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Abstract

A graph G is called self-ordered (a.k.a asymmetric) if the identity permutation is its only
automorphism. Equivalently, there is a unique isomorphism from G to any graph that is isomor-
phic to G. We say that G = (V,E) is robustly self-ordered if the size of the symmetric difference
between E and the edge-set of the graph obtained by permuting V using any permutation
π : V → V is proportional to the number of non-fixed-points of π.

We show that robustly self-ordered bounded-degree graphs exist (in abundance), and that
they can be constructed efficiently, in a strong sense. Specifically, given the index of a vertex
in such a graph, it is possible to find all its neighbors in polynomial-time (i.e., in time that is
poly-logarithmic in the size of the graph).

We provide two very different constructions, in tools and structure. The first, a direct
construction, is based on proving a sufficient condition for robust self-ordering, which requires
that an auxiliary graph, on pairs of vertices of the original graph, is expanding. In this case the
original graph is (not only robustly self-ordered but) also expanding. The second construction
proceeds in three steps: It boosts the mere existence of robustly self-ordered graphs, which
provides explicit graphs of sublogarithmic size, to an efficient construction of polynomial-size
graphs, and then, repeating it again, to exponential-size (robustly self-ordered) graphs that are
locally constructible. This construction can yield robustly self-ordered graphs that are either
expanders or highly disconnected, having logarithmic size connected components.

We also consider graphs of unbounded degree, seeking correspondingly unbounded robustness
parameters. We again demonstrate that such graphs (of linear degree) exist (in abundance), and
give an explicit construction. This turns out to require very different tools, and the definition
and constructions of new pseudo-random objects. Specifically, we show that the construction
of such graphs reduces to the construction of non-malleable two-source extractors with very
weak parameters but with an additional natural feature. Next, we reduce the construction of
such non-malleable two-source extractors to the construction of “relocation-detecting” codes.
Loosely speaking, in such code permuting arbitrarily the coordinates of a random codeword
yields a string that is far any other codeword. We conclude by showing how to construct
relocation-detecting codes (of various types, including ones with constant rate).

We demonstrate that robustly self-ordered bounded-degree graphs are useful towards obtain-
ing lower bounds on the query complexity of testing graph properties both in the bounded-degree
and the dense graph models. Indeed, their robustness offers efficient, local and distance preserv-
ing reductions from testing problems on ordered structures (like sequences) to the unordered
(effectively unlabeled) graphs. One of the results that we obtain, via such a reduction, is a
subexponential separation between the complexities of testing and tolerant testing of graph
properties in the bounded-degree graph model.

0The authors’ affiliation and grant acknowledgements apear in the Acknowledgements section.
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1 Introduction

For a (labeled) graph G = (V,E), and a bijection φ : V → V ′, we denote by φ(G) the graph
G′ = (V ′, E′) such that E′ = {{φ(u), φ(v)} : {u, v} ∈ E}, and say that G′ is isomorphic to G.
The set of automorphisms of the graph G = (V,E), denoted aut(G), is the set of permutations
that preserve the graph G; that is, π ∈ aut(G) if and only if π(G) = G. We say that a graph
is asymmetric (equiv., self-ordered) if its set of automorphisms is a singleton, which consists of the
trivial automorphism (i.e., the identity permutation). We actually prefer the term self-ordered,
because we take the perspective that is offered by the following equivalent definition.

Definition 1.1 (self-ordered (a.k.a asymmetric) graphs): The graph G = ([n], E) is self-ordered if
for every graph G′ = (V ′, E′) that is isomorphic to G there exists a unique bijection φ : V ′ → [n]
such that φ(G′) = G.

In other words, given an isomorphic copy G′ = (V ′, E′) of a fixed graph G = ([n], E), there is a
unique bijection φ : V ′ → [n] that orders the vertices of G′ such that the resulting graph (i.e.,
φ(G′)) is identical to G. Indeed, if G′ = G, then this unique bijection is the identity permutation.1

In this work, we consider a feature, which we call robust self-ordering, that is a quantitative
version self-ordering. Loosely speaking, a graph G = ([n], E) is robustly self-ordered if, for every
permutation π : [n]→ [n], the size of the symmetric difference between G and π(G) is proportional
to the number of non-fixed-points under π; that is, |E4{{π(u), π(v)} :{u, v}∈E}| is proportional
to |{i∈ [n] :π(i) 6= i}|. (In contrast, self-ordering only means that the size of the symmetric difference
is positive if the number of non-fixed-points is positive.)

Definition 1.2 (robustly self-ordered graphs): A graph G = (V,E) is said to be γ-robustly self-
ordered if for every permutation π : V → V it holds that

|E4{{π(u), π(v)} :{u, v}∈E} | ≥ γ · |{i ∈ [n] :π(i) 6= i}|. (1)

An infinite family of graphs {Gn = ([n], En)}n∈N (such that each Gn has maximum degree d) is
called robustly self-ordered if there exists a constant γ > 0, called the robustness parameter, such that
for every n the graph Gn is γ-robustly self-ordered.

Note that |En4{{π(u), π(v)} : {u, v} ∈En}| ≤ 2d · |{i ∈ [n] : π(i) 6= i}| always holds (for families
of maximum degree d). The term “robust” is inspired by the property testing literature (cf. [31]),
where it indicates that some “parametrized violation” is reflected proportionally in some “detection
parameter”.

The second part of Definition 1.2 is tailored for bounded-degree graphs, which will be our
focus in Section 2–6. Nevertheless, in Sections 7–11 we consider graphs of unbounded degree
and unbounded robustness parameters. In this case, for a function ρ : N → R, we say that an
infinite family of graphs {Gn = ([n], En)}n∈N is ρ-robustly self-ordered if for every n the graph Gn
is ρ(n)-robustly self-ordered. Naturally, in this case, the graphs must have Ω(ρ(n) · n) edges.2 In
Sections 7–10 we consider the case of ρ(n) = Ω(n).

1Naturally, we are interested in efficient algorithms that find this unique ordering, whenever it exists; such algo-
rithms are known when the degree of the graph is bounded [29].

2Actually, all but at most one vertex must have degree at least ρ(n).
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1.1 Robustly self-ordered bounded-degree graphs

The first part of this paper (i.e., Section 2–6) focuses on the study of robustly self-ordered bounded-
degree graphs.

1.1.1 Our main results and motivation

We show that robustly self-ordered (n-vertex) graphs of bounded-degree not only exist (for all
n ∈ N), but can be efficiently constructed in a strong (or local) sense. Specifically, we prove the
following result.

Theorem 1.3 (constructing robustly self-ordered bounded-degree graphs): For all sufficiently
large d ∈ N, there exist an infinite family of d-regular robustly self-ordered graphs {Gn}n∈N and a
polynomial-time algorithm that, given n ∈ N and a vertex v ∈ [n] in the n-vertex graph Gn, finds
all neighbors of v (in Gn).

We stress that the algorithm runs in time that is polynomial in the description of the vertex;
that is, the algorithm runs in time that is polylogarithmic in the size of the graph. Theorem 1.3
holds both for graphs that consists of connected components of logarithmic size and for “strongly
connected” graphs (i.e., expanders). Recall that given an isomorphic copy G′ of such a graph Gn,
the original graph Gn (i.e., along with its unique ordering) can be found in polynomial-time [29].
Furthermore, we show that the pre-image of each vertex of G′ in the graph Gn (i.e., its index in
the aforementioned ordering) can be found in time that is polylogarithmic in the size of the graph
(see discussion in Section 4.4, culminating in Theorem 4.7).3

We present two proofs of Theorem 1.3. Loosely speaking, the first proof reduces to proving
that a 2d-regular n-vertex graph representing the action of d permutations on [n] is robustly self-
ordered if the n(n−1)-vertex graph representing the action of these permutations on vertex-pairs is
an expander. The graphs constructed in this proof are expanders, whereas the graphs constructed
via by the second proof can be either expanders or consist of connected components of logarithmic
size. More importantly, the graphs constructed in the second proof are couple with local self-
ordering and local reversed self-ordering algorithms (see Section 4.4). The second proof proceeds
in three steps, starting from the mere existence of robustly self-ordered bounded-degree `-vertex
graphs, which yields a construction that runs in poly(``)-time. Next, a poly(n)-time construction
of n-vertex graphs is obtained by using the former graphs as small subgraphs (of o(log n)-size).
Lastly, strong (a.k.a local) constructability is obtained in an analogous manner. For more details,
see Section 1.1.2.

We demonstrate that robustly self-ordered bounded-degree graphs are useful towards obtaining
lower bounds on the query complexity of testing graph properties in the bounded-degree graph
model. Specifically, we use these graphs as a key ingredient in a general methodology of transporting
lower bounds regarding testing binary strings to lower bounds regarding testing graph properties
in the bounded-degree graph model. In particular, using the methodology, we prove the following
two results.

3The algorithm asserted above is is said to perform local self-ordering of G′ according to Gn. For φ(G′) = Gn,
given a vertex v in G′, this algorithm returns φ(v) in poly(logn)-time. In contrast, a local reversed self-ordering
algorithm is given a vertex i ∈ [n] of Gn and returns φ−1(i). The second algorithm is also presented in Section 4.4
(see Theorem 4.9).
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1. A subexponential separation between the complexities of testing and tolerant testing of graph
properties in the bounded-degree graph model; that is, for some constant c > 0, the query
complexity of tolerant testing is at least exp(qc), where q is the query complexity of standard
tresting.

This result, which appears as Theorem 5.5, is obtained by transporting an analogous result
that was known for testing binary strings [16].

2. A linear query complexity lower bound for testing an efficiently recognizable graph property
in the bounded-degree graph model, where the lower bound holds even if the tested graph is
restricted to consist of connected components of logarithmic size (see Theorem 5.2).

As discussed in Section 5, an analogous result was known in the general case (i.e., without
the restriction on the size of the connected components), and we consider it interesting that
the result holds also in the special case of graphs with small connected components.

To get a feeling of why robustly self-ordered graphs are relevant to such transportation, recall
that strings are ordered objects, whereas graphs properties are effectively sets of unlabeled graphs,
which are unordered objects. Hence, we need to make the graphs (in the property) ordered, and
furthermore make this ordering robust in the very sense that is reflected in Definition 1.2. We
comment that the theme of reducing ordered structures to unordered structures occur often in the
theory of computation and in logic, and is often coupled with analogous of query complexity.

Lastly, in Section 6, we prove that random 2d-regular graphs are robustly self-ordered; see
Theorem 6.1. This extends work in probabilistic graph theory, which proves a similar result for the
weaker notion of self-ordering [4, 5].

1.1.2 Techniques

As stated above, we present two different constructions that establish Theorem 1.3: A direct
construction and a three-step construction. Both constructions utilize a variant of the notion of
robust self-ordering that refers to edge-colored graphs, which we review first.

The edge-coloring methodology. At several different points, we found it useful to start by
demonstrating the robust self-ordering feature in a relaxed model in which edges are assigned a
constant number of colors, and the symmetric difference between graphs accounts also for edges
that have different colors in the two graphs (see Definition 2.1). This allows us to analyze different
sets of edges separately.

For example, we actually analyze the direct construction in the edge-colored model, since this
allows for identifying each of the underlying permutations with a different color. Another example,
which arises in the three-step construction, occurs when we super-impose a robustly self-ordered
graph with an expander graph in order to make the robustly self-ordered graph expanding (as
needed for the second and third step of the aforementioned three-step construction). In this case,
assigning the edges of each of the two graphs a different color, allows for easily retaining the robust
self-ordering feature (of the first graph).

We obtain robustly self-ordered graphs (in the original sense) by replacing all edges that are
assigned a specific color with copies of a constant-sized (asymmetric) gadget, where different (and in
fact non-isomorphic) gadgets are used for different edge colors. The soundness of this transformation
is proved in Theorem 2.4.
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The direct construction. For any d permutations, π1, ..., πd : [n]→ [n], we consider the Schreier
graph (see [25, Sec. 11.1.2]) defined by the action of these permutation on [n]; that is, the edge-set of
this graph is {{v, πi(v)} : v∈ [n] & i∈ [d]}. Loosely speaking, we prove that this 2d-regular n-vertex
graph is robustly self-ordered if another Schreier graph is an expander. The second Schreier graph
represents the action of the same permutations on pairs of vertices (in [n]); that is, this graph
consisting of the vertex-set {(u, v) : u, v ∈ [n]} and the edge-set {{(u, v), (πi(u), πi(v))} : u, v ∈
[n] & i∈ [d]}.4

The argument is actually made with respect to edge-colored directed graphs (i.e., the edge-set
of the first graph is {(v, πi(v)) : v ∈ [n] & i ∈ [d]} and the directed edge (v, πi(v)) is assigned the
color i). Hence, we also present a transformation of robustly self-ordered edge-colored directed
graphs to analogous undirected graphs. Specifically, we replace the directed edge (u, v) colored j
by a 2-path with a designated auxiliary vertex au,v,j , while coloring the edge {u, au,v,j} by 2j − 1
and the edge {au,v,j , v} by 2j.

We comment that permutations satisfying the foregoing condition can be efficiently constructed;
for example, any set of expanding generators for SL2(p) (e.g., the one used by [28]) yield such
permutations on [n] ≡ {(1, i) : i ∈ GF(p)} ∪ {(0, 1)} (see Proposition 3.3).5

The three-step construction. Our alternative construction of robustly self-ordered (bounded-
degree) n-vertex graphs proceeds in three steps.

1. First, we prove the existence of bounded-degree n-vertex graphs that are robustly self-ordered
(see Theorem 4.1), while observing that this yields a exp(O(n log n))-time algorithm for con-
structing them.

2. Next (see Theorem 4.2), we use the latter algorithm to construct robustly self-ordered n-vertex

bounded-degree graphs that consist of 2`-sized connected components, where ` = O(logn)
log logn ;

these connected components are far from being isomorphic to one another, and are constructed
using robustly self-ordered `-vertex graphs as a building block. This yields an algorithm that
constructs the n-vertex graph in poly(n)-time, since exp(O(` log `)) = poly(n).

3. Lastly, we derive Theorem 1.3 (restated as Theorem 4.5) by repeating the same strategy as in
Step 2, but using the construction of Theorem 4.2 for the construction of the small connected
components (and setting ` = O(log n)). This yields an algorithm that finds the neighbors of
a vertex in the n-vertex graph in poly(log n)-time, since poly(`) = poly(log n).

The foregoing description of Steps 2 and 3 yields graphs that consists of small connected compo-
nents. We obtain analogous results for “strongly connected” graphs (i.e., expanders) by superim-
posing these graphs with expander graphs (while distinguishing the two types of edges by using
colors (see the foregoing discussion)). In fact, it is essential to perform this transformation (on the
result of Step 2) before taking Step 3; the transformation itself appears in the proof of Theorem 2.6.

Using large collections of pairwise far apart permutations. One ingredient in the foregoing
three-step construction is the use of a single `-vertex robustly self-ordered (bounded-degree) graph
towards obtaining a large collection of 2`-vertex (bounded-degree) graphs such that every two

4Equivalently, we consider only pairs of distinct vertices; that is, the vertex-set {(u, v) : u, v∈ [n] &u 6=v}.
5In this case, the primary Schreier graph represents the natural action of the group on the 1-dimensional subspaces

of GF(p)2.
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graphs are far from being isomorphic to one another, where “large” means exp(Ω(` log `)) in one case
(i.e., in the proof of Theorem 4.2) and exp(Ω(`)) in another case (i.e., in the proof of Theorem 4.5).
Essentially, this is done by constructing a large collection of permutations of [`] that are pairwise
far-apart, and letting the ith graph consists of two copies of the `-vertex graph that are matched
according to the ith permutation (see the aforementioned proofs). (Actually, we use two robustly
self-ordered `-vertex graphs that are far from being isomorphic (e.g., have different degree).)

A collection of L = exp(Ω(` log `)) pairwise far-apart permutations over [`] can be constructed
in poly(L)-time by selecting the permutations one by one, while relying on the existence of a
permutation that augments the current sequence (while preserving the distance condition, see the
proof of Theorem 4.2). A collection of L = exp(Ω(`)) pairwise far-apart permutations over [`]
can be locally constructed such that the ith permutation is constructed in poly(`)-time by using
sequences of disjoint transpositions determined via a good error correcting code (see the proof of
Theorem 4.5).

The foregoing discussion begs the challenge of obtaining a construction of a collection of
L = exp(Ω(` log `)) permutations over [`] that are pairwise far-apart along with a polynomial-time
algorithm that, on input i ∈ [L], returns a description of the ith permutation (i.e., the algorithm
should run in poly(logL)-time). We meet this challenge in [23]. Note that such a collection consti-
tutes a an asymptotically good code over the alphabet [`], where the permutations are the codewords
(being far-apart corresponds to constant relative distance and logL = Ω(log(`!)) corresponds to
constant rate).

On the failure of some natural approaches. We mention that natural candidates for robustly
self-ordered bounded-degree graphs fail. In particular, there exist expander graphs that are not
robustly self-ordered. In fact, any Cayley graph is symmetric (i.e., has non-trivial automorphisms).
For the Abelian case, multiplying the vertex labels by any non-zero group element yields a non-
trivial automorphism. For the non-Abelian case, a non-trivial conjugation will do (i.e., use the
mapping x 7→ h−1xh, which is non-trivial for some h).

In light of the above, it is interesting that expansion can serve as a sufficient condition for robust
self-ordering (as explained in the foregoing review of the direct construction); recall, however, that
this works for Schreier graphs, and expansion needs to hold for the action on vertex-pairs.

On optimization: We made no attempt to minimize the degree bound and maximize the ro-
bustness parameter. Note that we can obtain 3-regular robustly self-ordered graphs by applying
degree reduction; that is, given a d-regular graph, we replace each vertex by a d-cycle and use each
of these vertices to replace one original edge. To facilitate the analysis, we may use one color for
the edges of the d-cycles and another color for the other (i.e., original) edges.6 Hence, the issue at
hand is actually one of maximizing the robustness parameter of the resulting 3-regular graphs.

Caveat (tedious): Whenever we assert a d-regular n-vertex graph, we assume that the trivial
conditions hold; specifically, we assume that n > d and that nd is even (or, alternatively, allow for
one exceptional vertex of degree d− 1).

6Needless to say, we later replace all colored edges by copies of adequate constant-sized gadgets.
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1.2 Robustly self-ordered dense graphs

In the second part of this paper (i.e., Sections 7–11) we consider graphs of unbounded degree,
seeking correspondingly unbounded robustness parameters. In particular, we are interested in n-
vertex graphs that are Ω(n)-robustly self-ordered, which means that they must have Ω(n2) edges.

The construction of Ω(n)-robustly self-ordered graphs offers yet another alternative approach
towards the construction of bounded-degree graphs that are Ω(1)-robustly self-ordered. Specifically,
we show that n-vertex graphs that are Ω(n)-robustly self-ordered can be efficiently transformed into
O(n2)-vertex bounded-degree graphs that are Ω(1)-robustly self-ordered; see Proposition 7.2, which
is essentially proved by the “degree reduction via expanders” technique, while using a different color
for the expanders’ edges, and then using gadgets to replace colored edges (see Theorem 2.4).

1.2.1 Our main results

It is quite easy to show that random n-vertex graphs are Ω(n)-robustly self-ordered (see Propo-
sition 7.1); in fact, the proof is easier that the proof of the analogous result for bounded-degree
graphs (Theorem 6.1). Hence, it may be surprising that the construction of n-vertex graphs that
are Ω(n)-robustly self-ordered seems harder than the constructions for bounded-degree graphs.
Nevertheless, we were able to prove

Theorem 1.4 (constructing Ω(n)-robustly self-ordered graphs): There exist an infinite family of
dense Ω(n)-robustly self-ordered graphs {Gn}n∈N and a polynomial-time algorithm that, given n ∈ N
and a pair of vertices u, v ∈ [n] in the n-vertex graph Gn, determines whether or not u is adjacent
to v in Gn.

Unlike in the case of bounded-degree graphs, in general, we cannot rely on an efficient isomorphism
test for finding the original ordering of Gn, when given an isomorphic copy of it. However, we can
obtain dense Ω(n)-robustly self-ordered graphs for which this ordering can be found efficiently (see
Theorem 9.10).

Our proof of Theorem 1.4 is by a reduction to the construction of non-malleable two-source
extractors (see Theorem 8.2), and this reduction is partially reversible (see Proposition 8.4, which
reverses a special case captured in Remark 8.3).

Non-malleable two-source extractor. Non-malleable two-source extractors were introduced
in [8], as a variant on seeded (one-source) non-malleable extractors, which were introduced in [12].
We use non-malleable two-source extractors with very weak parameters but with an additional
natural feature, which we call niceness. Loosely speaking, we say that nmE : {0, 1}` × {0, 1}` →
{0, 1}m is a non-malleable two-source extractor for a class of sources C if for every two independent
sources in C, denoted X ands Y , and for every two functions f, g : {0, 1}` → {0, 1}` that have
no fixed-point it holds that (nmE(X,Y ), nmE(f(X), g(Y ))) is close to (Um, nmE(f(X), g(Y )), where
Um denotes the uniform distribution over {0, 1}m. It turns out that a non-malleable two-source
extractor for the class of `-bit sources of min-entropy `−O(1), with a single output bit (i.e., m = 1)
and constant error, suffices for the foregoing application (see Theorem 8.2). Actually, the reduction
requires the extractors to be nice, which means that the residual functions obtained by any two
different fixings of one of the extractor’s two arguments are almost unbiased and uncorrelated.
Theorem 1.4 follows by combining this reduction with Theorem 9.9, which is loosely stated as
follows —
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Theorem 1.5 (constructing non-malleable two-source extractor): For every constant d ≥ 0, there
exists an efficiently computable non-malleable two-source extractor for the class of `-bit sources
nmE : {0, 1}` × {0, 1}` → {0, 1} of min-entropy `− d. Furthermore, these extractors are nice.

Recall that non-malleable two-source extractors with much stronger parameters (i.e., min-entropy
` − `Ω(1), negligible error, and `Ω(1) bits of output), were constructed in [7], but these extractors
do not satisfy the niceness feature. Needless to say, our construction of non-malleable two-source
extractors is fundamentally different from the known constructions.

We mentioned that the inner-product mod 2 function, which is quite a good two-source ex-
tractor [9], fails miserably as a non-malleable two-source extractor. Nevertheless, we show that a
natural generalization of it works well, under certain conditions, which can be met by an efficient
construction.7 Specifically, we need the code to be “relocation-detecting”. (Actually, as in the case
of non-malleable two-source extractors, we need an additional niceness condition for the reduction
to work (see Theorem 9.4).)

Relocation-detecting codes. Loosely speaking, a code is relocation-detecting if applying any
permutation of the bit locations to a random codeword yields a string that is far any other codeword.
Essentially, Theorem 1.5 is proved by combining the aforementioned reduction (of Theorem 9.4)
with an efficient construction of relocation-detection codes that satisfy the additional requirement
of the reduction. One intermediate result we obtain is the following.

Theorem 1.6 (constructing relocation-detecting codes): There exists an efficiently computable
relocation-detecting code of constant relative distance and constant rate.

(We note that a random linear code is not relocation-detecting.) Interestingly, for the construc-
tion of non-malleable two-source extractors, we use a relocation-detecting code of exponential
block-length such that individual bits in the codeword can be computed efficiently (just as in
the Hadamard code, which underlies the inner-product mod 2 function (see Footnote 7)).

Turning back to the notion of Ω(n)-robustly self-ordered n-vertex graphs, we demonstrate their
usefulness in transporting lower bounds regarding testing binary strings to lower bounds regarding
testing graph properties in the dense graph model. This general methodology, presented in Sec-
tion 10, is analogous to the methodology for the bounded-degree graph model, which is presented
in Section 5.

The case of intermediate degree bounds. Lastly, in Section 11, we consider n-vertex graphs
of degree bound d(n), for every d : N→ N such that d(n) ∈ [Ω(1), n]. Indeed, the bounded-degree
case (studied in Section 2–6) and the dense graph case (studied in Sections 7–10) are special cases
(which correspond to d(n) = O(1) and d(n) = n). Using results from these two special cases, we
show how to construct Ω(d(n))-robustly self-ordered n-vertex graphs of maximum degree d(n), for
all d : N→ N.

7For this generalization, we view the inner-product mod 2 function as using its second argument as index to a bit
in the Hadamard encoding of its first argument.
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1.2.2 Techniques

As evident from the foregoing description, we reduce the construction of Ω(n)-robustly self-ordered
n-vertex graphs to the construction of non-malleable two-source extractors, which in turn is reduced
to the construction of relocation-detecting codes. So it all boils down to constructing the later codes,
and here (as in Section 4) we employ a constant-step procedure, starting with the mere existence
of relocation-detecting codes, and iteratively using such codes to derive exponentially larger codes.

We prove that the existence of relocation-detecting codes by proving that random (non-linear)
codes (of constant rate) satisfy the requirement. We comment that we also prove that random
n-vertex graphs are Ω(n)-robustly self-ordered and that random two-argument functions are non-
malleable two-source extractors (with much better parameters than needed for our reduction), but
we were not able to use the latter objects in order to obtain exponentially larger objects that have
similar features.

In the case of codes, we were able to use relocation-detecting codes for `-bit long strings in order
to construct relocation-detection codes for exp(Ω(`))-bit long strings. This is done by employing
the code concatenation paradigm [17]. Specifically, we use the small code as an inner-code that
encodes large symbols of an outer-code that is evidently relocation-detecting. The outer-code is
a variant of the Reed-Solomon Code, say C ′ : {0, 1}k → GF(n)n/ log2 n for n = O(k), and its ith

symbol is 〈i, C ′(x)i〉, where C ′(x)i is the ith symbol of C ′(x).
Additional complications, which are swept under the carpet here, arise from the aforementioned

additional conditions that the two reductions use. These additional conditions, called niceness, are
quite natural: In the case of the extractor it is required that, when fixing two distinct values to
any of the two arguments of the extractor, the residual one-argument functions are approximately
uncorrelated and each has approximately an equal number of 0’s and 1’s. An analogous requirement
is made for codes, when viewing the location in the codeword as a second argument. (A couple of
additional requirements from the codes are ignored here.)8 We warn that, while these conditions are
easy to obtain for ordinary extractors and codes, they are not so easy to achieve for non-malleable
extractors and relocation-detecting codes. Note that even simple modifications such as padding
the inputs, which are easy to perform for ordinary extractors and codes, are quite challenging for
non-malleable extractors and relocation-detecting codes.

1.3 Perspective

Asymmetric graphs were famously studied by Erdos and Renyi [15], who considered the (absolute)
distance of asymmetric graphs from being symmetric (i.e., the number of edges that should be
removed or added to a graph to make it symmetric), calling this quantity the degree of asymmetry.
They studied the extremal question of determining the largest possible degree of asymmetry of
n-vertex graphs (as a function of n). We avoided the term “robust asymmetry” because it could be
confused with the degree of asymmetry, which is a very different notion. In particular, the degree
of asymmetry cannot exceed twice the degree of the graph (e.g., by disconnecting two vertices),
whereas our focus is on robustly self-ordered graphs of bounded-degree.

We mention that Bollobas proved that, for every constant d ≥ 3, almost all d-regular are
asymmetric [4, 5]. This result was extended to varying d ∈ [3, n−4] by Kim, Sudakov, and Vu [26].

8One such requirement is that the relocation-detection condition holds not only for the uniform distribution over
codewords but also for any distribution of codewords that has min-entropy k−O(1), where k is the logarithm of the
number of codewords, and the other requirement is that the codewords have length 2k.
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1.4 Roadmaps

This work consists of two parts. The first part (Section 2–6) refers to bounded-degree graphs, and
the second part (Sections 7–11) refers to dense graphs. Even when focusing on one of these regimes,
the contents of the corresponding part may attract attention from diverse perspectives. Each such
perspective may benefit from a different roadmap.

Efficient combinatorial constructions. As mentioned above, in the regime of bounded-degree
graphs we present two different constructions that establish Theorem 1.3. Both constructions make
use of the edge-colored model and the transformations presented in Section 2. The direct construc-
tion is presented in Section 3, and the three-step construction appears in Section 4. The three-step
construction is augmented by local self-ordering and local reversed self-ordering algorithms (see
Section 4.4).9 In the regime of dense graphs, Sections 7–9 studies the constructability of three
different combinatorial objects; see roadmap “for the dense case” below.

Potential applications to property testing. The applications to property testing, which we
envision and demonstrated in Section 5, are to proving lower bounds (on the query complexity)
for the bounded-degree graph testing model. For such applications, the global notion of con-
structability, established in Section 4.2, suffices. This construction may be preferred over the direct
construction presented in Section 3, because it yields graphs with small connected components.
More importantly, the subexponential separation between the complexities of testing and tolerant
testing of graph properties in the bounded-degree graph model (i.e., Theorem 5.5) relies on the
construction of Section 4 and specifically on the local computation tasks studied in Section 4.4. An
analogous methodology for the dense graph testing model is presented in Section 10.

Properties of random graphs. As stated above, it turns out that random O(1)-regular graphs
are robustly self-ordered. This result is presented in Section 6, and this section can be read in-
dependently of any other section. (In addition, Section 7 presents a proof that random (dense)
n-vertex graphs are O(n)-robustly self-ordered.)

The dense case, non-malleable two-source extractors, and relocation-detecting codes.
The regime of dense graphs is studied in Sections 7–10, where the construction of such graphs
is undertaken in Sections 8–9. In Section 7, we show that Ω(n)-robustly self-ordered n-vertex
graphs provide yet another way of obtaining Ω(1)-robustly self-ordered bounded-degree graphs.
In Section 8, we reduce the construction of O(n)-robustly self-ordered n-vertex graphs to the
construction of non-malleable two-source extractors that enjoy an additional feature, called niceness.
A third natural object, which is introduced and studied in Section 9, is relocation-detecting codes.
Specifically, in Section 9.1 we reduce the construction of (nice) non-malleable two-source extractors
to the construction of (correspondingly nice) relocation-detecting codes, and in Section 9.2 we show
how to construct the latter.

Lastly, in Section 11, for every d : N→ N such that d(n) ∈ [Ω(1), n], we show how to construct
n-vertex graphs of maximum degree d(n) that are Ω(d(n))-robustly self-ordered. Some of the results
and techniques presented in this section are also relevant to the setting of bounded-degree graphs.

9For a locally constructable Gn and G′ = φ−1(Gn), a local self-ordering algorithm is given a vertex v in G′, and
returns φ(v). In contrast, a local reversed self-ordering algorithm is given a vertex i ∈ [n] of Gn and returns φ−1(i).
Both algorithms run in poly(logn)-time.
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Part I

The Case of Bounded-Degree Graphs

As stated in Section 1.1.2, a notion of robust self-ordering of edge-colored graphs plays a pivotal role
in our study of robustly self-ordered bounded-degree graphs. This notion as well as a transformation
from it to the uncolored version (of Definition 1.2) is presented in Section 2.

In Section 3, we present a direct construction of O(1)-regular robustly self-ordered edge-colored
graphs; applying the foregoing transformation, this provides our first proof of Theorem 1.3. Our
second proof of Theorem 1.3 is presented in Section 4, and consists of a three-step process (as
outlined in Section 1.1.2). Sections 3 and 4 can be read independently of one another, but both
rely on Section 2.

In Section 5 we demonstrate the applicability of robustly self-ordered bounded-degree graphs to
property testing; specifically, to proving lower bounds (on the query complexity) for the bounded-
degree graph testing model. For these applications, the global notion of constructability, estab-
lished in Section 4.2, suffices. This construction should be preferred over the direct construction
presented in Section 3, because it yields graphs with small connected components. More impor-
tantly, the subexponential separation between the complexities of testing and tolerant testing of
graph properties (i.e., Theorem 5.5) relies on the construction of Section 4 and specifically on the
local computation tasks studied in Section 4.4.

Lastly, in Section 6, we prove that random O(1)-regular graphs are robustly self-ordered. This
section may be read independently of any other section.

2 The Edge-Colored Variant

Many of our arguments are easier to make in a model of (bounded-degree) graphs in which edges are
colored (by a bounded number of colors), and where one counts the number of mismatches between
colored edges. Namely, an edge that appears in one (edge-colored) graph contributes to the count
if it either does not appear in the other (edge-colored) graph or appears in it under a different
color. Hence, we define a notion of robust self-ordering for edge-colored graphs. We shall then
transform robustly self-ordered edge-colored graphs to robustly self-ordered ordinary (uncolored)
graphs, while preserving the degree, the asymptotic number of vertices, and other features such as
expansion and degree-regularity. Specifically, the transformation consists of replacing the colored
edges by copies of different connected, asymmetric (constant-sized) gadgets such that different
colors are reflected by different gadgets.

We start by providing the definition of the edge-colored model. Actually, for greater flexibility,
we will consider multi-graphs; that is, graphs with possible parallel edges and self-loops. Hence, we
shall consider multi-graphs G = (V,E) coupled with an edge-coloring function χ :E→N, where E
is a multi-set containing both pairs of vertices and singletons (representing self-loops). Actually, it
will be more convenient to represent self-loops as 2-element multi-sets containing two copies of the
same vertex.

Definition 2.1 (robust self-ordering of edge-colored multi-graphs): Let G = (V,E) be a multi-
graph with colored edges, where χ :E→N denotes this coloring, and let Ei denote the multi-set of
edges colored i (i.e., Ei = {e ∈ E : χ(e) = i}). We say that (G,χ) is γ-robustly self-ordered if for
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every permutation µ : V → V it holds that∑
i∈N

∣∣∣Ei 4{{µ(u), µ(v)} :{u, v}∈Ei}
∣∣∣ ≥ γ · |{i∈V :µ(i) 6= i}|, (2)

where A4B denotes the symmetric difference between the multi-sets A and B; that is A4B contains
t occurrences of e if the absolute difference between the number of occurrences of e in A and B
equals t.

(Definition 1.2 is obtained as a special case when the multi-graph is actually a graph and all edges
are assigned the same color.)

We stress that whenever we consider “edge-colored graphs” we actually refer to edge-colored
multi-graphs (i.e., we explicitly allow parallel edges and self-loops).10 In contrast, whenever we
consider (uncolored) graph, we refer to simple graphs (with no parallel edges and no self-loops).

Our transformation of robustly self-ordered edge-colored multi-graphs to robustly self-ordered
ordinary graphs depends on the number of colors used by the multi-graph. In particular, γ-
robustness of edge-colored multi-graph that uses c colors gets translated to (γ/f(c))-robustness
of the resulting graph, where f : N → N is an unbounded function. Hence, we focus on coloring
functions that use a constant number of colors, denoted c. That is, fixing a constant c ∈ N, we
shall consider multi-graphs G = (V,E) coupled with an edge-coloring function χ :E→ [c].

2.1 Transformation to standard (uncolored) version

As a preliminary step for the transformation, we add self-loops to all vertices and make sure that
parallel edges are assigned different colors. The self-loops make it easy to distinguish the original
vertices from auxiliary vertices that are parts of gadgets introduced in the main transformation.
Different colors assigned to parallel edges are essential to the mere asymmetry of the resulting
graph, since we are going to replace edges of the same color by copies of the same gadget.

