
Almost-Everywhere Circuit Lower Bounds from Non-Trivial
Derandomization

Lijie Chen
MIT

lijieche@mit.edu

Xin Lyu
Tsinghua University

lvx17@mails.tsinghua.edu.cn

R. Ryan Williams
MIT

rrw@mit.edu

Abstract

In certain complexity-theoretic settings, it is notoriously difficult to prove complexity separations
which hold almost everywhere, i.e., for all but finitely many input lengths. For example, a classical
open question is whether NEXP ⊂ i.o.-NP; that is, it is open whether nondeterministic exponential time
computations can be simulated on infinitely many input lengths by NP algorithms. This difficulty also
applies to Williams’ algorithmic method for circuit lower bounds [Williams, J. ACM 2014]. In particular,
although [Murray and Williams, STOC 2018] proved NTIME[2polylog(n)] 6⊂ ACC0, it has remained an
open problem to show that ENP (2O(n) time with an NP oracle) is not contained in i.o.-ACC0.

In this paper, we show how many infinitely-often circuit lower bounds proved by the algorithmic
method can be adapted to establish almost-everywhere lower bounds.

• We show there is a function f ∈ ENP such that for all sufficiently large input lengths n and
ε ≤ o(1), f cannot be (1/2 + 2−nε

)-approximated by 2nε
-size ACC0 circuits on inputs of length

n, improving lower bounds in [Chen and Ren, STOC 2020] and [Viola, ECCC 2020].

• We construct rigid matrices in PNP for all but finitely many inputs, rather than infinitely often as
in [Alman and Chen, FOCS 2019] and [Bhangale et al., FOCS 2020].

• We show there are functions in ENP requiring constant-error probabilistic degree at least Ω(n/ log2 n)
for all large enough n, improving an infinitely-often separation of [Viola, ECCC 2020].

Our key to proving almost-everywhere worst-case lower bounds is a new “constructive” proof of an
NTIME hierarchy theorem proved by [Fortnow and Santhanam, CCC 2016], where we show for every
“weak” nondeterminstic algorithm (with smaller running-time and short witness), a “refuter algorithm”
exists that can construct “bad” inputs for the hard language. We use this refuter algorithm to construct
an almost-everywhere hard function. To extend our lower bounds to the average case, we prove a new
XOR Lemma based on approximate linear sums, and combine it with the PCP-of-proximity applications
developed in [Chen and Williams, CCC 2019] and [Chen and Ren, STOC 2020]. As a byproduct of our
new XOR Lemma, we obtain a nondeterministic pseudorandom generator for poly-size ACC0 circuits
with seed length polylog(n), which resolves an open question in [Chen and Ren, STOC 2020].

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 150 (2020)

1 Introduction

Proving unconditional circuit lower bounds for explicit functions (with the flagship problem of NP 6⊂
P/poly) is one of the central problems in theoretical computer science. In the 1980s, considerable progress
was made in proving lower bounds for constant-depth circuits, as first steps towards lower bounds for gen-
eral circuits. The classical works [Ajt83, FSS84, Yao85, Hås89] culminated in exponential lower bounds for
AC0 (constant depth circuits consisting of unbounded fan-in AND/OR gates). The works [Raz87, Smo87]
established exponential lower bounds for AC0[q] (AC0 circuits with MODq gates) for prime power q.

Unfortunately, the progress in the 1980s did not go much further: lower bounds for AC0[m] have been
extremely difficult to establish for composite m, although it has been conjectured that AC0[m] cannot com-
pute the Majority function. In fact, it was a notorious open question whether NEXP (nondeterministic
exponential time) has polynomial-size ACC0 circuits.1 Several years ago, Williams [Wil14] finally proved
such a lower bound, via an algorithmic approach to circuit lower bounds [Wil13]. Combining many results
from classical complexity, such as the nondeterministic time hierarchy theorem [SFM78, Žák83], hardness
vs randomness [NW94], and the PCP Theorem [ALM+98, AS98], Williams’ work shows how nontrivial
circuit-analysis algorithms can be generically applied to prove circuit lower bounds.

Developments after NEXP 6⊂ ACC0. The separation NEXP 6⊂ ACC0 had several drawbacks compared
to the classical lower bounds of the 80s. The most significant drawback was that NEXP is a much larger
class than our ultimate goal NP (previous lower bounds for AC0 or AC0[p] usually work for functions in P).
Murray and Williams improved this state of affairs significantly by showing NQP := NTIME[2polylog(n)] is
not contained in ACC0 [MW20].2

Another drawback is that the algorithmic approach [Wil14, MW20] only yielded worst-case lower
bounds, while prior lower bounds for AC0 or AC0[p] can often be adapted to hold in the average case
(e.g., [HRST17]). A line of recent work [COS18, CW19, Che19, CR20] generalizes the algorithmic ap-
proach to the average-case setting, culminating in the result that NQP cannot be (1/2 + 1/poly(n))-
approximated by (polynomial-size) ACC0 circuits [CR20].

The Infinitely-Often Separation Drawback. All the aforementioned developments significantly expand
the reach of the algorithmic method. However, there has remained a subtle but important drawback of
the algorithmic method: it only achieves infinitely-often separations. For example, [MW20] shows there
is an NQP function f such that, for every polynomial-size ACC0 circuit family {Cn}, there are infinitely
many input lengths n such that Cn fails to compute f on n-bit inputs. This certainly implies the separation
NQP 6⊂ ACC0, but it could be the case that for nearly every input length NQP is easy for ACC0, and NQP

is only hard on extremely rare input lengths n, e.g., n = 222k
for k ∈ N. In a case where the hard input

lengths are so far apart, practically the situation is not very different from NQP ⊂ ACC0. In fact, it has
remained open whether ENP is contained infinitely-often in ACC0.

The Infinitely-Often Barrier in Complexity Theory. Ideally, we desire almost-everywhere separations:
we want a function f = { fn : {0, 1}n → {0, 1}} so that for all sufficiently large input lengths n, fn
cannot be computed by any ACC0 circuit (in notation, we would say f /∈ i.o.-ACC0). Most previous lower
bounds for AC0 and AC0[p] are almost-everywhere: they show f 6∈ i.o.-AC0 or f 6∈ i.o.-AC0[p] for some
f . Indeed, most combinatorial/algebraic lower bound approaches argue hardness for each input length sep-
arately, so they naturally give lower bounds for all input lengths. However, in structural complexity theory,
arguments often involve different input lengths simultaneously, and it is common that in some settings

1This had been stressed several times as one of the most embarrasing open questions in complexity theory, see [AB09]. Note
that ACC0 denotes the union of AC0[m] for all constant m.

2Note that there is another notion of NQP [ADH97] (Nondeterministic Quantum Polynomial-Time) in the literature based on
quantum complexity, but it turns out to equal coC=P [FGHP99].

1

almost-everywhere separations are much harder to achieve than corresponding infinitely-often separations.
Two classical examples include:

• (An Almost-Everywhere NTIME Hiearchy is Open.) It is known that NTIME[2n] 6⊂ NTIME[2n/n] [SFM78,
Žák83], but it is open whether NTIME[2n] ⊂ i.o.-NTIME[n log n]. (Indeed, there is an oracle O such
that NEXPO ⊂ i.o.-NPO [BFS09].)

• (An Almost-Everywhere Super-Linear Circuit Lower Bound for MATIME[2n] is Open.) It is known
that MA/1 6⊂ SIZE(nk) for all k and MATIME[2n] 6⊂ P/poly, but it is open whether MATIME[2n] ⊂
i.o.-SIZE(O(n)). (Indeed, it is even open whether Σ2TIME[2n] ⊂ i.o.-SIZE(O(n))).

Other examples include fixed-polynomial lower bounds for the complexity classes NPNP = Σ2P [Kan82],
ZPPNP [BCG+96, KW98], S2P [Cai07, CCHO05], PP [Vin05, Aar06], time-space trade-off for solving
SAT [FLvMV05, Wil07], and hierarchy theorems such as [Bar02, FS04, vMP06]. All of these lower bounds
only provide an infinitely-often separation, and it is open to prove an almost-everywhere separation. There
are also interesting algorithmic results motivated by complexity concerns, which are only guaranteed to
work for infinitely many input lengths (e.g., [Kab01, Wil16, OS17]).

1.1 Our Results

In this work, we achieve almost-everywhere circuit lower bounds with the algorithmic approach. To formally
discuss our results, we briefly recall two circuit-analysis problems.

1. CAPP: Given a circuit C of size S, estimate the probability that C accepts a uniformly random input
within an additive error of 1/S.

2. Gap-UNSAT: Given a circuit C, distinguish between the case that C is unsatisfiable and the case that
C has at least 2n/3 satisfying assignments.

1.1.1 Almost-Everywhere Circuit Lower Bounds From Non-Trivial Derandomization

Our first result is that “non-trivial derandomization” for a circuit class C implies almost-everywhere C -
circuit lower bounds for ENP. In the following, we say that a circuit class C is typical if C is closed under
projections and negations. (See Section 3 for a formal definition.)

Theorem 1.1. There are universal constants ε ∈ (0, 1), K ≥ 1 satisfying the following. Let C be typical,
and let s(n) be a non-decreasing time-constructible function with n ≤ s(n) ≤ 2εn for all n. If Gap-UNSAT
on AND ◦ OR ◦ C circuits of size s(n)K can be solved deterministically in 2n/nω(1) time, then there are
functions in ENP that do not have C circuits of size s(n/2), for every sufficiently large n.

An Extension to Average-Case Lower Bounds. Combining PCPs of Proximity and a new XOR Lemma
(see Section 1.2.2), we can extend the above theorem to prove strong average-case lower bounds. We say
that a function f : {0, 1}n → {0, 1} cannot be (1/2+ ε)-approximated by circuits of type C, if every circuit
from C computes f correctly on less than (1/2 + ε)2n of the n-bit inputs. For a language L : {0, 1}? →
{0, 1}, we use Ln : {0, 1}n → {0, 1} to denote its restriction to n-bit inputs.

Theorem 1.2. Let C be typical. Suppose there is an ε > 0 such that CAPP of 2nε
-size AND4 ◦ C circuits

can be deterministically solved in 2n−nε
time. Then there is a language L ∈ ENP and a constant δ > 0 such

that, for every sufficiently large n, Ln cannot be (1/2 + 2−nδ
)-approximated by C circuits of size 2nδ

.

The above results have several applications to complexity lower bounds and pseudorandom generators.
We will discuss them separately.

2

1.1.2 Applications in Complexity Lower Bounds

Almost-Everywhere Strong Average-Case Exponential Lower Bounds for ACC0 ◦ THR.3 Combining
Theorem 1.2 and the corresponding #SAT algorithm from [Wil18a] for ACC0 ◦THR, the almost-everywhere
strongly average-case lower bound for ENP against ACC0 ◦ THR follows immediately.

Recall that for a given d, m ∈ N, AC0
d[m] is the class of circuit families of depth d, with unbounded

fan-in AND, OR, MODm gates, and ACC0 :=
⋃

d,m AC0
d[m].

Corollary 1.3. For every d, m ∈ N, there is an ε = εd,m and a language L ∈ ENP such that Ln cannot be
(1/2 + 2−nε

)-approximated by AC0
d[m] ◦ THR circuits of 2nε

size, for every sufficiently large n.

Corollary 1.3 compares favorably with prior circuit lower bounds for problems in ENP. Williams [Wil14,
Wil18a] proved that ENP cannot be worst-case computed by 2no(1)

size ACC0 ◦ THR circuits. Following the
work of Rajgopal, Santhanam and Srinivasan [RSS18], Viola [Vio20] recently proved ENP cannot be (1/2+
1/n1−ε)-approximated by 2no(1)

-size AC0[⊕] circuits. Chen and Ren [CR20] recently proved that ENP

cannot be (1/2 + g(n)−1)-approximated by g(n)-size ACC0 circuits, where g is any sub-half-exponential
function.4 All of these lower bounds are only infinitely-often separations, and yield strictly weaker average-
case lower bounds than Corollary 1.3.

We also remark that [FS17] devised a notion of “significant separation”, which is stronger than infinitely-
often separation while weaker than almost-everywhere separation.5 They showed a significant separation of
NEXP and ACC0. This is incomparable with almost-everywhere separation for ENP.

Almost-Everywhere Construction of Rigid Matrices with an NP Oracle. The problem of efficiently
constructing rigid matrices is a longstanding open problem in complexity theory [Val77, Lok09].

Definition 1.4. Let F be a field. For r, n ∈ N and a matrix M ∈ Fn×n, the r-rigidity of M, denoted as
RM(r), is the minimum Hamming distance between M and a matrix of rank at most r.

Alman and Chen [AC19] recently showed that rigid matrices over the field F2 (similar results hold for
all fields of constant order) with interesting parameters (considered by [Raz89] for connections to commu-
nication complexity) could be constructed infinitely often in PNP via the algorithmic method. Their proof
has been simplified and improved by Bhangale et al. [BHPT20]. Formally, [BHPT20] construct a PNP al-
gorithm M which, for infinitely many n, M(1n) outputs a matrix Hn such that RHn(2

log1−ε n) ≥ δn2 over
F2.6

Applying similar ideas from the proof of Theorem 1.1 and Theorem 1.2, we can strengthen their con-
struction to an almost-everywhere one.

Theorem 1.5. There is a δ > 0 such that, for all finite fields F and ε > 0, there is a PNP algorithm which
on input 1n outputs an n× n matrix H satisfyingRH(2log1−ε n) ≥ δn2 over F, for all large enough n.

Almost-Everywhere Probabilistic Degree Lower Bounds. The notion of probabilistic degree for Boolean
functions has been studied extensively for decades. Let us recall the definition.

3ACC0 ◦ THR denotes the class of constant-depth circuits comprised of AND, OR and MODm gates (for a constant m > 1),
with a bottom layer of gates computing arbitrary linear threshold functions.

4We say that g is sub-half-exponential if g(g(n)) = 2no(1)
.

5Roughly speaking, “significant separation” means that when the separation holds for an input length n, there is another input
length at most polynomially larger than n such that the separation also holds. That is, the hardness cannot be very “sparsely
distributed”.

6[BHPT20] (and also [AC19]) indeed achieved a nondeterministic construction. That is, there is a nondeterministic algorithm
M such that for infinitely many n: (1) On a computational path, M(1n) either outputs a valid rigid matrix or “failed”. (2) There
exists at least one computational path that M(1n) outputs a valid rigid matrix. In this paper we focus on PNP constructions since
they give a single rigid matrix.

3

Definition 1.6. The ε-error probabilistic degree of a function f : {0, 1}n → {0, 1} is the minimum d such
that there is a distribution D on F2-polynomials of degree at most d such that PrP∼D[P(x) 6= f (x)] ≤ ε.
When ε is not specified, it is assumed to be 1/3 by default.

Very recently, Viola [Vio20] proved an Ω(n/ log2 n) probabilistic degree lower bound for ENP using
the algorithmic method. We extend his result to the almost-everywhere case.

Theorem 1.7. There is a language L : {0, 1}? → {0, 1} in ENP such that Ln has 1/3-error probabilistic
degree at least Ω(n/ log2 n), for every sufficiently large n.

Almost-Everywhere Exponential Correlation Bounds against n1/2−δ-Degree F2-Polynomials. Com-
bining the proof technique of the main theorem and an improved XOR Lemma (introduced in the next
subsection), we can also prove a strong inapproximability result for low-degree polynomials for a problem
in ENP.

Theorem 1.8. For all δ > 0, there is a language L : {0, 1}? → {0, 1} in ENP such that Ln cannot be
(1/2 + 2−nΩ(1)

)-approximated by n1/2−δ degree F2-polynomials, for every sufficiently large n.

The previous best known correlation bound against n1/2−δ-degree F2-polynomials was only 1/2+ n−δ

for the Majority function [Raz87, Smo87, Smo93], and this degree/approximation tradeoff is indeed tight
for Majority [Vio19].

1.1.3 Applications to Pseudorandom Generators

Following the known connection between average-case hardness and construction of PRGs [NW94], we
obtain two different constructions of PRGs for ACC0, both with the near-optimal polylog(n) seed length.
Our first PRG works for all input lengths, while is only computable in ENP. Our second construction obtains
a nondeterministic pseudorandom generator (NPRG) (see Section 3.3 for a formal definition), which is a
weaker class compared to ENP-computable PRGs. But the NPRG only works for infinitely many input
lengths.

The following ENP-computable PRG is a direct consequence of our average-case lower bound for ACC0

(Corollary 1.3).

Theorem 1.9. For all constants d and m, there is δ = δ(d, m) > 0 and an ENP-computable PRG which,
takes an n-bit seed and outputs a 2nδ

-bit string, fooling AC0
d[m] circuits of size 2nδ

.

Our proof technique can also be used to construct an infinitely-often NPRG against ACC0 circuits with
polylog(n) seed length. This significantly improves upon the previous work by Chen and Ren [CR20], and
answers one of their open questions.

Theorem 1.10. For all constants d and m, there is δ = δ(d, m) > 0 and an i.o.-NPRG which takes n-bit
seeds, runs in 2O(n) time, and outputs 2nδ

-bit strings fooling AC0
d[m] circuits of size 2nδ

.

Remark 1.11. We remark that our NPRG and ENP-computable PRG also work for other circuit classes C ,
given non-trivial CAPP algorithms for slightly larger circuit classes C ′. See Section 6 and Section 7 for the
details.

1.2 Two Technical Tools

To achieve our almost-everywhere strongly average-case lower bounds, we develop two new technical tools.
The first is a “constructive” proof of the almost-everywhere sublinear witness NTIME hierarchy of Fortnow

4

and Santhanam [FS16] which builds a PNP algorithm that can explicitly find inputs on which the weak
algorithms make mistakes. The second is an XOR Lemma based on computations by approximate linear
sums. We believe both results are interesting in their own right, and will likely have other applications in
computational complexity. In the following we state both of them informally. Check Section 2 for a more
in-depth discussion on these two new tools, and why they come up naturally in our lower bound proofs.

1.2.1 An Almost-Everywhere (Sublinear Witness) NTIME Hierarchy with Refuter

A critical piece of Williams’ proof that NEXP 6⊂ ACC0 (and later work) is the NTIME hierarchy [SFM78,
Žák83]. However, as mentioned earlier, that hierarchy is only known to hold infinitely-often; consequently,
the resulting circuit lower bounds fail to be almost-everywhere, and extending the NTIME hierarchy to hold
almost-everywhere is notoriously open.

Nevertheless, Fortnow and Santhanam [FS16] managed to prove an almost-everywhere NTIME hierar-
chy for a restricted subclass of NTIME, where the “weak” nondeterministic machines (being diagonalized
against) use witnesses of length less than n bits. Let NTIMEGUESS[t(n), g(n)] be the class of languages
decided by nondeterministic algorithms running in O(t(n)) steps and guessing at most g(n) bits. Fortnow
and Santhanam proved there is a language L in nondeterministic O(T(n)) time that is not decidable, even
infinitely-often, by nondeterministic o(T(n))-time n/10-guess machines:

Theorem 1.12. For every time-constructible function T(n) such that n ≤ T(n) ≤ 2poly(n), NTIME[T(n)] 6⊂
i.o.-NTIMEGUESS[o(T(n)), n/10].

Our most important new ingredient is the construction of a “refuter” for the hierarchy of Theorem 1.12:
an algorithm with an NP oracle which can efficiently find bad inputs for any NTIMEGUESS[o(T(n)), n/10]
machine.

Theorem 1.13 (Refuter with an NP Oracle, Informal). For every time-constructible function T(n) such that
n ≤ T(n) ≤ 2poly(n), there is a language L ∈ NTIME[T(n)] and an algorithmR such that:

1. Input. The input toR is a pair (M, 1n), with the promise that M describes a nondeterministic Turing
machine running in o(T(n)) time and guessing at most n/10 bits.

