
Simple and fast derandomization from very hard
functions: Eliminating randomness at almost no cost

Lijie Chen * Roei Tell †

April 11, 2021

Abstract

Extending the classical “hardness-to-randomness” line-of-works, Doron, Moshkovitz,
Oh, and Zuckerman (FOCS 2020) recently proved that derandomization with near-
quadratic time overhead is possible, under the assumption that there exists a func-
tion in DT IME [2n] that cannot be computed by randomized SVN circuits of size
2(1−ε)·n for a small ε.

In this work we extend their inquiry and answer several open questions that
arose from their work. For a time function T(n), consider the following assumption:
Non-uniformly secure one-way functions exist, and for δ = δ(ε) and k = kT(ε)
there exists a problem in DT IME [2k·n] that is hard for algorithms that run in time
2(k−δ)·n and use 2(1−δ)·n bits of advice. Under this assumption, we show that:

1. (Worst-case derandomization.) Probabilistic algorithms that run in time T(n)
can be deterministically simulated in time n · T(n)1+ε.

2. (Average-case derandomization.) For polynomial time functions T(n) = poly(n),
we can improve the derandomization time to nε · T(n) if we allow the deran-
domization to succeed only on average, rather than in the worst-case.

3. (Conditional optimality.) For worst-case derandomization, the multiplicative
time overhead of n is essentially optimal, conditioned on a counting version of
the non-deterministic strong exponential-time hypothesis (i.e., on #NSETH).

Lastly, we present an alternative proof for the result of Doron, Moshkovitz, Oh,
and Zuckerman that is simpler and more versatile. In fact, we show how to simplify
the analysis not only of their construction, but of any construction that “extracts
randomness from a pseudoentropic string”.

*Massachusetts Institute of Technology, Cambridge MA. Part of the work was done while L.C. was
visiting the Weizmann Institute of Science. Email: lijieche@mit.edu

†Massachusetts Institute of Technology, Cambridge MA. Part of the work was done while R.T. was a
student at the Weizmann Institute of Science. Email: roeitell@gmail.com

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 148 (2020)

Contents

1 Introduction 1
1.1 Our contributions: Bird’s eye . 1
1.2 Worst-case derandomization with very small overhead 3
1.3 Average-case derandomization with almost no overhead 6
1.4 Fast derandomization via a simple paradigm 7
1.5 Organization . 8

2 Proof overviews 8
2.1 Proof of Theorems 1.2, 1.4 and 1.7 . 8
2.2 Proofs of Theorems 1.1 and 1.8 . 11

3 Preliminaries 14

4 Derandomization with almost no slowdown 18
4.1 Near-linear-time computable PRGs . 18
4.2 Composing two near-linear time PRGs . 20
4.3 Proof of Theorem 1.2 and of a converse direction 22
4.4 Extensions and optimizations of Theorem 1.2 26

5 Fast derandomization via a simple paradigm 29
5.1 A reconstructive PRG for quantified derandomization 29
5.2 High-level description of the proofs . 33
5.3 Near-optimal quantified derandomization 34
5.4 Standard derandomization: Proofs of Theorems 1.1 and 1.8 35

6 The O(n) Overhead is Optimal Under #NSETH 38
6.1 #NSETH and k-OV . 39
6.2 Proof of Theorem 6.4 . 40

A The Nisan-Wigderson PRG with small output length 44
A.1 Preliminaries . 45
A.2 Proof of Theorem 4.1 . 46

i

1 Introduction

Can we replace all randomized algorithms for decision problems by deterministic al-
gorithms with roughly similar runtime? The long line of works typically referred to
as “hardness-to-randomness”, which was initiated by [Yao82; BM84; NW94], gives one
way of answering the foregoing question: These works show that certain lower bounds
for non-uniform circuits imply derandomization with bounded runtime overhead.

The fastest conditional derandomization in the classical line-of-works was proved
by Impagliazzo and Wigderson [IW99], who showed that if E 6⊂ SIZE[2.01·n], then
prBPP = prP . By a padding argument, this conclusion implies that randomized time-T
algorithms can be simulated in deterministic time T(n)c for some large constant c ∈ N.
In other words, they showed that when solving decision problems, randomness can be
deterministically simulated with a polynomial runtime overhead.

In a recent exciting work, Doron, Moshkovitz, Oh, and Zuckerman [DMO+20] asked
if an even faster derandomization is possible: Could we prove that derandomization with
a small polynomial overhead (i.e., derandomization in time T(n)c for a small value of
c) follows from plausible hypotheses? Taken to the extreme, could it be that random-
ized algorithms for decision problems can be deterministically simulated with almost no
runtime overhead? Their main result is that derandomization with only a quadratic time
overhead (i.e., c ≈ 2) is possible under a certain lower bound hypothesis; specifically,
this conclusion follows from the hypothesis that DT IME [2n] is hard for randomized and
non-deterministic circuits of very large size ≈ 2.99·n. That is:

Theorem 1.1 (derandomization with quadratic overhead [DMO+20]). For every ε > 0
there exists δ > 0 such that the following holds. Assume that there exists L ∈ DT IME [2n] that
cannot be computed by randomized SVN circuits1 of size 2(1−δ)·n, even infinitely-often. Then, for
every time-constructible T : N→N such that T(n) ≥ n we have that prBPT IME [T(n)] ⊆
prDT IME [T(n)2+ε].

The result of Doron et al. [DMO+20] provides evidence that extremely fast deran-
domization might be possible, and moreover opens the door to asking if an even faster
derandomization, namely with overhead ≈ T(n)1.01, might also be possible. However,
the hypothesis in Theorem 1.1 is considerably stronger than the hypotheses in the classi-
cal works: It refers to circuits that are not only larger (i.e., of size 2.99·n rather than 2.01·n),
but that also use randomness and non-determinism; that is, it refers to a lower bound for
the non-uniform analogue ofMA∩ coMA. Needless to say, these additional resources
might significantly increase the power of non-uniform circuits.2 Moreover, in contrast to
classical “hardness-to-randomness” works, the hypothesis in Theorem 1.1 is not known
to be necessary for the existence of the corresponding PRG that they construct.

1.1 Our contributions: Bird’s eye

The current paper extends the line of inquiry opened by [DMO+20], focusing on the
possibility of extremely fast derandomization, and provides answers to several open
questions that arose from their work. We now describe our results informally and in
high-level, and later on we will elaborate in more detail.

1Randomized SVN circuits are the non-uniform analogue ofMA∩ coMA; see Definition 3.4 for details.
2For a recent demonstration of the power of MA algorithms that run in exponential time, see [Wil16];

we refer the reader to the corresponding discussion in [DMO+20, Section 1.6].

1

1. Simulating randomness with very small overhead. The main open question fol-
lowing Theorem 1.1 is whether or not we can derandomize probabilistic algorithms in
time that is close to linear T(n)1+ε, rather than in quadratic time T(n)2+ε.

We provide an affirmative answer to this question, conditioned on a plausible hypoth-
esis, which is formally incomparable to the one in Theorem 1.1 but is arguably more
standard. Specifically, we show that probabilistic algorithms running in time T(n) can
be deterministically simulated in time n · T(n)1+ε, conditioned on the following: There
exist one-way functions secure against polynomial-sized circuits, and there exists a prob-
lem in time 2k·n that is hard for algorithms that run in time 2(k−.01)·n and use 2.99n bits of
non-uniform advice, where k is a sufficiently large constant (see Theorem 1.2, and see
the subsequent discussion for a comparison with Theorem 1.1).

The second assumption may be viewed as a stronger version of the classical time-
hierarchy theorem, asserting that the time-hierarchy holds even when the “weaker”
class is given a near-maximal amount of non-uniform advice. This assumption (or,
more accurately, a relaxation of it that we use) is essentially necessary to obtain the
derandomization conclusion using PRGs (see Section 1.2.2), and is a natural extension
of hardness hypotheses from classical “hardness-to-randomness” results.

2. Optimizing the time overhead. We further improve the derandomization time to
n1+ε · T(n) for natural special cases, conditioned on hypotheses that are slightly more
technically involved and/or mildly stronger (see Theorem 1.4). This time bound almost
matches the straightforward non-uniform derandomization, and we prove that it is essen-
tially optimal, under a “counting” version of the non-deterministic strong exponential
time hypothesis (i.e., under #NSETH; see Theorem 1.3).

3. Average-case derandomization with almost no overhead. Bypassing the condi-
tional lower bound in Theorem 1.3, we show a faster derandomization for polynomial-
time algorithms that succeeds on average case, rather than in the worst-case. Specifically,
our derandomization algorithm runs in time nε · T(n), and succeeds with probability
1− n−ω(1) with respect to all distributions samplable in time T(n) (see Theorem 1.7).

4. Fast derandomization via simple proof paradigms. The proof of Theorem 1.1
in [DMO+20] is highly non-trivial, relying on refined technical notions and on com-
plicated analyses. In contrast, all of our results rely on simple and intuitive proofs that use
only standard technical tools. In particular, the results mentioned above rely on proof
strategies that are significantly different than the ones in [DMO+20].

We also present a proof for Theorem 1.1 that is simpler than the one in [DMO+20]
and relies on an observation of independent interest: Any PRG construction that is
analyzed as “extracting randomness from a pseudoentropic string” (in particular, the
construction of [DMO+20]) can be analyzed via a different proof strategy that is both
simpler and more general (see Section 1.4). As one application, we extend Theorem 1.1 by
showing that derandomization with either cubic or quartic overhead is possible, under
hardness assumptions that are similar to the one in Theorem 1.1, yet refer only to SVN
circuits that do not use randomness (see Theorem 1.8).

2

1.2 Worst-case derandomization with very small overhead

Our first result is that under a plausible hardness hypothesis, probabilistic algorithms
that run in time T(n) can be deterministically simulated in time n · T(n)1+ε, for an
arbitrarily small constant ε > 0 and for all time bounds T(n).

Similarly to other results in the “hardness-to-randomness” line-of-works, our deran-
domization relies on a PRG construction. However, the standard approach of construct-
ing a PRG that “fools” non-uniform circuits of size T(n) cannot work here, because such
a PRG requires a seed of length at least log(T(n)) (and evaluating a time-T algorithm
at each output of the PRG requires time T(n)2). Our way to bypass this obstacle is to
observe that the standard approach is an “overkill”: When transforming a probabilis-
tic algorithm into a distinguisher for the PRG, the distinguisher runs in time T(n) but
only uses n bits of non-uniform advice (i.e., the advice corresponds to the input, which
is of length n rather than T(n)). Thus, it suffices to “fool” the foregoing class of dis-
tinguishers (see Proposition 4.7), and indeed there exists a non-explicit PRG for this
class with sub-logarithmic seed length; that is, the distinguisher class can be modeled by
DT IME [N]/T−1(N) (where the notation alludes to N = T(n)), and it can be “fooled”
by a (non-explicit) PRG with seed length (1 + o(1)) · log(T−1(N)). 3

In our first result we construct a PRG that yields derandomization in time n · T(n)1+ε,
conditioned on the following. First, we assume that there exist non-uniformly secure
one-way functions; recall that this assumption is not known to imply (by itself) deran-
domization in less than sub-exponential time. Secondly, we assume that there exists a
problem decidable in time 2k·n that cannot be solved in time 2(k−δ)·n with 2(1−δ)·n bits
of non-uniform advice, where δ is sufficiently small and k is sufficiently large. As men-
tioned above, the latter hypothesis can be interpreted as a strengthening of the classical
time-hierarchy theorem, since it asserts that (loosely speaking) there are problems solv-
able in time T(n) = 2k·n that cannot be solved in time slightly smaller than T(n) even
with a near-maximal amount of non-uniform advice.

Theorem 1.2 (derandomization with very small overhead for all probabilistic algo-
rithms). For every ε > 0 there exists δ > 0 such that the following holds. Let T : N → N be
any time-constructible non-decreasing function, and let k = kε,T ≥ 1 be a sufficiently large con-
stant.4 Assume that there exist one-way functions that are secure against polynomial-sized cir-
cuits, and that there exists L ∈ DT IME [2k·n] such that L /∈ i.o.DT IME [2(k−δ)·n]/2(1−δ)·n.
Then, we have that prBPT IME [T(n)] ⊆ prDT IME [n · T(n)1+ε].

The non-cryptographic hypothesis in Theorem 1.2 can be relaxed, to only require
that the amortized time-complexity of L when printing its entire truth-table will be 2k·n

(rather than requiring each entry in the truth-table to be computable in such time; see
Theorem 4.10). The reason that we mention this relaxation is that the existence of such
an L is necessary for the PRG conclusion (see Proposition 1.6 and Theorem 4.11). This
relaxation will apply to all results in the current section, but for simplicity we will avoid
mentioning it explicitly, and defer the full result statements to the technical section.

3To see this, for every input length N we “fool” the first ε(N) machines that run in time N, instantiated
with every possible advice, where ε is any super-constant function. This yields at most ε(N) · 2T−1(N)

distinguishers, and therefore a seed of length log(T−1(N)) + log(ε(N)) suffices.
4When T is a polynomial the constant k will be very close to the polynomial power of T, and when T is

super-polynomial the constant k will be linear in 1/ε; see Theorem 4.10.

3

Thus, one of our assumptions in Theorem 1.2 is necessary for the conclusion, and
the other is a standard and fundamental one. Moreover, both assumptions refer only
to standard computational models that do not use non-determinism or randomness (rather
than to non-uniform analogues of MA∩ coMA). Thus, we argue that our hypothesis
is more standard and appealing than the one in Theorem 1.1. Intuitively, the main part
in our hypothesis that is stronger (and allows for faster derandomization) is that our
hardness assumption refers to a separation of uniform algorithms from non-uniform
procedures in a “higher” time bound (i.e., in time 2k·n rather than in time 2n).

Derandomizing “better-than-brute-force” algorithms. The benefit in derandomiza-
tion as in Theorem 1.2 (compared to, say, derandomization in quadratic time) is partic-
ularly salient when considering randomized algorithms that run in time close to that of
a “brute-force” algorithm. Many such “better-than-brute-force” randomized algorithms
are known, for example forNP-complete graph problems (see, e.g., [Bjö14; CKN18]), for
satisfiability of formulas and circuits (see, e.g., [PPS+05; CSS16]), and for NP-complete
algebraic problems (see, e.g., [LPT+17]). For all these problems, derandomization in
time T(n)1+ε would yield a better-than-brute-force deterministic algorithm, but deran-
domization in time T(n)2 is trivial.5

Derandomization as in Theorem 1.2 also implies that lower bounds for deterministic
algorithms yield near-identical lower bounds for randomized algorithms: For example,
if for every ε > 0 the hypothesis of Theorem 1.2 holds, then the Strong Exponential-Time
Hypothesis (SETH) is equivalent to its randomized version (i.e., to rSETH).

1.2.1 Can we further reduce the overhead?

The derandomization time overhead of T(n) 7→ n · T(n)1+ε is small, but is it as small
as it can be? We prove several additional results that address this question, both by
improving the upper-bound and by showing a near-matching conditional lower bound.

Recall that the known non-uniform derandomization of prBPT IME [T] yields cir-
cuits of size O(n · T(n)).6 We first show that such an overhead is unavoidable, at least for
uniform algorithms,7 conditioned on a counting version of the Non-Deterministic Strong
Exponential-Time Hypothesis (NSETH), which is weaker than NSETH itself. Specifi-
cally, extending a result of Williams [Wil16], we prove that derandomization in time
O(n · T(n)) is optimal if for every ε > 0 there does not exist a non-deterministic ma-
chine that counts the number of satisfying assignments of a k-SAT formula over n bits
in time 2(1−ε)·n, assuming that k = kε is sufficiently large (see Section 6).

Theorem 1.3 (conditional necessity of the multiplicative overhead of n). Assuming #NSETH
we have that BPT IME [T] 6⊆ DT IME [n1−ε · T(n)], for every polynomial T and ε > 0.

Matching Theorem 1.3, we improve the derandomization overhead in Theorem 1.2
to n1+ε · T(n) for a large class of probabilistic algorithms, under hypotheses similar to

5For incomparable results regarding derandomization of slow probabilistic algorithms, see [AIK+16].
6This is since for every probabilistic algorithm and n ∈ N, by a Chernoff bound there exist O(n) fixed

random strings that lead the algorithm to a correct decision on all inputs.
7Note that many problems can be solved in constant probabilistic time T(n) = O(1) but require linear

deterministic time O(n) (e.g., estimating the Hamming weight of the input). Nevertheless, the lower bound
for this specific time bound does not rule out an additive derandomization overhead of n.

4

the ones in Theorem 1.2. We state the following result in a slightly suboptimal way for
simplicity, and mention afterwards how it can be improved.

Theorem 1.4 (derandomization with near-optimal overhead; informal). For every ε > 0
there exists δ > 0 such that for every “nice” T(n) ≤ 2no(1)

the following holds. Assume that
for some γ > 0 there exist one-way functions that are secure against circuits of size 2nγ

, and
that there exists L ∈ DT IME [2δ·n · T′(n)] such that L /∈ i.o.DT IME [T′]/2(1−δ)·n, where
T′(n) = 2O(δ·n) · T(2(1−δ)·n). Then, prBPT IME [T] ⊆ prDT IME [n1+ε · T(n)].

The hypothesis in Theorem 1.4 can be improved for polynomial time functions
T(n) = poly(n). Specifically, in this case we only need the hypothesized one-way func-
tion to be secure against polynomial-sized circuits (see Theorem 4.8 for details).

1.2.2 Batch-computable PRGs and problems with bounded amortized complexity

Recall that the results in this section are obtained by constructing PRGs for the class
DT IME [O(N)]/T−1(N), which (ideally) have seed length ` ≈ log(T−1(N)) = log(n).
Also recall that our goal is to obtain derandomization in time n1+ε · N.

Unlike classical results, we do not prove that our PRGs are computable in time close
to N on each of the 2` seeds, but rather only “batch-computable” in time close to 2` · N
on all seeds at once. Indeed, such PRGs still suffice for the standard derandomization
approach of enumerating over all seeds. And moreover, as mentioned after Theorem 1.2,
the “batch-computable” PRGs that we construct also follow from the relaxed hypothesis
that asserts an upper-bound on the amortized time-complexity of the hard problem when
computing its entire truth-table (rather than a worst-case time bound); and the existence
of such a problem is in fact necessary to get “batch-computable” PRGs.

The point is that the relationship that we show between the latter two objects is quan-
titatively tighter than the known relationship between standard PRGs (that are efficiently-
computable on each seed) and hard problems (with bounded worst-case complexity).
Thus, in the context of derandomization with almost no time overhead, it turns out to
be more fruitful to study the two weaker objects. To be more explicit about this point, let
us state a special case of the connection between these two objects. (The result follows
from the technical versions of results that were already stated or mentioned above, but
its parametrization is less clean since we wish to highlight the parametric tightness.)

Definition 1.5 (amortized time complexity). For f : {0, 1}∗ → {0, 1}, we say that f ∈
amort-DT IME [T] if for every n ∈ N, the truth-table of f on n-bit inputs can be printed in
time 2n · T(n).

Proposition 1.6 (near-equivalence between batch-computable PRGs and problems with
bounded amortized time complexity, the polynomial setting). There exists a universal
constant c > 1 such that the following holds. Assume there exists one-way functions that are
secure against polynomial-sized circuits. Then, for every ε > 0 there exist δ, δ′ > 0 such that for

5

any fixed constant k ≥ 1:

∃L ∈ amort-DT IME [2δ·n · Tk(n)] \ i.o.DT IME [Tk(n)]/2(1−δ)·n ,

where Tk(n) = 2(1−δ)·kn+cδ·nw� (Theorem 4.8)

∃ (1/3)-PRG for DT IME [O(n)]/n1/k with seed length (1 + ε) · (1/k) · log(n)

that is batch-computable on all seeds in time n(1+2ε)/k · nw� (Theorem 4.11)

∃L ∈ amort-DT IME [2δ′·n · Tk(n)] \ i.o.DT IME [Tk(n)]/2(1−δ′)·n ,

where Tk(n) = 2(1−δ′)·kn

1.3 Average-case derandomization with almost no overhead

Bypassing the conditional lower bound in Theorem 1.3, we show that a faster deran-
domization is possible if we are willing to settle for derandomization that succeeds only
on most inputs, rather than in worst-case. Recall that for any L ∈ BPT IME [T] and any
distribution D over {0, 1}n there exists a circuit family of size O(T(n)) that correctly de-
cides Ln with high probability over choice of input from D (say, with probability 0.99).
Moreover, when we restrict the class of distributions only to those that are samplable in
time T(n), then there exists a single circuit family of size Õ(T(n)) that correctly decides
L with high probability with respect to all distributions in this class.8(Note that this class
of distributions is quite natural, and in particular contains the uniform distribution.)

