
Batch Verification for Statistical Zero Knowledge Proofs

Inbar Kaslasi* Guy N. Rothblum� Ron D. Rothblum* Adam Sealfon�

Prashant Nalini Vasudevan�

September 24, 2020

Abstract

A statistical zero-knowledge proof (SZK) for a problem Π enables a computationally un-
bounded prover to convince a polynomial-time verifier that x ∈ Π without revealing any addi-
tional information about x to the verifier, in a strong information-theoretic sense.

Suppose, however, that the prover wishes to convince the verifier that k separate inputs
x1, . . . , xk all belong to Π (without revealing anything else). A naive way of doing so is to
simply run the SZK protocol separately for each input. In this work we ask whether one can do
better – that is, is efficient batch verification possible for SZK?

We give a partial positive answer to this question by constructing a batch verification protocol
for a natural and important subclass of SZK – all problems Π that have a non-interactive SZK
protocol (in the common random string model). More specifically, we show that, for every such
problem Π, there exists an honest-verifier SZK protocol for batch verification of k instances, with
communication complexity poly(n)+k ·poly(log n, log k), where poly refers to a fixed polynomial
that depends only on Π (and not on k). This result should be contrasted with the naive solution,
which has communication complexity k · poly(n).

Our proof leverages a new NISZK-complete problem, called Approximate Injectivity, that we
find to be of independent interest. The goal in this problem is to distinguish circuits that are
nearly injective, from those that are non-injective on almost all inputs.

*Technion. {inbark,rothblum}@cs.technion.ac.il.
�Weizmann Institute. rothblum@alum.mit.edu.
�UC Berkeley. {asealfon,prashvas}@berkeley.edu.

i

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 147 (2020)

Contents

1 Introduction 1
1.1 Our Results . 2
1.2 Related Works . 3
1.3 Technical Overview . 4
1.4 Discussion and Open Problems . 9
1.5 Organization . 10

2 Preliminaries 10
2.1 Probability Theory Notation and Background . 10
2.2 Zero-Knowledge Proofs . 11
2.3 Many-wise Independent Hashing . 12
2.4 Seeded Extractors . 13

3 Batch Verification for NISZK 13

4 The NISZK-Completeness of AI 14
4.1 From EA to AI: Proof of Lemma 4.4 . 16
4.2 From AI to EA: Proof of Lemma 4.5 . 20

5 Batch Verification for AI 21
5.1 Useful Lemmas . 22
5.2 Completeness . 26
5.3 Honest-Verifier Statistical Zero-Knowledge . 26
5.4 Soundness . 27
5.5 Communication Complexity and Verifier Run Time 28

A Omitted Proofs 34

1 Introduction

Zero-knowledge proofs, introduced in the seminal work of Goldwasser, Micali and Rackoff [GMR89],
are a remarkable and incredibly influential notion. Loosely speaking, a zero-knowledge proof lets
a prover P convince a verifier V of the validity of some statement without revealing any additional
information.

In this work we focus on statistical zero-knowledge proofs. These proof-systems simultaneously
provide unconditional soundness and zero-knowledge:

� Even a computationally unbounded prover P∗ cannot convince V to accept a false statement
(except with some negligible probability).

� Any efficient, but potentially malicious, verifier V∗ learns nothing in the interaction (beyond
the validity of the statement) in the following strong, statistical, sense: there exists an algo-
rithm, called the simulator, which can efficiently simulate the entire interaction between V∗

and P based only on the input x, so that the simulation is indistinguishable from the real
interaction even to a computationally unbounded distinguisher.

The class of promise problems1 having a statistical zero-knowledge proof is denoted by SZK.
This class contains many natural problems, including many of the problems on which modern
cryptography is based, such as (relaxations of) integer factoring [GMR89], discrete logarithm
[GK93, CP92] and lattice problems [GG00, MV03, PV08, APS18].

Since the study of SZK was initiated in the early 80’s many surprising and useful structural prop-
erties of this class have been discovered [For89, AH91, Oka00, SV03, GSV98, GV99, NV06, OV08],
and several applications have been found for hard problems in this (and related) classes [Ost91,
OW93, BDRV18a, BDRV18b, KY18, BBD+20]. It is known to be connected to various cryp-
tographic primitives [BL13, KMN+14, LV16, PPS15] and algorithmic and complexity-theoretic
concepts [Dru15], and has consequently been used to show conditional impossiblility results. In
particular, a notable and highly influential development was the discovery of natural complete
problems for SZK [SV03, GV99].

In this work we are interested in the following natural question. Suppose that a particular
problem Π has an SZK protocol. This means that there is a way to efficiently prove that x ∈ Π
in zero-knowledge. However, in many scenarios, one wants to be convinced not only that a single
instance belongs to Π but rather that k different inputs x1, . . . , xk all belong to Π. One way to
do so is to simply run the underlying protocol for Π k times, in sequence, once for each input
xi.

2 However, it is natural to ask whether one can do better. In particular, assuming that the
SZK protocol for Π has communication complexity m, can one prove (in statistical zero-knowledge)
that x1, . . . , xk ∈ Π with communication complexity � k ·m? We refer to this problem as batch
verification for SZK.

We view batch verification of SZK as being of intrinsic interest, and potentially of use in the
study of the structure of SZK. Beyond that, batch verification of SZK may be useful to perform
various cryptographic tasks, such as batch verification of digital signature schemes [NMVR94,
BGR98, CHP12] or batch verification of well-formedness of public keys (see, e.g., [GMR98]).

1Recall that a promise problem Π consists of two ensembles of sets YES = (YESn)n∈N and (NOn)n∈N, such that
the YESn’s and NOn’s are disjoint. Instances in YES are called YES instances and those in NO are called NO
instances.

2The resulting protocol can be shown to be zero-knowledge (analogously to the fact that sequential repetition
preserves statistical zero-knowledge).

1

1.1 Our Results

We show that non-trivial batch verification is possible for a large and natural subset of languages
in SZK. Specifically, we consider the class of promise problems having non-interactive statistical
zero-knowledge proofs. A non-interactive statistical zero-knowledge proof [BFM88] is a variant of SZK
in which the verifier and the prover are given access to a uniformly random common random string
(CRS). Given this CRS and an input x, the prover generates a proof string π which it sends to the
verifier. The verifier, given x, the CRS, and the proof string π, then decides whether to accept or
reject. In particular, no additional interaction is allowed other than the proof π. Zero-knowledge
means that it is possible to simulate the verifier’s view (which consists of the CRS and proof π) so
that the simulation is statistically indistinguishable from the real interaction. The corresponding
class of promise problems is abbreviated as NISZK.

Remark 1.1. An NISZK for a problem Π is equivalent to a two-round public-coin honest-verifier
SZK protocol. Recall that honest-verifier zero-knowledge, means that the honest verifier learns essen-
tially nothing in the interaction, but a malicious verifier may be able to learn non-trivial information.

The class NISZK contains many natural and basic problems such as: variants of the quadratic
residuosity problem [BSMP91, DSCP94], lattice problems [PV08, APS18], etc. It is also known to
contain complete problems [SCPY98, GSV99], related to the known complete problems for SZK.

Our main result is an honest-verifier statistical zero-knowledge protocol for batch verification
of any problem in NISZK. In order to state the result more precisely, we introduce the following
definition.

Definition 1.2. Let Π = (YES,NO) be a promise problem, where YES = (YESn)n∈N and NO =
(NOn)n∈N, and let k = k(n) ∈ N. We define the promise problem Π⊗k =

(
YES⊗k,NO⊗k

)
, where

YES⊗k = (YES⊗kn)n∈N, NO⊗k = (NO⊗kn)n∈N and

YES⊗kn = (YESn)k

and
NO⊗kn = (YESn ∪NOn)k \ (YESn)k .

That is, instances of Π⊗k are k instances of Π, where the YES instances are all in YES and the
NO instances consist of at least one NO instances for Π.3

With the definition of Π⊗k in hand, we are now ready to formally state our main result:

Theorem 1.3 (Informally Stated, see Theorem 3.1). Suppose that Π ∈ NISZK. Then, for every
k = k(n) ∈ N, there exists an (interactive) honest-verifier SZK protocol for Π⊗k with communication
complexity poly(n) + k · poly(log n, log k), where n refers to the length of a single instance and poly
refers to a fixed polynomial independent of k.

The verifier’s running time is k · poly(n) and the number of rounds is O(k).

We emphasize that our protocol for Π⊗k is interactive and honest-verifier statistical zero-
knowledge (HVSZK). Since we start with an NISZK protocol (which as mentioned above is a

3This notion of composition is to be contrasted with that employed in the closure theorems for SZK under
composition with formulas [SV03]. There, a composite problem similar to Π⊗k is considered that does not require
in its NO sets that all k instances satisfy the promise, but instead just that at least one of the instances is a NO
instance of Π.

2

special case of HVSZK), it is somewhat expected that the resulting batch verification protocol
is only HVSZK. Still, obtaining a similar result to Theorem 1.3 that achieves malicious-verifier
statistical zero-knowledge is a fascinating open problem (see Section 1.4 for additional open prob-
lems). We mention that while it is known [GSV98] how to transform any HVSZK protocol into
a full-fledged SZK protocol (i.e., one that is zero-knowledge even wrt a malicious verifier), this
transformation incurs a polynomial overhead that we cannot afford.

1.2 Related Works

Batch Verification via IP = PSPACE. A domain in which batch computing is particularly easy
is bounded space computation - if a language L can be decided in space s then k instances of L
can be solved in space s + log(k) (by reusing space). Using this observation, the IP = PSPACE
theorem [LFKN92, Sha92] yields an efficient interactive proof for batch verification of any problem
in PSPACE. However, the resulting protocol has several major drawbacks. In particular, it does
not seem to preserve zero-knowledge, which makes it unsuitable for the purposes of our work.

Batch Verification with Efficient Prover. Another caveat of the IP = PSPACE approach is
that it does not preserve the efficiency of the prover. That is, even if we started with a problem that
has an interactive proof with an efficient prover, the batch verification protocol stemming from the
IP = PSPACE theorem has an inefficient prover.

Reingold et al. [RRR16, RRR18] considered the question of whether batch verification of NP
proofs with an efficiency prover is possible, assuming that the prover is given the NP witnesses as
an auxiliary input. These works construct such an interactive batch verification protocol for all
problems in UP ⊆ NP (i.e., languages in NP in which YES instances have a unique proof). In
particular, the work of [RRR18] yields a batch verification protocol for UP with communication
complexity kδ · poly(m), where m is the original UP witness length and δ > 0 is any constant.

Note that it seems unlikely that the [RRR16, RRR18] protocols preserve zero-knowledge. In-
deed, these protocols fundamentally rely on the so-called unambiguity (see [RRR16]) of the under-
lying UP protocol, which, at least intuitively, seems at odds with zero-knowledge.

Batch Verification with Computational Soundness. Focusing on protocols achieving only
computational soundness, we remark that interactive batch verification can be obtained directly
from Kilian’s [Kil92] highly efficient protocol for all of NP (assuming collision resistant hash func-
tions). A non-interactive batch verification protocol was given by Brakerski et al. [BHK17] assuming
the hardness of learning with errors. Non-interactive batch verification protocols also follow from
the existence of succinct non-interactive zero-knowledge arguments (zkSNARGs), which are known
to exist under certain strong, and non-falsifiable, assumptions (see, e.g. [Ish], for a recent survey).

Randomized Iterates. The randomized iterate is a concept introduced by Goldreich, Krawczyk,
and Luby [GKL93], and further developed by later work [HHR11, YGLW15], who used it to con-
struct pseudorandom generators from regular one-way functions. Given a function f , its randomized
iterate is computed on an input x and descriptions of hash functions h1, . . . , hm by starting with
x0 = f(x) and iteratively computing xi = f(hi(xi−1)). The hardcore bits of these iterates were
then used to obtain pseudorandomness. While the randomized iterate was used for a very different
purpose, this process of alternating the evaluation of a given function with injection of randomness

3

(which is what the hash functions were for) is strongly reminiscent of our techniques. It would
be very interesting if there is a deeper connection between our techniques and the usage of these
iterates in relation to pseudorandom generators.