2. Output. For every fixed M and every sufficiently large n,R(M, 1n) outputs a string x ∈ {0, 1}n such
that M(x) 6= L(x).

3. Complexity. R runs in poly(T(n)) time with adaptive access to an SAT oracle.

SinceR can find counterexamples to any faster algorithm attempting to decide L, we callR a refuter.

Applying the above refuter construction instead of the general NTIME hierarchy in the original proof
of [Wil14], we can achieve almost-everywhere circuit lower bounds.

Other Explicit Refuters for Complexity Separations. It is instructive to compare our refuter construc-
tion to other refuter constructions, such as [BTW10, GST07, Ats06]. They showed that, assuming certain
complexity separations (NP 6= P, NP 6⊂ BPP or NP 6⊂ P/poly), one can construct a refuter which takes a
corresponding algorithm A claimed to solve SAT, and outputs for infinitely many n a counter-example xn
of length n such that A fails to solve SAT on xn. All these refuters are conditional, in the sense that they
assumed the (unproven) hypothesis such as NP 6= P, while our refuter is designed to witness the already
proven NTIME hierarchy theorem of [FS16].

5

1.2.2 An XOR Lemma Based on Approximate Linear Sums of Circuits

Our second important technical ingredient—critical to our average case lower bounds—is a new XOR
Lemma based on approximate linear sums of circuits. The XOR Lemma (originally due to Yao [GNW95])
says that if an n-bit Boolean function f cannot be weakly approximated (e.g., 0.99-approximated) by small
circuits, then the kn-bit Boolean function f⊕k cannot be strongly approximated (e.g., (1/2 + 2−Ω(k))-
approximated) by smaller and simpler circuits.7

It is tempting to apply the XOR Lemma directly, to try to prove strong average-case lower bounds for
ACC0 (or AC0[2]) given that weak bounds are known. However, when we apply the XOR Lemma to a
restricted circuit class C , the most refined analysis of the XOR Lemma [Imp95, Kli01] still only shows that
0.99-inapproximability for MAJORITYt2 ◦ C computing f implies (1/2 + 1/t)-inapproximability for C
computing f⊕k, where k = O(log t). That is, applying the XOR Lemma to show strong-average case lower
bounds for ACC0, evidently requires proving weak average-case lower bounds for MAJORITY ◦ACC0. But
this task seems just as hard as proving strong average-case lower bounds in the first place!

We avoid this issue by proving a new kind of XOR Lemma, based on Levin’s proof of the XOR
Lemma [Lev87]. For a circuit class C , we define the class of linear combinations [0, 1]Sum ◦ C , where
an n-input circuit C from the class has the form C(x) := ∑i αi · Ci(x), where each αi ∈ R and Ci ∈ C ,
and C satisfies the promise that C(x) ∈ [0, 1] for all x ∈ {0, 1}n. The complexity of C is defined to be the
maximum of ∑i |αi| and the sum of the sizes of each Ci.

Our new XOR Lemma shows that if a Boolean function f cannot be well-approximated by linear com-
binations of C circuits on average, then f⊕k is strongly average-case hard for C circuits. The flexibility
afforded by linear combinations allows us to improve our results to strong average-case lower bounds.

Theorem 1.14 (New XOR Lemma, Informal). For every δ < 1
2 , for every function f : {0, 1}n → {0, 1}, if

there is no [0, 1]Sum◦C circuit C : {0, 1}n → [0, 1] of complexity poly(s, n, 1/δ) such that Ex∈{0,1}n |C(x)−
f (x)| ≤ δ, then f⊕k cannot be (1/2 + 1/s)-approximated by s-size C circuits, for k = Θ

(
δ−1 log s

)
.

2 Technical Overview

In this section we provide more intuition behind our almost-everywhere lower bounds. We split the discus-
sion into two parts, one for each main technical ingredient.

• In Section 2.1, we demonstrate how to use our new refuter concept (and why it comes up naturally)
to prove almost-everywhere ENP lower bounds. With this powerful concept, we can automatically
strengthen most of the previous ENP lower bounds proved via the algorithmic method, except for the
strong average-case lower bounds in [CR20].

• In Section 2.2, we show how to use an XOR Lemma for approximate linear combinations of circuits,
to prove a strong average-case almost-everywhere lower bounds for ENP.

2.1 Almost-Everywhere Lower Bounds for ENP and the Refuter

To explain the intuition behind our almost-everywhere circuit lower bounds, it is instructive to first recall
how Williams [Wil14] proved that ENP does not have 2no(1)

-size ACC0 circuits, and understand why that
approach only achieves an infinitely-often separation.

7The function f⊕k partitions its kn-bit input into k blocks x1, x2, . . . , xk of length n each, and outputs
⊕k

i=1 f (xi).

6

2.1.1 Review of ENP Not in ACC0

A Nondeterministic Algorithm ALhard That Can’t Be Improved. By the NTIME hierarchy [SFM78,
Žák83], we know there is a language Lhard ∈ NTIME[2n] \NTIME[2n/n]. LetALhard be a nondeterministic
O(2n)-time algorithm deciding Lhard.

A “Cheating” AlgorithmAPCP Trying to Speed UpALhard . Assume we have non-trivial derandomization
algorithms for ACC0, i.e., there is a 2n/nω(1)-time algorithm for deciding Gap-UNSAT on ACC0 circuits
of n inputs and 2no(1)

size. A key idea in [Wil14, Wil13] is to combine probabilistically checkable proofs
(PCPs) and non-trivial Gap-UNSAT algorithms to design a nondeterministic algorithm APCP that tries to
“speed up” the algorithm ALhard , as follows:

• Given an input x ∈ {0, 1}n, APCP applies an efficient PCP reduction (e.g., [BV14]) to ALhard(x).
For ` = n + Θ(log n), we obtain a verifier oracle circuit VPCPx(r) : {0, 1}` → {0, 1} with the
following properties.

(Simplicity) VPCPx is an oracle circuit with gates for a function O : {0, 1}` → {0, 1}. VPCPx has
very simple structure, so that if O is an ACC0 circuit, then the composed circuit VPCPOx is also
in ACC0.

(Completeness) If x ∈ Lhard, then there is an oracle O such that Prr∈{0,1}` [VPCPOx (r) = 1] = 1.

(Soundness) If x 6∈ Lhard, then for all oracles O, Prr∈{0,1}` [VPCPOx (r) = 1] ≤ 1/3.

• Next,APCP guesses an ACC0 circuit C of size 2no(1)
. By the simplicity property, VPCPC

x (with oracle
C) is also an ACC0 circuit of 2no(1)

size. Running the assumed Gap-UNSAT algorithm for ACC0 on the
circuit D = ¬VPCPC

x , we can distinguish between the case that D is unsatisfiable (which happens
for someO, if x ∈ Lhard) and the case that Prx[D(x)] ≥ 2/3 (which happens for allO, if x /∈ Lhard).
Therefore, we accept if and only if our Gap-UNSAT algorithm returns ”unsatisfiable”.

Intuitively, APCP wants to “cheat” in the computation of Lhard by only considering oracles of small
circuit complexity.

The ENP Lower Bound. Note that the nondeterministic algorithm APCP indeed runs faster than 2n time:
the running time of APCP is dominated by the running time of the non-trivial derandomization algorithm,
which is o(2n/n). Therefore, we know that APCP ∈ NTIME[o(2n/n)], and hence it cannot compute Lhard

by the NTIME hierarchy theorem.
We conclude that, for infinitely many n, there is a “bad input” xn ∈ {0, 1}n such that APCP(xn) rejects

but xn ∈ Lhard.8 For those xn ∈ Lhard, the completeness of the PCP implies there is an oracle O such that
VPCPOxn

(r) = 1 for all r, but no such oracle admits 2no(1)
-size ACC0 circuit —otherwise,APCP would have

guessed it, and APCP(xn) would accept instead. Therefore, constructing a description of the oracle O is
tantamount to constructing a function without small ACC0 circuits.

We can now design the hard ENP language as follows: on an input x of length 2n + O(log n), split x
into two parts x1 and x2 such that |x1| = n. Using an NP oracle, we search for the lexicographically-first
oracle O : {0, 1}` → {0, 1} for the verifier VPCPx1 (that is, VPCPOx1

(r) = 1 for all r). Finally, we output
O(x2). If there is an xn ∈ {0, 1}n such that APCP(xn) rejects but xn ∈ Lhard, this ENP algorithm has high
ACC0 circuit complexity on input length 2n + O(log n).

8Note it is impossible that APCP(xn) accepts but xn /∈ Lhard, as APCP only guesses over a proper subset of all possible
witnesses.

7

Input and Advice. In the above, the input x is split into two parts x1 and x2. The part x1 behaves as “advice”
specifying the “bad input” on whichAPCP and Lhard differ. The part x2 is the input to the constructed oracle
O. Luckily for us, the length of the advice is roughly the same as the input length to the oracle, so it does
not affect the hardness of the overall function. For example, a hardness result superpolynomial in |x2| is
also superpolynomial in |x1|+ |x2|, since we assumed |x1| = O(|x2|)).

The NTIME Hierarchy Barrier. Let us examine the above proof outline more carefully. The analysis
shows that the language decided by our ENP algorithm is hard on inputs of length 2n, provided that APCP

and Lhard give different outputs when they are restricted to inputs of length n. From the NTIME hierarchy
and the fact that APCP ∈ NTIME[O(2n/n)], we conclude there must be infinitely many such n.

The above argument would yield an almost-everywhere separation, if we could show that Lhard and
APCP are different on all sufficiently large input lengths. However, this would apparently require showing
NTIME[2n] 6⊂ i.o.-NTIME[2n/n], and such an almost-everywhere separation is a notoriously hard open
problem—it is even open whether NEXP ⊂ i.o.-NP! It seems hopeless to make progress using the above
framework, without making breakthrough progress on an almost-everywhere NTIME hierarchy.

First Observation: APCP Guesses Short Witnesses. Here we make an important observation that bypasses
the above barrier. For the above proof to work, Lhard only needs to be hard for the specific algorithm APCP,
not necessarily all nondeterministic o(2n/n)-time algorithms. In other words, we do not need the full
power of an almost-everywhere NTIME hierarchy. Therefore, it is natural to examine what properties of the
specific algorithm APCP we can exploit.

One way in which APCP is very different from a general O(2n)-time nondeterministic algorithm is that
it makes a considerably smaller number of guesses: only 2no(1)

. Such restricted versions of NTIME have
been studied before, under the guise of bounded nondeterminism. We use NTIMEGUESS[t(n), g(n)] to
denote the class of languages decidable by nondeterministic algorithms using O(t(n)) steps and guessing
at most g(n) witness bits. Fortnow and Santhanam [FS16] showed that when g(n) is sublinear, one can
establish an almost-everywhere NTIME hierarchy.

Reminder of Theorem 1.12. For every time-constructible function T(n) such that n ≤ T(n) ≤ 2poly(n),
NTIME[T(n)] 6⊂ i.o.-NTIMEGUESS[o(T(n)), n/10].

Trying a New Approach. A natural proposal is to apply Theorem 1.12 instead of the general NTIME
hierarchy. For that purpose, we have to choose our parameters carefully so that APCP makes few guesses.
Let us check what happens when we rely on Fortnow and Santhanam’s almost-everywhere hierarchy instead
in our design of APCP. Our pseudocode below will fail, but studying how to fix it will lead to a correct
lower bound proof.

1. Suppose we have a non-trivial circuit analysis algorithm (for CAPP or Gap-UNSAT) for ACC0 circuits
of size 2nε

. Set k < 1
ε and T(n) = 2logk n. Let Lhard be a language in NTIME[T(n)] but not

in i.o.-NTIMEGUESS[o(T(n)), n/10]. Let ALhard be an O(T(n))-time nondeterministic algorithm
deciding L.

2. Given an input x of length n, APCP applies the PCP reduction (e.g. [BV14]) to ALhard(x). For
` = logk n + O(log log n), we obtain a verifier oracle circuit VPCPx : {0, 1}` → {0, 1}, with three
properties.

(Simplicity) VPCPx calls an oracle O : {0, 1}` → {0, 1}. VPCPx has very simple structure such
that if O is an ACC0 circuit, then so is the composed circuit VPCPOx .

(Completeness) If x ∈ Lhard, then there is an oracle O such that Prr∈{0,1}` [VPCPOx (r) = 1] = 1.

8

(Soundness) If x 6∈ Lhard, then for all oracle O, Prr∈{0,1}` [VPCPOx (r) = 1] ≤ 1/3.

3. Next, APCP guesses an ACC0 circuit C of size 2`
ε ≤ o(n) (since k < ε−1). Note that VPCPC

x is also
an ACC0 circuit of 2O(`ε) size, by the simplicity property. Then, we use our non-trivial circuit analysis
algorithm to estimate the acceptance probability of VPCPC

x (·), and accept if and only if the estimate
is ≥ 1/2.

This new APCP runs in o(T(n)) time, and guesses at most n/10 bits of witness, so its language is
in NTIMEGUESS[o(T(n)), n/10]. Hence, for all large enough n, there is an xn ∈ {0, 1}n such that
xn ∈ Lhard while APCP rejects xn. Consequently, by a similar analysis as in Section 2.1.1, we have: (1)
there is an oracle O such that VPCPOx (r) = 1 for all r, and (2) no such oracle has 2`

ε
size ACC0 circuits.

Therefore, for all large enough n, there is an xn ∈ {0, 1}n such that the lexicographically-first correct
oracle On : {0, 1}`(n) → {0, 1} for VPCPx does not have 2`(n)

ε
size ACC0 circuits. On input x of length

m, we can set n ≈ 2m1/k
so that `(n) = m, use an NP oracle to find the On, and output On(x).

A Problem of Input and Advice. The above plan sounds nice, but there is a major problem: we now need
a much longer advice! Following the Section 2.1.1, on an input x of length n, we must split x = x1x2 such
that |x2| ≈ log T(|x|) ≈ logk(n), use x1 as advice to specify the ”bad input”, construct the oracle O for
PCP and finally outputsO(x2). In this way, we can only obtain a hardness of 2|x2|ε < n/10, which becomes
a trivial lower bound compared to the input length n.

Solution: A ‘Refuter’ Algorithm for Theorem 1.12. As discussed above, we cannot afford appending
xn to the end of the input as in Section 2.1.1. Therefore, in order to make sense of the above proposal,
we have to generate the required xn ourselves. Our key observation is that, since we are proving lower
bounds for ENP anyway, we can also try to use an NP oracle to algorithmically find the desired xn such that
APCP(xn) 6= Lhard(xn), given n.

To this end, we introduce the concept of a refuter R. For our purpose, R is a deterministic algorithm
with access to an NP oracle which takes as input the (code of) a nondeterministic algorithm A, and 1n for
n ∈ N, with the promise that A runs in o(T(n)) time and guesses at most n/10 bits of witness. For all
large enough n, R outputs a string xn ∈ {0, 1}n such that A(xn) 6= Lhard(xn). We call such an algorithm
a refuter for Lhard, since it can explicitly refute any faster algorithm A attempting to decide Lhard.

How can we construct a refuterR? A natural idea is to enumerate all input strings of length n, then use
an NP oracle to find the first x ∈ {0, 1}n such that A(x) 6= Lhard(x). This algorithm can find the required
input xn correctly since such an xn exists by Theorem 1.12. However, this method is extremely inefficient,
having running time Ω(2n).

Open Up The Black Box! We observed that the hard language Lhard established by Theorem 1.12 is quite
special. Given its structure, we can indeed design a algorithm which binary-searches over all inputs of length
n to find the desired xn. With a careful analysis of the Lhard language, we design a refuter for Lhard that runs
in time O(T(n) · log(2n)) ≤ O(n · T(n)).

Our final ENP algorithm with a SAT oracle works as follows. On an input of y length m, set n ≈ 2m1/k
so

that `(n) = m, invoke the refuter to find an input xn ∈ {0, 1}n such that APCP(xn) 6= Lhard(xn), then use
the SAT oracle to find the lexicographically-first oracle O : {0, 1}m → {0, 1} such that VPCPOxn

(r) = 1
for all r. Finally, our algorithm outputs O(y). The running time can be bounded by O(T(n) · n) ≈ 2m

with the help of the SAT oracle. It is not hard to see that the language decided by this ENP algorithm will be
almost-everywhere hard for 2no(1)

-size ACC0 circuits, which completes the proof.
Finally, we end this subsection by providing some intuitions on how the refuter for Theorem 1.12 is

constructed.

9

The A.E. NTIME Hierarchy. Before explaining our refuter, it is instructive to review the proof ideas of
Theorem 1.12.

Let A be an NTIMEGUESS[o(T(n)), n/10] machine. We define a new algorithm B based on A and
show that A fails to compute B on all large enough input lengths. Specially, B works as follows: On an
input x of length n, B rejects immediately if A rejects the witness (the n/10-bit prefix of) x on input 0n.
Otherwise, B simply outputs A(x + 1). Here x + 1 denotes the lexicographically next string after x. If
there is no such x + 1 (i.e., x = 1n), B just outputs 1.

One can check that B runs in NTIME[T(n)]. Now we fix a large enough n, and suppose for the sake of
contradiction that A(x) = B(x) for every x ∈ {0, 1}n. (That is, A is a speed up version of B.) There are
two cases depending on the value of A(0n):

1. A(0n) = 1. Consequently, we also have B(0n) = 1. This is only possible if B accepts every input of
length n, which implies, by the definition of B, that A rejects every witness on the input 0n. Hence it
follows that A(0n) = 0 and consequently B(0n) = 0 as well, a contradiction.

2. A(0n) = 0. Since now A rejects every witness on the input 0n, we have B(0n) = B(0n + 1) =
· · · = B(1n) = 1 by the definition B, a contradiction to the assumption that B(0n) = A(0n).

The aboveB is only hard forA. To design a hard language against every NTIMEGUESS[o(T(n)), n/10]
algorithm, we can add the description of that algorithm as part of input, which only adds a minor overhead.
That is, the new algorithmBHRAD interprets the first log n bits as the code of an NTIMEGUESS[o(T(n)), n/10]
machine, and the rest being the witness mentioned in the definition of B above.

Constructing the Refuter. The above proof is nonconstructive (in the sense that it does not tell us on which
input A and B differ) since it is a proof by contradiction. Our observation here is that the definition of
the algorithm B allows us to consider a linear ordering of all inputs of length n (formed lexicographically,
string x is followed by x + 1). Let us focus on the second case above that A(0n) = 0 (the first case can be
handled similarly, see the proof of Theorem 4.6 for details). Since A rejects every witness on input 0n, we
have B(x) = A(x + 1) for every x, except for B(1n) = 1.

Consider the following list of outputs A(0n),A(0n + 1), . . . ,A(1n),B(1n). Since the first and last
outputs differ, one can use a binary search to find two adjacent different elements with O(log(2n)) ≤ O(n)
queries to the list (see Lemma 4.4 for details). This is exactly what we want, since A(x) 6= A(x + 1)
means A(x) 6= B(x). Finally, an access to the above list can be simulated by an NP query, and we obtain
the desired PNP refuter.

Generalization to Other Lower Bounds. Our refuter framework is general enough that many similar ENP

lower bound proofs (based on Williams’ algorithmic paradigm) can be adapted to the almost-everywhere
setting as well, e.g., the construction of rigid matrices in [AC19, BHPT20] and the probabilistic degree
lower bound in [Vio20]. See Section 8 for details.

2.2 Strong Average-Case Hardness Lower Bounds via a New XOR Lemma

In this subsection, we first explain why it is difficult to prove strong average-case lower bounds for ACC0,
and then show how we get around previous barriers with an improved XOR Lemma based on approximate
linear combinations of circuits.