Construction 2.2 (preliminary step towards Construction 2.3): For a fixed d ≥ 3, given a multi-
graph G = (V,E) of maximum degree d and an edge-coloring function χ : E → [c], we define a
multi-graph G = (V,E′) and an edge-coloring function χ′ :E′→ [d · c+ 1] as follows.

1. For every pair of vertices u and v that are connected by few parallel edges, denoted e
(1)
u,v, ..., e

(d′)
u,v ,

we change the color of e
(i)
u,v to χ′(e

(i)
u,v) ← (i − 1) · d + χ(e

(i)
u,v). This includes also the case

u = v.

2. We augment the multi-graph with self-loops colored d · c + 1; that is, E′ is the multi-set
E ∪ {ev : v∈V }, where ev is a self-loop added to v, and χ′(ev) = dc+ 1.

(Other edges e∈E maintain their color; that is, them χ′(e) = χ(e) holds).

10We comment that a seemingly more appealing definition can be used for edge-colored (simple) graphs. Specifically,
in that case (i.e., E ⊆

(
V
2

)
), we can extend χ :E→N to non-edges by defining χ({u, v}) = 0 if {u, v} 6∈ E, and say

that (G,χ) is γ-robustly self-ordered if for every permutation µ : V → V it holds that∣∣∣∣∣
{
{u, v} ∈

(
V

2

)
: χ({µ(u), µ(v)}) 6=χ({u, v})

}∣∣∣∣∣ ≥ γ · |{i∈V : µ(i) 6= i}|.
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(For simplicity, we re-color all parallel edges, save the first one, rather than re-coloring only parallel
edges of the same color.) Note that refining the coloring may only increase the robustness parameter
of a multi-graph. Clearly, G′ preserves many features of G. In particular, it preserves γ-robust
self-ordering, expansion, degree-regularity, and the number of vertices.

As stated above, our transformation of edge-colored multi-graphs to ordinary graphs uses gad-
gets, which are constant-size graphs. Specifically, when handling a multi-graph of maximum degree
d with edges that are colored by c colors, we shall use c different connected and asymmetric graphs.
Furthermore, in order to maintain d-regularity, we shall use d-regular graphs as gadgets; and in or-
der to have better control on the number of vertices in the resulting graph, each of these gadgets will
contain k = k(d, c) vertices. The existence of such (d-regular) asymmetric (and connected) graphs
is well-known, let alone that it is known that a random d-regular k-vertex graph is asymmetric (for
any constant d ≥ 3) [4, 5].

We stress that the different gadgets are each connected and asymmetric, and it follows that
they are not isomorphic to one another. We designate in each gadget an edge {p, q}, called the
designated edge, such that omitting this edge does not disconnect the gadget. The endpoint of this
edge will be used to connect two vertices of the original multi-graph. Specifically, we replace each
edge {u, v} (of the original multi-graph) that is colored i by a copy of the ith gadget, while omitting
one its designated edge {p, q} and connecting u to p and v to q. The construction is spelled out
below.

We say that a (non-simple) multi-graph G = (V,E) coupled with an edge-coloring χ is eligible
if each of its vertices contains a self-loop, and parallel edges are assigned different colors. Recall
that eligible comes almost for free (by applying Construction 2.2). We shall apply the following
construction only to eligible edge-colored multi-graphs.

Construction 2.3 (the main transformation): For a fixed d ≥ 3 and c, let k = k(d, c) and
G1, ..., Gk be different asymmetric and connected d-regular graphs over the vertex-set [k]. Given
a multi-graph G = (V,E) of maximum degree d and an edge-coloring function χ : E → [c], we
construct a graph G′ = (V ′, E′) as follows.

Suppose that the multi-set E has size m. Then, for each j ∈ [m], if the jth edge of E
connects vertices u and v, and is colored i, then we replace it by a copy of Gi, while
omitting its designated edge and connecting one of its endpoints to u and the other to
v.

Specifically, assuming that V = [n] and recalling that j is the index of the edge (colored
i) that connects u and v, let Gu,vi be an isomorphic copy of Gi that uses the vertex set

{n + (j − 1) · k + i : i ∈ [k]}. Let {p, q} be the designated edge in Gu,vi , and Ĝu,vi be
the graph that results from Gu,vi by omitting {p, q}. Then, we replace the edge {u, v} by

Ĝu,vi , and add the edges {u, p} and {v, q}.

Hence, V ′ = [n + m · k] and E′ consists of the edges of all Ĝu,vi ’s as well as the edges connecting
the endpoint of the corresponding designated edges to the corresponding vertices u and v.

We stress that, although G may have parallel edges and self-loops, the graph G′ has neither parallel
edges nor self-loops. Also note that G′ preserve various properties of G such as degree-regularity,
number of connected components, and expansion (up to a constant factor).

Showing that the resulting graphG′ = (V ′, E′) is robustly self-ordered relies on a correspondence
between the colored edges of G = (V,E) and the gadgets in G′. For starters, suppose that the
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permutation µ′ : V ′ → V ′ maps V to V (i.e., µ′(V ) = V ), and gadgets to the corresponding
gadgets; that is, if µ′ maps the vertex-pair (u, v) ∈ V 2 to (µ′(u), µ′(v)) ∈ V 2, then µ′ maps the
vertices in the possible gadget that connects u and v to the vertices in the gadget that connects
µ′(u) and µ′(v). In such a case, letting µ be the restriction of µ′ to V , a difference of D colored edges
between G and µ(G) translates to a difference of at least D edges between G′ and µ′(G′), due to
the difference between the gadgets that replace the corresponding edges of G′, whereas the number
of non-fixed-point vertices in µ′ is k times larger than the number of non-fixed-point vertices in µ,
which is at most D/γ (by the γ-robust self-ordering of G). Hence, in this case we have

|G′4µ′(G′)|
|{v ∈ V ′ : µ′(v) 6=v}|

=
D

k · |{v ∈ V : µ(v) 6=v}|
≥ D

k ·D/γ

which equals γ/k. However, in general, µ′ needs not satisfy the foregoing condition. Nevertheless,
if µ′ splits some gadget or maps some gadget in a manner that is inconsistent with the vertices
of V connected by it, then this gadget contributes at least one unit to the difference between G′

and µ′(G′), whereas the number of non-fixed-point vertices in this gadget is at most k. Lastly, if
µ′ maps vertices of a gadget to other vertices in the same gadget, then we get a contribution of at
least one unit due to the asymmetry of the gadget. The foregoing is made rigorous in the proof of
the following theorem.

Theorem 2.4 (from edge-colored robustness to standard robustness): For constant d ≥ 3 and
c, suppose that the multi-graph G = (V,E) coupled with χ : E → [c] is eligible and γ-robustly
self-ordered. Then, the graph G′ = (V ′, E′) resulting from Construction 2.3 is (γ/3k)-robustly
self-ordered, where k = k(d, c) is the number of vertices in a gadget (as determined above).

Proof: As a warm-up, let us verify that G′ is asymmetric. We first observe that the vertices
of G are uniquely identified (in G′), since they are the only vertices that are incident at copies
of the gadget that replaces the self-loops.11 Hence, any automorphism of G′ must map V to V .
Consequently, for any i, such an automorphism µ′ must map each copy of Gi to a copy of Gi, which
induces a unique coloring of the edges of G. By the “colored asymmetry” of G, this implies that
µ′ maps each v ∈ V to itself, and consequently each copy of Gi must be mapped (by µ′) to itself.
Finally, using the asymmetry of the Gi’s, it follows that each vertex of each copy of Gi is mapped
to itself.

We now turn to proving that G′ is actually robustly self-ordered. Considering an arbitrary
permutation µ′ : V ′ → V ′, we lower-bound the distance between G′ and µ′(G′) as a function of the
number of non-fixed-points under µ′ (i.e., of v ∈ V ′ such that µ′(v′) 6= v′). We do so by considering
the contribution of each non-fixed-point to the distance between G′ and µ′(G′). We first recall
the fact that the vertices of V (resp., of gadgets) are uniquely identified in µ′(G′) by virtue of the
gadgets that replace self-loops (see the foregoing warm-up).

Case 1: Vertices of some copy of Gi that are not mapped by µ′ to a single copy of Gi; that is,

vertices in some Gu,vi that are not mapped by µ′ to some Gu
′,v′

i .

(This includes the case of vertices w′ and w′′ of some Gu,vi such that µ′(w′) is in Gu
′,v′

i′ and

µ′(w′′) is in Gu
′′,v′′

i′′ , but (i′, u′, v′) 6= (i′′, u′′, v′′). It also includes the case of a copy of Gi that

11Note that this gadget cannot appear as part of any other gadget, since all gadgets have the same number of
vertices.
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is mapped by µ′ to a copy of Gj for j 6= i, and the case that a vertex w in some Gu,vi that is
mapped by µ′ to a vertex in V .)

The set of vertices Su,vi of each such copy (i.e., Gu,vi ) contribute at least one unit to the

difference between G′ and µ′(G′), since µ′(Su,vi ) induces a copy of Ĝi in µ(G′) but not in G′,

where here we also use the fact that the Ĝi’s are connected (and not isomorphic (for the case
of i′ = i′′ 6= i)). Note that the total contribution of all vertices of the current case equals
at least the number of gadgets in which they reside. Hence, if the current case contains n1

vertices, then their contribution to the distance between G′ and µ′(G′) is at least n1/k.

Ditto for vertices that do not belong to a single copy of Gi and are mapped by µ′ to a single
copy of Gi. (This also includes v ∈ V being mapped to some copy of some Gi.)

Case 2: Vertices of some copy of Gi that are mapped by µ′ to a single copy of Gi, while not
preserving their indices inside Gi.

(This refers to vertices of some Gu,vi that are mapped by µ to vertices of Gu
′,v′

i , where (u′, v′)
may but need not equal (u, v), such that for some j ∈ [k] the jth vertex of Gu,vi is not mapped

by µ to the jth vertex of Gu
′,v′

i .)12

By the fact that Gi is asymmetric, it follows that each such copy contributes at least one
unit to the difference between G′ and µ′(G′), and so (again) the total contribution of all these
vertices is proportional to their number; that is, if the number of vertices in this case is n2,
then their contribution is at least n2/k.

Case 3: Vertices v ∈ V such that µ′(v) 6= v (equiv., µ′(v) ∈ V \ {v}).
(This is the main case, where we use the hypothesis that the edge-colored G is robustly
self-ordered.

By the hypothesis that the edge-colored G is robustly self-ordered, it follows that such vertices
contribute proportionally to the difference between the colored versions of the multi-graphs
G and µ(G), where µ is the restriction of µ′ to V . Specifically, the number of tuples ({u, v}, i)
such that {u, v} is colored i in exactly one of these multi-graph (i.e., either in G or in µ(G)
but not in both) is at least γ · |{v∈V : µ(v) 6= v}|. Assume, without loss of generality that
χ({u, v}) = i but either {µ−1(u), µ−1(v)} 6∈ E or χ({µ−1(u), µ−1(v)}) = j 6= i. Either way,
it follows that some vertices that do not belong to a copy of Gi are mapped by µ′ to Gu,vi ,
which means that Case 1 applies for each such a tuple. Hence, if the number of vertices in
the current case is n3, then n1 ≥ γ · n3, and we get a contribution of at least γ · n3/k via
Case 1.

Case 4: Vertices of some copy of Gi that are mapped by µ′ to a different copy of Gi.

This refers to the case that µ′ maps Gu,vi to Gu
′,v′

i such that (u′, v′) 6= (u, v), which corresponds
to mapping the gadget to a gadget connecting a different pair of vertices (but by an edge of
the same color).

For u, v, u′, v′ and i as above, if µ′(u) = u′ and µ′(v) = v′, then a gadget that connects u and
v in G′ is mapped to a gadget that does not connects them in µ′(G′) (but rather connects the

12Recall that Gu,vi and Gu
′,v′

i are both copies of the k-vertex graph Gi, which is an asymmetric graph, and so the
notion of the jth vertex in them is well-defined. Formally, the jth vertex of Gu,vi is φ−1(j) such that φ is the (unique)
bijection satisfying φ(Gu,vi ) = Gi.
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vertices u′ and v′, whereas either u′ 6= u or v′ 6= v). So we get a contribution of at least one
unit to the difference between G′ and µ′(G′) (i.e., the gadget-edge incident at either u or v),
whereas the number of vertices in this gadget is k. Hence, the contribution is proportional to
the number of non-fixed-points of the current type. Otherwise (i.e., (µ′(u), µ′(v)) 6= (u′, v′)),
we get a vertex as in Case 3, and get a proportional contribution again.

Hence, the contribution of each of these cases to the difference between G′ and µ′(G′) is proportional
to the number of vertices involved. Specifically, if there are ni vertices in Case i, then we get a
contribution-count of at least γ ·

∑
i∈[4] ni/k, where some of these contributions were possibly

counted thrice. The claim follows.

Remark 2.5 (fitting any desired number of vertices): Assuming that the hypothesis of Theorem 2.4
can be met for any sufficiently large n ∈ S ⊆ N, Construction 2.3 yields robustly self-ordered n′-
vertex graphs for any n′ ∈ {k · n : n∈S}. To obtain such graphs also for n′ that is not a multiple
of k, we may use two gadgets with a different number of vertices for replacing at least one of the
sets of colored edges.

2.2 Application: Making the graph regular and expanding

We view the edge-colored model as an intermediate locus in a two-step methodology for constructing
robustly self-ordered graphs of bounded-degree. First, one constructs edge-colored multi-graphs
that are robustly self-ordered in the sense of Definition 2.1, and then converts them to ordinary
robustly self-ordered graphs (in the sense of Definition 1.2), by using Construction 2.3 (while relying
on Theorem 2.4).

We demonstrate the useful of this methodology by showing that it yields a simple way of making
robustly self-ordered graphs be also expanding as well as regular, while maintaining a bounded
degree. We just augment the original graph by super-imposing an expander (on the same vertex
set), while using one color for the edges of the original graph and another color for the edges of the
expander. Note that we do not have to worry about the possibility of creating parallel edges (since
they are assigned different colors). The same method applies in order to make the graph regular.
We combine both transformations in the following result, which we shall use in the sequel.

Theorem 2.6 (making the graph regular and expanding): For constant d ≥ 3 and γ, there exists
an efficient algorithm that given a γ-robustly self-ordered graph G = (V,E) of maximum degree
d, returns a (d + O(1))-regular multi-graph coupled with a 2-coloring of its edges such that the
edge-colored graph is γ-robustly self-ordered (in the sense of Definition 2.1).

The same idea can be applied to edge-colored multi-graphs; in this case, we use one color more
than given. We could have avoided the creation of parallel edges with the same color by using
more colors, but preferred to relegate this task to Construction 2.2, while recalling that it preserves
both the expansion and the degree-regularity. Either way, applying Theorem 2.4 to the resulting
edge-colored multi-graph, we obtain robustly self-ordered (uncolored) graphs.

Proof: For any d′′ ≥ d + d′, given a graph G = (V,E) of maximum degree d that is γ-robustly
self-ordered and a d′-regular expander graph G′ = (V,E′), we construct the desired d′′-regular
multi-graph G′′ by super-imposing the two graphs on the same vertex set, while assigning the edges
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of each of these graphs a different color. In addition, we add edges to make the graph regular, and
color them using the same color as used for the expander.13 Details follow.

• We superimpose G and G′ (i.e., create a multi-graph (V,E ∪E′)), while coloring the edges of
G (resp., G′) with color 1 (resp., color 2).

Note that this may create parallel edges, but with different colors.

• Let dv ≤ d+d′ denote the degree of vertex v in the resulting multi-graph. Then, we add edges
to this multi-graph so that each vertex has degree d′′. These edges will also be colored 2.

(Here, unless we are a bit careful, we may introduce parallel edges that are assigned the
same color. This can be avoided by using more colors for these added edges, but in light
of Construction 2.2 (which does essentially the same) there is no reason to worry about this
aspect.)

(Recall that the resulting edge-colored multi-graph is denoted G′′.)
The crucial observation is that, since the edges of G are given a distinct color in G′′, the added

edges do not harm the robust self-ordering feature of G. Hence, for any permutation µ : V → V ,
any vertex-pair that contributes to the symmetric difference between G and µ(G), also contributes
to an inequality between colored edges of G′′ and µ(G′′) (by virtue of the edges colored 1).

2.3 Local computability of the transformations

In this subsection, we merely point out that the transformation presented in Constructions 2.2
and 2.3 as well as the one underlying the proof of Theorem 2.6 preserve efficient local computability
(e.g., one can determine the neighborhood of a vertex in the resulting multi-graph by making
a polylogarithmic number of neighbor-queries to the original multi-graph). Actually, this holds
provided that we augment the (local) representation of graphs, in a natural manner.

Recall that the standard representation of bounded-degree graphs is by their incidence functions.
Specifically, a graph G = ([n], E) of maximum degree d is represented by the incident function
g : [n] × [d] → [n] ∪ {0} such that g(v, i) = u ∈ [n] if u is the ith neighbor of v, and g(v, i) = 0
if v has less than i neighbors. This does not allow us to determined the identity of the jth edge
in G, nor even to determine the number of edges in G, by making a polylogarithmic number of
queries to g. Nevertheless, efficient local computability is preserved if we use the following local
representation (presented for edge-colored multi-graphs).

Definition 2.7 (local representation): For d, c ∈ N, a local representation of a multi-graph G =
([n], E) of maximum degree d that is coupled with a coloring χ :E→ [c] is provided by the following
three functions:

1. An incidence function g1 : [n] × [d] → N ∪ {0} such that g1(v, i) = j ∈ N if j is the index of
the ith edge that incident at vertex v, and g1(v, i) = 0 if v has less than i incident edges.

13We assume for simplicity that |V ′| is even. Alternatively, assuming that G contains no isolated vertex, we first
augment it with an isolated vertex and apply the transformation on the resulting graph. Yet another alternative is
to consider only even d′′.
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2. An edge enumeration function g2 : N→ ([n]2 × [c]) ∪ {0} such that g2(j) = (u, v, χ(ej) if the
jth edge, denoted ej, connects the vertices u and v, and g2(j) = 0 if the multi-graph has less
than j edges.

3. An vertex enumeration (by degree) function g3 : [d] → ([n] → [n]) ∪ {0} such that g3(i, j) =
v ∈ [n] if v is the ith vertex of degree j in the multi-graph, and g3(i, j) = 0 if the multi-graph
has less than j vertices of degree i.

Needless to say, the function g3 is redundant in the case that we are guaranteed that the multi-
graph is regular. One may augment the above representation by providing also the total number
of edges, but this number can be determined by binary search.

Theorem 2.8 (the foregoing transformations preserve local computability): The local representa-
tion of the multi-graph that result from Construction 2.2 can be computed by making a polylogarith-
mic number of queries to the given multi-graph. The same holds for Construction 2.3 and for the
transformation underlying the proof of Theorem 2.6.

Proof: For Construction 2.2, we mostly need to enumerate all parallel edges that connect u and
v. This can be done easily by querying the incidence function on (u, 1), ..., (u, d) and querying the
edge enumeration function on the non-zero answers. (In addition, when adding a self-loop on vertex
v ∈ [n], we need to determine the degree of v as well as the number of edges in the multi-graph
(in order to know how to index the self-loop in the incidence and edge enumeration functions,
respectively). For Construction 2.3, we merely need to determine the color of the jth edge and its
index in the incidence list of each of its endpoints (in order to replace it by edges that lead to the
gadget).

For the transformation underlying the proof of Theorem 2.6, adding edges to make the multi-
graph regular requires determining the index of a vertex in the list of all vertices of the same
degree (in order to properly index the added edges). Here is where we use the vertex enumeration
(by degree) function. (We also need to select a fixed procedure for transforming an sorted n-long
sequence (d1, ..., dn) ∈ [d′′] into an all-d′′ sequence by making pairs of increments; that is, given
j ∈ [D] such that D = (d′′n−

∑
i∈[n] di)/2, we should determine a pair (uj , vj) such that for every

i ∈ [n] it holds that di + |{j : uj = i}|+ |{j : vj = i}| = d′′.)

3 The Direct Construction

We shall make use of the edge-colored variant presented in Section 2, while relying on the fact that
robustly self-ordered colored multi-graphs can be efficiently transformed into robustly self-ordered
(uncolored) graphs. Actually, it will be easier to present the construction as a directed edge-colored
multi-graph. Hence, we first define a variant of robust self-ordering for directed edge-colored multi-
graph (see Definition 3.1), then show how to construct such multi-graphs (see Section 3.2), and
finally show how to transform the directed variant into an undirected one (see Section 3.1).

The construction is based on d permutations, denoted π1, ..., πd : [n]→ [n], and consists of the
directed edge-colored multi-graph that is naturally defined by them. Specifically, for every v ∈ [n]
and i ∈ [d], this multi-graph contains a directed edge, denoted (v, πi(v), that goes from vertex v to
vertex πi(v), and is colored i.
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We prove that a sufficient condition for this edge-colored directed multi-graph, denoted G1, to
be robustly self-ordered is that a related multi-graph is an expander. Specifically, we refer to the
multi-graph G2 = (V2, E2) that represents the actions of the permutation of pairs of vertices of G1;
that is, V2 = {(u, v)∈ [n]2 : u 6=v} and E2 = {{(u, v), (πi(u), πi(v))} : (u, v)∈V2 & i∈ [d]}.

The foregoing requires extending the notion of robustly self-ordered (edge-colored) multi-graphs
to the directed case. The extension is straightforward and is spelled-out next, for sake of good order.

Definition 3.1 (robust self-ordering of edge-colored directed multi-graphs): Let G = (V,E) be a
directed multi-graph with colored edges, where χ :E→N denotes this coloring, and let Ei denote the
multi-set of edges colored i. We say that (G,χ) is γ-robustly self-ordered if for every permutation
µ : V → V it holds that∑

i∈N

∣∣∣Ei 4{(µ(u), µ(v)) : (u, v)∈Ei}
∣∣∣ ≥ γ · |{i∈V :µ(i) 6= i}|, (3)

where A4B denotes the symmetric difference between the multi-sets A and B (as in Definition 2.1).

(The only difference between Definition 3.1 and Definition 2.1 is that Eq. (3) refers to the directed
edges of the directed multi-graph, whereas Eq. (2) refers to the undirected edges of the undirected
multi-graph.)

In Section 3.1 we present a construction of a directed edge-colored O(1)-regular multi-graph
that is Ω(1)-robustly self-ordered. We shall actually present a sufficient condition and a specific
instantiation that satisfies it. In Section 3.2 we show how to transform any directed edge-colored
multi-graph into an undirected one while preserving all relevant features; that is, bounded robust-
ness, bounded degree, regularity, expansion, and local computability.

3.1 A sufficient condition for robust self-ordering of directed colored graphs

For any d permutations, π1, ..., πd : [n]→ [n], we consider two multi-graphs.

1. The primary multi-graph (of π1, ..., πd) is a directed multi-graph, denoted G1 = ([n], E1), such
that E1 = {(v, πi(v)) : v ∈ [n] & i∈ [d]}. This directed multi-graph is coupled with an edge-
coloring in which the directed edge from v to πi(v) is colored i.

2. The secondary multi-graph (of π1, ..., πd) is an undirected multi-graph, denoted G2 = (V2, E2),
such that V2 = {(u, v)∈ [n]2 : u 6=v} and E2 = {{(u, v), (πi(u), πi(v))} : (u, v)∈V2 & i∈ [d]}.

We note that each of these multi-graphs is a Schreier graph that correspond to the action of the
permutation π1, ..., πd on the corresponding vertex sets (i.e., [n] and V2, respectively). For a wider
perspective on this aspect, the interested reader is referred to [25, Sec. 11.1.2].

We now state the main result of this section, which asserts that the primary multi-graph G1

is robustly self-ordered if the secondary multi-graph G2 is an expander. We use the combinatorial
definition of expansion: A multi-graph G = (V,E) is γ-expanding if, for every subset S of size at
most |V |/2, there are at least γ · |S| vertices in V \ S that neighbor some vertex in S.

Theorem 3.2 (expansion of G2 implies robust self-ordering of G1): For any d ≥ 2 permuta-
tions, π1, ..., πd : [n] → [n], if the secondary multi-graph G2 of π1, ..., πd is γ-expanding, then
the primary directed multi-graph G1 of π1, ..., πd coupled with the foregoing edge-coloring is γ-
robustly self-ordered. Furthermore, G1 (or rather the undirected multi-graph underlying G1) is
min(0.25, γ/3)-expanding.
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Proof: Let µ : [n] → [n] be an arbitrary permutation, and let T = {v ∈ [n] : µ(v) 6= v} be its
set of non-fixed-points. Then, the size of the symmetric difference between G1 and µ(G1) equals
2 ·
∑

i∈[d] |Di| such that v ∈ Di if (µ(v), µ(πi(v))) is either not an edge in G1 or is not colored i in
it, whereas (v, πi(v)) is an edge colored i in G1. Note that if (µ(v), µ(πi(v))) is not an i-colored
edge in G1, then πi(µ(v)) 6= µ(πi(v)). Hence, Di = {v∈ [n] : µ(πi(v)) 6= πi(µ(v))}.

The key observation (proved next) is that if v ∈ T \ Di, then (πi(v), πi(µ(v)) ∈ T2, where
T2 = {(v, µ(v)) : v∈T} represents the sets of replacements performed by µ. This fact implies that
if
∑

i∈[d] |Di| is small in comparison to |T |, then the set T2 (which is a set of vertices in G2) does
not expand much, in contradiction to the hypothesis. Details follow.

Observation 3.2.1 (key observation): For T, Di and T2 as defined above, if v ∈ T \Di,
then (πi(v), πi(µ(v)) ∈ T2.

Recall that v ∈ T implies (v, µ(v)) ∈ T2. Observation 3.2.1 asserts that if (in addition to v ∈ T ) it
holds that v 6∈ Di, then (πi(v), πi(µ(v)) is also in T2. This means that the edges colored i incident
at {(πi(v), πi(µ(v))) : v∈T \Di} do not contribute to the expansion of the set T2 in G2.

Proof: Since v 6∈ Di we have πi(µ(v)) = µ(πi(v)), and µ(πi(v)) 6= πi(v) follows, because otherwise
πi(µ(v)) = πi(v), which implies µ(v) = v in contradiction to v ∈ T . However, µ(πi(v)) 6= πi(v)
means that πi(v) ∈ T , and (πi(v), πi(µ(v))) = (πi(v), µ(πi(v))) ∈ T2 follows.

Conclusion. Recall that Observation 3.2.1 implies that {(πi(v), πi(µ(v))) : v ∈ T \ Di} ⊆ T2,
whereas

⋃
i∈[d]{(πi(v), πi(µ(v))) : v ∈ T} is the neighborhood of T2 in the multi-graph G2 (since

{(πi(v), πi(µ(v))) : i∈ [d]} the neighbor-set of (v, µ(v)) in G2). Using the γ-expansion of G2 (and
|T2| ≤ n < |V2|/2), it follows that

∑
i∈[d] |Di| ≥ γ · |T |. The main claim follows.

The expansion of G1 is shown by relating sets of vertices of G1 to the corresponding sets of
pairs in G2. Specifically, for and S ⊂ [n] of size at most n/2, we consider the set T = {(u, v)∈V2 :

u, v∈S}, which has size |S| · (|S| − 1) ≤ n
2 · (

n
2 − 1) < |V2|

2 . Letting T ′ denote the set of neighbors
of T in G2, and |S′| denote the set of neighbors of S in G1, we have |T ′ \ T | ≥ γ · |T |, on the one
hand (by expansion of G2), and |T ′ \T | ≤ 2 · |S| · |S′ \S|+ |S′ \S| · (|S′ \S| − 1) on the other hand.
This implies |S′ \S| ≥ (γ/3) · |S| (unless |S| < 5, which can be handled by using |S′ \S| ≥ 1).

Primary and secondary multi-graphs based on SL2(p). Recall that SL2(p) is the group of 2-
by-2 matrices over GF(p) that have determinant 1. There are several different explicit constructions
of constant-size expanding generating sets for SL2(p), namely making the associated Cayley graph
an expander (see, e.g., [28], [27, Thm. 4.4.2(i)], and [6]). We use any such generating set to define a
directed (edge-colored) multi-graph G1 on p+ 1 vertices, and show that the associated multi-graph
on pairs, G2, is an expander.

Proposition 3.3 (expanding generators for SL2(p) yield an expanding secondary multi-graph):
For any prime p > 2, let V = {(1, i)> : i ∈ GF(p)}∪ {(0, 1)>}, and M1, ...,Md ∈ SL2(p). For every
i ∈ [d], define πi : V → V such that πi(u) = v if v ∈ V is a non-zero multiple of Miu. Then:

1. Each πi is a bijection.

2. If the Cayley multi-graph C = C(SL2(p), {M1, ...,Md}) = (SL2(p), {{M,MiM} : M ∈ SL2(p) & i∈
[d]}) is an expander, then the (Schreier) multi-graph G2 with vertex-set P = {(v, v′) : v ∈
V & v′∈V \ {v}} and edge-set {{(v, v′), (πi(v), πi(v

′))} : (v, v′)∈P} is an expander.
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Part 1 implies that these permutations yield a primary directed edge-colored multi-graph on the
vertex-set V , whereas Part 2 asserts that the corresponding secondary graph is an expander (if the
corresponding Cayley graph is expanding). Note that |V | = p + 1 and |P | = (p + 1)p, whereas
|SL2(p)| = p3 − p = (p− 1) · |P |.

Proof: Part 1 follows by observing that for every M ∈ SL2(p) and every vector v ∈ GF(p)2 and
scalar α ∈ GF(p) it holds that Mαv = αMv. Consequently, if for some non-zero α, α′ ∈ GF(p) it
holds that αMv = α′Mv′, then Mv = Mα′′v′ for α′′ = α′/α, which implies v = α′′v′ (since M is
invertible). (Hence, πi(v) = πi(v

′), for v, v′ ∈ V , implies v = v′.)
Part 2 follows by observing that the vertices of G2 correspond to equivalence classes of the

vertices of C that are preserved by SL2(p), where A,B ∈ SL2(p) are equivalent if the columns of
A are non-zero multiples of the corresponding columns of B. That is, we consider an equivalence
relation, denoted ≡, such that for A = [A1|A2] and B = [B1|B2] in SL2(p) it holds that A ≡ B if
Ai = αiBi for both i ∈ {1, 2}, where α1, α2 ∈ [p − 1] (and, in fact, α2 = 1/α1).14 By saying that
these equivalence classes are preserved by SL2(p), we mean that, for every A,B,M ∈ SL2(p), if
A ≡ B, then MA ≡ MB. Hence, the (combinatorial) expansion of G2 follows from the expansion
of C, because the neighbors of a vertex-set S ⊆ P in G2 are the vertices of G2 that are equivalent
to T ′ such that T ′ is the set of vertices of CC(t) that neighbor (in CC(t)) vertices that are equivalent
to vertices in S.15

A simple construction. Combining Theorem 3.2 with Proposition 3.3, while using a simple
pair of expanding generators (which does not yield a Ramanujan graph), we get

Corollary 3.4 (a simple robustly self-ordered primary multi-graph): For any prime p > 2, let
V = {(1, i)> : i ∈ GF(p)} ∪ {(0, 1)>}, and consider the matrices

M1
def
=

(
1 1
0 1

)
and M2

def
=

(
0 1
−1 0

)
(4)

Then, for π1 and π2 defined as in Proposition 3.3, the corresponding primary (directed edge-colored)
multi-graph is robustly self-ordered.

This follows from the fact that the corresponding Cayley graph C(SL2(p), {M1,M2}) is an ex-
pander [27, Thm. 4.4.2(i)].

Perspective. The foregoing construction using the group SL2(p) is a special case of a much
more general family of constructions, and the elements of the proof of Proposition 3.3 follow an
established theory (explained, e.g., in [25, Sec. 11.1.2]), which we briefly describe.

Let H be any finite group, and S an expanding generating set of H (i.e., the Cayley graph
C(H,S) is an expander). Assume that H acts on a finite set V (i.e., each h ∈ H is associated with

14Recall that det(A) = 1 = det(B), whereas det([α1B1|α2B2]) = α1α2 · det(B). Note that each equivalence class
contains a single element of P .

15Specifically, let S have density at most half in P , and let T be the set of vertices of C that are equivalent to S.
Note that |T | = (p− 1) · |S|, since each equivalence class contains a single element of P . By the foregoing, the set of
neighbors of T in C, denoted T ′, is a collection of equivalence classes of vertices of G2, and |T ′ \ T | = Ω(|T |) by the
expansion of C. It follows that the set of neighbors of S in G2, denoted S′, is the set of vertices that are equivalent

to T ′, which implies that |S′ \ S| = |T ′\T |
p−1

= Ω(|S|).
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a permutation on V , and h′h(v) = h′(h(v)) for every h, h′ ∈ H and v ∈ V ). Then, the primary
(directed edge-colored) multi-graph G1 on vertices V can be constructed from the permutations
defined by members of S. The secondary multi-graph G2 is naturally defined by the action of
S on pairs of elements in V . Finally, the expansion of C(H,S) implies that every connected
component of G2 is an expander.16 Thus, whenever this (Schreier) graph G2 is connected (as it
is in Proposition 3.3), one may conclude that G1 is a directed edge-colored robustly self-ordered
multi-graph.

3.2 From the directed variant to the undirected one

In this section we show how to transform directed (edge-colored) multi-graphs, of the type con-
structed in Section 3.1, into undirected ones, while preserving all relevant features (i.e., bounded
robustness, bounded degree, regularity, expansion, and local computability). The transformation
is extremely simple and natural: We replace the directed edge (u, v) colored j by a 2-path with
a designated auxiliary vertex au,v,j , while coloring the edge {u, au,v,j} by 2j − 1 and the edge
{au,v,j , v} by 2j. Evidently, this colored 2-path encodes the direction of the original edge (as well
as the original color).

Note that the foregoing transformation works well provided that there are no parallel edges
that are colored with the same color, a condition which is satisfied by the construction presented
in Section 3.1. Furthermore, since the latter construction has no vertices of (in+out) degree less
that 2d ≥ 4, there is no need to mark the original vertices by self-loops. Hence, a preliminary step
akin to Construction 2.2 in unnecessary here, although it can be performed in general.

Proposition 3.5 (from directed robust self-ordering to undirected robust self-ordering): For con-
stants d ≥ 3 and c, let G = (V,E) be a directed multi-graph in which each vertex has between three
and d incident edges (in both directions), and that G is coupled with an edge-coloring function
χ :E→ [c] such that no parallel edges (in same the direction) are assigned the same color. Letting
Ei = {e∈E : χ(e) = i} denote the set of edges colored i in G, consider the undirected multi-graph
G′ = (V ′, E′) such that V ′ = V ∪ {au,v,i : (u, v)∈Ei} and E′ =

⋃
j∈[2c]E

′
j where

E′2i−1 = {{u, au,v,i} : (u, v)∈Ei},
E′2i = {{au,v,i, v} : (u, v)∈Ei},

and the edge-coloring function χ′ :E′→ [2c] that assigns the edges of E′j the color j (i.e., χ′(e) = j
for every e ∈ E′j). Then, if (G,χ) is γ-robustly self-ordered (in the sense of Definition 3.1), then
(G′, χ′) is (γ/2)-robustly self-ordered (in the sense of Definition 2.1).