1.3 Technical Overview

Batch Verification for Permutations. As an initial toy example, we first consider batch veri-
fication for a specific problem in NISZK. Let PERM be the promise problem defined as follows. The
input to PERM is a description of a Boolean circuit C : {0, 1}n → {0, 1}n. The YES inputs consist
of circuits that define permutations over {0, 1}n whereas the NO inputs are circuits so that every
element in the image has at least two preimages.4 It is straightforward to see that PERM ∈ NISZK.5

Our goal is, given as input k circuits C1, . . . , Ck, to distinguish (via a zero-knowledge proof)
the case that all of the circuits are permutations from the case that one or more is 2-to-1. Such
a protocol can be constructed as follows: the verifier chooses at random x1 ∈ {0, 1}n, computes
xk+1 = Ck(Ck−1(. . . C1(x1) . . .)) and sends xk+1 to the prover. The prover now responds with
x′1 = C−1

1 (C−1
2 (. . . C−1

k (xk+1) . . .)). The verifier checks that x1 = x′1 and if so it accepts, otherwise
it rejects.6

Completeness follows from the fact that the circuits define permutations and so x1 = x′1. For
soundness, observe that for a NO instance, xk+1 has at least two preimages under the composed
circuit Ck ◦· · ·◦C1. Therefore, a cheating prover can guess the correct preimage x0 with probability
at most 1/2 (and the soundness error can be reduced by repetition). Lastly observe that the protocol
is (perfect) honest-verifier zero-knowledge: the simulator simply emulates the verifier while setting
x′1 = x1.

The Approximate Injectivity Problem. Unfortunately, as mentioned above, PERM is pre-
sumably not NISZK-complete and so we cannot directly use the above protocol to perform batch
verification for arbitrary problems in NISZK. Instead, our approach is to identify a relaxation of
PERM that is both NISZK-complete and amenable to batch verification, albeit via a significantly
more complicated protocol.

More specifically, we consider the Approximate Injectivity (promise) problem. The goal here is
to distinguish circuits that are almost injective, from ones that are highly non-injective. In more
detail, let δ ∈ [0, 1] be a parameter. We define AIδ to be a promise problem in which the input
is again a description of a Boolean circuit C mapping n input bits to m ≥ n output bits. YES
instances are those circuits for which all but δ fraction of the inputs x have no collisions (i.e.,

4PERM can be thought of as a variant of the collision problem (see [Aar04, Chapter 6]) in which the goal is to
distinguish a permutation from a 2-to-1 function.

5A two round public-coin honest-verifier perfect zero-knowledge protocol for PERM can be constructed as follows.
The verifier sends a random string y ∈ {0, 1}n and the prover sends x = C−1(y). The verifier needs to check that
indeed y = C(x). It is straightforward to check that this protocol is honest-verifier perfect zero-knowledge and
has soundness 1/2, which can be amplified by parallel repetition (while noting that honest-verifier zero-knowledge is
preserved under parallel repetition).

This protocol can be viewed as a NIPZK by viewing the verifier’s coins as the common random string. On the other
hand, assuming that NISZK 6= NIPZK, PERM is not NISZK-complete.

6A related but slightly different protocol, which will be less useful in our eventual construction, can be obtained
by observing that (1) the mapping (C1, . . . , Ck) 7→ Ck ◦ · · · ◦ C1 is a Karp-reduction from an instance of PERM⊗k

to an instance of PERM with n input/output bits, and (2) that PERM has an NISZK protocol with communication
complexity that depends only on n.

4

Prx[|C−1(C(x))| > 1] < δ). NO instances are circuits for which all but δ fraction of the inputs have
at least one colliding input (i.e., Prx[|C−1(C(x))| = 1] < δ).

Our protocol for batch verification of any problem Π ∈ NISZK consists of two main steps:

� First, we show that AIδ is NISZK-hard: i.e., there exists an efficient Karp reduction from Π
to AIδ.

� Our second main step is showing an efficient HVSZK batch verification protocol for AIδ. In
particular, the communication complexity of the protocol scales (roughly) additively with the
number of instances k.

Equipped with the above, an HVSZK protocol follows by having the prover and verifier reduce the
instances x1, . . . , xk for Π to instances C1, . . . , Ck for AIδ, and then engage in the batch verification
protocol for AIδ on common input (C1, . . . , Ck).

Before describing these two steps in detail, we remark that we find the identification of AIδ as
being NISZK-hard (in fact, NISZK-complete) to be of independent interest. In particular, while AIδ
bears some resemblance to problems that were already known to be NISZK-complete, the special
almost-injective nature of the YES instances of AIδ seems very useful. Indeed, this additional
structure is crucial for our batch verification protocol.

AIδ is NISZK-hard. We show that AIδ is NISZK-hard by reducing to it from the Entropy Approx-
imation problem (EA), which is known to be complete for NISZK [GSV99].7 An instance of EA
is a circuit C along with a threshold k ∈ R+, and the problem is to decide whether the Shannon
entropy of the output distribution of C when given uniformly random inputs (denoted H(C)) is
more than k + 10 or less than k − 10.8

For simplicity, suppose we had a stronger promise on the output distribution of C — that it
is a flat distribution (in other words, it is uniform over some subset of its range). In this case,
for any output y of C, the promise of EA tells us something about the number of pre-images of
y. To illustrate, suppose C takes n bits of input. Then, in a YES instance of EA, the size of the
set

∣∣C−1(y)
∣∣ is at most 2n−(k+10), and in the NO case it is at least 2n−(k−10). Recall that for a

reduction to AIδ, we need to make the sizes of most inverse sets 1 for YES instances and more than
1 for NO instances. This can now be done by using a hash function to shatter the inverse sets of
C.

That is, consider the circuit Ĉ that takes as input an x and also the description of a hash
function h from, say, a pairwise-independent hash family H, and outputs (C(x), h, h(x)). If we
pick H so that its hash functions have output length (n− k), then out of any set of inputs of size
2n−(k+10), all but a small constant fraction will be mapped injectively by a random h from H. On
the other hand, out of any set of inputs of size 2n−(k−10), only a small constant fraction will be
mapped injectively by a random h. Thus, in the YES case, it may be argued that all but a small
constant fraction of inputs (x, h) are mapped injectively by Ĉ, and in the NO case only a small
constant fraction of inputs are. So for some constant δ, this is indeed a valid reduction from EA to
AIδ. For smaller functions δ, the reduction is performed by first amplifying the gap in the promise
of EA and then proceeding as above.

7In fact, we also show that AIδ is in NISZK, and thus is NISZK-complete, by reducing back from it to EA.
8In the standard definition of EA [GSV99], the promise is that H(C) is either more than k+ 1 or less than k− 1,

but this gap can be amplified easily by repetition of C.

5

Finally, we can relax the simplifying assumption of flatness using the asymptotic equipartition
property of distributions. In this case, this property states that, however unstructured C may be,
its t-fold repetition C⊗t (that takes an input tuple (x1, . . . , xt) and outputs (C(x1), . . . , C(xt))) is
“approximately flat” for large enough t. That is, with increasingly high probability over the output
distribution of C⊗t, a sample from it will have a pre-image set of size close to its expectation, which
is 2t·(n−H(C)). Such techniques have been previously used for similar purposes in the SZK literature
and elsewhere, for example as the flattening lemma of Goldreich et al. [GSV99]. See Section 4 for
details and the proof.

Batch Verification for Exact Injectivity. For sake of simplicity, for this overview we focus on
batch verification of the exact variant of AIδ, that is, when δ = 0. In other words, distinguishing
circuits that are truly injective from those in which every image y has at least two preimages (with
no exceptions allowed). We refer to this promise problem as INJ. Modulo some technical details,
the batch verification protocol for INJ, presented next, captures most of the difficulty in our batch
verification protocol for AIδ.

Before proceeding we mention that the key difference between INJ and PERM is that YES in-
stances of the former are merely injective whereas for the latter they are permutations. Interestingly,
this seemingly minor difference causes significant complications.

Our new goal is, given as input circuits C1, . . . , Ck : {0, 1}n → {0, 1}m, with m ≥ n, to
distinguish the case that all of the circuits are injective from the case that at least one is entirely
non-injective.

Inspired by the batch verification protocol for PERM, a reasonable approach is to choose x1 at
random but then try to hash the output yi = Ci(xi) ∈ {0, 1}m, of each circuit Ci, into an input
xi+1 ∈ {0, 1}n for Ci+1. If a hash function could be found that was injective on the image of Ci then
we would be done. However, it seems that finding such a hash function is, in general, extremely
difficult.

Rather, we will hash each yi by choosing a random hash function from a small hash function
family. More specifically, for every iteration i ∈ [k] we choose a random seed zi for a (seeded)
randomness extractor Ext : {0, 1}m × {0, 1}d → {0, 1}n and compute xi+1 = Ext(yi, zi). See Fig. 1
for a diagram describing this sampling process.

In case all the circuits are injective (i.e., a YES instance), a simple inductive argument can be
used to show that each yi is (close to) a distribution having min-entropy n, and therefore the output
xi+1 = Ext(yi, zi) of the extractor is close to uniform in {0, 1}n. Note that for this to be true, we
need a very good extractor that essentially extracts all of the entropy. Luckily, constructions of
such extractors with a merely poly-logarithmic seed length are known [GUV07].

This idea leads us to consider the following strawman protocol. The verifier chooses at random
x1 ∈ {0, 1}n and k seeds z1, . . . , zk. The verifier then computes inductively: yi = Ci(xi) and
xi+1 = Ext(yi, zi), for every i ∈ [k]. The verifier sends (xk+1, z1, . . . , zk) to the prover, who in turn
needs to guess the value of x1.

The major difficulty that arises in this protocol is in completeness: the honest prover’s prob-
ability of predicting x1 is very small. To see this, suppose that all of the circuits C1, . . . , Ck are
injective. Consider the job of the honest prover: given (xk+1, z1, . . . , zk) the prover needs to find x1.
The difficulty is that xk+1 is likely to have many preimages under Ext(·, zk). While this statement
depends on the specific structure of the extractor, note that even in a “dream scenario” in which
Ext(·, zk) were a random function, a constant fraction of xk+1’s would have more than one preimage

6

Figure 1: The sampling process

(in the image of Ck).
A similar type of collision in the extractor is likely to occur in most of the steps i ∈ [k].

Therefore, the overall number of preimages x′1 that are consistent with (xk+1, z1, . . . , zk) is likely to
be 2Ω(k) and the prover has no way to guess the correct one among them. The natural remedy for
this is to give the prover some additional information, such as a hash of x1, in order to help pick it
correctly among the various possible options. However, doing so also helps a cheating prover find
x1 in the case where one of the circuits is non-injective. And it turns out that the distribution of
the number of x1’s in the two cases – where all the Ci’s are injective and where one is non-injective
– are similar enough that it is not clear how to make this approach work as is.

Isolating Preimages via Interaction. We circumvent the issue discussed above by employing
interaction. The key observation is that, even though the number of pre-images x1 of the compo-
sition of all k circuits is somewhat similar in the case of all YES instance and the case of one NO
instance among them, if we look at this composition circuit-by-circuit, the number of pre-images in
an injective circuit is clearly different from that in a non-injective circuit. In order to exploit this,
we have the verifier gradually reveal the yi’s rather than revealing them all at once.

Taking a step back, let us consider the following naive protocol:

1. For i = k, . . . , 1:

(a) The verifier chooses at random xi ∈ {0, 1}n and sends yi = Ci(xi) to the prover.

(b) The (honest) prover responds with x′i = C−1
i (yi).

(c) The verifier immediately rejects if the prover answered incorrectly (i.e., x′i 6= xi).

It is not difficult to argue that this protocol is indeed an HVSZK protocol (with soundness error
1/2, which can be reduced by repetition). Alas, the communication complexity is at least k · n,
which is too large.

However, a key observation is that this protocol still works even if we generate the yi’s as in
the strawman protocol. Namely, xi+1 = Ext(yi, zi) and yi = Ci(xi), for every i ∈ [k], where the
zi’s are fresh uniformly distributed (short) seeds. This lets us significantly reduce the randomness
complexity of the above naive protocol. Later we shall use this to also reduce the communication
complexity, which is our main goal.

7

To see that the “derandomized” variant of the naive protocol works, we first observe that
completeness and zero-knowledge indeed still hold. Indeed, since in a YES case all the circuits are
injective, the honest prover always provides the correct answer - i.e., x′i = xi. Thus, not only does
the verifier always accept (which implies completeness), but it can also easily simulate the messages
sent by the prover (which guarantees honest-verifier statistical zero-knowledge).9

Arguing soundness is slightly more tricky. Let i∗ ∈ [k] be the smallest integer so that Ci∗ is a
NO instance. Recall that in the i∗-th iteration of the protocol, the prover is given yi∗ and needs to
predict xi∗ . If we can argue that xi∗ is (close to) uniformly distributed then (constant) soundness
follows, since Ci∗ is a NO instance and therefore non-injective on every input.