The Hardness Amplification Barrier. The traditional approach to average-case lower bounds is through
hardness amplification, which ultimately aims to show how worst-case lower bounds imply average-case
lower bounds. The key barrier to proving stronger average-case lower bounds for ACC0 (or even AC0[2])
is the lack of an appropriate hardness amplification theorem for both classes. It is known that proving such

10

an amplification theorem requires computing majority [SV10, GSV18]. That is, to establish strong average-
case lower bounds for ACC0, one apparently needs to start with at least a worst-case MAJORITY ◦ ACC0

lower bound, which seems as hard as proving strong the average-case lower bounds for ACC0 itself.
In a recent work, Chen and Ren [CR20] managed to bypass the above barrier and prove a strong average-

case lower bounds for NQP against ACC0, via a sophisticated win-win argument. However, this argument
fails to achieve either almost-everywhere separations or sub-exponential hardness due to inherent limitation.
Since the knowledge of [CR20] is not required to understand our new approach, we defer the discussion on
the limitations of the techniques of [CR20] to the end of this subsection.

We show it is possible to remove the win-win argument. By directly applying a new XOR Lemma, we
can prove almost-everywhere strong average-case lower bounds of sub-exponential hardness.

Algorithms and Lower Bounds for (Approximate) Linear Sums of C . The key concept behind the
new XOR Lemma is that of linear combinations of circuits. Here we recall their definition (from [Wil18b,
CW19, CR20]). Let C be a class of functions from {0, 1}n → {0, 1}. We say L : {0, 1}n → R is a Sum ◦C
circuit, if L(x) := ∑t

i=1 αi · Ci(x), where each αi ∈ R and each Ci ∈ C . We define the complexity of L to
be max

(
∑t

i=1 |αi|, ∑t
i=1 SIZE(Ci)

)
.

We say f : {0, 1}n → {0, 1} admits a S̃umδ ◦ C circuit, if there is a Sum ◦ C circuit L : {0, 1}n → R

such that |L(x) − f (x)| ≤ δ for all x. We set δ = 1/3 by default when it is omitted. We also use the
notation S̃um ◦ ACC0 to denote the class of languages which can be computed by a S̃um ◦ ACC0 circuit
family of polynomial complexity.

For us, the most important aspect of linear combinations of circuits is that they can preserve algorithms.
For example, if there are non-trivial algorithms solving #SAT for C , then we can compute Ex[L(x)] as
∑t

i=1 αi · Ex[Ci(x)], where Ex[Ci(x)] is computed by solving #SAT for Ci ∈ C . Hence, if a Boolean
function f has a S̃umδ ◦ C circuit L, then

E
x
[f (x)]−E

x
[L(x)] ≤ max

x
| f (x)− L(x)| ≤ δ. (1)

Therefore, we are able to estimate the acceptance probability of f in non-trivial time using non-trivial
#SAT algorithms for C . With the above observation, [CW19] applied the non-trivial #SAT algorithms for
ACC0 in [Wil14] to obtain a non-trivial CAPP algorithm for S̃um ◦ ACC0, from which they proved ENP

cannot be computed by S̃um ◦ ACC0 circuits of 2no(1)
complexity.

2.2.1 Our Contribution: Direct Hardness Amplification With a Non-Standard XOR Lemma

As mentioned earlier, prior win-win arguments fail to achieve almost-everywhere separations (see Sec-
tion 2.2.2 for details). Can one avoid a win-win argument and establish average-case hardness directly?

We show this is possible! Starting from a “`1-approximation lower bound” against Sum ◦ ACC0 cir-
cuits (slightly stronger than `∞-inapproximability), we show how strong average-case lower bounds can be
established directly by applying a new non-standard version of the XOR Lemma (recalled below).

A Non-Standard XOR Lemma: For a Boolean function f and δ < 1/2, if there is no Sum ◦ C circuit
C : {0, 1}n → [0, 1] of complexity poly(s, 1/δ, n) such that Ex∈{0,1}n |C(x)− f (x)| ≤ δ, then f⊕k cannot
be (1/2 + 1/s)-approximated by s-size C circuits, for k = Θ

(
δ−1 log s

)
.

Note that we only consider circuits C such that C(x) ∈ [0, 1] for all x, which is crucial in our proof. We
denote the class of such circuits as [0, 1]Sum ◦ C .

`1 Approximation Bounds Against Sum ◦C . Building on prior work on S̃um ◦C circuits ([CW19, CR20])
with modifications, we show there is a function f ∈ ENP that cannot be approximated by [0, 1]Sum ◦ ACC0

within a small constant `1 distance. Applying the new XOR Lemma above, we can establish an almost-
everywhere strong average-case lower bound for ENP against ACC0.

11

The proof is involved, but the key insight is to see that inapproximability lower bound argument in (1)
does not require the circuit L to approximate f on every point. That is, suppose f is a Boolean function and
L : {0, 1}n → R is a Sum ◦ C circuit satisfying Ex |L(x)− f (x)| ≤ δ. In such a case, we say that f can
be `1-approximated by L within distance δ. Note we still have that

E
x
[f (x)]−E

x
[L(x)] ≤ E

x
| f (x)− L(x)| ≤ δ.

Let us use Ŝumδ ◦ C to denote the class of Boolean functions which can be `1-approximated by a family
of Sum ◦ C circuits within distance δ. By the above reasoning, non-trivial CAPP algorithms for Ŝumδ ◦ C
still follow from non-trivial #SAT algorithms for C circuits! In spirit, this means we should be able to prove
lower bounds against Ŝumδ ◦ACC0, as we have a non-trivial CAPP algorithm for them (thanks to the #SAT
algorithm for ACC0 of Williams [Wil14]).

Intuition for the New XOR Lemma. Now we sketch how the new XOR Lemma is proved. It is based on
a careful examination of Levin’s proof of the XOR Lemma [Lev87]. Let ε = εk = 1

2 · (1− δ)k. We will
prove the contrapositive, i.e., if f⊕k can be (1/2 + ε)-approximated by a C circuit C of size s, then we can
construct a [0, 1]Sum ◦ C circuit of complexity O(s · n · ε−2) which `1-approximates f within error O(δ).

The proof is by induction on k. For the case k = 1, we can take the [0, 1]Sum ◦ C circuit to be the
circuit C itself. For the case k > 1, we argue as follows. For an input x to f⊕k, we write x = yz such that
|y| = n and |z| = (k− 1)n. For each y ∈ {0, 1}n, we consider the quantity:

T(y) :=Pr
z
[f⊕k(y, z) = C(y, z)] (2)

=Pr
z
[f⊕(k−1)(z) = f (y)⊕ C(y, z)] (3)

=Pr
z
[f (y) = C(y, z)⊕ f⊕(k−1)(z)]. (4)

That is, T(y) measures (2) how well C(y, z) approximates f⊕k when the first input is fixed to y; (3) how
well f (y)⊕C(y, z) approximates f⊕(k−1); (4) how often does C(y, z)⊕ f⊕(k−1)(z) correctly predict f (y),
when z is uniformly random. By (2) and our assumption on C, we have

E
y
[T(y)] = Pr

y,z
[f⊕k(y, z) = C(y, z)] ≥ 1/2 + ε.

Now there are two cases.

1. Some T(y) is far from 1/2. Suppose there is a y ∈ {0, 1}n satisfying |T(y) − 1/2| > ε/(1− δ).
By (3), f⊕(k−1)(z) can be computed correctly by either f (y) ⊕ C(y, z) or by its negation on at least a
1/2 + εk/(1− δ) = 1/2 + εk−1 fraction of inputs (we treat y as fixed in the circuit). That is, this case can
be reduced to the case of k− 1.

2. All T(y)’s are close to 1/2. This is the more interesting case. Suppose |T(y)− 1/2| ≤ ε/(1− δ) for
every y. Consider the following algorithm A trying to predict f (y) for every y: take a uniformly random
sample z ∈ {0, 1}(k−1)·n, and output C(y, z)⊕ f⊕(k−1)(z). For each y, by the interpretation (4), it follows
that A(y) predicts f (y) correctly with probability T(y).

To ease our later discussion, in the following we specify a natural bijection between functions from
{0, 1}n → [0, 1] and probabilistic functions on {0, 1}n with outputs in {0, 1}. For a probabilistic function
F : {0, 1}n → {0, 1}, we define IF such that IF (x) := Pr[F (x) = 1]. Conversely, for a function
f : {0, 1}n → [0, 1], we define P f such that P f (x) outputs 1 with probability f (x), and 0 otherwise.

In the following, we define the correlation of two functions g, h : {0, 1}n → [0, 1] as

Cor(g, h) := E
x←{0,1}n

[(2g(x)− 1) · (2h(x)− 1)]. (5)

12

Note that for two functions g : {0, 1}n → [0, 1] and h : {0, 1}n → {0, 1}, we have

Cor(g, h) = Pr
x
[Pg(x) = h(x)]− Pr

x
[Pg(x) 6= h(x)] = 2 Pr

x
[Pg(x) = h(x)]− 1.

The following two properties of A are crucial for us:

1. The algorithm A has a non-trivial correlation with f (y). More precisely, Cor(IA, f) > 2ε since
Cor(IA, f) = 2 · Pry[A(y) = f (y)]− 1 = 2 Ey[T(y)]− 1 ≥ 2ε.

2. On each input y, the algorithm A has little bias on its output. That is, IA(y) ∈ [1/2 − ε/(1 −
δ), 1/2 + ε/(1− δ)] for every y.

By a random sampling and applying a Chernoff bound, we can use a sum of O((εδ)−2 · n) C circuits
to approximate IA(x) within an additive error of εδ for every input x. We call this new Sum ◦ C circuit D.
The following two properties of D follow from the above two properties of A.

1. The circuit D and the function f (y) have a correlation larger than 2ε · (1− δ). That is, Cor(D, f) >
2ε · (1− δ).

2. For every input y, D(y) ∈ [1/2− ε, 1/2 + ε]. (Note that εδ + ε/(1− δ) = ε.)

Now, observe that both of the bias on every input and the total correlation are all roughly ε, we can
finally scale D properly to obtain a [0, 1]Sum ◦ C circuit D′, which has a correlation larger than (1− δ)
with f . Formally, we define D′ so that

D′(y) =
1 + (D(y)− 1/2)ε−1

2
.

The second property of D implies that D′ is a [0, 1]Sum ◦C circuit. And the first property of D implies that
D′ has a correlation (1− δ) with f (due to the definition (5)), which further implies that D′ `1-approximates
f with error O(δ). For the precise calculation, we refer to Appendix A.

2.2.2 An Indirect Argument for Average-Case Lower Bounds and its Limits [CR20]

In the remainder of this technical overview, we discuss an indirect hardness amplification argument (from
ENP 6⊂ S̃um ◦ ACC0 to strong average-case lower bounds for ENP against ACC0) which captures the key
insight in [CR20]. Our primary goal here is to highlight inherent barriers in this argument.

Lemma 2.1 (Win-Win Hardness Amplification). ENP cannot be (1/2 + 1/poly(n))-approximated by
ACC0 circuits.

Proof Sketch. [CR20] consider a very structured NC1-hard language F ∈ P with the following special
property: If Fn can be (1

2 + ε)-approximated by C circuits of size S, then Fn can be exactly computed by
S̃um ◦ C circuits of complexity poly(S, 1/ε). Now the win-win argument goes as follows:

• Case 1: F is average-case hard. If F ∈ P cannot be 1/2 + 1/poly(n)-approximated by ACC0

circuits, we are already done.

• Case 2: F is average-case easy. If F can be 1/2 + 1/poly(n)-approximated by ACC0 circuits,
then by the properties of F, NC1 is contained in S̃um ◦ ACC0. Then, it must be that ENP is not
in NC1, as ENP 6⊂ S̃um ◦ ACC0. Applying the XOR Lemma, we conclude that ENP cannot be
(1/2 + 1/poly(n))-approximated by NC1 circuits, and hence neither by ACC0.

13

Combing with the worst-case S̃um ◦ ACC0 lower bounds in [CW19], the strong average-case lower
bound for ACC0 follows immediately. There are two inherent barriers to this win-win approach.

An Infinitely-Often Barrier. The win-win argument can only yield infinitely-often lower bounds, even
assuming an almost-everywhere S̃um ◦ ACC0 lower bound for ENP. In the first case, we only conclude that
F is average-case hard on infinitely many input lengths. To make F in the first case almost-everywhere hard,
we have to consider the cases (1) F is almost-everywhere average-case hard, and (2) F is infinitely-often
average-case easy. But case (2) only implies a collapse from NC1 to S̃um ◦ ACC0 on infinitely many input
lengths. We cannot hope to establish an almost-everywhere average-case lower bound from that.

A Half-Sub-Exponential Barrier. The second barrier is subtler. Suppose for a function g we want to
establish a 1/2 + 1/g(n) average-case lower bound against g(n)-size ACC0 circuits. A careful analysis
shows that g(g(n)O(1)) ≤ 2no(1)

, meaning g is half-sub-exponential.9

3 Preliminaries

3.1 Complexity Classes and Basic Definitions

We assume knowledge of basic complexity theory (see [AB09, Gol08] for excellent references). In partic-
ular, we assume familiarity with basic complexity classes such as P, NP, ENP, AC0, AC0[m], ACC0, and
basic types of circuit gates AND, OR and MODm. We will also use AC0[⊕] to denote AC0[2].

Recall that Majority, denoted as MAJ : {0, 1}∗ → {0, 1}, is the function that outputs 1 if the number
of 1s in the input is at least the number of 0s, and outputs 0 otherwise. A linear threshold function (LTF)
is a function Φ : {0, 1}n → {0, 1} of the form Φ(x) = sign(〈x, ω〉 − θ) where ω ∈ Rn and 〈x, ω〉 is the
standard inner product over R. We use THR to denote the class of linear threshold functions.

Let F ∈ {AND, OR, MODm, MAJ} be a gate type, and C be a circuit class. We use C ◦ F to denote the
composition of C with F: every C ◦ F circuit D can be described as D(x) = C(f1(x), . . . , fs(x)) where
C is a C circuit, and fi are F gates. Similarly, we use F ◦ C to denote the composition of F with C : every
(F ◦ C) circuit D can be described as D(x) = f (C1(x), . . . , Cs(x)) where Ci are C circuits, and f is a F
gate.

We say a circuit class C is typical, if given the description of a circuit C of size s, for indices i, j ≤ n
and a bit b, the functions

¬C, C(x1, . . . , xi−1, xj ⊕ b, xi+1, . . . , xn), and C(x1, . . . , xi−1, b, xi+1, . . . , xn)

all have C circuits of size s, and their corresponding circuit descriptions can be constructed in poly(s) time.
That is, C is typical if it is closed under both negation and projection.

We also study linear sums of C circuits.

Definition 3.1. Sum ◦ C denotes the set of circuits: every C ∈ Sum ◦ C can be described as C(x) =

∑i αi · Ci(x) where each αi ∈ R and each Ci(x) : {0, 1}n → {0, 1} is a C circuit. Moreover, if C satisfies
the promise that C(x) ∈ [0, 1] for all x ∈ {0, 1}n, we also say C is a ([0, 1]Sum ◦ C) circuit.

The size of C is defined as the total size of each Ci: |C| = ∑i |Ci|. The complexity of C is defined
as max(|C|, ∑i |αi|). We use [0, 1]Sum ◦ C [S(n)] to denote the set of functions can be computed by
[0, 1]Sum ◦ C circuits of complexity S(n).

9As before, consider two cases: If F cannot be (1/2+ 1/g(n))-approximated by g(n)-size ACC0 circuits, we are done. If F can
be 1/2 + 1/g(n) approximated by g(n)-size ACC0, then NC1 collapses to poly(g(n)) size S̃um ◦ACC0 circuits. Recalling ENP

cannot be computed by 2no(1)
-size S̃um ◦ ACC0 circuits, it follows that ENP cannot be computed by s-size NC1 circuits such that

poly(g(s)) = 2no(1)
, and this can be amplified to (1/2 + 1/sΩ(1)) average-case lower bounds against sΩ(1)-size ACC0 circuits.

Since the unconditional lower bound at the end is the minimum of g(n) and s, we want s = g(n), which forces g(g(n)O(1)) ≤
2no(1)

.

14

3.2 Elementary Properties of Norm and Inner Product

We recall some properties of norms and inner products of functions on the Boolean cube, which will be
useful. For a function f : {0, 1}n → R, we define its `p-norm as ‖ f ‖p = (Ex∼Un [| f (x)|p])1/p. The `∞-
norm of f is defined as the maximum absolute value of f : ‖ f ‖∞ = maxx∈{0,1}n | f (x)|. For two functions
f , g : {0, 1}n → R, we define their inner product as 〈 f , g〉 := Ex∼Un [f (x) · g(x)]. Note that the Cauchy-
Schwarz inequality implies |〈 f , g〉| ≤ ‖ f ‖2 · ‖g‖2. In particular, ‖ f ‖1 = 〈| f |, 1〉 ≤ ‖ f ‖2 where 1 is the
constant-one function.

Throughout this paper, we will use the notion of approximating functions within `1-distance, we state
the definition below.

Definition 3.2. Given δ ∈ [0, 1] and a function f : {0, 1}n → {0, 1}, we say a real-valued function
g : {0, 1}n → {0, 1} (1− δ)-approximates f within `1-distance if ‖ f − g‖1 = Ex←Un [| f (x)− g(x)|] ≤ δ.
Specially, when g is Boolean function, the approximation is consistent with the usual approximation, that
is, Prx←Un [f (x) 6= g(x)] = ‖ f − g‖1 ≤ δ.

3.3 Pseudorandom Generators

We consider different types of Pseudorandom Generators (PRG).

Definition 3.3. Let S, ` : N → N and ε : N → (0, 1) be functions, where S, `, ε denote size, seed length
and error respectively. Let C be a circuit class. A function G : {0, 1}∗ → {0, 1}∗ is a pseudorandom
generator (PRG) with seed length `(n) that ε-fools C circuits of size S, if for every C circuit C : {0, 1}n →
{0, 1} of size S(n), ∣∣∣∣∣ Pr

s∈{0,1}`(n)
[C(G(s)) = 1]− Pr

r∈{0,1}n
[C(r) = 1]

∣∣∣∣∣ < ε(n). (6)

If (6) only holds for infinitely many lengths n, then we say G is an infinitely often PRG (i.o. PRG).

We also consider “nondeterministic pseudorandom generators” (NPRGs).

Definition 3.4. Let S, ` : N → N and ε : N → (0, 1) be functions, and C be a circuit class. Let M(x, y)
be a deterministic Turing machine. We say M is a nondeterministic pseudo-random generator (NPRG) with
seed length `(n) that ε-fools C circuits of size S if following holds:

1. On every input x ∈ {0, 1}`(n) and y ∈ {0, 1}2O(`(n))
, M(x, y) either rejects or outputs a string, and

whether M(x, y) rejects depends only on |x|, y (and not on x).

2. If M(x, y) does not reject, then there is a function Gy : {0, 1}`(n) → {0, 1}n such that for every C
circuit C of size S, ∣∣∣∣∣ Pr

x∈{0,1}`(n)
[C(Gy(x)) = 1]− Pr

z∈{0,1}n
[C(z) = 1]

∣∣∣∣∣ < ε(n),

and M(x, y) outputs Gy(x) in nondeterministic 2O(`(n)) time.

3. There is at least one input y such that M(x, y) does not reject.

If the above conditions only hold for infinitely many integers n, then we say M is an infinitely often NPRG
(i.o. NPRG).

15

Although an NPRG in general does not output the same PRG in its different nondeterministic branches,
it could useful for many tasks such as derandomizing MA. The concept of NPRG is implicit in [IKW02],
and is used explictly in [CMMW19, Che19, CR20].

