) = (I, j) ∧ i ∈ T ∗] ≤ .15ab+ .85ab′′

= a[.15b+ .85b′′] .

Making another application of Lemma 3, we have

a[.15b+ .85b′′] ≤ a · exp
[

(1.1 · .15)(10−4s0α) + (1− 1.1 · .15)(10−4s0(α− .78∆))
]

= a · exp
[

10−4s0(α− .835(.78∆))
]

≤ a · exp
[

10−4s0(α− .65∆)
]

= exp[10−4s0((
√
N − 230 − 1 + .65)β + (230 + 1− .65)α)] ,

Then from Eq. (46), we infer the same upper bound on E[V |i ∈ T ∗]. This proves Claim 3.
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9 Reduction of MAk to LIS

Here we describe an approximation-preserving reduction mentioned in the Introduction. It is
modeled on a reduction from the Tropical Tensor Similarity problem to the Longest Common
Subsequence (LCS) problem in [AR18], and guided by [AR18] and a comment in [RSSS19]
on a connection between LCS and LIS.

First we briefly sketch the reduction of [AR18] applied to MAk. For finite strings u, v
let lenLCS(u, v) denote the length of the longest common (not necessarily contiguous) sub-
sequence of u, v. The base transformation on single bits mapping [xi = 1] to the pair of
strings (u, v) = (i, i) and [xi = 0] to the pair (⊥A,⊥B), where ⊥A,⊥B are distinct “null”
symbols, outputs a pair satisfying lenLCS(u, v) = 1[xi=1]. For an inductive step, one uses the
transformation

(u, v) , (u′, v′) → (u ◦ u′, v ◦ v′)
which satisfies

lenLCS(u ◦ u′, v ◦ v′) = lenLCS(u, v) + lenLCS(u
′, v′)

provided that lenLCS(u, v
′) = lenLCS(u

′, v) = 0. This is combined with the transformation

(u, v) , (u′, v′) → (u ◦ u′, v′ ◦ v)

which under the same assumption as above satisfies

lenLCS(u ◦ u′, v′ ◦ v) = max{lenLCS(u, v) , lenLCS(u
′, v′)}

Using these steps in alternation, one obtains from a string x ∈ {0, 1}4k a pair u, v ∈ {[4k] ∪
{⊥A,⊥B}}4k such that lenLCS(u, v) = 2k ·MAk(x).

In the Longest Increasing Subsequence (LIS) problem, one is given as input a list L =
(a1, . . . , aN) of integers, and wishes to find a longest, strictly increasing subsequence (which
need not be contiguous, and may be a single element). Let lenLIS(L) ∈ [1, N ] denote the
length of a LIS for L. We mimic the above reduction for LCS, with additive shifts playing
a role analogous to string reordering.

Let LIS⊥ be the same problem, except that the ai are allowed to take the value “⊥”, and
such an entry is not permitted in any increasing subsequence. Let lenLIS,⊥(L) ∈ [0, N ] be
the length of a longest such increasing subsequence.

We first describe a simple, “nearly-perfect” reduction from LIS⊥ to LIS. If L ∈ (Z ∪ ⊥)N
is given and a lower bound mini ai ≥ c ∈ Z is known, one can replace any occurrence in L
of ai = ⊥ by a new entry a′i = c − i. This yields a revised list L′ ∈ Z

N , and one sees that
valLIS(L

′) = max{1, valLIS,⊥(L)}. Thus the reduction exactly preserves the optimum value
in the case where L 6= ⊥N .

Next, we reduce the MAk problem for Boolean inputs to LIS⊥. Following [AR18], the
reduction is inductive. For k = 0 and Boolean inputs to MAk(x1) = x1, we map x1 = 0 →
a1 =⊥ and x1 = 1 → a1 = 1. Clearly for the obtained 1-element sequence L, we have
lenLIS,⊥(L) = x1.

Now say k ≥ 1 and inductively assume we have a mapping such that for all y ∈ {0, 1}4k−1

,
the output list L = L(y) ∈ Z

4k−1

satisfies

lenLIS,⊥(L(y)) = 2k−1 ·MAk−1(y) ,
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with known upper and lower bounds ai ∈ [1, ek−1] for all non-⊥ entries holding across all
such y. (We may take e0 = 1.)

Suppose input x = (xa, xb, xc, xc) of length 4k is given, so that

MAk(x) = max{Avg(MAk−1(x
a),MAk−1(x

b)),Avg(MAk−1(x
c),MAk−1(x

d))} .
Let La, Lb, Lc, Ld, each in {Z ∪ ⊥}4k−1

be the respective output reductions for xa through
xd on size 4k−1. Let

L′
a := La + 2ek−1 , L′

b := Lb + 3ek−1 , L′
d := Ld + ek−1

where for e ∈ Z we use L + e = (ai)i≤t + e to denote the sequence (ai + e)i≤t obtained by
entrywise addition, with ⊥ + e = ⊥. Using ◦ to denote concatenation of sequences, let

L(x) := L′
a ◦ L′

b ◦ Lc ◦ L′
d

be the output of the reduction for input x. We can take ek := 4ek−1, and all non-⊥ entries
of L(x) are in [1, ek].