We argue that xi∗ is close to uniform by induction. For the base case i = 1 this is obviously
true since x1 is sampled uniformly at random. For the inductive step, assume that xi−1 is close to
uniform, with i ≤ i∗. Since Ci−1 is injective (since i − 1 < i∗), this means that yi−1 = Ci−1(xi−1)
is close to uniform in the image of C1, a set of size 2n. Thus, Ext(yi−1, zi−1) is applied to a source
(that is close to a distribution) with min-entropy n. Since Ext is an extractor, this means that xi
is close to uniform, concluding the induction.

Reducing Communication Complexity via Hashing. Although we have reduced the ran-
domness complexity of the protocol, we have not reduced the communication complexity (which is
still k · n). We shall do so by, once more, appealing to hashing.

Let us first consider the verifier to prover communication. Using hashing, we show how the
verifier can specify each yi to the prover by transmitting only a poly-logarithmic number of bits.
Consider, for example, the second iteration of the protocol. In this iteration the verifier is supposed
to send yk−1 to the prover but can no longer afford to do so. Notice however that at this point
the prover already knows xk. We show that with all but negligible probability, the number of
candidate pairs (yk−1, zk−1) that are consistent with xk (and so that yk−1 is in the image of Ci−1)
is very small. This fact (shown in Proposition 5.4 in Section 5), follows from the fact that Ext is an
extractor with small seed length.10 In more detail, we show that with all but negligible probability,
the number of candidates is roughly (quasi-)polynomial. Thus, it suffices for the verifier to send a
hash of poly-logarithmic length (e.g., using a pairwise independent hash function) to specify the
correct pair (yk−1, zk−1). This idea extends readily to all subsequent iterations.

Thus, we are only left with the task of reducing the communication from the prover to the
verifier (which is currently n · k). We yet again employ hashing. The observation is that rather
than sending xi in its entirety in each iteration, it suffices for the prover to send a short hash of xi.
The reason is that, in the case of soundness, when we reach iteration i∗, we know that yi has two

preimages: x
(0)
i and x

(1)
i . The prover at this point has no idea which of the two is the correct one

and so as long as the hashes of x
(0)
i and x

(1)
i differ, the prover will only succeed with probability

1/2. Thus, it suffices to use a pairwise independent hash function.
To summarize, after an initial setup phase in which the verifier specifies yk and the different

hash functions, the protocol simply consists of a “ping pong” of hash values between the verifier
and the prover. In each iteration the verifier first reveals a hash of the pair (yi, zi), which suffices

9Actually the protocol as described achieves perfect completeness and perfect honest-verifier zero-knowledge.
However, the more general AIδ problem will introduce some (negligible) statistical errors.

10This observation is simple in hindsight but we nevertheless find it somewhat surprising. In particular, it cannot
be shown by bounding the expected number of collisions and applying Markov’s inequality since the expected number
of collisions in Ext is very large (see [Vad12, Problem 6.4]).

8

for the prover to fully recover yi. In response, the prover sends a hash of xi, which suffices to prove
that the prover knows the correct preimage of yi. For further details, a formal description of the
protocol, and the proof, see Section 5.

1.4 Discussion and Open Problems

Theorem 1.3 gives a non-trivial batch verification protocol for any problem in NISZK. However,
we believe that it is only the first step in the study of batch verification of SZK. In particular,
and in addition to the question of obtaining malicious verifier zero-knowledge that was already
mentioned, we point out several natural research directions:

1. As already pointed out, Theorem 1.3 only gives a batch verification protocol for problems in
NISZK. Can one obtain a similar result for all of SZK?

As a special interesting case, consider the problem of batch verification for the graph non-
isomorphism problem: deciding whether or not there exists a pair of isomorphic graphs among
k such pairs. Theorem 1.3 yields an efficient batch verification protocol for this problem under
the assumption that the graphs have no non-trivial automorphisms. Handling the general case
remains open and seems like a good starting point for a potential generalization of Theorem 1.3
to all of SZK.

2. Even though we started off with an NISZK protocol for Π, the protocol for Π⊗k is highly
interactive. As a matter of fact, the number of rounds is O(k). Is there an NISZK batch
verification protocol for any Π ∈ NISZK?

3. While the communication complexity in the protocol for Π⊗k only depends (roughly) addi-
tively on k, this additive dependence is still linear. Is a similar result possible with a sub-linear
dependence on k?11 For example, with poly(n, log k) communication?

4. A different line of questioning follows from looking at prover efficiency. While in general one
cannot expect provers in interactive proofs to be efficient, it is known that any problem in
SZK ∩ NP has an SZK protocol where the honest prover runs in polynomial-time given the
NP witness for the statement being proven [NV06]. Our transformations, however, make
the prover quite inefficient. This raises the interesting question of whether there are batch
verification protocols for languages in SZK∩NP (or even NISZK∩NP) that are zero-knowledge
and also preserve the prover efficiency. This could have interesting applications in, say,
cryptographic protocols where the honest prover is the party that generated the instance in
the first place and so has a witness for it (e.g., in a signature scheme where the signer wishes
to prove the validity of several signatures jointly).

While the above list already raises many concrete directions for future work, one fascinating
high-level research agenda that our work motivates is a fine-grained study of SZK. In particular,
optimizing and improving our understanding of the concrete polynomial overheads in structural
study of SZK.

Remark 1.4 (Using circuits beyond random sampling). To the best of our knowledge, all prior
works studying complete problems for SZK and NISZK only make a very restricted usage of the given

11While a linear dependence on k seems potentially avoidable, we note that a polynomial dependence on n seems
inherent (even for just a single instance, i.e., when k = 1).

9

input circuits. Specifically, all that is needed is the ability to generate random samples of the form
(r, C(r)), where r is uniformly distributed random string and C is the given circuit (describing a
probability distribution).

In contrast, our protocol leverages the ability to feed a (hash of an) output of one circuit as
an input to the next circuit. This type of adaptive usage escapes the “random sampling paradigm”
described above. In particular, our technique goes beyond the (restrictive) black box model of Holen-
stein and Renner [HR05], who showed limitations for statistical distance polarization within this
model (see also [BDRV19]).

1.5 Organization

We start with preliminaries in Section 2. The batch verification result for NISZK is formally stated
in Section 3 and proved therein, based on results that are proved in the subsequent sections. In
particular, in Section 4 we show that AIδ is NISZK-complete and in Section 5 we show a batch
verification protocol for AIδ.

Appendix A contains some proofs that were omitted from the body.

2 Preliminaries

2.1 Probability Theory Notation and Background

Given a random variable X, we write x← X to indicate that x is sampled according to X. Similarly,
given a finite set S, we let s ← S denote that s is selected according to the uniform distribution
on S. We adopt the convention that when the same random variable occurs several times in an
expression, all occurrences refer to a single sample. For example, Pr[f(X) = X] is defined to be
the probability that when x← X, we have f(x) = x. We write Un to denote the random variable
distributed uniformly over {0, 1}n. The support of a distribution D over a finite set U , denoted
Supp(D), is defined as {u ∈ U : D(u) > 0}.

The statistical distance of two distributions P and Q over a finite set U , denoted as ∆(P,Q), is
defined as maxS⊆U (P (S)−Q(S)) = 1

2

∑
u∈U |P (u)−Q(u)|.

We recall some standard basic facts about statistical distance.

Fact 2.1 (Data processing inequality for statistical distance). For any two distributions X and Y ,
and every (possibly randomized) process f :

∆ (f(X), f(Y)) ≤ ∆ (X,Y)

Fact 2.2. For any two distributions X and Y , and event E:

∆ (X,Y) ≤ ∆ (X|E , Y) + Pr
X

[¬E],

where X|E denotes the distribution of X conditioned on E.

Proof. Let pu = Pr[X = u] and qu = Pr[Y = u]. Also, let pu|E = PrX [X = u|E] and pu|¬E =

10

PrX [X = u|¬E].

∆ (X,Y) =
1

2

∑
u

∣∣pu − qu∣∣
=

1

2

∑
u

∣∣∣Pr
X

[E] · pu|E + Pr
X

[¬E] · pu|¬E − Pr
X

[E] · qu − Pr
X

[¬E] · qu
∣∣∣

≤1

2

∑
u

(∣∣∣Pr
X

[E] · pu|E − Pr
X

[E] · qu
∣∣∣+
∣∣∣Pr
X

[¬E] · pu|¬E − Pr
X

[¬E] · qu
∣∣∣)

= Pr
X

[E] ·∆ (X|E , Y) + Pr
X

[¬E] ·∆ (X|¬E , Y)

≤∆ (X|E , Y) + Pr
X

[¬E].

We also recall Chebyshev’s inequality.

Lemma 2.3 (Chebyshev’s inequality). Let X be a random variable. Then, for every α > 0:

Pr
[
|X − E [X] | ≥ α

]
≤ Var [X]

α2
.

2.2 Zero-Knowledge Proofs

We use (P,V)(x) to refer to the transcript of an execution of an interactive protocol with prover P
and verifier V on common input x. The transcript includes the input x, all messages sent by P to
V in the protocol and the verifier’s random coin tosses. We say that the transcript τ = (P,V)(x) is
accepting if at the end of the corresponding interaction, the verifier accepts.

Definition 2.4 (HVSZK). Let c = c(n) ∈ [0, 1], s = s(n) ∈ [0, 1] and z = z(n) ∈ [0, 1]. An Honest
Verifier SZK Proof-System (HVSZK) with completeness error c, soundness error s and zero-knowledge
error z for a promise problem Π = (ΠYES,ΠNO), consists of a probabilistic polynomial-time verifier
V and a computationally unbounded prover P such that following properties hold:

� Completeness: For any x ∈ ΠYES:

Pr [(P,V)(x) is accepting] ≥ 1− c(|x|).

� Soundness: For any (computationally unbounded) cheating prover P∗ and any x ∈ ΠNO:

Pr [(P∗,V)(x) is accepting] ≤ s(|x|).

� Honest Verifier Statistical Zero Knowledge: There is a probabilistic polynomial-time
algorithm Sim (called the simulator) such that for any x ∈ ΠYES:

∆ ((P,V)(x), Sim(x)) ≤ z(|x|).

If the completeness, soundness and zero-knowledge errors are all negligible, we simply say that
Π has an HVSZK protocol. We also use HVSZK to denote the class of promise problems having
such an HVSZK protocol.

We also define non-interactive zero knowledge proofs as follows.

11

Definition 2.5 (NISZK). Let c = c(n) ∈ [0, 1], s = s(n) ∈ [0, 1] and z = z(n) ∈ [0, 1]. An
non-interactive statistical zero-knowledge proof (NISZK) with completeness error c, soundness error
s and zero-knowledge error z for a promise problem Π = (ΠYES,ΠNO), consists of a probabilistic
polynomial-time verifier V, a computationally unbounded prover P and a polynomial ` = `(n) such
that following properties hold:

� Completeness: For any x ∈ ΠYES:

Pr
r∈{0,1}`(|x|)

[V(x, r, π) accepts] ≥ 1− c(|x|),

where π = P(x, r).

� Soundness: For any x ∈ ΠNO:

Pr
r∈{0,1}`(|x|)

[∃π∗ s.t. V(x, r, π∗) accepts] ≤ s(|x|).

� Honest Verifier Statistical Zero Knowledge: There is a probabilistic polynomial-time
algorithm Sim (called the simulator) such that for any x ∈ ΠYES:

∆ ((U`,P(x, U`)), Sim(x)) ≤ z(|x|).

As above, if the errors are negligible, we say that Π has a NISZK protocol and use NISZK to
denote the class of all such promise problems.

2.3 Many-wise Independent Hashing

Hash functions offering bounded independence are used extensively in the literature. We use a
popular variant in which the output of the hash function is almost uniformly distributed on the
different points. This relaxation allows us to save on the representation length of functions in the
family.

Definition 2.6 (δ-almost `-wise Independent Hash Functions). For ` = `(n) ∈ N, m = m(n) ∈ N
and δ = δ(n) > 0, a family of functions F = (Fn)n, where Fn =

{
f : {0, 1}m → {0, 1}n

}
is δ-

almost `-wise independent if for every n ∈ N and distinct x1, x2, . . . , x` ∈ {0, 1}m the distributions:

� (f(x1), . . . , f(x`)), where f ← Fn; and

� The uniform distribution over ({0, 1}n)`,

are δ-close in statistical distance.

When δ = 0 we simply say that the hash function family is `-wise independent. Constructions of
(efficiently computable) many-wise hash function families with a very succinct representation are
well known. In particular, when δ = 0 we have the following well-known construction:

Lemma 2.7 (See, e.g., [Vad12, Section 3.5.5]). For every ` = `(n) ∈ N and m = m(n) ∈ N
there exists a family of `-wise independent hash functions F (`)

n,m = {f : {0, 1}m → {0, 1}n} where a

random function from F (`)
n,m can be selected using O

(
` ·max(n,m)

)
bits, and given a description of

f ∈ F (`)
n.m and x ∈ {0, 1}m, the value f(x) can be computed in time poly(n,m, `).