We comment that the transformation of (G,χ) to (G′, χ′) preserves bounded robustness, bounded
degree, regularity, expansion, and local computability (cf. Theorem 2.8).

Proof: The proof is analogous to the proof of Theorem 2.4, but it is much simpler because the
gadgets used in the current transformation (i.e., the auxiliary vertices au,v,i) are much simpler.

Considering an arbitrary permutation µ′ : V ′ → V ′, we lower-bound the distance between G′

and µ′(G′) as a function of the number of non-fixed-points under µ′. We do so by considering the
contribution of each non-fixed-point to the distance between G′ and µ′(G′). We first recall the fact

16Indeed, this was easy to demonstrate directly in the case of Proposition 3.3.

21



that the vertices of V (resp., the auxiliary vertices) are uniquely identified in µ′(G′) by virtue of the
their degree, since each vertex of V has degree at least three (in G′) whereas the auxiliary vertices
have degree 2.

Case 1: Auxiliary vertices of the form au,v,i that are not mapped by µ′ to auxiliary vertices of the
form au′,v′,i; that is, µ′(au,v,i) ∈ (V ∪

⋃
j 6=i{au′,v′,j : (u′, v′)∈E}).

Each such vertex au,v,i contributes at least one unit to the difference between G′ and µ′(G′),
since the two edges incident at au,v,i (in G′) are colored 2i − 1 and 2i respectively, whereas
µ(au,v,i) has either more than two edges (in G′) or its two edges are colored 2j − 1 and 2j,
respectively, where for j 6= i. Hence, if the current case contains n1 vertices, then their
contribution to the distance between G′ and µ′(G′) is at least n1.

Ditto for vertices of V that are mapped by µ′ to an auxiliary vertex.

Case 2: Vertices v ∈ V such that µ′(v) ∈ V \ {v}.
By the hypothesis that the edge-colored directed G is robustly self-ordered, it follows that
such vertices contribute proportionally to the difference between the colored versions of the
directed multi-graphs G and µ(G), where µ is the restriction of µ′ to V . Specifically, the
number of tuples ((u, v), i) such that (u, v) is colored i in exactly one of these multi-graph
(i.e., either in G or in µ(G) but not in both) is at least γ ·|{v∈V : µ(v) 6= v}|. Assume, without
loss of generality that (u, v) ∈ Ei but either (µ−1(u), µ−1(v)) 6∈ E or (µ−1(u), µ−1(v)) ∈ Ej
for j 6= i. Either way, it follows that a vertex not in {au′,v′,i : (u′, v′) ∈ Ei} is mapped by
µ′ to au,v,i, which means that Case 1 applies for each such a tuple. Hence, if the number of
vertices in the current case is n2, then n1 ≥ γ ·n2, and we get a contribution of at least γ ·n2

via Case 1.

Case 3: Auxiliary vertices of the form au,v,i that are mapped by µ′ to auxiliary vertices of the form
au′,v′,i for (u′v′) 6= (u, v); that is, µ′(au,v,i) ∈ {au′,v′,i : (u′, v′)∈Ei \ {(u, v)}}.
For u, v, u′, v′ and i as above, if µ′(u) = u′ and µ′(v) = v′, then an auxiliary vertex that
connects u and v in G′ is mapped to an auxiliary vertex that does not connects them in
µ′(G′) (but rather connects the vertices u′ and v′, whereas either u′ 6= u or v′ 6= v). So
we get a contribution of at least one unit to the difference between G′ and µ′(G′) (i.e., the
edge incident at either u or v). Hence, the contribution is proportional to the number of
non-fixed-points of the current type. Otherwise (i.e., (µ′(u), µ′(v)) 6= (u′, v′)), we get a vertex
as in either Case 1 or Case 2, and get a proportional contribution again.

Hence, the contribution of each of these cases to the difference between G′ and µ′(G′) is proportional
to the number of vertices involved. Specifically, if there are ni vertices in Case i, then we get a
contribution-count of at least γ ·

∑
i∈[3] n1, where some of these contributions were possibly counted

twice. The claim follows.

4 The Three-Step Construction

In this section we present a different construction of bounded-degree graphs that are robustly self-
ordered. It uses totally different techniques than the ones utilized in the construction presented in
Section 3. Furthermore, the current construction offers the flexibility of obtaining either graphs that
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have small connected components (i.e., of logarithmic size) or graphs that are highly connected (i.e.,
are expanders). Actually, one can obtain anything in-between (i.e., n-vertex graphs that consist of
s(n)-sized connected components that are each an expander, for any s(n) = Ω((log n)/ log log n)).
We mention that robustly self-ordered bounded-degree graphs with small connected components
are used in the proof of Theorem 5.2.

As stated in Section 1.1.2, the current construction proceeds in three steps. First, in Section 4.1,
we prove the existence of robustly self-ordered bounded-degree graphs, and observe that such `-
vertex graphs can actually be found in poly(`!)-time [sic]. Next, setting ` = Ω((log n)/ log logn),
we use these graphs as part of 2`-vertex connected components in an n-vertex (robustly self-ordered
bounded-degree) graph that is constructed in poly(n)-time (see Section 4.2). Lastly, in Section 4.3,
we repeat this strategy using the graphs constructed in Section 4.2, and obtain exponentially larger
graphs that are locally constructible.

In addition, in Section 4.4, we show that the foregoing graphs can be locally self-ordered. That
is, given a vertex v in any graph G′ = (V ′, E′) that is isomorphic to the foregoing n-vertex graph
and oracle access to the incidence function of G′, we can find the vertex to which this unique
isomorphism maps v in poly(log n))-time.

4.1 Existence

As stated above, we start with establishing the mere existence of bounded-degree graphs that are
robustly self-ordered.

Theorem 4.1 (robustly self-ordered graphs exist): For any sufficiently large constant d, there
exists a family {Gn}n∈N of robustly self-ordered d-regular graphs. Furthermore, these graphs are
expanders.

Actually, it turns out that random d-regular graphs are robustly self-ordered; see Theorem 6.1.
Either way, given the existence of such n-vertex graphs, they can actually be found in poly(n!)-
time, by an exhaustive search. Specifically, for each of the possible ndn/2 graphs, we check the robust
self-ordering condition by checking all n!− 1 relevant permutation. (The expansion condition can
be checked similarly, by trying all (0.5 + o(1)) · 2n relevant subsets of [n].)

The proof of Theorem 4.1 utilizes a simpler probabilistic argument than the one used in the
proof of Theorem 6.1. This argument (captured by Claim 4.1.1) refers to the auxiliary model
of edge-colored multi-graphs (see Definition 2.1) and is combined with a transformation of this
model to the original model of uncolored graphs (provided in Construction 2.3 and analyzed in
Theorem 2.4). Indeed, the relative simplicity of Claim 4.1.1 is mainly due to using the edge-colored
model (see digest at the end of Section 6).

Proof: To facilitate the proof, we present the construction while referring to the edge-colored
model presented in Section 2. We shall then apply Theorem 2.4 and obtain a result for the original
model (of uncolored simple graphs).

For m = n/O(1), we shall consider 2m-vertex multi-graphs that consists of two m-vertex cycles,
using a different color for the edges of each cycle, that are connected by d′ = O(1) random perfect
matching, which are also each assigned a different color. (Hence, we use 2 + d′ colors in total.)
We shall show that (w.h.p.) a random multi-graph constructed in this way is robustly self-ordered
(in the colored sense). (Note that parallel edges, if they exist, will be assigned different colors.)
Specifically, we consider a generic 2m-vertex multi-graph that is determined by d′ perfect matchings
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of [m] with {m+ 1, ..., 2m}. Denoting this sequence of perfect matchings by M = (M1, ...,Md′), we
consider the (edge-colored) multi-graph GM ([2m], EM ) given by

EM = C1 ∪ C2 ∪
⋃
j∈[d′]

Mj

where C1 = {{i, i+ 1} : i ∈ [m− 1]} ∪ {{m, 1}}
and C2 = {{m+ i,m+ i+ 1} : i ∈ [m− 1]} ∪ {{2m,m+ 1}}

and a coloring χ in which the edges of Cj are colored j and the edges ofMj are colored j+2. (That is,
for i ∈ {1, 2}, the set Ci forms a cycle of the form ((i−1)m+1, (i−1)m+2, ..., (i−1)m+m, (i−1)m+1)
and its edges are colored i.) Note that the d′ + 1 edges incident at each vertex are assigned d′ + 1
different colors.

Claim 4.1.1 (w.h.p., GM is robustly self-ordered): For some constant γ > 0, with high probability
over the choice of M , the edge-colored multi-graph GM is γ-robustly self-ordered. Furthermore, it
is also an expander.

Proof: Consider an arbitrary permutation µ : [2m] → [2m], and let t = |{i ∈ [2m] : µ(i) 6= i}|.
We shall show that, with probability 1 − exp(−Ω(dt logm)) over the choice of M , the difference
between the colored versions of GM and µ(GM ) is Ω(t). Towards this end, we consider two cases.

Case 1: |{i ∈ [m] : µ(i) 6∈ [m]}| > t/4. Equivalently, |{i ∈ [2m] : dµ(i)/me 6= di/me}| > t/2.

The vertices in the set {i ∈ [m] : µ(i) 6∈ [m]} are mapped from the first cycle to the second
cycle, and so rather than having two incident edges that are colored 1 they have two incident
edges colored 2. Hence, each such vertex contributes two units to the difference (between the
colored versions of GM and µ(GM )), and the total contribution is greater than 2 · (t/4) · 2,
where the first factor of 2 accounts also for vertices that are mapped from C2 to C1.

Case 2: |{i ∈ [m] : µ(i) 6∈ [m]}| ≤ t/4. Equivalently, |{i ∈ [2m] : dµ(i)/me 6= di/me}| ≤ t/2.

We focus on the non-fixed-points of µ that stay on their original cycle (i.e., those not con-

sidered in Case 1). Let A
def
= {i∈ [m] : µ(i) 6= i ∧ µ(i)∈ [m]} and B

def
= {i∈{m + 1, ...., 2m} :

µ(i) 6= i∧µ(i)∈{m+ 1, ..., 2m}}. By the case hypothesis, |A|+ |B| ≥ t/2, and we may assume
(without loss of generality) that |A| ≥ t/4. As a warm-up, we first show that each element of
A contributes a non-zero number of units to the difference (between the colored versions of
GM and µ(GM )) with probability 1−O(1/m)d

′
, over the choice of M .

To see this, let πj : [m]→ {m+ 1, ..., 2m} be the mapping used in the jth matching; that is,
Mj = {{i, πj(i)} : i∈ [m]}, which means that πj(i) is the jth match of i in GM (i.e., the vertex
matched to i by Mj). Then, we consider the event that for some j ∈ [d′], the jth match of
i ∈ [m] in µ(GM ) is different from the jth match of i in GM , and note that when this event
occurs i contributes to the difference (between the colored versions of GM and µ(GM )). Note
that x is the jth match of i in µ(GM ) if and only if µ−1(x) is the jth match of µ−1(i) in GM ,
which holds if and only if µ−1(x) = πj(µ

−1(i)) (equiv., x = µ(πj(µ
−1(i)))). Hence, i ∈ [m]

contributes to the difference if and only if for some j it holds that πj(i) 6= µ(πj(µ
−1(i))),

because πj(i) 6= µ(πj(µ
−1(i))) means that the edge {i, πj(i)} is colored j+2 in GM but is not

colored j+2 in µ(GM ) (since a different edge incident at i in µ(GM ) is colored j+2). Letting
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π = (π1, ..., πd′), the probability of the complementary event (i.e., i does not contribute to
the difference) is given by

Prπ
[
(∀j∈ [d′]) πj(i) = µ(πj(µ

−1(i)))
]

=
∏
j∈[d′]

Prπj
[
πj(i) = µ(πj(µ

−1(i)))
]

≤ (m− 1)−d
′
,

where the inequality uses the hypothesis that µ(i) 6= i and i, µ(i)∈ [m]; specifically, fixing the

value of πj(µ
−1(i)), leaves πj(i) uniformly distributed in S

def
= {m+ 1, ..., 2m} \ {πj(µ−1(i))},

which means that Prπj [πj(i)=µ(v)|v = πj(µ
−1(i))] ≤ 1/|S| (where equality holds if µ(v) ∈ S).

The same argument generalises to any set I ⊆ A such that I ∩ µ(I) = ∅. In such a case,
letting I = {i1, ..., it′}, we get

Prπ
[
(∀i∈I)(∀j∈ [d′]) πj(i) = µ(πj(µ

−1(i)))
]

=
∏
k∈[t′]

∏
j∈[d′]

Prπj
[
πj(ik) = µ(πj(µ

−1(ik)))
∣∣(∀k′∈ [k − 1]) πj(ik′) = µ(πj(µ

−1(ik′)))
]

≤ (m− 2t′ + 1)−t
′d′ ,

where the inequality uses the hypothesis that I ∩ µ(I) = ∅; specifically, for each k ∈ [t′], we
use the fact that ik 6∈ {i1, ..., ik−1, µ

−1(i1), ..., µ−1(ik)}. Hence, fixing the values of πj(ik′)
for all k′ ∈ [k − 1] and the values of πj(µ

−1(ik′)) for all k′ ∈ [k], and denoting these values

by u1, ..., uk−1 and v1, ..., vk respectively, leaves πj(ik) uniformly distributed in S
def
= {m +

1, ..., 2m} \ {u1, ..., uk−1, v1, ..., vk}, which means that Prπj [πj(i) = µ(vk)|foreging fixing] ≤
1/|S| (where equality holds if µ(vk) ∈ S).

Recalling that |A| ≥ t/4 and t ≤ 2m, we upper-bound the probability (over the choice of
M) that A contains a t/8-subset A′ such that (∀i ∈A′)(∀j ∈ [d′]) πj(i) = µ(πj(µ

−1(i))), by
taking a union bound over all possible A′ and using for each such A′ a subset I ⊂ A′ such that
I∩µ(I) = ∅. (So we actually take a union bound over the I’s and derive a conclusion regarding
the t/8-subsets A′.) Observing that |I| ≥ |A′|/2 ≥ t/16, we conclude that, with probability
at most

(
t

t/16

)
· (m/2)d

′·t/16 = exp(−Ω(d′t logm)) over the choice of M , the set A contains no

t/8-subset A′ as above. This means that, with probability at most exp(−Ω(d′t logm)), less
than t/8 of the indices i ∈ A contribute a non-zero number of units to the difference (between
the colored versions of GM and µ(GM )).

Hence, we have shown that, for every permutations µ : [2m] → [2m], the probability (over the
choice of M) that the size of the symmetric difference between the colored versions of GM and
µ(GM ) is smaller than t/8 is exp(−Ω(d′t logm)), where t is the number of non-fixed-points of µ.
Letting γ = 1/8 and taking a union bound over all (non-trivial) permutations µ : [2m]→ [2m], we
conclude that the probability, over the choice of M , that GM is not γ-robustly self-ordered is at
most ∑

t∈[2m]

(
2m

t

)
· exp(−Ω(d′t logm)) =

∑
t∈[2m]

exp(−Ω((d′ −O(1)) · t logm))

= exp(−Ω((d′ −O(1)) · logm)),
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and the claim follows (for any sufficiently large d′), while observing that, with very high probability,
these multi-graphs are expanders.

Back to the non-colored version. We now convert the edge-colored multi-graphs G = GM that
are γ-robustly self-ordered into standard graphs G′ that are robustly self-ordered in the original
sense. This is done by using Construction 2.3 (while relying on Theorem 2.4). Recall that this
transformation also preserves expansion. Actually, before invoking Construction 2.3, we augment
the multi-graph G by adding a self-loop to each vertex, and color all these self-loops using a special
color. Combining Claim 4.1.1 and Theorem 2.4, the current theorem follows.

4.2 Constructions

Having established the existence of bounded-degree graphs that are robustly self-ordered, we now
turn to actually construct them. We shall use the fact that the proof of existence yields a con-
struction that runs in time that is polynomial in the number of possible graphs. Specifically, for
` = O(logn)

log logn , we shall construct `-vertex graphs in poly(``)-time and use them in our construction

of n-vertex graphs, while noting that poly(``) = poly(n).

Theorem 4.2 (constructing robustly self-ordered graphs): For any sufficiently large constant d,
there exists an efficiently constructable family {Gn}n∈N of robustly self-ordered graphs of maximum
degree d. That is, there exists a polynomial-time algorithm that on input 1n outputs the n-vertex
graph Gn = ([n], En). Furthermore, Gn consists of connected components of size O(logn)

log logn = o(log n).

Note that the connected components of Gn cannot be any smaller (than O(logn)
log logn ). This is the case

because an asymmetric n-vertex bounded-degree graph, let alone a robustly self-ordered one, cannot
have connected components of size o(logn)

log logn (because the number of t-vertex graphs of bounded-

degree is tO(t)).

Proof: The proof proceeds in two steps. We first use the existence of `-vertex (d′-regular) ex-
pander graphs that are robustly self-ordered towards constructing a sequence of m = exp(Ω(` log `))
bounded-degree 2`-vertex graphs that are robustly self-ordered, expanding, and far from being iso-
morphic to one another. We construct this sequence of 2`-vertex graphs in poly(m)-time, using
the fact that (`!)O(1) = poly(m). In the second step, we show that the (m · 2`)-vertex graph that
consists of these 2`-vertex graphs (as its connected components) is robustly self-ordered. Note that
this graph is constructed in time that is polynomial in its size, since its size is Ω(m), whereas it is
constructed in poly(m)-time.17

Given a generic n, let ` = O(logn)
log logn , which implies that `` = poly(n). By Theorem 4.1, for all

sufficiently large d′, there exist `-vertex d′-regular expander graphs that are robustly self-ordered
(with respect to the robustness parameter c′). Furthermore, we can find such a graph, denotedG′`, in
time poly(``) = poly(n), by scanning all `-vertex d′-regular graphs and checking both the expansion
and the robustness (w.r.t parameter c′) conditions for each of them. Actually, for d′′ = d′ + 1, we
shall also find an `-vertex d′′-regular expander, denoted G′′` , that is robustly self-ordered.

17We mention that a slightly different construction can be based on the fact that random `-vertex (d′-regular)
graphs are robustly self-ordered expanders (see Theorem 6.1). In this alternative construction we find a sequence of
m such graphs that are pairwise far from being isomorphic to one another. As further detailed in Remark 6.2, the
analysis of the alternative construction is somewhat easier than the analysis of the construction presented below, but
we need the current construction for the proof of Theorem 4.5.

26



The construction of Gn. Using G′` and G′′` , we construct an n-vertex robustly self-ordered graph,
denoted Gn, that consists of n/2` connected components that are pairwise far from being isomorphic
to one another. This is done by picking m = n/2` permutations, denoted π1, ..., πm : [`]→ [`], that
are pairwise far-apart and constructing 2`-vertex graphs such that the ith such graph consist of a
copy of G′` and a copy of G′′` that are connected by a matching as determined by the permutation
πi. Specifically, for G′` = ([`], E′`) and G′′` = ([`], E′′` ), the ith connected component is isomorphic to
a graph with the vertex set [2`] and the edge set

E′` ∪ {{`+ u, `+ v} : {u, v} ∈ E′′` } ∪ {{v, `+ πi(v)} : v∈ [`]}. (5)

(The first two sets correspond to the copies of G′` and G′′` , and the third set corresponds to the
matching between these copies. Note that the vertices in [`] have degree d′+ 1, whereas vertices in
{`+ 1, ..., 2`} have degree d′′ + 1 6= d′ + 1.)

To see that this construction can be carried out in poly(n)-time, we need to show that the
sequence of m pairwise far-apart permutations can be determined in poly(n)-time, let alone that
such a sequence exists. This is the case, because we can pick the permutation sequentially (one
after the other) by scanning the symmetric group on [`] and relying on the fact that for (i < n
and) any fixed sequence of permutations π1, ..., πi−1 : [`]→ [`] it holds that a random permutation
πi is far-apart from each of the fixed i− 1 permutations; that is, Prπi [|{v ∈ [`] : πi(v) 6= πj(v)}| =
Ω(`)] = 1− o(1/n) for every j ∈ [i− 1].18

Towards proving that Gn is robustly self-ordered. We now prove that the resulting graph Gn, which
consists of these m connected components, is c-robustly self-ordered, where c is a universal constant
(which is independent of the generic n). For starters, let’s verify that Gn is self-ordered. We first
note that any automorphism of Gn must map the verifices of copies of G′` (resp., G′′` ) to vertices
of copies of G′` (resp., G′′` ), since these are the only vertices of degree d′ + 1. The connectivity
of these copies implies that the automorophism must map each connected component to some
connected component, which determines the m connected components. The self-ordered feature
of G′` and G′′` determines a unique ordering on each copy, whereas the fact the permutations (i.e.,
πi’s) are different imposes that each connected component is mapped to itself (i.e., the order of the
connected components is preserved). Hence, the automorphism must be trivial (and it follows that
Gn is self-ordered).

An analogous argument establishes the robust self-ordering of Gn, where we use the hypothesis
that G′` and G′′` are expanders (rather than merely connected), the choice of the πi’s as being far-
apart (rather than merely different), and the robust self-ordering of G′` and G′′` (rather than their
mere self-ordering) in order to establish the robust self-ordering of Gn. Considering an arbitrary
permutation µ : [n] → [n], these stronger features are used to establish a lower bound on the size
of the symmetric difference between Gn and µ(Gn) as follows:

• The fact that G′` is an expander implies that if µ splits the vertices of a copy of G′` such
that `′ vertices are mapped to copies that are different than the other ` − `′ ≥ `′ vertices,
then this contributes Ω(`′) units to the difference between Gn and µ(Gn). Ditto for G′′` ,
whereas mapping a copy of G′` to a copy of G′′` contributes Ω(`) units (per the difference in
the degrees).

18Specifically, for some `′ = Ω(`), we upper-bound Prπ[|{v ∈ [`] : π(v) = v)}| ≥ ` − `′], where π : [`] → [`] is a
random permutation. We do so by observing that the number of permutations that have at least `− `′ fixed-points
is at most

(
`
`′

)
· (`′!) = `!

(`−`′)! , whereas (`− `′)! = exp(Ω(` log `)) = ω(n) for any `′ such that `− `′ = Ω(`).
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• The robust self-ordering of G′` and G′′` implies that if µ changes the index of vertices inside a
component, then this yields a proportional difference between Gn and µ(Gn).

• The distance between the πi’s (along with the aforementioned robustness) implies that if µ
changes the indices of the connected components, then each such change contributes Ω(`)
units to the difference between Gn and µ(Gn).

The actual implementation of this sketch requires a careful accounting of the various contributions.
As a first step in this direction we provide a more explicit description of Gn. We denote the set of
vertices of the copy of G′` (resp., G′′` ) in the ith connected component of Gn by Fi = {2(i− 1)`+ j :
j ∈ [`]} (resp., Si = {2(i−1)`+`+j : j ∈ [`]}). Recall that Fi and Si are connected by the edge-set

{{2(i− 1)`+ j, 2(i− 1)`+ `+ πi(j)} : j∈ [`]} (6)

whereas the subgraph of Gn induced by Fi (resp., Si) has the edge-set {{2(i−1)`+u, 2(i−1)+v} :
{u, v}∈E′`} (resp., {{2(i−1)`+`+u, 2(i−1)+`+v} : {u, v}∈E′′` }). In addition, let F =

⋃
i∈[m] Fi

(resp., S =
⋃
i∈[m] Si).

The actual proof (that Gn is robustly self-ordered). Considering an arbitrary permutation µ : [n]→
[n], we lower-bound the distance (i.e., size of the symmetric difference) between Gn and µ(Gn) as a
function of the number of non-fixed-points under µ (i.e., the number of v ∈ [n] such that µ(v) 6= v).
We do so by considering the (average) contribution of every non-fixed-point to the distance between
Gn and µ(Gn) (i.e., number of pairs of vertices that form an edge in one graph but not in the other).
We may include the same contribution in few of the following (seven) cases, but this only means
that we are double-counting the contribution by a constant factor.

Case 1: Vertices v ∈ F such that µ−1(v) ∈ S. Ditto for v ∈ S such that µ−1(v) ∈ F .

Each such vertex contributes at least one unit to the distance (between Gn and µ(G)) by
virtue of v having degree d′+ 1 in Gn and strictly higher degree in µ(Gn), since vertices in F
have degree d′ + 1 (in Gn) whereas vertices in S have higher degree (in Gn).19

In light of Case 1, we may focus on vertices whose “type” is preserved by µ−1. Actually, it will
be more convinient to consider the set of vertices whose “type” is preserved by µ; that is, the
set {v ∈ F : µ(v) ∈ F} ∪ {v ∈ S : µ(v) ∈ S}. Next, for each i ∈ [m], we define µ′(i) to be

the index of the connected component that takes the plurality of µ(Fi); that is, µ′(i)
def
= j if

|{v ∈ Fi : µ(v) ∈ Fj}| ≥ |{v ∈ Fi : µ(v) ∈ Fk}| for all k ∈ [m] (breaking ties arbitrarily).

Case 2: Vertices v ∈ Fi such that µ(v) ∈ F \ Fµ′(i).
For starters, suppose that |{v∈Fi :µ(v)∈Fµ′(i)}| ≥ `/2; that is, a majority of the vertices of
Fi are mapped by µ to Fµ′(i). In this case, by the expansion of G′`, we get a contribution that

is proportional to the size of the set F ′i
def
= {v ∈Fi : µ(v) 6∈Fµ′(i)}, because there are Ω(|F ′i |)

edges betwen F ′i and the rest of Fi but there are no edges between F ′i and Fi \ F ′i in µ(Gn).
In the general case, we have to be more careful since expansion is guaranteed only for sets
that have size at most `/2. In such a case we use an adequate subset of F ′i . Details follow.

19Note that v neighbors u in µ(Gn) if and only if µ−1(v) neighbors µ−1(u) in Gn.
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Let J ⊆ [m] \ {µ′(i)} be maximal such that
∑

j∈J |{v∈Fi :µ(v)∈Fj}| ≤ `/2, and note that

F ′i
def
=
⋃
j∈J{v ∈ Fi : µ(v) ∈ Fj} occupies at least one third of {v ∈ Fi : µ(v) ∈ F \ Fµ′(i)}.

Recall that the subgraph of Gn induced by Fi is an expander, and consider the edges in Gn
that cross the cut between F ′i and the rest of Fi. Then, this cut has Ω(|F ′i |) edges in Gn,
but there are no edges between F ′i and Fi \ F ′i in µ(Gn), because µ−1(F ′i ) ⊆

⋃
j∈J Fj and

µ−1(Fi \ F ′i ) ⊆
⋃
j∈[m]\J Fj are not connected in Gn. Hence, the total contribution of the

vertices in {v∈Fi :µ(v)∈F \ Fµ′(i)} to the distance (between Gn and µ(G)) is Ω(|F ′i |), which
is proportional to their number (i.e., is Ω(|{v∈Fi :µ(v)∈F \ Fµ′(i)}|)).

Defining µ′′(i) in an analogous manner with respect to µ(Si), we get an analogous contribution by
the expander induced by Si. Specifically, for each i ∈ [m], we define µ′′(i) to be the index of the

connected component that takes the plurality of µ(Si); that is, µ′′(i)
def
= j if |{v∈Si :µ(v)∈Sj}| ≥

|{v∈Si :µ(v)∈Sk}| for all k ∈ [m] (breaking ties arbitrarily).

Case 3: Vertices v ∈ Si such that µ(v) ∈ S \ Sµ′′(i).
Here we get a contribution of Ω(|{v∈Si :µ(v)∈S \ Sµ′′(i)}|), where the analysis is analogous
to Case 2.

Recall that if v ∈ Fi then it holds that v = 2(i−1)`+j for some j ∈ [`], and that (in Gn) vertex v has
a unique neighbor in S, which is 2(i−1)`+`+πi(j) ∈ Si. It will be convinient to denote this neighbor
by φi(v); that is, for v ∈ Fi such that v = 2(i− 1)`+ j, we have φi(v) = 2(i− 1)`+ `+ πi(j) ∈ Si.
The next two cases refer to vertices that are mapped by µ according to the plurality vote (e.g.,
v ∈ Fi is mapped to µ(v) ∈ Fµ′(i)), but their match is not mapped accordingly (i.e., φi(v) ∈ Si is
not mapped to Sµ′(i)).

Case 4: Vertices v ∈ Fi such that µ(v) ∈ Fµ′(i) but µ(φi(v)) 6∈ Sµ′(i).
(Note that the condition v ∈ Fi and µ(v) ∈ Fπ′(i) means that vertex v is not covered in Case 2.
If µ′′(i) = µ′(i), then µ(φi(v)) 6∈ Sµ′(i) means that v is covered in Case 3, since φi(v) ∈ Si.
Hence, the current case is of interest only when µ′′(i) 6= µ′(i). In particular, it is of interest
when referring to vertices in the ith connected component of Gn that reside in the copies of
G′` and G′′` and are mapped according to the plurality votes of these copies, whereas these
two plurality votes are inconsistent.)

We focus on the case that a vast majority of the vertices in both Fi and Si are mapped
according to the plurality votes (i.e., µ′(i) and µ′′(i)), since the complementary cases are
covered by Cases 2 and 3, respectively. Specifically, if either |{v∈Fi :µ(v)∈ [n]\Fµ′(i)}| > `/3
or |{u∈Si :µ(u)∈ [n] \ Sµ′′(i)}| > `/3, then we get a contribution of Ω(`) either by Cases 1&2
or by Cases 1&3. Otherwise, it follows that

|{v∈Fi :µ(v)∈Fµ′(i) ∧ µ(φi(v))∈Sµ′′(i)}| ≥ `− 2 · `/3

which implies that, if µ′(i) 6= µ′′(i), then the ith connected component of Gn contributes
`/3 units to the difference (between Gn and µ(Gn)), since v and φi(v) are connected in Gn,
but µ(v) ∈ Fµ′(i) and µ(φi(v)) ∈ Sµ′′(i) reside in different connected components of µ(Gn).
(That is, the contribution is due to vertices v of Fi that are mapped by µ to Fµ′(i), while the
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corresponding vertices φi(v) of Si (which are connected to them in Gn) are mapped by µ to
Sµ′′(i) ⊂ S \Sµ′(i), whereas Fµ′(i) and Sµ′′(i) are not connected in Gn, assuming µ′(i) 6= µ′′(i).)

To conclude: The contribution of the vertices of Case 4 (to the difference between Gn and
µ(Gn)) is proportional to the number of these vertices (where this contribution might have
been counted already in Cases 1, 2 and 3).

Case 5: Vertices v ∈ Fi such that µ(v) 6∈ Fµ′′(i) but µ(φi(v)) ∈ Sµ′′(i).

(Equiv., vertices v ∈ Si such that µ(v) ∈ Sµ′′(i) but µ(φ−1
i (v)) 6∈ Fµ′′(i).)

Analogously to Case 4, the contribution of these vertices is proportional to their number.
(Analogously, this augments Case 2 only in case µ′′(i) 6= µ′(i).)

In light of Cases 2–5, we may focus on indices i ∈ [m] such that µ′(i) = µ′′(i) and on vertices in
ith connected component that are mapped by µ to the µ′(i)th connected component (and the same
”type” per Case 1). The following case refers to such vertices that do not maintain their position
in this connected component.

Case 6: Vertices v=2(i− 1)`+ j ∈ Fi such that µ(v) ∈ Fµ′(i) \ {2(µ′(i)− 1)`+ j}.
Ditto for v=2(i− 1)`+ `+ j ∈ Si such that µ(v) ∈ Sµ′′(i) \ {2(µ′′(i)− 1)`+ `+ j}.
(This case refers to vertices in Fi that are mapped to Fµ′(i) but do not maintain their index

in the relevant copy of G′`; indeed, v=2(i− 1)` + j is the jth vertex of Fi, but it is mapped
by µ to the kth vertex of Fµ′(i) (i.e., µ(v)=2(µ′(i)− 1)`+ k) such that k 6= j.)

Fixing i, let C
def
= {v= 2(i − 1)` + j ∈ Fi : µ(v) ∈ Fµ′(i) \ {2(µ′(i) − 1)` + j}} denote the set

of vertices considered in this case, and D = {v ∈ Fi : µ(v) 6∈ Fµ′(i)} denote the set of vertices
that we are going to discount for. As a warm-up, consider first the case that D = ∅. In this
case, by the robust self-ordering of G′`, the contribution of the vertices in C to the difference
between Gn and µ(Gn) is Ω(|C|).
In the general case (i.e., where D may not be empty), we get a contribution of Ω(|C|)−d′ · |D|,
where the second term compensates for the fact that the vertices of D were moved outside of
this copy of G′` and replaced by different vertices that may have different incidences. Letting
c′ be the constant hidden in the Ω-notation, we get a contribution of at least c′ · |D| − d′ · |D|,
which is at least c′ · |C|/2 if |D| ≤ c′ · |C|/2d′. On the other hand, if |D| > c′ · |C|/2d′, then
we get a contribution of Ω(|D|) = Ω(|C|) by Cases 1–2.

Hence, in both sub-cases we have a contribution of Ω(|C|) to the difference between Gn and
µ(Gn).

The same analysis applies to {v=2(i−1)`+`+j ∈ Si : µ(v) ∈ Sµ′′(i) \{2(µ′′(i)−1)`+`+j}},
where we use the robust self-ordering of G′′` and Cases 1&3.

Lastly, we consider vertices that do not fall into any of the prior cases. Such vertices maintain
their type, are mapped with the plurality vote of their connected component, which is consistent
among its two parts (i.e., µ′ and µ′′), and maintain their position in that component. Hence, the
hypothesis that they are not fixed-points of µ can only be attributed to the fact that these vertices
are mapped to a connected component with a different index.
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Case 7: Vertices v ∈ Fi such that both µ(v) ∈ Fµ′(i) \ Fi and µ(φi(v)) ∈ Sµ′′(i) \ Si hold.

(We may assume that µ′(i) 6= i and µ′′(i) 6= i, since otherwise this set is empty. We may
also assume that µ′(i) = µ′′(i), since the complementary case was covered by Cases 4 and 5.
Hence, we focus on pairs of vertices that are matched in the ith connected component of Gn
and are mapped by µ to the kth component of Gn such that k 6= i.)

For every i 6= k, let ∆i,k = {j ∈ [`] : πi(j) 6= πk(j)} be the sets on which πi and πk differ.
(Note that if for every v = 2(i − 1)` + j ∈ Fi it holds that µ(v) = 2(k − 1)` + j and
µ(φi(v)) = 2(k− 1)`+ πi(j) (equiv., µ(2(i− 1)`+ `+ πi(j)) = 2(k− 1)`+ πi(j)), then we get
a contribution of |∆i,k| to the difference between Gn and µ(Gn).)