We show a near-matching explicit (i.e., uniform) derandomization under a hypoth-
esis that is similar to the one in Theorem 1.2. Specifically, under this hypothesis, for
every L ∈ BPT IME [T] we construct a deterministic algorithm AL that runs in time
nε · T(n) and succeeds with high probability with respect to every T-time samplable
distribution. (In particular, with respect to uniform distribution.) We will focus on the
setting of polynomial time bounds T(n) = nk, since this is the more interesting setting
for improving the worst-case bound of n1+ε · T(n) to the average-case bound nε · T(n).

Theorem 1.7 (average-case derandomization with overhead nε; see Theorem 4.13). For
every ε > 0 there exists δ > 0 such that for every T(n) = nk the following holds. Assume
that there exist one-way functions secure against polynomial-sized circuits, and that there exists
L0 ∈ DT IME [2δ·n · T′(n)] such that L0 /∈ i.o.DT IME [T′]/2(1−δ)·n+1, where T′(n) =
2(1−δ)·(2k/ε)·n+O(δ·n). Then, for every L ∈ BPT IME [T] there exists a deterministic algorithm
AL that runs in time nε · T(n) such that for every T-time samplable distribution D it holds that
Prx∼Dn [AL(x) = L(x)] = 1− n−ω(1).

An appealing interpretation for the derandomization in Theorem 1.7 is that there
exists a deterministic algorithm AL such that every T-time algorithm that tries to find
an input x such that AL(x) 6= L(x) succeeds only with negligible probability.

8To see this, for every n ∈ N, consider the first n Turing machines that run in time T. By a Chernoff
bound, there exist O(log(n)) random strings that lead the probabilistic algorithm to be correct with prob-
ability 0.99 on each of the n distributions sampled by the n Turing machines. The average-case error (of
0.99) can be decreased by first applying error-reduction to the original probabilistic machine.

6

1.4 Fast derandomization via a simple paradigm

The starting point for our other contributions is an alternative and considerably simpler
proof for Theorem 1.1. Using a different high-level proof strategy, we rely on the hy-
pothesis to construct a very simple PRG, and analyze it in a way that avoids essentially
all of the involved technical work that was carried out in [DMO+20]. This alternative
proof leads us to two further contributions:

1. Our simple proof is flexible, and allows us to extend the original result in several
directions. In particular, we can relax the hardness hypothesis while settling on
derandomization with cubic or quartic overhead (see below).

2. Our proof strategy simplifies a well-known proof strategy for PRG constructions in
general. Specifically, we show that any PRG construction that relies on “extracting
randomness from a pseudoentropic string” (as in [DMO+20], following [HIL+99;
BSW03; FSU+13]) can be analyzed in a simpler way.

The details of our alternative proof strategy are presented in Section 2.2. In a gist,
given a PRG construction G(s0, s1) = Ext(G0(s0), s1) that is analyzed as “extracting ran-
domness from a pseudoentropic string”, we show that G can be analyzed in the follow-
ing way: We first show that Ext reduces the derandomization problem to the problem
of quantified derandomization (via a non-standard reduction); and then we show that
G0 solves the latter problem, concluding that G is a PRG. This analysis follows a classi-
cal idea of Sipser [Sip88], which was recently highlighted in [GW14] and in a sequence
of follow-up works concerning quantified derandomization. We also argue that this
simpler analysis applies to a potentially-larger class of constructions (see Section 2.2).

As mentioned above, our proof allows us to mildly relax the hypothesis of Theo-
rem 1.1 while deducing an only mildly slower derandomization. Specifically, we show
that the hypothesis in Theorem 1.1 can be relaxed to refer only to SVN circuits, which are
non-uniform analogues of NP ∩ coNP , while deducing derandomization with either
cubic overhead T(n)3+ε or quartic overhead ≈ T(n)4+ε (rather than quadratic overhead),
depending on the specific hardness hypothesis. In more detail:

Theorem 1.8 (fast derandomization from hardness for SVN circuits). For every ε > 0
there exists δ > 0 such that the following holds.

1. Assume that there exists L ⊆ {0, 1}∗ whose entire truth-table on n-bit inputs can be
printed in time 2(3/2)·n, but that cannot be computed (on an input-by-input basis) by
SVN circuits of size 2(1−δ)·n, even infinitely-often. Then, for every time-constructible
T : N→N we have that prBPT IME [T(n)] ⊆ prDT IME [T(n)3+ε].

2. Assume that there exists L ∈ DT IME [2n] such that L cannot be computed by SVN
circuits of size 2(1−δ)·n, even infinitely-often. Then, for every time-constructible T : N →
N we have that prBPT IME [T(n)] ⊆ prDT IME [T(n)4+ε].

We also construct a near-optimal algorithm for a natural setting of quantified de-
randomization, under a plausible hypothesis that refers to hardness for SVN circuits.
Loosely speaking, we show that randomized time-T algorithms that err on at most
2T(n).99

of their random choices can be deterministically simulated in time T(n)1.01, if
there exists a function whose truth-table on n-bit inputs can be printed in time 2(1.01)·n,
but that is hard to compute (on an input-by-input basis) for SVN circuits of size 2.99·n.
See Theorem 5.4 for details.

7

New light on bypassing the hybrid argument. A well-known challenge in proving
results such as the ones in Theorems 1.1 and 1.2 is that the analysis of the PRG construc-
tion needs to avoid a certain hybrid argument (for a detailed explanation see [BSW03, Sec.
1.2], and also [FSU+13]). Indeed, the proofs in [BSW03; DMO+20] as well as our proofs
avoid such an argument. However, we believe that the observations in the current sec-
tion allow to better understand how this barrier was bypassed in all these works, which
sheds new light on this challenge. Further details appear in Section 2.2.

1.5 Organization

In Section 2 we describe our proofs in high-level. In Section 3 we present preliminary
definitions and state some well-known results. In Section 4 we show the PRG construc-
tions that correspond to the results in Section 1.2, and in Section 5 we show the PRG
constructions that correspond to the results in Section 1.4. Finally, in Section 6 we show
the conditional lower bound for derandomization that was mentioned in Section 1.2.

2 Proof overviews

Throughout the section we will be somewhat informal with respect to the precise values
of parameters, and in particular denote by ε > 0 an unspecified constant that should be
thought of as arbitrarily small. Also, for simplicity we explain how to construct PRGs
with constant error; the extensions to PRGs with error n−.01 are straightforward.

2.1 Proof of Theorems 1.2, 1.4 and 1.7

Let us first see what is the core difficulty that yields a large polynomial overhead in
existing “hardness-to-randomness” proofs. Recall that for a probabilistic algorithm M
with running time T(n) and a fixed input x ∈ {0, 1}n, we consider a distinguisher Dx
that gets as input random coins r ∈ {0, 1}N , where N = T(n), runs in time N, and
outputs the decision of M at input x with randomness r. If we can construct a PRG that
“fools” all potential distinguishers Dx, then we can use this PRG to derandomize M.

Classical “hardness-to-randomness” proofs (following [NW94]) rely on reconstructive
PRGs. Such a PRG is an oracle machine G that gets a random seed and access to a
function f and satisfies the following: Any efficient procedure D that distinguishes
the output distribution of G f from the uniform distribution can be transformed to an
efficient procedure C f that computes f . As a contrapositive, if f is hard for every efficient
procedure, then G f “fools” every potential efficient distinguisher D.

The key bottleneck in the reconstructive proof approach is the overhead in transform-
ing D into C f . In the state-of-the-art construction of Umans [Uma03] (following [NW94;
IW99; STV01; TSZS06; SU05]), the transformation overhead is a large polynomial, say
|C f | = |D|c = Nc. Thus, we must assume that f is hard for circuits of size Nc, which
means that the time it takes to compute G f is larger than Nc = T(n)c. This is where the
large derandomization overhead comes from, and this is what we want to avoid.

The first idea: Composing two “low-cost” PRGs. We will construct a PRG with opti-
mal seed length (1 + ε) · log(N) and running time N1+ε by composing two suboptimal

8

yet “low-cost” PRGs; that is, each of the two PRGs falls short of achieving the parame-
ters we need by itself, but is nevertheless computable in time N1+ε. The first PRG will
have short seed length (1 + ε) · log(N) but also short output length Nε; and the second
PRG will have a relatively-long seed Nε but a sufficient output length N.

The first PRG follows from the observation that the transformation of hardness into
randomness entails very little overhead when the PRG outputs a relatively-short string. In fact,
for this purpose we can even use an instantiation of the classical construction of Nisan
and Wigderson [NW94] (with variations a-la [RRV02]): Using a function f whose truth-
table is of size | f | = N1+O(ε), a suitable instantiation of the NW PRG outputs M = Nε

pseudorandom bits using seed length (1 + O(ε)) · log(N), in time N1+O(ε), and with
a small reconstruction overhead such that |C f | = | f |ε · |D| + | f |1−2ε < | f |1−ε (i.e., the
reconstruction procedure is an oracle machine that gets access to D, runs in time | f |ε,
and uses | f |1−2ε bits of advice; see Theorem 4.1).9 Thus, if f is hard for circuits of size
| f |1−ε, then the PRG “fools” D.

The observation underlying the second PRG is that standard cryptographic assumptions
yield a very fast PRG with polynomial stretch. Specifically, assuming the existence of a one-
way function that is secure against polynomial-sized circuits, there exists a PRG Gcry

with stretch M 7→ N that can be computed in time N1+ε and “fools” any distinguisher
of size N (see Section 4.1). The composed PRG will take a seed w ∈ {0, 1}(1+O(ε))·log(N),
map it to NW(w) ∈ {0, 1}M, and output G(w) = Gcry(NW(w)) ∈ {0, 1}N . The com-
position of Gcry and of NW indeed “fools” D, where the crucial point is that applying
the “outer” PRG Gcry can be thought of as yielding a distinguisher D′ = D ◦ Gcry of
approximately the same size as D (and therefore NW “fools” D′).10

This argument yields derandomization with quadratic overhead; that is, with running
time N2+O(ε) = T(n)2+O(ε). This is because we will evaluate D, which is of size N,
on each of the N1+O(ε) outputs of the PRG. Thus, so far we deduced the conclusion of
Theorem 1.1 from incomparable hypotheses (which refer only to standard circuits), but
still fall short of proving the stronger conclusion of Theorem 1.2.

The second idea: Using small and extremely hard truth-tables to fool distinguishers
with “a little” non-uniformity. The bottleneck in the argument above is that the seed
length of the NW PRG is (1+O(ε)) · log(N). In general, the seed length of the NW PRG
is proportional to the truth-table size of the hard function, and in our instantiation of
the NW PRG the seed length is (1 + ε) · log(| f |). However, it a-priori seems impossible
to use a smaller truth-table, since our distinguisher is a non-uniform circuit of size N,
and we cannot assume hardness of a function with truth-table size | f | < N for circuits
of size N (i.e., it is trivial to compute such a function with N bits of advice).

As mentioned in Section 1, the pivotal observation to solve this problem is that
when the distinguisher D = Dx models the execution of a probabilistic algorithm with
running-time N = T(n) on an input x, then D can be thought of as a time-N algorithm

9The parameters stated here are not fully accurate (e.g., we need M = NΩ(ε2) for this to be true), but the
difference is immaterial for this high-level discussion. See Section 4 for the full details.

10To see this, observe that Pr[D′(NW(u`)) = 1] = Pr[D(Gcry(NW(u`))) = 1], where ` = (1 + O(ε)) ·
log(N). Since D′ is of approximately the same size as D, we can instantiate the NW PRG with parameters
very similar to the ones above, and assuming that f is hard for circuits of size | f |1−ε, the distribution
NW(u`) is pseudorandom for D′. Since Pr[D′(uM) = 1] ≈ Pr[D(uN) = 1], the distribution Gcry(NW(u`))
is pseudorandom for D.

9

that uses only |x| = n = T−1(N) bits of non-uniform advice. In other words, to deran-
domize time-T algorithms it suffices to “fool” the class DT IME [N]/T−1, rather than
all circuits of size N. This opens the door to instantiating the PRG using a very hard func-
tion whose truth-table is of size significantly smaller than the running time of our distinguisher;
in other words, we will be using a function with super-exponential time complexity.

Let us spell out the resulting argument, and for concreteness let us focus on the
setting of T(n) = nk for some constant k. The outer PRG Gcry will have stretch nε 7→ nk,
and the inner PRG NW will use a function of truth-table size | f | = n1+O(ε) and a seed
of length (1 + O(ε)) · log(n) to output nε bits. Recall that the reconstruction procedure
of NW is an oracle machine that runs in time | f |ε and uses | f |1−2ε bits of non-uniform
advice; thus, a distinguisher that runs in time T(n) and uses n bits of advice yields an
algorithm A f for f that runs in time T(n) · nO(ε) and uses n + | f |1−2ε < | f |1−ε bits of
advice (see Theorem 4.1). When we consider the complexity of A f as a function of the
input size ` = log(| f |) to f , we get an algorithm that runs in time T(2(1−O(ε))·`) · 2O(ε·`)

and uses 2(1−ε)·`+1 bits of advice. Thus, for this to work we need to assume that f /∈
i.o.DT IME [T(2(1−ε)·`) · 2O(ε·`)]/2(1−ε)·`+1. 11

The last necessary missing piece: Batch-computable PRGs and hard functions with
bounded amortized time complexity. The resulting derandomization algorithm com-
putes the output-set of the PRG, and evaluates D at each of the strings in this set. Now,
recall that we want this algorithm to run in time n1+O(ε) · T(n). It is not clear if we
can compute the PRG at each seed in time close to T(n) (as is the standard approach);
nevertheless, we can still compute the entire output-set of the PRG “in a batch” in time
n1+O(ε) · T(n), which suffices for our purposes.

For concreteness, let us still focus on the setting of T(n) = nk. We first compute the
entire truth-table of f , and we need to do so in time at most n1+O(ε) · T(n) = 2` · 2O(ε·`) ·
T(2(1−O(ε))·`). Thus, we have to assume that when computing the entire truth-table of f ,
the amortized time cost per entry is no more than 2O(ε·`) · T(2(1−O(ε))·`). (Note that the
constant hidden inside the O-notation in 2O(ε·`) may be larger than the constant hidden
inside the O-notation in 2O(ε·`) in our lower bound.) As mentioned in Section 1, the
existence of such a function is necessary in order to construct a “batch-computable”
PRG as the one that we are constructing (see Theorem 4.11). Now, given access to f ,
we can compute the output-set of the NW PRG in time n1+O(ε) (i.e., we compute the
combinatorial designs once in advance, and similarly apply an error-correcting code to
the truth-table of f once in advance; see Appendix A). Finally, we evaluate D′ = D ◦Gcry

on each of the n1+O(ε) resulting strings. The PRG Gcry can be assumed to run in time
T(n) · nε (see Section 4.1), and thus our final running-time is indeed n1+O(ε) · T(n).

The above argument proves the special case of Theorem 1.2 for polynomial time
functions T(n) = nk. (In fact, it even proves the stronger result for this special case, in
which the derandomization time is n1+ε · T(n).) In Section 4 we explain how to extend
the argument to super-polynomial time functions T(n) = nω(1). In a gist, we will either
reduce the super-polynomial case to the polynomial case using a padding argument,
which yields derandomization in time n · T(n)1+ε; or rely on a stronger cryptographic
hypothesis to obtain an outer PRG Gcry with super-polynomial stretch, which yields
derandomization in time n1+ε · T(n). See further details in Section 4.

11To see that this is consistent with the time bound stated in Theorem 1.2, plug-in T(n) = nk to the time
bound to see that T(2(1−ε)·`) · 2O(ε·`) = 2(1−ε)·k`+O(ε·`) = 2(1−(1−O(1/k))·ε)·k`.

10

Proof of Theorem 1.7: Faster average-case derandomization. For simplicity, let us
prove that we can derandomize algorithms that run in time T(n) = nk in time nε · T(n)
with respect to the uniform distribution (rather than any T-time samplable distribution).

Given a probabilistic machine M running in time T, consider the machine M′ that
gets input w ∈ {0, 1}m, maps it to x = Gcry(w) ∈ {0, 1}n where n = m1/ε, and outputs
M(x). We now instantiate Theorem 1.2 with the time function T′(m) = mk/ε, which
bounds the running time of M′. Using appropriate hypotheses (to apply Theorem 1.2
with the function T′), we deduce there exists a PRG G with seed length (1 + ε) · log(m)
that is batch-computable in time m1+ε ·mk/ε and can be used to replace the random coins
of M′. Now, a key point to note is that M′ only uses its random coins as random coins
for M. Hence, we deduce that the PRG G can be used to replace the random coins of M on any
input x ∈ {0, 1}n in the output-set of Gcry. Note that as a function of |x| = n, the PRG has
seed length (1 + ε) · log(nε) < 2ε · log(n) and running time at most nε(1+ε) · nk < nk+2ε.

Of course, this still doesn’t mean that the G can be used to replace the random
coins of M on inputs x ∈ {0, 1}n that are not in the output-set of Gcry. The crucial
observation is that we can now reuse the pseudorandomness properties of Gcry to “fool” a
second test (the first use of the pseudorandomness of Gcry was in our instantiation of
Theorem 1.2). Specifically, recall that Gcry is a cryptographic PRG was obtained relying
on the existence of one-way functions, and hence it can be shown to “fool” circuits of
arbitrary polynomial size (see Proposition 4.3). Now, consider an algorithm T that gets
input x ∈ {0, 1}n and checks whether or not the pseudorandom coins produced by G
can be used to replace the random coins of M at x.12 Since T can be implemented by
a circuit of size poly(nk), it is “fooled” by Gcry. And since for all x in the output-set
of Gcry it holds that T(x) = 1, it follows that for almost all x ∈ {0, 1}n it holds that
T(x) = 1. Hence, for almost all x ∈ {0, 1}n we can use G to replace the random coins of
M at x.

The foregoing argument extends naturally to any T-time samplable distribution. For
any T-time sampling algorithm S, we use Gcry with stretch m 7→ T(n), and define
M′(x) = M(S(Gcry(x))) (this generalizes the foregoing uniform case, which is obtained
using S(z) = z). The running time of M′ is still less than T′(m) = mk/ε, and therefore
the rest of the argument proceeds without change.

2.2 Proofs of Theorems 1.1 and 1.8

The proof of Theorem 1.1 in [DMO+20] follows a well-known strategy for constructing
PRGs, which dates back to [HIL+99; BSW03]. We now show how to simplify the analysis
of any such construction, while pointing out that our simpler analysis also applies to a
potentially-larger class of constructions.

In the well-known approach introduced by [HIL+99; BSW03], to construct a PRG
they first construct a pseudoentropy generator (PEG), which takes as input a small random
seed and outputs a string that appears to any efficient distinguisher as though it came
from a distribution with high min-entropy; and then apply a seeded extractor to this

12To be more accurate, T solves a promise-problem wherein the “yes” instances are x such that the gap
between the acceptance probability of M(x, ·) with random coins and the acceptance probability of M(x, ·)
with pseudorandom coins is less than 1/6, and “no” instances are those in which the said gap is at least
1/8. This problem can be solved probabilistically in time O(nk+2ε) (by sampling from the seeds of G and
from uniform coins for M and comparing the two estimates), and the probabilistic algorithm can then be
converted to a deterministic circuit of size poly(nk). See the proof of Theorem 4.13 for details.

11

pseudoentropic string. An extractor converts distributions with high statistical min-
entropy to distributions that are statistically close to uniform, and the main idea is that
we expect that a complexity-theoretic analogue of this statement will also hold: When
the input distribution to the extractor looks to any efficient distinguisher as though it has
high min-entropy, we intuitively expect its output distribution to look to any efficient
distinguisher as close to uniform. This yields a PRG of the form

G(s0, s1) = Ext (G0(s0), s1) , (2.1)

where G0 is a pseudoentropy generator and Ext is an extractor.
The main challenge in materializing this approach is that constructing PEGs for

standard notions of pseudoentropy (e.g., HILL pseudoentropy [HIL+99]) is challeng-
ing, and few constructions are known (see, e.g., [HIL+99; BSW03; STV01]). Doron et
al. [DMO+20] bypassed this obstacle by constructing a PEG for a weaker notion of pseu-
doentropy, called metric pseudoentropy;13 however, they then faced the problem of prov-
ing that extracting from a string with high metric pseudoentropy yields a pseudorandom
string, which required a lot of technical work. (In fact, to prove this they needed the
PEG to “fool” a stronger and non-standard class of distinguishers; see [DMO+20].)