We will use two standard PRG construction from literature. The first is the famous Nisan-Wigderson(NW)
PRG ([NW94]), which uses a (presumably hard) function f in its design. Recall that Juntak is the family of
k-juntas, i.e. functions that only depend on k input bits. The key property of the NW PRG is that, given a
C circuit that breaks the NW PRG based on some hard function, the complexity of approximating that hard
function is C ◦ Juntaa for some parameter a. Therefore, in order to fool C circuits, the hard function f used
by the NW PRG needs to be hard to approximate by C ◦ Juntaa circuits.

Lemma 3.5 ([NW94]). Let m, `, a be integers such that a ≤ `, and t = O(`2 · m1/a/a). Let C be a
typical circuit class. There is a function G : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ such that the following hold. For
any function Y : {0, 1}` → {0, 1} represented as a length-2` truth table, if Y cannot be (1/2 + ε/m)-
approximated by C ◦ Juntaa circuits (where the top C circuit has size S), then G(Y,Ut) 10 ε-fools every C
circuit (of size S). That is, for any C circuit C (of size S),∣∣∣∣ Pr

s∈{0,1}t
[C(G(Y, s)) = 1]− Pr

x∈{0,1}m
[C(x) = 1]

∣∣∣∣ ≤ ε.

Moreover, the function G is computable in poly(m, 2t) time.

We also need the following construction of PRG from [Uma03]. Roughly speaking, it shows that if a
function f is hard against general circuits of a certain size, then f can be used to produce a powerful PRG.

Lemma 3.6 ([Uma03]). There is a universal constant g and a function G : {0, 1}∗ × {0, 1}∗ → {0, 1}∗
such that, for every s and Y : {0, 1}` → {0, 1}, if Y cannot be computed by (general) circuits of size sg,
then G(Y,Ug`) 1/s-fools (general) circuits of size s. That is, for all circuit C of size at most s, it holds:∣∣∣∣∣ Pr

x∈{0,1}`g

[
C(Y, x) = 1]− Pr

x∼{0,1}s

[
C(x) = 1

]∣∣∣∣∣ ≤ 1
s

.

Furthermore, G is computable in poly(|Y|) time.

3.4 Hardness Amplification

Hardness Amplification is crucial in our strong average-case lower bounds proof. We state our non-standard
XOR lemma below. It is a careful adaption of Levin’s proof of Yao’s XOR Lemma [Lev87, GNW95]. The
proof is presented in Appendix A.

Definition 3.7. Let f : {0, 1}n → {0, 1}, and let k ≥ 1 be an integer, define the function f⊕k : {0, 1}kn →
{0, 1} to be f⊕k(x1, . . . , xk) := ⊕1≤i≤k f (xi), where xi ∈ {0, 1}n for every i ∈ [k].

Lemma 3.8. Let f : {0, 1}n → {0, 1} be a boolean function. Let δ < 1
2 , For any k ≥ 1, let εk = (1−

δ)k−1 (1
2 − δ

)
. If f cannot be (1− δ)-approximated in `1 distance by [0, 1]Sum ◦C circuits of complexity11

O
(

n·s
(δ·εk)2

)
, then f⊕k cannot be (1

2 + εk)-approximated by C circuits of size s.

10Um denotes uniform distribution over {0, 1}m.
11Recall complexity of a Sum ◦ C circuit C = ∑i αiCi is defined as max(∑i SIZE(Ci), ∑i |αi|).

16

We remark that Lemma 3.8 implies Theorem 1.14: In order to establish (1/2+ 1/s)-inapproximability
result, it suffices to set k so that εk ≤ 1/s. Since εk = (1 − δ)k−1(1/2 − δ), we can choose k ≤
O(log(1−δ)(1/s)) ≤ O(δ−1 log s).

For brevity, we also say f cannot be (1− δ)-approximated by, or is δ-far from low-complexity [0, 1]Sum◦
C circuits in `1-distance, if the above condition for f holds.

We also need standard worst-case to strong average-case hardness amplification. We refer to [STV01]
for an excellent exposition.

Lemma 3.9 ([STV01]). There is a constant c ≥ 1 such that, for any time-constructible function S(n)
and every f : {0, 1}n → {0, 1} that does not have (general) circuits of size S(n). There is a function
g : {0, 1}O(n) → {0, 1} that cannot be (1/2 + S(n)−1/c)-approximated by circuits of size S(n)1/c. Fur-
thermore, given the 2n-length truth table of f , the truth table of g can be constructed in 2O(n) time.

3.5 Probabilistically Checkable Proofs

We need two probabilistically checkable proof (PCP) systems from [BV14, CW19]. We state them below.

Lemma 3.10 ([BV14]). Let M be an algorithm running in time T = T(n) ≥ n on inputs of the form (x, y)
where |x| = n. Given x ∈ {0, 1}n, one can output in poly(n, log T) time circuits Q : {0, 1}r → {0, 1}rt

for t = poly(r) and R : {0, 1}t → {0, 1} such that:

• Proof length. 2r ≤ T · polylogT.

• Completeness. If there is a y ∈ {0, 1}T(n) such that M(x, y) accepts then there is a map π : {0, 1}r →
{0, 1} such that for all z ∈ {0, 1}r, R(π(q1), . . . , π(qt)) = 1 where (q1, . . . , qt) = Q(z).

• Soundness. If no y ∈ {0, 1}T(n) causes M(x, y) to accept, then for every map π : {0, 1}r → {0, 1},
at most 2r

n10 distinct z ∈ {0, 1}r have R(π(q1), . . . , π(qt)) = 1 where (q1, . . . , qt) = Q(z).

• Complexity. Q is a projection, i.e., each output bit of Q is a bit of input, the negation of a bit, or a
constant. R is a 3CNF.

Note that this is an exremely efficient PCP: the 3CNF R and the projection Q collectively form the ver-
ifier for the PCP. The following lemma from [CW19, VW20] is a slight modification of the probabilistically
checkable proof of proximity (PCPP) system in [BGH+06].

Lemma 3.11 ([CW19, VW20]). There are constants 0 < spcpp < cpcpp < 1 and a polynomial-time
transformation that, given a circuit D on n inputs of size m ≥ n, outputs a 2-SAT instance F on the
variable set Y ∪ Z where |Y| ≤ poly(n), |Z| ≤ poly(m), and the following hold for all x ∈ {0, 1}n:

• If D(x) = 1, then F
∣∣
Y=Enc(x) on variable set Z has a satisfying assignment Zx such that at least

cpcpp-fraction of the clauses are satisfied. Furthermore, there is a poly(m) time algorithm that given
x outputs Zx.

• If D(x) = 0, then there is no assignment to the Z variables in F
∣∣
Y=Enc(x) satisfies more than spcpp-

fraction of the clauses.

Moreover, the number of clauses in the 2-SAT instance F is a power of 2, and for each i ∈ [|Y|], Enci(x)
is a parity function depending on at most n/2 bits of x.

17

3.6 Non-trivial #SAT Algorithms

In this paper we will make use of the following non-trivial #SAT algorithm for ACC0 ◦ THR.

Theorem 3.12 ([Wil18a]). For every d, m ∈ N, there is an ε = ε(d, m) > 0 such that the number of
satisfying assignments to a 2nε

-size n-input AC0
d[m] ◦THR circuit can be counted deterministically in 2n−nε

time.

4 Refuter for A.E. NTIME Hierarchy with Sublinear Witnesses

In this section we prove a key technical ingredient of this paper: an almost-everywhere sublinear witness
NTIME hierarchy with a refuter algorithm (Theorem 1.12). We begin with some notation in Section 4.1.
In Section 4.2, we define the hard language AT

FS and prove Theorem 1.12. In Section 4.3, we construct the
corresponding refuter for Theorem 1.12. In Section 4.4, we discuss an adaptation to the “robustly often”
lower bound of [FS11], which will be useful in the construction of rigid matrices.

4.1 Preliminaries

First, we recall the definition of the class of languages decided by nondeterministic algorithms with bounded
nondeterminism.

Definition 4.1. Given two non-decreasing and time-constructible functions T(n), g(n), we define

NTIMEGUESS[T(n), g(n)]

to be the class of languages decidable by nondeterministic algorithms running in O(T(n)) steps and guess-
ing at most g(n) bits as witness.

We fix a natural enumeration of all (multitape) nondeterministic Turing machines. Note that the specific
model does not really matter, see the discussion in [Wil13], Section 2.1. We use the integer M to denote
the M-th nondeterministic Turing machine in the enumeration. For simplicity, we assume all machines are
random-access machines in the following.

For a nondeterministic Turing machine M, an input x, and a witness z, let VM(x, T, z) denote the result
of running M on the input x for at most T steps with witness z. More precisely:

• VM(x, T, z) =⊥ if the simulation fails. That is, either (1) M does not stop after T steps, or (2) M
guesses more than |z| bits during the simulation.

• Otherwise, if the simulation succeeds, VM(x, T, z) = 1 if M accepts x with witness z, and VM(x, T, z) =
0 otherwise. (It is possible that M only uses a prefix of z as the witness.)

Note that for an M using o(T(n)) time and g(n) guesses, we have

M(x) = 1⇔
∨

w∈{0,1}g(n)

VM(x, T(n), w) = 1.

We also need a standard encoding of two integers and a Boolean string. Given M, n ∈ N and z ∈
{0, 1}∗, we encode them by

〈M, n, z〉 = 1M01(n−M−2−|z|)0z.

Note that we require n ≥ M + 2 + |z| for the encoding to be valid. Observe that |〈M, n, z〉| = n. Given an
input x ∈ {0, 1}?, one can unambiguously determine the triple M, n, z such that 〈M, n, z〉 = x, or that x is
not a valid encoding of any triple.

18

4.2 Almost-Everywhere NTIME Hierarchy with Sublinear Witness Length

To provide more intuition for our results, we first prove the following almost-everywhere NTIME hierarchy
theorem of Fortnow and Santhanam [FS16].

Reminder of Theorem 1.12. For every time-constructible function T(n) such that n ≤ T(n) ≤ 2poly(n),
NTIME[T(n)] 6⊂ i.o.-NTIMEGUESS[o(T(n)), n/10].

An Almost-Everywhere Diagonalizing Language. We start by defining a language constructed by diag-
onalization (adapted from [FS11, FS16]), which is used as the hard language in Theorem 1.12. Later in
Section 4.3, we will construct an efficient refuter for this language as well.

Definition 4.2. For every time-constructible function T(n) such that n ≤ T(n) ≤ 2poly(n), we define a
nondeterministic algorithm AT

FS as follows:

• Given an input x, parse it as x = 〈M, n, z〉, and reject immediately if there is no valid parsing, or if
|z| 6= n/10.12

• AT
FS accepts x if and only if both of the following hold:

– M rejects 〈M, n, 0n/10〉 in T(n) steps with witness z. That is, VM(〈M, n, 0n/10〉, T(n), z) = 0.

– (This condition is only required for z 6= 1n/10.) M accepts 〈M, n, z + 1〉 in T(n) steps while
guessing at most n/10 bits.13

By the construction above, it is clear that AT
FS is an NTIME[T(n)] algorithm.

The following list of inputs {xM,(n)
i } greatly simplifies our discussion and the proof. For clarity, let

w(n)
1 , w(n)

2 , . . . , w(n)
2n/10 be the list of all 2n/10-length binary strings, sorted in lexicographical order. We define

xM,(n)
i := 〈M, n, w(n)

i 〉.

When M is clear from the context, we omit the superscript M, and use x(n)i to denote xM,(n)
i . Note that

when the encoding is valid, all strings x(n)i have length exactly n.

The following lemma summarizes the behavior of AFS on the strings in the list {xM,(n)
i } when M is an

NTIMEGUESS[o(T(n)), n/10] algorithm, which will be used frequently in the rest of the section.

Lemma 4.3. Suppose M runs in o(T(n)) time and guesses no more than n/10 bits of witness. For every
sufficiently large n and i ∈ {1, . . . , 2n/10}, we have14

AFS(x(n)i) =

{[
VM(x(n)1 , T(n), w(n)

i) = 0
]
∧M(x(n)i+1) 1 ≤ i < 2n/10[

VM(x(n)1 , T(n), w(n)
i) = 0

]
i = 2n/10.

Proof. Since M is an NTIMEGUESS[o(T(n)), n/10] algorithm, for every sufficiently large n, the algo-
rithm AT

FS can simulate M faithfully on the entire collection of inputs {x(n)i }. The conclusion follows from
the definition of AT

FS.

12Here, and in the rest of this section, n/10 means bn/10c when n is not a multiple of 10.
13We use z + 1 to denote the lexicographically next string after z in {0, 1}n/10.
14In the following, we use the Iverson bracket notation where for a Boolean-valued predicate P, [P] = 1 if P is true and [P] = 0

otherwise.

19

Now we turn to the proof of Theorem 1.12.

Proof of Theorem 1.12. It suffices to show that L(AT
FS) /∈ i.o.-NTIMEGUESS[o(T(n)), n/10], i.e., the

language decided by AT
FS cannot be decided in o(T(n)) time with at most n/10 nondeterministic guess

bits.
Let M be an NTIMEGUESS[o(T(n)), n/10] machine. We will show that for every sufficiently large n,

the machine M and AT
FS cannot agree on all inputs in {0, 1}n.

So for the sake of contradiction, suppose for large enough n that M(x) = AT
FS(x) holds for all x ∈

{0, 1}n. In particular, this means for all i ∈ [2n/10], we have AT
FS(x(n)i) = M(x(n)i).

Consider one special input: x(n)1 = 〈M, n, w(n)
1 〉. We consider the two possible outputs of AT

FS(x(n)1),
and show that both of them lead to a contradiction.

• Case 1: AT
FS(x(n)1) = 1. By assumption, M(x(n)1) = AT

FS(x(n)1) = 1. We show that M(x(n)i) =

AT
FS(x(n)i) = 1 for all i ∈ [2n/10] by induction on i. The base case of i = 1 is already established.

Assuming AT
FS(x(n)i) = M(x(n)i) = 1, it is easy to see from Lemma 4.3 that M(x(n)i+1) = 1 as well,

hence also AT
FS(x(n)i) = M(x(n)i+1) = 1 by assumption.

We conclude that AT
FS(x(n)i) = 1 for all i ∈ [2n/10], which in turn implies (by Lemma 4.3)

for all i ∈ [2n/10], VM(x(n)1 , T(n), w(n)
i) = 0.

This means that M on x(n)1 rejects every possible witness, and hence AT
FS(x(n)1) = M(x(n)1) = 0, a

contradiction.

• Case 2: AT
FS(x(n)1) = 0. By assumption M(x(n)1) = 0. That is, M on x(n)1 rejects every witness,

which means

for all i ∈ [2n/10], VM(x(n)1 , T(n), w(n)
i) = 0. (7)

By Lemma 4.3, we have M(x(n)2n/10) = AT
FS(x(n)2n/10) = 1. By a backward induction (from i = 2n/10

down to i = 1) it follows that M(x(n)i) = AT
FS(x(n)i) = 1 for all i ∈ [2n/10]. The base case of

i = 2n/10 is already established.

Assuming M(x(n)i) = AT
FS(x(n)i) = 1, it is easy to see from (7) and Lemma 4.3 that M(x(n)i−1) =

AT
FS(x(n)i−1) = 1 as well. Therefore, by a backward induction, we conclude AT

FS(x(n)i) = 1 for all

i ∈ [2n/10], which contradicts our assumption that AT
FS(x(n)1) = 0.

Therefore, we conclude that for all such M and for every sufficiently large n, M fails to compute L(AT
FS)

on inputs of length n. This completes the proof.

4.3 Construction of the Refuter

The proof above shows that every NTIMEGUESS[o(T(n)), n/10] machine fails to compute L(AFS) on all
sufficiently large input lengths: for every such machine M and sufficiently large n, there is an xn ∈ {0, 1}n

such that M(xn) 6= AT
FS(xn). Now we design an algorithm to find such an xn efficiently.

To begin with, we need the following binary search algorithm.

Lemma 4.4. There is an algorithm A satisfying the following.

20

• Input. A is given an explicit integer n ≥ 2 (written in binary form) as input, together with oracle
access to a list (a1, . . . , an) ∈ {0, 1}n such that a1 6= an.

• Output. An index p ∈ [1, n− 1] such that ap 6= ap+1.

• Efficiency. A runs in O(log n) time, makes at most O(log n) queries to the list.

Proof. The algorithm A works as follows.

1. Initialize: We set L = 1, R = n and query aL, aR. From the promise on input we have aL 6= aR.

2. As long as R− L ≥ 2, we set q =
⌊ L+R

2

⌋
and query aq. Since aL 6= aR, aq cannot equal to both of

them. If aq 6= aL, we update R = q, otherwise we update L = q. Note that the invariant aL 6= aR
always holds.

3. We repeat Step (2) until R− L ≤ 1. Since aL 6= aR, it must be the case R = L + 1. Return L.

We need a special form of this algorithm, which we state as a corollary below.

Corollary 4.5. There is an algorithm A′ satisfying the following.

• Input. A′ is given an explicit integer n ≥ 1 (written in binary form) as input, together with oracle
access to two lists (a1, . . . , an), (b1, . . . , bn) ∈ {0, 1}n, with the promise that for every i < n, ai =
bi+1, as well as b1 6= an.

• Output. An index p ∈ [1, n] such that ap 6= bp.

• Efficiency. A′ runs in O(log n) time, makes at most O(log n) queries to the list.

Proof. A′ simulates A from Lemma 4.4 with parameter n + 1 and the list (b1, . . . , bn, an). Since an 6= b1
from our assumption, this list satisfies the promise of Lemma 4.4, and all queries to the list can be answered
by querying the two lists (a1, . . . , an) and (b1, . . . , bn) accordingly. A′ then outputs the index p ∈ [1, n]
reported by A. Now we can see that ap 6= bp: If p < n, then ap = bp+1 6= bp as desired, otherwise we
have an 6= bn, which is also valid.

We are now ready to construct a refuter algorithm that explicitly witnesses the hardness of the language
AT

FS from Theorem 4.7.

Theorem 4.6. For every time-constructible function T(n) such that n ≤ T(n) ≤ 2poly(n), there is an
algorithmRT such that:

1. Input. The input for RT is a pair (M, 1n), with the promise that the M-th nondeterministic Turing
machine runs in o(T(n)) time and guesses no more than n/10 bits of witness.

2. Output. For every fixed M and all large enough n,RT(M, 1n) outputs a string x ∈ {0, 1}n such that
AT

FS(x) 6= M(x).

3. Complexity. RT is a deterministic algorithm running in poly(T(n)) time with adaptive access to a
SAT oracle.

Since the output of RT can explicitly refute any o(T(n))-time nondeterministic algorithm which claims to
decide L(AT

FS), we also callRT a refuter.

21

Proof. Let (M, 1n) be an input toRT. Suppose M satisfies the stated promise. The proof of Theorem 1.12
shows that a differing input must exist in the list {xM,(n)

i } (that is, M(xM,(n)
j) 6= AT

FS(xM,(n)
j) for some

j ∈ [2n/10]). In the following, we fix the machine M and write xM,(n)
i instead of x(n)i for brevity. We now

consider the following two cases:

• Case 1: M(x(n)1) = 0. In this case, M on x(n)1 rejects every witness, then Lemma 4.3 implies

AT
FS(x(n)i) =

{
M(x(n)i+1) if i < 2n/10,

1 if i = 2n/10.

The pair of lists (AT
FS(x(n)1), . . . ,AT

FS(x(n)2n/10)) and (M(x(n)1), . . . , M(x(n)2n/10)) satisfy the promise of

Corollary 4.5 since M(x(n)1) = 0 6= AT
FS(x(n)2n/10) = 1. We then invoke the algorithm in Corollary 4.5

to find an index p such that AT
FS(x(n)p) 6= M(x(n)p). The query to the lists can be answered with the

help of the SAT oracle in poly(T(n)) time. Therefore, the whole algorithm runs in poly(T(n)) ·
O(log 2n/10) = poly(T(n)) time.