Fixing i, let D = D1 ∪D2 such that

D1 = {v ∈ Fi : µ(v) 6∈ Fµ′(i) ∨ µ(v + `) 6∈ Sµ′′(i)}

D2 =

{
v=2(i− 1)`+ j ∈ Fi :

µ(v) ∈ Fµ′(i) \ {2(µ′(i)− 1)`+ j}
∨ µ(φi(v)) ∈ Sµ′′(i) \ {2(µ′′(i)− 1)`+ `+ πi(j)}

}
(Recall that φi(2(i − 1)` + j) = 2(i − 1)` + ` + πi(j). The set D1 accounts for the vertices
covered in Cases 2&3, whereas D2 accounts for the vertices covered in (the two sub-cases of)
Case 6.)

As a warm-up, consider first the case that D = ∅. In this case, assuming µ′(i) = µ′′(i) 6= i,
we get a contribution of |∆i,µ′(i)| = Ω(`) (to the difference between Gn and µ(Gn)). This
contribution is due to the difference in the edges that match Fµ′(i) and Sµ′(i) in Gn and
the edges that match Fi and Si in Gn, where |∆i,µ′(i)| = Ω(`) is due to the fact that the
permutations (i.e., πk’s) are far-apart. The hypothesis D1 = ∅ means that all vertices of Fi
(resp., of Si) are mapped to Fµ′(i) (resp., to Sµ′′(i) = Sµ′(i)), whereas D2 = ∅ means that these
vertices preserves their order within the two parts of the connected component.

The general case (i.e., where D may not be empty) requires a bit more care. Suppose that
the πk’s are γ-apart; that is, |∆k′,k| > γ · ` for every k′ 6= k. We focus on the case that a vast
majority of the vertices in both Fi and Si are mapped according to the plurality votes (i.e.,
µ′(i) and µ′′(i)), since the complementary cases are covered by Cases 2 and 3, respectively.
Specifically, if |D1| > γ`/3, then we get a contribution of Ω(`) by either Case 2 or Case 3.
Likewise, if |D2| > γ`/3, then we get a contribution of Ω(`) by Case 6. So, assuming µ′(i) 6= i,
we are left with the case that

|{v=2(i− 1)`+ j ∈ Fi \D : j ∈ ∆i,µ′(i)}| ≥ γ`− 2γ`/3.

In this case, assuming µ′(i) = µ′′(i), we get a contribution of at least γ`/3 to the difference
between Gn and µ(Gn). This contribution is due to the difference in the edges that match
Fµ′(i) and Sµ′(i) in Gn and the edges that match Fi and Si in Gn, where edges that have an
endpoint (or its φi-mate) in D were discarded. Specifically, letting k = µ′(i) = µ′′(i) 6= i, the
pair (v, w) = (2(i − 1)` + j, 2(i − 1)` + ` + πi(j)) ∈ Fi × Si contributes to the difference if
j ∈ ∆i,k and both µ(v) = 2(k− 1)`+ j ∈ Fk and µ(w) = 2(k− 1)`+ `+ πi(j) ∈ Sk hold (i.e.,
v 6∈ D1 and v, φ−1

i (w) 6∈ D2).20 Indeed, in this case {v, w} is an edge in Gn but {v, w} is not
an edge in µ−1(Gn). (Hence, if the number of vertices of this case is Ω(|{u ∈ [n] : µ(u) 6= u}|),

20Recall that φ−1
i (w) = φ−1((2(i− 1)`+ `+ πi(j))) = 2(i− 1)`+ j = v.
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then the difference between Gn and µ−1(Gn) is Ω(|{u ∈ [n] : µ(u) 6= u}|), and the same holds
with respect to the difference between µ(Gn) and Gn.)

Combining all these cases, we get a total contribution that is proportional to |{v ∈ [n] : µ(v) 6= v}|,
where we might have counted the same contribution in several different cases. Since the number of
cases is a constant, the theorem follows.

Digest: Using large collections of pairwise far apart permutations. The construction
presented in the proof of Theorem 4.2 utilizes a collection of (`!)Ω(1) permutations over [`] that
are pairwise far-apart (i.e., every two permutations differ on Ω(`) inputs). Such a collection is
constructed in Õ(`!)-time by an iterative exhaustive search, where the permutations are selected
iteratively such that in each iteration we find a permutation that is far from permutations that
were included in previous iterations. We mention that in Section 4.3 we shall use a collection of
exp(Ω(`)) such permutations that is locally computable (i.e., given the index of a permutation we
find its explicit description in polynomial time). We also mention that, in follow-up work [23], we
provided a locally computable collection of (`!)Ω(1) that are pairwise far-apart.

Digest: Combining two robustly self-ordered graphs. One ingredient in the proof of The-
orem 4.2 is forming connected components that consist of two robustly self-ordered graphs that
have different vertex degrees and are connected by a bounded-degree bipartite graph. Implicit in
the proof is the fact that such the resulting graph is robustly self-ordered graph.

Claim 4.3 (combining two Ω(1)-robustly self-ordered graphs): For i ∈ {1, 2} and constant γ > 0,
let Gi = (Vi, Ei) be an γ-robustly self-ordered graph, and consider a graph G = (V1∪V2, E1∪E2∪E)
of maximum degree d such that E contain edges with a single vertex in each Vi; that is, G consists
of G1 and G2 and an arbitrary bipartite graph that connects them. If the maximun degree in G
of each vertex in V1 is strictly smaller than the minimum degree of each vertex in V2, then G is
γ/(2d+ 3)-robustly self-ordered.

Proof Sketch: For an arbitrary permutation µ : V → V , let T denote the set of its non-fixed-
points, and consider the following two cases.

Case 1: More than t = γ′ · |T | vertices are mapped by µ from G1 to G2, where γ′ = γ/(2d+ 3).

In this case, we get a contribution of at least one unit per each such vertex, due to the
difference in the degrees between V1 and V2.

Case 2: at most t vertices are mapped by µ from G1 to G2.

In this case, letting Ti denote the set of non-fixed vertices in Gi that are mapped by µ to Gi,
we get a contribution of at least

∑
i=1,2(γ · |Ti| − d · t) units, where the negative term is due

to possible change in the incidence with vertices in T \ Ti. Hence, the total contribution in
this case is at least γ · (|T | − 2t)− 2d · t = γ′ · |T |.

The claim follows.
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Regaining regularity and expansion. While Theorem 4.2 achieves our main objective, it
useful towards some applications (see, e.g., the proof of Theorem 4.5) to obtain this objective with
graphs that are both regular and expanding. This is achieved by applying Theorem 2.6. Hence, we
have.

Theorem 4.4 (Theorem 4.2, revised): For any sufficiently large constant d, there exists an effi-
ciently constructable family {Gn}n∈N of robustly self-ordered d-regular expander graphs. That is,
there exists a polynomial-time algorithm that on input 1n outputs the n-vertex graph Gn.

4.3 Strong (i.e., local) constructions

While Theorem 4.4 provides an efficient construction of robustly self-ordered d-regular expander
graphs, we seek a stronger notion of constructability. Specifically, rather than requiring that the
graph be constructed in time that is polynomial in its size, we require that the neighbors of any
given vertex can be found in time that is polynomial in the vertex’s name (i.e., time that is
polylogarithmic in the size of the graph). We call such graphs locally constructable (and comment
that the term “strongly explicit” is often used in the literature).

Theorem 4.5 (locally constructing robustly self-ordered graphs): For any sufficiently large con-
stant d, there exists a locally constructable family {Gn = ([n], En)}n∈N of robustly self-ordered
d-regular graphs. That is, there exists a polynomial-time algorithm that on input n and v ∈ [n]
outputs the list of neighbours of vertex v in Gn. Furthermore, the graphs are either expanders or
consist of connected components of logarithmic size.

(Indeed, this establishes Theorem 1.3.) We comment that using the result of [23], we can also get
connected components of sub-logarithmic size, as in Theorem 4.2.21

Proof: We employ the idea that underlies the proof of Theorem 4.2, while starting with an
efficiently constructable family of robustly self-ordered graphs (as provided by Theorem 4.4) rather
than with the mere existence of a family of such graphs (equiv., with `-vertex graphs that can
be constructed in poly(`!)-time). We use a slightly larger setting of `, which allows us to use a
collection of exp(Ω(`)) pairwise-far-apart permutations (rather than a collection of exp(Ω(` log `))
such permutations). Lastly, we apply the same transformation as in the proof of Theorem 4.4 (so
to regain regularity and expansion). Details follow.

Given a generic n, let ` = O(log n), which implies that exp(`) = poly(n). By Theorem 4.4, for
all sufficiently large d′, we can construct `-vertex d′-regular expander graphs that are robustly self-
ordered (with respect to the robustness parameter c) in poly(`)-time. Again, we shall use two such
graphs: a d′-regular graph, denoted G′` = ([`], E′`), and a d′′-regular graph, denoted G′′` = ([`], E′′` ),
where d′′ = d′ + 1.

Using G′` and G′′` , we construct an n-vertex robustly self-ordered graph, denoted Gn, that
consists of n/2` connected components that are pairwise far from being isomorphic to one another.
This is done by picking m = n/2` permutations, denoted π1, ..., πm : [`] → [`], that are pairwise
far-apart, and constructing 2`-vertex graphs such that the ith such graph consist of a copy of G′`

21Specifically, the result of [23] provides a construction of a collection of L = exp(Ω(` log `)) permutations over [`]
that are pairwise far-apart along with a polynomial-time algorithm that, on input i ∈ [L], returns a description of
the ith permutation (i.e., the algorithm should run in poly(logL)-time). Using this algorithm, we can afford to set

` = O(logn)
log logn

as in Theorem 4.2.
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and a copy of G′′` that are connected by a matching as determined by the permutation πi. (as
detailed in Eq. (7)).

Using the fact that m < 2` (rather that m = exp(Θ(` log `))), we can construct each of these
permutations in poly(`)-time by using sequences of disjoint traspositions determined via a good
error correcting code. Specifically, for k = log2m < log2 n, we use an error correcting code
C : {0, 1}k → {0, 1}` of constant rate (i.e., ` = O(k)) and linear distance (i.e., the codewords are
Ω(`) bits apart from each other), and let πi(2j − 1) = 2j − 1 + C(i)j and πi(2j) = 2j − C(i)j ,
where i ∈ [m] = [2k] ≡ {0, 1}k and j ∈ [`/2]. (That is, the ith permutation switches the pair
(2j− 1, 2j) ∈ [`]2 if and only if the jth bit in the ith codeword is 1, where C(i) is considered the ith

codeword.)
Like in the proof of Theorem 4.2, the ith connected component of Gn is isomorphic to a graph

with the vertex set [2`] and the edge set

E′` ∪ {{`+ u, `+ v} : {u, v} ∈ E′′` } ∪ {{v, `+ πi(v)} : v∈ [`]}. (7)

The key observation is that, for every i ∈ [m] and j ∈ [`], the neighborhood of the jth (resp.,
(`+ j)th) vertex in the ith connected component of the n-vertex graph Gn is determined by G′` and
πi(j) (resp., by G′′` and π−1

i (j)), which means that it can be found in poly(`)-time. This implies
local constructability, since ` = O(log n).

The fact that Gn is robustly self-ordered was already established in the proof of Theorem 4.2,
which is oblivious of the permutations used as long as any pair of permutations disagrees on Ω(`)
points. Lastly, we may obtain regularity and expansion by applying Theorem 2.6.

4.4 Local self-ordering

Recall that by Definition 1.1 a graph G = ([n], E) is called self-ordered if for every graph G′ =
(V ′, E′) that is isomorphic to G there exists a unique bijection φ : V ′ → [n] such that φ(G′) = G.
One reason for our preferring the term “self-ordered” over the classical term “asymmetric” is
that we envision being given such an isomorphic copy G′ = (V ′, E′) and asked to find its unique
isomorphism to G, which may be viewed as ordering the vertices of G′ according to (their name
in) G. The task of finding this unique isomorphism will be called self-ordering G′ according to G
or self-ordering G′ (when G is clear from the context).

Evidently, the task of self-ordering a given graph G′ according to a self-ordered graph G that can
be efficiently constructed reduces to testing isomorphism. When the graphs have bounded-degree
the latter task can be performed in polynomial-time [29]. These are general facts that do apply
also to the robustly self-ordered graph Gn constructed in the proof of Theorem 4.5. However, in
light of the fact that the graph Gn is locally constructable, we can hope for more. Specifically, it
is natural to ask if we can perform self-ordering of a graph G′ that is isomorphic to Gn in a local
manner; that is, given a vertex in G′ (and oracle access to the incidence function of G′), can we
find the corresponding vertex in Gn in poly(log n)-time? Let us define this notion formally.

Definition 4.6 (locally self-ordering a self-ordered graph): We say that a self-ordered graph G =
([n], E) is locally self-ordered if there exists a polynomial-time algorithm that, given a vertex v in
any graph G′ = (V ′, E′) that is isomorphic to G and oracle access to the incidence function of
G′, finds φ(v) ∈ [n] for the unique bijection φ : V ′ → [n] such that φ(G′) = G (i.e., the unique
isomorphism of G′ to G).
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Indeed, the isomorphism φ orders the vertices of G′ in accordance with the original (or target) graph
G. We stress that the foregoing algorithm works in time that is polynomial in the description of a
vertex (i.e., poly(log n))-time), which is polylogarithmic in the size of the graph (i.e., n). We show
that such algorithms exist for the graphs constructed in the proof of Theorem 4.5.

Theorem 4.7 (locally self-ordering the graphs of Theorem 4.5): For any sufficiently large constant
d, there exists a locally constructable family {Gn = ([n], En)}n∈N of robustly self-ordered d-regular
graphs that are locally self-ordered. Furthermore, the graphs are either expanders or consist of
connected components of logarithmic size.

As in Theorem 4.5, we can obtain connected components of sub-logarithmic size by using [23].

Proof: We first consider the version that yields n-vertex graphs that consist of connected com-
ponents of logarithmic size. The basic idea is that it we can afford reconstructing the connected
component in which the input vertex reside, and this allows us both to determine the index of the
vertex in this connected component as well as the index of the component in the graph. Specifically,
on input a vertex v in a graph G′ that is isomorphic to Gn, we proceed as follows.

1. Using queries to the incidence function of G′, we explore and retrieve the entire 2`-vertex
connected component in which v resides, where ` = log2 n.

Recall that this connected component consists of (copies of) two `-vertex regular graphs,
denoted G′` and G′′` , that are connected by a matching. Furthermore, these graphs have
different degrees and are each (robustly) self-ordered.

2. Relying on the different degrees, we identify the foregoing partition of this 2`-vertex com-
ponent into two `-vertex (self-ordered) graphs, denoted Av and Bv, where Av (resp., Bv) is
isomorphic to G′` (resp., G′′` ).

3. Relying on the self-ordering of G′` (resp., G′′` ), we order the vertices of Av (resp., G′′v). This
is done by constructing G′` (resp., G′′` ), and using an isomorphism tester. The order of the
vertices in Av and Bv also determines the permutation that defines the matching between the
two graphs.

4. Relying on the correspondence between the permutations used in the construction and code-
words of a good error-correcting code, we decode the relevant codeword (i.e., this is decoding
without error). This yields the index of the permutation in the collection, which equals the
index of the connected component.

Note that this refers to the basic construction that was presented in the proof of Theorem 4.5,
before it was transformed to a regular graph and to an expander. Recall that both transformations
are performed by augmenting the graph with auxiliary edges that are assigned a different color
than the original edges, and that edges with different colors are later replaced by copies of different
(constant-size) gadgets. These transformations do not hinder the local self-ordering procedure
described above, since it may identify the original graph (and ignore the gadgets that replace other
edges). The claim follows.

35



Local reversed self-ordering. While local self-ordering a (self-ordered) graph seems the natural
local version of self-ordering the graph, an alternative notion called local reversed self-ordering will
be defined and studied next (and used in Section 5). Both notions refer to a self-ordered graph,
denoted G = ([n], E), and to an isomorphic copy of it, denoted G′ = (V ′, E′); that is, G = φ(G′)
for a (unique) bijection φ : V ′ → [n]. While local self-ordering is the task of finding the index of a
given vertex of G′ according to G (i.e., given v ∈ V ′, find φ(v) ∈ [n]), local reversed self-ordering is
the task of finding the vertex of G′ that has a given index in G (i.e., given i ∈ [n], find φ−1(i) ∈ V ′).
In both cases, the graph G is locally constructible and we are given oracle access to the incidence
function of G′. In addition, in the reversed task, we assume that the algorithm is given an arbitrary
vertex in G′, since otherwise there is no hope to hit any element of V ′.22

Definition 4.8 (locally reversed self-ordering): We say that a self-ordered graph G = ([n], E) is
locally reversed self-ordered if there exists a polynomial-time algorithm that, given i ∈ [n] and oracle
access to the incidence function of a graph G′ = (V ′, E′) that is isomorphic to G and an arbitrary
vertex s ∈ V ′, finds φ−1(i) ∈ V ′ for the unique bijection φ : V ′ → [n] such that φ(G′) = G (i.e., the
unique isomorphism of G′ to G).

We stress that the foregoing algorithm works in time that is polynomial in the description of a
vertex (i.e., poly(log n))-time), which is polylogarithmic in the size of the graph (i.e., n). We show
that such algorithms exist for variants of the graphs constructed in the proof of Theorem 4.5. In
fact, we show a more general result that refers to any graph that is locally self-ordered and for
which short paths can be locally found between any given pair of vertices.

Theorem 4.9 (sufficient conditions for locally reversed self-ordering of graphs): Suppose that
{Gn = ([n], En)}n∈N is a family of bounded degree graphs that is locally self-ordered. Further
suppose that given v, u ∈ [n], one can find in polynomial-time a path from u to v in Gn. Then,
{Gn = ([n], En)}n∈N is locally reversed self-ordered.

We mention that a family of robustly self-ordered graphs that is locally self-ordered can be trans-
formed into one that also supports locally finding short paths. This is done by superimposing the
graphs of this family with graphs that supports locally finding short paths, while using different
colors for the edges of the two graphs and later replacing these colored edges by gadgets (as done
in Section 2.1). We also mention that applying degree reduction to the hyper-cube (i.e., replacing
the original vertices with simple cycles) yields a graph that supports locally finding short paths.23

Proof: On input i ∈ [n] and s ∈ V ′, and oracle access to the incidence function of a graph
G′ = (V ′, E′) that is isomorphic to Gn, we proceeds as follows.

1. Using the local self-ordering algorithm, we find i0 = φ(s), where φ : V ′ → [n] is the unique
bijection satisfying φ(G′) = G.

22Needless to say, this is not needed in case V ′ = [n], which is the case that is used in Section 5.
23For any ` ∈ N, the resulting graph consists of the vertex-set {〈x, i〉 : x∈{0, 1}` & i∈ [`]} and edges that connect
〈x, i〉 to 〈x⊕ 0i−110`−i, i〉 and to 〈x, i+ 1〉, where ` + 1 stands for 1. For simplicity of exposition, we also add self-
loops on all vertices. Then, given 〈x, i〉 and 〈y, j〉, we can combine the 2`-path that goes from 〈x, i〉 to 〈y, i〉 with the
|j− i|-path that goes from 〈y, i〉 to 〈y, j〉, where the odd steps on the first path move from 〈z, k〉 to 〈z ⊕ 0i−110`−i, k〉
(or stay in place) and the even steps (on this path) move from 〈z, k〉 to 〈z, k + 1〉.
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2. Using the path-finding algorithm for G, we find a poly(log n)-long path from i0 to i in G.

Let ` denote the length of the path, and denote its intermediate vertices by i1, ..., i`−1; that
is, the full path is i0, i1, ..., i`−1, i` = i.

3. For j = 1, ..., `, we find vj
def
= φ−1(ij) as follows. First, using queries to the incidence function

of G′, we find all neighbors (in G′) of vj−1, where v0
def
= s (and, indeed, v0 = φ−1(i0)). Next,

using the local self-ordering algorithm, we find the indices of all these vertices in G; that is,
for every vertex w that neighbors vj−1, we find φ(w). Last, we set vj to be the neighbor that
has index ij in G; that is, vj satisfies φ(vj) = ij .

Hence, v` is the desired vertex; that is, v` satisfies φ(v`) = i` = i.
Assuming that the local self-ordering algorithm has query complexity q(n), that the paths found

in G have length at most `(n), and that d is the degree bound, the query complexity of our reversed
self-ordering algorithm is (1 + `(n) · d) · (q(n) + 1), where we count both our direct queries to the
incidence function of G and the queries performed by the local self-ordering algorithm. Similar
considerations apply to its time complexity.

Corollary 4.10 (a version of Theorem 4.7 supporting local reversed self-ordering): For any suffi-
ciently large constant d, there exists a locally constructable family {Gn = ([n], En)}n∈N of robustly
self-ordered graphs of maximum degree d that are both locally self-ordered and locally reversed self-
ordered.

The corollary follows by combining Theorem 4.7 with Theorem 4.9, while using the augmentation
outlined following the statement of Theorem 4.9. We mention that Corollary 4.10 will be used in
Section 5.

5 Application to Testing Bounded-Degree Graph Properties

Our interest in efficiently constructable bounded-degree graphs that are robustly self-ordered was
triggered by an application to property testing. Specifically, we observed that such constructions
can be used for proving a linear lower bound on the query complexity of testing an efficiently
recognizable graph property in the bounded-degree graph model.

It is well known that 3-Colorability has such a lower bound [3], but this set is NP-complete.
On the other hand, linear lower bounds on the query complexity of testing efficiently recognizable
properties of functions (equiv., sequences) are well known (see [20, Sec. 10.2.3]). So the idea was to
transport the latter lower bounds from the domain of functions to the domain of bounded-degree
graphs, and this is where efficient constructions of robustly self-ordered bounded-degree graphs
come into play. (We mention that an alternative way of obtaining the desired lower bound was
outlined in [19, Sec. 1], see details below.)

More generally, the foregoing transportation demonstrates a general methodology of transport-
ing lower bounds that refer to testing binary strings to lower bounds regarding testing graph prop-
erties in the bounded-degree graph model. The point is that strings are ordered objects, whereas
graphs properties are effectively sets of unlabeled graphs, which are unordered objects. Hence, we
need to make the graphs (in the property) ordered, and furthermore make this ordering robust in
the very sense that is reflected in Definition 1.2. Essentially, we provide a reduction of testing a
property oif strings to testing a (related) property of graphs.
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We apply this methodology to obtain a subexponential separation between the complexities of
testing and tolerant testing of graph properties in the bounded-degree graph model. This result
is obtained by transporting an analogous result that was known for testing binary strings [16]. In
addition to using a reduction from tolerantly testing a property of strings to tolerantly testing a
property of graphs, this trasportation also uses a reduction in the opposite direction, which relies
on the local computation features asserted in Corollary 4.10.

Organization of this section. We start with a brief review of the bounded-degree graph model
for testing graph properties. Next, we prove the aforementioned linear lower bound on the query
complexity of testing an efficiently recognizable property, and later we abstract the reduction that
underlies this proof. Observing that this reduction applies also to tolerant testing, and presenting
a reduction in the opposite direction, we derive the aforementioned separation between testing and
tolerant testing.

Background. Property testing refers to algorithms of sublinear query complexity for approximate
decision; that is, given oracle access to an object, these algorithms (called testers) distinguish objects
that have a predetermined property from objects that are far from the property. Different models
of property testing arise from different query access and different distance measures.

In the last couple of decades, the area of property testing has attracted significant attention
(see, e.g., [18]). Much of this attention was devoted to testing graph properties in a variety of
models including the dense graph model [20], and the bounded-degree graph model [22] (surveyed
in [18, Chap. 8] and [18, Chap. 9], resp.). In this section, we refer to the bounded-degree graph
model, in which graphs are represented by their incidence function and distances are measured as
the ratio of the number of differing incidences to the maximal number of edges.

Specifically, for a degree bound d ∈ N, we represent a graph G = ([n], E) of maximum degree
d by the incidence function g : [n] × [d] → [n] ∪ {0} such that g(v, i) indicates the ith neighbor of
v (where g(v, i) = 0 indicates that v has less than i neighbors). The distance between the graphs
G = ([n], E) and G′ = ([n], E′) is defined as the size of the symmetric difference between E and E′

over dn/2.
A tester for a property Π is given oracle access to the tested object, where here oracle access

to a graph means oracle access to its incidence function. In addition, such a tester is given a size
parameter n (i.e., the number of vertices in the graph), and a proximity parameter, denoted ε > 0.
Tolerant testers, introduced in [30] (and briefly surveyed in [18, Sec. 12.1]), are given an additional
parameter, η < ε, which is called the tolerance parameter.

Definition 5.1 (testing and tolerant testing graph properties in the bounded-degree graph model):
For a fixed degree bound d, a tester for a graph property Π is a probabilistic oracle machine that, on
input parameters n and ε, and oracle access to an n-vertex graph G = ([n], E) of maximum degree
d, outputs a binary verdict that satisfies the following two conditions.

1. If G ∈ Π, then the tester accepts with probability at least 2/3.

2. If G is ε-far from Π, then the tester accepts with probability at most 1/3, where G is ε-far
from Π if for every n-vertex graph G′ = ([n], E′) ∈ Π of maximum degree d it holds that the
size of the symmetric difference between E and E′ has cardinality that is greater than ε ·dn/2.
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A tolerant tester is also given a tolerance parameter η, and is required to accept with probability at
least 2/3 any graph that is η-close to Π (i.e., not η-far from Π).24

We stress that a graph property is defined as a property that is preserved under isomorphism; that
is, if G = ([n], E) is in the graph property Π, then all its isomorphic copies are in the property (i.e.,
π(G) ∈ Π for every permutation π : [n]→ [n]). The fact that we deal with graph properties (rather
than with properties of functions) is the source of the difficulty (of transporting results from the
domain of functions to the domain of graphs) and the reason that robust self-ordering is relevant.25

The query complexity of a tester for Π is a function (of the parameters d, n and ε) that represents
the number of queries made by the tester on the worst-case n-vertex graph of maximum degree d,
when given the proximity parameter ε. Fixing d, we typically ignore its effect on the complexity
(equiv., treat d as a hidden constant). Also, when stating that the query complexity is Ω(q(n)), we
mean that this bound holds for all sufficiently small ε > 0; that is, there exists a constant ε0 > 0
such that distinguishing between n-vertex graphs in Π and n-vertex graphs that are ε0-far from Π
requires Ω(q(n)) queries.

Our first result. With the foregoing preliminaries in place, we state the first result of this section,
which is proved using Theorem 4.2.

Theorem 5.2 (linear query complexity lower bound for testing an efficiently recognizable graph
property in the bounded-degree graph model): For any sufficiently large constant d, there exists
an efficiently recognizable graph property Π such that testing Π in the bounded-degree graph model
(with degree bound d) has query complexity Ω(n). Furthermore, each n-vertex graph in Π consists
of connected components of size o(log n).

The main part of the theorem was known before: As observed in [19, Sec. 1], there exists graph
properties that are recognizable in polynomial-time and yet are extremely hard to test in the bounded-
degree graph model. This follows from the fact that the local reduction from testing 3LIN (mod 2)
to testing 3-Colorability used by Bogdanov, Obata, and Trevisan [3] is invertible in polynomial-
time (which is a common feature of reductions used in the context of NP-completeness proofs).26

Indeed, their reduction actually demonstrates that the set of (3-colorable) graphs that are obtained
by applying this reduction to satisfiable 3LIN (mod 2) instances is hard to test (i.e., requires linear
query complexity in the bounded-degree graph model).27 We note that the resulting property
contains only connected graphs, which means that Theorem 5.2 has some added value: The fact
that it applies to graphs with tiny connected components is interesting, since testing properties of
such graphs may seem easy (or at least not extremely hard) at first thought.

Proof: Our starting point is a property Φ of (binary) strings (equiv., Boolean functions) that
is recognizable in polynomial-time but has a linear query complexity lower bound (see, e.g., [21,

24Of course, a tolerant tester is also required to reject with probability at least 2/3 any graph that is ε-far from Π.
25As noted in Section 1.1.1, this is a special case of the general phenomenon pivoted at the difference between

ordered and unordered structures, which arises in many contexts (in complexity and logic).
26Of course, 3LIN (i.e., the satisfiability of linear equations (with three variables each) over GF(2)) is easily

solvable in polynomial-time. Nevertheless, Bogdanov et al. [3] use a reduction of 3LIN to 3-Colorability (via 3SAT)
that originates in the theory of NP-completeness in order to reduce between the testing problems.

27Like almost all reductions of this type, the analysis of the reduction actually refers to the promise problem
induced by the image of the reduction (i.e., the image of both the yes- and no-instances).
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Sec. 7]). This refers to a model in which one makes queries to bits of the tested string, and the
distance between strings is the (relative) Hamming distance. Such lower bounds were transported
to the dense graph model in [20, 10.2.3] (see also [21]), but – to the best of own knowledge – no such
transportation were performed before in the context of the bounded-degree graph model. Using
robustly self-ordered graphs of bounded degree, we present such a transportation.

Construction 5.2.1 (from properties of strings to properties of bounded-degree graphs): Suppose
that {Gn = ([n], En)}n∈N is a family of robustly self-ordered graphs of maximum degree d− 2.

• For every n ∈ N and s ∈ {0, 1}n, we define the graph G′s = ([3n], E′s) such that

E′s = En ∪ {{i, n+ i}, {i, 2n+ i} : i ∈ [n]} ∪ {{n+ i, 2n+ i} : i ∈ [n] ∧ si = 1} (8)

That is, G′s consists of a copy of Gn augmented by 2n vertices such that vertex i ∈ [n] forms
a triangle with n+ i and 2n+ i is si = 1, and forms a wedge with n+ i and 2n+ i otherwise.

• For a set of strings Φ, we define Π =
⋃
n∈N Πn as the set of all graphs that are isomorphic to

some graph G′s such that s ∈ Φ; that is,

Πn = {π(G′s) : s ∈ (Φ ∩ {0, 1}n) ∧ π ∈ Sym3n} (9)

where Sym3n denote the set of all permutations over [3n].

Note that, by the asymmetry of Gn, no vertex of Gn is connected to two vertices that have the
same neighborhood (in Gn). Hence, given a graph of the form π(G′s), the vertices of Gn are
easily identifiable (as having two neighbors outside of Gn that have identical neighborhoods). The
foregoing construction yields a local reduction of Φ to Π, where locality means that each query to
G′s can be answered by making a constant number of queries to s, and the (standard) validity of
the reduction is based on the fact that Gn is asymmetric.28

In order to be useful towards proving lower bounds on the query complexity of testing Π, we
need to show that the foregoing reduction is “distance preserving” (i.e., strings that are far from Φ
are transformed into graphs that are far from Π). The hypothesis that Gn is robustly self-ordered
is pivotal to showing that if the string s is far from Φ, then the graph G′s is far from Π.

Claim 5.2.2 (preserving distances): If s ∈ {0, 1}n is ε-far from Φ, then the 3n-vertex graph G′s
(as defined in Construction 5.2.1) is Ω(ε)-far from Π.

Proof: We prove the contrapositive. Suppose that G′s is δ-close to Π. Then, for some r ∈ Φ and a
permutation π : [3n]→ [3n], it holds that G′s is δ-close to π(G′r). (The possible use of a non-trivial
permutation arises from the fact that Π is closed under isomorphism.) If π(i) = i for every i ∈ [n],
then s must be (3dδ/2)-close to r, where d is the degree bound (of the model), since si = 1 (resp.,
ri = 1) if and only if i forms a triangle with n + i and 2n + i in G′s (resp., in π(G′r) = G′r).

29

Unfortunately, the foregoing condition (i.e., π(i) = i for every i ∈ [n]) need not hold in general.

28Standard validity means that s ∈ Φ if and only if G′s ∈ Π. Evidently, s ∈ Φ is mapped to G′s ∈ Π; the asymmetry
of Gn is used to show that s 6∈ Φ is mapped to G′s 6∈ Π, since G′s can not be isomorphic to any graph G′w such that
w 6= s. This, by itself, does not mean that if s is far from Φ then G′s is far from Π.

29Hence, G′s is δ-close to G′r implies that |{i∈ [n] :si 6= ri}| ≤ δ · 3dn/2, which means that s is 3δdn/2
n

-close to r.
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In general, the hypothesis that π(G′r) is δ-close to G′s implies that π maps at most 3δdn/2
vertices of [n] to {n+ 1, ..., 3n}. This is the case since each vertex of [n] has degree at least three in
G′r, whereas the other vertices have degree at most two in G′s (or in any other graph G′s′). Hence,
if t = |{i ∈ [n] : π(i) ∈ {n + 1, ..., 3n}|, then π(G′r) and G′s differ on at least t edges, whereas the
hypothesis is that the difference is at most δ · 3dn/2.

Turning to the vertices i ∈ [n] that π maps to [n] \ {i}, we upper-bound their number by
O(δd2n), since the difference between π(G′r) and G′s is at most δ · 3dn/2, whereas the hypothesis
that Gn is c-robustly self-ordered implies that the difference between π(G′r) and G′s (or any other
graph G′w) is at least

∆ = c · |{i∈ [n] :π(i) 6= i}| − d · |{i∈ [n] :π(i) 6∈ [n]}|.

(Compare Case 6 in the proof of Theorem 4.2.)30

Letting I = {i ∈ [n] : π(i) = i}|, observe that D
def
= |{i ∈ I : ri 6= si}| ≤ 3δdn/2, since ri 6= si

implies that, for every i ∈ I, the subgraph induced by {i, n+ i, 2n+ 1} is different in π(G′r) and G′s
(i.e., it is a triangle in one graph and contains two edges in the other), whereas by the hypothesis
π(G′r) and G′s differ on at most δ · 3dn/2 edges. Recalling that |I| = n − O(δd2n), it follows that
|{i ∈ [n] : ri 6= si}| ≤ (n − |I|) + D = O(δd2n). Recalling that d is a constant, we infer that s is
O(δ)-close to r ∈ Φ, and the claims follows.

Conclusion. Starting with Theorem 4.2 (i.e., an efficient construction of robustly self-ordered graphs
of bounded degree), using Construction 5.2.1, and applying Claim 5.2.2, the theorem follows.
Specifically, we need to verify the following facts.

• The set Π is polynomial-time recognizable.

Given an 3n-vertex graph G′, an adequate algorithm first tries to identify and order the
vertices of the corresponding graph Gn, which means that it finds s ∈ {0, 1}n such that G′ is
isomorphic to G′s (or determines that no such s exists). (Note that once the vertices of Gn
are identified, their unique ordering, whenever it exists, can be found in polynomial time by
running an isomorphism tester on the subgraph induced by them (while relying on the fact
that the degree of the graph is bounded [29]).) Having found s, the algorithm accepts if and
only if s ∈ Φn, where Π is polynomial-time recognizable by our starting hypothesis.

• Testing Π requires linear query complexity.