We show that any construction as in Eq. (2.1) is a special case of a class of constructions
that can be analyzed in a different and significantly simpler way. To do so we follow an idea
of Sipser [Sip88], which was recently highlighted again in [GW14] and in a sequence of
follow-up works concerning quantified derandomization (see, e.g., [Tel17; Tel18; KL18;
CT19; CJW20]). Specifically, consider any potential distinguisher D : {0, 1}N → {0, 1} of
size O(N). We show that G from Eq. (2.1) is ε-pseudorandom for D, as follows:

1. Non-standard reduction to quantified derandomization: Let D̄ be a circuit that
accepts its input z iff Prr[Ext(z, r) ∈ D−1(1)] ∈ µ± ε/2, where µ = Prr[D(r) = 1].
Note that D̄ is not the circuit that is obtained by applying standard (extractor-
based) error-reduction to D, but rather a circuit that tests whether or not its input
causes the extractor to sample the event D−1(1) correctly, up to error ε/2. (In
particular, the circuit D̄ has the value µ hard-wired, but this does not cause a
problem since D̄ is only part of the analysis.)

The two crucial points are that D̄ accepts all but a tiny number of exceptional
inputs (since Ext samples any event correctly, with extremely high probability);
and that any (ε/2)-PRG G0 for D̄ yields an ε-PRG G(s, r) = Ext(G0(s), r) for D. 14

2. Solving the quantified derandomization problem: Thus, the only missing part
in the proof is to construct a generator G0 that is (ε/2)-pseudorandom for the
extremely-biased circuit D̄ (i.e., such that Prs[D̄(G(s)) = 1] ≥ 1− ε/2). This is
indeed a quantified derandomization problem, where the number of exceptional
inputs (of D̄) is dictated by the parameters of the extractor Ext.

Now, it follows from [BSW03] that metric PEGs are equivalent to PRGs that solve
the quantified derandomization problem (i.e., a metric PEG for min-entropy k is

13This means that for every potential distinguisher D : {0, 1}N → {0, 1} there exists some distribution w
over {0, 1}N with high entropy such that D does not distinguish between w and the output distribution of
G f

0 (for a precise definition see [DMO+20, Sec. 2]).
14To see this, call a string z good if Prr

[
Samp(z, r) ∈ D−1(1)

]
∈ µ± ε/2. Then, for any σ ∈ {0, 1} it holds

that Prs,r[Samp(G(s), r) ∈ D−1(σ)] ≤ Pr[G(s) is not good] + µ + ε/2 < ε.

12

equivalent to a PRG for distinguishers with at most 2k exceptional inputs, where
in both cases this parameter corresponds to the min-entropy of Ext; see Proposi-
tion 3.11). Thus, any PEG G0 is also a PRG for quantified derandomization with
the parameters induced by Ext, and therefore G is indeed an ε-PRG.

The argument above shows that the composition of a metric PEG with an extractor
as in Eq. (2.1) yields a PRG.15 We note that this argument applies to a potentially-larger
class of constructions, compared to the class of constructions that can be analyzed via
the pseudoentropy-based approach, since the known pseudoentropy-based analysis re-
quires the metric PEG to “fool” a stronger distinguisher class (see [DMO+20, Sec. 6]).

Applying the proof strategy in our setting. The alternative proof of Theorem 1.1 and
our proof of Theorem 1.8 follow by applying the strategy above with a very simple con-
struction of a PRG for quantified derandomization, which is presented in Section 5.1.
This simple construction is inspired by a technical idea from Sipser’s [Sip88] original pa-
per that introduced the approach of error-reduction and quantified derandomization,16

but to obtain the PRG that we need we instantiate the idea using more recent technical
tools, such as locally list-decodable error-correcting codes (see Section 5.1 for details).

As pointed out by Dean Doron, the latter construction is identical to a simplified
construction of a pseudoentropy generator for the “higher-error” setting in a recent
revision of [DMO+20]; and as pointed out by an anonymous reviewer, constructions of
HSGs using essentially the same ideas date back to [ACR98; MV05].

The main difference between the proofs of Theorem 1.1 and Theorem 1.8 boils down
to the construction of a circuit for the function D̄. In more detail, note that D̄ is a more
complicated function than D, and that we need to solve the quantified derandomization
problem for D̄ rather than for D; intuitively, the overhead in implementing D̄ as a circuit
yields an overhead in our derandomization time.

The straightforward way of implmenting D̄ yields derandomization either in cubic
time or in quartic time, depending on the specific hardness hypothesis (see Theorem 5.5).
An alternative way is to implement D̄ using randomness, which mitigates the overhead
and allows to obtain derandomization in quadratic time, at the cost of having to assume
that the underlying hard function is hard for randomized SVN circuits (this yields the
alternative proof of Theorem 1.1; see Theorem 5.6). For further details see Section 5.

New light on bypassing the hybrid argument. As mentioned in Section 1.4, proofs
of results such as Theorems 1.1 and 1.2 need to avoid a certain hybrid argument (see,
e.g., [BSW03; FSU+13]). In [BSW03, Sec 1.2] it was suggested that the proof strategy
of “extracting from a pseudoentropic string” allows to bypass this barrier, since the
analysis of a reconstruction procedure for a PEG might be easier than the analysis of a
reconstruction procedure for a PRG. (To be more accurate, [BSW03] suggested that the
connection of pseudoentropy to unpredictability might be closer than the connection of
pseudorandomness to unpredictability.)

15Since this holds for constructions that use a metric PEG, it also holds for constructions that use stronger
PEGs.

16The original paper did not use the term quantified derandomization, which was only coined later by
Goldreich and Wigderson [GW14].

13

Our main point is that in light of the above, the explanation can be reframed as
suggesting that the analysis of PRGs for quantified derandomization might allow avoiding a
hybrid argument more easily than the analysis of PRGs for standard derandomization.17

This suggestion is at least as plausible as their original suggestion, since any proof that
avoids a hybrid argument using the PEG-based approach also yields a proof that avoids
a hybrid argument using the quantified-derandomization-based approach. Moreover,
all the reconstruction procedures whose analyses avoid a hybrid argument in [BSW03;
DMO+20] and in our work can be viewed as solving a corresponding quantified deran-
domization problem.18

We also point out the fact that in all three works, the reconstruction procedures that
avoid a hybrid argument used “strong” resources (i.e., either used non-determinism or
referred only to space-bounded computation, disregarding time). Thus, it is useful to
recall that an additional potential explanation for the success so far might simply be that
the analysis of such “strong” reconstruction procedures is easier.

3 Preliminaries

3.1 Complexity classes

We first recall standard definitions of prBPT IME [T] and of DT IME [T]/s. Our rea-
son for formally stating these definitions is to clarify that we refer to problems solvable
with time and randomness complexity precisely T(n) (rather than O(T(n)) as in some
sources).

Definition 3.1. For a time-constructible function T : {0, 1}N → {0, 1}N, we say a promise
problem Π = (Y, N) is in prBPT IME [T] if there is a randomized RAM machine M such
that for every x ∈ {0, 1}∗, the machine runs in time T(|x|) and satisfies the following:

1. If x ∈ Y then Pr[M(x) = 1] ≥ 2/3.

2. If x ∈ N then Pr[M(x) = 0] ≥ 2/3.

Definition 3.2. We use DT IME [T]/s to denote the class of languages that are computable by
a deterministic RAM machine that on inputs of length n ∈ N runs in time T(n) and uses s(n)
bits of non-uniform advice.

We also define the following notion, which generalizes NP ∩ coNP to computa-
tional models other than Turing machines (e.g., to circuits, oracles machines, etc.). We
then extend this notion to a general form ofMA∩ coMA.

17This is consistent with the fact that the unconditionally-known constructions of PRGs for quantified
derandomization indeed avoid a hybrid argument; see, e.g., [GW14; Tel17].

18In the current work this fact is explicit, and in [DMO+20] this is because the reconstruction procedure
is part of a construction of a metric PEG, which is equivalent to a PRG for quantified derandomization.
In [BSW03] there is no direct construction of a PEG or of a PRG for quantified derandomization, but the
reconstruction procedures are ones that correspond to such construction: This is since the reconstruction
algorithms in [BSW03] transform a very biased distinguisher (of a pseudoentropic distribution w over {0, 1}n

from the uniform distribution un) into an algorithm that predicts a bit in the pseudoentropic distribution
with high success probability. (Indeed, the point is that the reconstruction algorithm only works for very
biased distinguishers; see [BSW03, Section 7] for further details.)

14

Definition 3.3 (non-deterministic unambiguous computation). We say that a non-deterministic
procedure R computes a function f non-deterministically and unambiguously if for every x ∈
{0, 1}∗ the following holds:

1. There exist non-deterministic choices for R such that R(x) = f (x).

2. For all non-deterministic choices for R it holds that R(x) ∈ { f (x),⊥}.

Definition 3.4 (SVN circuits). We say that f : {0, 1}N → {0, 1} can be computed by an

SVN circuit of size S if there exists a non-deterministic circuit D of size S that computes f
non-deterministically and unambiguously.

Definition 3.5 (randomized SVN circuits). We say that f can be computed by randomized

SVN circuits of size S if the there exists a randomized non-deterministic circuit D of size S such
that for every x ∈ {0, 1}N the following holds:

1. There exists w such that Pr[D(x, w) = f (x)] ≥ 2/3.

2. For every w it holds that Pr[D(x, w) ∈ { f (x),⊥}] ≥ 2/3.

3.2 Pseudorandomness, PRGs and HSGs

We recall the standard definition of pseudorandom generators and of hitting-set gener-
ators. For simplicity, when we do not specify the size of a distinguisher, we assume that
this size is identical to the number of output bits of the PRG.

Definition 3.6 (distinguisher). For a distribution w over {0, 1}n, we say that D : {0, 1}n →
{0, 1} distinguishes w from the uniform distribution with advantage ε > 0 (or that D is an
ε-distinguisher for w, in short) if

∣∣∣Prx∈{0,1}n [D(x) = 1]− Pr[D(w) = 1]
∣∣∣ ≥ ε. If D is not an

ε-distinguisher for w, we say that D is ε-fooled by w.

Definition 3.7 (pseudorandom generator). Let G be an algorithm that gets input 1n and a
random seed of length `(n) and outputs an n-bit string, and let F be a class of Boolean functions.
We say that G is a pseudorandom generator with error µ for C (or µ-PRG for C, in short) if for
every f ∈ F and sufficiently large n ∈N it holds that f is µ-fooled by G(1n, u`(n)).

Definition 3.8 (hitting-set generator). Let H be an algorithm that gets input 1n and a random
seed of length `(n) and outputs an n-bit string, and let F be a class of Boolean functions. We
say that H is a hitting-set generator for C with density µ > 0 (or µ-HSG for C, in short) if
for every f ∈ F and sufficiently large n ∈ N, either Prx∈{0,1}n [f (x) = 1] < µ or there exists
s ∈ {0, 1}`(n) such that f (H(s)) = 1.

For both PRGs and HSGs, when we omit an explicit mention of a class F (of potential
distinguishers) we implicitly refer to the class F of functions that are computable by
circuits of size that is identical to the number of input bits (i.e., of size S(n) = n).

We will also refer to “batch-computable” PRGs/HSGs, in which we do not measure
the computation time on a single seed, but rather the time that it takes to print the entire
output-set of the PRG (on all seeds). That is:

Definition 3.9 (batch-computable PRGs and HSGs). Let G be a µ-PRG (resp., µ-HSG) with
seed length ` for some class C. We say that G is batch-computable in time T if for every n ∈N,
the entire set of strings {G(1n, s) : s ∈ `(n)} can be printed in time T(n).

15

We also mention the notion of metric pseudoentropy, which was introduced by
Barak, Shaltiel, and Wigderson [BSW03]. The reason for doing so is that we want to
explicitly state and prove the claim, which was mentioned in Section 2.2, that PRGs for
very biased circuits are equivalent to metric PEGs. (The proof follows [BSW03], and one
direction of it was used in [DMO+20].)

Definition 3.10 (metric pseudoentropy). We say that a distribution w over {0, 1}n has ε-
metric-pseudoentropy at least k for circuits of size S if for every circuit D : {0, 1}n → {0, 1}
of size S there exists a distribution xD over {0, 1}n with min-entropy at least k such that∣∣∣Pr[D(xD) = 1]− Pr[D(w) = 1]

∣∣∣ < ε.

Proposition 3.11 (quantified derandomization is equivalent to metric pseudoentropy).
For any distribution w over {0, 1}n and every k ≤ n and ε > 0 the following holds:

1. If w has ε-metric-pseudoentropy at least k for circuits of size S, then for every δ > 0 there
does not exist a (δ · 2k)-quantified (ε + δ)-distinguisher for w.

2. If there does not exist a 2k-quantified ε-distinguisher for w, then w has ε-metric-pseudoentropy
at least k for circuits of size S.

Proof. Barak, Shaltiel and Wigderson [BSW03] proved that w has ε-metric-pseudoentropy
at least k for circuits of size S if and only if for every circuit D : {0, 1}n → {0, 1} of size
S and every σ ∈ {0, 1} it holds that Pr[D(w) = σ] ≤ Pr[D(un) = σ] · 2n−k + ε.

Now, assume that w has ε-metric-pseudoentropy at least k for circuits of size S, and
let D : {0, 1}n → {0, 1} be a size-S circuit that evaluates to some σ ∈ {0, 1} on at most
δ · 2k of its inputs. Using the result of [BSW03], it follows that Pr[D(w) = σ] ≤ δ + ε.
For the other direction, assume that there does not exist a 2k-quantified ε-distinguisher
of size S for w, and let D : {0, 1}n → {0, 1} be a size-S circuit. We claim that for
every σ ∈ {0, 1} it holds that Pr[D(w) = σ] ≤ Pr[D(un) = σ] · 2n−k + ε. To see this,
note that if |D−1(σ)| > 2k then the bound is trivial; and otherwise, it cannot be that
Pr[D(w) = σ] > Pr[D(un) = σ] · 2n−k + ε ≥ ε, since that would mean that D is a
2k-quantified ε-distinguisher of size S for w.

3.3 Well-known algorithmic constructions

In this section we will state several well-known algorithmic results that we will use in
our proofs: Namely, constructions of a hash function, of a randomness extractor, and of
an error-correcting code. First, we will need the following construction of a pairwise-
independent hash function that is computable in quasilinear time:

Theorem 3.12 (quasilinear-time pairwise-independent hashing). For every m, m′ ∈ N

there exists a family H ⊆
{
{0, 1}m → {0, 1}m′

}
of quasilinear-sized circuits such that for

every distinct x, x′ ∈ {0, 1}m it holds that Prh∈H[h(x) = h(x′)] ≤ 2−m′ .

Proof. We use convolution hashing (see [MNT93]): Any h = ha,b ∈ H is uniquely
defined by a pair a ∈ {0, 1}m+m′−1 and b ∈ {0, 1}m′ such that ha,b(x) = a ∗ x + b, where
the ith output bit of the convolution operator is (a ∗ x)i = ∑j∈[m] ai+j−1 · xi (mod 2).
Using the Fast Fourier Transform, the complexity of computing ha,b (for a fixed a, b) is
Õ(n) (see [CLR+09, Thm 30.8]).

16

In the current work we will need an averaging sampler, or equivalently a seeded
randomness extractor. As noted in [DMO+20], a construction of an such an extractor
in [TSZS06, Thm 5] can be analyzed with sub-constant min-entropy rates, and this is
indeed what we will need in the current work. We first define the corresponding notions,
then state the well-known equivalence between extractors and averaging samplers, and
finally state the result from [DMO+20], following [TSZS06].

Definition 3.13 (min-entropy). We say that a random variable x has min-entropy k if for every
x ∈ supp(x) is holds that Pr[x = x] ≤ 2−k.

Definition 3.14 (seeded extractor). A function Ext : [N]×{0, 1}` → [M] is a (k, δ)-extractor
if for every random variable x over [N] with min-entropy k it holds that Ext(x, u`) is δ-close in
statistical distance to um. The value ` is the seed length of the extractor.

Definition 3.15 (averaging samplers). A function f : {0, 1}n × {0, 1}t → {0, 1}m is an
averaging sampler with accuracy ε > 0 and error δ > 0 (or (ε, δ)-averaging sampler, in
short) if it satisfies the following. For every T ⊆ {0, 1}m, for all but a δ-fraction of the strings
x ∈ {0, 1}n it holds that Prz∈{0,1}t [f (x, z) ∈ T] = |T|/2m ± δ. We will also identify f with a
function Samp : {0, 1}n → ({0, 1}m)2t

in the natural way (i.e., Samp(x)i = f (x, i)).

Proposition 3.16 (seeded extractors are equivalent to averaging samplers; see, e.g., [Vad12,
Cor 6.24]). Let f : {0, 1}n × {0, 1}t → {0, 1}m. Then, the following two assertions hold:

1. If f is a (k, ε)-extractor, then f is an averaging sampler with accuracy ε and error δ =
2k−n.

2. If f is an averaging sampler with accuracy ε and error δ, then f is an (n− log(ε/δ), 2ε)-
extractor.

Theorem 3.17 (an extractor with near-logarithmic seed length; see [DMO+19, Lem 7.10],
following [TSZS06, Thm 5]). There exists a constant c ≥ 1 such that for every γ < 1/2 the
following holds. There exists a strong (k, ε)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m for
k = n1−γ and ε ≥ c · n−1/2+γ and d ≤ (1 + c · γ) · log(n) + c · log(1/ε) and m = 1

c · n1−2γ.
Moreover, the extractor is computable in linear time.

Finally, we will need a locally list-decodable code, and we will use the Reed-Muller
code. We first define this notion then state the result of [STV01], which asserts that the
RM code is indeed locally list-decodable.

Definition 3.18 (locally list-decodable code). We say that Enc : ΣN → ΣM is locally list-

decodable from agreement ρ with decoding circuit size s and output-list size L if there exists
a randomized oracle circuit Dec : [N]× [L] → Σ of size s such that following holds. For every
z ∈ ΣM that satisfies Pri∈[M][zi = Enc(x)i] for some x ∈ ΣN there exists a ∈ [L] such that for
every i ∈ [N] we have that Pr[Decz(i, a) = xi] ≥ 2/3, where the probability is over the internal
randomness of Dec.

Theorem 3.19 (the Reed-Muller code is locally list-decodable; see [STV01, Thm. 29]).

Let RM : F
(t+d

d)
q → F

qt

q be the t-variate Reed-Muller code of degree d over Fq. Then, for every
ρ ≥

√
8 · (d/q) it holds that RM is locally list-decodable from agreement ρ with decoding circuit

size poly(t, log(q), d, 1/ρ) and output-list size O(1/ρ).

17

Corollary 3.20 (a locally list-decodable code). For every constant η > 0 there exists a
constant η′ > 0 such that the following holds. For every m ∈ N and ρ = ρ(m) there exists a
code Enc : {0, 1}m → Σm̄, where |Σ| = O(mη′/ρ2) and m̄ = Oη′

(
m/ρ2/η′

)
, such that:

1. The code is computable in time Õ(m̄ · log(|Σ|)) = Õ(m/ρ2/η′).

2. The code is locally list-decodable from agreement ρ with decoding circuit size mη · (1/ρ)1/η′

and output list size O(1/ρ).

Proof. For η′ < η be sufficiently small, let t = 1/η′, let d = mη′ , and let q = (8/ρ2) · d.
We use the t-variate Reed-Muller code of degree d over Fq, whose input (of bits) is of
length (t+d

d) · log(q) ≥ (d/t)t · log(q) ≥ m and output (of elements in Fq) is of length

m̄ = qt = Oη′

(
m/ρ2/η′

)
. By Theorem 3.19, this code is locally list-decodable from

agreement ρ with decoding circuit size poly(t, log(q), d, 1/η) = poly(mη′/ρ) ≤ mη ·
(1/ρ)1/η′ (choosing η′ to be sufficiently small) and output list size O(1/ρ).

4 Derandomization with almost no slowdown

In this section we prove the results that were presented in Section 1.2, namely Theo-
rems 1.2, 1.4, and 1.7, and Proposition 1.6. The sole exception is that Theorem 1.3 is
proved separately in Section 6.

As mentioned in Section 2, one of our basic ideas will be to compose two PRGs that
are computable in near-linear time but have certain (respective) shortcomings, in order
to obtain one PRG that does not suffer from these shortcomings. In Section 4.1 we show
that the two foregoing PRGs exist, one of them unconditionally and the other under the
hypothesis that non-uniformly secure one-way functions exist. Then, in Section 4.2 we
show how to compose these PRGs in order to obtain a single (and better) PRG. Next, in
Section 4.3 we prove Theorem 1.2 as well as a converse direction, which asserts that if
PRGs with our parameters exist then there exists a hard problem as in the hypothesis of
Theorem 1.2 (i.e., we prove Proposition 1.6). And finally, in Section 4.4 we prove several
extensions and optimizations of Theorem 1.2, namely Theorems 1.4 and 1.7.