12

For δ > 0, the seminal work of Naor and Naor [NN93] yields a highly succinct construction.

Lemma 2.8 ([NN93, Lemma 4.2]). For every ` = `(n) ∈ N, m = m(n) ∈ N and δ = δ(n) > 0,

there exists a family of δ-almost `-wise independent hash functions F (`)
n,m = {f : {0, 1}m → {0, 1}n}

where a random function from F (`)
n,m can be selected using O

(
` · n + log(m) + log(1/δ)

)
bits,

and given a description of f ∈ F (`)
n.m and x ∈ {0, 1}m, the value f(x) can be computed in time

poly(n,m, `, log(1/δ)).

2.4 Seeded Extractors

The min-entropy of a distribution X over a set X is defined as H∞(X) = minx∈X log(1/Pr[X = x]).
In particular, if H∞(X) = k then, Pr[X = x] ≤ 2−k, for every x ∈ X .

Definition 2.9 ([NZ96]). Let k = k(n) ∈ N, m = m(n) ∈ N, d = d(n) and ε = ε(n) ∈ [0, 1].
We say that the family of functions Ext = (Extn)n∈N, where Extn : {0, 1}n × {0, 1}d → {0, 1}m,
is a (k, ε)-extractor if for every n ∈ N and distribution X supported on {0, 1}n with H∞(X) ≥ k,
it holds that ∆

(
Ext(X,Ud), Um

)
≤ ε, where Ud (resp., Um) denotes the uniform distribution on d

(resp., m) bit strings.

Lemma 2.10 ([GUV07, Theorem 4.21]). Let k = k(n) ∈ N, m = m(n) ∈ N and ε = ε(n) ∈ [0, 1]
such that k ≤ n, m ≤ k+ d− 2 log(1/ε)−O(1), d = log(n) +O(log(k) · log(k/ε)) and the functions
k, m and ε are computable in poly(n) time. Then, there exists a polynomial-time computable (k, ε)-
extractor Ext = (Extn)n∈N such that Extn : {0, 1}n × {0, 1}d → {0, 1}m.

3 Batch Verification for NISZK

In this section we formally state and prove our main result.

Theorem 3.1. Let Π ∈ NISZK and k = k(n) ∈ N such that k(n) = 2n
o(1)

. Then, Π⊗k has an O(k)-
round HVSZK protocol with communication complexity k · poly(log n, log k) + poly(n) and verifier
running time k · poly(n).

The proof of Theorem 3.1 is divided into two main steps:

1. As our first main step, we introduce a new NISZK-hard problem, called approximate injectivity.
The problem is defined formally in Definition 3.2 below and its NISZK hardness is established
by Lemma 3.3. The proof of Lemma 3.3 is deferred to Section 4.

2. The second step is constructing a batch verification protocol for approximate injectivity, as
given in Theorem 3.4. The proof of Theorem 3.4 appears in Section 5.

We proceed to define the approximate injectivity problem and state its NISZK-hardness.

Definition 3.2. Let δ = δ(n)→ [0, 1] be a function computable in poly(n) time. The Approximate
Injectivity problem with approximation δ, denoted by AIδ, is a promise problem (YES,NO), where
YES = (YESn)n∈N and NO = (NOn)n∈N are sets defined as follows:

YESn =

{
(1n, C) : Pr

x←{0,1}n
[∣∣C−1(C(x))

∣∣ > 1
]
< δ(n)

}
NOn =

{
(1n, C) : Pr

x←{0,1}n
[∣∣C−1(C(x))

∣∣ > 1
]
> 1− δ(n)

}

13

where, in both cases, C is a circuit that takes n bits as input. The size of an instance (1n, C) is n.

Lemma 3.3. Let δ = δ(n) ∈ [0, 1] be a non-increasing function such that δ(n) > 2−o(n
1/4). Then,

AIδ is NISZK-hard.

As mentioned above, the proof of Lemma 3.3 appears in Section 4. Our main technical result is a
batch verification protocol for AIδ.

Theorem 3.4. For any k = k(n) ∈ N, δ = δ(n) ∈ [0, 1
100k2

] and security parameter λ = λ(n), the

problem AI⊗kδ has an HVSZK protocol with communication complexity O(n)+k ·poly(λ, logN, log k),
where N is an upper bound on the size of each of the given circuits (on n input bits). The complete-
ness and zero-knowledge errors are O(k2 · δ + 2−λ) and the soundness error is a constant bounded
away from 1.

The verifier running time is k · poly(N, log k, λ) and the number of rounds is O(k).

The proof of Theorem 3.4 appears in Section 5. With Lemma 3.3 and Theorem 3.4 in hand, the
proof of Theorem 3.1 is now routine.

Proof of Theorem 3.1. Let Π ∈ NISZK. We construct an HVSZK protocol for Π⊗k as follows.
Given as common input (x1, . . . , xk), the prover and verifier each first employ the Karp reduction
of Lemma 3.3 to each instance to obtain circuits (C1, . . . , Ck) wrt δ = 1

2poly(logn,log k)
. The size of

each circuit, as well as the number of inputs bits, is poly(n).
The parties then emulate a poly(log n, log k) parallel repetition of the SZK protocol of Theo-

rem 3.4 on input (C1, . . . , Ck) and security parameter λ = poly(log n, log k). Completeness, sound-
ness and honest-verifier zero-knowledge follow directly from Lemma 3.3 and Theorem 3.4, with
error O(k · δ + 2−λ) = negl(n, k), where we also use the fact that parallel repetition of interactive
proofs reduces the soundness error at an exponential rate, and that parallel repetition preserves
honest verifier zero-knowledge.

To analyze the communication complexity and verifier running time, observe that the instances
Ci that the reduction of Lemma 3.3 generates have size poly(n). The batch verification protocol
of Theorem 3.4 therefore has communication complexity poly(n) + k · poly(log n, log k) and verifier
running time k · poly(n).

4 The NISZK-Completeness of AI

In this section, we show that the Approximate Injectivity problem AIδ (for a certain range of the
parameter δ) is complete for NISZK. We start by showing that AIδ is NISZK-hard. In fact, we prove
the following more precisely quantified version of Lemma 3.3 as follows. Note that Lemma 3.3
indeed follows from Lemma 4.1, as the conditions stated therein are satisfied when c, s and σ are
negligible.

Lemma 4.1. Let s, c, σ, δ : N → [0, 1] and r, rS , rV : N → N be functions such that (1 − c(n)) >

s(n) + 1/poly(n) and δ is non-increasing and δ(n) > 2−o(n
1/4). Suppose a problem Π has an NISZK

protocol where for instances of size n,

– the completeness error is at most c(n),
– the soundness error is at most s(n),
– the simulation error is at most σ(n),

14

– the protocol uses at most r(n) bits of randomness, and,
– the simulator and verifier uses at most rS(n) and rV (n) bits of randomness.

Further, suppose that c(n) + 2σ(n) ≤ 1/r(n), and that s(n) + 2−r(n) ≤ 1/r(n). Let ρ(n) = rS(n) +
rV (n). Then, there is a polynomial-time Karp reduction from Π to AIδ that maps any instance of
Π of size n to an instance of AIδ of size Θ(ρ(n)3 · log(1/δ(ρ(n)4))).

In proving Lemma 4.1, we use as an intermediate the Entropy Approximation (EA) problem
that is known to be complete for NISZK [GSV99]. We prove Lemma 4.1 by presenting a reduction
from EA to AIδ. In order to define EA, we recall the notion of Shannon entropy of a circuit C,
denoted by H(C), which is defined to be the Shannon entropy of the distribution of the output of
the circuit when its input is chosen uniformly at random.

Definition 4.2 ([GSV99]). The Entropy Approximation problem, denoted by EA, is a promise
problem (YES,NO), where YES = {YESn}n∈N and NO = {NOn}n∈N are sets defined as follows:

YESn = {(1n, C, k) | H(C) ≥ k + 1}
NOn = {(1n, C, k) | H(C) ≤ k − 1}

where, in both cases, C is a circuit that takes n bits as input, and k is a positive real number that
is at most the output length of C. The size of an instance (1n, C, k) is n.

The NISZK-hardness of AIδ as stated in Lemma 4.1 follows immediately from the following two
lemmas.

Lemma 4.3 ([GSV99]). Under the hypotheses of Lemma 4.1, there is a reduction from Π to EA
that maps any instance of Π of size n to an instance of EA of size ρ(n).

Lemma 4.3 was proven by Goldreich et al. [GSV99], and we repeat the proof in Appendix A in
order to keep closer track of the parameters involved.

Lemma 4.4. Let δ : N → [0, 1] be a non-increasing function such that δ(n) > 2−o(n
1/4). There is

a reduction from EA to AIδ that maps any instance of EA of size n to an instance of AIδ of size
Θ
(
n3 · log(1/δ(n4))

)
.

We present the proof of Lemma 4.4 in Section 4.1. Finally, we also show that for sufficiently
small δ, the problem AIδ reduces back to EA, and is hence contained in NISZK.

Lemma 4.5. Let δ : N → [0, 1] be a function such that δ(n) < 1/(n + 1) − 1/poly(n). There is
a reduction from AIδ to EA that maps any instance of AIδ of size n to an instance of EA of size

2n
1−δ(n)·(n+1) .

We prove Lemma 4.5 in Section 4.2. Put together, Lemmas 4.1 and 4.5 establish the NISZK-
completeness of AIδ.

Corollary 4.6. Let δ : N → [0, 1] be a non-increasing function such that 2−o(n
1/4) < δ(n) <

1/(n+ 1)− 1/poly(n). Then, AIδ is complete for NISZK.

15

Reduction from EA to AIδ

Ingredients:

� Let Hn,m = {h : {0, 1}n → {0, 1}m} be the explicit family of 3-wise independent hash functions
from Lemma 2.7. Abusing notation, we use h to denote both the random bits used to select a
function in this family and the thus-selected function itself.

Input: (1n, C, k) and parameter δ

Output: (1n̂, Ĉ)

Algorithm:

1. Set η = 0.01 and t = 10 · (n+ 1)2 · log(10/δ(n4))/η2

2. Define the circuit Ĉ as follows:

� Ĉ takes as input (x1, . . . , xt) ∈ ({0, 1}n)t and h ∈ {0, 1}3t·n.

� It interprets h appropriately as a hash function from the family Ht·n,t·(n−k).

� It outputs
(
C(x1), . . . , C(xt), h, h(x1, . . . , xt)

)
.

3. Output (14t·n, Ĉ).

Figure 2: Reduction from EA to AI

4.1 From EA to AI: Proof of Lemma 4.4

The reduction is described in Fig. 2. It is parametrized by the function δ, takes as input an instance
(1n, C, k) of EA, and outputs an instance (1n̂, Ĉ) of AIδ. We will show that the reduction works for
all sufficiently large input sizes n of the EA instance, which is sufficient. Fix a function δ for which
we wish to reduce to AIδ. We use the symbols n, m, k, η, and t as they are described in Fig. 2.
Throughout this section, for a circuit C and any t ∈ N, we use C⊗t to denote its t-fold repetition.
That is, C⊗t(x1, . . . , xt) = (C(x1), . . . , C(xt)).

In order to analyze the behavior of the circuit Ĉ produced by the reduction as an instance of
AIδ, we define the following function that counts the number of “neighbors” of each input:

ν̂(x, h) ,
∣∣∣{(x′, h′) : Ĉ(x′, h′) = Ĉ(x, h)

}∣∣∣
=
∣∣{x′ : C⊗t(x′) = C⊗t(x) ∧ h(x′) = h(x)

}∣∣ , (1)

where the equality follows from the fact that Ĉ(x, h) = (C⊗t(x), h, h(x)).
In order to prove that the reduction works, we will have to show, depending on whether C is a

YES or NO instance of EA, that ν̂(x, h) is either at most 1 or at least 2 with probability (1− δ(n̂))
over random x and h. We do this by partitioning the x’s into two categories – typical and atypical
– and then arguing that: (i) there are very few atypical x’s, and, (ii) any typical x behaves well
under the hashing h(x), thus giving us control over ν̂(x, h).

16

Typicality. Towards formalizing this typicality, given a circuit C, we define its neighbourhood
function ν : {0, 1}n → N as:

ν(x) =
∣∣{x′ : C(x′) = C(x)

}∣∣
and also establish the following notation for any t ∈ N:

ν×t(x1, . . . , xt) =
∏
i∈[t]

ν(xi).