This is shown by reducing testing Φ to testing Π, while recalling that testing Φ requires linear
query complexity. Given (proximity parameter ε and) oracle access to a string s ∈ {0, 1}n,
we invoke the tester for Π (with proximity parameter Ω(ε)) while emulating oracle access to
G′s in a straightforward manner (i.e., each query to G′s is answered by making at most one
query to s). Recall that s ∈ Φ implies G′s ∈ Π, whereas by Claim 5.2.2 if s is ε-far from Φ
then G′s is Ω(ε)-far from Π.

This completes the proof.

30Hence, ∆ ≤ δ · 3dn/2 implies that

|{i ∈ [n] : π(i) 6= i}| =
∆ + d · |{i ∈ [n] : π(i) 6∈ [n]}|

c

≤ 3δdn/2 + d · 3δdn/2
c

which is O(δd2n).
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Digest: Reducing testing properties of strings to testing graph properties. We wish
to highlight the fact that the proof of Theorem 5.2 is based on a general reduction of testing
any property Φ of strings to testing a corresponding (bounded-degree) graph property Π. This
reduction is described in Construction 5.2.1 and its validity is proved in Claim 5.2.2. Recall that,
for any n, the graph property Π consists of 3n-vertex graphs (of bounded-degree) that encode the
different n-bit long strings in Φ. This reduction is local and preserves distances:

Locality: Each string s ∈ {0, 1}n is encoded by a graph G′s such that each query to G′s can be
answered by making at most one query to s.

Preserving distances: If s ∈ Φ then G′s ∈ Π, whereas if s is ε-far from Φ then G′s is Ω(ε)-far
from Π.

Recall that G′s consists of a fixed robustly self-ordered n-vertex graph Gn augmented by (n two-
vertex) gadgets that encode s. Let us spell out the effect of this reduction.

Corollary 5.3 (implicit in the proof of Theorem 5.2): For Φ and Π as in Construction 5.2.1,
let QΦ and QΠ denote the query complexities of testing Φ and Π, respectively. Then, QΦ(n, ε) ≤
QΠ(3n,Ω(ε)). Likewise, letting Q′Φ (resp., Q′Π) denote the query complexity of tolerantly testing Φ
(resp., Π), it holds that Q′Φ(n, η, ε) ≤ Q′Π(3n, η/3,Ω(ε)).

The tolerant testing part requires an additional justification. Specifically, we observe that strings s
that are η-close to Φ yield graphs G′s that are η/3-close to Π. This is the case because, if the n-bit
long strings s and r differ on k bits, then the 3n-vertex graphs G′s and G′r differ on k vertex pairs.
In preparation to proving the separation between the complexities of testing and tolerant testing,
we show a reduction in the opposite direction. This reduction holds provided that the robustly
self-ordered graphs used in the definition of Π are locally reversed self-ordered (see Definition 4.8).

Proposition 5.4 (reducing testing Π to testing Φ): Suppose that the graphs used in Construc-
tion 5.2.1 are locally self-ordered and locally reversed self-ordered, and let Φ,Π and QΦ, QΠ be as in
Corollary 5.3. Then, QΠ(3n, ε) ≤ poly(log n) · (QΦ(n, 2ε) +O(1/ε)). Furthermore, one-sided error
probability is preserved.31

Recall that the hypothesis can be met by using Corollary 4.10.

Proof: Given oracle access to a graph G′ = ([3n], E′), we first test that G′ is isomorphic to G′s,
for some s ∈ {0, 1}n, and then invoke the tester for Φ while providing it with oracle access to s.
Specifically, when the latter tester queries the bit i, we use the local reversed self-order algorithm
in order to locate the ith vertex of Gn in G′, and then determine the bit si accordingly. Details
follow.

Let V denote the set of vertices of the graph G′ = ([3n], E′) that have degree greater than 2 and
neighbor two vertices that have degree at most 2 and neighbor each other if they have degree 2.
Evidently, the vertices of V are easy to identify by querying G′ for their neighbors and their
neighbors’ neighbors. Furthermore, |V | ≤ n, since each vertex in v has two neighbors that are not
connected to any other vertex in V , and equality holds in case G′ ∈ Π. We try to find a (“pivot”)
vertex p ∈ V by picking an arbitrary vertex in G′ and checking it and its neighbors. If none of

31A tester is said to have one-sided error probability if it always accepts objects that have the property.
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these is in V , then we reject. Otherwise, we continue; we shall be using p as an auxiliary input in
all (future) invocations of the local reversed self-ordering algorithm, denoted A.

Using the foregoing algorithm A and the pivot p ∈ V , we define A′(i) = A(p, i) if A(p, i) ∈ V and
invoking the local self-ordering algorithm on input A(p, i) yields i. Otherwise A′(i) is undefined.
Hence, evaluating A′ amounts to evaluating A as well as evaluating the local self-ordering algorithm.
Letting I ′ ⊆ [n] denote the set of “indices” (i.e., vertices of Gn) on which A′ is defined, we note that

A′ is a bijection from I ′ to V ′
def
= {A′(i) : i ∈I ′}, and that I ′ = [n] if G′ ∈ Π. Hence, our first test is

testing whether I ′ = [n], which is done by selecting at random O(1/ε) elements of [n], and rejecting
if A′ is undefined on any of them. Otherwise, we proceed, while assuming that |I ′| ≥ (1− 0.1ε) · n.

Next, we test whether the subgraph of Gn induced by I ′ is isomorphic to the subgraph of G′

induced by V ′, where the isomorphism is provided by A′ (which maps I ′ to V ′). This can be
done by sampling O(1/ε) vertices of Gn and comparing their neighbors to the neighbors of the
corresponding vertices in G′, which are found by A′. Specifically, for every sampled vertex i ∈ [n],
we determine its set of neighbors Si in Gn, obtain both A′(i) and A′(Si) = {A′(j) : j ∈Si}, which
are supposedly the corresponding vertices in G′, and check whether A′(Si) is the set of neighbors of
A′(i) in G′. We reject if A′ is undefined on any of these vertices (i.e., on sampled vertices or their
neighbors in Gn). Needless to say, we also reject if any of the foregoing neighborhood checks fails.

Assuming that we did not reject so far, we may assume that G′ is ε/2-close to being isomorphic
to some G′s, where the isomorphism is consistent with the inverse of A′. At this point, we invoke
the tester for Φ, denoted T , in order to test whether s ∈ Φ. This is done by providing T with oracle
access to s as follows. When T makes a query i ∈ [n], we determine A′(i), and use our query access
to G′ in order to determine the two neighbors of A′(i) that have degree at most 2. If this fails, we
reject. Otherwise, we answer 1 if and only if these two neighbors are connected in G′.

To summarize, we employ three tests to G′: An initial test of the size I ′ (which also includes
finding a pivot p ∈ V ), an isomorphism test between the subgraph of G′ induced by I ′ and the
subgraph of Gn induced by V ′, and an emulation of the testing of Φ. (In all tests, if we encounter an
index in [n]\I ′, we suspend the execution and reject.) For simplicity and without loss of generality,
we may assume that T is correct with high (constant) probability.

Note that if G′ ∈ Π, then it holds that G′ = π(G′s) for some s ∈ Φ and some permutation
π ∈ Sym3n. In this case, it holds that |I ′| = n and we always find a pivot p ∈ V . Furthermore,
A′ equals the restriction of π to [n], the isomorphism test always succeeds, and the emulation of
oracle access to s is perfect. Hence, we accept with high probability (or always, if T has one-sided
error probability).

On the other hand, suppose that G′ is ε-far from Π. If either |I ′| < (1−0.1ε) ·n or the subgraph
of G′ induced by V ′ is 0.1ε-far from A′(GI′), where GI′ denotes the subgraph of Gn induced by I ′,
then we reject with high probability due to one of the first two tests. Otherwise, letting π be an
arbitrary bijection of [3n] to [3n] that extends A′, it follows that for some s ∈ {0, 1}n the graph G′

is 0.2ε-close to π(G′s), since we may obtain π(G′s) from G′ by modifying the neighborhood of 0.1n
vertices in I ′ as well as of the vertices in [n] \ I ′. Furthermore, for every i ∈ [n] on which A′ is
defined, it holds that si = 1 if and only if the two neighbors of A′(i) that have degree at most 2 are
connected. By the hypothesis regarding G′, the string s must be 2.4ε-far from Φ, and A′(i) = π(i)
whenever A′ is defined on i ∈ [n]. It follows that either the emulation of T was abruptly terminated
(leading to rejection) or the answers provided to T are according to s. Hence, we reject with high
probability.
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Separating tolerant testing from testing. Using Corollary 5.3 and Proposition 5.4, we trans-
port the separation of tolerant testing from testing, which has been established in [16], from the
domain of testing strings to the domain of testing graph properties in the bounded-degree graph
model.

Theorem 5.5 (in the bounded-degree graph model, tolerant testing is harder than testing): For
any sufficiently large constant d and any constant c ∈ (0, 1), there exists a graph property Π such
that testing Π in the bounded-degree graph model (with degree bound d) has query complexity
O(poly(log n)/ε), but tolerantly testing Π has query complexity Ω(nΩ(1−c)), provided that the toler-
ance parameter is not smaller than n−c. Furthermore, Π is efficiently recognizable.

Proof: A small variant on the proof of [16, Thm. 1.3] yields an efficiently recognizable set of strings
Φ that is testable in O(1/ε) queries but tolerantly testing it requires Ω(nΩ(1−c)) queries.32 Using
Construction 5.2.1 with graphs that are locally self-ordered and locally reversed self-ordered (as
provided by Corollary 4.10), we obtain the desired graph property Π. By Corollary 5.3 tolerantly
testing Π requires Ω(nΩ(1)) queries, whereas by Proposition 5.4 (non-tolerant) testing Π has query
complexity poly(log n) ·O(1/ε). The claim follows.

6 Random Regular Graphs are Robustly Self-Ordered

While Theorem 4.1 only asserts the existence of robustly self-ordered d-regular graphs, we next
show that almost all d-regular graphs are robustly self-ordered. This extends work in probabilistic
graph theory, which proves a similar result for the weaker notion of self-ordered (a.k.a asymmetric)
graphs [4, 5].

Theorem 6.1 (random d-regular graphs are robustly self-ordered): For any sufficiently large con-
stant d, a random 2d-regular n-vertex graph is robustly self-ordered with probability 1− o(1).

Recall that, with very high probability, these graphs are expanders. We mention that the proof
of Theorem 4.1 actually established that n-vertex graphs drawn from a weird distribution (which
has min-entropy Ω(n)) are robustly self-ordered with probability 1− o(1). However, this is estab-
lished by using the edge-coloring variant, and requires employing the transformation presented in
Section 2.1. In contrast, the following proof works directly with the original (uncolored) variant,
and is completely self-contained.

Proof: The proof is quite similar to the proof Claim 4.1.1, but it faces complications that were
avoided in the prior proof by using edge-colors and implicitly directed edges. Specifically, for
candidate permutations π1, ..., πd : [n] → [n] (to be used in the construction) and all (non-trivial)
permutations µ : [n]→ [n], the proof of Claim 4.1.1 considered events of the form (∀j∈ [d]) πj(i) =
µ(πj(µ

−1(i))), whereas here we shall consider events of the form {πbj(i) : j ∈ [d] & b ∈ {±1}} =

{µ(πbj(µ
−1(i))) : j∈ [d] & b∈{±1}}. These multi-set equalities will be reduced to equalities among

32Basically, the construction of [16] consists of repeating some m-bit long string poly(m) times and augmenting it
with a PCP of Proximity (PCPP) [2, 11] of membership in some polynomial-time recognizable set that is hard to
test. Essentially, the PCPP helps the tester, but it may be totally useless (when corrupted) in the tolerant testing
setting. While [16] lets the PCPP occupy an o(1/ log logn) fraction of the final n-bit string, we let it occupy just a
n−c fraction (and use m = nΩ(1−c)). This requires using a different PCPP than the one used in [16]; e.g., using a
strong PCPP with linear detection probability [10, Def. 2.2] will do, and such a PCPP is available [10, Thm. 3.3].
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sequences by considering all possible ordering of these multi-sets. This amounts to taking a union
bound over all possible ordering and results in a more complicated analysis (due to the π−1

j ’s) and
much more cumbersome notation.

To facilitate the proof, we use the standard methodology (cf. [14, Apdx. 2]) of first proving the
result in the random permutation model, then transporting it to the configuration model (by using
a general result of [24]), and finally conditioning on the event that the generated graph is simple
(which occurs with positive constant probability). Indeed, both models generate multi-graphs that
are not necessarily simple graphs (i.e., these multi-graphs may have self-loops and parallel edges).
We also use the fact that the simple graphs that are generated by the configuration model (for
degree d′) are uniformly distrubuted among all d′-regular graphs.

Recall that in the random permutation model a 2d-regular n-vertex multi-graph is generated
by selecting uniformly and independently d permutations π1, ..., πd : [n] → [n]. The multi-graph,
denoted G(π1,...,πd), consists of the edge multi-set

⋃
j∈[d]{{i, πj(i)} : i ∈ [n]}, where the 2jth (resp.,

(2j − 1)st) neighbor of vertex i is πj(i) (resp., π−1
j (i)). Note that this multi-graph may have self-

loops (due to πj(i) = i), which contributed two units to the degree of a vertex, as well as parallel
edges (due to πj(i) = πk(i) for j 6= k and πj(i) = π−1

k (i) for any j, k). We denote the jth neighbor
of vertex i by gj(i); that is, gj(i) = πj/2(i) if j is even, and gj(i) = π−1

(j+1)/2(i) otherwise.

Consider an arbitrary permutation µ : [n] → [n], and let T = {i ∈ [n] : µ(i) 6= i} be its set of
non-fixed-point. We shall show that, with probability 1− exp(−Ω(d · |T | · log n)) over the choice of
π = (π1, ..., πd), the size of the symmetric difference between Gπ and µ(Gπ) is Ω(|T |). Note that
this difference is (half) the sum over i ∈ [n] of the size of the symmetric difference between the
multi-set of neighbors of vertex i in Gπ and the multi-set of neighbors of vertex i in µ(Gπ). We
refer to the latter difference by the phrase the contribution of vertex i to the difference between Gπ
and µ(Gπ).

As a warm-up, we first show that each element of T contributes a non-zero number of units to
the difference (between Gπ and µ(Gπ)) with probability 1−O(poly(d)/n)d/3 over the choice of π.
Consider the event that for some j, k ∈ [2d], the jth neighbor of i ∈ [n] in µ(Gπ) is different from the
kth neighbor of i in Gπ. Note that x is the jth neighbor of i in µ(Gπ) if and only if µ−1(x) is the kth

neighbor of µ−1(i) in Gπ, which holds if and only if µ−1(x) = gk(µ
−1(i)) (equiv., x = µ(gk(µ

−1(i)))).
Recalling that i ∈ T contributes to the difference (between Gπ and µ(Gπ)) if the multi-sets of its
neighbors in Gπ and µ(Gπ) differ, it follows that i ∈ T contributes to the difference if and only if
for every permutation σ : [2d]→ [2d] there exists j ∈ [2d] such that gj(i) 6= µ(gσ(j)(µ

−1(i))). Thus,
the probability of the complementary event (i.e., i does not contribute to the difference) is given
by

Prπ
[
∃σ∈Sym2d (∀j∈ [2d]) gj(i) = µ(gσ(j)(µ

−1(i)))
]

= (2d)! · max
σ∈Sym2d

{
Prπ

[
(∀j∈ [2d]) gj(i) = µ(gσ(j)(µ

−1(i)))
]}
. (10)

Fixing σ that maximizes the probability, and denoting it σi, consider any Ji ⊆ [d] such that for
the j’s in Ji the multi-sets {j, dσi(2j)/2e}’s are disjoint (i.e., {j, dσi(2j)/2e} ∩ {k, dσi(2k)/2e} = ∅
for any j 6= k ∈ Ji). Note that we may select Ji such that |Ji| ≥ d/3, since taking j to Ji

only rules out taking (to Ji) any k such that dσi(2k)/2e = v
def
= dσi(2j)/2e (equiv., k such that

σi(2k) ∈ {2v − 1, 2v}). Using this proerty of Ji, we prove –

Claim 6.1.1 (warm-up):33 Eq. (10) is upper-bounded by (2d)2d · (2/n)|Ji|.

33One may obtain a better bound of O(d/n)2d by analyzing Eq. (10) directly, by considering all the 2d events and
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Proof: We upper-bound Eq. (10) by

(2d)! ·max
σ

{
Prπ

[
(∀j∈Ji) g2j(i) = µ(gσ(2j)(µ

−1(i)))
]}

= (2d)! ·
∏
j∈Ji

Prπj ,πdσi(2j)/2e
[
g2j(i) = µ(gσi(2j)(µ

−1(i)))
]

(11)

where the equality uses the disjointness of the multi-sets {j, dσi(2j)/2e} for the j’s in Ji. Next, we
upper-bound Eq. (11) by

(2d)! ·
∏
j∈Ji

Prπj ,πdσi(2j)/2e

[
πj(i) = µ(π

(−1)σi(2j) mod 2

dσi(2j)/2e (µ−1(i)))
]
< (2d)2d · (2/n)|Ji|, (12)

where Prπj ,πj [·] stands for Prπj [·] and π1 stands for π, while the inequality is justified by considering
the following three cases (w.r.t each j ∈ Ji).

1. If k
def
= dσi(2j)/2e 6= j, then, letting b = (−1)σi(2j) mod 2, the corresponding factor in the l.h.s

of Eq. (12) is

Prπj ,πk

[
πj(i) = µ(πbk(µ

−1(i)))
]

which equals 1/n by fixing πk, letting v = µ(πbk(µ
−1(i))), and using Prπj [πj(i)=v] = 1/n.

2. If σi(2j) = 2j, then the corresponding factor in the l.h.s of Eq. (12) is

Prπj
[
πj(i) = µ(πj(µ

−1(i)))
]

which is at most 1/(n − 1) since µ(i) 6= i; specifically, fixing the value of πj(µ
−1(i)), and

denoting this value by v, leaves πj(i) uniformly distributed in [n] \ {v}, which means that
Prπj [πj(i)=µ(v)|v = πj(µ

−1(i))] ≤ 1/(n− 1) (where equality holds if µ(v) 6= v).

3. If σi(2j) = 2j − 1, then the corresponding factor in the l.h.s of Eq. (12) is

Prπj

[
πj(i) = µ(π−1

j (µ−1(i)))
]

which is less than 2/n. In this case, we consider two sub-cases depending on whether or
not πj(i) = µ−1(i), while noting that the first case occurs with probability 1/n whereas
Prπj [πj(i) = µ(π−1

j (µ−1(i)))|πj(i) 6= µ−1(i)] ≤ 1/(n− 1).

Hence, each of the factors in the l.h.s of Eq. (12) is upper-bounded by 2/n, and the claim follows.

The general case. The same argument generalizes to a set I ⊆ T such that I ∩ µ(I) = ∅. In such a
case we get

Prπ
[
(∀i∈I) (∃σi∈Sym2d) (∀j∈ [2d]) gj(i) = µ(gσi(j)(µ

−1(i)))
]

= (2d)!|I| · max
σ1,...,σn

{
Prπ

[
(∀i∈I) (∀j∈ [2d]) gj(i) = µ(gσi(j)(µ

−1(i)))
]}

(13)

accounting for their small dependency. On the other hand, we can obtain higher robustness parameter by considering
smaller sets Ji’s (say of size d/4), which suffice for counting vertices that contribute (say) d/4 units to the difference
between Gπ and µ(Gπ).
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Claim 6.1.2 (actual analysis): Eq. (13) is upper-bounded by

(2d)2d·|I| · (2/(n− 2(|I| − 1)))|I|·d/3. (14)

Proof: For every i ∈ I = {i1, ..., im}, we fixed a set Ji of size at least d/3 such that the multi-sets
{j, dσi(2j)/2e}’s are disjoint, and upper-bound Eq. (13) by

(2d)!m ·
∏

k∈[m]

∏
j∈Jik

Prπ1,...,π2d

[
g2j(ik) = µ(gσik(2j)

(µ−1(ik))) |Ej,k(π1, ...., π2d)
]

= (2d)!m ·
∏

k∈[m]

∏
j∈Jik

Prπ1,...,π2d

[
πj(ik) = µ(π

σ′′ik
(2j)

σ′ik
(2j)

(µ−1(ik))) |Ej,k(π1, ...., π2d)

]
(15)

where σ′i(2j)
def
= dσi(2j)/2e, and σ′′i (2j)

def
= (−1)σi(2j) mod 2, whereas Ej,k(π1, ..., π2d) is an event that

depends only on the value of πj and π
σ′′ik

(2j)

σ′ik
(2j)

on the points i1, ..., ik−1 and µ−1(i1), ..., µ−1(ik−1),

respectively. Specifically, Ej,k(π1, ..., π2d) is the event

(∀k′∈ [k − 1]) g2j(ik′) = µ(gσik′(2j)
(µ−1(ik′)))

which can be written as

(∀k′∈ [k − 1]) πj(ik′) = µ(π
σ′′ik′

(2j)

σ′ik′
(2j)

(µ−1(ik′))).

Now, when analyzing the foregoing conditional probability in Eq. (15), we consider two cases. If
j 6= σ′ik(2j), then we fix the value of each of these two permutations (i.e., πj and πσ′ik(2j)

) on the

corresponding k − 1 points that occur in the condition Ej,k, and the value of these permutations
on the kth points (i.e., ik and µ−1(ik)) is restricted accordingly (i.e., to the remaining n− (k − 1)
values). Otherwise (i.e., j = σ′ik(2j)), we fix the value of πj on these 2(k − 1) points. Hence, the
argument in the warm-up analysis applies with n replaces by either n− (k − 1) or n− 2(k − 1). It
follows that Eq. (15) is upper-bounded by

(2d)!m ·
∏

k∈[m]

(2/(2− 2(m− 1)))|Jik |.

Using |Jik | ≥ d/3 for every k ∈ [m], the claim follows.

Recall that Eq. (14) refers to a fixed set I ⊆ T such that I ∩µ(I) = ∅, and that it constitutes an
upper bound on the probability (over the choice of π) that, for each i ∈ I there exists a permutation
σi : [2d] → [2d] such that gj(i) = µ(gσi(j)(µ

−1(i))) holds for all j ∈ [2d]. This upper bound (i.e.,

(2d)2d·|I| · (2/(n− 2(|I| − 1)))|I|·d/3) simplifies to (2d)2d·|I| · (6/n)|I|·d/3, provided that |I| ≤ n/3.

Recalling that t
def
= |T | ∈ [n], we shall upper-bound the probability (over the choice of π) that

T contains a dt/2e-subset T ′ such that for each i ∈ T ′ there exists a permutation σi : [2d] → [2d]
such that gj(i) = µ(gσi(j)(µ

−1(i))) holds for all j ∈ [2d]. We do so by taking a union bound over all
dt/6e-subsets I such that I ∩µ(I) = ∅ and for each i ∈ I there exists a permutation σi : [2d]→ [2d]
such that gj(i) = µ(gσi(j)(µ

−1(i))) holds for all j ∈ [2d]. (Note that such a dt/6e-subset I exists in
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each dt/2e-subset T ′, and that dt/6e < n/3.) Using the aforementioned simplified form of Eq. (14),
we conclude that, with probability at most(

t

dt/6e

)
· (2d)2d·dt/6e · (6/n)dt/6e·d/3 < 2t · (6 · (2d)6/n)dt/6e·d/3 = exp(−Ω(dt log n))

over the choice of π, the set T contains no dt/6e-subset I as above. This means that, with probability
at most exp(−Ω(dt log n)), less than t/2 of the indices i ∈ T contribute a non-zero number of units
to the difference (between Gπ and µ(Gπ)).

Letting c′ = 1/2 and considering all (non-trivial) permutations µ : [n]→ [n], we conclude that
the probability, over the choice of π, that Gπ is not c′-robustly self-ordered is at most∑

t∈[n]

(
n

t

)
· exp(−Ω(dt log n)) =

∑
t∈[n]

exp(−Ω((d−O(1)) · t log n))

= exp(−Ω((d−O(1)) · log n)),

and the claim follows for the permutation model (and for any sufficiently large d).
As stated upfront, using the general result of [24, Thm. 1.3], we infer that a uniformly dis-

tributed 2d-regular n-vertex multi-graph fails to be c′-robustly self-ordered with probability o(1).
Lastly, recalling that such a 2d-regular multi-graph is actually a simple graph with probability
exp(−((2d)2 − 1)/4), the theorem follows.

Digest. The proof of Theorem 6.1 is quite similar to the proof Claim 4.1.1, but it faces two
complications that were avoided in the prior proof (by using edge-colors and implicitly directed
edges). Most importantly, the current proof has to handle equality between multi-sets instead of
equality between sequences. This is done by considering all possible ordering of these multi-sets,
which amounts to taking a union bound over all possible ordering and results in more complicated
analysis and notation. (Specifically, see the introduction of σi’s and Ji’s and the three cases analyzed
in the warm-up.) In addition, since edges are defined by permutations over the vertex-set rather
than by perfect matching, we have to consider both the forward and backward direction of each
permutation, which results in further complicating the analysis and the notation. (Specifically, see
the introduction of σ′i’s and σ′′i ’s and the three cases analyzed in the warm-up.)

An alternative proof of Theorem 4.2. We mention that combining an extension of Theo-
rem 6.1 with some of the ideas underlying the proof of Theorem 4.2 yields an alternative proof of
Theorem 4.2 (i.e., an alternative construction of robustly self-ordered bounded-degree graphs).

Remark 6.2 (an alternative construction of d-regular robustly self-ordered graphs): On input 1n,

we set ` = O(logn)
log logn , and proceeds in three steps.

1. Extending the proof of Theorem 6.1, we show that for all sufficiently large constant d, for any
set G of t = t(`) < n = `Ω(`) (2d-regular) `-vertex graphs, with probability 1− o(1), a random
2d-regular `-vertex graph is both robustly self-ordered and far from being isomorphic to any
graph in G. Note that, with probability 1− o(1), such a graph is also expanding.

Here two `-vertex graphs are said to be far apart if they disagree on Ω(`) vertex-pairs.
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The proof of Theorem 6.1 is extended by considering, for a random graph, the event that it is
either not robustly self-ordered or is not far from an isomorphic copy of one of the t (fixed)
graphs. The later event (i.e., being close to isomorphic to one of these graphs) occurs with
probability o(t/n).

2. Relying on Step 1, we find a sequence of n/` robustly self-ordered 2d-regular `-vertex graphs
that are expanding and pairwise far from being isomorphic to one another.

This is done by iteratively finding robustly self-ordered 2d-regular `-vertex expanding graphs
that are far from being isomorphic to all prior ones, where scanning all possible graphs and
checking the condition can be done in time n · `d`/2 · (`!) = poly(n).

3. Using the sequence of n/` graphs found in Step 2, we consider the n-vertex graph that consists
of these `-vertex graphs as its connected components, and use parts of the proof of Theorem 4.2
to show that this graph is robustly self-ordered. Specifically, we only need to consider cases that
are analogous to Cases 2, 6 and 7. The treatment of the analogous cases is slightly simpler
than in the proof of Theorem 4.2, since the graphs are somewhat simpler.

Note that the resulting graphs are not locally constructable.

Part II

The Case of Dense Graphs

Recall that when considering graphs of unbounded degree, we ask whether we can obtain unbounded
robustness parameters. In particular, we are interested in n-vertex graphs that are Ω(n)-robustly
self-ordered, which means that they must have Ω(n2) edges.

In Section 7 we prove the existence of Ω(n)-robustly self-ordered n-vertex graphs, and show that
they imply Ω(1)-robustly self-ordered bounded-degree O(n2)-vertex graphs. In Section 8, we review
the notion of a non-malleable two-source extractor and show that a construction of a natural type
of such extractors (with rather mild parameters) yields a construction of Ω(n)-robustly self-ordered
n-vertex graphs. In Section 9, we introduce the notion of relocation-detecting codes, construct such
codes, and show that they yield the desired construction of non-malleable two-source extractors.

In Section 10 we demonstrate the applicability of Ω(n)-robustly self-ordered n-vertex graphs to
property testing; specifically, to proving lower bounds (on the query complexity) for the dense graph
testing model. Lastly, in Section 11, we consider the construction of Ω(d(n))-robustly self-ordered
n-vertex graphs of maximum degree d(n), for every d : N→ N such that d(n) ∈ [Ω(1), n].

7 Existence and Transformation to Bounded-Degree Graphs

It seems easier to prove that random n-vertex graphs are Ω(n)-robustly self-ordered (see Propo-
sition 7.1) than to prove that random bounded-degree graphs are Ω(1)-robustly self-ordered (or
even just prove that such bounded-degree graphs exist). In contract, it seems harder to construct
Ω(n)-robustly self-ordered n-vertex graphs than to construct Ω(1)-robustly self-ordered bounded-
degree graphs. In particular, we show that Ω(n)-robustly self-ordered n-vertex graphs can be
easily transformed into O(n2)-vertex bounded-degree graphs that are Ω(1)-robustly self-ordered
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(see Proposition 7.2). We stress that the resulting construction of robustly self-ordered bounded-
degree graphs, which is obtained by combining Sections 8 and 9, is entirely different from the
constructions presented in the first part of the paper.

Random graphs are robustly self-ordered. We first show that, with very high probability,
a random n-vertex graph Gn = ([n], En), where En is a uniformly distributed subset of

(
[n]
2

)
, is

Ω(n)-robustly self-ordered.

Proposition 7.1 (robustness analysis of a random graph): A random n-vertex graph Gn = ([n], En)
is Ω(n)-robustly self-ordered with probability 1− exp(−Ω(n)).

As stated above, the following proof is significantly easier than the proof provided for the bounded-
degree analogue (i.e., Theorem 6.1).

Proof: For each (non-trivial) permutation µ : [n]→ [n], letting T
def
= {i∈ [n] :µ(i) 6= i} denote its

(non-empty) set of non-fixed-points, we show that, with probability 1−exp(−Ω(n · |T |)), the size of
the symmetric different between a random n-vertex graph Gn = ([n], En) and µ(Gn) is Ω(n · |T |).

For every u, v ∈ [n] such that u < v, let χu,v = χµu,v(Gn) represent the event that the pair
(µ(u), µ(v)) contributes to the symmetric difference between Gn and µ(Gn); that is, χu,v = 1 if
exactly one of the edges {µ(u), µ(v)} and {u, v} is in Gn, since {u, v} is an edge of Gn if and only
if {µ(u), µ(v)} is an edge of µ(Gn). We shall prove that

PrGn

 ∑
u<v∈[n]

χµu,v(Gn) <
n · |T |

20

 = exp(−Ω(n · |T |)). (16)

We prove Eq. (16) by using a d|T |/3e-subset I ⊆ T such that I∩µ(I) = ∅. Let T ′ = T \(I∪µ−1(I)),
which implies T ′ ∩ I = ∅ and µ(T ′) ∩ I = ∅. Let J = ([n] \ T ) ∪ T ′, and note that |J | =
n−|T |+ (|T |−2 · d|T |/3e) ≥ n− (2|T |/3)−2 ≥ (n/3)−2. Observe that, for every (u, v) ∈ J × I, it
holds that u 6= v and Pr[χu,v=1] = 1/2, where the equality is due to {u, v} 6= {µ(u), µ(v)}, which
holds since (u, v)∈J×I but µ(u), µ(v) ∈ [n]\I. Furthermore, the events the correspond to the pairs
in J×I are independent, because the sets {{u, v} : (u, v)∈J×I} and {{µ(u), µ(v)} : (u, v)∈J×I} are
disjoint; that is, (u, v) ∈ J× I implies (µ(u), µ(v)) ∈ ([n]\ I)× ([n]\ I). Hence (using n ≤ 3(|J |+2)
and |T | ≤ 3|I| (as well as 3(|J |+ 2) · 3|I| < 9.9 · |J | · |I|)), the l.h.s. of Eq. (16) is upper-bounded by

PrGn

 ∑
(u,v)∈J×I

χµu,v(Gn) <
3(|J |+ 2) · 3|I|

20

 ≤ PrGn

 ∑
(u,v)∈J×I

χµu,v(Gn) <
0.99 · |J | · |I|

2


= exp(−Ω(|J | · |I|))

which is exp(−Ω(n · |T |)). Having established Eq. (16), the claim follows by a union bound (over
all non-trivial permutations µ : [n]→ [n]); specifically, denoting the set of non-trivial permutations
by Pn, we upper-bound the probability that Gn is not n

20 -robust by∑
µ∈Pn

PrGn [µ violates the condition in Eq. (16)]

≤
∑
t∈[n]

(
n

t

)
· (t!) · exp(−Ω(n · t))
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< n ·max
t∈[n]
{nt · exp(−Ω(n · t))}

= exp(−Ω(n))

where t represents the size of the set of non-fixed-points (w.r.t µ).

Obtaining bounded-degree robustly self-ordered graphs. We next show how to transform
Ω(n)-robustly self-ordered n-vertex graphs to O(n2)-vertex bounded-degree graphs that are Ω(1)-
robustly self-ordered. Essentially, we show that the standard “degree reduction via expanders”
technique works (when using a different color for the expanders’ edges, and then using gadgets to
replace colored edges). Specifically, we replace each vertex in Gn = ([n], En) by an (n − 1)-vertex
expander graph and connect each of these vertices to at most one vertex in a different expander,
while coloring the edges of the expanders with 1, and coloring the other edges by 2. Actually, the
vertex v is replaced by the vertex-set Cv = {〈v, u〉 : u∈ [n] \ {v}} and in addition to the edges of
the expander, colored 1, we connect each vertex 〈v, u〉 ∈ Cv to the vertex 〈u, v〉 ∈ Cu and color this
edge 2 if {u, v} ∈ En and 0 otherwise.34 This yields an n·(n−1)-vertex O(1)-regular graph, denoted
G′n, coupled with an edge-coloring, denoted χ′, which uses three colors. Using the hypothesis that
Gn is Ω(n)-robustly self-ordered, we prove that (G′n, χ

′) is Ω(1)-robustly self-ordered (in the colored
sense).

Proposition 7.2 (robustness analysis of the degree reduction): If Gn is Ω(n)-robustly self-ordered,
then (G′n, χ

′) is Ω(1)-robustly self-ordered (in the colored sense of Definition 2.1).

Using Theorem 2.4 (after adding self-loops), we obtain a O(1)-regular O(n2)-vertex graph that is
Ω(1)-robustly self-ordered (in the standard sense).

Proof: Denoting the vertex-set of G′n by V =
⋃
v∈[n]Cv, we consider an arbitrary (non-trivial)

permutation µ′ : V → V , and the corresponding set of non-fixed-points T ′. Intuitively, if µ′ maps
vertices of Cv to several Cw’s, then we get a proportional contribution to the difference between G′n
and µ′(G′n) by the (1-colored) edges of the expander. Otherwise, µ′ induces a permutation µ over
the vertices of Gn, and we get a corresponding contribution via the (2-colored) edges of Gn. Lastly,
non-identity mapping inside the individual Cv’s are charged using the (0-colored and 2-colored)
edges that connect different Cv’s. Details follow.