• Case 2: M(x(n)1) = 1. In this case, M on x(n)1 accepts at least one witness. Let j be the minimum

index from [2n/10] such that the witness w(n)
j is accepted by M(x(n)1). By a binary search, the index

j can be found with the help of the SAT oracle in poly(T(n)) time. Now we focus on the partial list
(x(n)1 , . . . , x(n)j), given that w(n)

j is the first witness accepted by M(x(n)1), Lemma 4.3 implies

AT
FS(x(n)i) =

{
M(x(n)i+1) if i < j,

0 if i = j.

The pair of lists (AT
FS(x(n)1), . . . ,AT

FS(x(n)j)) and (M(x(n)1), . . . , M(x(n)j)) satisfy the promise of

Corollary 4.5 since M(x(n)1) = 1 6= AT
FS(x(n)j) = 0. We can then invoke the algorithm in Corol-

lary 4.5 to find an index p such that AT
FS(x(n)p) 6= M(x(n)p). Each query to the lists can be an-

swered with the help of the SAT oracle in poly(T(n)) time. Therefore, the whole algorithm runs in
poly(T(n)) ·O(log 2n/10) = poly(T(n)) time.

In summary, the algorithm works well in both cases and the theorem is proved.

4.4 Refuter for “Robustly Often” Lower Bounds

Finally, we generalize our refuter construction to the “robustly often” NTIME hierarchy (Theorem 4.7) by
Fortnow and Santhanam [FS11].

Theorem 4.7. For any non-decreasing time-constructible function T(n) such that T(n) ≥ n and T(n +
1) = O(T(n)), there exists a language L ∈ NTIME[T(n)] such that, for any L′ ∈ NTIME[o(T(n))], for
all but finitely many n, there exists m ∈ [n, n + T(n)] such that L and L′ cannot agree on all inputs of
length m.

Theorem 4.7 also yields a corresponding refuter. An advantage of this refuter is that it does not have
restrictions on the size of the witness, which will be crucial later in our construction of rigid matrices. A
drawback of this refuter is it can only output a “bad” input having length in an interval [n, n + T(n)].

22

Theorem 4.8. For any non-decreasing time-constructible function T(n) such that T(n) ≥ n and T(n +
1) = O(T(n)), there is an NTIME[T(n)] machine AT

RO and an algorithmRT
RO such that:

1. Input. The input for RT
RO is a pair (M, 1n) with the promise that the M-th nondeterministic Turing

machine runs in o(T(n)) time.

2. Output. For every fixed M and all large enough n, RT
RO(M, 1n) outputs a string x such that |x| ∈

[n, n + T(n)] and AT
RO(x) 6= M(x).

3. Complexity. RT
RO is a deterministic algorithm running in poly(T(poly(T(n)))) time with adaptive

access to a SAT oracle.

The proof is similar to the proof of Theorem 1.12 and Theorem 4.6. We include it in Appendix B for
completeness.

5 Almost-Everywhere Worst-Case Lower Bounds for ENP

Given the powerful refuter, most previous infinitely-often lower bounds for ENP proved by Williams’ algo-
rithmic method can now be improved to almost-everywhere separations.

As a warm-up, we prove Theorem 1.1, showing that non-trivial Gap-UNSAT algorithm for AND ◦OR ◦
C (note that this requirement is weaker than the existence of a nontrivial CAPP algorithm) implies ENP is
almost-everywhere hard for C .

Reminder of Theorem 1.1. There are universal constants ε ∈ (0, 1), K ≥ 1 satisfying the following. Let
C be typical, and let s(n) be any non-decreasing time-constructible function with n ≤ s(n) ≤ 2εn for every
n. If Gap-UNSAT on AND ◦OR ◦C circuits of size s(n)K can be solved deterministically in 2n/nω(1) time,
then there are functions in ENP that do not have C circuits of size s(n/2), for every sufficiently large n.

Proof of Theorem 1.1. Let C, K ∈N be two sufficiently large constants, we also set ε = 1
10C .

Let T(n) = nC. Our proof will follow the outline in the Section 2.1: we consider the algorithm
AT

FS from Definition 4.2, define a “cheating” algorithm APCP which tries to speed up AT
FS, and apply the

refuter from 4.6 to efficiently construct a differing input between AT
FS and APCP, i.e. an input x such that

AT
FS(x) 6= APCP(x). The witness of AT

FS(x) will be the truth-table of the desired hard function.

Construction of Algorithm APCP. Our proof will use AT
FS. We also define another nondeterministic

algorithm APCP, which tries to simulate AT
FS by applying the PCPs from Lemma 3.10.

• Given an input z to AT
FS, APCP first applies the PCP reduction from Lemma 3.10 to AT

FS(z), to
compute an AC0 oracle circuit15 VPCPz, which takes `(n) = log T(n) + O(log log T(n)) =
C log n + O(log log n) random bits as input, and queries an oracle O which also takes ` bits as
input. All oracle queries in VPCPz are projections of the random bits, and VPCPz satisfies two
conditions:

– If AT
FS(z) = 1, there exists an oracle O : {0, 1}` → {0, 1} such that

Pr
x∈{0,1}`

[VPCPOz (x) = 1] = 1. (PCP Completeness)

15The top of circuit is actually AND ◦OR3.

23

– If AT
FS(z) = 0, for all oracles O : {0, 1}` → {0, 1}, it follows

Pr
x∈{0,1}`

[VPCPOz (x) = 1] ≤ 1/2. (PCP Soundness)

• APCP then guesses a C circuit C of size s(`) on ` bits input: note that the circuit can be described
using Õ(s(`)) ≤ Õ(2Cε log n) ≤ n/10 bits for every sufficiently large n. Feeding C into the PCP
oracle circuit VPCPz, we obtain VPCPC

z , which is an AND ◦OR3 ◦ C circuit of size poly(|C|).

• Finally,APCP uses the non-trivial Gap-UNSAT algorithm from the assumption to distinguish between
(1) Prx∈{0,1}` [VPCPC

z (x) = 1] = 1 and (2) Prx∈{0,1}` [VPCPC
z (x) = 1] ≤ 1/2. APCP accepts if

case (1) holds and rejects otherwise.

Crucially, by the construction it follows that VPCPC
z is an AND ◦OR ◦C circuits of size ≤ s(`)K on

` input bits. The Gap-UNSAT algorithm from the assumption runs 2`−ω(log `) ≤ o(T(n)) time.

Therefore, we can see that APCP runs in o(T(n)) time while guessing no more than n/10 bits. Hence,
the refuterRT from Theorem 4.6 can be applied to find a differing input between it and AT

FS.
The following observation is crucial in our proof. It basically says that APCP makes only ”one-sided”

errors.

Lemma 5.1. For every z, APCP(z) ≤ AT
FS(z).

Proof. The statement is equivalent to AT
FS(z) = 0 implies APCP(z) = 0, which follows directly from the

soundness condition of the PCP.

The Hard Language AHARD. Now we are ready to finish the proof. We will construct a hard language in
AHARD ∈ ENP, as follows: on an input y of length m, we first construct (in ENP) a function fm : {0, 1}m →
{0, 1} (which is only related to m, but independent of y) such that fm is hard against C circuits of size
s(m/2). Then we output fm(y). The function fm is constructed as follows.

1. Let n = 2m/2C. Applying the refuter RT of Theorem 4.6, we can find in poly(T(n)) time with a
SAT oracle a string z ∈ {0, 1}n such that AT

FS(z) 6= APCP(z). By Lemma 5.1, it must be the case
that AT

FS(z) = 1 while APCP(z) = 0.

2. Consider the oracle circuit VPCPz constructed by the PCP reduction. Since AT
FS(z) = 1, there

is an oracle O such that VPCPOz is a tautology by the completeness of the PCP. We can find the
lexicographically first such oracle O in 2O(`(n)) = poly(T(n)) time: using a SAT oracle to fix the
oracle O bit by bit, each time we can check if there is a way to complete remaining bits of the oracle
O such that VPCPOz is a tautology.

Note that O has `(n) = C log n + O(log log n) ∈ [m/2, m] inputs. Since APCP(z) = 0, it also
follows that O does not have C circuits of size s(`) ≥ s(m/2): otherwise, O could be guessed by
APCP and therefore APCP(z) would be 1, a contradiction.

3. Finally, the hard function fm : {0, 1}m → {0, 1} is defined as fm(y) = O(y≤`), where y≤` is the
prefix of y of length `. Note that fm does not have C circuits of size s(m/2).

To summarize, AHARD runs in DTIME[poly(T(n))]NP = DTIME[2O(m)]NP, and for large enough m,
AHARD restricted to m-length inputs does not have s(m/2)-size C circuits, which completes the proof.

24

6 Almost-Everywhere Strong Average-Case Lower Bounds

In this section, we prove the main theorem (Theorem 1.2) of the paper: Non-trivial CAPP algorithms for C
imply strong almost-everywhere average-case lower bounds against C circuits. In addition to the refuter
construction from Theorem 4.6, the proof also carefully combines the new XOR Lemma and PCPs of
Proximity.

6.1 An Algorithm for the Average-of-Product of Sum ◦ C Circuits

First, it will be useful to define the following Average-of-Product problem, variants of which are also studied
in [Wil18b, CW19, CR20].

Definition 6.1. Given k, n ∈N, the Average-of-Product problem takes as input k functions f1, f2, . . . , fk :
{0, 1}n → {0, 1} (may be implicitly given), and the task is to compute Ex∈{0,1}n [∏k

i=1 fi(x)].

We need the following lemma showing that a non-trivial CAPP algorithm for AND4 ◦ C circuits can be
used to solve the Average-of-Product problem for four Sum ◦ C circuits.

Lemma 6.2. Let C be a typical circuit class, and let S, E : N→N be such that S(n) ≤ o(E(n)). Suppose
there is an algorithm solving CAPP on AND4 ◦C circuits of size E(n) and n inputs within an additive error
of 1/E(n), running in 2n/E(n) time. Then given four Sum ◦ C circuits C1, . . . , C4 : {0, 1}n → R, each of
complexity at most S(n), the Average-of-Product of {Ci(x)}i∈[4] can be computed within an additive error
of S(n)4/E(n) in O

(
S(n)4 · 2n/E(n)

)
time.

Proof. Let Ci = ∑mi
j=1 αi,j · Ci,j. From the assumption, it follows that each Ci,j is of at most S(n) size,

mi ≤ S(n), and ∑mi
j=1 |αi,j| ≤ S(n). By adding some dummy coefficients and dummy circuits, we can

assume without loss of generality that all the mi are equal to m ≤ S(n).
For each tuple (j1, j2, j3, j4) ∈ [m]4, we run the promised CAPP algorithm ACAPP on

∧
i∈[4] Ci,ji to

output an estimate ACAPP(
∧

i∈[4] Ci,ji) such that∣∣∣∣∣∣ACAPP

∧
i∈[4]

Ci,ji

−E
x

[
4

∏
i=1

Ci,ji(x)

]∣∣∣∣∣∣ ≤ 1/E(n).

Hence, we can estimate Ex[∏4
i=1 Ci(x)] by computing the quantity

∑
(j1,j2,j3,j4)∈[m]4

ACAPP

∧
i∈[4]

Ci,ji

 · 4

∏
i=1

αi,ji . (8)

The error can be bounded by∣∣∣∣∣∣ ∑
(j1,j2,j3,j4)∈[m]4

ACAPP

∧
i∈[4]

Ci,ji

 · 4

∏
i=1

αi,ji − ∑
(j1,j2,j3,j4)∈[m]4

E
x

[
4

∏
i=1

Ci,ji(x)

]
·

4

∏
i=1

αi,ji

∣∣∣∣∣∣
≤ ∑

(j1,j2,j3,j4)∈[m]4

4

∏
i=1
|αi,ji | · E(n)

−1

≤ E(n)−1 ·
4

∏
i=1

(
m

∑
j=1
|αi,j|

)
≤ S(n)4/E(n).

25

Computing (8) can be done in O(2n/E(n) ·m4) ≤ O(2n/E(n) · S(n)4) time, which completes the proof.

6.2 Main Theorem

Now we are ready to prove Theorem 1.2 (restated below).

Reminder of Theorem 1.2. Let C be typical. Suppose there is an ε > 0 such that CAPP of 2nε
-size

AND4 ◦ C circuits can be deterministically solved in 2n−nε
time. Then there is a language L ∈ ENP and

a constant δ > 0 such that, for every sufficiently large n, Ln cannot be (1/2 + 2−nδ
)-approximated by C

circuits of size 2nδ
.

Combining Theorem 1.2 and the 2n−nε
-time #SAT algorithm for 2nε

-size AC0
d[m] ◦ THR circuits from

Theorem 3.12, the following corollary is immediate.

Reminder of Corollary 1.3. For every d, m ∈ N, there is an ε = εd,m and L ∈ ENP such that Ln cannot
be (1/2 + 2−nε

)-approximated by AC0
d[m] ◦ THR circuits of 2nε

size, for every sufficiently large n.

Proof Outline. The reminder of this subsection is devoted to proving Theorem 1.2. To make the presen-
tation clear, we will state and use several technical lemmas during the proof, and defer their proof to the end
of the section.

The proof is similar to the proof of Theorem 1.1, but is much more complicated. We again consider
the diagonalizing language AT

FS from Definition 4.2, and design an algorithm APCPP which tries to speed
up AT

FS. APCPP combines the PCP of Lemma 3.10 and the PCPP from Lemma 3.11. APCPP guesses a
small circuit as proof of the PCP just as in Theorem 1.1, as well as additional [0, 1]Sum ◦ C circuits as
proof for the corresponding PCPP. Then APCPP applies the CAPP algorithm for [0, 1]Sum ◦ C circuits
to verify the proof in o(T(n)) time. Setting the parameters carefully puts the language of APCPP into
NTIMEGUESS[o(T(n)), n/10].

Then one can use the refuter RT from Theorem 4.6 to find a conflicting input zn between AT
FS and

APCPP for every sufficiently large input length n. Given such zn, we show how to construct a function f
which cannot be `1-approximated within a small constant by low-complexity [0, 1]Sum ◦C circuits. Finally
we apply Lemma 3.8 to construct the required average-case hard function.

6.2.1 Construction of the Algorithm APCPP

We now design an algorithm APCPP which tries to speed up AT
FS. In the following we set k = 1/ε, and

T(n) = 2logk n.
Given an input z to algorithm AT

FS, APCPP first applies the PCP reduction from Lemma 3.10 to obtain
an oracle circuit VPCPz. This step is the same as the first step of Theorem 1.1. For brevity, we just write the
oracle circuit as VPCP from now on. Let ` = logk n + O(log log n) be the length of the input to VPCP
and its oracle. We also set δ =

(spcpp−cpcpp)2

106 , where spcpp and cpcpp are the corresponding parameters in
Lemma 3.11.
APCPP guesses a (general, fan-in 2) circuit C : {0, 1}` → {0, 1} of size at most 2`

ε/4
. Setting this circuit

as the oracle in VPCP, APCPP obtains a composed circuit VPCPC : {0, 1}` → {0, 1}. By Lemma 3.10
and similar reasoning as in the proof of Theorem 1.1, we have the following claim.

Claim 1. The following statements hold.

1. If AT
FS(z) = 1, then there an oracle O such that VPCPO(x) = 1 for every x ∈ {0, 1}`.

26

2. It AT
FS(z) = 0, then for every oracle O, it holds that Prx∈{0,1}` [VPCPO(x) = 1] ≤ 1

n10 ≤ 1
`10 .

APCPP attempts to distinguish the two cases in Claim 1.

Notation, and the PCPP Reduction. Then APCPP applies the PCPP reduction from lemma 3.11 to the
circuit VPCPC(·). The PCPP reduction gives us a 2-SAT instance over variables Y ∪ Z with m = 2`

ε/3

clauses. Let {Consi}m
i=1 be the set of clauses16, where each clause is an OR of two variables in Y ∪ Z or

their negations. For s ∈ [|Y|] and t ∈ [|Z|], we use Ys and Zt to denote the s-th variable in Y and the t-th
variable in Z , respectively.

To elegantly discuss the algorithm and its analysis, we introduce some useful notation. For each clause
Consi, it extends to a degree-2 polynomial, denoted as C̃onsi.17

1. By a “real-valued proof” we mean a pair of two lists of proof functions (Y, Z) for PCPP, where
Y = (Ys)s∈[|Y|], Z = (Zt)t∈[|Z|] and each Ys and Zt is a function from {0, 1}` → R. Based on
(Y, Z), we define the following terminologies:

• Recall each clause Consi involves two variables. We define indicators T(Y,Z)
i1 and T(Y,Z)

i2 to

indicate the corresponding functions in (Y, Z). We also let From(T(Y,Z)
ij) ∈ Y ∪ Z be the

variable it corresponds to.

• Each clause Consi extends to a polynomial C̃onsi, we define F(Y,Z)
i := C̃onsi(T

(Y,Z)
i1 , T(Y,Z)

i2).

Note that these objects all depend on the given proof (Y, Z), when the context is clear, we also omit
the superscript, and simply write them as Tij and Fi.

2. By a “Boolean-valued proof” we mean a pair of two lists of proof functions (Ŷ = Enc(x), Ẑ) where
Ŷs(x) = Encs(x) for every x ∈ {0, 1}` and s ∈ [|Y|], Ẑ = (Ẑt)t∈[|Z|], and each Ẑt is function from
{0, 1}` → {0, 1}. Recall that Enc : {0, 1}` → {0, 1}|Y| is the fixed F2-linear error correcting code
used in Lemma 3.11. Similar to the case of real-valued proofs, the proof (Ŷ = Enc(x), Ẑ) induces

T̂(Ŷ,Ẑ)
ij and F̂(Ŷ,Ẑ)

i . When the context is clear, we omit the superscript and write them as T̂ij and F̂i.

To clarify, we always use (Y, Z) to denote a real-valued proof, and (Ŷ, Ẑ) to denote a Boolean-valued
proof.

From Lemma 3.11, we have the following claim.

Claim 2. The following statements hold.

1. If VPCPC is a tautology, then there is a Boolean proof (Ŷ = Enc(x), Ẑ) such that

E
x∈{0,1}`

E
i∈[m]

F̂i(x) ≥ cpcpp.

2. If VPCPC(x) = 1 for at most a 1
`10 = o(1) fraction of x, then for every sufficiently large n, for every

Boolean proof (Ŷ = Enc(x), Ẑ), we have

E
x∈{0,1}`

E
i∈[m]

F̂i(x) < cpcpp −
9
10

(cpcpp − spcpp).

16Consi is also called “constraints”, we use “clauses” and “constraints” interchangeably.
17We use the natural arithmetization: The Boolean 0 (false) and 1 (true) correspond to real 0 and 1, respectively. Boolean AND

corresponds to real multiplication. Boolean OR corresponds to the real polynomial OR(a, b) = 1− (1− a) · (1− b).

27

Guessing Succinct Sum ◦C Circuits. Then APCPP guesses a list of proof circuits Yi(x), Zj(x) such that
Yi, Zj ∈ (Sum ◦ C)[2`

ε/2
] for every i ∈ [|Y|] and j ∈ [|Z|].

Note that ideally we only want to consider [0, 1]Sum ◦ C circuits, but it is not clear how to verify that
a given Sum ◦ C circuit satisfies the [0, 1]Sum ◦ C promise. Therefore, APCPP applies a certain validity
test on the guessed proof (Y, Z), and reject immediately if the test fails. Although passing the test does not
guarantee Y, Z are [0, 1]Sum ◦C circuits, it does mean they are “close enough” to them so that our analysis
still goes through. The validity test will be described later.

Since Fi(x) := C̃ons(Ti1(x), Ti2(x)) is a degree-2 polynomial, evaluating Ex[F(x)] reduces to Average-
of-Product problems over (Ti1, Ti2). By Lemma 6.2 and the assumed CAPP algorithm for 2`

ε
-size AND4 ◦C

circuits, we can estimate Ex[Fi(x)] within an additive error of 2O(`ε/2)−Ω(`ε) ≤ o(1) in 2`−`
ε+O(`ε/2) time.