Throughout the section we will ignore rounding issues for simplicity, since rounding
issues do not significantly affect our proofs. Nevertheless, to avoid confusion, let us
state in advance that the notation DT IME [n]/T−1 will denote the class of functions
computable in linear time with

⌈
T−1(n)

⌉
bits of advice (i.e., the advice length is the

minimal m such that T(m) ≥ n).

4.1 Near-linear-time computable PRGs

As described in Section 2, we will compose a PRG that has a small seed (1.01) · log(n)
but short output length nε, with a PRG that has a relatively-long seed nε and a long
output length n. The first of the two PRGs can be constructed using an instantiation of
the classic Nisan-Wigderson PRG [NW94], with modifications a-la [RRV02]; this instan-
tiation yields the following result:

Theorem 4.1 (NW Generator for small output length). There exists a universal constant cnw
such that for all sufficiently small εnw, there exists an oracle machine G satisfies the following:

18

• When given input 1Nεnw and oracle access to a function f : {0, 1}log(N) → {0, 1}, the
machine G runs in time N1+cnw·

√
εnw and outputs 2`nw(N) strings in {0, 1}Nεnw , where

`nw(N) = (1 + cnw
√

εnw) · log N. 19

• There exists an oracle machine R that, when given input x ∈ {0, 1}log N and oracle access
to an (N−εnw)-distinguisher for G(1N , u`(N))

f and N1−√εnw/cnw bits of advice, runs in
time Ncnw·

√
εnw and outputs f (x).

The proof of Theorem 4.1 is essentially a different parametrization of well-known
proofs, and we provide a proof sketch in Appendix A for completeness. The second
of the two PRGs that we need is a near-linear time computable PRG with polynomial
stretch that “fools” linear-sized circuits. Such a PRG is not known to follow from stan-
dard hardness assumptions for non-uniform circuits, where the main challenge is ob-
taining a near-linear runtime in the output length (cf., the PRG of [BFN+93] has polyno-
mial stretch but runs in sub-exponential time).

Assumption 4.2 (near-linear-time computable PRG with arbitrary polynomial stretch).
For every ε > 0, there exists a (1/n)-PRG with seed length `(n) = nε that is computable in
time n1+ε.

We show that a PRG as in Assumption 4.2 exists, under the hypothesis that there
exist one-way functions secure against polynomial-sized circuits. The proof of this claim
amounts to using the classic construction of PRGs from one-way functions (OWFs) [HIL+99],
and then applying standard techniques to extend the expansion factor of PRGs (see,
e.g., [Gol01, Const. 3.3.2]). That is:

Proposition 4.3 (OWF ⇒ near-linear-time PRG). If there exists a polynomial-time com-
putable one way function that is secure against circuits of arbitrary polynomial size, then As-
sumption 4.2 is true. Moreover, for some negligible function neg and any polynomial p, the re-
sulting PRG is neg-pseudorandom for circuits of size p(n) (rather than only 1/n-pseudorandom
for circuits of linear size).

Proof Sketch. By [HIL+99], our hypothesis implies that for some negligible function
neg there exists an s-PRG for P/poly with seed length `(n) = n/2 that is computable in
polynomial time. In more detail, for some constant c ∈ N there exists G1 that extends
an m-bit seed to a 2m-bit output such that G1 is computable in time mc, and for all
k ∈ N, no mk-size circuit can distinguish between G1(Um) and U2m with advantage at
least neg(m).

Now, let ε > 0. Our PRG G gets input 1n and a seed x of length m = nε/2c < nε and
acts as follows:

• Let σ1 = x.

• For all i ∈ {2, 3, . . . , n/m}, we set σi to be the last m bits of G1(σi−1).

• The output of G(x) is the concatenation of all σ1, σ2, . . . , σn/m.

19For simplicity, we bounded both the seed length and the running time using the same parameter (i.e.,
cnw ·

√
εnw) such that the running time is precisely 2`nw(N). In the actual construction the seed length is

smaller than 1 + cnw ·
√

εnw (see Appendix A for details).

19

Note that G outputs n bits, and its running time is at most mc · n + O(n) ≤ n1+ε. A
standard hybrid argument (as in [Gol01, Thm 3.3.3]) shows that for every polynomial p
it holds that G is a (1/p(n))-PRG for circuits of size p(n).

When extending Theorem 1.2 to super-polynomial time functions T(n) = nω(1) we
will use a hypothesis stronger than Assumption 4.2; specifically, we will assume that
there exists a PRG with sub-exponential (rather than polynomial) stretch that is com-
putable in near-linear time. Analogously to Proposition 4.3, such a PRG follows from
the existence of a OWF that is secure against circuits of sub-exponential size.

Assumption 4.4 (near-linear-time computable PRG with sub-exponential stretch). For
some constant c there exists a (1/n)-PRG with seed length `(n) = (log(n))c that is computable
in time n · (log(n))c.

Proposition 4.5 (OWF against sub-exponential circuits ⇒ near-linear-time PRG with
sub-exponential stretch). If there exists a polynomial-time computable one-way function that
is secure against circuits of size 2nε

(for some constant ε > 0), then Assumption 4.4 is true.

We omit the proof of Proposition 4.5, since it is nearly identical to the proof of
Proposition 4.3.

4.2 Composing two near-linear time PRGs

We now show that the two PRGs that were mentioned in Section 4.1 can be composed to
obtain a single PRG that has both a short seed length and small running time. Moreover,
we will instantiate this PRG with parameters that are suitable for our application, which
involves very small truth-tables that are hard for algorithms with super-exponential
time complexity. Specifically, in the following result, our goal will be to “fool” the class
DT IME [O(n)]/A, and we will do so using a PRG with seed length 1.01 · log(A(n))
and running time A(n)1.01 · n; that is:

Proposition 4.6 (super-exponential hardness to near-optimal randomness by composing
two “low-cost” PRGs). There exists a universal constant c such that for every ε > 0 there exists
δ0 > 0 and δ2 > δ1 > 0 for which the following holds. For any time-constructible non-increasing
function A : N → N such that A(N) = N and A−1(n) = min {N ∈N : A(N) = n} is
time-constructible, assume that:

1. There exists a (1/n)-PRG with seed length A(n)δ0 and running time n · A(n)δ0 .

2. For TA−1(n) = 2(c·δ1)·n ·A−1
(

2(1−δ1)·n
)

, there exists L ∈ amort-DT IME [2δ2·n ·TA−1(n)]

such that L /∈ i.o.DT IME [TA−1]/2(1−δ1)·n+1. 20

Then, there exists an (n−δ0/2)-PRG for DT IME [O(n)]/A that on input 1n uses a seed of
length (1 + ε) · log(A(n)) and is batch-computable in time A(n)1+ε · n.

Proof. Let cnw be the constant from Theorem 4.1. Let δ1, δ0 > 0 be sufficiently small
constants to be specified later, and let c be a universal constant to be specified later. We
first describe the construction of the PRG G.

20Recall that the definition of amort-DT IME [T] appears in Definition 1.5.

20

Construction of the PRG G. It will be more convenient to denote the input to the
PRG by 1N rather than 1n. For N ∈ N, let n = A(N) and let ` = log(n)

1−δ1
(such that

2` = n1/(1−δ1)). By our hypothesis, the truth-table of L` (i.e., the restriction of the
hypothesized L to `-bit inputs) can be printed in time 2(1+c·δ1+δ2)·` · A−1

(
2(1−δ1)·`

)
≤

2(1+c·δ1+δ2)` · N, whereas L /∈ i.o.DT IME [2(c·δ1)·` · A−1(n)]/2`(1−δ1)+1.
Let Gcry be the (1/n)-PRG from our first hypothesis, and let Gnw be the oracle ma-

chine from Theorem 4.1, instantiated with parameter εnw = (1− δ1) · δ0. Note that for
Nnw = |L`| = n1/(1−δ1), when Gnw gets input 1Nεnw

nw and oracle access to L`, it uses a seed
of length `nw = (1 + cnw ·

√
εnw) · ` =

1+cnw·
√

εnw
1−δ1

· log n, and outputs a string of length
Nεnw

nw = 2εnw·` = n1/(1−δ1)·εnw = nδ0 .
On input 1N and given a seed w ∈ {0, 1}`nw , the machine G outputs

G(1N , w) = Gcry(1N , Gnw(1nδ0 , w)) ;

that is, G outputs the composition of Gnw and Gcry.

Analysis. Consider any F ∈ DT IME [O(N)]/A (to reflect the relationship with the
notation above more clearly, we denote the input length to the time function by N rather
than n). Assume towards a contradiction that there are infinitely many N ∈N such that
G(1N , u(1+ε)·log(A(N))) does not (N−δ0/2)-fool F on inputs of length N. 21

Let D be an algorithm that gets an input w ∈ {0, 1}m, computes n = m1/δ0 and
N = A−1(n), and outputs F(Gcry(1N , w)). Note that D can be computed on inputs of
length nδ0 in time O(N · nδ0) and with n bits of advice. Now, recall that Gcry is (1/N)-
pseudorandom for F, and therefore∣∣∣∣∣ E

x∈{0,1}N
[F(x)]− E

w∈{0,1}nδ0
[D(w)]

∣∣∣∣∣ ≤ 1/N . (1)

It follows that for any distribution w over {0, 1}nδ0 , if F on inputs of length N is an
(N−δ0/2)-distinguisher for Gcry(1N , w), then D on inputs of length nδ0 is a (N−δ0/2 −
1/N)-distinguisher for w. (This is since E

w∈{0,1}nδ0 [D(w)] is 1/N-close to Ex∈{0,1}N [F(x)],

but the latter is (N−δ0/2)-far from Gcry(1N , w).) In particular, there are infinitely many
n = A(N) such that D on inputs of length nδ0 is a (N−εnw)-distinguisher for GL`

nw(1nδ0 , u`nw).
Fix an n as above, and recall the notation ` = log(n)

1−δ1
. By Theorem 4.1, there is an

oracle machine R that computes L` when given oracle access to Dnδ0 . Plugging the time
and advice complexity of Dn, we obtain an algorithm that decides L` in time

O
(

Ncnw
√

εnw
nw · nδ0 · N

)
≤ 2(εnw+cnw

√
εnw)·` · A−1

(
2(1−δ1)·`

)
when given an advice string of length

N1−√εnw/cnw
nw + n = 2(1−

√
εnw/cnw)·` + 2(1−δ1)·` .

21Recall that the seed length of G for output length N is 1+cnw ·
√

εnw
1−δ1

· log(A(N)). We will set the parame-
ters below such that this equals (1 + ε) · log(A(N)).

21

Setting the parameters. The above shows that any distinguisher F can be converted
to an algorithm that decides L infinitely-often; we now set the parameters to obtain a
contradiction. We set δ0 = (cnw · δ1)

2/(1− δ1), which implies that
√

εnw/cnw = δ1 (since
we defined εnw = (1− δ1) · δ0). The number of advice bits is then bounded by 2(1−δ1)·`+1,
and the running time can be bounded by

2(δ
2
1 c2

nw+δ1c2
nw)·` · A−1

(
2(1−δ1)·`

)
≤ 2(2δ1c2

nw)·` · A−1
(

2(1−δ1)·`
)

,

which contradicts our assumption about L if we set the universal constant c in the
statement to be 2c2

nw. Therefore, G is an (N−δ0/2)-PRG for DT IME [O(N)]/A.
The seed length of G on input 1N is (1+ cnw ·

√
εnw)/(1− δ1) · log(A(N)) = (1+ δ1 ·

c2
nw)/(1− δ1) · log(A(N)), which is smaller than (1 + ε) · log(A(N)) if we set δ1 > 0 to

be sufficiently small. The batch-computation time of G on input 1N is bounded by the
time it takes to compute the truth-table of L`, the time it takes to batch-compute Gnw,
and the time it takes to apply Gcry to each output of Gnw; this is at most

O
(

2(1+c·δ1+δ2)` · A−1
(

2`(1−δ1)
)
+ 2(1+cnw·

√
εnw)·` · N · nδ0

)
≤ N ·O

(
n(1+c·δ1+δ2)/(1−δ1) + n(1+cnw·

√
εnw)/(1−δ1)+δ0

)
= N ·O

(
n(1+c·δ1+δ2)/(1−δ1) + n(1+δ1·c2

nw+(cnw·δ1)
2)/(1−δ1)

)
,

which is at most N · n1+ε = N · A(N)1+ε if δ1 and δ2 are sufficiently small.

4.3 Proof of Theorem 1.2 and of a converse direction

As explained in the introduction, our first observation towards proving Theorem 1.2 is
that in order to derandomize prBPT IME [T], we do not actually need to “fool” non-
uniform circuits, but only to “fool” the class DT IME [O(n)]/T−1. 22 Let us formally
prove this statement:

Proposition 4.7 (PRGs for “DT IME with bounded advice” suffice for derandomiza-
tion). For any time-constructible and increasing T : N → N, if there exists a (1/8)-PRG for
DT IME [O(n)]/T−1 with seed length `(n) that is batch-computable in time W(n), then

prBPT IME [T] ⊆ prDT IME
[
O
(

W(T(n)) + 2`(T(n)) · T(n)
)]

.

Proof. Let Π = (Y, N) ∈ prBPT IME [T] and let M be a randomized time-T algorithm
that solves Π. Given input x ∈ {0, 1}n, we invoke the PRG in our hypothesis, denoted G,
on input 1T(n) and all possible seeds to generate 2`(T(n)) outputs {G(1T(n), w)}w∈{0,1}`(T(n)) ,
and accept x if and only if

Pr
w∈{0,1}`(T(n))

[
Mx(G(1T(n), w)) = 1

]
> 1/2 ,

where Mx : {0, 1}T(|x|) → {0, 1} accepts its input r ∈ {0, 1}T(|x|) if and only if M accepts
x when using randomness r.

22Recall that we ignore rounding issues for simplicity, and that DT IME [O(n)]/T−1 is the class of
linear-time algorithms whose advice length is

⌈
T−1(n)

⌉
.

22

The foregoing algorithm runs in time O
(

W(T(n)) + 2`(T(n)) · T(n)
)

. To show its
correctness, assume towards a contradiction that it does not solve Π. Then, there are
infinitely many m ∈ N (we call them bad m’s) such that there exists xm ∈ {0, 1}m for
which Mxm is an (1/8)-distinguisher for G(1T(n), u`(T(n))).

Consider the following algorithm: Given x ∈ {0, 1}n, if n /∈ {T(m) : m ∈N}, ac-
cept; otherwise, when n = T(m) for m ∈ N, we denote the m-bit advice string by
am ∈ {0, 1}m, and output Mam(x). Note that this algorithm yields a function D ∈
DT IME [O(n)]/T−1, and that when given advice am = xm for all bad m ∈ N it holds
that D on inputs of length T(m) computes Mxm , and is therefore a (1/8)-distinguisher
for G(1T(m), u`(T(n))). This contradicts our hypothesis about G.

Note that in the foregoing proof we only relied on the fact that the PRG “fools”
DT IME [O(n)]/T−1 on inputs of length n = T(m) for some m ∈ N, rather than on all
input lengths. For simplicity we did not explicitly state this relaxed hypothesis.

We now prove Theorem 1.2. We actually prove the result in two parts, each of
which refers to a different parameter setting and asserts a stronger result. The first
part refers to probabilistic polynomial-time algorithms, and for this setting we show
derandomization in time n1+ε · T(n), which is better than the time bound of n · T(n)1+ε

stated in Theorem 1.2. 23 In more detail:

Theorem 4.8 (derandomization with almost no overhead for polynomial-time algo-
rithms). There exists a universal constant c > 1 such that for every ε > 0 there exist ρ > 0
and δ2 > δ1 > 0 for which the following holds. For any constant k ≥ 1, assume that
there exist one-way functions that are secure against polynomial-sized circuits, and that for
Tk(n) = 2(1−δ1)·kn+(c·δ1)·n there exists L ∈ amort-DT IME [2δ2·n · Tk(n)] such that L /∈
i.o.DT IME [Tk]/2(1−δ1)·n+1. Then, there exists an (n−ρ)-PRG for DT IME [O(n)]/n1/k

with seed length (1 + ε) · (1/k) · log(n) that is batch-computable in time n1+1/k+ε/k. Conse-
quently, we have that prBPT IME [nk] ⊆ prDT IME [nk+1+ε].

Proof. We will instantiate Proposition 4.6 with parameter value ε′ = ε/3, and denote by
δ′0, δ′1, δ′2 be the three constants from Proposition 4.6 corresponding to ε′. We set δ0 = δ′0,
and δ1 = δ′1, and δ2 = δ′2/2. Relying on Proposition 4.3 and on our hypothesis, there
exists a (1/n)-PRG that on input 1n uses a seed of length nδ0/k and is computable in
time n1+δ0/k.

Let A(N) =
⌈

N1/k⌉, and let A−1(n) = (n − 1)k + 1 = min {N ∈N : A(N) = n}.
Let f be the hard function from our hypothesis, and note that for every ` ∈ N, the
truth-table of L` can be printed in time

2` · 2(1−δ1)·k`+(c·δ1+δ2)·` < 2(1+cδ1+δ2)·` · 2 · A−1(2(1−δ1)·k`)

< 2(1+cδ1+2δ2)·` · A−1(2(1−δ1)·k`) ,

whereas L` cannot be computed in time 2(c·δ1)·` · 2(1−δ1)·k` > 2(c·δ1)·` · A−1(2(1−δ1)·k`) when
given at most 2(1−δ1)·`+1 bits of advice. Thus, relying on Proposition 4.6, we can invoke
the proposition with the parameter value ε′.

23Indeed, the difference between the two can be bridged by taking a sufficiently small ε > 0 that depends
on T (i.e., if T(n) = nk we set ε = ε′/k), but in this case the hardness hypothesis becomes less natural and
does not match Theorem 4.11 (i.e., the hypothesized hardness will be 2(1−δ)·kn for δ� 1/k).

23

We deduce that there exists an (n−δ0/2)-PRG for DT IME [O(n)]/A with seed length
`(n) = (1 + ε′) · log(A(n)) < (1 + 2ε′) · (1/k) · log(n) that is batch-computable in time
W(n) = A(n)1+ε′ · n < n1+1/k+2ε′/k. Using Proposition 4.7 with T(n) = nk, we deduce
that prBPT IME [nk] ⊆ prDT IME [O(nk+1+2ε′)] ⊂ prDT IME [nk+1+ε].

Next we turn to the setting of superpolynomial-time algorithms. Note that for such
algorithms there is no meaningful difference between derandomization in time T(n)1+ε

and n · T(n)1+ε (as we take ε > 0 to be arbitrarily small), and we will indeed show a de-
randomization with the former time bound. Moreover, for this setting the required gaps
between the upper-bound and the lower-bound in the hardness hypothesis (represented
by parameters δ1, δ2) will be universal, rather than having the required gaps depend on
the target derandomization overhead (represented by the parameter ε > 0). That is:

Theorem 4.9 (derandomization with almost no overhead for superpolynomial-time al-
gorithms). There exist universal constants c > 1 and δ2 > δ1 > 0 such that for every
ε > 0 and every k ≥ c/ε the following holds. Assume that there exist one-way functions
that are secure against polynomial-sized circuits, and that for Tk(n) = 2(1−δ1)·kn+(c·δ1)·n there
exists L ∈ amort-DT IME [2δ2·n · Tk] such that L /∈ i.o.DT IME [Tk]/2(1−δ1)·n+1. Then,
for any time-constructible and increasing T(n) = nω(1) we have prBPT IME [T(n)] ⊆
prDT IME [T(n)1+ε].

Proof. For a sufficiently large k ≥ 1, we instantiate Theorem 4.8 with parameter val-
ues ε = 1 and k + 1, to deduce that our hypothesis implies that prBPT IME [nk+1] ⊆
prDT IME [nk+3]. Fixing any T(n) = nω(1) as in our hypothesis and fixing any promise-
problem Π ∈ prBPT IME [T(n)], we define a padded promise-problem Π′ whose
“yes” instances are

{
x0T(|x|)1/k−|x| : x is a yes instance for Π

}
and whose “no” instances

are
{

x0T(|x|)1/k−|x| : x is a no instance for Π
}

. Note that Π′ ∈ prBPT IME [O(nk)] ⊆
prBPT IME [nk+1], and hence Π′ ⊆ prDT IME [O(nk+3)]. By a padding argument it
follows that Π ∈ DT IME [O(T(n)1+ 2

k+3)]. Assuming that k is sufficiently large such
that 2

k+3 < ε, we have that Π ∈ prDT IME [T(n)1+ε].