For a permutation µ′ : V → V as above, let µ : [n]→ [n] be a permutation that maximizes the
(average over v ∈ [n] of the) number of vertices in Cv that are mapped by µ′ to vertices in Cµ(v);
that is, for every permutation ν : [n]→ [n], it holds that∣∣{〈v, u〉∈V : µ′(〈v, u〉) ∈ Cµ(v)

}∣∣ ≥ ∣∣{〈v, u〉∈V : µ′(〈v, u〉) ∈ Cν(v)

}∣∣ . (17)

We consider the following three cases.

Case 1:
∑

v∈[n] |Bv| = Ω(|T ′|), where Bv
def
= {〈v, u〉∈Cv : µ′(〈v, u〉) 6∈ Cµ(v)}.

(This refers to the case that many vertices are mapped by µ′ to an expander that is different
from the one designated by µ, which represents the best possible mapping of whole expanders.)

34This is equivalent to first converting Gn into a n-vertex clique while coloring an edge 2 if and only if it is in En.
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Letting Cv,w
def
= {〈v, u〉 : µ′(〈v, u〉) ∈ Cw}, we first observe that for every v it holds that

maxw 6=µ(v){|Cv,w|} ≤ 2
3 ·(n−1), because otherwise we reach a contradiction to the maximality

of µ by defining ν(v) = w and ν(µ−1(w)) = µ(v), where w is the element obtaining the
maximum, and ν(x) = µ(x) otherwise.

Next, observe that there exists Wv ⊆ [n] \ {µ(v)} such that B′v =
⋃
w∈Wv

Cv,w satisfies both

|B′v| ≤ 2
3 ·(n−1) and |B′v| ≥ |Bv|/3. Now, consider the sets B′v and Cv \B′v: On the one hand,

in µ′(G′n) there are Ω(|B′v|) 1-colored edges connecting µ′(B′v) and µ′(Cv \ B′v), due to the
subgraph of µ′(G′n) induced by µ′(Cv) which equals subgraph of G′n induced by Cv (which, in
turn, is an expander). On the other hand, in G′n there are no 1-colored edges between µ′(B′v)
and µ′(Cv \B′v), since µ′(B′v) ⊆

⋃
w∈Wv

Cw and µ′(Cv \B′v) ⊆
⋃
w∈[n]\Wv

Cw.

We conclude that, in this case, the difference between G′n and µ′(Gn) is
∑

v Ω(|B′v|) =∑
v Ω(|Bv|) = Ω(|T ′|).

Case 2:
∑

v∈[n]:µ(v)6=v |C ′v| = Ω(|T ′|), where C ′v
def
= {〈v, u〉∈Cv : µ′(〈v, u〉) ∈ Cµ(v)}.

(This refers to the case that many vertices are mapped by µ′ to an expander that is designated
by µ, but this expander is not the one in which they reside (i.e., µ has many non-fixed-points).)

Letting γ > 0 be a constant such that Gn is γ · n-robustly self-ordered, we may assume that∑
v∈[n]:µ(v)6=v |C ′v| ≥ (1− 0.5 · γ) ·

∑
v∈[n]:µ(v)6=v |Cv|, since otherwise we are done by Case 1.

By the γn-robust self-ordering of Gn, the difference between Gn and µ(Gn) is at least ∆
def
=

γn · |{v ∈ [n] : µ(v) 6= v}|. Assuming, for a moment, that µ′(Cv) = Cv for every v such that
µ(v) 6= v, the difference between G′n and µ′(G′n) is ∆, where the difference is due to edges
colored 2 (i.e., the edges inherited from Gn). This amount is prorotional to the number of
vertices in the current case, since

∆ =
γn

n− 1
·
∑

v:µ(v)6=v

|Cv| > γ ·
∑

v:µ(v)6=v

|Cv|.

In general, µ′(Cv) = Cv may not hold for some v, and in this case we may loss the contribution
of the 2-colored edges incident at vertices in

⋃
v∈[n]:µ(v)6=v(Cv \ C ′v). Recalling that (by our

hypothesis) the size of this set is at most 0.5 ·γ ·
∑

v:µ(v) 6=v |Cv|, we are left with a contribution

of at least 0.5γ ·
∑

v:µ(v)6=v |C ′v|.

We conclude that, in this case, the difference between G′n and µ′(Gn) is Ω(
∑

v:µ(v)6=v |C ′v|) =

Ω(|T ′|).

Case 3:
∑

v∈[n] |C ′′v | = Ω(|T ′|), where C ′′v
def
= {〈v, u〉∈Cv : µ′(〈v, u〉) ∈ Cv \ {〈v, u〉}}.

(This refers to the case that many vertices are mapped by µ′ to a different vertex in the same
expander in which they reside.)35

(This case would have been easy to handle if the expanders used on the Cv’s were robustly
self-ordered. Needless to say, we want to avoid such an assumption. Instead, we rely on the
fact that in G′n different vertices in Cv are connected to different Cu’s.)

35Note that if 〈v, u〉 ∈ Cv is not mapped by µ′ to Cv, then either µ′(〈v, u〉) 6∈ Cµ(v) holds (i.e., Case 1) or
µ′(〈v, u〉) ∈ Cµ(v) such that µ(v) 6= v (i.e., Case 2). Hence, if 〈u, v〉 ∈ T ′ is not counted in Cases 1 and 2, then it must
be counted in Case 3.
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We may assume that
∑

v∈[n] |C ′′v | ≥ 2 ·
∑

v∈[n] |{〈v, u〉∈Cv : µ′(〈v, u〉) 6∈ Cv}|, since otherwise

we are done by either Case 1 or Case 2. Now, consider a generic 〈v, u〉 ∈ C ′′v , and let w 6= u
be such that µ′(〈v, u〉) = 〈v, w〉. Then, in µ′(G′n) an edge colored either 0 or 2 connects
〈v, w〉 = µ′(〈v, u〉) to µ′(〈u, v〉), since 〈v, u〉 and 〈u, v〉 are so connected in G′n, whereas in G′n
an (even-colored) edge connects 〈v, w〉 to 〈w, v〉 ∈ Cw. We consider two sub-cases.

• If µ′(〈u, v〉) ∈ Cu, then 〈v, w〉 contributes to the difference between µ′(G′n) and G′n,
because in µ′(G′n) vertex 〈v, w〉 is connected (by its even-colored edge) to a vertex in Cu
whereas in G′n vertex 〈v, w〉 is connected (by its even-colored edge) to a vertex in Cw.

(Recall that w is uniquely determined by 〈v, u〉 ∈ C ′′n, since µ′(〈v, u〉) = 〈v, w〉, and so
this contribution can be charged to 〈v, u〉.)

• If µ′(〈u, v〉) 6∈ Cu, then 〈u, v〉 contributes to the set
⋃
x∈[n]{〈x, y〉∈Cx : µ′(〈x, y〉) 6∈ Cx},

which (by the hypothesis) has size at most 0.5 ·
∑

v∈[n] |C ′′v |

Hence, at least half of
⋃
v∈[n]C

′′
v appears in the first sub-case, which implies that, in this case,

the difference between G′n and µ′(Gn) is at least 1
2 ·
∑

v∈[n] |C ′′v | = Ω(|T ′|).

Hence, the difference between G′n and µ′(Gn) is Ω(|T ′|).

8 Relation to Non-Malleable Two-Source Extractors

For n = 2`, we relate Ω(n)-robustly self-ordered (dense) n-vertex graphs to a notion of a non-
malleable two-source extractor for (`, `−O(1))-sources. Recall that a random variable X is called
an (`, k)-source if X is distributed over [2`] and has min-entropy at least k (i.e., Pr[X = i] ≤ 2−k

for every i ∈ [2`]).36 A function E : [2`] × [2`] → {0, 1}m is called a (standard) two-source (k, ε)-
extractor if, for every two independent (`, k)-sources X and Y , it holds that E(X,Y ) is ε-close to the
uniform distribution over {0, 1}m, denoted Um. Our notion of a non-malleable two-source extractor,
presented next, is a restricted case of the notions considered in [8, 7].37

Definition 8.1 (non-malleable two-source extractors): A function nmE : [2`] × [2`] → {0, 1}m is
called a non-malleable two-source (k, ε)-extractor if, for every two independent (`, k)-sources X and
Y , and for every two functions f, g : [2`]→ [2`] that have no fixed-point (i.e., f(z) 6= z and g(z) 6= z
for every z ∈ [2`]), it holds that (nmE(X,Y ), nmE(f(X), g(Y ))) is ε-close to (Um, nmE(f(X), g(Y ));
that is,

1

2
·
∑
α,β

∣∣Pr[(nmE(X,Y ), nmE(f(X), g(Y )))=(α, β)]− 2−m · Pr[nmE(f(X), g(Y ))=β]
∣∣ ≤ ε. (18)

The parameter ε is called the error of the extractor.

36Indeed, we do not require that ` ∈ N, but rather only that 2` ∈ N; consequently, we consider distributions over
[2`] rather than over {0, 1}`.

37In particular, in [8, 7] it is only required that one of the two functions f, g : [2`]→ [2`] has no fixed-points. Our
reduction (from robust self-ordering) works in that case, but our construction requires that f has no fixed-points (see
Section 9.1). There seems to be no concrete reason to prefer one of these three variants over the others. We mention
that Definition 8.1 is strictly weaker than the definition of [8] (even in its simplified form [7, Def. 1.3]; see Appendix).
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We shall be interested in the special case in which f and g are permutations. In this case, the
foregoing condition (i.e., Eq. (18)) can be replaced by requiring that (nmE(X,Y ), nmE(f(X), g(Y ))) is
2ε-close to the uniform distribution over {0, 1}m+m.38 Furthermore, we shall focus on non-malleable
two-source (k, ε)-extractors that output a single bit (i.e., m = 1), and in this case non-triviality
mandates ε < 0.5. In general, we view ε as a constant, but view ` and k as varying (or generic)
parameters.

We shall show that any non-malleable two-source (` − O(1), 0.49)-extractor (for sources over
[2`]) yields Ω(2`)-robustly self-ordered O(2`)-vertex graphs. Actually, we need the extractor to
be “nice” in the following natural (and quite minimal) sense. We say that such an extractor
nmE : [2`]× [2`]→ {0, 1} is nice (with error ε) if the following conditions hold:

1. The residual function obtained from nmE by any fixing of one of its two arguments is almost
unbiased: For every x ∈ [2`] and every σ ∈ {0, 1} it holds that |{y ∈ [2`] : nmE(x, y) = σ}| ≤
(0.5 + ε) · 2`; ditto for every y ∈ [2`] and the corresponding set {x∈ [2`] : nmE(x, y)=σ]}.

2. The residual functions obtained from nmE by any two different fixings of one of its two

arguments are almost uncorrelated: For every {x, x′} ∈
(

[2`]
2

)
it holds that |{y ∈ [2`] :

nmE(x, y) 6= nmE(x′, y)}| ≥ (0.5 − ε) · 2`; ditto for every {y, y′} ∈
(

[2`]
2

)
and the corresponding

set {x∈ [2`] : nmE(x, y) 6=nmE(x, y′)]}.

We mention that any non-malleable two-source (k, ε)-extractor can be transformed (in poly(2`)-
time) into a nice one at a small degradation in the parameters (i.e., ε increases by an additive
term of O(2−k) = o(1) and ` decreases by an additive term of O(2−`+k) ≤ 2−O(1)).39 Note that
poly(2`)-time is acceptable when one aims at constructing O(2`)-vertex graphs; however, aiming at
strong/local constructability (as in Theorem 1.4), we better avoid such a transformation.

Using any nice non-malleable two-source extractor, we obtain a Ω(2`)-robustly self-ordered 2`+1-
vertex graph by constructing a bipartite graph, with 2` vertices on each side, such that the edges
between the two sides are determined by the extractor. In addition, we add a clique on one of
the two sides so that the two sides are (robustly) distinguishable. We stress that the resulting
2`+1-vertex graph is Ω(2`)-robustly self-ordered as long as the non-malleable extractor is nice and
works for very mild parameters; that is, we only require error that is bounded away from 1/2 with
respect to min-entropy `−O(1).

Theorem 8.2 (using a non-malleable two-source extractor to obtain a Ω(2`)-robustly self-ordered
O(2`)-vertex graph): For a constant ε ∈ (0, 0.5) varying ` ≥ k such that k ≤ `− 2 + log2(0.5− ε) =
`−O(1), suppose that nmE : [2`]× [2`]→ {0, 1} is a nice non-malleable two-source (k, ε)-extractor.
Then, the 2`+1-vertex graph G = (V1 ∪ V0, E) such that Vσ = {〈σ, i〉 : i∈ [2`]} and

E = {{〈1, i〉, 〈0, j〉} : nmE(i, j) = 1} ∪
(
V1

2

)
(19)

38In this case, f(X) and g(Y ) have min-entropy at least k, which implies that nmE(f(X), g(Y )) is ε-close to the
uniform distribution over {0, 1}m.

39First note that the number of x’s that violate the first condition is at most 2k+1, because otherwise we obtain
a contradiction to the hypothesis that nmE is a two-source (k, ε)-extractor. Next, consider the residual extractor
nmE′ : [n]× [n]→ {0, 1}, where n ≥ 2`−2k+1, obtained by omitting the exceptional x’s. Likewise, we claim that there
are at most 2k disjoint pairs {x, x′}’s that violate the second condition, because otherwise we obtain a contradiction
to the hypothesis that nmE is a non-malleable two-source (k, ε)-extractor (by using a function that maps each such x
to its matched x′). Finally, consider a residual extractor obtained by omitting the exceptional pairs.
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is Ω(|V1 ∪ V0|)-robustly self-ordered. Furthermore, the claim holds even if the non-malleability
condition (i.e., Eq. (18)) holds only for permutations f and g.

Indeed, the first set of edges, denoted E′, corresponds to a bipartite graph between V1 and V0 that
is determined by nmE, and the second set corresponds to a 2`-vertex clique. Note that the extraction
parameters are extremely weak; that is, the min-entropy may be very high (i.e., k = ` − O(1)),
the error may be an arbitrary non-trivial constant (i.e., ε < 1/2), and we only extract one bit (i.e.,
m = 1).

Proof: Let V = V1 ∪ V0, and consider an arbitrary (non-trivial) permutation µ : V → V .
Intuitively, if µ maps a vertex of V1 to V0, then the difference in degrees of vertices in the two
sets (caused by the clique edges) contribute ((2` − 1)− 2ε · 2`)/2 units to the symmetric difference
between G and µ(G), where here we use the first niceness condition. On the other hand, if µ
maps 〈1, i〉 ∈ V1 to V1 \ {〈1, i〉}, then the difference in the neighborhoods caused by the bipartite
graph contribute (0.5− ε) · 2` units to the symmetric difference between G and µ(G). Actually, we
distinguishes between the case that µ has relatively few non-fixed-points, which is analyzed using
the second niceness condition, and the case that µ has relatively many non-fixed-points, which is
analyzed using the non-malleability condition. Details follow.

Let T = {v∈V :µ(v) 6= v} denote the set of non-fixed-points of µ. Then, we consider two types
of vertices: Those that belong to the set T ′ =

⋃
σ∈{0,1}{v∈Vσ :µ(v) 6∈ Vσ} ⊆ T and those that do

not belong to T ′.

Case 1: |T ′| ≥ (0.5− ε) · 2`−2.

(This refers to the case that many vertices are mapped by µ to the opposite side of the
bipartite graph (V,E′), where ‘many’ means Ω(|V |).)
Each vertex in T ′ contributes (1−2ε) ·2`−1 units to the symmetric difference between G and
µ(G), because the degree of each vertex in V1 is at least (2` − 1) + (0.5− ε) · 2`, whereas the
degree of each vertex in V0 is at most (0.5 + ε) · 2`, where we use the first niceness condition,
which implies that the number of bipartite edges incident at each vertex is at least (0.5−ε) ·2`
and at most (0.5 + ε) · 2`.
Hence, the difference between G and µ(G) is at least ((1 − 2ε) · 2` − 1) · |T ′| = Ω(|V |) · |T ′|,
since 2` = Ω(|V |). Using the case’s hypothesis, we have |T ′| = Ω(2`) = Ω(|T |), which means
that in this case the difference between G and µ(G) is Ω(|V |) · |T |.
We stress that the difference between G and µ(G) is at least Ω(|V |) · |T ′| also if the case
hypothesis does not hold.

Case 2: |T ′| < (0.5− ε) · 2`−2.

(This refers to the case that few vertices are mapped by µ to the opposite side of the bipartite
graph (V,E′), where ‘few’ means less than |V |/16.)

For every σ ∈ {0, 1}, let V ′σ = Vσ ∩ µ(Vσ) and Tσ = V ′σ ∩ T . Indeed, (T ′, T0, T1) is a three-
way partition of T . Note that the size of the symmetric difference between G and µ(G) is
lower-bounded by ∣∣{(v, u) ∈ V ′1 × V ′0 : nmE(µ(v), µ(u)) 6= nmE(v, u)}

∣∣ , (20)
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since, for any (v, u) ∈ V ′1 × V ′0 , it holds that µ(v) neighbors µ(u) in G if and only if
nmE(µ(v), µ(u)) = 1, whereas µ(v) neighbors µ(u) in µ(G) if and only if v neighbors u in
G which holds if and only if nmE(v, u) = 1.

We consider two sub-cases according to whether or not min(|T0|, |T1|) is relatively large.

Case 2.1: min(|T0|, |T1|) < (0.5− ε) · 2`−2.

Suppose, without loss of generality, that |T0| ≤ |T1|, which implies |T0| < (0.5− ε) · 2`−2.
Then, the contribution of each vertex v ∈ T1 to Eq. (20) equals

|{u ∈ V ′0 : nmE(µ(v), µ(u)) 6= nmE(v, u)}|
≥ |{u ∈ V ′0 : nmE(µ(v), u) 6= nmE(v, u)}| − |T0|
≥ |{u ∈ V0 : nmE(µ(v), u) 6= nmE(v, u)}| − |T ′| − |T0|
≥ (0.5− ε) · 2` − 2 · (0.5− ε) · 2`−2

where the first inequality uses µ(u) = u for u ∈ V ′0 \ T0, the second inequality uses
|V ′0 | ≥ |V0|−|T ′|, and the third inequality uses µ(v) 6= v along with the (second condition
of) niceness of nmE (and the hypotheses regarding |T ′| and |T0|).
Hence, in this case, the total contribution to Eq. (20) is (0.5 − ε) · 2`−1 · |T1|, which is
Ω(|V |) · (|T | − |T ′|), since |T1| ≥ (|T | − |T ′|)/2.

Case 2.2: min(|T0|, |T1|) ≥ (0.5− ε) · 2`−2.

In this case we shall use the non-malleable feature of nmE.

Specifically, for each σ ∈ {0, 1}, let µσ denote the restriction of µ to Tσ. Essentially,
assuming that 2k ≤ (0.5− ε) · 2`−2, the non-malleability condition of nmE implies

|{(i, j) ∈ T0 × T1 : nmE(i, j) 6= nmE(µ0(i), µ1(j))}| ≥ (0.5− ε) · |T0| · |T1|.

This can be seen by letting X and Y be uniform over T0 and T1, respectively, and
combining the fact that Pr[nmE(µ0(X), µ1(Y )) 6= U1] = 0.5 with the non-malleability
condition (while noting that µ0 : T0 → µ(T0) and µ1 : T1 → µ(T1) have no fixed-
points).40

Hence, in this case, the total contribution to Eq. (20) is (0.5 − ε) · |T0| · |T1| = Ω(|V |) ·
(|T | − |T ′|). where we use min(|T0|, |T1|) = Ω(|V |).

Hence, in both sub-cases, the difference between G and µ(G) is Ω(|V |) · (|T | − |T ′|).

Recall that (by the last comment at Case 1) the difference between G and µ(G) is Ω(|V |) · |T ′|.
Combining this lower-bound with the conclusion of Case 2, the difference between G and µ(G) is
Ω(|V |) · |T |.

40Formally, we should extend µ0 and µ1 to (arbitrary) derangements f and g, respectively. (Note that we may as-
sume, w.l.o.g., that |Tσ∪µ(Tσ)| ≤ |Vσ|−2.) Lastly, note that Eq. (18) implies that Pr[nmE(X,Y ) 6= nmE(f(X), g(Y ))] ≥
Pr[U1 6= nmE(f(X), g(Y ))]− ε = 0.5− ε.
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Digest: Note that the niceness of nmE was used in Cases 1 and 2.1, whereas the non-malleability
of nmE (w.r.t derangements) was used in Case 2.2. In particular, Case 1 only uses the first condition
of niceness, and does so in order to infer that the degrees of all vertices in the bipartite graph are
approximately equal. In Case 2.1 the second niceness condition is used in order to assert that the
neighborhoods of two different vertices in Vσ are significantly different. This is useful only when
the number of non-fixed-points is relatively small. When the number of non-fixed-points is large
but no vertex is mapped to the other side (i.e., T ′ = ∅), we only use Case 2.2, which does not refer
to niceness at all. Hence, we have the following –

Remark 8.3 (a special case of Theorem 8.2): For bipartite graphs G = (V,E) such that V = V0∪V1

and E ⊆ V0×V1, we consider the special case of robust self-ordering that refers only to permutations
µ : V → V that are derangements that preserve the bipartition of V (i.e., µ has no fixed-points and
µ(V0) = V0).41 In this case, assuming (only) that nmE is a non-malleable two-source (`, ε)-extractor
(i.e., the case of k = `), implies that, for any such µ, the size of the symmetric difference between
G and µ(G) is (0.5± ε) · |V0| · |V1|. In particular, the niceness condition is not necessary, the proof
of Theorem 8.2 simplifies since T ′ = ∅ and Tσ = Vσ = V ′σ hold, and the size of the symmetric
difference between G and µ(G) equal the quantity in Eq. (20).

Interestingly, the special case of Theorem 8.2 asserted in Remark 8.3 can be reversed in the second
that a bipartite graph that is robustly self-ordered in the foregoing restricted sense is actually a
non-malleable two-source (`, 0.5− Ω(1))-extractor.

Proposition 8.4 (a reversal of the special case of Theorem 8.2 (i.e., of Remark 8.3)): Let G =
(V0 ∪ V1, E) be a bipartite graph such that |V0| = |V1| and E ⊆ V0 × V1. Let V = V0 ∪ V1, and
suppose that for every derangement µ : V → V such that µ(V0) = V0 it holds that the size of the
symmetric difference between G and µ(G) is (0.5± ε) · |V0| · |V1|. Then, F : V0 × V1 → {0, 1} such
that F (x, y) = 1 if and only if {x, y} ∈ E is a non-malleable two-source (`, ε+

√
2ε+o(1))-extractor.

Needless to say, the claim holds also if G is augmented by complete graph on the vertex-set V1.
Note that we lose a

√
2ε+ o(1) term in the reversal.

Proof: Let (f, g) and (X,Y ) be as in Definition 8.1, and note that in this case X and Y are
independent distributions that are each uniformly distributed on [2`]. Define µ : V → V such that
µ(z) = f(z) if z ∈ V0 and µ(z) = g(z) otherwise, and note that µ is a derangement that preserves
the partition of V . Recall that (µ(x), µ(y)) contributes to the symmetric difference between G and
µ(G) if and only if F (µ(x), µ(y)) 6= F (x, y), since µ(x) is connected to µ(y) in µ(G) if and only if
x is connected to y in G. Hence, by the hypothesis, we have

Pr[F (X,Y ) 6= F (µ(X), µ(Y ))] = 0.5± ε. (21)

Letting pµσ,τ
def
= Pr[(F (X,Y ), F (µ(X), µ(Y ))) = (σ, τ)], we have pµ0,1 + pµ1,0 = 0.5 ± ε, and using the

fact that (X,Y ) and (µ(X), µ(Y )) are identically distributed we have pµ1,0 = pµ0,1 (since pµ1,1 +pµ1,0 =

pµ1,1 + pµ0,1). Hence, pµ0,1 = 0.25 ± 0.5ε. Lastly, we show that pµ1,1 + pµ1,0 = 0.5 ±
√
ε/2 + o(1), and

conclude that pµ1,1 = 0.25± (0.5ε+
√
ε/2 + o(1)); it follows that F is a non-malleable (two-source)

(`, ε+
√

2ε+ o(1))-extractor.

41That is, the requirement regarding the symmetric difference between G and µ(G) is made only for permutations
µ that have no fixed-points and satisfy µ(V0) = V0.
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To show that pµ1,1 +pµ1,0 = 0.5±
√
ε/2+o(1), we first note that p

def
= pµ1,1 +pµ1,0 = Pr[F (X,Y )=1]

is actually oblivious of µ. Hence, by considering a random derangement µ that preserves V0 (i.e.,
µ(V0) = V0), we observe that, with overwhelmingly high probability (over the choice of µ), it holds
that {(x, y)∈V0 × V1 :F (x, y) 6= F (µ(x), µ(y))} has size (2p(1− p)± o(1)) · |V0| · |V1|. Confronting
this with Eq. (21), we infer that p = 0.5± (

√
ε/2 + o(1)).

On the existence of non-malleable two-source extractors. We mention that standard two-
source extractors may not be non-malleable; for example, consider an extractor that ignores the
parity bit of each source and functions f, g that flip this bit. The inner-product (mod 2) func-
tion fails too (e.g., consider modified shift functions).42 Nevertheless, non-malleable two-source
extractors do exist, even for parameters that are much stronger than needed for obtaining robustly
self-ordered graphs (via Theorem 8.2). The former fact is proved as a special case of [8, Thm. 5.11],
which is derived using the more general [8, Thm. 5.10]. We provide a shorter proof (for our special
case) next.

Proposition 8.5 (existence of non-malleable two-source extractors): With probability at least 1−
exp
(
O(` · 2k)− Ω(ε2 · 22k−4m)

)
− exp

(
−Ω(ε2 · 2`)

)
, a random function F : [2`] × [2`] → {0, 1}m

constitutes a nice non-malleable (k, ε)-extractor.

This probability is extremely high provided that k ≥ 4m + 2 log2(`/ε). Recall that k = Ω(m +
log(`/ε)) is required also for (standard) two-source extractors.

Proof: We consider all possible pairs of (`, k)-flat sources (equiv., pairs of 2k-subsets of [2`]) and
all possible pairs of functions defined on their support (and ranging over [2`]), where the number

of (`, k)-flat sources is
(

2`

2k

)
< (2`)2k and the number of corresponding functions is (2`)2k = 2`·2

k
.

Fixing such 2k-sets S and R and functions f : R → [2`] and g : S → [2`], for every α, β ∈ {0, 1}m,
we shall upper-bound the probability that a random F violates

|{(x, y)∈R×S :F (x, y)=α&F (f(x), g(y))=β}|
= 2−m · |{(x, y)∈R×S :F (f(x), g(y))=β}| ± ε

22m

(22)

Specifically, we shall upper-bound this probability by exp(−Ω(ε2 · 22k−4m)), and the non-malleable
claim will follows by taking a union bound over all relevant (R,S) and (f, g).

Towards proving the foregoing probabilistic bound, we select a set I ⊆ R such that |I| ≥ |R|/3
and f(I) ∩ I = ∅ (resp., a set J ⊆ S such that |J | ≥ |S|/3 and f(J) ∩ J = ∅). This is done by
considering the directed graph defined by f on the vertex-set R ∪ f(R) (resp., by g on S ∪ g(S)),
and iteratively taking vertices of current in-degree at most 1 to I while disposing their neighbors
(i.e., when placing x in I we dispose both of f(x) (if it was not disposed already) and of the only
possible undisposed vertex in f−1(x)).43

Having determined I and J , we select F at random in two stages. First, we determine and fix
the values of F at all points in ([2`]× [2`])\ (I×J). Note that, for all (x, y) ∈ I×J , this stage fixes
the value of F (f(x), g(y)) (since f(x) ∈ [2`] \ I and g(y) ∈ [2`] \ J). Next, we select the values of F

42Specifically, let f(z) = g(z) = cyclic-shift(z) if z ∈ {0, 1}` \ {0`, 1`} and f(σ`) = g(σ`) = σ` otherwise. Then,∑
i∈[`] f(x)ig(y)i =

∑
i∈[`] xiyi if x, y ∈ {0, 1}` \ {0`, 1`}.

43Indeed, it may be that f−1(x) = ∅, and it may be that f(x) and some members of f−1(x) were disposed in prior
iterations.
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at all points in I × J uniformly at random, and observe that Eq. (22) is violated with probability
at most exp(−Ω((ε/22m)2 · |I| · |J |)). Recalling that |I|, |J | ≥ 2k/3, this establishes the desired
probabilistic bound. Lastly, we observe that F is nice with probability exp(−Ω(ε2 · 2`)).

9 Constructing Non-Malleable Two-Source Extractors

As mentioned in Section 8, the inner-product mod 2 function, which is a quite good two-source
extractor [9], fails miserably as a non-malleable two-source extractor. Nevertheless, we show that
a natural generalization of it works well, under certain conditions, which can be met by an efficient
construction. Specifically, we view the inner-product mod 2 function as using its second argument
as index to a bit in the Hadamard encoding of its first argument (i.e., if the ith location in the
Hadamard encoding of x is the linear function Li(x), then E(x, y) = Lidx(y)(x), where idx : {0, 1}` →
[2`] is a bijection). In the generalization, we use a code C : {0, 1}` → {0, 1}L, and let E(x, y) =
C(x)idx(y), where idx : {0, 1}` → [L]. For this to work, the code C must be “relocation-detecting”
(as defined next).

The current section is pivoted at the notion of relocation-detecting codes, which is introduced
in this work: In Section 9.1 we define relocation-detecting codes and establish their relation to non-
malleable two-source extractors; that is, we show that the former codes imply the latter extractors.
In Section 9.2 we show how to construct relocation-detecting codes, starting with their mere ex-
istence, and bootstrapping it to efficient constructions (by using the paradigm of concatenated
codes [17]).

9.1 Relocation-detecting codes and their relation to non-malleable extractors

Loosely speaking, in a relocation-detecting code, arbitrarily permuting the bit locations to a random
codeword yields a string that is far any other codeword. This requirement is made regarding a ran-
dom codeword, because it cannot possibly hold for any fixed pair of codewords when permuting one
of the codewords arbitrarily. Actually, we require that the condition holds not only for permutation
but also for arbitrary projections (or “relocations”). In the following definition, I represents the
uniform distribution on locations in the codewords of the code C, and J is an arbitrary related
distribution that represents the relocation (where J = π(I), for an arbitrary permutation π, is a
special case). The function f relates the original codeword, denoted C(x), to an arbitrary different
codeword, denoted C(f(x)). (The restriction that (I, J) are defined over a probability space of size
2` is immaterial, and is made for simplicity.)

Definition 9.1 (relocation-detecting codes): We say that C : {0, 1}` → {0, 1}L is relocation-
detecting (with error ε > 0) if for every f : {0, 1}` → {0, 1}` that has no fixed-points and every joint
distribution (I, J) defined over the probability space {0, 1}` such that I is uniform over [L], it holds
that

Prx∈{0,1}` [C(x)I 6= C(f(x))J ] = 0.5± ε. (23)

A special case of interest is J = π(I) for an arbitrary permutation π : [L]→ [L].

In the special case of I = J the condition in Eq. (23) merely says that the average distance between
a random codeword C(x) and a related (but different) codeword C(f(x)) is (0.5 ± ε) · L. Indeed,
in this case, the condition may hold even for a fixed x, but this is not true in general (i.e., when
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I 6= J).44 Hence, it is essential that Eq. (23) refers to a random x. (We comment that, despite
partial similarity in the formalism, the notion of relocation-detecting codes does not seem related
to non-malleable codes [13], where a (restricted) tampering function applied to a codeword C(x) is
required not to yield a codeword C(f(x)) of a related plaintext.)

Relocation-detecting codes suffice for constructing a restricted non-malleable two-source extrac-
tors of the type that suffices for restricted robustly self-ordered graphs (where both restrictions are
in the sense of Remark 8.3). Specifically, relocation-detecting codes yield non-malleable two-source
extractors for maximal min-entropy (i.e., min-entropy `). We show this next, while commenting
that we shall later strengthen the notion of relocation-detecting codes in order to handle slightly
lower levels of min-entropy.

Proposition 9.2 (relocation-detecting codes yield non-malleable two-source extractors): Suppose
that C : {0, 1}` → {0, 1}L is relocation-detecting with error ε ≥ 2−`+1, and let idx : {0, 1}` → [L] be

an arbitrary regular function (i.e., each image has 2`/L pre-images). Then, E(x, y)
def
= C(x)idx(y)

is a non-malleable two-source (`, 3ε)-extractor.

(Recall that this construction generalizes the inner-product mod 2 extractor of [9], which is obtained
as a special case when using the Hadamard code and idx(y) = y. However, inner-product mod 2 is
not relocation-detecting.)45

Proof: For any eligible functions f, g : {0, 1}` → {0, 1}` (i.e., f has no fixed-points), observe that

Prx,y∈{0,1}` [E(x, y) 6= E(f(x), g(y))] = Prx,y∈{0,1}` [C(x)idx(y) 6= C(f(x))idx(g(y))]

= Prx∈{0,1}`,i∈[L][C(x)i 6= C(f(x))φ(i)],

where φ(i) = idx(g(y)) for a uniformly distributed y ∈ idx−1(i). Using the hypothesis regarding
C, while noting that the distribution of (i, φ(i)) satisfies the relevant condition, and letting pσ,τ =
Prx,i[(C(x)i, C(f(x))φ(i))=(σ, τ)], we have p0,0 + p1,1 = 0.5± ε. Next, we observe that p0,0 + p0,1 =

Prx,i[C(x)i = 0] = 0.5 ± ε ± 2−`+1. This follows by applying the hypothesis regarding C to an
auxiliary function f0(x) = 0` (if x 6= 0` and 1` otherwise) and J ≡ 1.46

Letting qτ = p0,τ + p1,τ , the quantity in Eq. (18) equals 1
2 ·
∑

σ,τ |pσ,τ − 0.5 · qτ |, and we

upper-bound it using a straightforward calculation.47 Specifically, using p0,0 + p1,1 = 0.5 ± ε and
p0,0 + p0,1 = 0.5 ± ε ± 2−`+1, we have qτ = 2pσ,τ ± 2ε ± 2−`+1 for all σ, τ ∈ {0, 1}, which implies
that 1

2 ·
∑

σ,τ |pσ,τ − 0.5 · qτ | ≤ 2 · (ε+ 2−`) = 2ε+ 2−`+1 ≤ 3ε, and the claim follows.

44For every x 6= y, assuming that C(x) and C(y) have (approximately) the same Hamming weight, consider π that
maps locations holding 0 in C(x) to locations holding 0 in C(y). Then, Pr[C(x)I =C(y)π(I)] ≈ 1.

45Specifically, let f(z) = cyclic-shift(z) if z ∈ {0, 1}` \ {0`, 1`} and f(σ`) = σ` otherwise. Then, C(f(x))f(y) =∑
j∈[`] f(x)jf(y)j =

∑
j∈[`] xjyj = C(x)y if x, y ∈ {0, 1}` \ {0`, 1`}.