Let Ẽx(Fi) be the output of the estimation algorithm when evaluating Ex[Fi(x)]. APCPP accepts if and
only if

E
i∈[m]

Ẽx(Fi) ≥ cpcpp −
5
10

(cpcpp − spcpp) . (9)

Putting everything together,APCPP takes m · 2`−`ε+O(`1/2) = 2`−`
ε+O(`1/2)+`1/3

= 2`−Ω(`ε) ≤ o(T(n))
time after guessing the circuits.

This completes the construction of APCPP except for the validity test, which is described next.

6.2.2 Validity Test on Guessed Sum ◦ C Circuits

For every Tij(x), consider the function

Pij(x) =

{
Tij(x)2(1− Tij(x))2, if From(Tij) ∈ Z ,
(Encs(x)− Tij(x))2, if From(Tij) = Ys for s ∈ [|Y|],

(10)

and Qij(x) = Tij(x)2. We want to estimate the expectations

E
i,j∈[m]×[2]

E
x∈{0,1}`

Pij(x) and E
x∈{0,1}`

Qij(x) for each i, j ∈ [m]× [2].

It is clear that for every (i, j) ∈ [m]× [2], Qij(x) is a polynomial over Tij(x) of degree 4. For Pij(x), it
is also a degree-4 polynomial over Tij(x) when From(Tij) ∈ Z . Hence, in these two cases, the evaluation
of these expectations reduces to computing Average-of-Product problems for the Ti,j, which can in turn be
estimated by Lemma 6.2. When From(Tij) = Ys, Encs(x) depends on at most `

2 bits (the moreover part
of Lemma 3.11). We can then enumerate all these bits, and solve the Average-of-Product problem on the
remaining part of inputs to estimate Ex∈{0,1}` Pij(x).18 This test runs in time

2`
ε/3 ·

(
2`−`

ε+O(`ε/2) + 2`/2 · 2(`/2)−(`/2)ε+O(`ε/2)
)
= o(T(n)).

Recall that we use Ẽx(D) to denote the estimation of Ex[D(x)]. The proof (Y, Z) passes the test if and
only if both of the following conditions hold:

1. Ei,j∈[m]×[2] Ẽx(Pij) ≤ 2δ.

2. Ẽx(Qij) ≤ 1 + δ for every (i, j) ∈ [m]× [2].

APCPP rejects immediately if (Y, Z) does not pass the test.

18After fixing all the bits that Encs(x) depends on, Encs(x) can be replaced by a constant, so Pij(x) becomes a degree-4
polynomial over Tij.

28

6.2.3 Analysis of the Algorithm APCPP

Now we prove several lemmas and facts about the algorithm APCPP.

Completeness and Soundness of the Validity Test. Recall that we have defined Fi(x) := C̃onsi(Ti1(x), Ti2(x)),
where C̃onsi is the polynomial extension of Consi. For a Boolean-valued proof (Ŷ = Enc(x), Ẑ), we also
defined F̂i(x) := C̃onsi(T̂i1(x), T̂i2(x)). The following lemma summarizes the properties we need from the
validity test. We defer its proof to the end of this section.

Lemma 6.3. We have the following completeness and soundness conditions on the validity test.

1. Completeness. Every (Y, Z) satisfying the following conditions passes the test:

(1.a) For every (s, t) ∈ [|Y|]× [|Z|] and every input x ∈ {0, 1}n, Ys(x), Zt(x) ∈ [0, 1].

(1.b) There is a Boolean-valued proof (Ŷ = Enc(x), Ẑ(x)) such that

E
i,j∈[m]×[2]

∥∥Tij − T̂ij
∥∥

1 ≤ δ.

2. Soundness. If (Y, Z) passes the test, the following statements hold.

(2.a) There is a Boolean-valued proof (Ŷ(x) = Enc(x), Ẑ(x)) such that

E
i,j∈[m]×[2]

∥∥Tij − T̂ij
∥∥

2 ≤
√

12δ.

(2.b) For any Boolean-valued proof (Ŷ(x) = Enc(x), Ẑ(x)), for every i ∈ [m], it holds that∥∥Fi − F̂i
∥∥

1 ≤ 6 · E
j∈[2]

∥∥Tij − T̂ij
∥∥

2.

The Running Time and Witness Length ofAPCPP. Putting everything together,APCPP runs in o(T(n))
time and guesses at most 2`

ε/4
+ 2O(`ε/2) ≤ o(n) bits (recall that ` = logk n + O(log log n) and k = ε−1),

so APCPP is an NTIMEGUESS[o(T(n)), n/10] algorithm.

Soundness ofAPCPP. We also verify that for every sufficiently long input z,APCPP never outputs 1 when
AT

FS(z) = 0. The proof is deferred to later subsections.

Lemma 6.4. For all but finitely many z, it holds that APCPP(z) ≤ AT
FS(z).

6.2.4 Average-Case Hardness from Conflicting Inputs

SinceAPCPP ∈ NTIMEGUESS[o(T(n)), n/10], we can apply the refuterRT from Theorem 4.6 to it. That
is, for every sufficiently large n, we can find in O(T(n) · n) time (with a SAT oracle) an input z of length n
such that APCPP(z) 6= AT

FS(z). By Lemma 6.4, it must be the case that APCPP(z) = 0 and AT
FS(z) = 1.

Depending on whether there is a circuit C of 2`
ε/4

size such that VPCPC(x) is a tautology (this can be
checked with a call to a SAT oracle in 2O(`) time), we consider the following two cases.

29

Case 1. There is no circuit of 2`
ε/4

size such that VPCPC(x) is a tautology. In this case, we simply
find the truth table of the lexicographically first oracle f : {0, 1}` → {0, 1} (with a SAT oracle) such that
VPCP f (x) is a tautology. Such an f exists by Item (1) of Claim 1 and the fact that AT

FS(z) = 1. Note that
f does not have 2`

ε/4
-size circuits, from the assumption of Case 1.

By Lemma 3.9, we can construct from f a new function famp : {0, 1}O(`) → {0, 1}, which cannot be
(1

2 + 2−`
Ω(1)

)-approximated by circuits of size 2`
Ω(1)

.

Case 2. There is a circuit of size 2`
ε/4

such that VPCPC(x) is a tautology. Then given access to a SAT
oracle, in 2O(`) time we can find the lexicographically first such circuit C and the first Boolean proof (Ŷ =
Enc(x), Ẑ) such that

E
i∈[m]

E
x∈{0,1}`

F̂i(x) ≥ cpcpp.

The Boolean proof (Ŷ = Enc(x), Ẑ) above exists by Item (1) of Claim 2. Let r = log m = `ε/3. Consider
the function f : {0, 1}r+1+` → {0, 1} defined as

f (i, j, u) := T̂ij(u) for (i, j, u) ∈ [m]× {0, 1} × {0, 1}`.

In the above, we identify {0, 1}r with [2r] = [m] in the natural way, so that i ∈ [m] can also be interpreted
as a string in {0, 1}r. The following lemma shows that f cannot be approximated well by [0, 1]Sum ◦ C
circuits of low complexity. We defer the proof to the next subsection, as it involves straightforward (but
heavy) calculations.

Lemma 6.5. For every sufficiently large n, in Case 2, the function f defined above is δ-far from every
[0, 1]Sum ◦ C [2`

ε/4
] circuit. That is, for every [0, 1]Sum ◦ C [2`

ε/4
] circuit D, it holds that

∥∥D− f
∥∥

1 > δ.

This lemma shows that f is δ-far (in `1 distance) from [0, 1]Sum ◦ C [2`
ε/4
] circuits. Using Lemma 3.8,

we conclude that f⊕d cannot be
(1

2 + (1− δ)d−1)-approximated by C circuits of 2`
ε/4−Oδ(d) size. Set-

ting d = `ε/5, it follows that the function f⊕d, taking O(`1+ε/5) bits of input, cannot be
(

1
2 + 2−`

Ω(1)
)

-

approximated by C circuits of size 2`
Ω(1)

.

6.2.5 The Hard Language AavgHARD

Finally, we are ready to design the hard language AavgHARD. On an input y of length m, let n = 2m1/3k
.

Applying the refuter RT from Theorem 4.6, we can find in poly(T(n)) time with a SAT oracle a string
z ∈ {0, 1}n such that AT

FS(z) = 1 while APCPP(z) = 0.
Recall that ` = `(n) = logk n + O(log log n). Using a SAT oracle, we can decide whether there is

a circuit C of 2`
ε/4

size such that VPCPC is a tautology in 2O(`) time. From the discussion above, in both
cases we can construct an average-case hard function f on inputs of length `′ ≤ O(max(`, `1+ε/5)) ≤ `2 in
2O(`) time with a SAT oracle, such that f cannot be (1/2+ 2−`

Ω(1)
)-approximated by 2`

Ω(1)
-size C circuits.

Note that ` = logk n+O(log log n) ≤ m1/2. Therefore, we can pad the input length to m in the natural
way. That is, we define g : {0, 1}m → {0, 1} such that g(y) = f (y′) where y′ is the first `′ bits of y. It

follows that g cannot be
(

1/2 + 2−mΩ(1)
)

-approximated by C circuits of size 2`
Ω(1)

= 2mΩ(1)
. Therefore,

AavgHARD simply outputs g(y) on the input y. Note that it runs in 2O(`) ≤ 2O(m) time with a SAT oracle,
which completes the proof of Theorem 1.2.

30

6.3 Proof of Lemma 6.4 and Lemma 6.5

Now we present the proof of Lemma 6.4.

Proof of Lemma 6.4. Fix a sufficiently long input z and assume AT
FS(z) = 0. To prove the lemma, it

suffices to show that APCPP(z) = 0 as follows.
Consider the PCP system VPCP inAPCPP(z). Suppose thatAPCPP guessed a circuit C as the oracle for

VPCP and (Y, Z) as its proof circuits. By Item (2) of Claim 1, VPCPC outputs 1 on at most a 1
`10 fraction of

inputs. In the following we assume (Y, Z) passes the validity test, as otherwiseAPCPP immediately rejects.
For every Boolean proof (Ŷ = Enc(x), Ẑ), by Item (2) of Claim 2, we have

E
i∈[m]

E
x∈{0,1}`

F̂i(x) < cpcpp −
9
10

(cpcpp − spcpp).

By Item (2.a) of Lemma 6.3, for some Boolean proof (Ŷ = Enc(x), Ẑ), it holds that

E
i,j∈[m]×[2]

∥∥Tij − T̂ij
∥∥

2 ≤
√

12δ.

By Item (2.b) of Lemma 6.3, it follows that

E
i∈[m]

E
x∈{0,1}`

Fi(x) ≤ E
i∈[m]

E
x∈{0,1}`

F̂i(x) + E
i∈[m]

∥∥F̂i − Fi
∥∥

1

≤ E
i∈[m]

E
x∈{0,1}`

F̂i(x) + 6 · E
i,j∈[m]×[2]

∥∥Tij − T̂ij
∥∥

2

< cpcpp −
7
10

(cpcpp − spcpp) . (11)

The last inequality holds since we set δ =
(spcpp−cpcpp)2

106 and 6 ·
√

12δ ≤ 1
5 · (cpcpp − spcpp).

Recall that we use Ẽx(Fi) to denote the output of the estimation algorithm on Ex[Fi(x)]. Since Ti1 and
Ti2 are Sum ◦ C circuits of complexity 2O(`ε/2), by Lemma 6.2 it follows that∣∣∣∣ E

i∈[m]
E

x∈{0,1}`
Fi(x)− E

i∈[m]
Ẽx(Fi)

∣∣∣∣ ≤ o(1) ≤ 1
10

(cpcpp − spcpp). (12)

By (11) and (12), APCPP rejects on (Y, Z). Therefore, APCPP(z) = 0 since it rejects every C and (Y, Z),
and the conclusion follows.

Next we prove Lemma 6.5.

Proof of Lemma 6.5. Suppose there is a circuit D ∈ [0, 1]Sum ◦C [2`
ε/4
] such that

∥∥D− f
∥∥

1 ≤ δ. We are
going to construct a proof (Y, Z) which makes APCPP accept, contradicting APCPP(z) = 0.

Construction of the Proof (Y, Z) MakingAPCPP Accept. Similar to f , we also think of D as a function
on {0, 1}r × {0, 1} × {0, 1}`, and often use i and j to denote the first two parts of input. Recall that we
identify [m] with {0, 1}r.

For s ∈ [|Y|] and t ∈ [|Z|], we define

Ys(x) := E
i,j s.t. From(Tij)=Ys

D(i, j, x) and Zt(x) := E
i,j s.t. From(Tij)=Zt

D(i, j, x).

31

Since m = 2`
ε/3

and for each fixed (i, j) ∈ [m]× [2], D(i, j, ·) is a [0, 1]Sum ◦ C circuit of complexity
at most 2`

ε/4
. It is clear that for every s ∈ [|Y|] and t ∈ [|Z|], Ys and Zt are [0, 1]Sum ◦ C circuits of

complexity at most 2`
ε/2

.
We will show thatAPCPP(z) accepts on the proof (Y, Z) defined above (together with the circuit C as the

guessed oracle in VPCPC). Let Tij and T̂ij be the indicators for (Y, Z) and (Ŷ = Enc(x), Ẑ), respectively.
(Recall that Ŷ and Ẑ are the lexicographically first proof we constructed in Case 2 of the Section 6.2.4).

(Y, Z) Passes the Validity Test. We first apply Item (1) of Lemma 6.3 to prove that (Y, Z) passes the
validity test in APCPP. Since Item (1.a) of Lemma 6.3 (all the Ys and Zt are [0, 1]-valued) is already
satisfied, it suffices to verify Item (1.b) of Lemma 6.3, which is

E
i,j∈[m]×[2]

‖T̂i,j − Ti,j‖ ≤ δ.

We have

E
i,j∈[m]×[2]

∥∥T̂ij − Tij
∥∥

1 =
1

2m
· ∑

i,j∈[m]×[2]

∥∥T̂ij − Tij
∥∥

1

=
1

2m
· ∑

X∈Y∪Z
∑

i,j s.t. From(Tij)=X

∥∥T̂ij − Tij
∥∥

1. (13)

To bound (13), we need the following simple fact.

Fact 6.6. For every (v1, v2, . . . , vd) ∈ [0, 1]d and b ∈ {0, 1}, it holds that

1
d ∑

i

∣∣vi − b
∣∣ = ∣∣∣∣∣1d ∑

i
vi − b

∣∣∣∣∣ .

To verify the fact is true, note that when b = 0, it is equivalent to 1
d ∑i |vi| =

∣∣ 1
d ∑i vi

∣∣, which is true
since all vi ≥ 0. The case for b = 1 is symmetric, since all vi ≤ 1.

By Fact 6.6, for every X ∈ Y ∪ Z , it follows that

E
i,j s.t. From(Tij)=X

∥∥T̂ij − Tij
∥∥

1

= E
i,j s.t. From(Tij)=X

E
x

∣∣Tij(x)− f (i, j, x)
∣∣ (Definition of f)

=E
x

E
i,j s.t. From(Tij)=X

∣∣Tij(x)− f (i, j, x)
∣∣

=E
x

E
i,j s.t. From(Tij)=X

|D(i, j, x)− f (i, j, x)|

= E
i,j s.t. From(Tij)=X

‖D(i, j, ·)− f (i, j, ·)‖1 . (14)

The second-last equality above holds by fixing a particular x and setting v as the collection of the D(i, j, x)
for all From(Tij) = X and b = f (i, j, x) (note that b only depends on From(Ti,j) since x is fixed), and
applying Fact 6.6 to show

E
i,j s.t. From(Tij)=X

|D(i, j, x)− f (i, j, x)| = 1
d ∑

i

∣∣vi − b
∣∣

=

∣∣∣∣∣1d ∑
i

vi − b

∣∣∣∣∣
= E

i,j s.t. From(Tij)=X

∣∣Tij(x)− f (i, j, x)
∣∣ .

32

Therefore, we have

E
i,j∈[m]×[2]

∥∥T̂ij − Tij
∥∥

1 =
1

2m
· ∑

X∈Y∪Z
∑

i,j s.t. From(Tij)=X

∥∥T̂ij − Tij
∥∥

1

= E
i,j∈[m]×[2]

∥∥ f (i, j, ·)− D(i, j, ·)
∥∥

1 (by (14))

=
∥∥ f − D

∥∥
1

≤ δ. (15)

Hence, by (15) and Item (1) of Lemma 6.3, (Y, Z) passes the validity test.

APCPP Accepts (Y, Z). Now we further argue that APCPP accepts (Y, Z). Note that

‖Tij − T̂ij‖2 ≤ ‖Tij − T̂ij‖1/2
∞ · ‖Tij − T̂ij‖1/2

1 ≤ ‖Tij − T̂ij‖1/2
1 . (16)

The first inequality above follows from the fact that Ei[a2
i] ≤ maxi |ai| ·Ei |ai| for every real vector a, and

the second inequality is implied by ‖Tij − T̂ij‖∞ ≤ 1.
Hence, it follows from (15), (16), and Jensen’s inequality that

E
ij∈[m]×[2]

∥∥Tij − T̂ij
∥∥

2 ≤ E
ij
‖Tij − T̂ij‖1/2

1 ≤
(

E
ij
‖Tij − T̂ij‖1

)1/2

≤
√

δ. (17)

Finally, we have

E
i∈[m]

E
x∈{0,1}`

Fi(x) ≥ E
i

E
x

F̂i(x)−E
i
‖Fi − F̂i

∥∥
1

≥ E
i

E
x

F̂i(x)− 6 ·E
ij

∥∥Tij − T̂ij
∥∥

2 (Item (2.b) of Lemma 6.3)

≥ E
i

E
x

F̂i(x)− 6
√

δ (by (17))

≥ cpcpp −
1

10
(cpcpp − spcpp).

The last inequality follows from Ei Ex F̂i(x) ≥ cpcpp and δ =
(cpcpp−spcpp)

106 .
Finally, by (12), it follows that

E
i∈[m]

Ẽx(Fi) ≥ E
i∈[m]

E
x∈{0,1}`

Fi(x)− δ ≥ cpcpp −
5

10
(cpcpp − spcpp).

It shows that (Y, Z) and C are accepted by APCPP(z), which implies APCPP(z) = 1, a contradiction.

6.4 Proof of Lemma 6.3

Finally, we present the proof of Lemma 6.3. We need the following simple fact.

Lemma 6.7. For every sufficiently large n and every (i, j) ∈ [m]× [2], it holds that∣∣∣Ẽx(Pij)−E
x

Pij(x)
∣∣∣ ≤ δ and

∣∣∣Ẽx(Qij)−E
x

Qij(x)
∣∣∣ ≤ δ.

Proof. This follows from Lemma 6.2 by setting S(`) = 2O(`ε/2) and E(`) = 2Ω(`ε).

Proof of Lemma 6.3. First we establish the completeness condition.

33

Completeness. Suppose that (Y, Z) satisfies Item (1.a) and (1.b). That is, (1.a) for every s ∈ [|Y|] and
t ∈ [|Z|], Ys and Zt are valid [0, 1]Sum ◦ C circuits, and (1.b) there is a Boolean-valued proof (Ŷ =
Enc(x), Ẑ(x)) such that

E
i,j∈[m]×[2]

‖Tij − T̂ij‖1 ≤ δ.

Recall that Qij(x) = Tij(x)2, it is clear that Ex Qij(x) ∈ [0, 1] since Tij(x) ∈ [0, 1].
Now we consider Pij(x). Recall that

Pij(x) =

{
Tij(x)2(1− Tij(x))2, if From(Tij) ∈ Z ,
(Enc(x)s − Tij(x))2, if From(Tij) = Ys for s ∈ [|Y|].