We now combine Theorems into a proof of Theorem 1.2. We will actually state and
prove a stronger version of Theorem 1.2, in which the assumed upper-bound on the
hard function is amortized, rather than in worst-case. That is:

Theorem 4.10 (Theorem 1.2, stronger version). For every ε > 0 there exists δ > 0 such
that the following holds. Let T : N → N be any time-constructible non-decreasing func-
tion, and let k = kε,T ≥ 1 be a sufficiently large constant. Assume that there exist one-
way functions that are secure against polynomial-sized circuits, and that there exists L ∈
amort-DT IME [2k·n] such that L /∈ i.o.DT IME [2(k−δ)·n]/2(1−δ)·n. Then, we have that
prBPT IME [T(n)] ⊆ prDT IME [n · T(n)1+ε].

Proof. Given ε > 0, let δ > 0 be sufficiently small. In particular, we assume that δ is
smaller than the values of δ1 and δ2 from Theorem 4.8 and of δ1 and δ2 from Theorem 4.9,
when the latter two theorems are instantiated with the parameter value ε/2.

Now, if T(n) = nk0 for some k0 ≥ 1, we let k = kT,ε = (1 − δ) · k0 + (c + 1) ·
δ > 1, where c > 1 is the universal constant from Theorem 4.8. Our hypothesis is
thus strong enough to instantiate Theorem 4.8 with parameter k0 and conclude that

24

prBPT IME [nk] ⊆ prDT IME [nk+1+ε/2]. If k ≤ k0 then we rely on the fact that k0 <
k/(1− δ) and on a padding argument to deduce that prBPT IME [nk0] ⊆ prBPT IME [nk/(1−δ)] ⊆
prDT IME [n k+1+ε/2

1−δ] ⊆ prDT IME [n
k0+1+ε/2

1−δ] ⊂ prDT IME [n · n(1+ε)·k0], where the last
containment relied on δ being sufficiently small. Otherwise, if k > k0, then we rely on
the fact that k < k0 + (c + 1) · δ0 to deduce that prBPT IME [nk0] ⊆ prBPT IME [nk] ⊆
prDT IME [nk+1+ε/2] ⊂ prDT IME [nk0+(c+1)·δ+1+ε/2] ⊂ prDT IME [nk0+1+ε], where
again the last containment relied on δ being sufficiently small.

For a super-polynomial T, let k0 ≥ c/ε be a sufficiently large constant (where c > 1
is the universal constant from Theorem 4.9) such that k = (1 − δ) · k0 + c · δ ≥ c/ε.
Our hypothesis suffices to instantiate Theorem 4.9 with parameter k0 and deduce that
prBPT IME [T(n)] ⊆ prDT IME [T(n)1+ε].

Finally, we show a partial inverse to Theorem 4.8. This partial inverse is the last
missing piece needed to prove Proposition 1.6 (i.e., the proposition follows from Theo-
rem 4.8 and from the partial inverse that we now prove). The proof is an adaptation of
the standard proof that a PRG yields a function that is hard for non-uniform circuits, for
our setting of a batch-computable PRG and distinguishers in “DT IME with advice”.

Theorem 4.11 (batch-computable HSG ⇒ hard function). For every ε, ε′ > 0 there exists
δ1 > 0 and δ2 ≥ 0 such that for any time-constructible T : N→N the following holds. Assume
that there exists a (1/2)-HSG for DT IME [O(n)]/T−1 with seed-length `(n) = (1 + ε) ·
log(T−1(n)) that is batch-computable in time T−1(n)1+ε′ · n. Then, for T′(`) = T(2(1−δ1)·`)
there exists L ∈ amort-DT IME [O(2δ2·` · T′(`))] such that L /∈ i.o.DT IME [T′]/2(1−δ1)·`.

Proof. For ε > 0, let δ1 = 1− 1/(1+ ε). Let H be the HSG from the hypothesis, and note
that for every n ∈ N it holds that 2`(T(n)) = n1+ε, which by our choice of parameters
implies that n = 2(1−δ1)·`(T(n)).

For ` ∈ N, let n ∈ N be the largest integer such that `(T(n)) = `.24 We define L
on inputs of length `+ 1 such that x /∈ L if and only if there exists a seed w ∈ {0, 1}`
such that H(1T(n), w) has prefix ` + 1. Since H is batch-computable in time TH(N) =
T−1(N)1+ε′ · N, it follows that L can be decided in time

TL(`) = O
(

n1+ε′ · T(n)
)
= O

(
2` · 2δ2·` · T(2(1−δ)·`)

)
,

where δ2 = ε′−ε
1+ε .

Now, assume towards a contradiction that there exists an algorithm AL that runs in
time T(2(1−δ1)·`) and ues 2(1−δ1)·` bits of advice that for infinitely many `’s decides L
correctly on inputs of length `+ 1 (we assume that AL always runs in time T(2(1−δ1)·`),
but we can only assume that it correctly computes L on infinitely-many input lengths).
We define a Boolean function D such that on inputs of length N = T(n) it holds that
D(x) = AL(x≤`+1), where ` = (1+ ε) · log(n) (we define D trivially on input lengths that
are not of the form T(n)). Our assumption about AL implies that D can be computed
in time O(T(2(1−δ1)·`)) = O(T(n)) = O(N) with at most 2(1−δ1)·` ≤ n = T−1(N) bits of
advice; that is, D ∈ DT IME [O(N)]/T−1. Also, for infinitely many input lengths N it
holds that D(H(1N , w)) = 0 for all w ∈ {0, 1}`, whereas Prx∈{0,1}N [D(x)] ≥ 1/2. This
contradicts our hypothesis that H is a (1/2)-HSG for DT IME [O(N)]/T−1.

24Note that such ` always exists since `(T(m)) ∈
[
(1 + ε) · log(T−1(T(m))), (1 + ε) · log(

⌈
T−1(T(m))

⌉
)
]
.

25

4.4 Extensions and optimizations of Theorem 1.2

In this section our goal is to optimize the time overhead of the derandomization in
Theorem 1.2. First, we improve the original deterministic time bound n · T(n)1+ε to the
time bound n1+ε · T(n). As mentioned in Section 4.3, for probabilistic polynomial-time
algorithms Theorem 4.8 already asserts such a time bound, and therefore it suffices to
show such an improvement for superpolynomial-time algorithms.

We will do so for probabilistic algorithms that run in at most sub-exponential time,
under the stronger hypothesis that there exists a one-way function that is secure against
sub-exponential sized circuits. Let us first set up one piece of notation: We say that a
function T : N → N is a valid γ′-sub-exponential function if T is time-constructible, in-
creasing, satisfies T(n) = 2nγ′

and T(n + 1) ≤ 2 · T(n), and if
⌈

T−1⌉ is time-constructible
and satisfies T−1(N) = N. Then, the result is the following:

Theorem 4.12 (optimizing the derandomization overhead for superpolynomial-time al-
gorithms). There exists a universal constant c > 1 such that for every ε > 0 there ex-
ist ρ > 0 and δ1, δ2 > 0 for which the following holds. Assume that for some γ > 0
there exist one-way functions that are secure against circuits of size 2nγ

, and let T : N →
N be a valid γ′-sub-exponential function, where γ′ depends on γ. For T′(n) = 2(c·δ1)·n ·
T(2(1−δ1)·n), assume that there exists L ∈ amort-DT IME [2δ2·n · T′(n)] such that L /∈
i.o.DT IME [T′]/2(1−δ1)·n+1. Then, there exists a (n−ρ)-PRG for DT IME [O(n)]/T−1 with
seed length (1+ ε) · log(T−1(n)) that is batch-computable in time T−1(n)1+ε · n. Consequently,
prBPT IME [T] ⊆ prDT IME [n1+ε · T(n)].

Proof. The proof is analogous to the proof of Theorem 4.8, and we define the parameters
ε′ = ε/3 and δ0, δ1, and δ2 in the exact same way. Relying on Proposition 4.5 and on
our hypothesis, there exists a (1/n)-PRG that on input 1n uses a seed of length log(n)c′

for some constant c′ and is computable in time Õ(n). We define A(n) =
⌈

T−1(n)
⌉

and
A−1(n) = T(n − 1) + 1, and note that A−1(n) = min {N : A(N) = n}, that A−1(n) ≤
T(n), and that A(n) ≤ log(n)c′ if the constant γ′ is sufficiently small.

Let L be the hard problem from our hypothesis, and note that the truth-table of L`

can be printed in time

2(1+c·δ1+δ2/2)·` · T(2(1−δ1)·`) = 2(1+c·δ1+δ2/2)·` ·
(

A−1(2(1−δ1)·` + 1) + 1
)

≤ 2(1+c·δ1+δ2/2)·` ·
(

2 · A−1(2(1−δ1)·`) + 3
)

< 2(1+c·δ1+δ2)·` · A−1(2(1−δ1)·`) ,

whereas no algorithm that uses at most 2(1−δ1)·`+1 bits of non-uniform advice can decide
L` in time 2(c·δ1)·n · T(2(1−δ1)·n) ≥ 2(c·δ1)·n · A−1(2(1−δ1)·n).

Using Proposition 4.6 with the parameter value ε′, there exists an (n−δ0/2)-PRG for
DT IME [O(n)]/A with seed length `(n) = (1+ ε′) · log(A(n)) < (1+ 2ε′) · log(T−1(n))
that is batch-computable in time W(n) = A(n)1+ε′ · n < T−1(n)1+2ε′ · n. Proposition 4.7
then implies that prBPT IME [T] ⊆ prDT IME [O(n1+2ε′) · T(n)] ⊂ prDT IME [n1+ε ·
T(n)].

Finally, we can further reduce the derandomization overhead for derandomization
that works in average-case. We will derandomize time-T algorithms in time nε · T(n) with

26

respect to all distributions that are samplable in time T(n), under a hypothesis similar
to that of Theorem 4.12. Moreover, for every L ∈ BPT IME [T] we construct a single
deterministic algorithm that works for all distributions that are samplable in time T. (The
result extends naturally to promise-problems, and we explain this after the proof.)

Theorem 4.13 (average-case derandomization with almost no overhead). There exists a
universal constant c > 1 such that for every ε > 0 there exist δ1, δ2 > 0 for which the following
holds. Let T(n) = nk for a constant k ≥ 1 . Assume that there exist one-way functions secure
against polynomial-sized circuits, and that for Tk(n) = 2(c·δ1)·n · 2(1−δ1)·(2k/ε)·n there exists L0 ∈
amort-DT IME [2δ2·n · Tk(n)] such that L0 /∈ i.o.DT IME [Tk]/2(1−δ1)·n+1. Then, for every
L ∈ BPT IME [T] there exists an algorithm A that runs in time nε · T(n) such that for every
distribution that can be sampled in time T(n) it holds that Prx∼D [A(x) = L(x)] = 1− neg(n),
where neg is a negligible function.

Proof. Let L ∈ BPT IME [T], let M be a probabilistic time-T machine that decides L,
and let S be a probabilistic algorithm that gets input 1n, runs in time T(n), and outputs
an n-bit string.

By our hypothesis and the “moreover” part of Proposition 4.3, for some negligible
function neg, there exists a neg-PRG Gcry for circuits of size poly(n) that on input
1T(n) uses a seed of length at most nε′ and is computable in time T(n) · nε′ , where
ε′ = ε/2. Let S̃ be an algorithm that gets input 1n and nε′ bits of randomness, maps
its randomness to a string of length T(n) using Gcry, and applies S to the latter string;
that is, S̃(1n, w) = S(1n, Gcry(1T(n), w)). Let M̃ be a machine that gets input w ∈ {0, 1}m,
maps it to a string x = S̃(1n, w) of length n = m1/ε′ , and outputs M(x). Observe that
on m-bit inputs M̃ runs in time O(m · T(m1/ε′)) < T(m2/ε′), and that on each input M̃
either outputs 0 with probability at least 2/3 or outputs 1 with probability at least 1/3.

Relying on Proposition 4.6 with the parameter ε′ and the function A(n) =
⌈

nε′/2k
⌉

,

and assuming that δ1, δ2 > 0 are sufficiently small, there exists a (n−Ω(1))-PRG for
DT IME [O(n)]/A, denoted G, that on inputs of length n uses a seed of length less
than `(n) = (3ε′/k) · log(n) and is batch-computable in time less than n1+3ε′/k. By a
proof analogous to the proof of Proposition 4.7, for every sufficiently large m ∈ N and
w ∈ {0, 1}m, the random coins of M̃ can be replaced by the distribution G(1N , u`(N)),

where N = 1T(m1/ε′), while changing the acceptance probability by at most 1/8.25

Now, observe that the random coins of M̃ on input w ∈ {0, 1}m are only used as
random coins for M on input x = S̃(1m1/ε′

, w). Therefore, for every sufficiently large
n ∈N and x ∈ {0, 1}n such that x = S̃(1n, w) for some w ∈ {0, 1}nε′

,26 the random coins
of M on input x can be replaced by the distribution G(1N , u`(N)), where N = T(n),
while changing the acceptance probability by at most 1/8.

While the latter claim was stated only for x = S̃(1n, w), we now show that this claim
actually holds for almost all x’s in the distribution S(1n, uT(n)). That is:

25To see this, assume that there exist infinitely many m ∈ N such that for some w ∈ {0, 1}m it holds
that M̃(w) is a (1/8)-distinguisher for G(1N , u`(N)). We define an algorithm D that gets input x ∈ {0, 1}n,

if n /∈
{

T(m1/ε′) : m ∈N
}

accepts, and otherwise given advice am computes M(am, x) (i.e., x is used as

randomness). The algorithm D runs in linear time, uses T−1(n)ε′ bits of advice, and (by our assumption)
(1/8)-distinguishes the output of G from uniform infinitely-often. This is a contradiction.

26We ignore rounding issues for simplicity. The more accurate statement here would be that x is the n-bit

prefix of S̃(1n, w) for some w ∈ {0, 1}dnε′ e.

27

Claim 4.13.1. With probability at least 1− neg(T(n)) over choice of x ∼ S(1n, uT(n)), the ran-
dom coins of M can be replaced by the distribution G(1N , u`(N)) while changing the acceptance
probability by less than 1/6.

Proof. For every x ∈ {0, 1}n, denote ν(x) = Pr[M(x, uN) = 1] and denote ν̃(x) =
Pr[M(x, G(1N , u`(N))) = 1]. Let YES ⊆ {0, 1}T(n) be the set of z’s such that x = S(1n, z)
satisfies |ν(x) − ν̃(x)| ≤ 1/8, and let NO ⊆ {0, 1}T(n) be the set of z’s such that x =
S(1n, z) satisfies |ν(x) − ν̃(x)| > 1/6. Note that a probabilistic algorithm D can solve
the promise-problem (YES, NO) in time O(T(n)),27, and therefore there exists a (deter-
ministic) circuit D′ : {0, 1}T(n) → {0, 1} of size O(T(n)2) that solves (YES, NO) (i.e., D′ is
obtained by hard-wiring fixed O(T(n)) random strings into D).

We already proved that when z = Gcry(1T(n), w) for some w ∈ {0, 1}nε′
, we have

that z ∈ YES; hence, in this case D′(z) = 1. Assume towards a contradiction that with
probability more than neg(T(n)) over choice of x = S(1n, uT(n)) it holds that |ν(x) −
ν̃(x)| > 1/6. Then, with probability more than neg(T(n)) over a uniform choice of
z ∈ {0, 1}T(n) it holds that z ∈ NO, in which case D′(z) = 0. Since Gcry is a neg-PRG for
circuits of arbitrary polynomial size, this is a contradiction. �

Our deterministic algorithm gets input x ∈ {0, 1}n, computes the output-set of G,
denoted R =

{
G(1N , w) : w ∈ {0, 1}`(N)

}
, computes M(x, r) for each r ∈ R, and out-

puts the majority value. Recalling that `(N) = (3ε′/k) · log(N), this algorithm runs
in time O(n3ε′ · T(n)), and by Claim 4.13.1, with probability at least 1− neg(N) over
choice of x ∼ S(1n, uT(n)) this algorithm outputs L(x). Finally, observe that this algo-
rithm does not depend on the sampling algorithm S, and therefore we obtained a single
deterministic algorithm that works for all distributions samplable in time T(n).

Remark: Extension to promise-problems. The argument above extends to promise-
problems (i.e., to prBPT IME [T] rather than only BPT IME [T]), under the additional
natural hypothesis that the probability that Dn violates the promise is at most neg(n).

To see this, note that the only place in the proof above where we relied on the
fact that M decides a language L ⊆ {0, 1}∗ was in the last paragraph. Specifically,
in the first part of the proof we showed that with probability at least 1− neg(n) over
choice of x ∼ S(1n, uT(n)), we can replace the random coins of M(x, ·) by pseudorandom
coins while changing the acceptance probability by less than 1/6. Now, relying on
the hypothesis that for every input x ∈ {0, 1}∗ the acceptance probability of M(x, ·)
is either at least 2/3 or at most 1/3, we deduced that the machine obtained by using
pseudorandom coins still accepts every x ∈ L and rejects every x /∈ L.

Now, if we replace L by a promise-problem Π = (YES, NO) and assume that with
probability at least 1− neg(n) over x ∼ S(1n, uT(n)) it holds that x does not violate the
promise, then with probability at least 1− neg(n) it holds that replacing the random
coins by pseudorandom ones changes the acceptance probability by less than 1/6 and
that the acceptance probability of M(x, ·) is either at least 2/3 or at most 1/3. In this
case, the deterministic machine outputs the correct decision at x.

27Specifically, D that gets input z ∈ {0, 1}T(n), maps it to x = S(1n, z), estimates both ν(x) and ν̃(x) up
to accuracy 0.01 with confidence 2/3, and accepts if and only if |ν(x)− ν̃(x)| < 1/7.

28

5 Fast derandomization via a simple paradigm

In this section we present our alternative proof of Theorem 1.1, as well as prove The-
orem 1.8 and our conditional near-optimal quantified derandomization. In Section 5.1
we present a construction of a very simple reconstructive PRG for quantified deran-
domization, which was mentioned in Section 2.2. In Section 5.2 we explain how our
proofs follow using this PRG, in high-level. Then, in Section 5.3 prove our results re-
garding quantified derandomization, and in Section 5.4 we prove Theorems 1.1 and 1.8.
Throughout this section we ignore rounding issues for simplicity (this does not mean-
ingfully affect our proofs).

5.1 A reconstructive PRG for quantified derandomization

We first describe the simple PRG construction, in high level, and then provide the full
proof. As mentioned in Section 2.2, this construction is inspired by a technical idea of
Sipser [Sip88], and it is identical to a simplified construction of a PEG for the “higher-
error” setting in a recent revision of [DMO+20], and uses very similar ideas to ones used
in [ACR98; MV05].

5.1.1 A high-level description of the construction

We first explain how to construct a hitting-set generator (HSG) with seed length ε ·
log(N) that “hits” any distinguisher D : {0, 1}N → {0, 1} of size N that accepts all but
at most 2N1−ε

of its inputs; later on we will explain how to easily adapt the construction
to obtain a PRG that “fools” all distinguishers with such extreme bias (see below). Our
HSG and PRG will be reconstructive, and their reconstruction procedure will be very
efficient but will use use non-determinism;28 thus, they should be compared with known
reconstructive PRGs (e.g., [NW94; Uma03]), whose reconstruction procedure does not
use non-determinism but has a large polynomial overhead.

The most naive construction of a HSG would be an algorithm H that evaluates f
at inputs that are indexed by its random seed. Known constructions are, of course,
more complicated, first encoding the truth-table of f by some useful encoding, and then
using the seed in a clever way to choose bits from this encoding (see, e.g., [Nis91; NW94;
RRV02; TSZS06; SU05; Uma03]). In contrast, in the current context we show that the naive
construction suffices: The algorithm H gets a seed s of length ε · log(N) and access to
a function f over (1 + ε) · log(N) bits, partitions the truth-table of f into Nε parts of
length N, and outputs the corresponding part fs that is indexed by s.

Why does this naive construction work? Assume that a distinguisher D rejects all
parts fs of the truth-table of f , and recall that D rejects at most 2N1−ε

strings. The
intuition is that we can describe f information-theoretically by |D| + Nε · log(|D−1(0)|) =
O(N) = o(| f |) bits, using the description of D and the Nε indices of the parts fs in the set
D−1(0). We now show how to leverage this information-theoretic argument to obtain an
efficient non-deterministic circuit that computes f (i.e., gets input x ∈ {0, 1}(1+ε)·log(N) and
outputs f (x)), which would contradict the hypothesized hardness of f .

28Thus, when instantiating this PRG with a function f that is hard for non-deterministic circuits, we
deduce that the PRG “fools” all potential distinguishers D. We also comment that the reconstruction pro-
cedure actually yields an SVN circuit (rather than an arbtirary non-deterministic circuit), but for simplicity
we ignore this fact in the high-level overview.