Given C and t from context and an η > 0, we say that an x = (x1, . . . , xt) ∈ ({0, 1}n)t is
η-typical if:

Pr
x′←{0,1}tn

[
C⊗t(x′) = C⊗t(x)

]
=
ν×t(x)

2tn
∈ [2−t·(H(C)+η), 2−t·(H(C)−η)], (2)

and x is η-atypical if Eq. (2) does not hold.12 The following statement about the asymptotic
equipartition property of repetition that follows, for example, from [HR11, Theorem 2], now tells
us that most x’s are indeed typical.

Lemma 4.7. Let D be a distribution, t ∈ N, and denote by D⊗t the distribution of t i.i.d samples
from D. Then, for any η > 0,

Pr
y←D⊗t

[
Pr
[
D⊗t = y

]
/∈
[
2−t·(H(D)+η), 2−t·(H(D)−η)

]]
≤ 2 · 2−

t·η2

2 log2(|Supp(D)|+3) .

In our context, taking D above to be the output distribution of the circuit C, and noting that
its range is of size at most 2n, this immediately implies the following proposition.

Proposition 4.8. For any η > 0 and n ≥ 2,

Pr
x←{0,1}tn

[x is not η-typical] ≤ 2 · 2−t·η2/2(n+1)2 .

Behavior of typical x’s. Proposition 4.8 lets us argue that most x’s are typical. Next, we
develop tools to argue that typical x’s behave well under hashing. For any x, consider ν̂(x, h) as a
random variable over the randomness in the choice of h.

Proposition 4.9. For any x ∈ {0, 1}t·n, the following holds when h is drawn uniformly at random
from the family Ht·n,t·(n−k):

E
h

[ν̂(x, h)] = 1 +
ν×t(x)− 1

2t·(n−k)

and

Var
h

[ν̂(x, h)] <
ν×t(x)

2t·(n−k)
.

We prove Proposition 4.9 at the end of this subsection, and now proceed to prove Lemma 4.4.

12The idea that such x’s are “typical” stems from the observation, following from the definition and properties of
Shannon entropy, that the expectation Ex

[
log(1/Prx′

[
C⊗t(x′) = C⊗t(x)

]
)
]

is equal to t ·H(C). So η-typical x’s are
those that have this log(. . .) quantity within an additive t · η of this expectation.

17

Error from atypical x’s. Suppose we start with an instance (1n, C, k) of EA. Let (1n̂, Ĉ) be
the result of running the reduction from Fig. 2 on the input (1n, C, k). Let t and η be as set in
Fig. 2. That n̂ = 4t ·n = Θ(n3 · log(1/δ(n4))) may be verified by inspection. Further, following the

hypothesis that δ(n) = 2−o(n
1/4), we have that n̂ = o(n4).

We are ultimately interested in the following probability:

Pr
x,h

[ν̂(x, h) is bad] ≤ Pr
x,h

[ν̂(x, h) is bad | x is η-typical] + Pr
x,h

[x is not η-typical] (3)

where being “bad” is taken to mean being more than 1 if (1n, C, k) is a YES instance of EA, and
being equal to 1 if it is a NO instance.

In either case, we can bound the second term in the right-hand side of (3) using Proposition 4.8
as follows for all large enough n:

Pr
x,h

[x is not η-typical] ≤ 2 · 2−tη2/2(n+1)2

= 2 · (δ(n4)/10)5

≤ δ(n̂)/10, (4)

where the equality follows from substituting the values of the quantities from Fig. 2, and the last
inequality from the fact that δ is non-increasing and n̂ = o(n4). Next, we bound the probability of
“bad” behavior among typical x’s.

YES instances. Suppose (1n, C, k) is a YES instance of EA – that is, C takes n bits of input
and is such that H(C) ≥ k + 1. In this case, for an η-typical x, we have the following bound that
we will rely on:

ν×t(x) ≤ 2t·n · 2−t·(H(C)−η)

≤ 2t·n · 2−t·((k+1)−η)

= 2t·(n−k) · 2−t·(1−η), (5)

where the first inequality is from the definition of an η-typical x in Eq. (2), and the second inequality
is from the bound on H(C) from the promise of EA. For any η-typical x, from Proposition 4.9 and
Eq. (5), we have for large enough n:

E
h

[ν̂(x, h)] = 1+
ν×t(x)− 1

2t·(n−k)
≤ 1 + 2−t·(1−η) < 3/2 (6)

and

Var
h

[ν̂(x, h)] <
ν×t(x)

2t·(n−k)
≤ 2−t·(1−η) ≤ δ(n̂)/100. (7)

In this case, ν̂(x, h) is “bad” if it is more than 1. Fix any η-typical x and note that the above
bound on the expectation is less than 2. Thus, we can bound the probability of bad behavior as:

Pr
h

[ν̂(x, h) ≥ 2] ≤ Pr
h

[∣∣ν̂(x, h)− E [ν̂(x, h)]
∣∣ ≥ ∣∣2− E [ν̂(x, h)]

∣∣]
≤ Var [ν̂(x, h)]

(2− E [ν̂(x, h)])2

≤ δ(n̂)

10
, (8)

18

where the second inequality follows from Chebyshev’s inequality (Lemma 2.3), and the third is
from Eq. (6) and Eq. (7).

Substituting Eq. (8) and Eq. (4) in Eq. (3), we get that for random x and h, the probability
that ν̂(x, h) is more than 1 is much less than δ(n̂). In other terms, (1n̂, Ĉ) is a YES instance of AIδ,
as needed.

NO instances. Next, suppose (1n, C, k) is a NO instance of EA – that is, C takes n bits of input
and is such that H(C) ≤ k − 1. In this case, for an η-typical x, we have the following bound that
we will rely on:

ν×t(x) ≥ 2t·n · 2−t·(H(C)+η)

≥ 2t·n · 2−t·((k−1)+η) (9)

= 2t(n−k) · 2t·(1−η), (10)

where the first inequality is from the definition of an η-typical x in Eq. (2), and the second inequality
is from the bound on H(C) from the promise of EA. For any η-typical x, from Proposition 4.9 and
Eq. (10), we have for large enough n:

E
h

[ν̂(x, h)] = 1+
ν×t(x)− 1

2t·(n−k)
≥ 2t·(1−η) (11)

and

Var
h

[ν̂(x, h)] <
ν×t(x)

2t·(n−k)
≤ 2t·(1−η). (12)

In this case, ν̂(x, h) is “bad” if it is equal to 1. Fix any η-typical x and note that the above
bound on the expectation is more than 1. Then, we can bound the probability of bad behavior as:

Pr
h

[ν̂(x, h) = 1] ≤ Pr
h

[∣∣ν̂(x, h)− E [ν̂(x, h)]
∣∣ ≥ ∣∣E [ν̂(x, h)]− 1

∣∣]
≤ Var [ν̂(x, h)]

(E [ν̂(x, h)]− 1)2

≤ 2t·(1−η)

(2t·(1−η) − 1)2

≤ δ(n̂)

10
. (13)

where the second inequality follows from Chebyshev’s inequality (Lemma 2.3), and the third is
from Eq. (11) and Eq. (12).

Substituting Eq. (13) and Eq. (4) in Eq. (3), we get that for random x and h, the probability
that ν̂(x, h) is 1 is much less than δ(n̂). In other terms, (1n̂, Ĉ) is a NO instance of AIδ, as needed.

Conclusion. Thus, a YES instance of EA is mapped to a YES instance of AIδ, and the same for
NO instances. This completes the proof of Lemma 4.4, modulo the proof of Proposition 4.9, which
we proceed to next.

19

Proof of Proposition 4.9. Fix any x ∈ {0, 1}t·n. For any x′ ∈ {0, 1}t·n and any hash function
h ∈ Ht·n,t·(n−k), define the indicator variable Ix′,h to be 1 if h(x′) = h(x), and 0 otherwise. Note
that Ix,h is always 1. As h is sampled from a family of 3-wise independent hash functions Htn,t(n−k),
even after fixing x, the variables Ix′,h are pairwise-independent and, for x′ 6= x, it holds that Ix′,h
is a Bernoulli random variable that is 1 with probability 2−t·(n−k). This implies the following for
any x′ 6= x:

E
h

[
Ix′,h

]
= 2−t·(n−k) and Var

h

[
Ix′,h

]
< 2−t·(n−k). (14)

The expectation is then computed as follows:

E
h

[ν̂(x, h)] = E
h

[∣∣{x′ | C⊗t(x′) = C⊗t(x) ∧ h(x′) = h(x)
}∣∣]

= E

 ∑
x′:C⊗t(x′)=C⊗t(x)

Ix′,h

= E [Ix,h] +

∑
x′ 6=x:C⊗t(x′)=C⊗t(x)

E
[
Ix′,h

]
= 1 + (

∣∣(C⊗t)−1(C⊗t(x))
∣∣− 1) · 1

2t·(n−k)

= 1 +
ν×t(x)− 1

2t·(n−k)
,

where the first equality follows from Eq. (1) (essentially the definition of ν̂), the second from the
definition of the indicator variables, the third by linearity of expectation, and the fourth from
Eq. (14).

The variance is bounded as follows:

Var
h

[ν̂(x, h)] = Var

 ∑
x′:C⊗t(x′)=C⊗t(x)

Ix′,h

= Var [Ix,h] +

∑
x′ 6=x:C⊗t(x′)=C⊗t(x)

Var
[
Ix′,h

]
= 0 +

∑
x′ 6=x:C⊗t(x′)=C⊗t(x)

Var
[
Ix′,h

]
<
∣∣(C⊗t)−1(C⊗t(x))

∣∣ · 1

2t·(n−k)

=
ν×t(x)

2t·(n−k)
,

where the second equality follows from the fact that the Ix′,h’s are pairwise-independent, and the
third equality from the fact that Ix,h is always 1. The inequality follows from Eq. (14).

4.2 From AI to EA: Proof of Lemma 4.5

Here, we restate and prove Lemma 4.5, which implies that AIδ is contained in NISZK for certain
functions δ.

20

Lemma 4.5. Let δ : N → [0, 1] be a function such that δ(n) < 1/(n + 1) − 1/poly(n). There is
a reduction from AIδ to EA that maps any instance of AIδ of size n to an instance of EA of size

2n
1−δ(n)·(n+1) .

Proof of Lemma 4.5. Fix δ as in the statement of the lemma. Given an instance (1n, C) of AIδ, the
reduction is simply to the instance (1t·n, C⊗t, k) of EA, where t = 2

1−δ(n)·(n+1) and k = t · n · (1 −
δ(n)/2)− t · (1− δ(n))/2. Below, for ease of notation, we simply write δ for δ(n).

Suppose (1n, C) was a YES instance of AIδ. This implies that at least a (1−δ) fraction of inputs
are mapped injectively by C. The entropy of C would then be minimized by all the remaining δ
fraction of inputs being mapped to the same output. This implies that:

H(C) ≥ (1− δ) · log

(
1

2n

)
+ δ · log

(
1

δ

)
≥ (1− δ) · n,

which in turn implies that:

H(C⊗t)− k ≥ t · n · (1− δ)− t · n · (1− δ/2) + t · (1− δ)/2
= t · (1− δ − δn)/2

= 1.

This shows that (1t·n, C, k) is indeed a YES instance of EA.
Suppose (1n, C) was a NO instance of AIδ. Then, at least a (1 − δ) fraction of inputs have at

least one collision. The entropy of C is maximized if all of these have exactly one collision and the
remaining δ fraction of inputs are mapped injectively. This implies that:

H(C) ≤ (1− δ) · log

(
2

2n

)
+ δ · log

(
1

2n

)
= n− (1− δ),

which in turn implies that:

k −H(C⊗t) ≥ t · n · (1− δ/2)− t · (1− δ)/2− t · n+ t · (1− δ)
= t · (1− δ − δn)/2

= 1.

This shows that (1tn, C⊗t, k) is a NO instance of EA, thereby completing the proof of Lemma 4.5.

5 Batch Verification for AI

In this section we prove Theorem 3.4 by constructing an HVSZK protocol for batch verification of the
approximate injectivity problem AIδ (see Definition 3.2 for the definition of AIδ). For convenience,
we restate Theorem 3.4 next.

Theorem 3.4. For any k = k(n) ∈ N, δ = δ(n) ∈ [0, 1
100k2

] and security parameter λ = λ(n), the

problem AI⊗kδ has an HVSZK protocol with communication complexity O(n)+k ·poly(λ, logN, log k),
where N is an upper bound on the size of each of the given circuits (on n input bits). The complete-
ness and zero-knowledge errors are O(k2 · δ + 2−λ) and the soundness error is a constant bounded
away from 1.