Observe that if sa, sb are (possibly empty) increasing subsequences in La and in Lb respec-
tively, then the union of their corresponding elements in (L′

a◦L′
b) is an increasing subsequence

of L(x). Similarly, a pair sc, sd of increasing subsequences in Lc, Ld induces one in (Lc ◦L′
d),

hence in L(x). One also checks that no increasing subsequence can contain an element
from both the first and second half of L(x), and so unions as above are the only increasing
subsequences. We conclude that

lenLIS,⊥(L(y)) = max{lenLIS,⊥(L
a) + lenLIS,⊥(L

b) , lenLIS,⊥(L
c) + lenLIS,⊥(L

d)}
= 2 ·max{Avg(2k−1

MAk−1(x
a), 2k−1

MAk−1(x
b)),Avg(2k−1

MAk−1(x
c), 2k−1

MAk−1(x
d))}

= 2k ·MAk(x) .

One can then combine the above with the “nearly-perfect” reduction of LIS⊥ to LIS.
The resulting reduction carries any x ∈ {0, 1}4k to an integer sequence L of length N = 4k,
and satisfies lenLIS(L) = 2kMAk(x) provided x is not all-zero. More strongly, there is a
natural correspondence between increasing subsequences in L of length d ≥ 2, and sets of
d indices i ∈ [4k] residing in a common M-tree and satisfying xi = 1, collectively certifying
MAk(x) ≥ d/2k.

10 Discussion: SampleEvalSSAT on fully-alternating

games

Here, as promised in the Introduction, we explain the strong limitations of the SampleE-
valSSAT algorithm of [LMP01] for the fully alternating binary games against Nature we
study. This algorithm, which is described for stochastic satisfiability (approximating the
value of games where the payoff function F = F (w1, r1, . . . , wk, rk) and move-order are given
by a Boolean formula with Exists and For-Random quantifiers), makes sense for general
functions F and associated games against Nature as well. In “generic” form (prior to the
specific choice of parameter T below, which affects the approximation quality), the algorithm
proceeds by the following outline:
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1. Uniformly select some number T of move-sequences r(i) for the Nature player;

2. Output, as an estimate to the value of F , the maximum empirical performance of

any strategy for the non-random player, against the sample {r(i)}. (The empirical
performance of a strategy S is its average payoff against the move-sequences {r(i)}.)

For the implementation of step 2, see [LMP01]; the algorithm inspects every entry of F in
which r = r(i) for some i, so the query complexity of the algorithm is T · 2m, where m is the
total bit-length of the non-random player’s moves, i.e. |w1|+ . . .+ |wk|.

Consider now the fully-alternating case, where each move wj and rj are 1-bit and k =
m = n/2. Then for the query complexity to be asymptotically better than brute force, we
need T = T (n) = o(2n/2). Fix any such T (n). If this many samples r(i) are drawn uniformly,
then there is a pair of functions h(n) = ω(n) and δ(n) = o(1), for which the following
“lonely” property holds with probability 1− δ(n):

• Only a δ(n) fraction of strings r(i) have a “close partner” r(i
′), for which r(i) and r(i

′)

are distinct but agree on all but their final h(n) bits.

This is because the expected number of close partners to each i is o(1), if our parameters
are chosen appropriate to the rate of decay of T (n)/n.

We now define a specific input function F = F (w1, r1, . . . , wn/2, rn/2), which is a minor
extension of an example studied for similar reasons in [LMP01, App. B]. This function is
based on a “guessing game” for the non-random player: it outputs 1 if wi = ri for each
i > n/2− h(n), and outputs 0 otherwise.

The true value of F is 2−h(n) = o(1), since no strategy can predict the final h(n) unseen
bits (which in the true game, are uniform) with probability better than this. On the other
hand, if {r(i)} obey the lonely property above, we can use it to define a strategy S which,
having viewed the first n − h(n) bits of r, sets the bits wn−h(n)+1, . . . , wn according to the
unique extension of r to some r(i) (when such an extension exists and is unique).

It follows from the lonely property that the empirical performance of S on {r(i)} is at
least 1 − δ(n) = 1 − o(1). And, such an S exists with probability 1 − o(1) over the initial
sample. Thus, SampleEvalSSAT reliably and drastically overestimates the value of this F ,
when run with T (n) = o(2n/2).

References

[AB17] Amir Abboud and Arturs Backurs. Towards hardness of approximation for poly-
nomial time problems. In 8th Innovations in Theoretical Computer Science Con-
ference, ITCS 2017, January 9-11, 2017, Berkeley, CA, USA, volume 67 of
LIPIcs, pages 11:1–11:26, 2017.

[Alb03] Susanne Albers. Online algorithms: a survey. Mathematical Programming,
97(1):3–26, Jul 2003.

70



[AR18] Amir Abboud and Aviad Rubinstein. Fast and deterministic constant factor
approximation algorithms for LCS imply new circuit lower bounds. In 9th Inno-
vations in Theoretical Computer Science Conference, ITCS 2018, January 11-14,
2018, Cambridge, MA, USA, pages 35:1–35:14, 2018.

[AW09] Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity
theory. ACM Trans. Comput. Theory, 1(1):2:1–2:54, 2009.
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