46Specifically, letting τ
def
= C(f0(0`))1, we have

Prx,i[C(x)i=τ ] = Prx,i[C(x)i=τ &x 6=0`]± 2−`

= Prx,i[C(x)i=C(f0(x))1 &x 6=0`]± 2−`

= Prx,i[C(x)i=C(f0(x))1]± 2−` ± 2−`

which equals 0.5 ± ε ± 2 · 2−` (by applying Eq. (23) with f replaced by f0 and J ≡ 1). The claim follows because
Prx,i[C(x)i=τ ] = pτ,0 + pτ,1.

47Recall that we have established that p0,0 + p1,1 = 0.5 ± ε and p0,0 + p0,1 = 0.5 ± ε ± 2−`+1. Hence, p1,1 =
p0,1 ± 2ε± 2−`+1 and q1 = p0,1 + p1,1 = 2p0,1 ± 2ε± 2−`+1. Similarly, qτ = 2pσ,τ ± 2ε± 2−`+1 for all σ, τ ∈ {0, 1}.
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A stronger notion of relocation-detecting codes. While the notion presented in Defini-
tion 9.3 is more natural, we generalize it so to obtain a stronger version of Proposition 9.2, which
yields extractors for lower levels of min-entropy. We also introduce a niceness feature that when
satisfied by the code implies that the resulting extractor is nice. (Readers that are not interested
in the connections to extractors and robustly self-ordered graphs, may skip to the beginning of
Section 9.2.) Recall that a random variable Z ∈ {0, 1}` has min-entropy k (equiv., deficiency `−k)
if Pr[Z=z] ≤ 2−k.

Definition 9.3 (relocation-detecting codes, generalized): We say that C : {0, 1}` → {0, 1}L is
relocation-detecting (with error ε > 0 for deficiency d) if for every f : {0, 1}` → {0, 1}` that has no
fixed-points, every random variable X ∈ {0, 1}` of min-entropy ` − d, and every joint distribution
(I, J) defined over the probability space {0, 1}` such that I is uniform over some (L/2d)-subset of
[L], it holds that

Pr[C(X)I 6= C(f(X))J ] = 0.5± ε. (24)

We say that such a code is nice if it satisfies the following two conditions.

1. Each codeword has Hamming weight (0.5 ± ε) · L, and every two different codewords are at
distance (0.5± ε) · L.

2. The bits in random codewords are almost pairwise independent and uniformly distributed; that
is, if X is uniformly distributed in {0, 1}`, then for every i 6= j the pair (C(X)i, C(X)j) is
ε-close to the uniform distribution on {0, 1}2.

Indeed, Definition 9.1 is the special case of d = 0.

Theorem 9.4 (Proposition 9.2, generalized): Suppose that C : {0, 1}` → {0, 1}L is relocation-
detecting with error ε ≥ 2−`+1 for deficiency d, and let idx : {0, 1}` → [L] be a regular function

(i.e., each image has 2`/L pre-images). Then, E(x, y)
def
= C(x)idx(y) is a non-malleable two-source

(`− d, 3ε)-extractor. Furthermore, if C is nice and L = 2`, then E is nice.

Proof: For any eligible functions f, g : {0, 1}` → {0, 1}` (i.e., f has no fixed-points) and every
pair of independent (`, `− d)-sources, X and Y , observe that

Pr[E(X,Y ) 6= E(f(X), g(Y ))] = Pr[C(X)idx(Y ) 6= C(f(X))idx(g(Y ))]

= Pr[C(X)I 6= C(f(X))J ],

where I = idx(Y ) has deficiency d and J = idx(g(Y )). Recalling that any distribution of deficiency
d over [L] can be presented as a convex combination of distributions that are uniform on (L/2d)-
subsets of [L], we infer that Pr[C(X)I 6= C(f(X))J ] = 0.5 ± ε, by using the hypothesis regarding
C. The main claim follows, by using calculations as in the proof of Proposition 9.2.

Regarding the niceness of E, observe that the first niceness condition of C (i.e., weight and
distance of codewords) implies niceness w.r.t the first argument of E (i.e., for every x and x′ 6= x,
if Y is uniformly distributed in {0, 1}`, then Pr[E(x, Y )=1] = 0.5± ε and Pr[E(x, Y )=E(x′, Y )] =
0.5±ε). Likewise, niceness w.r.t the second argument of E follows from the second niceness condition
of C (i.e., pairwise independence of bits in a random codeword), when also using the hypothesis that
L = 2` (which implies that idx : {0, 1}` → [L] is a bijection). Specifically, for every y and y′ 6= y, for
X that is uniformly distributed in {0, 1}`, we have (E(X, y), E(X, y′)) ≡ (C(X)idx(y), C(X)idx(y′)),

where idx(y) 6= idx(y′) since idx : {0, 1}` → [L] is a bijection.
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9.2 Constructing relocation-detecting codes

In this section we show how to construct relocation-detecting codes (that also satisfy the niceness
feature). We start by showing the mere existence of such codes (of constant rate), while observing
that they can be constructed in time that is double-exponential in their block-length. We then
bootstrap this inefficient construction to efficient ones, by using the paradigm of concatenated
codes.

The exposition can be simplified if one does not care about obtaining Ω(n)-robustly self-ordered
n-vertex graphs. In this case, we do not need the non-malleable (two-source) extractor to satisfy
the niceness feature, and in that case we do not need the codes to have the analogous niceness
feature. This greatly simplifies the proof of Theorem 9.8, which follows quite straightforwardly
from Lemma 9.7 (see first paragraphs of the proof of Theorem 9.8), and it still yields non-malleable
(two-source) extractors that are fundamentally different from those known before.

Relocation-detecting codes do exist. The mere existence of relocation-detecting codes is not
obvious; for example, a random linear code is not relocation-detecting (also when ignoring the
all-zero codeword).48

Theorem 9.5 (a random code is relocation-detecting): For any constants ε > 0 and d, given any
` ∈ N, let L = Ω(22d · `/ε3). Then, with probability at least 1 − exp(−2`), a random mapping
C : {0, 1}` → {0, 1}L is relocation-detecting with error ε > 0 for deficiency d. Furthermore, such a
random code can be constructed in exp(O(L · 2`))-time.

Recall that we focus on the case of d = O(1) and that even the case of d = 0 is of interest.
(When reading the proof, the reader may consider the special case of d = 0, and note that in this
case there is a single relevant set S (i.e., S = {0, 1}`).) We comment that the niceness feature
holds with probability at least 1− exp(−Ω(min(L, 2`))), and that this condition can be checked in
poly(L · 2`)-time.

Proof: Recalling that any distribution of deficiency d over {0, 1}` can be represented as a convex
combination of distributions that are uniform on 2`−d-subsets of {0, 1}`, we associate the random
variable X with such a subset, denoted S. We take a union bound over all such subsets S as well
as over all eligible functions f : {0, 1}` → {0, 1}` and all eligible joint distributions (I, J), viewed as

48Here, when discussing linear codes, we ignore the all-zero codewords (which clearly violates the first niceness
condition). In this case, a random linear code is nice with extremely high probability. We now show that a nice (w.r.t
error 0.1) linear code cannot be relocation-detecting with error 0.2. To see this, suppose that C : {0, 1}` → {0, 1}L
is a linear code and that (as any other codeword) u = C(10`−1) has Hamming weight (0.5 ± 0.1) · L. Suppose, for
simplicity that u = 0L−w1w. Then C(1x′) = C(0x′) + u, which means C(1x′)i = C(0x′)i if and only if i ∈ [L − w].
Now, consider f(x) that flips the first bit of x, and observe that C(f(x))i = C(x)i if and only if i ∈ [L− w]. Then,
for J that equals I if I ∈ [L− w] and is in {L− w + 1, ..., L} \ {I} otherwise, we have

Pr[C(X)I =C(f(X))J ] =
L− w
L

· Pr[C(X)I =C(f(X))I | I∈ [L− w]] +
w

L
· Pr[C(X)I =C(f(X))J | I 6∈ [L− w]]

=
L− w
L

+
w

L
· Pr[C(X)I 6=C(X)J | I 6∈ [L− w]]

= 1− w

L
· Pr[C(X)I =C(X)J | I 6∈ [L− w]]

which resides in [1 − (0.5 ± 0.1) · (0.5 ± 0.1)] ⊂ [0.75 ± 0.11], since Pr[C(X)i = Cj(X)] = 0.5 ± 0.1 for every i 6= j.
This implies that C is not relocation-detecting with error 0.2.
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functions from {0, 1}` to [L]× [L], while upper-bounded their numbers by
(

2`

2`−d

)
, (2`)2` and (L2)2` ,

respectively. Note that their product, denoted N , is smaller than 22`+1·(`+log2 L).
Fixing S, f and (I, J) as above, we re-write Eq. (24) in terms of set sizes, while viewing

the C(z)’s as random variables, with the aim of upper-bounding the probability that Eq. (24) is
violated. That is, we wish to upper-bound

PrC:{0,1}`→{0,1}L
[∣∣∣{(x, ω)∈S × {0, 1}` : C(x)I(ω) 6= C(f(x))J(ω)

}∣∣∣ 6∈ [(0.5± ε) · 22`−d
]]

(25)

We do so by considering the random variables ζx,i’s, where x ∈ S and i in the support of I, such
that

ζx,i = ζx,i(C)
def
=
∣∣{ω ∈ I−1(i) : C(x)i 6= C(f(x))J(ω)

}∣∣
and observing that ζx,i ∈ [0, |I−1(i)|] and E[ζx,i] = 0.5 · |I−1(i)| = 2`−1

L/2d
for every x ∈ S and any i in

the (L/2d)-size support of I. We upper-bound Eq. (25) by showing that
∑

x,i ζx,i is concentrated

around its expectation (i.e., 2`−1 · |S| = 22`−d−1).
Towards this goal, we partition S into t + 1 sets, denoted S1, ..., St and R, such that for every

j ∈ [t] it holds that Sj ∩ f(Sj) = ∅ and |Sj | ≥ ε · |S|/6, and |R| ≤ ε · |S|/2. Specifically, we proceed
in iterations, when in the ith iteration we identify an adequate set Si that covers at least one third
of S \

⋃
j∈[i−1] Sj , until the latter set is smaller than ε · |S|/2.49

Let I denote the support of I. Recall that |I| = L/2d and E[
∑

i∈I ζx,i] = 2`−1 for every x ∈ S.

The key observation is that, for each j ∈ [t], the ζx,i’s with (x, i) ∈ Sj × I are independent; this can
be seen by considering any fixing of the C(z)’s for all z ∈ {0, 1}` \ Sj (which means fixing C(f(x))
for all x ∈ Sj , while leaving the C(x)’s random for all x ∈ Sj).

50 Using this observation, we
upper-bound the probability that the sum of these ζx,i’s deviates from the expectation as follows:

Pr

 ∑
x∈Sj ,i∈I

ζx,i 6∈
[
(0.5± 0.5ε) · |Sj | · 2`

] = exp(−Ω((ε/2)2 · |Sj | · L/2d)).

Using |Sj | ≥ ε · 2`−d/6, we get an upper-bound of exp(−Ω(ε3 · 2`−2d · L)). Using L = Ω(22d · `/ε3),

N < 22`+1·(`+log2 L) and t ≤ 6/ε, the foregoing is upper-bounded by exp(−2`)/tN . The main claim
follows (by a union bound (and |R| ≤ 0.5ε · |S|)). The argument also establishes the furthermore
claim (e.g., by scanning all relevant C’s, S’s, f ’s and (I, J)’s).

Relocation-detecting codes over a relatively large alphabet. Wishing to reduce the evalu-
ation time of the code suggested by Theorem 9.5, we shall employ the code concatenation paradigm.
Towards doing so, we first consider the problem of constructing relocation-detecting codes over a
larger alphabet. In the analogous definition, which refers to codes of the form C : {0, 1}` → ΣL

(where, typically, |Σ| is polynomially related to L), we replace Eq. (23) by

49This is done by considering the directed graph defined by f on the vertex-set S \
⋃
j∈[i−1] Sj , and iteratively

augmenting Si with vertices of current in-degree at most 1, while disposing their neighbors (i.e., when placing x in
Si, we dispose both of f(x) (if it was not disposed already) and of the only possible undisposed vertex in f−1(x)).
(Indeed, it may be that f−1(x) = ∅, and it may be that f(x) and some members of f−1(x) were disposed in prior
iterations.)

50Recall that the different ζx,i’s refer to different C(x)i’s.
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Prx∈{0,1}` [C(x)I 6= C(f(x))J ] ≥ 1− ε. (26)

(Indeed, we removed the upper bound condition and strengthened the lower bound condition.
However, typically, ε� |Σ|−1, which means that an upper bound of 1− |Σ|−1 + ε would have been
meaningless; likewise, in this case, 1− |Σ|−1 − ε ≈ 1− ε, and so we prefer using the simpler form.)

The following result will not be used in the rest of this paper, but the construction that it
utilizes (i.e., the code C such that C(x)i = 〈i, C ′(x)i〉) will be pivotal to us.

Proposition 9.6 (simple relocation-detecting codes for large alphabets): Let C ′ : {0, 1}` → ΓL be

a code of distance at least (1− ε) · L. Then, for Σ
def
= [L]× Γ, the code C : {0, 1}` → ΣL such that

C(x)i = 〈i, C ′(x)i〉 satisfies Eq. (26) with error 2d · ε (i.e., Pr[C(x)I 6= C(f(x))J ] ≥ 1− 2d · ε), for
every x ∈ {0, 1}` and for every f and (I, J) as in Definition 9.3, where d is the deficiency of I.

We can use the Reed-Solomon code as C ′, provided that L ≤ |Γ| and L = Ω(`′/ε), where `′ =
`/ log2 |Γ|. (Note that the Reed-Solomon code itself does not satisfy Eq. (26)).51

Proof: Fixing any eligible f : {0, 1}` → {0, 1}`, observe that for every i 6= j and every x it holds
that C(x)i = 〈i, C ′(x)i〉 6= 〈j, C ′(f(x))j〉 = C(f(x))j . Hence, if Pr[I 6= J ] ≥ 1− 2d · ε, then we are

done. In general (i.e., for any (I, J)), for every x and y
def
= f(x) 6= x, it holds that

Pr[C(x)I 6=C(y)J ] = Pr[I 6=J ] + Pr[I=J &C ′(x)I 6=C ′(y)I ]

≥ Pr[C ′(x)I 6=C ′(y)I ]

≥ 1− 2d · ε,

where the last inequality is due to the distance of C ′ and to the hypothesis that I is distributed
over [L] with deficiency d (i.e., I hits each coordinate with probability at most 2d/L).

The concatenated code. as stated above, we will now use some feature of the code defined
in Proposition 9.6 (but not the proposition itself). Most importantly, we use the fact that that
different location in the codeword use disjoint alphabets (i.e., C(x)i has the form 〈i, ·〉). This feature
of the latter code makes any relocation lead to a disagreement. We shall use this code as an outer-
code in our construction of a concatenated code, which essentially preserves the relocation-detection
feature of the inner-code that we use.

Lemma 9.7 (constructing relocation-detecting concatenated codes): For length parameters `, Lout, Lin ∈
N, and quality parameters ε > 0 and d ≥ 0, we consider two codes.

An outer-code Cout : {0, 1}` → ΣLout of distance at least (1−2−d ·ε) ·Lout that satisfies the following
two additional conditions:

1. For every i 6= j and every x, y it holds that Cout(x)i 6= Cout(y)j.

51E.g., assuming Γ ≡ [L] is a finite field and viewing C′ as having domain Γ`
′
≡ {0, 1}` such that C′(x0, ..., x`′−1)i =∑`′−1

j=0 xj · ij for every i ∈ Γ, consider π(i) = 2i and f(x0, ..., x`′−1) = (y0, ..., y`′−1) such that yj = 2−jxj , and note

that C′(f(x))π(i) =
∑`′−1
j=0 2−jxj · (2i)j = C′(x)i.
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2. For uniformly distributed (i, x) ∈ [Lout] × {0, 1}` it holds that Cout(x)i is uniformly
distributed over Σ.

An inner-code Cin : Σ→ {0, 1}Lin that satisfies Definition 9.3 with error ε for deficiency 2d.

Then, the concatenated code of Cout and Cin, denoted C : {0, 1}` → {0, 1}Lout·Lin and defined as

C(x) = (Cin(Cout(x)1), ..., Cin(Cout(x)Lout)),

satisfies Definition 9.3 with error 2 · ε for deficiency d.

The punch-line, which is implicit in the lemma, is that the evaluation time of C equals the sum of
the evaluation time of Cout and Lout times the evaluation time of Cin, where the point is that Cin is
typically applied to much shorter strings. Specifically, in our main application |Σ| = poly(`), which
implies that Cin is applied to strings of length log2 |Σ| = O(log `). Hence, applying this lemma
while using the code of Theorem 9.5 in role of Cin yields an exponential-time evaluation algorithm
(rather than a doubly-exponential-time one). Repeating the process three additional times allows
us to obtain almost linear time algorithms.

Note that the code constructed in Proposition 9.6 satisfies all the requirements from Cout,
provided that for every i and for uniformly distributed x it holds that C ′(x)i is uniformly distributed
in Γ (which holds if C ′ is the Reed-Solomon code). For more details, see the proof of Theorem 9.8.
We also note that while it is easy to see that the concatenated code preserves the first niceness
feature (i.e., codewords’ weight and pairwise distances) of the inner-code, the analysis of the second
niceness feature (i.e., pairwise independence of bits in a random codeword) is more complex and is
postponed to the proof of Theorem 9.8.

Proof: We associate the positions in codewords of C with pairs in [Lout]× [Lin]. Fixing any eligible
(`, ` − d)-source X, any eligible function f : {0, 1}` → {0, 1}`, and any eligible joint distribution
(I, J), we let I = (I1, I2) and J = (J1, J2) and note that (I1, I2) ranges over [Lout]× [Lin] (and has

deficiency d). Letting Z
def
= Cout(X)I1 , we observe that Z has deficiency 2d, since X and I1 have

deficiency d each (and Cout satisfies the second additional condition). Using the first additional
condition regarding Cout, we have

Pr[Cout(f(X))J1 6=Z] = Pr[Cout(f(X))J1 6=Cout(X)I1 ]

= Pr[J1 6=I1] + Pr[Cout(f(X))I1 6=Cout(X)I1&J1 =I1]

≥ Pr[Cout(f(X))I1 6=Cout(X)I1 ]

≥ 1− ε,

where the last inequality is due to the distance of Cout and to the fact that I1 has deficiency d (and

to the hypothesis that f(X) 6= X). Letting Z ′
def
= Cout(f(X))J1 , note that Pr[Z=Z ′] ≤ ε. Defining

Z ′′ = Z ′ if Z ′ 6= Z and Z ′′ = Z + 1 otherwise, so that Pr[Z ′′=Z] = 1 and Pr[Z ′′=Z ′] ≥ 1− ε, we
have

Pr[C(X)(I1,I2) 6=C(f(X))(J1,J2)] = Pr[Cin(Cout(X)I1)I2 6=Cin(Cout(f(X))J1)J2 ]

= Pr[Cin(Z)I2 6=Cin(Z ′)J2 ]

= Pr[Cin(Z)I2 6=Cin(Z ′′)J2 ]± Pr[Z ′ = Z]

= (0.5± ε)± ε,

65



where the first term (in the last expression) is due to the hypothesis that Cin satisfies Definition 9.3
with error ε for deficiency 2d (where we also use Pr[Z ′′ 6=Z] = 1 and the fact that Z and I2 have
deficiency 2d and d, resp.).52

Theorem 9.8 (efficient constructions of relocation-detecting codes): For every constant ε > 0 and
d ≥ 0, there exists a relocation-detecting code C : {0, 1}` → {0, 1}L with error ε for deficiency
d that can be evaluated in almost-linear time (and L = O(`)). Furthermore, this code is nice.

Alternatively, there exists a nice relocation-detecting code C : {0, 1}` → {0, 1}2` with error ε for
deficiency d such that each bit in its codewords can be computed in almost-linear time.

The seemingly less appealing alternative (i.e., L = 2`) is actually the one that we shall use in order
to construct non-malleable two-source extractors (see Theorem 9.9), which in turn will be used for
constructing Ω(n)-robustly self-ordered n-vertex graphs (asserted in Theorem 1.4).

Proof: When ignoring the niceness condition, the proof of the main claim is quite straightforward.
Using Lemma 9.7, we construct several concatenated codes, where in all cases we use the code
constructed in Proposition 9.6 as the outer-code, Cout : {0, 1}` → ΣL, where L · log2 |Σ| = Θ(`)
and |Σ| = Θ(L2). The inner-code Cin will vary: In the first application (of Lemma 9.7), we
use the code obtained from Theorem 9.5, whereas in later applications we use (as an inner-code)
the concatenated code obtained in the previous application. The evaluation time of each of these
concatenated codes is upper-bounded by the product of the evaluation time of Cout, which is almost
linear, and the evaluation time of the inner-code, which is applied to symbols whose description
length is logarithmic in the input length. Hence, although we start with an inner-code that has
double-exponential evaluation time, after a constant number of applications, the evaluation time
of the inner-code is absorbed by the evaluation time of the outer-code. Details follow.

Recall that Cout(x)i = 〈i, C ′(x)〉 ∈ [Lout] × Γ and that Cout : {0, 1}` → ΣLout satisfies all
requirements that are made in Lemma 9.7, provided that for every i and for uniformly distributed
x it holds that C ′(x)i is uniformly distributed in Γ (which holds if C ′ is the Reed-Solomon code).
Hence, we use Lout ≤ |Γ| and Lout = Ω(2d · `′/ε), where `′ = `/ log2 |Γ| (and Σ = [Lout]× Γ).

In the first invocation of Lemma 9.7, we obtain the concatenated code C1 : {0, 1}`1 → {0, 1}L1 ,
by using Cout with |Γ| = Lout = Θ(2d · `′/ε) such that `′ = `1/ log2 |Γ|, which implies |Σ| = Lout

2,
where the inner-code Cin : Σ → {0, 1}Lin is obtained from Theorem 9.5 with Lin = Θ(24d · ε−3 ·
log |Σ|).53 Recall that the fact that Cout and Cin satisfy the conditions of Lemma 9.7 implies that
C1 is relocation-detecting with error 2ε and deficiency d. For sake of future reference, we write
L1 = Lout · Lin = O(2d · `1/(ε log2 |Γ|)) · O(24d · ε−3 · log |Σ|) as a function of k = `1; that is,
L1(k) = O(25d · k/ε4).

For constant ε > 0 and d, the concatenated code C1 can be evaluated in time T1 = Õ(L1) ·
exp(O(Lin · 2log2 |Σ|)), where the first factor accounts for the number of evaluation of Cin (as well as
for the running-time of Cout) and the second factor accounts for the (construction and) evaluation
time of Cin. Recalling that |Σ| = Lout

2 = O(2d · `′/ε)2 = O(`′/ε)2, where `′ = O(`1/ log |Σ|), and
that we may use Lin = O(24d · ε−3 · log |Σ|) = O(log |Σ|), we infer that T1 = Õ(L1) · exp(Õ(|Σ|)) =
Õ(L1) · exp(poly(`1)). Writing T1 as a function of k = `1, we have T1(k) = exp(poly(k)).

52Formally, we define a random process Φ such that Z′′ ≡ Φ(Z), and view Φ as a distribution over function φ
that have no fixed-points. The hypothesis regarding Cin implies that for any such φ it holds that Pr[Cin(Z)I2 6=
Cin(φ(Z))J2 ] = 0.5± ε, which implies Pr[Cin(Z)I2 6=Cin(Φ(Z))J2 ] = 0.5± ε.

53Note that the inner-code is supposed to have error ε for deficiency 2d; hence, Lin = Θ(22·2d · ε−3 · log |Σ|).
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To get better running-time, we perform another concatenation, this time using C1 as the inner-
code (i.e., Cin). Actually, we shall perform three additional concatenations, where in the ith such
iteration we use Ci as the inner-code and obtained the concatenated code Ci+1 : {0, 1}`i+1 →
{0, 1}Li+1 . (Recall that in all iterations, we use the same outer-code that is described in Proposi-
tion 9.6, and so we will have Li+1 = O(`i+1).) To streamlined the exposition, we denote by C0 the
inner-code used in constructing the concatenated code C1. Using the same arguments as above, it
follows that Ci+1 is relocation-detecting with error 2i+1 · ε for deficiency d/2i, where indeed C0 has
error ε for deficiency 2d. The evaluation time of Ci+1 is Ti+1(`i+1) = Õ(Li+1) ·Ti(`i), where the first
factor accounts for the number of evaluation of Ci (as well as for the running-time of Cout) and the
second factor accounts for the evaluation time of Ci. Recalling that we use Ci on strings of length
`i = O(log `i+1), it follows that is Ti+1(k) = Õ(k) ·Ti(log k). Hence, T4(k) = Õ(k) ·T1(log log log k),
which equals Õ(k) · exp(poly(log log log k)) = Õ(k). Using C = C4 and ` = `4, the main claim
follows, but without niceness.

Establishing niceness. We now turn to the niceness conditions. We first note that Cin : Σ→ {0, 1}Lin

is nice (see details below), and that concatenation preserves the first niceness condition. The latter
fact is due to the fact that each codeword of Ci+1 is a sequence of codewords of Ci, whereas that
the distance of Cout implies that in two different Ci+1-codewords at least a 1 − 2−d · ε ≥ 1 − ε
fraction of the Ci-codewords are different. Hence, if Ci satisfies the first niceness condition w.r.t
error 2i · ε, then Ci+1 satisfies the first niceness condition w.r.t error (2i + 2−d) · ε ≤ 2i+1 · ε.

The problem with the second niceness condition (and its preservation under concatenation)
is that uniformly distributed codewords of Ci+1 are not sequences of uniformly distributed Ci-
codewords, let alone sequences of such pairwise independent distributions; for example, the first Ci-
codeword in any Ci+1-codeword encodes a symbol of the form Cout(〈1, ·〉)1. Still, this Ci-codeword
is “random enough” for our purposes. Making the argument requires defining a niceness condition
that is stronger than the second niceness condition, and showing that it is satisfied by C0 and is
preserved by the subsequent concatenated codes.

Definition 9.8.1 (the third niceness condition): For sets Ψ,∆ such that |Ψ| ≤ |∆|, where Ψ and
∆ are associated with additive groups, we say that a code C : Ψ ×∆ → {0, 1}L satisfies the third
niceness condition (with error ε) if for every α, β ∈ Ψ and δ ∈ ∆ the following holds.

1. For any i ∈ [L], if r is uniformly distributed in ∆, then C(α, r)i is ε-close to be uniformly
distributed in {0, 1}.

2. For any i 6= j in [L], if r is uniformly distributed in ∆, then (C(α, r)i, C(β, r+ δ)j) is ε-close
to be uniformly distributed in {0, 1}1+1.

Indeed, the second sub-condition implies the first one, but it will be instructive to consider this sub-
condition first. In any case, the third niceness condition is a strengthening of the second niceness
condition, which is obtained by setting δ = 0 and considering α, β that are uniformly distributed
in Ψ.

Claim 9.8.2 (The code C0 satisfies all niceness conditions): With probability at least 1−L2 · |Σ|2 ·
exp(−Ω(ε2 ·min(|Σ|1/2, L)), a random code C0 : Σ → {0, 1}L satisfies all niceness conditions with
error ε.
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Proof: The probability that a random code C0 violates the first niceness condition is at most
|Σ|2 · exp(−Ω(ε2 ·L)), since each of its codewords is a sequence of L independent random variables
that are uniformly distributed in {0, 1}. Turning to the third niceness condition, and letting
Σ = Ψ × ∆ such that |∆| ≥ |Ψ|, we first consider the first sub-condition. In this case, for every
i ∈ [L], α ∈ Ψ and b ∈ {0, 1}, we consider the set {r ∈∆ : C0(α, r)i = b}. Then, with probability
at least 1 − exp(−Ω(ε2 · |∆|)) over the choice of C0, this set has size (1 ± ε) · |∆|/2, since we are
looking at |∆| random variables that are independently and uniformly distributed in {0, 1}. Using
a union bound over all relevant sets (and |∆| ≥ |Σ|1/2), it follows that the first sub-condition is
violated with probability at most L · |Ψ| · exp(−Ω(ε2 · |Σ|1/2)).

Turning to the second sub-condition, where i 6= j, here for every α, β ∈ Ψ and δ ∈ ∆, we consider
the sets {r∈∆ : (C0(α, r)i, C0(β, r + δ)j) = (b1, b2)}, for all b1, b2 ∈ {0, 1}. Then, with probability
at least 1− exp(−Ω(ε2 · |∆|)) over the choice of C0, such a set has size (1± ε) · |∆|/4, since we are
looking at |∆| pairs of random variables that are independently uniformly distributed in {0, 1}2
(where the independence inside a pair is due to i 6= j). Using a union bound (and |∆| ≥ |Σ|1/2), it
follows that the condition is violated with probability at most L2 · |Σ|2 · exp(−Ω(ε2 · |Σ|1/2)).

Claim 9.8.3 (The code Ct+1 satisfies all niceness conditions): For every t ≥ 0, the code Ct+1 :
{0, 1}`t+1 → {0, 1}Lt+1 satisfies the third niceness condition with error 2t+1 · ε.

Recall that we have already established the fact that Ct+1 satisfies the first niceness condition with
error 2t+1 · ε.

Proof: Needless to say, this is proved by induction on t ≥ 0, while using Claim 9.8.2 for C0. Letting
{0, 1}`t+1 = Ψ × ∆ such that |∆| ≥ |Ψ|, recall that, for α, β ∈ Ψ, δ ∈ ∆ and i, j ∈ [Lt+1] ≡
[Lt+1/Lt] × [Lt], we consider the values (Ct+1(α, r)i, Ct+1(β, r + δ)j) for all r ∈ ∆. Recalling that
i = (i1, i2) and j = (j1, j2), we are interested in the random variables

(Ct(Cout(α,R)i1)i2 , Ct(Cout(β,R+ δ)j1)j2), (27)

whereR is a random variable uniformly distributed over ∆. Note that Cout(α,R)i1 = 〈i1, C ′(α,R)i1〉
is uniformly distributed in {〈i1, γ〉 : γ ∈ Γ}, because C ′(α,R)i1 represents the value of a de-
gree `′ − 1 ≥ 1 polynomial (over Γ) at the point i1 whereas (α,R) represents the coefficients of
this polynomial, denoted Pα,R, and the free term of this polynomial is included in R. Hence,
Ct(〈i1, C ′(α,R)i1〉) ≡ Ct(i1, r), where r is uniformly distributed in Γ. Using the hypothesis that Ct
satisfies (the first sub-condition of) the third niceness condition, it follows that Ct+1 satisfies the
first sub-condition of the third niceness condition.

Turning to the second sub-condition, we now have i 6= j. Recalling that i = (i1, i2) and
j = (j1, j2), we first deal with the case that i2 6= j2, showing that in this case the second
sub-condition for Ct+1 follows from the second sub-condition for Ct. This is shown by recall-
ing that Cout(α,R)i1 = 〈i1, C ′(α,R)i1〉 is uniformly distributed in {〈i1, γ〉 : γ ∈ Γ}, and ob-
serving that Cout(β,R + δ)j1 = 〈j1, C ′(α,R)i1 +R′〉 such that R′ is a random variables that is
independent of the value of C ′(α,R)i1 . The latter observation is proved below, but first let us
see that it implies that the distribution in Eq. (27) is 2t+1 · ε-close to uniform; that is, that indeed
(Ct(〈i1, C ′(α,R)i1〉)i2 , Ct(〈j1, C ′(α,R)i1 +R′〉)j2) is 2t+1 ·ε-close to uniform. As stated upfront, this
follows from the (second sub-condition of) the third niceness condition of Ct and the hypothesis
i2 6= j2. Specifically, we write 〈j1, C ′(α,R)i1 +R′〉 as a convex combination of 〈j1, C ′(α,R)i1 + δ′〉’s
and apply the third niceness condition to each pair (Ct(〈i1, R〉)i2 , Ct(〈j1, R+ δ′〉)j2 .
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It remains to prove that Cout(β,R + δ)j1 = 〈j1, C ′(α,R)i1 +R′〉 such that R′ is a random
variables that is independent of the value of C ′(α,R)i1 . This is proved by observing that the value
of C ′(α,R) at i1 is the sum of the free term of the polynomial Pα,R (i.e., the polynomial described
by (α,R)) and the value of the rest of this polynomial (i.e., without the free term) at i1 (whereas
the same holds for the polynomial described by (β,R+ δ) at the point j1).54

We are left with the case of i1 6= j1. In this case the pair (Cout(α,R)i1 , Cout(β,R + δ)j1) is
uniformly distributed in {(〈i1, γ〉, 〈j1, γ′〉) : γ, γ′ ∈ Γ} essentially by virtue of the independence of the
values of a random polynomial at two different points. Specifically, the pair (C ′(α,R)i1 , C

′(β,R+
δ)j1) can be written as a convex combination of all possible fixings of the (`′/2) − 2 ≥ 0 higher
coefficient that appear in R, leaving only the affine part random, and observing that the residual
values are pairwise independent.55 Hence, the values Cin(Cout(α,R)i1)i2 and Cin(Cout(β,R+δ)j1)j2
are distributed independently, whereas each of them was already shown to be 2i ·ε-close to uniform.
This completes the analysis of the second sub-condition, establishing that Ct+1 satisfies it too.

The alternative claim (i.e., using L = 2`). Having established the niceness of C4, we have concluded
the proof of the main claim. However, C4 : {0, 1}`4 → {0, 1}L4 has linear block-length (i.e.,
L4 = O(`)), whereas for the alternative code we wish to have exponential block-length. Typically,
increasing the block-length is a triviality, but here we have to perform it while preserving the
relocation-detection and niceness features. We do so by using concatenation two more times, where
in both cases we shall use the code constructed in Proposition 9.6 as the outer-code, Cout : {0, 1}` →
ΣLout , but set Lout = |Γ| = |Σ|1/2 to be larger. Specifically, we first obtain C5 : {0, 1}` → {0, 1}L5

such that L5 = 2`/4, by concatenating the foregoing outer-code Cout : {0, 1}` → ΣLout with C4 :
Σ→ {0, 1}L4 while setting L4 = O(log |Σ|) = O(`) and Lout = L5/L4 = 2`/4/O(`).

The crucial point is that this setting still allows for encoding a random polynomial of degree
`′ − 1 ≥ 3 in ` random bits, and this is the only fact about Cout used in our analysis (see proof of
Claim 9.8.3).56 Hence, C5 is relocation-detecting and nice (also in the sense of the third condition)
with error 25 · ε and deficiency d/24, and each bit in its codewords can be computed in time Õ(`).
This is the case because each symbol in Cout : {0, 1}` → ΣLout can be computed in almost-linear-
time (i.e., Õ(`)-time), and evaluating C4 : Σ → {0, 1}L4 takes almost-linear-time (which is also
Õ(`)-time, since L4 = O(`)). (The point is that, although Lout = exp(Θ(`)), each symbol in the
Cout-codeword can be computed in time Õ(log |Σ|) = Õ(`).)