The verifier running time is k · poly(N, log k, λ) and the number of rounds is O(k).

21

Let k, δ and λ be as in the statement of Theorem 3.4. In order to prove the theorem we need
to present an HVSZK protocol for AI⊗kδ with the specified parameters. The protocol is presented
in Fig. 3. The rest of this section is devoted to proving that the protocol indeed satisfies the
requirements of Theorem 3.4.

Section Organization. First, in Section 5.1 we prove several lemmas that will be useful through-
out the analysis of the protocol. Using these lemmas, in Sections 5.2 to 5.4, we, respectively, es-
tablish the completeness, honest-verifier statistical zero-knowledge and soundness properties of the
protocol. Lastly, in Section 5.5 we analyze the communication complexity and verifier runtime.

5.1 Useful Lemmas

Let C1, . . . , Ck : {0, 1}n → {0, 1}m be the given input circuits (these can correspond to either a YES
or NO instance of AIδ). Throughout the proof we use i∗ ∈ [k+1] to denote the index of the first NO
instance circuit, if such a circuit exists, and i∗ = k+ 1 otherwise. That is, i∗ = min

(
{k+ 1} ∪ {i ∈

[k] : Ci is a NO instance}
)
.

For every i ∈ [k] we introduce the following notations:

� We denote by Xi the distribution over the string xi ∈ {0, 1}n as sampled in the verifier’s
setup phase. That is, X1 = Un and for every i ∈ [k], it holds that Yi = Ci(Xi) and Xi+1 =
Ext(Yi, Zi), where each Zi is an iid copy of Ud.

� We denote the subset of strings in {0, 1}m having a unique preimage under Ci by Si (i.e.,
Si =

{
yi :

∣∣C−1
i (yi)

∣∣ = 1
}

). Abusing notation, we also use Si to refer to the uniform
distribution over the corresponding set.

For a function f , we define νf as νf (x) = |{x′ : f(x′) = f(x)}|. We say that x ∈ {0, 1}n has
siblings under f , if νf (x) > 1. When f is clear from the context, we omit it from the notation.

Lemma 5.1. For every i ≤ i∗ it holds that ∆ (Xi, Un) ≤ 1
k·2λ + k · δ.

Proof. We show by induction on i that ∆ (Xi, Un) ≤ (i − 1) ·
(

1
k2·2λ + δ

)
. The lemma follows by

the fact that i ≤ k.
For the base case (i.e., i = 1), since X1 is uniform in {0, 1}n we have that ∆ (X1, Un) = 0. Let

1 < i ≤ i∗ and suppose that the claim holds for i − 1. Note that i − 1 < i∗ and so Ci−1 is a YES
instance circuit.

Claim 5.1.1. ∆
(
Ext(Si−1, Ud), Un

)
≤ 1

k2·2λ .

Proof. By definition of AIδ, the set Si−1 has cardinality at least (1 − δ) · 2n. Since δ < 1/2, this
means that the min-entropy of (the uniform distribution over) Si is at least n−1. The claim follows
by the fact that Ext is an extractor for min-entropy n− 1 with error ε = 1

k2·2λ .

We denote by Wi the distribution obtained by selecting (xi−1, zi−1) uniformly in {0, 1}n×{0, 1}d
and outputting Ext

(
Ci−1(xi−1), zi−1

)
.

Claim 5.1.2. ∆ (Wi, Un) ≤ 1
k2·2λ + δ.

22

HVSZK Batch Verification Protocol for AIδ

Input: Circuits C1, . . . , Ck : {0, 1}n → {0, 1}m and security parameter λ, where all circuits have size
at most N , input length n, and output length m ≤ N .

� Wlog we assume that all the circuits have the same output length m ≤ N . This can be achieved
by padding.

Ingredients:

� Let Ext = Extn be the explicit extractor from Lemma 2.10, where Extn : {0, 1}m × {0, 1}d →
{0, 1}n, so that Extn supports min-entropy n− 1, has error ε = 1

k2·2λ and the seed length d is as
guaranteed by Lemma 2.10.

� Let Hn be the explicit family of 1
22λ+d+2 log k -almost pairwise-independent hash functions of

Lemma 2.8, where Hn : {0, 1}m × {0, 1}d → {0, 1}2λ+d+2 log k
and d is the seed length of the

extractor as specified above.

� Let Gn be the explicit family of pairwise-independent hash functions of Lemma 2.7, where Gn :
{0, 1}n → {0, 1}` and ` = O(1) (e.g., ` = 3 suffices).

The Protocol:

1. Setup for V:

(a) Sample h← Hn and g ← Gn.

(b) Sample x1 ← {0, 1}n.

(c) For i = 1, ..., k:

i. Compute yi = Ci(xi).

ii. Sample zi ← {0, 1}d.
iii. Compute xi+1 = Ext(yi, zi).

2. V sends h, g, and xk+1 to P.

3. P sets x′k+1 = xk+1.

4. For i = k, ..., 1:

(a) V sends βi = h(yi, zi) to P.

(b) P computes y′i by finding the unique pair (y′i, z
′
i) s.t. Ext(y′i, z

′
i) = x′i+1 and h(y′i, z

′
i) = βi.

If such a pair (y′i, z
′
i) does not exist or is not unique, P sends a special abort symbol to V.

(c) P computes x′i by inverting Ci at y′i and sends αi = g(x′i) to V. If an inverse of y′i does not
exist or is not unique, P sends a special abort symbol to V.

(d) If V got an abort symbol or if αi 6= g(xi), then it rejects and aborts.

5. If all previous tests passed then V accepts.

Figure 3: A Batch SZK Protocol for AI

23

Proof. Consider the event that Xi−1 has a sibling (under Ci−1). Since Ci−1 is a YES instance,
this event happens with probability at most δ. On the other hand, the distribution of Ci(Xi−1),
conditioned on Xi−1 not having a sibling, is simply uniform in Si. The claim now follows by
Claim 5.1.1 and Fact 2.2.

We are now ready to bound ∆ (Xi, Un), as follows:

∆ (Xi, Un) ≤ ∆ (Xi,Wi) + ∆ (Wi, Un)

= ∆
(

Ext(Ci−1(Xi−1), Ud),Ext(Ci−1(Un), Ud)
)

+ ∆ (Wi, Un)

≤ ∆ (Xi−1, Un) +
1

k2 · 2λ
+ δ

≤ (i− 1) ·
(

1

k2 · 2λ
+ δ

)
,

where the first inequality is by the triangle inequality, the second inequality is by Fact 2.1 and
Claim 5.1.2 and the third inequality is by the inductive hypothesis.

Definition 5.2. We say that the tuple (x1, h, z1, ...zk) is good if the following holds, where we
recursively define yi = Ci(xi) and xi+1 = Ext(yi, zi), for every i < i∗:

1. For every i < i∗, there does not exist x′i 6= xi s.t. Ci(xi) = Ci(x
′
i) (i.e., xi has no siblings).

2. For every i < i∗, there does not exist (y′i, z
′
i) 6= (yi, zi) such that y′i ∈ Si, Ext(y′i, z

′
i) = Ext(yi, zi)

and h(y′i, z
′
i) = h(yi, zi).

Lemma 5.3. The tuple (x1, h, z1, ...zk) sampled by the verifier V is good with probability at least
1−O(k2 · δ + 2−λ).

In order to prove Lemma 5.3, we first establish the following proposition, which bounds the
number of preimages of a random output of the extractor.

Proposition 5.4. For any S ⊆ {0, 1}m with 2n−1 ≤ |S| ≤ 2n and any security parameter λ > 1,
it holds that:

Pr
y←S,z←Ud

[
νExt(y, z) > 2d+λ

]
≤ ε+

1

2λ
.

Proof. Throughout the current proof we use ν as a shorthand for νExt. Abusing notation, we also
use S to refer to the uniform distribution over the set S.

For a given security parameter λ > 1, denote by H (for “heavy”) the set of all (y, z) ∈ S×{0, 1}d
that have ν(y, z) > |S| · 2d−n+λ, and by Ext(H) the set {Ext(y, z) : (y, z) ∈ H}. By definition, for
any z ∈ Ext(H), we have that Pr [Ext(S,Ud) = z] > 2−n+λ. This implies that:

|Ext(H)| < 2n−λ.

Note again that for any z ∈ Ext(H), the above probability is more than 2−n, which is the probability
assigned to z by the uniform distribution Un. It then follows from the definition of statistical

24

distance that:

∆ (Ext(S,Ud), Un) ≥
∑

z∈Ext(H)

(
Pr [Ext(S,Ud) = z]− 2−n

)
= Pr [Ext(S,Ud) ∈ Ext(H)]− |Ext(H)| · 2−n

> Pr [Ext(S,Ud) ∈ Ext(H)]− 2−λ.

Since |S| ≥ 2n−1, the min entropy of S is at least n−1, and therefore, it holds that ∆ (Ext(S,Ud), Un) ≤
ε. Together with the fact that Pr [Ext(S,Ud) ∈ Ext(H)] = Pr [(S,Ud) ∈ H], we have:

Pr
y←S,z←Ud

[
ν(y, z) > |S| · 2d−n+λ

]
≤ ε+

1

2λ
.

And since |S| ≤ 2n we have

Pr
y←S,z←Ud

[
ν(y, z) > 2d+λ

]
≤ ε+

1

2λ
.

Using Proposition 5.4 we are now ready to prove Lemma 5.3.

Proof of Lemma 5.3. For any i < i∗, let Ei denote the event that either (1) there exists x′i 6= xi such
that Ci(xi) = Ci(x

′
i), or (2) there exists (y′i, z

′
i) 6= (yi, zi) such that y′i ∈ Si, Ext(y′i, z

′
i) = Ext(yi, zi)

and h(y′i, z
′
i) = h(yi, zi), where (x1, . . . , xk+1, y1, . . . , yk, z1, . . . , zk) are as sampled by the verifier.

Lemma 5.3 follows from the following claim, and a union bound over all i ∈ [k].

Claim 5.4.1. Pr[Ei] ≤ (k + 1) · δ + 4
k·2λ , for every i ∈ [k].

Proof. We first analyze the probability for the event Ei when xi is sampled uniformly at random.
By definition of AIδ:

Pr
xi←Un

[xi has siblings] ≤ δ.

Let us condition on xi with no siblings being chosen. Under this conditioning, Ci(xi) is uniform
in Si. We note that |Si| ≥ (1 − δ) · 2n ≥ 2n−1 and |Si| ≤ 2n. Thus, by Proposition 5.4 (using
security parameter λ+ log k) it holds that:

Pr
yi←Si,z←Ud

[
νExt(y, z) > k · 2λ+d

]
≤ ε+

1

k · 2λ
≤ 2

k · 2λ
,

where the last inequality follows from the fact that ε = 1
k2·2λ .

Let us therefore assume that the pair (yi, zi) has at most k · 2λ+d siblings under Ext. We wish
to bound the probability that there exists a preimage that collides with (yi, zi) under h. Since h is
2−(2λ+d+2 log k)-almost pairwise-independent (into a range of size 22λ+d+2 log k), for any pair (y′, z′),
the probability that it collides with (yi, zi) under h is at most 2

22λ+d+2 log k . Since yi has at most

k ·2λ+d siblings (under Ext), by a union bound, the probability that any of them collide with (yi, zi)
(under h) is at most k · 2λ+d · 2−(2λ+d+2 log k) = 1

k·2λ .

25

Simulator for the AIδ Batch Verification Protocol

Input: C1, . . . , Ck

The Simulator:

1. Sample h← Hn, g ← Gn and x1 ∈ {0, 1}n.

2. For i = 1, ..., k:

(a) Compute yi = Ci(xi).

(b) Sample zi ← {0, 1}d.
(c) Compute αi = g(xi).

(d) Compute βi = h(yi, zi).

(e) Compute xi+1 = Ext(yi, zi).

3. Output transcript =
((
C1, . . . , Ck

)
,
(
x1, z1, . . . , zk, h, g

)
,
(
αk, . . . , α1

))
.

Figure 4: Simulator for AIδ Batch Verification

Thus, when xi is sampled uniformly at random, the probability that it has a sibling (under Ci)
or that there exist (y′, z′) such that Ext(y′, z′) = Ext(yi, zi), where y′i ∈ Si and h(y′, z′) = h(yi, zi),
is at most:

δ +
2

k · 2λ
+

1

k · 2λ
= δ +

3

k · 2λ
.

The claim follows by the fact that, by Lemma 5.1, the actual distribution of xi is
(

1
k·2λ +k · δ

)
-close

to uniform.