29

Since |D−1(0)| ≤ 2N1−ε
, there exists a quasilinear-time computable hash function

h : {0, 1}N → {0, 1}N1−ε/2
that maps every distinct y, y′ ∈ D−1(0) to different images.29

Fixing such a function h, we construct a circuit C f that has “hard-coded” the Nε values
{zs = h(fs)}s.

Given an input x, the circuit C f non-deterministically constructs the relevant part fs of f
that contains the location indexed by x (see below) and outputs the corresponding bit of
fs. Specifically, denoting by s the seed such that fs contains the location indexed by x, the
circuit C f non-deterministically guesses a string f ′s , verifies that h(f ′s) equals the hard-
coded value zs and that D(f ′s) = 0, and if these two conditions hold then it outputs the
relevant location in f ′s ; otherwise, it outputs ⊥. (Indeed, this non-deterministic circuit
never outputs a wrong answer.) This circuit is of size |C f | = O(N1+ε/2), and correctly
computes f (since the only string f ′s ∈ {0, 1}N such that D(f ′s) = 0 and h(f ′s) = zs is
f ′s = fs). Thus, if f (whose truth-table is of size N1+ε) is hard for such circuits, then the
HSG “hits” D.

Extending the HSG to a PRG. Let us now show how to construct a PRG for all distin-
guishers D that that evaluate to some σ ∈ {0, 1} on all but 2N1−ε

of their inputs. Note
that the required pseudorandomness property is that any such D will evaluate to σ on
almost all of the outputs of the PRG; thus, if D violates this property (i.e., D is indeed a
distinguisher), then we know that D evaluates to ¬σ on a noticeable fraction (say, .01) of
the output-set of the PRG. This is a weaker property than in the HSG setting, in which
we could assume that D evaluates to 0 on all of the pseudorandom strings.

Recall that in our reconstruction algorithm for the HSG, after guessing f ′s we check
that D(f ′s) = ¬σ, and otherwise output ⊥. Applying the same approach to the current
setting, we will only be able to compute f on a .01-fraction of the inputs, rather than
on all inputs; that is, we reconstruct a “corrupted” version of f , denoted f̃ . To solve
this problem we simply add an initial step of encoding f by an arbitrary locally list-
decodable error-correcting code that is computable in near-linear time (e.g., the Reed-
Muller code, as in [STV01]; see Theorem 3.19). Then, our actual reconstruction algorithm
runs the local list-decoding procedure of this code, while answering its queries using
the original reconstruction algorithm to simulate access to the “corrupted” version f̃ .

5.1.2 The construction itself

Recall that standard PRGs are pseudorandom for distinguishers, which in our setting are
modeled as non-uniform circuits. We now wish to construct a PRG for quantified deran-
domization, or in other words for the special case of distinguishers that are extremely
biased. To do so we first define such distinguishers, as follows:

Definition 5.1 (quantified distinguisher). Let w be a distribution over {0, 1}N and let B =
B(N). We say that a circuit D : {0, 1}N → {0, 1} is a B-quanti�ed ρ-distinguisher for w if for
some σ ∈ {0, 1} it holds that

∣∣∣ {x : D(x) = σ}
∣∣∣ ≤ B and Pr[D(w) = σ] ≥ ρ.

Our PRG will be reconstructive. Its reconstruction procedure will be modeled as a
non-deterministic oracle machine R that gets oracle access to a quantified distinguisher

29To be more accurate, the function h will be a standard quasilinear-time computable pairwise-
independent hash function (see Theorem 3.12), and will satisfy a weaker property that suffices for our
purposes: For every s ∈ [Nε], there does not exist y ∈ D−1(0) \ { fs} such that h(y) = h(fs).

30

D as well as a bounded number of non-uniform advice bits, and is able to compute the
function non-deterministically and unambiguously (see Definition 3.3). In more detail:

Proposition 5.2 (a reconstructive PRG for quantified derandomization). For every α > 0
there exists µ > 0 such that for every two constants β, γ > 0 the following holds. There exists
an oracle machine G that, when given input 1N and a random seed of length ` = (α + β) · n
where n = log(N) and oracle access to f : {0, 1}(1+β)·n → {0, 1}, satisfies the following:

1. The machine G runs in time Õ(N1+α+β) and outputs N bits.

2. There exists an oracle machine R that, when given oracle access to a 2N1−γ
-biased (N−µ)-

distinguisher D for G f (1N , u`), computes f non-deterministically and unambiguously in
time N1+α, using Nα oracle queries to D and O(N + N1+β+(2α−γ)) bits of advice.

Proof. We identify f with its truth-table f ∈ {0, 1}N1+β
.

The generator G. For sufficiently small constants η > µ > 0, let f̄ = Enc(f) where Enc
is the code from Corollary 3.20, instantiated with m = | f | and ρ = N−µ and the constant
η > 0; note that f̄ ∈ {0, 1}N̄·log(|Σ|), where N̄ = O

(
| f | · N2µ/η′

)
< N1+β+α (relying on a

sufficiently small choice of µ) and |Σ| = O
(
| f |η′ · N2µ

)
< N(1+β)·η .

For every s ∈
[
| f̄ |/N

]
, let f̄s ∈ {0, 1}N be the sth consecutive substring of length

N of f̄ (i.e., for i ∈ [n] it holds that the ith bit of f̄s equals f̄(s−1)·N+i). The machine
G gets s ∈ [| f̄ |/N] as a seed and outputs f̄s. Note that | f̄ |/N < Nβ+α, and therefore
|s| < (β + α) · log(N). Also note that the running-time of G is dominated by the time it
takes to compute f̄ , which is Õ(N1+β+α).

Reconstructing a corrupt version of f̄ . For ρ = N−µ, let D : {0, 1}N → {0, 1} be a
2N1−γ

-quantified ρ-distinguisher for G f , let σ ∈ {0, 1} be the rare output of D, and
denote Sσ = D−1(σ). We first describe an algorithm R̃D that computes a function
f̃ ∈ ΣN̄ that agrees with f̄ ∈ ΣN̄ on at least a ρ-fraction of their inputs. To do so, let
H ⊆

{
{0, 1}N → {0, 1}N1−γ+α

}
be the family of quasilinear-time computable functions

from Theorem 3.12 (instantiated with parameters m = N and m′ = mγ−α). For every
fixed s ∈ [N2β] we have that

Pr
h∈H

[
∃g ∈ Sσ : h(f̄s) = h(g)

]
≤ |Sσ| · 2−N1−γ+α ≤ 2−N1−γ+α+N1−γ

,

where the last inequality relied on the fact that |Sσ| ≤ 2N1−γ
. By a union-bound, there

exists some h ∈ H such that for every s ∈ [Nβ+α] there does not exist g ∈ Sσ \
{

f̄s
}

for
which h(f̄s) = h(g). Let us now fix such an h.

The algorithm R̃ gets as advice the bit σ, the description of h, and all the Nβ+α

strings
{

h(f̄s) : s ∈ [Nβ+α]
}

, which constitute O
(

N + N1+β+2α−γ
)

bits of advice. Given
input x ∈ [N̄], the algorithm:

1. Non-deterministically guesses g ∈ {0, 1}N .

2. Queries D on input g, and outputs ⊥ unless D(g) = σ.

31

3. For the appropriate s (such that x indexes a location in f̄s), the algorithm verifies
that h(g) = h(f̄s), and otherwise outputs ⊥.

4. Outputs the symbol of g that appears in the location indexed by x.

Note that the running-time of R̃ is dominated by the computation of h, and is thus
bounded by Õ(N). We now claim that there exists a set T ⊆ [N̄] of density at least ρ
such that for every x ∈ T it holds that R̃(x) non-deterministically computes f̄ (x).30

To see this, let S =
{

s ∈ [Nβ+α] : D(f̄s) 6= σ
}

, and recall that (by the properties of
D) we have that |S|/Nβ+α ≥ ρ. By the properties of h, for every s ∈ S there does
not exist g ∈ D−1(¬σ) \

{
f̄s
}

such that h(g) = h(f̄s). Hence, by the construction of
R̃ above, for every x that indexes a location in f̄s for some s ∈ S we have that R̃(x)
non-deterministically computes f̄ (x).31 We define the set T ⊆ [N̄] to consist of all x that
index locations in f̄s for some s ∈ S, and indeed we have that |T|/N̄ ≥ ρ.

Reconstructing f . We now run the local list-decoding algorithm for f from Corol-
lary 3.20, denoted Dec, while giving it oracle access to R̃. The underlying oracle machine
runs in time Nη · (1/ρ)1/η′ < Nα/2 (relying on a sufficiently small choice of η, µ > 0)
and uses log(O(1/ρ)) < log(N) bits of non-uniform advice.

Answering the queries to R̃ in the latter oracle machine with the actual oracle ma-
chine for R̃, we obtain a randomized procedure that non-deterministically computes f
in time Nα/2 · Õ(N) = Õ(N1+α/2) that makes at most Nα oracle queries to D and uses

O(N + N1+β+2α−γ + log(N)) = O(N + N1+β+2α−γ)

bits of non-uniform advice (that depends on D and on f). Using naive error-reduction
and fixing an appropriate random string, we obtain an algorithm R that computes f
non-deterministically, unambiguously and without randomness. The running-time of R
is Õ(N1+α/2) < N1+α and the number of advice bits is still O(N + N1+β+2α−γ).

Remark: Comparison to Kolmogorov-based derandomization. The proof of Proposi-
tion 5.2 can be viewed as a “constructive” (i.e., efficient) variant of the classical technique
of derandomizing probabilistic algorithms using strings with high Kolmogorov complexity
(see, e.g., [LV08, Thm 7.3.5]). To see this, recall that for any D̄ : {0, 1}N̄ → of size N̄.99

that accepts all but 2N̄.99
of its inputs, and any string f ∈ {0, 1}N̄ with maximal Kol-

mogorov complexity N̄, we have that D̄(f) = 1. This is the case since otherwise the
string f would have a description of length O(N̄.99), consisting of the circuit D̄ along
with the index i ∈ {0, 1}.99·N̄ of f inside the set D̄−1(0). In fact, the argument works
even when f only has high time-bounded Kolmogorov complexity.32

In the reduction in our argument, instead of only showing that f has small time-
bounded Kolmogorov complexity, we show that f has small circuit complexity; in other
words, we show that f can be computed in a “strongly-explicit” manner by an SVN

30By “non-deterministically computes f (x)” we mean that for some non-deterministic choices R̃(x) =
f (x), whereas for all non-deterministic choices R̃(x) ∈

{
f̄ (x),⊥

}
.

31For simplicity, we ignore rounding issues at this point, and assume that blocks of size N in f̄ do not
truncate blocks of size log(|Σ|) < (1 + β) · η · log(N).

32Recall that the time-bounded Kolmogorov complexity of f ∈ {0, 1}∗, defined by Levin, is the minimum
over 〈M〉+ log(t) such that 〈M〉 is the description of a machine that prints f in time t.

32

circuit that gets as input an index x ∈ [log(| f |)] and outputs fx. We note that while
the analysis of this argument relies only on classical notions such as hash functions and
error-reduction, the instantiation above uses technical constructions that are more recent
than in Sipser’s time, such as very efficient samplers and hash functions.

5.2 High-level description of the proofs

Let us now describe the proofs of our results in the current section, in an informal and
high-level way. Our goal is to derandomize algorithms that run in time N = T(n),
and to do so we will use a PRG that “fools” circuits D : {0, 1}N → {0, 1} of size N.
Similarly to Section 2, we denote by ε > 0 a very small constant, and construct ε-PRGs
(the extension to n−.01-PRGs is straightforward).

The proof of our near-optimal quantified derandomization follows easily from Propo-
sition 5.2. Specifically, for this proof we only need to consider distinguishers that eval-
uate to some σ ∈ {0, 1} on all but 2N1−ε

of their inputs, and we instantiate the PRG
from Proposition 5.2 with a function f of truth-table size | f | = N1+ε that is hard for
SVN circuits of size O(N1+ε/2). Our algorithm for quantified derandomization first
computes the truth-table of f , which can be done in time N1+O(ε) by our hypothesis,
and then encodes it using a locally-list-decodable code that is computable in near-linear
time Õ(N1+ε); then it enumerates over the N-bit consecutive parts of the encoding of f
(which constitute the output-set of the PRG), and outputs the majority of the evaluations
of D on these parts. The running-time of this algorithm is at most N1+O(ε).

To prove Theorem 1.8 we need to consider all distinguishers D : {0, 1}N → {0, 1} of
size N, rather than only very biased distinguishers. Let Samp : {0, 1}N̄×{0, 1}(1+O(ε))·log(N̄) →
{0, 1}N be a linear-time-computable averaging sampler with accuracy 1/10 and confi-
dence 2N̄1−ε−N̄ , where N̄ = N1+O(ε).33 For any potential distinguisher D, denote the (ac-
tual) acceptance probability of D by µ = Prr[D(r) = 1], and define D̄ : {0, 1}N̄ → {0, 1}
such that D̄(z) = 1 if and only if Prr

[
Samp(z, r) ∈ D−1(1)

]
∈ µ ± (1/10) (where the

1/10 term corresponds to the error of the sampler). We stress that our algorithm does
not actually construct D̄ (i.e., D̄ is a mental experiment for the analysis), and therefore
there is no problem to “hard-wire” µ into D̄. Note that D̄ is of size N2+O(ε) and accepts
all but 2N̄1−ε

of its N̄-bit inputs. By a standard analysis, any .01-PRG G0 for D̄ yields a
(1/9)-PRG G(s, r) = Samp(G0(s), r) for D. 34 Therefore, we just need a .01-PRG for D̄.

We then use the PRG from Proposition 5.2 with parameters as follows. We fix a
function f of truth-table size N2+O(ε), and assume that it is hard for SVN circuits of
size | f |1−ε. The derandomization algorithm computes the truth-table of f , encodes it
with the error-correcting code to obtain a codeword f̄ , and outputs the majority of
the evaluations of D on the set

{
Samp(f̄s, r)

}
s,r. This set is of size N2+O(ε) (since each

of the sets of values for s and for r is of size N1+O(ε)), evaluating D on the set takes
time N3+O(ε). Thus, we obtain derandomization in either cubic time or quartic time,
depending on the time that it takes to compute the truth-table of f (this corresponds to
the two different result statements in Theorem 1.8).

33As noted in [DMO+20], such a construction follows by re-analyzing a well-known construction
of [TSZS06, Thm 5] for the min-entropy value N̄1−ε; see Theorem 3.17 for a formal statement.

34To see this, call a string z good if Prr
[
Samp(z, r) ∈ D−1(1)

]
∈ µ± (1/10). Then, for any σ ∈ {0, 1} it

holds that Prs,r[Samp(G(s), r) ∈ D−1(σ)] ≤ Pr[G(s) is not good] + µ + .01 < µ + 1/9.

33

Finally, to prove Theorem 1.1, we want to reduce the running time in the proof of
Theorem 1.8 from cubic (or quartic) to quadratic. The main bottleneck is that the circuit
D̄ is of size more than N2. 35 To decrease the size of D̄, recall that in the context of Theo-
rem 1.1 we assume hardness for randomized non-deterministic circuits, and therefore we
are allowed to use randomness in the definition of D̄ (i.e., the reconstruction procedure
from Proposition 5.2 will transform a randomized circuit D̄ into a randomized SVN
circuit that computes the hard function).

Thus, we define D̄ in a way that utilizes this randomness in order to perform error-
reduction more efficiently. Specifically, instead of defining D̄ such that it computes
ν(z) = Prr[D(Samp(z, r)) = 1] exactly, the circuit D̄ estimates ν(z) up to error .01 using
random sampling of r’s, and accepts if and only if its estimate ν̃(z) is in the interval
µ± .01. This handles the main bottleneck in the proof, since the resulting circuit D̄ is
now of size N1+O(ε), and therefore we can “fool” it using a hard function f whose truth-
table is only of size N1+O(ε). Overall, since f is computable in exponential time (in its
input length), we can compute its truth-table in time N2+O(ε), encode it using the code
(in time N1+O(ε)), and output the majority of evaluations of D on the set

{
Samp(f̄s, r)

}
r,s,

which is now of size N1+O(ε) (since f̄ is of size N1+O(ε) and hence there are at most NO(ε)

values for s). This yields derandomization with quadratic overhead.

5.3 Near-optimal quantified derandomization

Relying on Proposition 5.2, we now present two very efficient solutions for the quantified
derandomization problem: The first is an unconditional construction of a non-uniform
circuit family (i.e., a non-explicit PRG), and the second is a conditional construction of
an algorithm that solves the problem, where the hypothesis refers to the existence of a
sufficiently hard “batch-computable” function (see below). Specifically, we first show
that, unconditionally, there exist a non-uniform PRG for quantified derandomization of
circuits with at most 2N1−γ

exceptional inputs that has seed length γ · log(N).

Theorem 5.3 (non-explicit PRG with short seed). For every γ > 0 there exist µ > 0 such
that the following holds. For every N ∈ N there exist Nγ strings w1, ..., wNγ ∈ {0, 1}N such
that for every circuit D : {0, 1}N → {0, 1} of size N that evaluates to some σ ∈ {0, 1} on all
but 2N1−γ

it holds that Pri∈[Nγ] [D(wi) = σ] ≥ 1− N−µ.

Proof. Let α = γ/4 and β = 3γ/4. By a standard counting argument, there exists a
function f whose truth-table is of size N1+β that cannot be computed by SVN circuits
of size N1+β−γ/2. The strings w1, ..., wNγ will be the output-set of the machine G from
Proposition 5.2, when the latter is instantiated with f as the hard function and with
parameters α = γ/4 and β as above. Note that the output-set of G is indeed of size
N(α+β) = Nγ. The claim follows by noting that there does not exist a 2N1−γ

-biased
(N−µ)-distinguisher for G, otherwise f could be computed by an SVN circuit of size
O
(

N1+β+(2α−γ) + N1+α
)
= O

(
N1+β−γ/2).

35To see why this is a problem, observe that “fooling” D̄ using our approach requires a function whose
truth-table is of size more than |D̄| ≥ N2. Thus, the PRG G0 will have seed length at least log(N), and the
final PRG (i.e., G0 composed with Samp) will have seed length at least 2 · log(N). Evaluating D at each of
the N2 outputs will take time at least N3.

34

Our second result asserts that if there exists a function whose entire truth-table on
n-bit inputs can be printed in time 2(1.01)·n, but that cannot be computed (on an input-
by-input basis) by SVN circuits of size 2.99·n, then we can solve the quantified deran-
domization problem with near-linear time overhead.

Theorem 5.4 (near-optimal quantified derandomization). For every γ > 0 there exists
µ > 0 such that for every δ > 0 the following holds. Assume that there exists L ∈ DT IME [2n]
such that for every n ∈N it holds that the truth-table of L can be printed in time 2(1+δ)·n, but L
cannot be computed by SVN circuits of size 2(1−γ/4)·n. Then, there exists an (N−µ)-PRG with
seed length γ · log(N) for the class of circuits of linear size that evaluate to some σ ∈ {0, 1} on
all but 2N1−γ

of their inputs such that the entire output-set of the PRG can be printed in time
N(1+γ)·(1+δ).

The conclusion of Theorem 5.4 implies that randomized time-T algorithms that err
on at most 2T(n)1−γ

of their random choices can be deterministically simulated in time
O
(

T(n)(1+γ)·(1+δ) + T(n)1+γ
)
< T(n)1+2γ+δ. (This follows by the standard reduction of

prBPP to the circuit acceptance probability problem; see, e.g., [Vad12, Corollary 2.31]
or [Gol08, Exercise 6.14].)

Proof of Theorem 5.4. Given D : {0, 1}N → {0, 1}, let α = γ/4, let β = 3γ/4, and let f
be a function as in our hypothesis whose truth-table is of size N1+β. We instantiate the
PRG from Proposition 5.2 with these parameters and with f as the hard function, and
claim that D evaluates to σ over 1− N−µ of the outputs of the PRG (where µ is as in
Proposition 5.2). This holds since otherwise D is a 2N1−γ

-biased (N−µ)-distinguisher for
the PRG, and hence f can be computed by an SVN circuit of size

O
(

N1+α + N1+β+(2α−γ)
)
= O

(
N1+β−γ/2

)
< N(1+β)·(1−γ/4) ,

which is a contradiction.
To print the output-set of the PRG, we first construct the truth-table of f , which can

be done in time N(1+β)·(1+δ) < N(1+γ)·(1+δ). Then, for each of the Nγ seeds we can
compute the corresponding N-bit output in time Õ(N1+α+β) = Õ(N1+γ).