Lastly, we construct yet another concatenated code, C6 : {0, 1}` → {0, 1}L6 such that L6 = `4,
by concatenating the outer-code Cout : {0, 1}` → ΣLout with the inner-code C5 : Σ → {0, 1}L5 ,
while setting L5 = O(log |Σ|) = O(log `) and Lout = L6/L5 = `4/O(log `). Hence, C6 is relocation-
detecting and nice with error 26·ε and deficiency d/25, and each bit in its codewords can be computed

54We claim that Pβ,R+δ(j1) = Pα,R(i1) +R′, where R′ is independent of Pα,R(i1). Let R = (R1, R0) such that R0

denote the free term of Pα,R that is included in R, and R1 denote the other (`′/2)−1 coefficients included in R. Since
Pα,R(i1)−R0 does not depend on R0, we can denote it P ′α,R1

(i1). Analogously, Pβ,R+δ(j1) = P ′β,R1+δ1
(j1)+(R0 +δ0),

which implies that Pβ,R(j1) = Pα,R(i1) +R′ such that R′ = P ′β,R1+δ1
(j1) + δ0 − P ′α,R1

(i1). Hence, R′ is independent
of R0, and the claim follows. We also seize the opportunity to highlight the fact that Pα,R(ii) is shifted linearly by
R0, which implies that it is uniformly distributed in Γ.

55Specifically, we claim that the values Pα,R(i1) and Pβ,R+δ(j1) are pairwise independent. This can be shown by
letting R = (R(`′/2)−1, ..., R1, R0), fixing the values of R(`′/2)−1, ..., R2 arbitrarily, and noting that the residual values
are v +R1 · i1 +R0 and w+ (R1 + δ1) · j1 + (R0 + δ0), respectively, where v and w are some fixed values. The claim
follows.

56Specifically, this fact was used when showing that if i1 6= j1, then (Cout(α,R)i1 , Cout(β,R + δ)j1), which equals
(〈i1, C′(α,R)i1〉, 〈j1, C′(α,R+ δ)j1〉), is uniformly distributed in {(〈i1, γ〉, 〈j1, γ′〉 : γ, γ′ ∈ Γ}, where the point was
that R contains the free term and the linear term of the polynomial described by (α,R).
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in time Õ(`). This is the case because each symbol in Cout can be computed in almost-linear-time,
and computing each bit in C5 takes almost-linear-time.

Corollaries. Combining the (alternative part of) Theorem 9.8 with Theorem 9.4, we get

Theorem 9.9 (efficient construction of non-malleable two-source extractors): For every constants
ε > 0 and d ≥ 0, there exists a polynomial-time computable non-malleable two-source (` − d, ε)-
extractor that extracts one bit. Furthermore, this extractor is nice.

Recall that much better parameters are obtained in [7], albeit their construction does not satisfy
the niceness conditions. Combining Theorem 9.9 with Theorem 8.2, we establish Theorem 1.4.

9.3 Back to graphs: Obtaining efficient self-ordering

We say that a self-ordered graph G = ([n], E) is efficiently self-ordered if there exists a polynomial-
time algorithm that, given any graph G′ = (V ′, E′) that is isomorphic to G, finds the unique
bijection φ : V ′ → [n] such that φ(G′) = G (i.e., the unique isomorphism of G′ and G). Indeed,
this isomorphism orders the vertices of G′ in accordance with the original (or target) graph G.

Recall that in the case of bounded-degree graphs, we relied on the existence of a polynomial-
time isomorphism test (see [29]) for efficiently self-ordering the robustly self-ordered graphs that we
constructed. We cannot do so in the dense graph case, since a general polynomial-time isomorphism
test is not known (see [1]). Instead, we augment the construction asserted in Theorem 1.4 so to
obtain dense Ω(n)-robustly self-ordered graphs that are efficiently self-ordered.57

Theorem 9.10 (strengthening Theorem 1.4): There exist an infinite family of dense Ω(n)-robustly
self-ordered graphs {Gn}n∈N and a polynomial-time algorithm that, given n ∈ N and a pair of
vertices u, v ∈ [n] in the n-vertex graph Gn, determines whether or not u is adjacent to v in Gn.
Furthermore, these graphs are efficiently self-ordered, and the degrees of vertices in Gn reside in
[0.04n, 0.82n].

Proof: Our starting point is the construction of m-vertex graphs that are Ω(m)-robustly self-
ordered (see Theorem 1.4, which uses Theorem 8.2). Recall that (when picking sufficiently small
ε > 0), the vertices in these graphs have degree that ranges between 0.24 ·m and 0.76 ·m.

The idea is to use two such graphs, G1 and G2, one with m vertices and the other with
4 · m vertices, where m = n/5, and connect them in a way that assists finding the ordering of

vertices in each of these two graphs. Specifically, we designate a set, denoted S1, of s
def
= 2

√
log2 n

vertices in G1 = ([m], E1), and a set, denoted S2, of `
def
=
(
s
2

)
∈ [log2 n, 2 log2 n] vertices in G2 =

({m+ 1, ..., 5m}, E2), and use them as follows:

• Connect each vertex in S2 to two different vertices in S1, while noting that each vertex in S1

is connected to 2`/s = o(`) vertices of S2.

• Connect each vertex in R1
def
= [m] \ S1 to a different set of neighbors in S2 such that each

vertex in R1 has at least `/2 neighbors in S2.

57Unlike in the bounded degree case (see Section 4.4), we do not know how to construct Ω(n)-robustly self-ordered
graphs that support local self-ordering.
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• Connect each vertex in R2
def
= {m + 1, ..., 5m} \ S2 to a different set of neighbors in R1 such

that each vertex in R2 has two neighbors in R1 and each vertex in R1 has at most eight
neighbors in R2.

Denote the resulting graph by G = ([n], E), and note that the vertices of G1 have degree at most
0.76 ·m + `, whereas the vertices of G2 have degree at least 0.24 · 4m. Given an isomorphic copy
of the G, we can find the unique isomorphism (i.e., its ordering) as follows:

1. Identify the vertices that belong to G1 by virtue of their lower degree.

2. Identify the set S1 as the set of vertices that belong to G1 and have 2`/s = o(`) neighbors
in G2.

(Recall that each vertex in R1 has at least `/2 neighbors in S2.)

3. Identify the set S2 as the set of vertices that belong to G2 and have (two) neighbors in S1.

4. For each possible ordering of S1, order the vertices of S2 by their neighborhood in S1, and
order the vertices of R1 according to their neighborhood in S2.

If the resulting ordering (of S1∪R1) yields an isomorphism to G1, them continue. Otherwise,
try the next ordering of S1.

5. Order the vertices of R2 according to their neighborhood in R1.

Note that by the asymmetry of G1, there exists a unique ordering of its vertices, and a unique
ordering of S1 that fits it and leads the procedure to successful termination. One the other hand,
the number of possible ordering of S1 is s! = no(1), which means that the procedure is efficient.

It is left to show that the graph G is Ω(n)-robustly self-ordered. Let γ > 0 be a constant such
that that G1 (resp., G2) is γ ·m-robustly self-ordered (resp., γ · 4m-robustly self-ordered). Then,
fixing an arbitrary permutation µ : [n]→ [n], and letting T = {v ∈ [n] : µ(v) 6= v}, we consider the
following cases.

Case 1: |{v ∈ [m] : µ(v) ∈ [m]}| > γ · |T |/10.

In this case, we get a contribution of at least Ω(m · |T |) units to the symmetric difference
between G and µ(G), because of the difference in degree between vertices in [m] and outside
[m]. (Recall that the former have degree at most 0.76 ·m + ` < 0.77 ·m, whereas the latter
have degree at least 0.24 · 4m = 0.96 ·m.)

Case 2: t
def
= |{v ∈ [m] : µ(v) ∈ [m]}| ≤ γ · |T |/10.

In this case, at least (1− 0.1γ) · |T | vertices in T are mapped by µ to the side in which they

belong (i.e., each of these vertices v satisfies v ∈ [m] if and only if µ(v) ∈ [m]). Let T1
def
= {v∈

T ∩ [m] :µ(v) ∈ [m]} and T2
def
= {v∈T \ [m] :µ(v) 6∈ [m]}. Then, the vertices in T1 contribute at

least |T1|·γ ·m−t·m units to the symmetric difference between G and µ(G), where the negative
term is due to possible change in the incidence with vertices that did not maintain their side.
Similarly, the vertices in T2 contribute at least |T2| · γ · 4m − t · 4m units to the symmetric
difference. Hence, it total, we get a contribution of at least (|T |−2t)·γ ·m−t·5m = Ω(m·|T |).

The claims follows.
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Digest. The n-vertex graph constructed in the proof of Theorem 9.10 is proved to be Ω(n)-
robustly self-ordered by implicitly using the following claim.

Claim 9.11 (combining two Ω(n)-robustly self-ordered graphs): For i ∈ {1, 2}, let Gi = (Vi, Ei)
be an Ω(n)-robustly self-ordered graph, and consider a graph G = (V1 ∪ V2, E1 ∪ E2 ∪ E) such that
E contain edges with a single vertex in each Vi; that is, G consists of G1 and G2 and an arbitrary
bipartite graph that connects them. If the maximun degree in G of each vertex in V1 is smaller by
an Ω(n) term from the minimum degree of each vertex in V2, then G is Ω(n)-robustly self-ordered.

Indeed, Claim 9.11 is analogous to Claim 4.3 (which refers to bounded-degree graphs). We also
comment that Ω(n)-robustly self-ordered graph maintain this feature also when o(n) edges are
added (and/or removed) from the incidence of each vertex.

10 Application to Testing Dense Graph Properties

In Section 5, we demonstrated the applicability of robustly self-ordered bounded-degree graphs to
the study of testing graph properties in the bounded-degree graph model. In the current section, we
provide a corresponding demonstration for the regime of dense graphs. Hence, we refer to testing
graph properties in the dense graph model, which was introduced in [20] and is surveyed in [18,
Chap. 8]. In this model, graphs are represented by their adjacency predicate, and distances are
measured as the ratio of the number of differing incidences to the maximal number of edges.

Background. We represent a graph G = ([n], E), by the adjacency predicate g : [n]×[n]→ {0, 1}
such that g(u, v) = 1 if and only if {u, v} ∈ E, and oracle access to a graph means oracle access to
its adjacency predicate (equiv., adjacency matrix). The distance between the graphs G = ([n], E)
and G′ = ([n], E′) is defined as the fraction of entries (in the adjacency matrix) on which the two
graphs disagree.

Definition 10.1 (testing graph properties in the dense graph model): A tester for a graph property
Π is a probabilistic oracle machine that, on input parameters n and ε, and oracle access to an n-
vertex graph G = ([n], E) outputs a binary verdict that satisfies the following two conditions.

1. If G ∈ Π, then the tester accepts with probability at least 2/3.

2. If G is ε-far from Π, then the tester accepts with probability at most 1/3, where G is ε-far
from Π if for every n-vertex graph G′ = ([n], E′) ∈ Π the adjacency matrices of G and G′

disagree on at least ε · n2 entries.

The query complexity of a tester for Π is a function (of the parameters n and ε) that represents the
number of queries made by the tester on the worst-case n-vertex graph, when given the proximity
parameter ε.

Our result. We present a general reduction of testing any property Φ of (bit) strings to testing
a corresponding graph property Π. Loosely speaking, n-bit long strings will be encoded as part
of an O(

√
n)-vertex graph, which is constructed using Ω(

√
n)-robustly self-ordered Θ(

√
n)-vertex

graphs. This reduction is described in Construction 10.2 and its validity is proved in Lemma 10.3.
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Denoting the query complexities of Φ and Π by QΦ and QΠ, respectively, we get QΦ(n, ε) ≤
QΠ(O(n1/2),Ω(ε)). Thus, lower bounds on the query complexity of testing Φ, which is a property
of “ordered objects” (i.e., bit strings), imply lower bounds on the query complexity of testing Π,
which is a property of “unordered objects” (i.e., graphs).

Our starting point is the construction of m-vertex graphs that are Ω(m)-robustly self-ordered.
Actually, wishing Π to preserve the computatioinal complexity of Φ, we use a construction of
graphs that are efficiently self-ordered, as provided by Theorem 9.10. Recall that the vertices in
these graphs have degree that ranges between 0.04 ·m and 0.82 ·m.

The idea is to use two such graphs, G1 and G2, one with m vertices and the other with 49 ·m
vertices, where m =

√
n, and encode an n-bit string in the connection between them. Specifically,

we view the latter string as a m-by-m matrix, denoted (si,j)i,j∈[m], and connect the ith vertex of

G1 to the jth vertex of G2 if and only if si,j = 1.

Construction 10.2 (from properties of strings to properties of dense graphs): Suppose that {Gm =
([m], Em)}m∈N is a family of Ω(m)-robustly self-ordered graphs. For every n ∈ N, we let m =

√
n,

and proceed as follows.

• For every s ∈ {0, 1}n views as (si,j)i,j∈[m] ∈ {0, 1}m×m, we define the graph G′s = ([50m], E′s)
such that

E′s = Em ∪ {{m+ i,m+ j} : {i, j} ∈ E49m} ∪ {{i,m+ j} : i, j ∈ [m] ∧ si,j = 1} (28)

That is, G′s consists of a copy of Gm and a copy of G49m that are connected by a bipartite
graph that is determined by s.

• For a set of strings Φ, we define Π =
⋃
n∈N Πn as the set of all graphs that are isomorphic to

some graph G′s such that s ∈ Φ; that is,

Πn = {π(G′s) : s ∈ (Φ ∩ {0, 1}n) ∧ π ∈ Sym50m} (29)

where Sym50m denote the set of all permutations over [50m].

Note that, given a graph of the form π(G′s), the vertices of Gm are easily identifiable (as having
degree at most 0.82m+m = 1.82m).58 The foregoing construction yields a local reduction of Φ to
Π, where locality means that each query to G′s can be answered by making a constant number of
queries to s. The (standard) validity of the reduction (i.e., s ∈ Φ if and only if G′s ∈ Π) is based
on the fact that Gm and G49m are asymmetric.

In order to be useful towards proving lower bounds on the query complexity of testing Π, we
need to show that the foregoing reduction is “distance preserving” (i.e., strings that are far from
Φ are transformed into graphs that are far from Π). The hypothesis that Gm and G49m are Ω(m)-
robustly self-ordered is pivotal to showing that if the string s is far from Φ, then the graph G′s is
far from Π.

Lemma 10.3 (preserving distances): If s ∈ {0, 1}n is ε-far from Φ, then the 50m-vertex graph G′s
(as defined in Construction 10.2) is Ω(ε)-far from Π.

58In contrast, the vertices of G49m have degree at least 0.04 · 49m = 1.96m.

73



Proof: We prove the contrapositive. Suppose that G′s is δ-close to Π. Then, for some r ∈ Φ and
a permutation π : [50m]→ [50m], it holds that G′s is δ-close to π(G′r), which means that these two
graphs differ on at most δ · (50m)2 vertex pairs. If π(i) = i for every i ∈ [2m], then s must be
O(δ)-close to r, since si,j = 1 (resp., ri,j = 1) if and only if i is connected to m+ j in G′s (resp., in
π(G′r) = G′r).

59 Unfortunately, the foregoing condition (i.e., π(i) = i for every i ∈ [2m]) need not
hold in general.

In general, the hypothesis that π(G′r) is δ-close to G′s implies that π maps at most O(δm)
vertices of [m] to {m + 1, ..., 2m}, and maps to [m] at most O(δm) vertices that are outside it.
This is the case because each vertex of [m] has degree smaller than 0.82m+m, whereas the other
vertices have degree at least 0.04 · 49m > 1.9m.

Turning to the vertices i ∈ [m] that π maps to [m] \ {i}, we upper-bound their number by
O(δm), since the difference between π(G′r) and G′s is at most δ · (50m)2, whereas the hypothesis
that Gm is c · m-robustly self-ordered implies that the difference between π(G′r) and G′s (or any
other graph G′w) is at least

∆ = c ·m · |{i∈ [m] :π(i) 6= i}| −m · |{i∈ [m] :π(i) 6∈ [n]}|.

(Hence, |{i∈ [m] :π(i) 6= i}| ≤ ∆+m·O(δm)
cm = O(δm).) The same considerations apply to the vertices

i ∈ {m + 1, ..., 2m} that π maps to {m + 1, ..., 2m} \ {i}; their number is also upper-bounded by
O(δm).

For every k ∈ {1, 2}, letting Ik = {i ∈ [m] : π((k − 1) ·m + i) = (k − 1) ·m + i}, observe that

D
def
= |{(i, j) ∈ I0 × I1 : ri,j 6= si,j}| ≤ δ · (50m)2, since ri,j 6= si,j implies that π(G′r) and G′s differ

on the vertex-pair (i,m+ j). Recalling that m− |Ik| = O(δm), it follows that

|{(i, j) ∈ [m] : ri,j 6= si,j}| ≤ ((m− |I1|)− (m− |I2|)) ·m+D = O(δm2).

Hence, s is O(δ)-close to r ∈ Φ, and the claims follows.

11 The Case of Intermediate Degree Bounds

While Section 2–6 study bounded-degree graphs and Sections 7–10 study dense graphs (i.e., constant
edge density), in this section we shall consider graphs of intermediate degree bounds. That is, for
every d : N → N such that d(n) ∈ [Ω(1), n], we consider n-vertex graphs of degree bound d(n). In
this case, the best robustness we can hope for is Ω(d(n)), and we shall actually achieve it for all
functions d.

Theorem 11.1 (robustly self-ordered graphs for intermediate degree bounds): For every d : N→
N such that d(n) is computable in poly(n)-time, there exists an efficiently constructable family of
graphs {Gn}n∈N such that Gn has maximal degree d(n) and is Ω(d(n))-robustly self-ordered.

We prove Theorem 11.1 in three parts, each covering a different regime of degree-bounds (i.e.,
d(n)’s). Most of the range (i.e., d(n) = Ω(log n)0.5) is covered by Theorem 11.2, whereas Theo-
rem 11.3 handles small degree-bounds (i.e., d(n) = O(log n)0.499) and Theorem 11.5 handles the
degree-bounds that are in-between. One ingredient in the proof of Theorem 11.5 is a transformation

59Hence, G′s is δ-close to G′r implies that |{i, j∈ [n] :si,j 6= ri,j}| ≤ δ · (50m)2, which means that s is (50m)2δ
n

-close
to r. (Recall that m =

√
n.)
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of graphs that makes them expanding, while preserving their degree and robustness parameters up
to a constant factor. This transformation, which is a special case of Theorem 11.4, is of independent
interest.

Theorem 11.2 (robustly self-ordered graphs for large degree bounds): For every d : N→ N such
that d(n) ≥ O(

√
log n) is computable in poly(n)-time, there exists an efficiently constructable family

of graphs {Gn}n∈N such that Gn has maximal degree d(n) and is Ω(d(n))-robustly self-ordered.

The graphs will consist of connected components of size d(n), and in this case d(n) = Ω(
√

log n) is
necessary, since these components must be different.

Proof Sketch: We combine ideas from Construction 10.2 with elements of the proof of Theorem 4.2.
Specifically, as in Construction 10.2, we shall use constructions of m-vertex and 9m-vertex graphs
that are Ω(m)-robustly self-ordered, but here we set m = d(n)/10 and use n/d(n) different d(n)-
vertex graphs that are based on the foregoing two graphs. As in the proof of Theorem 4.2, these
(10m-vertex) graphs will be far from being isomorphic to one another and will form the connected
components of the final n-vertex graph.

Our starting point is the construction of m-vertex graphs that are Ω(m)-robustly self-ordered
(see Theorem 1.4, which uses Theorem 8.2). Recall that (when picking sufficiently small ε > 0),
the vertices in these graphs have degree that ranges between 0.24 ·m and 0.76 ·m. Furthermore,
these graphs have extremely high conductance; that is, in each of these graphs, the number of edges
crossing each cut (in the graph) is at least Ω(m) times the number of vertices in the smaller side
(of the cut).

The idea is to use two such graphs, G1 and G2, one with m
def
= 0.1 · d(n) vertices and the

other with 0.9 · d(n) = 9 · m vertices, and connect them in various ways as done in Section 4.2.
Specifically, using an error correcting code with constant rate and constant relative distance and
weight, denoted C : [2k] → {0, 1}m2

, we obtain a collection of 2k ≥ n/d(n) strongly connected
d(n)-vertex graphs such that the ith graph consists of copies of G1 and G2 that are connected
according to the codeword C(i); more specifically, we use the codeword C(i) (viewed as an m-by-m
matrix) in order to determine the connections between the vertices of G1 and the first 0.1 · d(n)
vertices of G2. The final n-vertex graph, denoted G, consists of n/d(n) connected components that
are the first n/d(n) graphs in this collection.60

The analysis adapts the analysis of the construction presented in the proof of Theorem 4.2.

Towards this analysis, we let G
(i)
j denote the ith copy of Gj ; that is, the copy of Gj that is part of

the ith connected component of G. Hence, for each i ∈ [n/d(n)], the ith connected component of G
is isomorphic to a graph that consists of copies of G1 = ([m], E1) and G2 = ({m+ 1, ..., 10m}, E2)

such that for every u, v ∈ [m] the vertex u (of G
(i)
1 ) is connected to the vertex m + v (of G

(i)
2 ) if

and only if C(i)u,v = 1. Loosely speaking, considering an arbitrary permutation µ : [n] → [n], we
proceed as follows.61

• The discrepancy between the degrees of vertices in copies of G1 and G2 (i.e., degree smaller
than 0.76m + m versus degree at least 0.24 · 9m) implies that each vertex that resides in a

60Note that we used 2k ≥ n/d(n) and m2 = O(k), where m = 0.1 · d(n) >
√
k. This setting allows for handling any

d(n) ≥ O(
√

logn).
61These cases are analogous to the cases treated in the proof of Theorem 4.2, with the difference that we merged

Cases 2&3 (resp., Cases 4&5) into our second (resp., third) case.
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copy of G1 and is mapped by µ to a copy of G2 yields a contribution of Ω(d(n)) units to the
symmetric difference between G and µ(G).

• Let µ′(i) (resp., µ′′(i)) denote the index of the connected component to which µ maps a

plurality of the vertices that reside in G
(i)
1 (resp., of G

(i)
2 ). Then, the extremely high conduc-

tance of G1 (resp., G2) implies that the vertices that resides in G
(i)
1 (resp., of G

(i)
2 ) and are

mapped by µ to a connected component different from µ′(i) (resp., µ′′(i)) yields an average
contribution of Ω(d(n)) units per each of these vertices.

• The lower bound on the number of edges between G
(i)
1 and G

(i)
2 implies that every i such that

µ′(i) 6= µ′′(i) yields a contribution of Ω(d(n)2) units, where we assume that few vertices fell
to the previous case (i.e., are mapped by µ in disagreement with the relevant plurality vote).
(Analogously to the proof of Theorem 4.2, each of these few exceptional vertices reduces the
contribution by at most d(n) units.)

• The Ω(d(n))-robust self-ordering of G1 (resp., G2) implies that each vertex that reside in G
(i)
1

(resp., of G
(i)
2 ) and is mapped by µ to a different location in G

(µ′(i)
1 (resp., in G

(µ′′(i)
2 ) yields

a contribution of Ω(d(n)) units. Again, this assumes that few vertices fell to the penultimate
case, whereas each of these few vertices reduces the contribution by one unit (per each vertex
in the current case).

• The distance between the codewords of C implies that every i such that µ′(i) = µ′′(i) 6= i
yields a contribution of Ω(d(n)2), where we assume that few vertices fell to the previous cases.

As in the proof of Theorem 4.2, there may be a double counting across the different cases, but
this only means that we overestimate the contribution by a constant factor. Overall the size of the
symmetric difference is Ω(d(n)) times the number of non-fixed-points of µ.

Handling smaller degree bounds. Theorem 11.2 is applicable only for degree bounds that are
at least O(log n)0.5. A different construction allows handling degree bounds up to O(log n)0.499,
which leaves a small gap (which we shall close in Theorem 11.5).

Theorem 11.3 (robustly self-ordered graphs for small degree bounds): For every every constant
ε > 0, and every d : N → N such that d(n) ∈ [Ω(1), (log n)0.5−ε] is computable in poly(n)-time,
there exists an efficiently constructable family of graphs {Gn}n∈N such that Gn has maximal degree
d(n) and is Ω(d(n))-robustly self-ordered.

In this case, the graphs will consist of connected components of size Θ(logn)
d(n)·log logn > d(n).

Proof Sketch: Setting m(n)
def
= Θ(logn)

d(n)·log logn > d(n) · (log n)ε, we proceed in three steps.

1. We first tighten the proof of Theorem 6.1 such that it establishes that, with probability at
least 1−exp(−Ω(d(n)·logm(n)) = 1−o(1), a d(n)-regular m(n)-vertex multi-graph generated
by the random permutation model is Ω(d(n))-robustly self-ordered and expanding. The fact
that the proof extends to a varying degree bound is implicit in the proof of Theorem 6.1, and
the higher robustness is obtained by using smaller sets Ji’s (see Footnote 33).
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Then, we extend the argument (as done in Step 1 of Remark 6.2) and show that, for any set G
of t < n multi-graphs (which is each d(n)-regular and has m(n) vertices), with probability at
least 1−t·exp(−Ω(d(n)·logm(n)) = 1−o(1), a random d(n)-regular m(n)-vertex multi-graph
(as generated above) is both Ω(d(n))-robustly self-ordered and expanding and far from being
isomorphic to any multi-graph in G. Here two d(n)-regular m(n)-vertex multi-graphs are said
to be far apart if they disagree on Ω(d(n) · m(n)) vertex-pairs. (Note that the probability
that such a random multi-graph is close to being isomorphic to a fixed multi-graph is at
most exp(−Ω(d(n) ·m(n) log(m(n)/d(n)))) = o(1/n2), where the last inequality is due to the
setting of m(n).)62

Note that this multi-graph may have parallel edges and self-loops, but their number can
be upper-bounded with high probability. Specifically, for t = 1/ε, with probability at least
1−O(d(n)t/m(n)t−1), no vertex has t (or more) self-loops and no vertex is incident to t+ 1
(or more) parallel edges. Hence, omitting all self-loops and all parallel edges leaves us with a
simple graph that is both Ω(d(n))-robustly self-ordered (and expanding) and far from being
isomorphic to any graph in G.

2. Next, using Step 1, we show that one can construct in poly(n)-time a collection of n/m(n)
graphs such that each graph is d(n)-regular, hasm(n) vertices, is Ω(d(n))-robustly self-ordered
and expanding, and the graphs are pairwise far from being isomorphic to one another.

As in Step 2 of Remark 6.2, this is done by iteratively finding robustly self-ordered d(n)-
regular m(n)-vertex expanding graphs that are far from being isomorphic to all prior ones,
while relying on the fact that m(n)d(n)·m(n) = poly(n) (by the setting of m(n)).

3. Lastly, we use the graphs constructed in Step 2 as connected components of an n-vertex
graph, and obtain the desired graph.

Note that we have used m(n) > (log n)ε · d(n) and d(n) · m(n) · logm(n) = Θ(log n), which is
possible if (and only if) d(n) ≤ (log n)0.5−Θ(ε).

Obtaining strongly connected graphs. The graphs constructed in the proofs of Theorems 11.2
and 11.3 consists of many small connected components; specifically, we obtain n-vertex graphs of
maximum degree d(n) with connected components of size max(O(d(n)), o(log n)) that are Ω(d(n))-
robustly self-ordered. We point out that the latter graphs can be transformed into ones with
asymptotically maximal expansion (under any reasonable definition of this term), while preserving
their maximal degree and robustness parameter (up to a constant factor). This is a consequence of
the following general transformation.

Theorem 11.4 (the effect of super-imposing two graphs): For every d, d′ : N→ N and ρ : N→ R,
let G and G′ be n-vertex graphs such that G is ρ(n)-robustly self-ordered and has maximum degree
d(n), and G′ has maximum degree d(n). Then, the graph obtained by super-imposing G and G′ is
(ρ(n)− d′(n))-robustly self-ordered and has maximum degree d(n) + d′(n).

62For starters, the probability that an edge that appears in the fixed multi-graph appears in the random graph is
d(n)/m(n). Intuitively, these events are sufficiently independent so to prove the claim; for example, we may consider
the neighborhoods of the first m(n)/2 vertices in the random graph, and an iterative process in which they are
determined at random conditioned on all prior choices.
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Note that Theorem 11.4 is not applicable to the constructions of bounded-degree graphs obtained
in the first part of this paper, because their robustness parameter was a constant smaller than 1.
(This is due mostly to Construction 2.3, but also occurs in the proof of Theorem 4.2.)63 A typical
application of Theorem 11.4 may use d′(n) = ρ(n)/2 ≥ 3. (Recall that ρ(n) ≤ d(n) always holds.)

Proof: Fixing any permutation µ of the vertex set, note that the contribution of each non-fixed-
point of µ to the symmetric difference between G∪G′ and µ(G∪G′) may decrease by at most d′(n)
units due to G′.

Closing the gap between Theorems 11.2 and 11.3. Recall that these theorems left few
bounding functions untreated; essentially, these were functions d : N → N such that d(n) ∈
[(log n)0.499, O(log n)0.5]. We close this gap now.

Theorem 11.5 (robustly self-ordered graphs for the remaining degree bounds): For every d : N→
N such that d(n) ∈ [(log n)1/3, (log n)2/3] is computable in poly(n)-time, there exists an efficiently
constructable family of graphs {Gn}n∈N such that Gn has maximal degree d(n) and is Ω(d(n))-
robustly self-ordered.

In this case, the graphs will consist of connected components of size 2 log n.

Proof Sketch: We apply the proof strategy of Theorem 11.2, while using the graphs obtained
by combining Theorems 11.2 and 11.4. Specifically, setting ` = log n, while noting that d(n) ≥
`1/3 � O(log `)1/2, we use the construction of `-vertex Ω(d(n))-robustly self-ordered graphs of
degree at most d(n)/2 that are expanding, which is obtained by combining the latter two results.
Furthermore, we shall use the fact that these graphs have degree at least d(n)/200, and will also
use the same construction with degree bound d(n)/300. Using these two graphs, we shall construct
n/2` different `-vertex graphs that are far from being isomorphic to one another, and these will
form the connected components of the final n-vertex graph.

Our starting point is the construction of `-vertex graphs that, for some constant γ ∈ (0, 1),
are γ ·d(n)-robustly self-ordered and have maximum degree d(n)/4 and minimum degree d(n)/100.
Such graphs are obtained by Theorem 11.2, while setting m = d(n)/40. Using Theorem 11.4 (with
d′(n) = γ·d(n)/4), we transform these graphs to ones of maximum degree d(n)/2 and asymptotically
maximal conductance (i.e., in each of these graphs, the number of edges crossing each cut (in the
graph) is at least Ω(d(n)) times the number of vertices in the smaller side (of the cut)). We denote
the resulting graph G1, and apply the same process while setting m = d(n)/600 so to obtain a
graph of maximum degree d(n)/300, denoted G2.

Next, we connect G1 and G2 in various ways so to obtain n/2` graphs that are far from being
isomorphic to one another. This is done by a small variation on the proof of Theorem 11.2.
Specifically, we fix d(n)/2 disjoint perfect matchings between the vertices of G1 and the vertices
G2, and use the error correcting code to determine which of these ` · d(n)/2 = ω(log n) edges
to include in the code. More specifically, using an error correcting code with constant rate and
constant relative distance and weight, denoted C : [2k] → {0, 1}`·d(n)/2, we obtain a collection of
n/2` < 2k strongly connected 2`-vertex graphs such that the ith graph consists of copies of G1 and
G2 that are connected according to the codeword C(i); that is, the (r, c)th bit of the codeword C(i)

63In contrast, the construction of Theorem 11.3, which builds upon the proof of Theorem 6.1, does yield Ω(d)-
robustly self-ordered graphs of maximum degree d, for sufficiently large constant d.
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(viewed as an d(n)/2-by-` matrix) determines whether the cth edge of the rth matching is included
in the ith graph. The final n-vertex graph, denoted G, consists of these n/2` graphs as its connected
components.

The analysis is almost identical to the analysis provided in the proof of Theorem 11.2, since the
key facts used there hold here too (although the construction is somewhat different). The key facts
are that the degrees of vertices in G1 and G2 differ in Ω(d(n)) units, that the relative conductance
of the connected components is Ω(d(n)), that G1 and G2 are both Ω(d(n))-robustly self-ordered,
and that the bipartite graphs (used in the different connected components) are far away from one
another.
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Appendix: On Definitions of Non-Malleable Two-Source Extractor

Recall that Definition 8.1 differs from [7, Def. 1.3] only in the scope of the “tampering functions”
f and g. Whereas Definition 8.1 requires both f and g to have no fixed-point, in [7, Def. 1.3] it
is only required that either f or g has no fixed-point. In both cases, the extraction condition is
captured by Eq. (18) and is applied to the eligible functions f and g (and to random variables X
and Y of sufficiently high min-entropy).

We show that Definition 8.1 is strictly weaker than [7, Def. 1.3]. To see this, let E : {0, 1}n−1×
{0, 1}n → {0, 1}m be a non-malleable extractor under [7, Def. 1.3] (say, for constant error and
constant deficiency). Actually, we will only use the hypothesis that Eq. (18) holds for f and g such
that g has no fixed-point (i.e., we make no requirement of f). Now, let E′(bx′, y) = E(x′, y), where
b ∈ {0, 1}.

1. Clearly, E′ violates Eq. (18) for g(y) = y and f(bx′) = bx′, where b = 1−b, since E′(f(bx′), g(y)) =
E(x′, y) = E′(bx′, y). Hence, E′ does not satisfy [7, Def. 1.3].

2. To see that E′ satisfies Definition 8.1, consider any f and g that have no fixed-points, and
distributions X = (B,X ′) and Y of low deficiency. Define a random process F : {0, 1}n−1 →
{0, 1}n such that F (x′) = f(bx′), where b is selected according to the residual distribution of
B conditioned on X ′ = x′ (i.e., Pr[F (x′) = z] = Pr[f(X) = z|X ′ = x′]). Then, letting f ′(x)
(resp., F ′(x′)) be the (n− 1)-bit suffix of f(x) (resp., of F (x′)), we have

(E′(X,Y ), E′(f(X), g(Y ))) = (E(X ′, Y ), E(f ′(BX ′), g(Y )))

= (E(X ′, Y ), E(F ′(X ′), g(Y ))),

which is close to (Um, E(F ′(X ′), g(Y ))), by the hypothesis regrading E (since g has no fixed-
point), while also using a convexity argument (for F ′). Using (Um, E(F ′(X ′), g(Y ))) =
(Um, E

′(F (X ′), g(Y ))) = (Um, E
′(f(X), g(Y ))), we conclude that (E′(X,Y ), E′(f(X), g(Y )))

is close to (Um, E
′(f(X), g(Y ))).
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