This concludes the proof of Lemma 5.3.

5.2 Completeness

Let C1, . . . , Ck ∈ AIδ. Assume first that V generates a good tuple (x1, h, z1, . . . , zk) (as per Defini-
tion 5.2). Observe that in such a case, by construction of the protocol, it holds that x′i = xi and
y′i = yi, for every i ∈ [k]. Therefore, the verifier accepts in such a case (with probability 1).

By Lemma 5.3, the tuple (x1, h, g, z1, . . . , zk) is good with all but O
(
k2 · δ + 2−λ

)
probability.

Thus, the completeness error is upper bounded by O
(
k2 · δ + 2−λ

)
.

5.3 Honest-Verifier Statistical Zero-Knowledge

The simulator is presented in Fig. 4.
The generation of (x1, h, g, z1, ..., zk) is identical for the verifier and for the simulator. Assuming

that the tuple (x1, h, z1, ..., zk) is good, by construction the prover does not abort in the honest
execution (as in the case of completeness). Moreover, in this case, each x′i (resp., (y′i, z

′
i)) found

by the prover is equal to xi (resp., (yi, zi)) chosen by the verifier. Therefore, conditioned on the
tuple (x1, h, z1, ..., zk) being good, the distributions of (1) the transcript generated in the honest

26

execution, and (2) the simulated transcript are identically distributed. The fact that the protocol
is honest-verifier statistical zero-knowledge now follows from Lemma 5.3, and by applying Fact 2.2
twice.

5.4 Soundness

Let C1, ..., Ck : {0, 1}n → {0, 1}m be such that one of them is a NO instance of AIδ. Recall that
i∗ ∈ [k] denotes the index of the first such NO instance circuit (i.e., Ci∗ is a NO instance of AIδ but
for every i < i∗, it holds that Ci is a YES instance).

We first make two simplifying assumptions. First, recall that value of yi∗ is specified by the
verifier by having it send xk+1, βk, . . . , βi∗ to the prover. Instead, we will simply assume that the
verifier sends yi∗ directly to the prover. Since yi∗ can be used to generate the verifier’s distribution
consistently, revealing yi∗ only makes the prover’s job harder and therefore can only increase the
soundness error. Second, we modify the protocol so that the verifier merely checks that αi∗ = g(xi∗)
– if so it accepts and otherwise it rejects. Once again having removed the verifier’s other tests can
only increase the soundness error.

Thus, it suffices to bound the soundness error of the following protocol. The verifier samples
xi∗ as in the real protocol, sends yi∗ = Ci∗(xi∗) and the hash function g to the prover and expects
to get in response g(xi∗). We show that the prover’s probability of making the verifier accept is
bounded by a constant.

In order to bound the prover’s success probability in the foregoing experiment, we first give
an upper bound assuming that xi∗ is uniform in {0, 1}n, rather than as specified by the protocol
(and, as usual, yi∗ = Ci∗(xi∗)). Later we shall remove this assumption using Lemma 5.1, which
guarantees that xi∗ is actually close to uniform.

Let P∗ be the optimal prover strategy. Namely, given g and yi∗ , the prover P∗ outputs the hash
value αi∗ ∈ {0, 1}` with the largest probability mass (i.e., that maximizes |C−1

i∗ (yi∗) ∩ g−1(α)|).
Let Ŷi∗ denote the distribution obtained by sampling x ∈ {0, 1}n uniformly at random, condi-

tioned on x have a sibling under Ci∗ and outputting Ci∗(x). Using elementary probability theory
we have that:

Pr
g←Gn

xi∗←{0,1}n

[
P∗(g, yi∗) = g(xi∗)

]
≤ Pr

g←Gn
xi∗←{0,1}n

[
P∗(g, yi∗) = g(xi∗) | xi∗ has siblings

]
+ Pr[xi∗ has no siblings]

≤ Pr
g←Gn
yi∗←Ŷi∗

xi∗←C−1
i∗ (yi∗)

[
P∗(g, yi∗) = g(xi∗)

]
+ δ

= E
yi∗←Ŷi∗

 Pr
g←Gn

xi∗←C−1
i∗ (yi∗)

[
P∗(g, yi∗) = g(xi∗)

]+ δ, (15)

where the second inequality follows from the fact that Ci∗ is a NO instance.
Fix yi∗ in the support of Ŷi∗ (i.e., |C−1

i∗ (yi∗)| ≥ 2) and let u = |C−1
i∗ (yi∗)|. We show that

Prg∈Gn,xi∗←C−1
i∗ (yi∗) [P∗(g, yi∗) = g(xi∗)] is upper bounded by a constant.

Let E be the event (defined only over the choice of g) that for every hash value α ∈ {0, 1}`,
it holds that |C−1

i∗ (yi∗) ∩ g−1(α)| ≤ 7
8u. That is, the event E means that no hash value has more

27

than 7/8 fraction of the probability mass (when sampling xi∗ uniformly in C−1
i∗ (yi∗) and outputting

g(xi∗)).
13

Claim 5.4.2. The event E occurs with probability a least 1/10.

Proof. Fix a hash value α ∈ {0, 1}`, and let X = |C−1
i∗ (yi∗)∩g−1(α)| be a random variable (over the

randomness of g). Observe that X can be expressed as a sum of u pairwise independent Bernoulli
random variables, each of which is 1 with probability 2−` and 0 otherwise. Thus, the expectation
of X is u/2` and the variance is u ·2−` · (1−2−`) ≤ u ·2−`. By Chebyshev’s inequality (Lemma 2.3),
it holds that

Pr

[
X >

7

8
u

]
≤ Pr

[∣∣∣X − u

2`

∣∣∣ > 3

4
u

]
≤ Var [X]

(3/4)2 · u2

≤ 16

9u
· 1

2`
,

where the first inequality follows from the fact that ` is a sufficiently large constant. Taking a
union bound over all α’s we have that the probability that there exists some α with more than 7/8
fraction of the preimages in U (under g) is less than 16

9u < 0.9, where we use the fact that u ≥ 2.

Observe that conditioned on the event E, the probability (over xi∗ ← C−1
i∗ (yi∗)) that P∗(g, yi∗) =

g(xi∗) is at most 7/8. Thus, by Claim 5.4.2 we obtain that:

Pr
g,xi∗←C−1

i∗ (yi∗)

[
P∗(g, yi∗) 6= g(xi∗)

]
≥ Pr[E] · Pr

g,xi∗←C−1
i∗ (yi∗)

[
P∗(g, yi∗) 6= g(xi∗)|E

]
≥ 1/80.

Plugging this into Eq. (15), we have that the prover convinces the verifier to accept with probability
at most 1− 1

80 + δ, when xi∗ is sampled uniformly at random in {0, 1}n.
By Lemma 5.1 it holds that ∆ (Xi∗ , Un) ≤ 1

k·2λ +k ·δ. Therefore (using Fact 2.2), the probability

that the verifier accepts when xi∗ is sampled as in the protocol is at most 1− 1
80 + 1

k·2λ + (k+ 1) · δ,
which is bounded away from 1 since δ < 1

100k2
and λ is sufficiently large.

5.5 Communication Complexity and Verifier Run Time

We first bound the amount of bits sent during the interaction:

� Sending xk+1 costs n bits.

� By Lemma 2.10, the seed length of the extractor is d = log(m) +O(log n · log(nε)) = log(N) +
λ · polylog(n, k) and therefore, the cost of sending z1, ..., zk is k · (log(N) + λ · polylog(n, k)).

� By Lemma 2.8, the description length of h : {0, 1}m×{0, 1}d → {0, 1}2λ+d+2 log k, a 1
22λ+d+2 log k -

almost pairwise-independent hash function, is O(log(N)+λ+polylog(k)). The cost of sending
the hashes β1, ..., βk is k ·O(λ+ d+ log k) = k · (log(N) + λ · polylog(n, k)).

13We remark that the choice of 7/8 is somewhat but not entirely arbitrary. In particular, in case u is very small
(e.g., u = 2) there may very well be a hash value that has 50% of the probability mass.

28

� By Lemma 2.7, the description length of g ∈ {0, 1}n → {0, 1}`, a pairwise independent hash
function, is O(n). The cost of sending the hashes α1, ..., αk is O(k).

In total, the communication complexity is O(n) + k · (log(N) + λ · polylog(n, k)). As for the
verifier run time, For each iteration i the verifier running time is as follows:

� Evaluating the circuit Ci takes time poly(N).

� By Lemma 2.10, evaluating Ext takes time poly(m, d) = poly(N, log k, λ).

� By Lemma 2.8, evaluating h on an input of size m+ d takes time poly(N, log k, λ).

� By Lemma 2.7, evaluating g on an input of size n takes time poly(n).

In total, the verifier running time is k · poly(N, log k, λ).

Acknowledgments

We thank an anonymous TCC reviewer for pointing that our techniques fall outside the scope of
the Holenstein-Renner [HR05] blackbox model (see Remark 1.4).

Inbar Kaslasi and Ron Rothblum were supported in part by a Milgrom family grant, by the
Israeli Science Foundation (Grants No. 1262/18 and 2137/19), and the Technion Hiroshi Fujiwara
cyber security research center and Israel cyber directorate.

Guy Rothblum has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No. 819702).

Adam Sealfon was a PhD student at MIT for part of the duration of this project, and was
supported in part by NSF CNS-1413920, Sloan/NJIT 996698, MIT/IBM W1771646, and NSF
CNS-1804794.

Prashant Vasudevan was supported in part by AFOSR Award FA9550-19-1-0200, AFOSR YIP
Award, NSF CNS Award 1936826, DARPA and SPAWAR under contract N66001-15-C-4065, a
Hellman Award and research grants by the Okawa Foundation, Visa Inc., and Center for Long-
Term Cybersecurity (CLTC, UC Berkeley). The views expressed are those of the authors and do
not reflect the official policy or position of the funding agencies.

References

[Aar04] Scott Aaronson. Limits on efficient computation in the physical world. CoRR,
abs/quant-ph/0412143, 2004.

[AH91] William Aiello and Johan Hastad. Statistical Zero-knowledge Languages can be rec-
ognized in two rounds. Journal of Computer and System Sciences, 42(3):327–345,
1991.

[APS18] Navid Alamati, Chris Peikert, and Noah Stephens-Davidowitz. New (and old) proof
systems for lattice problems. In Michel Abdalla and Ricardo Dahab, editors, Public-
Key Cryptography - PKC 2018 - 21st IACR International Conference on Practice
and Theory of Public-Key Cryptography, Rio de Janeiro, Brazil, March 25-29, 2018,

29

Proceedings, Part II, volume 10770 of Lecture Notes in Computer Science, pages 619–
643. Springer, 2018.

[BBD+20] Marshall Ball, Elette Boyle, Akshay Degwekar, Apoorvaa Deshpande, Alon Rosen,
Vinod Vaikuntanathan, and Prashant Nalini Vasudevan. Cryptography from informa-
tion loss. In Thomas Vidick, editor, 11th Innovations in Theoretical Computer Science
Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington, USA, volume 151
of LIPIcs, pages 81:1–81:27. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[BDRV18a] Itay Berman, Akshay Degwekar, Ron D. Rothblum, and Prashant Nalini Vasudevan.
From laconic zero-knowledge to public-key cryptography - extended abstract. In Hovav
Shacham and Alexandra Boldyreva, editors, Advances in Cryptology - CRYPTO 2018
- 38th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
19-23, 2018, Proceedings, Part III, volume 10993 of Lecture Notes in Computer Science,
pages 674–697. Springer, 2018.

[BDRV18b] Itay Berman, Akshay Degwekar, Ron D. Rothblum, and Prashant Nalini Vasudevan.
Multi-collision resistant hash functions and their applications. In Jesper Buus Nielsen
and Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT 2018 - 37th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II, volume
10821 of Lecture Notes in Computer Science, pages 133–161. Springer, 2018.

[BDRV19] Itay Berman, Akshay Degwekar, Ron D. Rothblum, and Prashant Nalini Vasudevan.
Statistical difference beyond the polarizing regime. In Dennis Hofheinz and Alon Rosen,
editors, Theory of Cryptography - 17th International Conference, TCC 2019, Nurem-
berg, Germany, December 1-5, 2019, Proceedings, Part II, volume 11892 of Lecture
Notes in Computer Science, pages 311–332. Springer, 2019.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its
applications (extended abstract). In Proceedings of the 20th Annual ACM Symposium
on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 103–112, 1988.