(18)

Since Tij(x) ∈ [0, 1] and T̂ij(x) ∈ {0, 1}, it follows that

Tij(x) · (1− Tij(x)) ≤ |T̂ij(x)− Tij(x)|

and
Pij(x) ≤

(
T̂ij(x)− Tij(x)

)2
≤
∣∣T̂ij(x)− Tij(x)

∣∣.
Then we have

E
i,j∈[m]×[2]

E
x∈{0,1}`

Pij(x) ≤ E
i,j∈[m]×[2]

∥∥T̂ij − Tij
∥∥

1 ≤ δ.

Hence, by Lemma 6.7,
E

i,j∈[m]×[2]
Ẽx(Pij) ≤ δ + E

i,j∈[m]×[2]
E
x

Pij(x) ≤ 2δ,

Ẽx(Qij) ≤ δ + E
x

Qij(x) ≤ 1 + δ for every (i, j) ∈ [m]× [2].

Therefore, (Y, Z) passes the validity test.

Soundness. Now, suppose (Y, Z) passes the test. That is, the following two conditions are satisfied:

E
i,j∈[m]×[2]

Ẽx(Pij) ≤ 2δ and (19)

Ẽx(Qij) ≤ 1 + δ for every (i, j) ∈ [m]× [2]. (20)

In the following we prove Item (2.a) and (2.b) separately.

(2.a) We let Ŷ be determined by Enc(x), and define Ẑ as

Ẑi(x) =

{
0, Zi(x) ≤ 1

2

1, Zi(x) > 1
2

. (21)

We need the following claim for the proof.

Claim 3. For every (i, j) ∈ [m]× [2],

(Tij(x)− T̂ij(x))2 ≤ 4 · Pij(x). (22)

Let us now prove the claim. Depending on whether From(Tij) = Ys or From(Tij) = Zt, there are
two cases.

34

1. (From(Tij) = Ys.) In this case,

Pij(x) = (Encs(x)− Tij(x))2 =
(

T̂ij(x)− Tij(x)
)2

since T̂ij(x) = Ŷs(x) = Encs(x).

2. (From(Tij) = Zt.) In this case, note that
∣∣Zt(x)− (1− Ẑt(x))

∣∣ ≥ 1/2 by the definition of
Ẑt(x). Hence

(Tij(x)− T̂ij(x))2 =
(

Ẑi(x)− Zi(x)
)2

≤
(

Ẑt(x)− Zt(x)
)2
· 4 ·

(
Zt(x)− (1− Ẑt(x))

)2

= 4 · (Zt(x)− 0)2 · (Zt(x)− 1)2 (Ẑt(x) ∈ {0, 1})
= 4 · Pij(x).

This completes the proof of Claim 3.

It follows that

E
i,j∈[m]×[2]

∥∥Tij − T̂ij
∥∥

2 ≤ E
i,j∈[m]×[2]

(
E

x∈{0,1}`
4 · Pij(x)

)1/2

(Claim 3)

≤
(

E
i,j∈[m]×[2]

E
x∈{0,1}`

4 · Pij(x)
)1/2

(Jensen’s inequality)

≤
(

E
i,j∈[m]×[2]

4 ·
(

Ẽx(Pij) + δ)
))1/2

(Lemma 6.7)

≤
√

12δ. (by (19))

(2.b) Note that by the Cauchy-Schwarz inequality, we have∥∥Ti1 · Ti2 − T̂i1 · T̂i2
∥∥

1 ≤
∥∥(Ti1 − T̂i1) · Ti2

∥∥
1 +

∥∥T̂i1 · (T̂i2 − Ti2)
∥∥

1

≤
∥∥(Ti1 − T̂i1)

∥∥
2 ·
∥∥Ti2

∥∥
2 +

∥∥T̂i1
∥∥

2 ·
∥∥(T̂i2 − Ti2)

∥∥
2

≤ 2 · ∑
j=1,2

∥∥Tij − T̂ij
∥∥

2.

The last inequality above follows from

‖Tij‖2 =
(

E
x

Qij(x)
)1/2

(Definition of Qij(x))

≤
(

1 + Ẽx(Qij)
)1/2

≤ 2. (by (20))

Recall that Fi(x) = C̃onsi(Ti1(x), Ti2(x)), and F̂i(x) = C̃onsi(T̂i1(x), T̂i2(x)). Since Consi is an OR
on two input bits or their negations, one can write

C̃onsi(y1, y2) = ∑
S⊆[2]

αS ·∏
i∈S

yi,

such that all |αS| ≤ 1. Therefore, it follows that

‖Fi − F̂i‖1 ≤
2

∑
j=1

∥∥Tij − T̂ij
∥∥

1 +
∥∥Ti1 · Ti2 − T̂i1 · T̂i2

∥∥
1 ≤ 6 · E

j∈[2]

∥∥Tij − T̂ij
∥∥

2.

35

6.5 Almost-Everywhere PRG for ACC0 with an NP Oracle

As an immediate consequence of the new average-case lower bound, we can construct almost-everywhere
ENP-computable PRGs for C circuits given that certain non-trivial CAPP algorithms exist.

Theorem 6.8. Let C be a typical circuit class. Suppose that for some ε > 0, CAPP of 2nε
-size AND4 ◦

C ◦ Juntanε circuits can be deterministically solved in O(2n−nε
) time. Then there is a constant δ > 0 and

an ENP algorithm G such that, on input x of length m, outputs a 2mδ
-bit string such that for all but finitely

many m, Gm : {0, 1}m → {0, 1}2mδ

is a PRG fooling C circuits of size 2mδ
.

Proof Sketch. By Theorem 1.2 and the hypothesis, there is a β > 0 (which is a function of ε) and an ENP

language L such that Ln cannot be (1/2 + 2−nβ
)-approximated by C ◦ JuntanΩ(ε) circuits of size 2nβ

.19

We define G as follows: On an input of length m, let n = m1/3. We first compute Ln : {0, 1}n →
{0, 1}. Then we feed Ln into the Nisan-Wigderson PRG (Lemma 3.5). This results in a PRG of seed length
≤ n3 ≤ m, which fools C circuits of size 2mΩ(β)

. Finally we can set δ > 0 so that this size is 2mδ
.

Observe that AC0
d[m] ◦ Juntaa circuits of size s can be easily simulated by AC0

d+2[m] circuits of size
O(a · 2a · s). Therefore, for d, m ∈ N and a constant ε = ε(d, m) > 0, Theorem 3.12 yields a #SAT

algorithm for 2nε/2
-size AC0

d[m] ◦ Juntanε/2 circuits that runs in time O(2n−nε
). Combining this algorithm

with Theorem 6.8, we obtain the following.

Reminder of Theorem 1.9. For all constants d and m, there is δ = δ(d, m) > 0 and an ENP-computable
PRG which, takes an n-bit seed and outputs a 2nδ

-bit string, fooling AC0
d[m] circuits of size 2nδ

.

7 From Strong Average-Case Lower Bounds to an NPRG

In this section, we construct the infinitely-often nondeterministic PRG.

Theorem 7.1. For a circuit class C , if for some ε > 0, CAPP of 2nε
-size (C ◦ Juntanε) circuits can be

deterministically solved in 2n−nε
time, then there exists an i.o.-NPRG with seed length n which fools C

circuits of size 2nΩ(1)
, running in time 2O(n).

Proof. Let Lhard ∈ NTIME[2n] \ NTIME[2n/n] be a unary language. We define another algorithm Afast

which tries to compute Lhard faster. Afast is similar to APCPP. It runs the following four steps.

1. Afast rejects all non-unary inputs. On input z = 1n, Afast applies PCP from Lemma 3.10 first,
obtaining an oracle circuit VPCP1n . For brevity, we just write it as VPCP(n) from now on. Recall
that VPCP(n) and its oracle take input of length ` = `(n) = n + O(log n).

2. Then Afast guesses a 2`
ε/4

-size general circuit C. Feeding C into VPCP(n) we obtain VPCPC
(n).

3. Afast applies the PCPP from Lemma 3.11 and guesses a list of Sum ◦ C ◦ Junta`ε/4 proof circuits
(Y, Z), each of complexity 2`

ε/2
. Afast runs the validity test (described in last section, see Lemma 6.3),

and rejects immediately if (Y, Z) does not pass the validity test.

4. Finally,Afast verifies the proof circuits (Y, Z) for VPCP(n) using a fast CAPP algorithm, via Lemma 6.2.

Applying the assumed CAPP algorithm, it follows Afast ∈ NTIME[2n/n]. Therefore, for infinitely
many n, we have 1n ∈ Lhard \ L(Afast). Let S be the set of all such integers n: S = {n : 1n ∈ Lhard \
L(Afast)}. Depending on whether there is a succinct circuit for VPCP(n) as a correct oracle (meaning that
VPCPC

(n)(r) = 1 for all r), we will use different constructions.

19This is implicit in the proof of Theorem 1.2, as the input length increases only polynomially through the hardness amplification.

36

Case 1. There are infinitely many n ∈ S such that, there is no circuit C of size 2`
ε/4

such that VPCPC
(n)

is a tautology. In the following we only consider these n, as there are infinitely many of them. Then we
construct our NPRG as follows:

1. For a given seed-length parameter m, let n = m
K for a large constant K. We consider the PCP oracle

circuit VPCP(n) and guess the truth table f : {0, 1}`(n) → {0, 1} such that VPCP f
(n) is a tautology

(the verification can be done in 2O(`(n)) time). Note that such f exists as 1n ∈ Lhard.

2. Then, f is hard against circuits of size 2`
ε/4

, by our assumption. We plug f into Umans’ PRG con-

struction from Lemma 3.6, and get the desired PRG Gg` : {0, 1}g` → {0, 1}2`
Ω(1)

. Recall ` =
n + O(log n), we can then pad input length from g` to m.

Case 2. For all but finitely many n ∈ S , there exists a 2`
ε/4

-size circuit C such that VPCPC
(n) is a tautology.

In the following we only consider these n. We construct our NPRG as follows.

1. For a given seed-length parameter m, let n = m1/3. We apply the PCP reduction to get VPCP(n).

Then we guess an oracle C of size 2`(n)
ε/4

such that VPCPC
(n) is a tautology. Note that such a C exists

for the integers n we are considering, by assumption.

2. Next, we guess a list of proof functions (Ŷ = Enc(x), Ẑ) : {0, 1}` → {0, 1} such that

E
i

E
x

F̂i(x) ≥ cpcpp.

Let r = `ε/3 be the total amount of randomness in the PCPP. Consider the function

f : {0, 1}r+1+` → {0, 1}
(i, j, u) 7→ T̂ij(u).

By analogy with Lemma 6.5, f is δ-far from [0, 1]Sum ◦ C ◦ Junta`ε/4 [2`
ε/4
] (since 1n /∈ L(Afast)).

Then we use Lemma 3.8 to apply hardness amplification with parameter k = `ε/16. This gives us a
function f : {0, 1}O(`1+ε/16) → {0, 1} which cannot be (1

2 + 2−`
Ω(1)

)-approximated by C ◦ Junta`ε/4

circuits of size 2`
Ω(1)

.

3. Finally, we use the Nisan-Wigderson PRG from Lemma 3.5 with function f . The resulting seed length
is bounded by `3 ≤ m, and the obtained PRG can 2−`

Ω(1)
-fool C circuits of size 2`

Ω(1)
.

Summary. To summarize, in both cases, we have an i.o.-NPRG construction which takes m-bit seeds and
outputs 2mΩ(1)

-bit strings in 2O(m) time, fooling 2mΩ(1)
-size C circuits.

As shown in the last section, we have a CAPP algorithm for 2nε
-size AC0

d[m] ◦ Juntanε circuits running
in 2n−nε

time. The following is immediate.

Reminder of Theorem 1.10. For all constants d and m, there is δ = δ(d, m) > 0 and an i.o.-NPRG which
takes n-bit seeds, runs in 2O(n) time, and outputs 2nδ

-bit strings fooling AC0
d[m] circuits of size 2nδ

.

8 More Applications

In this section, we apply our new refuter to strengthen several previous infinitely-often separations into
almost-everywhere separations.

37

8.1 Almost-Everywhere Rigid Matrix Constructions

A recent result by Alman and Chen [AC19] gave an explicit infinitely-often PNP construction of rigid matri-
ces via Williams’ algorithmic approach. Their proof has been simplified and improved by [BHPT20]. Using
our refuter, we can improve their construction to an almost-everywhere one.

8.1.1 Preliminaries

We recall the definition of matrix rigidity.

Reminder of Definition 1.4. Let F be a finite field. For any r, n ∈N and matrix M ∈ Fn×n, the r-rigidity
of M, denotedRM(r), is the minimum Hamming distance between M and any matrix of rank at most r.

We need a series of technical ingredients from previous results. We start with a fast algorithm for solving
a problem called #OVn,d-Fq.

Definition 8.1. For a prime power q = pr, an instance of #OVn,d-Fq consists of two collections of vectors
from Fd

q: A = {a1, . . . , an} ⊆ Fd
q and B = {b1, . . . , bn} ⊆ Fd

q . The goal is to compute the number of pairs
(ai, bj) such that 〈ai, bj〉 = 0, where the inner product is taken over Fq.

Note that the number returned by #OVn,d-Fq is an integer in {0, 1, . . . , n2} (we are not computing this
quantity over Fq!).

Lemma 8.2 ([AC19, CW16]). For all fixed prime powers q = pr and d = no(1), there is an n2−Ω(1/ log(d/ log n))

time deterministic algorithm for computing #OVn,d-Fq.

In a recent improvement on rigid matrix constructions, [BHPT20] gave a PCP construction with an
“almost-rectangular” property, which will be crucial for our proof.20

Lemma 8.3 ([BHPT20, Theorem 8.2 and Remark 8.3]). Let M be an algorithm running in time T =
T(n) ≥ n on inputs of the form (x, y) where |x| = n. For any odd constant integer m ∈ N such that
T(n)1/m ≥ n, given x ∈ {0, 1}n one can output in time poly(n, T1/m) a PCP system VrecPCPx with
proof length N1

2, randomness |r| = log T(n) +O(m log log n), completeness 1 and soundness s such that
0 < s < 1 and the following hold.

• Shortness. N1
2 ≤ 2r ≤ T · polylog(T).

• Rectangular. The randomness r can be split into three parts r = (rrow, rcol, rshared) such that
|rrow| = |rcol| ≥ m−6

2m log T(n). For a given proof π and fixed rshared, we view VrecPCPπ
x (·, ·, rshared)

as a [2|rrow|] × [2|rcol|] matrix, where VrecPCPπ
x (ri, rj, rshared) is the output of verifier given r =

(ri, rj, rshared) as its randomness.

If a proof H is given by its low-rank decomposition H = A · B where A, B are N1 × R and R ×
N1 matrices respectively, then VrecPCPH

x (·, ·, rshared) is an R-linear combination of constant many
matrices:

VrecPCPH
x (·, ·, rshared) =

`

∑
i=1

ci ·Mi,

where each of Mi has F2-rank O(R). Moreover, each Mi’s low-rank decomposition and each ci can
be computed in O(2|rrow| · R) time.

20Here we omit the exact technical definition of almost-rectangular PCPs, and only state its desired implications for simplicity.
We will also just say rectangular PCPs instead of almost-rectangular ones for convenience.

38

• Completeness. If there is a y such that M(x, y) accepts, then there is an N1×N1 matrix H such that:

Pr
r
[VrecPCPH

x (r) = 1] ≥ 1.

• Soundness. If no y causes M(x, y) to accept, then for every matrix H, we have:

Pr
r
[VrecPCPH

x (r) = 1] ≤ s.

• Smoothness. For every pair (s, t) ∈ [N1]× [N1], the quantity:∣∣{r : VrecPCPH
x (r) depends on H(s, t) }

∣∣
is the same, i.e., each H(s, t) “contributes” to the same number of clauses.

The following simple fact shows we can “pad” a rigid matrix into a larger rigid matrix with the same
rigidity measure.

Lemma 8.4 (Lemma 2.7 in [AC19]). Let 1M be the all-ones M×M matrix. For any field F and any matrix
A ∈ FN×N , we have:

RA⊗1M(r) = RA(r) ·M2.

8.1.2 Construction of Rigid Matrices

Now we are ready to prove Theorem 1.5. In previous work, the high-level idea was to use the “non-
existence” of rigid matrices in PNP to contradict the NTIME Hierarchy. Here, we will use the PNP refuter to
construct rigid matrices directly. A subtlety is that we need to apply a refuter (with a SAT oracle) based on
the “robustly often” NTIME hierarchy (Theorem 4.8) rather than the refuter based on the almost-everywhere
sublinear witness NTIME hierarchy (Theorem 4.6). The main reason is that, when we guess a low-rank ma-
trix as a proof for a language L ∈ NTIME[T(n)], we have to guess at least

√
T(n) bits (specifying even

a rank-one matrix of size
√

T(n)×
√

T(n) requires at least Ω(
√

T(n)) bits). Hence, making the witness
length sublinear would require us to set T(n) ≤ n2, but the PCP reduction from Lemma 8.3 may already
require more than quadratic time.

Reminder of Theorem 1.5. There is a δ > 0 such that, for every finite field F and ε > 0, there is a PNP

algorithm which on input 1n outputs an n× n matrix H such thatRH(2log1−ε n) ≥ δn2 over F, for all large
enough n.

Proof Sketch. For simplicity, we only prove the theorem for the case of F2, but a similar construction works
for any field of constant order.

Let c = 1 and s be the completeness and soundness parameters from Lemma 8.3. Fix δ = c−s
C1

for a
sufficiently large constant C1. Let m be a large enough odd constant, and let T(n) = nC for a large constant
C > m. Now, we consider the algorithm AT

RO from Theorem 4.8 and the following algorithm ArectPCP

which tries to speed up AT
RO:

1. On an input z of length n,ArectPCP applies the PCP reduction from Lemma 8.3 with the parameter m.
Then ArectPCP guesses a pair of matrices A ∈ F

N1×R
2 , B ∈ F

R×N1
2 with parameter R = 2log1− ε

2 N1 =

N1
o(1).

39

2. Let H = A · B. For any fixed rshared, consider VrecPCPH
z (·, ·, rshared). By the rectangular property,

we can write

VrecPCPH
z (·, ·, rshared) =

`

∑
i=1

ci ·Mi,

where each Mi can be written as a product of two matrices of rank O(R) over F2. For each Mi, we
first find the corresponding decomposition Mi = Qi,1 ·Qi,2, then apply the fast #OVn,d-F2 algorithm
to count the number of 1s in Mi

21. Finally, by adding all the ` terms together, we can count the
number of 1s in VrecPCPH

z (·, ·, rshared) in time

2|rrow|+|rcol|−Ω
(

|rrow |
log(R/|rrow |)

)
.

3. By enumerating all possible rshared, we evaluate

p = Pr
r
[VrecPCPH

z (r) = 1].

Finally, we accept if and only if p > c+s
2 . This completes the construction of ArectPCP. When m is

large enough, the running time of this step is bounded by

2|rshared|+|rrow|+|rcol|−Ω
(

|rrow |
log(R/|rrow |)

)
= T(n) · 2O(m log log T(n))−logΩ(ε) T(n) ≤ o(T(n)).

Note that the time to prepare the PCP system VrecPCPz is bounded by poly(n, T(n)1/m) ≤ o(T(n))
for a sufficiently large m. It follows that ArectPCP runs in nondeterministic o(T(n)) time. Hence, for
all large enough n, by Theorem 4.8, we can find in nCO(1)

time (with a SAT oracle) an input z of length
|z| ∈ [n, nC+1] such that AT

RO(z) = 1 while ArectPCP(z) = 0.
Slightly abusing notation, we still let N1 = N1(|z|) so that N2

1 is the proof length of the VrecPCPz.
Then it follows from Lemma 8.3 that there is an H ∈ FN1×N1 such that

Pr
r
[VrecPCPH

z (r) = 1] ≥ 1.