5.4 Standard derandomization: Proofs of Theorems 1.1 and 1.8

We now prove Theorems 1.1 and 1.8. Both results will first reduce the standard deran-
domization problem to a quantified derandomization problem, and then use the recon-
structive PRG from Proposition 5.2 to solve the latter. The main difference between the
proofs is a different reduction to quantified derandomization.

In the following result statements, the conclusions will be that there exists a PRG
with seed length c · log(N) whose entire output-set is computable in time c′ · log(N)
for some small c, c′ ∈ N. To see how these imply the result statements in Section 1,
recall that this allows us to solve CAPP in time Nc′ + Nc+1 (by evaluating a given N-bit
circuit of size N over the output-set of the PRG), which in turn implies that random-
ized algorithms that run in time N = T(|x|) can be deterministically simulated in time
O
(

T(|x|)max{c′,c+1}
)

; that is, prBPT IME [T] ⊆ prDT IME [Tmax{c′,c+1}].

35

Theorem 5.5 (Theorem 1.8, restated). For every ε > 0 there exists δ > 0 such that the
following holds. Assume that there exists L ∈ DT IME [2n] such that for every n ∈N it holds
that L cannot be computed by SVN circuits of size 2(1−δ)·n, even infinitely-often. Then, there
exists an (N−δ)-PRG with seed length (2 + ε) · log(N) whose entire output-set can be printed
in time N4+ε. Moreover, if for every n ∈ N the entire truth-table of L on n-bit inputs can be
printed in time 2(3/2)·n, then the output-set of the PRG can be printed in time N3+ε.

Proof. We first specify the parameters that we will use in the proof, and instantiate
the hard function, the reconstructive PRG from Proposition 5.2 and the extractor from
Theorem 3.17 with these parameters.

• For sufficiently small constants γ, δ > 0 that depends on ε, let α = γ/4 and let
β = 1 + 3c · γ.

• Let Ext : {0, 1}N̄×{0, 1}(1+2c·γ)·log(N̄) → {0, 1}N be the extractor from Theorem 3.17,
instantiated with error 1

2 · N−δ for a sufficiently small δ > 0, where N̄ = N1+3γ >

(c · N)1/(1−2γ).

• Let f ∈ {0, 1}N̄1+β
be a function that can be computed in time N̄1+β but cannot be

computed by SVN circuits of size N̄1+β−γ/4 < N̄1−δ.

• Let G0 be the reconstructive PRG from Proposition 5.2, instantiated for output
length N̄ with f as the hard function and with the parameters α, β, γ.

Our PRG is defined by G(1N , (s0, s1)) = Ext(G0(1N̄ , s0), s1). Note that the seed length
of G is (1 + 2c · γ + α + β) · log(N̄) < (2 + ε) · log(N), and that G can be computed (on
a single seed) in time Õ(N1+α+β) < N1+ε. Moreover, we can print the output-set of G
by first computing the truth-table of f in time N̄2·(1+β) = N̄4+6c·γ < N4+ε, and then for
each of the N2+ε seeds computing the corresponding output of G in time less than N1+ε.
Thus, we can print the entire output-set of G in time N4+ε.

Fixing any circuit D : {0, 1}N → {0, 1} of size N, we now want to show that G “fools”
D with error N−δ. To do so we define D̄ : {0, 1}N̄ → {0, 1} such that D̄(z) = 1 if and only

if
∣∣∣Prs1 [D(Ext(z, s1) = 1)]− Prr[D(r) = 1]

∣∣∣ ≤ N−δ. Note that D̄ can be computed by a

circuit of size O
(

2(1+2c·γ)·log(N̄) · N̄
)
= O(N̄2+2c·γ), and that Prz[D̄(z) = 0] ≤ 2N̄1−γ−N̄ . It

follows that Prs0 [G0(1N̄ , s0) ∈ D̄−1(0)] ≤ 1
2 · N−δ (assuming δ > 0 is sufficiently small),

otherwise the combination of the oracle machine R and of the distinguisher D̄ yields an
SVN circuit that computes f of size

O
(

N̄1+α + N̄α · N̄2+2c·γ + N̄1+β+(2α−γ)
)
< N̄1+β−γ/4 . (5.1)

Therefore, for every σ ∈ {0, 1} we have that

Pr
s0,s1

[
D(G(1N , (s0, s1))) = σ

]
≤ Pr

s0

[
G0(1N̄ , s0) /∈ D̄−1(1)

]
+ Pr

s0,s1

[
Ext(G0(1N̄ , s0), s1) ∈ D−1(σ)|G0(1N̄ , s0) ∈ D̄−1(1)

]
≤ Pr

r
[D(r) = σ] + N−δ ,

which means that G “fools” D with error N−δ.

36

The “moreover” part by noting that under the stronger hypothesis, the first step of
computing the truth-table of f takes time N̄(3/2)·(1+β) < N3+ε, and it still dominates the
running-time of the entire algorithm that prints the output-set of the PRG.

Next, we show our alternative and simple proof of Theorem 1.1. The high-level
outline of this proof is similar to the proof of Theorem 5.5, but we will carry out the
error-reduction (manifested in the circuit D̄) in a more efficient way. In more detail, since
we assume that the “hard” function cannot be computed by randomized SVN circuits, the
existence of a randomized distinguisher would still contradict our hypothesis (i.e., we
can use the reconstruction procedure with a randomized distinguisher); accordingly, we
will use randomness to reduce the error of the distinguisher more efficiently (i.e., by a
smaller circuit). Details follow.

Theorem 5.6 (Theorem 1.1, restated). For every ε > 0 there exists δ > 0 such that the
following holds. Assume that there exists L ∈ DT IME [2n] such that L cannot be computed by
randomized SVN circuits of size 2(1−δ)·n, even infinitely-often. Then, there exists an (N−δ)-PRG
with seed length (1 + ε) · log(N) whose entire output-set can be printed in time N2+ε.

Proof. As in the proof of Theorem 5.5, we first specify the parameters and instantiate
the hard function, the extractor, and the reconstructive PRG:

• For sufficiently small γ, δ > 0, let α = γ/5, let β = 3γ, and let γ′ = γ/2.

• Let Ext : {0, 1}N̄×{0, 1}(1+2c·γ)·log(N̄) → {0, 1}N be the extractor from Theorem 3.17,
instantiated with error 1

6 · N−δ and with N̄ = N1+3γ.

• Let f ∈ {0, 1}N̄1+β
be a function that can be computed in time N̄1+β but cannot be

computed by randomized SVN circuits of size N̄1+β−γ/4.

• Let G0 be the PRG from Proposition 5.2, instantiated for output length N̄ with the
function f and with parameters α, β, γ′.

Our PRG is defined by G(s0, s1) = Ext(G(s0), s1). This PRG has seed length (1 + 2c ·
γ + (α + β)) · log(N̄) < (1 + ε) · log(N) and it can be computed in time less than N1+ε

given access to f . Printing the entire output-set of G can be done in time less than N2+ε,
by first computing the truth-table of f in time N̄2·(1+β) < N2+ε and then evaluating G
on each of the N1+ε seeds.

Now fix a circuit D : {0, 1}N → {0, 1} of size N. For any z ∈ {0, 1}N̄ , we denote by
µ(z) = Prs1 [D(Ext(z, s1)) = 1] the average value of D over the sample Ext(z, ·), and we
also denote by ν = Prr [D(r) = 1] the true average value of D. We will now define a
circuit D̄ : {0, 1}N̄ → {0, 1} of size Õ(N1+2δ) such that:

1. The circuit D̄ accepts all but at most 2N̄1−γ
of its inputs.

2. For every z ∈ D̄−1(1) it holds that
∣∣∣µ(z)− ν

∣∣∣ ≤ 1
2 · N−δ.

3. The top gate of D̄ is a CAPP gate: That is, a gate that takes as input a description
of a circuit C′, outputs 1 if Pr[C′(x) = 1] ≥ 2/3, outputs 0 if Pr[C′(x) = 1] ≤ 1/3,
and otherwise outputs some bit (i.e., we do not care how it behaves on inputs that
violate the promise).

37

To define D̄, for z ∈ {0, 1}N̄ and t = (1 + 2c · γ) · log(N̄), let Tz be a circuit that gets
as input O

(
t · N2δ

)
bits, uses these bits to obtain an estimate of µ(z), and outputs 1 if

and only if its estimate is in the interval ν± 1
3 ·N−δ. Note that Tz is of size Õ(N1+2δ), and

that for at least 2/3 of the inputs of Tz it holds that the estimate is correct up to accuracy
1
6 · N−δ. In particular, if Prr[Tz(r) = 0] < 2/3 then

∣∣∣µ(z)− ν
∣∣∣ ≤ 1

2 · N−δ. The circuit D̄
gets input z, constructs the circuit Tz, and feeds Tz into the top CAPP gate. Note that

the size of D̄ is Õ(N1+2δ), for every z ∈ D̄−1(1) it holds that
∣∣∣µ(z)− ν

∣∣∣ ≤ 1
2 · N−δ, and

for all but at most 2N̄1−γ
of the inputs z it holds that D̄(z) = 1. 36

We claim that Prs0 [G0(1N̄ , s0) ∈ D̄−1(0)] ≤ 1
2 · N−δ (assuming δ > 0 is sufficiently

small). To see this, note that otherwise, the combination of the oracle machine R and of
the distinguisher D̄ yields an SVN circuit with CAPP gates that computes f in size

Õ
(

N̄1+α + N̄α · N̄1+2δ + N̄1+β+(2α−γ)
)
< N̄1+β−γ/4 .

We now want to transform the foregoing SVN circuit with CAPP gates, denoted C f , into
a randomized SVN circuit. To do so, for each CAPP gate g, the randomized SVN circuit
samples O(log(N̄)) inputs for the circuit C′ that feeds into g, estimates the acceptance
probability of C′ up to accuracy .01 and with error 1/N2, and sets g’s output to 1 iff the
estimate is above 1/2. Note that for every input i to C f , every non-deterministic choices
w by C f , and every gate g that gets circuit C′ = C′(i, w),

• If C′ satisfies the promise of CAPP (i.e., it has at most 1/3 exceptional inputs) then
with probability at least 1− 1/N2 we compute g correctly.

• Otherwise, the circuit C f correctly computes f regardless of the output of g. (This is
because in the definition of a CAPP gate for D̄ we did not enforce its behavior on
inputs that violate the promise, and thus the proof holds regardless of the outputs
of the original CAPP gate on circuits that violate the promise.)

Recalling that there are at most N̄α < 1
3 · N2 such CAPP gates in C f (since the recon-

struction procedure makes at most N̄α oracle calls), by a union-bound, for every input
and non-deterministic choices, with high probability the randomized SVN circuit has
the same output as C f . This yields a contradiction to our hardness hypothesis for f .

Finally, since for every z ∈ D̄−1(1) it holds that
∣∣∣µ(z)− ν

∣∣∣ ≤ 1
2 ·N−δ and since all but

at most 1
2 · N−δ outputs of G0 are in D̄−1(1), using the same calculation as in the proof

of Theorem 5.5 we deduce that G “fools” D with error N−δ.

6 The O(n) Overhead is Optimal Under #NSETH

In this section we show that under a counting version of the Non-Deterministic Strong
Exponential Time Hypothesis (NSETH), which is denoted #NSETH and is weaker than
NSETH, for any polynomial function T(n) = nk (where k ≥ 1) and ε > 0 it holds that
BPT IME [T(n)] 6⊂ DT IME [T(n) · n1−ε]. Hence, the derandomization in Theorem 1.2

36This holds because for all but at most 2N̄1−γ
inputs z it holds that µ(z) ∈ ν± 1

6 · N−δ, and for every
such input the circuit Tz accepts with probability at least 2/3.

38

is essentially optimal under #NSETH. (Needless to say, the derandomization is optimal
under the stronger assumption NSETH.)

The same result has been noted in [Wil16, Section 3.2] for the special case of T(n) =
n, and here we adapt the proofs in [Wil16] for the case of larger T(n). Roughly speaking,
we consider a problem called k-OV from fine-grained complexity. Under #NSETH, there
is no nondeterministic machine that counts the number of satisfying assignments for a k-
OV instance in time nk−ε, for any ε > 0. 37 On the other hand, following [Wil16], we show
a Merlin-Arthuer (MA) algorithm that counts the number of satisfying assignments to a
k-OV instance in time nk−1. If BPT IME [nk−1] ⊆ DT IME [nk−ε] for some ε > 0 then
the above Merlin-Arther algorithm can be derandomized to a nondeterministic machine
that counts satisfying assignments for k-OV in time nk−ε, which contradicts #NSETH. 38

6.1 #NSETH and k-OV

The Non-deterministic Strong Exponential Time Hypothesis (NSETH) was first intro-
duced by Carmosino, Gao, Impagliazzo, Mihajlin, Paturi, and Schneider [CGI+16]. We
now define a natural counting version of NSETH, denoted #NSETH. Denote by k-TAUT
the language of all k-DNFs that are tautologies; then, #NSETH is the following:

Assumption 6.1 (#NSETH). For every ε > 0 there exists a k such that there does not exist a
non-deterministic machine M that gets as input a k-SAT formula Φ over n variables, runs in
time 2(1−ε)·n and satisfies the following:

1. There exists non-deterministic choices such that M outputs the number of satisfying as-
signments for Φ.

2. For all non-deterministic choices, M either outputs the number of satisfying assignments
for Φ or outputs ⊥.

Note that #NSETH is weaker than NSETH (since a non-deterministic machine that
refutes #NSETH also refutes NSETH). We now introduce the problem k-Orthogonal
Vectors (k-OV), and recall the well-known fact that under NSETH it holds that tk-OV /∈
coNT IME [nk−ε], for every k ∈N and ε > 0 (i.e., there does not exist a non-deterministic
machine that rejects every no instance for some non-deterministic guess, and accepts ev-
ery yes instance for all non-deterministic guesses).

Definition 6.2 (k-OV). We define k-OVn,d to be the following promise problem. An input to the
problem consists of k sets A1, A2, . . . , Ak, where each Ai is a set of n vectors from {0, 1}d. We
say that a tuple (a1, a2, . . . , ak) ∈ A1 × A2 × · · · × Ak is a satisfying assignment if

d

∑
j=1

k

∏
i=1

(ai)j = 0 . (2)

An input Φ to k-OVn,d is a yes instance if there exists a satisfying assignment for Φ.
37By “non-deterministically counting” we mean that for all non-deterministic guesses the algorithm ei-

ther output ⊥ or the correct number of satisfying assignments, and it must output the correct number for
some non-deterministic guess.

38This derandomization would be immediate under a hypothesis that refers to promise-problems (i.e.,
under the hypothesis prBPT IME [nk−1] ⊆ prDT IME [nk−ε]), and we show that it can also be done
under a weaker hypothesis that refers only to languages.

39

Lemma 6.3 (fine-grained hardness of k-OV under NSETH). For any integer k ≥ 2, as-
suming NSETH, there is no non-deterministic machine that counts the number of satisfying
assignment for a given k-OVn,d instance in nk−ε time, for any ε > 0 and d = log2 n.

For proof of Lemma 6.3, see the standard reduction from k-SAT to k-OV [Wil05].
(The standard reduction actually yields dimension d = Ok(log(n)), but for simplicity
we bounded the dimension by d ≤ log2(n).)

6.2 Proof of Theorem 6.4

Now we ready to prove the following main theorem of this section.

Theorem 6.4 (derandomization has a multiplicative overhead of n, under #NSETH).
Assume that #NSETH holds. Then, for every k ≥ 1 and ε > 0 it holds that BPT IME [nk] 6⊆
DT IME [nk+1−ε].

Proof. For k ≥ 1 and ε > 0, assume towards a contradiction that BPT IME [nk] ⊆
DT IME [nk+1−ε]. We show that in this case, for some ε′ > 0 and for d(n) = log2(n),
there exists a machine that non-deterministically computes the number of satisfying
assignments of a given (k + 1)-OVn,d instance in time nk+1−ε′ . Relying on Lemma 6.3,
this contradicts #NSETH.

Given a (k + 1)-OVn,d instance A1, A2, . . . , Ak+1 ∈ ({0, 1}d)n, the machine guesses
and verifies a prime p in (n2(k+1), 2 · n2(k+1)] ∩N. Then, the machine constructs (k + 1)
degree-n polynomial mappings Pi : Fp → Fd

p (i.e., for each ` ∈ [d], the `-th coordinate
of Pi is a degree-n polynomial) such that for every i, ` ∈ [k + 1] × [d] we have that
Pi(j)` = (Ai,j)` for all j ∈ [n] (where Ai,j is the jth vector in Ai). Each of the (k + 1) · d
corresponding polynomials can be constructed in time Õ(n), using interpolation via
FFT, and therefore the (k + 1) polynomial mappings can be constructed in time Õ(n).

Now, let F : {0, 1}(k+1)·d → {0, 1} be the function that treats its input as (k + 1)
vectors from {0, 1}d, and outputs 1 if and noly if the vectors are a satisfying assignment
for our given k-OV instance. We define a polynomial X : F

(k+1)·d
p → Fp that is a low-

degree extension of F (i.e., F and X agree on all inputs in {0, 1}(k+1)·d → {0, 1}). To
do so, fix a degree-d polynomial Φ : Fp → Fp such that Φ(0) = 1 and Φ(i) = 0
for all i ∈ {1, 2 . . . , d}; note that a suitable Φ can be found in time poly(d, log(p)) by
straightforward interpolation. Then, for x1, x2, . . . , xk+1 ∈ Fd

p, we define X as

X(x1, x2, . . . , xk+1) := Φ

(
d

∑
`=1

k+1

∏
i=1

(xi)`

)
.

Note that X can be computed in polynomial time (in its input length), since we can
construct Φ in time poly(d, log(p)). Also, note that X has degree d · (k + 1) and is an
extension of F. Finally, we construct a single-variate polynomial Q : Fp → Fp as follows:

Q(jk+1) = ∑
(j1,j2,...,jk)∈[n]k

X
(

P1(j1), P2(j2), . . . , Pk(jk), Pk+1(jk+1)
)

.

Note that Q is an O(n log2 n)-degree polynomial that can be described by O(n ·
polylog(n)) bits and evaluated in time nk · poly(d, log p).

Consider the following problem:

40

• Given a prime p in (n2(k+1), 2 · n2(k+1)] ∩N, and an O(n log2 n)-degree single-
variate polynomial H over Fp, together with an k-OVn,log2 n instance Φ, determine
whether H is the same as the polynomial Q above constructed from Φ.

Clearly, the problem above is in BPT IME [nk · polylog(n)]39, as one can sample a
random element x from Fp and check whether Q(x) = H(x) (we rely on the fact that
the field size is larger than > n2k, and that the degree of the polynomial O(n log2 n)). By
our assumption (and a padding argument), it is also in DT IME [nk+1−ε/2].

From that one can get an algorithm computing the number of satisfying assignments
to (k + 1)-OVn,log2 n non-deterministically as follows:

1. Guess and verify a prime p in (n2(k+1), 2 · n2(k+1)] ∩N.

2. One guesses a polynomial H of O(n log2 n) degree over Fp.

3. In nk+1−ε/2 time, one reject H if H is not the same polynomial as Q.

4. Otherwise, output ∑i∈[n] H(i).

Note that the number of satisfying assignment is at most nk, and p > n2(k+1). Hence,
assuming the polynomial H passed the test, we have ∑i∈[n] H(i) = ∑i∈[n] Q(i) is the
number of satisfying assignments to the given (k + 1)− OVn,d instance. Moreover, the
above algorithm runs in non-deterministic nk+1−ε′ time for some ε′ > 0, so we obtain a
contradiction to #NSETH.

Acknowledgements

We are very grateful to Oded Goldreich and to Ryan Williams for helpful feedback as
well as detailed remarks on an early draft of the paper. We also thank Dean Doron, Igor
Oliveira, Guy Rothblum, Amnon Ta-Shma, Avishay Tal, and Avi Wigderson for helpful
conversations and feedback. The first author wants to thank Guy Rothblum for inviting
him to the Weizmann Institute of Science, where part of the work was done. We also
thank a helpful anonymous reviewer, who in particular pointed out the relevance of the
works [ACR98; MV05; AIK+16].

This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant agree-
ment No. 819702). Lijie Chen is supported by NSF CCF-1741615, a Google Faculty
Research Award, and an IBM Fellowship.

References

[ACR98] Alexander E. Andreev, Andrea E. F. Clementi, and José D. P. Rolim. “A
new general derandomization method”. In: Journal of the ACM 45.1 (1998),
pp. 179–213.