[BGR98] Mihir Bellare, Juan A. Garay, and Tal Rabin. Fast batch verification for modular
exponentiation and digital signatures. In Kaisa Nyberg, editor, Advances in Cryptol-
ogy - EUROCRYPT ’98, International Conference on the Theory and Application of
Cryptographic Techniques, Espoo, Finland, May 31 - June 4, 1998, Proceeding, volume
1403 of Lecture Notes in Computer Science, pages 236–250. Springer, 1998.

[BHK17] Zvika Brakerski, Justin Holmgren, and Yael Tauman Kalai. Non-interactive delega-
tion and batch NP verification from standard computational assumptions. In Hamed
Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC,
Canada, June 19-23, 2017, pages 474–482. ACM, 2017.

[BL13] Andrej Bogdanov and Chin Ho Lee. Limits of provable security for homomorphic
encryption. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology -

30

CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 18-22, 2013. Proceedings, Part I, volume 8042 of Lecture Notes in Computer
Science, pages 111–128. Springer, 2013.

[BSMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninteractive
zero-knowledge. SIAM J. Comput., 20(6):1084–1118, 1991.

[CHP12] Jan Camenisch, Susan Hohenberger, and Michael Østergaard Pedersen. Batch verifi-
cation of short signatures. J. Cryptology, 25(4):723–747, 2012.

[CP92] David Chaum and Torben P. Pedersen. Wallet databases with observers. In Advances
in Cryptology - CRYPTO ’92, 12th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 16-20, 1992, Proceedings, pages 89–105, 1992.

[Dru15] Andrew Drucker. New limits to classical and quantum instance compression. SIAM
J. Comput., 44(5):1443–1479, 2015.

[DSCP94] Alfredo De Santis, Giovanni Di Crescenzo, and Giuseppe Persiano. The knowledge
complexity of quadratic residuosity languages. Theor. Comput. Sci., 132(2):291–317,
1994.

[For89] Lance Jeremy Fortnow. Complexity-theoretic aspects of interactive proof systems. PhD
thesis, Massachusetts Institute of Technology, 1989.

[GG00] Oded Goldreich and Shafi Goldwasser. On the limits of nonapproximability of lattice
problems. J. Comput. Syst. Sci., 60(3):540–563, 2000.

[GK93] Oded Goldreich and Eyal Kushilevitz. A perfect zero-knowledge proof system for a
problem equivalent to the discrete logarithm. J. Cryptology, 6(2):97–116, 1993.

[GKL93] Oded Goldreich, Hugo Krawczyk, and Michael Luby. On the existence of pseudorandom
generators. SIAM J. Comput., 22(6):1163–1175, 1993.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.

[GMR98] Rosario Gennaro, Daniele Micciancio, and Tal Rabin. An efficient non-interactive
statistical zero-knowledge proof system for quasi-safe prime products. In Li Gong
and Michael K. Reiter, editors, CCS ’98, Proceedings of the 5th ACM Conference on
Computer and Communications Security, San Francisco, CA, USA, November 3-5,
1998, pages 67–72. ACM, 1998.

[GSV98] Oded Goldreich, Amit Sahai, and Salil Vadhan. Honest-verifier statistical zero-
knowledge equals general statistical zero-knowledge. In STOC, 1998.

[GSV99] Oded Goldreich, Amit Sahai, and Salil P. Vadhan. Can statistical zero knowledge
be made non-interactive? or on the relationship of SZK and NISZK. In Michael J.
Wiener, editor, CRYPTO, volume 1666 of Lecture Notes in Computer Science, pages
467–484. Springer, 1999.

31

[GUV07] Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. Unbalanced ex-
panders and randomness extractors from parvaresh-vardy codes. In 22nd Annual IEEE
Conference on Computational Complexity (CCC 2007), 13-16 June 2007, San Diego,
California, USA, pages 96–108. IEEE Computer Society, 2007.

[GV99] Oded Goldreich and Salil P. Vadhan. Comparing entropies in statistical zero knowledge
with applications to the structure of SZK. In CCC, 1999.

[HHR11] Iftach Haitner, Danny Harnik, and Omer Reingold. On the power of the randomized
iterate. SIAM J. Comput., 40(6):1486–1528, 2011.

[HR05] Thomas Holenstein and Renato Renner. One-way secret-key agreement and applica-
tions to circuit polarization and immunization of public-key encryption. In CRYPTO,
pages 478–493, 2005.

[HR11] Thomas Holenstein and Renato Renner. On the randomness of independent experi-
ments. IEEE Transactions on Information Theory, 57(4):1865–1871, 2011.

[Ish] Yuval Ishai. Zero-knowledge proofs from information-theoretic proof systems.
https://zkproof.org/2020/08/12/information-theoretic-proof-systems/.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended ab-
stract). In S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and John A. Ellis, editors,
Proceedings of the 24th Annual ACM Symposium on Theory of Computing, May 4-6,
1992, Victoria, British Columbia, Canada, pages 723–732. ACM, 1992.

[KMN+14] Ilan Komargodski, Tal Moran, Moni Naor, Rafael Pass, Alon Rosen, and Eylon Yogev.
One-way functions and (im)perfect obfuscation. In 55th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October
18-21, 2014, pages 374–383. IEEE Computer Society, 2014.

[KY18] Ilan Komargodski and Eylon Yogev. On distributional collision resistant hashing. In
Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology - CRYPTO
2018 - 38th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2018, Proceedings, Part II, volume 10992 of Lecture Notes in Computer
Science, pages 303–327. Springer, 2018.

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods
for interactive proof systems. J. ACM, 39(4):859–868, 1992.

[LV16] Tianren Liu and Vinod Vaikuntanathan. On basing private information retrieval on
np-hardness. In Theory of Cryptography - 13th International Conference, TCC 2016-A,
Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part I, pages 372–386, 2016.

[MV03] Daniele Micciancio and Salil P. Vadhan. Statistical zero-knowledge proofs with efficient
provers: Lattice problems and more. In Advances in Cryptology - CRYPTO 2003, 23rd
Annual International Cryptology Conference, Santa Barbara, California, USA, August
17-21, 2003, Proceedings, pages 282–298, 2003.

32

[NMVR94] David Naccache, David M’Räıhi, Serge Vaudenay, and Dan Raphaeli. Can D.S.A. be
improved? complexity trade-offs with the digital signature standard. In Alfredo De
Santis, editor, Advances in Cryptology - EUROCRYPT ’94, Workshop on the Theory
and Application of Cryptographic Techniques, Perugia, Italy, May 9-12, 1994, Pro-
ceedings, volume 950 of Lecture Notes in Computer Science, pages 77–85. Springer,
1994.

[NN93] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions
and applications. SIAM J. Comput., 22(4):838–856, 1993.

[NV06] Minh-Huyen Nguyen and Salil P. Vadhan. Zero knowledge with efficient provers. In
Proceedings of the 38th Annual ACM Symposium on Theory of Computing, Seattle,
WA, USA, May 21-23, 2006, pages 287–295, 2006.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. J. Comput. Syst.
Sci., 52(1):43–52, 1996.

[Oka00] Tatsuaki Okamoto. On relationships between statistical zero-knowledge proofs. J.
Comput. Syst. Sci., 60(1):47–108, 2000.

[Ost91] Rafail Ostrovsky. One-way functions, hard on average problems, and statistical zero-
knowledge proofs. In Structure in Complexity Theory Conference, pages 133–138, 1991.

[OV08] Shien Jin Ong and Salil P. Vadhan. An equivalence between zero knowledge and
commitments. In Theory of Cryptography, Fifth Theory of Cryptography Conference,
TCC 2008, New York, USA, March 19-21, 2008, pages 482–500, 2008.

[OW93] Rafail Ostrovsky and Avi Wigderson. One-way fuctions are essential for non-trivial
zero-knowledge. In ISTCS, pages 3–17, 1993.

[PPS15] Omkant Pandey, Manoj Prabhakaran, and Amit Sahai. Obfuscation-based non-black-
box simulation and four message concurrent zero knowledge for NP. In Yevgeniy Dodis
and Jesper Buus Nielsen, editors, Theory of Cryptography - 12th Theory of Cryptogra-
phy Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part
II, volume 9015 of Lecture Notes in Computer Science, pages 638–667. Springer, 2015.

[PV08] Chris Peikert and Vinod Vaikuntanathan. Noninteractive statistical zero-knowledge
proofs for lattice problems. In Advances in Cryptology - CRYPTO 2008, 28th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2008.
Proceedings, pages 536–553, 2008.

[RRR16] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive
proofs for delegating computation. In Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21,
2016, pages 49–62, 2016.

[RRR18] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Efficient batch verification
for UP. In 33rd Computational Complexity Conference, CCC 2018, June 22-24, 2018,
San Diego, CA, USA, pages 22:1–22:23, 2018.

33

[SCPY98] Alfredo De Santis, Giovanni Di Crescenzo, Giuseppe Persiano, and Moti Yung. Image
density is complete for non-interactive-szk (extended abstract). In Automata, Lan-
guages and Programming, 25th International Colloquium, ICALP’98, Aalborg, Den-
mark, July 13-17, 1998, Proceedings, pages 784–795, 1998.

[Sha92] Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992.

[SV03] Amit Sahai and Salil Vadhan. A complete problem for statistical zero knowledge.
Journal of the ACM (JACM), 50(2):196–249, 2003.

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer
Science, 7(1-3):1–336, 2012.

[YGLW15] Yu Yu, Dawu Gu, Xiangxue Li, and Jian Weng. The randomized iterate, revisited -
almost linear seed length prgs from a broader class of one-way functions. In Yevgeniy
Dodis and Jesper Buus Nielsen, editors, Theory of Cryptography - 12th Theory of Cryp-
tography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings,
Part I, volume 9014 of Lecture Notes in Computer Science, pages 7–35. Springer, 2015.

A Omitted Proofs

Lemma 4.3 ([GSV99]). Under the hypotheses of Lemma 4.1, there is a reduction from Π to EA
that maps any instance of Π of size n to an instance of EA of size ρ(n).

The following is a combination of the proofs of Lemmas 4.1 and 4.2 in [GSV99].

Proof of Lemma 4.3. Recall that we start with a problem Π that has an NISZK protocol (P, V)
with simulator S that, on inputs of size n, has completeness error c(n), soundness error s(n),
statistical zero-knowledge error σ(n), and where the protocol, simulator and verifier use r(n),
rS(n) and rV (n) bits of randomness, respectively. Further, we have that c(n) + 2σ(n) ≤ 1/r(n)
and s(n) + 2−r(n) ≤ 1/r(n). Recall that the simulator S when run outputs a pair (w, p) where

w ∈ {0, 1}r(n) is the simulated common randomness and p is the simulated proof. As in the
statement, let ρ(n) = rS(n) + rV (n). We will assume, without loss of generality, that for all large
enough n, we have r(n) > 20.

Given an instance x of Π, the reduction works as follows:

1. Define a circuit Cx : {0, 1}rS(n) × {0, 1}rV (n) → {0, 1}r(n) that on input (y, z) acts as follows:

� Run the simulator S with input x and randomness y to get output (w, p).

� Run the verifier V (x,w, p) with randomness z.

� If the verifier accepted, output w.

� Else, output 0r(n).

2. Output (1ρ(n), Cx, r(n)− 3).

34

It may be verified that the output is indeed a valid instance of EA of size ρ(n). Suppose x is a YES
instance of Π. In this case the distribution of w output by S(x) is at distance at most σ(n) from
uniform. The probability that S(x) outputs rejecting transcripts is at most σ(n) + c(n). Thus, we
have:

∆(Cx;Ur(n)) ≤ σ(n) + (σ(n) + c(n)) ≤ 1/r(n) (16)

where the last inequality follows from our hypothesis. Next we use the following inequality.

Fact A.1 ([GSV99, Fact B.1]). For any two random variables X and Y over domain D such that
∆(X;Y) = δ,

|H(X)−H(Y)| ≤ log |D| · δ + h(δ)

where h is the binary entropy function.

Applying Fact A.1 with X as the uniform distribution Ur(n) and Y as Cx and incorporating
(16), we get:

r(n)−H(Cx) ≤ r(n) · 1/r(n) + h(1/r(n)) ≤ 2

This shows that (1ρ(n), Cx, r(n)) is a YES instance of EA.

Suppose x is a NO instance of Π. The fraction of possible w’s for which an accepting transcript
exists is at most s(n). Thus, the output of Cx is supported on at most a (s(n) + 2−r(n)) ≤ 1/r(n)

fraction of {0, 1}r(n). Thus, its entropy is at most log(2r(n)/r(n)) = r(n) − log(r(n)) ≤ r(n) − 4.
Thus, (1ρ(n), Cx, r(n)− 3) is a NO instance of EA. This completes the proof of the lemma.

35

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