39The problem comes with a promise that p is a prime. But such promise can be easily checked in
polylog(n) time deterministically [AKS04]. Therefore, we can make it as a total function by always out-
putting 0 when the given p is not a prime.

41

[AIK+16] Sergei Artemenko, Russell Impagliazzo, Valentine Kabanets, and Ronen
Shaltiel. “Pseudorandomness when the odds are against you”. In: Proc. 31st
Annual IEEE Conference on Computational Complexity (CCC). 2016, Art. No.
9, 35.

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. “PRIMES is in P”. In:
Annals of mathematics (2004), pp. 781–793.

[BFN+93] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. “BPP has
subexponential time simulations unless EXPTIME has publishable proofs”.
In: Computational Complexity 3.4 (1993), pp. 307–318.

[Bjö14] Andreas Björklund. “Determinant Sums for Undirected Hamiltonicity”. In:
SIAM J. Comput. 43.1 (2014), pp. 280–299. doi: 10.1137/110839229. url:
https://doi.org/10.1137/110839229.

[BM84] Manuel Blum and Silvio Micali. “How to Generate Cryptographically Strong
Sequences of Pseudo-random Bits”. In: SIAM Journal of Computing 13.4
(1984), pp. 850–864.

[BSW03] Boaz Barak, Ronen Shaltiel, and Avi Wigderson. “Computational analogues
of entropy”. In: Proc. 7th International Workshop on Randomization and Ap-
proximation Techniques in Computer Science (RANDOM). 2003, pp. 200–215.

[CGI+16] Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ra-
mamohan Paturi, and Stefan Schneider. “Nondeterministic extensions of
the strong exponential time hypothesis and consequences for non-reducibility”.
In: Proc. 7th Conference on Innovations in Theoretical Computer Science (ITCS).
2016, pp. 261–270.

[CJW20] Lijie Chen, Ce Jin, and Richard Ryan Williams. “Sharp threshold results
for computational complexity”. In: Proc. 52nd Annual ACM Symposium on
Theory of Computing (STOC). 2020.

[CKN18] Marek Cygan, Stefan Kratsch, and Jesper Nederlof. “Fast Hamiltonicity
Checking Via Bases of Perfect Matchings”. In: J. ACM 65.3 (2018), 12:1–
12:46. doi: 10.1145/3148227. url: https://doi.org/10.1145/3148227.

[CLR+09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to algorithms. Third. MIT Press, Cambridge, MA, 2009.

[CSS16] Ruiwen Chen, Rahul Santhanam, and Srikanth Srinivasan. “Average-case
lower bounds and satisfiability algorithms for small threshold circuits”. In:
Proc. 31st Annual IEEE Conference on Computational Complexity (CCC). 2016,
1:1–1:35.

[CT19] Lijie Chen and Roei Tell. “Bootstrapping results for threshold circuits “just
beyond” known lower bounds”. In: Proc. 51st Annual ACM Symposium on
Theory of Computing (STOC). 2019, pp. 34–41.

[DMO+19] Dean Doron, Dana Moshkovitz, Justin Oh, and David Zuckerman. “Nearly
Optimal Pseudorandomness From Hardness”. In: Electronic Colloquium on
Computational Complexity: ECCC 26 (2019), p. 99.

[DMO+20] Dean Doron, Dana Moshkovitz, Justin Oh, and David Zuckerman. “Nearly
Optimal Pseudorandomness From Hardness”. In: Proc. 61st Annual IEEE
Symposium on Foundations of Computer Science (FOCS). 2020.

42

https://doi.org/10.1137/110839229
https://doi.org/10.1137/110839229
https://doi.org/10.1145/3148227
https://doi.org/10.1145/3148227

[FSU+13] Bill Fefferman, Ronen Shaltiel, Christopher Umans, and Emanuele Viola.
“On beating the hybrid argument”. In: Theory of Computing 9 (2013), pp. 809–
843.

[GL89] Oded Goldreich and Leonid A. Levin. “A Hard-core Predicate for All One-
way Functions”. In: Proc. 21st Annual ACM Symposium on Theory of Comput-
ing (STOC). 1989, pp. 25–32.

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1: Basic Tech-
niques. Cambridge University Press, 2001. isbn: 0-521-79172-3. doi: 10 .

1017/CBO9780511546891. url: http://www.wisdom.weizmann.ac.il/
\%7Eoded/foc-vol1.html.

[Gol08] Oded Goldreich. Computational Complexity: A Conceptual Perspective. New
York, NY, USA: Cambridge University Press, 2008.

[GW14] Oded Goldreich and Avi Widgerson. “On derandomizing algorithms that
err extremely rarely”. In: Proc. 46th Annual ACM Symposium on Theory of
Computing (STOC). Full version available online at Electronic Colloquium on
Computational Complexity: ECCC, 20:152 (Rev. 2), 2013. 2014, pp. 109–118.

[HIL+99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. “A
Pseudorandom Generator from any One-way Function”. In: SIAM Journal
of Computing 28.4 (1999), pp. 1364–1396.

[IW99] Russell Impagliazzo and Avi Wigderson. “P = BPP if E requires exponen-
tial circuits: derandomizing the XOR lemma”. In: Proc. 29th Annual ACM
Symposium on Theory of Computing (STOC). 1999, pp. 220–229.

[KL18] Valentine Kabanets and Zhenjian Lu. “Satisfiability and derandomization
for small polynomial threshold circuits”. In: Proc. 22th International Work-
shop on Randomization and Approximation Techniques in Computer Science (RAN-
DOM). Vol. 116. LIPIcs. Leibniz Int. Proc. Inform. 2018, Art. No. 46, 19.

[LPT+17] Daniel Lokshtanov, Ramamohan Paturi, Suguru Tamaki, Ryan Williams,
and Huacheng Yu. “Beating brute force for systems of polynomial equa-
tions over finite fields”. In: Proc. 28th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA). 2017, pp. 2190–2202.

[LV08] Ming Li and Paul Vitányi. An introduction to Kolmogorov complexity and its
applications. Third. Texts in Computer Science. Springer, New York, 2008,
pp. xxiv+790.

[MNT93] Yishay Mansour, Noam Nisan, and Prasoon Tiwari. “The computational
complexity of universal hashing”. In: vol. 107. 1. 1993, pp. 121–133.

[MV05] Peter Bro Miltersen and N. V. Vinodchandran. “Derandomizing Arthur-
Merlin games using hitting sets”. In: Computational Complexity 14.3 (2005),
pp. 256–279.

[Nis91] Noam Nisan. “Pseudorandom bits for constant depth circuits”. In: Combi-
natorica 11.1 (1991), pp. 63–70.

[NW94] Noam Nisan and Avi Wigderson. “Hardness vs. randomness”. In: Journal
of Computer and System Sciences 49.2 (1994), pp. 149–167.

43

https://doi.org/10.1017/CBO9780511546891
https://doi.org/10.1017/CBO9780511546891
http://www.wisdom.weizmann.ac.il/\%7Eoded/foc-vol1.html
http://www.wisdom.weizmann.ac.il/\%7Eoded/foc-vol1.html

[PPS+05] Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and Francis Zane. “An
improved exponential-time algorithm for k-SAT”. In: J. ACM 52.3 (2005),
pp. 337–364. doi: 10.1145/1066100.1066101. url: https://doi.org/10.
1145/1066100.1066101.

[RRV02] Ran Raz, Omer Reingold, and Salil Vadhan. “Extracting all the randomness
and reducing the error in Trevisan’s extractors”. In: Journal of Computer and
System Sciences 65.1 (2002), pp. 97–128.

[Sip88] Michael Sipser. “Expanders, randomness, or time versus space”. In: vol. 36.
3. 1988, pp. 379–383.

[STV01] Madhu Sudan, Luca Trevisan, and Salil Vadhan. “Pseudorandom genera-
tors without the XOR lemma”. In: Journal of Computer and System Sciences
62.2 (2001), pp. 236–266.

[SU05] Ronen Shaltiel and Christopher Umans. “Simple extractors for all min-
entropies and a new pseudorandom generator”. In: Journal of the ACM 52.2
(2005), pp. 172–216.

[Tel17] Roei Tell. “Improved Bounds for Quantified Derandomization of Constant-
Depth Circuits and Polynomials”. In: Proc. 32nd Annual IEEE Conference on
Computational Complexity (CCC). 2017, 18:1 –18:49.

[Tel18] Roei Tell. “Quantified Derandomization of Linear Threshold Circuits”. In:
Proc. 50th Annual ACM Symposium on Theory of Computing (STOC). 2018,
pp. 855–865.

[TSZS06] Amnon Ta-Shma, David Zuckerman, and Shmuel Safra. “Extractors from
Reed-Muller codes”. In: Journal of Computer and System Sciences 72.5 (2006),
pp. 786–812.

[Uma03] Christopher Umans. “Pseudo-random generators for all hardnesses”. In:
Journal of Computer and System Sciences 67.2 (2003), pp. 419–440.

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical
Computer Science. Now Publishers, 2012.

[Wil05] Ryan Williams. “A new algorithm for optimal 2-constraint satisfaction and
its implications”. In: Theor. Comput. Sci. 348.2-3 (2005), pp. 357–365. doi:
10.1016/j.tcs.2005.09.023. url: https://doi.org/10.1016/j.tcs.
2005.09.023.

[Wil16] Richard Ryan Williams. “Strong ETH breaks with Merlin and Arthur: short
non-interactive proofs of batch evaluation”. In: Proc. 31st Annual IEEE Con-
ference on Computational Complexity (CCC). Vol. 50. 2016, Art. No. 2, 17.

[Yao82] Andrew C. Yao. “Theory and Application of Trapdoor Functions”. In: Proc.
23rd Annual IEEE Symposium on Foundations of Computer Science (FOCS).
1982, pp. 80–91.

A The Nisan-Wigderson PRG with small output length

In this section we prove Theorem 4.1; that is, we instantiate the NW PRG for a small
output length (i.e., when the hard function has truth-table of size N and the output
length is Nε), using appropriate modifications a-la [RRV02] to reduce the seed length.

44

https://doi.org/10.1145/1066100.1066101
https://doi.org/10.1145/1066100.1066101
https://doi.org/10.1145/1066100.1066101
https://doi.org/10.1016/j.tcs.2005.09.023
https://doi.org/10.1016/j.tcs.2005.09.023
https://doi.org/10.1016/j.tcs.2005.09.023

A.1 Preliminaries

First we need the notion of weak combinatorial designs, which was introduced by Raz,
Reingold, and Vadhan [RRV02].

Definition A.1 (weak designs). For positive integers m, `, t ∈ N and an integer ρ > 1, an
(m, `, t, ρ) weak design is a collection of sets S1, . . . , Sm ⊆ [t] such that for every i ∈ [m] it holds
that |Si| = ` and ∑j<i 2|Si∩Sj| ≤ (m− 1) · ρ.

We also need the following efficient algorithm for constructing weak designs with
parameters that are suitable for us (i.e., large intersections between sets and small uni-
verse size t), which is from [Tel18].

Lemma A.2 (constructing weak designs; see [Tel18, Lemma 6.2]). There exists an algorithm
that gets as input m ∈ N and `, ρ ∈ N such that log(ρ) = (1− α) · `, where α ∈ (0, 1/4),
and satisfies the following. The algorithm runs in time poly(m) · 2` and outputs an (m, `, t, ρ)
weak design, where t = d(1 + 4α) · `e.40

We also need the following standard construction of error correcting codes, which is
a concatenation of the Reed-Muller codes from Corollary 3.20 and Hadamard codes.

Lemma A.3 (concatenating the RM code with the Hadamard code). There exists a univer-
sal constant c ≥ 1 such that for every constant ε ∈ (0, 1) there exists a code Enc : {0, 1}m →
{0, 1}m1+c

√
ε

satisfying:

• The code is computable in time O(m1+c
√

ε).

• The code is locally list-decodable from agreement 1/2 + m−ε with decoding time mc·
√

ε

and with list size 2mo(1)
.

Proof. Let τ = Θ(ε) and η = η(τ) be two constants to be specified later, and let ρ =
m−τ. We use the t-variate Reed-Muller code of degree d = mη over Fq, where t =
1/η and q = (8/ρ2) · d. Note that the input length to the code (measured in bits) is
(t+d

d) · log(q) ≥ (d/t)t · log(q) ≥ m, and the output length (measured in elements in Fq)
is m̄ = qt = Oη

(
m/ρ2/η

)
. Also, by Theorem 3.19, this code is locally list-decodable from

agreement ρ with decoding circuit size poly(t, log(q), d, 1/ρ) = mO(η+τ) and output list
size O(1/ρ).

Now, let Had : Fq → {0, 1}q be the Hadamard code. Recall that for every µ > 0,
Hadamard code is (1

2 + µ, 4
µ2)-list-docodable in poly(µ−1, log q) time [GL89]. Concate-

nating the aforementioned Reed-Muller code with the Hadamard code, we obtain a
Boolean code Enc with output length Oη(m/ρ2/η · q) = Oη(m1+2τ/η+η+2τ).

Our goal now is to prove that Enc is locally list-decodable as in the statement; the
analysis is standard, and we include it for completeness. We set µ so that ρ = µ3

4 .
The local decoding algorithm for Enc takes two indexes i1 ∈ [O(1/ρ)], i2 ∈ [4/µ2], and
simulates the RM local decoding algorithm with index i1; whenever the latter algo-
rithm needs to query one coordinate, it decodes that coordinate using the local decod-
ing algorithm for the Hadamard code with index i2. Note that the decoding time is
poly(µ−1, log q) ·mO(η) and the output list size is O(ρ−1 · µ−2).

40The running time is stated as poly(m, 2`) in [Tel18], but it is easy to see that the algorithm runs in
poly(m) · 2` time.

45

Now we show that given a string y that is 1/2 + 2µ correlated with Enc(x), there
exist some indexes i1 ∈ [O(1/ρ)], i2 ∈ [4/µ2] such that the above algorithm successfully
decodes x. Note that there are at least µ fraction of blocks such that within each of
these blocks it holds that y is at least 1/2 + µ correlated with Enc(x) (a block is a
consecutive segment in the output of Enc which corresponds to a single coordinate of
the codeword of the RM code); this holds because otherwise we have that y is at most
µ · 1 + (1− µ) · (1/2 + µ) < 1/2 + 2µ correlated with Enc(x), violating our assumption.
Since for each block there exists one element from [4/µ2] that causes the Hadamard
decoder to correctly decode the block, by an averaging argument there exists an i2 ∈
[4/µ2] such that the Hadamard decoder correctly decodes at least a µ3/4 = ρ fraction of
the blocks. Hence, by the property of the RM decoder, there exists some index i1 such
that the overall decoder for Enc is successful.

Finally, let us analyze the parameters of Enc. We want to have µ = 1
2 · m−ε, and

so we set τ such that ρ = Θ(m−3ε) (recall that ρ = µ3/4). The decoding circuit
size is thus mO(η+ε), the output list size is mO(ε), and the output length of the code
is Oη(m1+6ε/η+η+6ε). Then, the statement follows by setting η =

√
ε.

A.2 Proof of Theorem 4.1

Now we are ready to prove Theorem 4.1 (restated below for convenience).

Reminder of Theorem 4.1 There exists a universal constant c such that for all sufficiently
small ε, there exists an oracle machine G satisfies the following:

• When given input 1Nε
and oracle access to a function f : {0, 1}log(N) → {0, 1}, the

machine G runs in time N1+c·
√

ε and outputs 2`(N) strings in {0, 1}Nε
, where `G(N) =

(1 + c
√

ε) · log N.

• There exists an oracle machine R that, when given input x ∈ {0, 1}log(N) and oracle
access to an (N−ε)-distinguisher for G(1N , u`(N))

f and N1−
√

ε/c bits of advice, runs in
time Nc·

√
ε and outputs f (x).

Proof. Let c1 be the constant c from Lemma A.3.

The oracle machine G. We first describe the construction of the oracle machine G. We
instantiate Lemma A.3 with parameter εRM ∈ (2ε, 3ε) such that N−εRM = N−2ε/10. Let
Enc : {0, 1}N → {0, 1}N1+β

be the corresponding encoder, where β = c1 ·
√

εRM. We
identify f : {0, 1}log(N) → {0, 1} with its truth-table of length N in the natural way, and
let f̄ be the function whose truth-table is Enc(f). Note that | f̄ | = N1+β.

We also apply Lemma A.2 with m = Nε and ` = log | f̄ | = (1 + β) · log N and ρ
such that log(ρ) = (1− 3β) · ` (the hypothesis in Lemma A.2 is that 3β < 1/4, which
holds since ε is sufficiently small). This yields an (m, `, t, ρ) weak design {Si}i∈[m], where
t = (1 + 12β) · `, that can be computed in time poly(m) · 2` = N1+O(β).

Now, let `G = `G(N) = t = (1 + 12β) · (1 + β) · log N = (1 + O(β)) · log N. The
machine G computes the truth-table of f , computes the encoding f̄ = Enc(f), computes
the design, and for every w ∈ {0, 1}`G outputs the Nε-bit string such that G(1N , w)

f
i =

46

f̄ (w|Si
) for i ∈ [Nε].41 Note that given oracle access to f , the time that it takes to compute

G for all w is bounded by the time that it takes to compute f̄ , plus the time it takes to
compute the design, plus the time that it takes to print each output (given the design
and access to f); this is at most O

(
N1+O(β) + 2` · Nε

)
= N1+O(β).

Construction of the oracle machine R. We introduce some useful notation. For two
strings α, β ∈ {0, 1}∗, we denote by α ◦ β the concatenation of α and β. For an integer
` ≤ |α, we denote by α≤` the length-` prefix of α. For x ∈ {0, 1}` and w ∈ {0, 1}t−` and
S ⊆ [t] of size |S| = `, we denote by x ◦S w the string that is obtained by fixing the bits
in the set Si to x, and the bits in the set [t] \ Si to w.

A standard hybrid argument (see, e.g., [RRV02], following [NW94]) shows that there
exists an oracle machine P that computes f̄ with advantage N−2ε/10 over a random
guess when given access to an (N−ε)-distinguisher D for G(1N , u`G)

f . In more detail,
for any N−ε-distinguisher D there exists an index i ∈ [m], a suffix z ∈ {0, 1}m−i+1 and a
string w ∈ {0, 1}t−` such that

P(x) def
== D(G(1N , x ◦Si w)≤i−1 ◦ z)⊕ z1

correctly computes f̄ on at least a 1/2 + N−2ε/10 fraction of the `-bit inputs.

Claim A.3.1. The function P can be computed in time O(N2ε) with a single oracle to D and
with O(N1−Ω(β)) bits of non-uniform advice.

Proof. We give (i, z, w) as advice to P. For each j < i, note that G(1N , x ◦Si w)j only
depends on |Si ∩ Sj| bits of x, hence the its whole truth-table can be stored with 2|Si∩Sj|

bits. By the definition of weak-designs, we have ∑j<i 2|Si∩Sj| < Nε · ρ = O(N1−Ω(β)),
so we can store the truth-tables of G(1N , x ◦Si w)j for all j ∈ [i − 1]. We also give the
sets {Si}i∈[m] as advice to P, which takes O(m · `) = O(Nε · log N) bits. So the overall
number of advice bits is bounded by O(N1−Ω(β)).

Given x ∈ {0, 1}`, using the sets {Si} and the truth-tables for {G(1N , x ◦Si w)j}j<i

that are all given as advice, we can compute α = G(1N , x ◦Si w)≤i−1 in time O(N2ε).
Then we can output P(x) = D(α ◦ z)⊕ z1 by a single oracle call to D and linear-time
processing involving the advice z. �

Note that P computes a “corrupt” version of f̄ (i.e., computes f̄ correctly on 1/2 +
N−2ε/10 of inputs). To compute f we run the local decoder for f̄ with oracle access to
P. By Lemma A.3, the running time is bounded by NO(β) and the number of advice bits
is bounded by N1−Ω(β).

Finally, note that the local decoding circuits of Lemma A.3 is randomized (see Defi-
nition 3.18) and succeeds with probability at least 2/3 for each input to f . We first repeat
the decoder O(log N) times to amplify the success probability to at least 1− 1/N2. It
then follows by a union bound that there is a fixed choice of randomness that makes the
amplified decoder successfully compute f on all inputs. Adding such a fixed choice of
randomness to the advice, we obtain an NO(β) time algorithm computing f exactly on

41For a string w ∈ {0, 1}t and a set S ⊆ [t], we use w|S ∈ {0, 1}|S| to denote the projection of w onto the
coordinates in S. That is, for all i ∈ [|S|], (w|S)i = wSi , where Si is the i-th smallest element in S.

47

all inputs, with N1−Ω(β) + O(log N · NO(β)) = N1−Ω(β) bits of advice and access to the
distinguisher D, which completes the proof.

48

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