Using a SAT oracle, the lexicographically first such H can be constructed in poly(N1) time, given z.
We claim that H is δ-far from any matrix of rank R = 2log1−ε/2 N1 . In fact, let H′ ∈ FN1×N1 be any matrix
of rank at most R with low rank decomposition H′ = A · B. Suppose the Hamming distance between H
and H′ is at most δ · N1

2. Then

Pr
r
[VrecPCPH′

z (r) = 1] ≥ Pr
r
[VrecPCPH

z (r) = 1]−O(δ) (The Smoothness Condition in Lemma 8.3)

≥ 1−O(δ)

≥ 1 + s
2

.

This shows that (A, B) is a correct witness forArectPCP(z), andArectPCP(z) = 1, which is a contradiction.
Note that N1 ∈ [n, n(C+1)2

], since |z| ∈ [n, nC+1]. Applying Lemma 8.4, we can pad the size of H to
be Nmax = n(C+1)2

, letting the new matrix be Hmax. Then

RHmax(2
log1−ε/2 n) ≥ δ · Nmax

2.

Finally, observe that 2log1−ε/2 n ≥ 2C−3·log1−ε/2 Nmax ≥ 2log1−ε Nmax .
Therefore, our final PNP algorithm can be described as follows: on input 1m, set n = m1/(C+1)2

so that
Nmax = m, and output the matrix Hmax. The whole construction takes at most nC3 ≤ poly(m) time with a
SAT oracle, which completes the proof.

21This reduces to the #OVn,d-F2 instance between row vectors of Qi,1 and column vectors of Qi,2.

40

8.2 Almost-Everywhere Probabilistic Degree Lower Bounds

Next we improve Viola’s Ω(n/ log2 n) probabilistic degree lower bound [Vio20] to an almost-everywhere
one. We first recall the definition of probabilistic degree.

Reminder of Definition 1.6. The ε-error degree of a function f : {0, 1}n → {0, 1} is the minimum d such
that there is a distribution D on polynomials over F2 of degree d such that PrP∼D [P(x) 6= f (x)] ≤ ε.

We need the following fast evaluation algorithm for low degree polynomial.

Lemma 8.5 ([Wil18b, Theorem 26]). Let p : {0, 1}n → {0, 1} be an F2-polynomial of degree d, we can
evaluate ∑x∈{0,1}n p(x) in 2n−Ω(n/d)+O(log n) time.

The main theorem in [Vio20] can be adapted to the almost-everywhere setting.

Reminder of Theorem 1.7. There is a language L : {0, 1}? → {0, 1} in ENP such that Ln has 1/3-error
probabilistic degree at least Ω(n/ log2 n), for every sufficiently large n.

Proof. Let C > 0 be a large enough constant and let T(n) = nC. Recall the algorithm AT
FS from Defini-

tion 4.2, and define the following algorithm ApolyPCP which tries to speed up AT
FS:

1. On an input z of length n, it applies the PCP reduction from Lemma 3.10 to AT
FS(z). Let ` =

C log n + O(log log n) be the length of the random string in the PCP, also let VPCPz be the oracle
circuit.

2. Next, ApolyPCP guesses an F2-polynomial P : {0, 1}` → {0, 1} of degree at most `
2C log ` , which can

be described by ``/(2C log `) · ` ≤ 2`/(2C) · ` ≤ n/10 bits. (P will be treated as the oracle in the PCP.)

3. Consider VPCPP
z . We know that each query qi : {0, 1}` → {0, 1}` to P is a projection, which

naturally induces a polynomial Qi(x) = P(qi(x)), where deg(Qi) = deg(P). The output of VPCPx

is a 3-CNF F over {Qi}. Suppose F has m = poly(`) ≤ `O(
√

C) clauses. We write the j-th clause of
F as (L(P)

j,1 , L(P)
j,2 , L(P)

j,3), where each L(P)
j,b is an element of {Qi} or its negation.

Note that for each j ∈ [m], L(P)
j,1 (x)∨ L(P)

j,2 (x)∨ L(P)
j,3 (x) can be written as an F2-polynomial of degree

O
(

`
2C log `

)
. By Lemma 8.5, we can evaluate

E
j∈[m]

E
x∈{0,1}`

(L(P)
j,1 (x) ∨ L(P)

j,2 (x) ∨ L(P)
j,3 (x)) (23)

in m · 2`−Ω(C log `)+O(log `) = 2`−Ω(C log `) time.

4. Finally, we accept if and only if the expectation (23) is larger than 1 − `−5C. This completes the
construction of ApolyPCP.

Note that ApolyPCP can be implemented to run in 2`−Ω(C log `) ≤ o(T(n)) time. Since ApolyPCP runs in
o(T(n)) time while guessing at most n/10 bits of witness, we can apply the refuter in Theorem 4.6. We
show the following two lemmas:

Lemma 8.6. For every sufficiently large C and T(n) = nC, it holds for all but finitely many z ∈ {0, 1}∗
that A(z) ≤ AT

FS(z).

41

Proof. The lemma statement is equivalent to saying that AT
FS(z) = 0 implies A(z) = 0. Suppose

AT
FS(z) = 0. Then for any oracle O, at most an n−10 ≤ `−10C fraction of VPCPOz ’s assignments are

satisfying. Therefore, for any guessed polynomial P, we have:

E
x∈{0,1}`

 ∧
j∈[m]

(
L(P)

j,1 (x) ∨ L(P)
j,2 (x) ∨ L(P)

j,3 (x)
) ≤ `−10C.

It follows that

E
x∈{0,1}`

E
j∈[m]

(L(P)
j,1 (x) ∨ L(P)

j,2 (x) ∨ L(P)
j,3 (x)) ≤ `−10C +

m− 1
m

< 1− `−5C.

Therefore, A(z) rejects every possible witness. This completes the proof.

Lemma 8.7. For every sufficiently large C and T(n) = nC, for all large enough n and input z ∈ {0, 1}n, if
AT

FS(z) = 1 and ApolyPCP(z) = 0, then the correct oracle for VPCPz has 1/3-error degree Ω(`/ log2 `).

Proof. Suppose on the contrary that some the correct oracle O for VPCP(x) has 1/3-error degree d ≤
o(`/ log2 `). Let F be the corresponding probabilistic polynomial. Next, we reduce the error of the prob-
abilistic F2-polynomial by composing a degree O(log `) F2-poly for majority with O(log `) many inde-
pendently samples from F naturally. We obtain a (1− `−10C)-error probabilistic polynomial F ′ of degree
O(d log `). Now, if we take one random polynomial P from the distribution F ′, it follows that

E
x∈{0,1}`

E
j∈[m]

E
P∼F ′

(L(P)
j,1 (x) ∨ L(P)

j,2 (x) ∨ L(P)
j,3 (x)) ≥ 1− `−10C.

By the averaging principle, we can fix a polynomial P such that:

E
x∈{0,1}`

E
j∈[m]

(L(P)
j,1 (x) ∨ L(P)

j,2 (x) ∨ L(P)
j,3 (x)) ≥ 1− `−10C.

Note that the degree of P is O(d log `) ≤ o(`/ log `). Therefore, P is an acceptable witness forApolyPCP(x)
and ApolyPCP(x) = 1. This is a contradiction.

Given Lemma 8.6 and 8.7, the rest of the proof is analogous to the proof of Theorem 1.1.

8.3 An Improved Degree-Error Trade-off

Using our improved XOR Lemma, we are also able to prove a better degree-error trade-off for correlation
bounds against F2-polynomials.

Reminder of Theorem 1.8. For all δ > 0, there is a language L : {0, 1}? → {0, 1} in ENP such that Ln

cannot be (1/2 + 2−nΩ(1)
)-approximated by n1/2−δ degree F2-polynomials, for every sufficiently large n.

Proof Sketch. Note that low-degree F2-polynomials are just a special case of AC0[⊕], which admits a fast
#SAT algorithm (Lemma 8.5). In the following we will mimic the proof of Theorem 1.2.

Let C > 0 to be a large enough constant and T(n) = nC. Consider AT
FS and the following algorithm A

which tries to speed up AT
FS.

42

1. On an input z of length n, A applies the PCP of Lemma 3.10 first, obtaining the oracle circuit
VPCPz. Recall that VPCPz and its oracle take inputs of length ` = `(n) = C log n +O(log log n).
Let d = d(`) = `1/2−δ/3 be the degree parameter.

2. Next, A guesses a general circuit C of size at most 2
√
`. Note that we need a total of 2Õ(

√
`) ≤ o(n)

bits to specify C.

3. Feeding C into VPCPz, we obtain VPCPC
z , which can be written as a general circuit of size at most

poly(|C|).

4. Applying the PCPP from Lemma 3.11, we obtain a 2-SAT instance with m1 ≤ poly(|C|) ≤ 2O(
√
`)

clauses, over the set of variables Y ∪ Z . We guess a list of Sum of m2 = 2`
δ

polynomials of degree
d, as proof functions. Note that we need at most

poly(|C|) ·m2 · 2O(d log `) ≤ 2Õ(
√
`) ≤ o(n)

bits to specify these polynomials.

5. Using the fast evaluation algorithm of Lemma 8.5, we run a similar validity test and verification as in
the proof of Theorem 1.2. The total running time is bounded by

poly(|C|) · poly(m2) · 2`−Ω(`/d)+O(log `) ≤ 2`−Ω(`1/2+δ/3) ≤ o(T(n)).

This completes the construction of algorithm A.

By construction,A is an NTIMEGUESS[o(T(n)), n/10] algorithm. The analysis ofA is similar to that
for Theorem 1.2: We first proveA(z) ≤ AT

FS(z) for all but finitely many z. Then, for all large enough n, we
can use the refuterRT from Theorem 4.6 to find an input z ∈ {0, 1}n such thatA(z) = 0 andAT

FS(z) = 1.
Using the SAT oracle, we can construct the first correct oracle O for VPCPz. Depending on whether there
is a succinct circuit computing O or not, we consider following two cases:

1. The oracle O cannot be computed by circuits of size at most 2
√
`. Then, by Lemma 3.9, from

the oracle O we can construct a function f : {0, 1}O(`) → {0, 1}, which cannot be (1/2 + 2−`
Ω(1)

)-
approximated by circuits of size 2Ω(

√
`). This in turn implies that f cannot be (1/2 + 2−`

Ω(1)
)-

approximated by polynomials of degree d(`) = `1/2−δ/3.

2. The oracle O can be computed by some circuit of size at most 2
√
`. Let C be the lexicographically

first such circuit. (Note that C can be constructed with access to a SAT oracle.) Feeding C into
VPCPz we obtain VPCPC

z .

Now consider the PCPP reduction (step 4) inA, we can first find the lexicographically first correct list
of proof functions Ys,Zt : {0, 1}` → {0, 1}. Based on these functions, we use similar construction
as in the proof of Theorem 1.2. It gives us a function f of input length `+ O(log m2) ≤ 2`, which
is δ-far from every [0, 1]Sum ◦ (degree-d-poly). Using the hardness amplification in Lemma 3.8 with
parameter k = 1

2`
δ/3, we obtain a function of input length `1+δ/3 which cannot be (1/2 + 2−`

Ω(1)
)-

approximated by degree d(`) = `1/2−δ/2 polynomials.

For both cases, we pad the input length to r = `1+δ/3. The final functions cannot be (1/2 + 2−rΩ(1)
)-

approximated by polynomials of degree d(`) = `1/2−δ/3 ≥ r1/2−δ. This completes the construction of the
hard function. The rest of the proof is analogous to the proof of Theorem 1.1.

43

Acknowledgments. The first author wants to thank Shuichi Hirahara for pointing out that Levin’s proof
of the XOR Lemma has a close connection with approximate linear sum (which was later pointed out again
to the first author by Ronen Shaltiel). The authors are grateful to Josh Alman, Hanlin Ren and Roei Tell
for detailed comments on an early version of the draft, and helpful discussions. The authors want to thank
Amey Bhangale, Prahladh Harsha, Orr Paradise and Avishay Tal for adding Remark 5.3 and 8.3 to their
paper so that we can apply their construction of rectangular PCPs directly.

L. Chen and R. Williams were supported by NSF grants CCF-1909429 and CCF-1741615. L. Chen is
also supported by an IBM Fellowship.

References

[Aar06] Scott Aaronson. Oracles are subtle but not malicious. In 21st Annual IEEE Conference on
Computational Complexity (CCC 2006), 16-20 July 2006, Prague, Czech Republic, pages
340–354, 2006.

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. 2009.

[AC19] Josh Alman and Lijie Chen. Efficient construction of rigid matrices using an NP oracle. In
60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore,
Maryland, USA, November 9-12, 2019, pages 1034–1055, 2019.

[ADH97] Leonard M. Adleman, Jonathan DeMarrais, and Ming-Deh A. Huang. Quantum computabil-
ity. SIAM J. Comput., 26(5):1524–1540, 1997.

[Ajt83] M Ajtai. Σ1
1-formulae on finite structures. Annals of Pure and Applied Logic, 24(1):1–48,

1983.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. J. ACM, 45(3):501–555, 1998.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization of
NP. J. ACM, 45(1):70–122, 1998.

[Ats06] Albert Atserias. Distinguishing SAT from polynomial-size circuits, through black-box queries.
In 21st Annual IEEE Conference on Computational Complexity (CCC 2006), 16-20 July 2006,
Prague, Czech Republic, pages 88–95, 2006.

[Bar02] Boaz Barak. A probabilistic-time hierarchy theorem for ”slightly non-uniform” algorithms. In
Randomization and Approximation Techniques, 6th International Workshop, RANDOM 2002,
Cambridge, MA, USA, September 13-15, 2002, Proceedings, volume 2483 of Lecture Notes
in Computer Science, pages 194–208, 2002.

[BCG+96] Nader H. Bshouty, Richard Cleve, Ricard Gavaldà, Sampath Kannan, and Christino Tamon.
Oracles and queries that are sufficient for exact learning. J. Comput. Syst. Sci., 52(3):421–433,
1996.

[BFS09] Harry Buhrman, Lance Fortnow, and Rahul Santhanam. Unconditional lower bounds against
advice. In Automata, Languages and Programming, 36th International Colloquium, ICALP
2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part I, volume 5555 of Lecture Notes in
Computer Science, pages 195–209, 2009.

44

[BGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan. Robust
PCPs of proximity, shorter PCPs, and applications to coding. SIAM J. Comput., 36(4):889–
974, 2006.

[BHPT20] Amey Bhangale, Prahladh Harsha, Orr Paradise, and Avishay Tal. Rigid matrices from rectan-
gular PCPs. 2020. To appear in the proceedings of FOCS 2020. Full version at ECCC-TR20-
075.

[BTW10] Andrej Bogdanov, Kunal Talwar, and Andrew Wan. Hard instances for satisfiability and quasi-
one-way functions. In Innovations in Computer Science - ICS 2010, Tsinghua University,
Beijing, China, January 5-7, 2010. Proceedings, pages 290–300, 2010.

[BV14] Eli Ben-Sasson and Emanuele Viola. Short PCPs with projection queries. In Automata, Lan-
guages, and Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Den-
mark, July 8-11, 2014, Proceedings, Part I, pages 163–173, 2014.

[Cai07] Jin-yi Cai. SP
2 is contained in ZPPNP. J. Comput. Syst. Sci., 73(1):25–35, 2007.

[CCHO05] Jin-yi Cai, Venkatesan T. Chakaravarthy, Lane A. Hemaspaandra, and Mitsunori Ogihara.
Competing provers yield improved Karp-Lipton collapse results. Inf. Comput., 198(1):1–23,
2005.

[Che19] Lijie Chen. Non-deterministic quasi-polynomial time is average-case hard for ACC circuits. In
60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore,
Maryland, USA, November 9-12, 2019, pages 1281–1304, 2019.

[CMMW19] Lijie Chen, Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. Relations and equiva-
lences between circuit lower bounds and Karp-Lipton theorems. In 34th Computational Com-
plexity Conference, CCC 2019, July 18-20, 2019, New Brunswick, NJ, USA, pages 30:1–30:21,
2019.

[COS18] Ruiwen Chen, Igor Carboni Oliveira, and Rahul Santhanam. An average-case lower bound
against ACC0. In LATIN 2018: Theoretical Informatics - 13th Latin American Symposium,
Buenos Aires, Argentina, April 16-19, 2018, Proceedings, pages 317–330, 2018.

[CR20] Lijie Chen and Hanlin Ren. Strong average-case lower bounds from non-trivial derandomiza-
tion. In Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 1327–1334, 2020.

[CW16] Timothy M. Chan and Ryan Williams. Deterministic APSP, orthogonal vectors, and more:
Quickly derandomizing Razborov-Smolensky. In Proceedings of the Twenty-Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January
10-12, 2016, pages 1246–1255, 2016.

[CW19] Lijie Chen and R. Ryan Williams. Stronger Connections Between Circuit Analysis and Circuit
Lower Bounds, via PCPs of Proximity. In 34th Computational Complexity Conference (CCC
2019), volume 137 of Leibniz International Proceedings in Informatics (LIPIcs), pages 19:1–
19:43, Dagstuhl, Germany, 2019.

[FGHP99] Stephen A. Fenner, Frederic Green, Steven Homer, and Randall Pruim. Determining accep-
tance possibility for a quantum computation is hard for the polynomial hierarchy. Electronic
Colloquium on Computational Complexity (ECCC), 6(3), 1999.

45

https://eccc.weizmann.ac.il/report/2020/075/
https://eccc.weizmann.ac.il/report/2020/075/

[FLvMV05] Lance Fortnow, Richard Lipton, Dieter van Melkebeek, and Anastasios Viglas. Time-space
lower bounds for satisfiability. Journal of the ACM (JACM), 52(6):835–865, 2005.

[FS04] Lance Fortnow and Rahul Santhanam. Hierarchy theorems for probabilistic polynomial time.
In 45th Symposium on Foundations of Computer Science (FOCS 2004), 17-19 October 2004,
Rome, Italy, Proceedings, pages 316–324, 2004.

[FS11] Lance Fortnow and Rahul Santhanam. Robust simulations and significant separations. In Au-
tomata, Languages and Programming - 38th International Colloquium, ICALP 2011, Zurich,
Switzerland, July 4-8, 2011, Proceedings, Part I, volume 6755 of Lecture Notes in Computer
Science, pages 569–580, 2011.

[FS16] Lance Fortnow and Rahul Santhanam. New non-uniform lower bounds for uniform classes.
In 31st Conference on Computational Complexity (CCC 2016). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2016.

[FS17] Lance Fortnow and Rahul Santhanam. Robust simulations and significant separations. Inf.
Comput., 256:149–159, 2017.

[FSS84] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time
hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984.

[GNW95] Oded Goldreich, Noam Nisan, and Avi Wigderson. On Yao’s XOR-lemma. Electronic Collo-
quium on Computational Complexity (ECCC), 2(50), 1995.

[Gol08] Oded Goldreich. Computational complexity - a conceptual perspective. 2008.

[GST07] Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. If NP languages are hard on the worst-
case, then it is easy to find their hard instances. Comput. Complex., 16(4):412–441, 2007.

[GSV18] Aryeh Grinberg, Ronen Shaltiel, and Emanuele Viola. Indistinguishability by adaptive proce-
dures with advice, and lower bounds on hardness amplification proofs. In 59th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9,
2018, pages 956–966, 2018.

[Hås89] Johan Håstad. Almost optimal lower bounds for small depth circuits. Advances in Computing
Research, 5:143–170, 1989.

[HRST17] Johan Håstad, Benjamin Rossman, Rocco A. Servedio, and Li-Yang Tan. An average-case
depth hierarchy theorem for boolean circuits. J. ACM, 64(5):35:1–35:27, 2017.

[IKW02] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy witness:
exponential time vs. probabilistic polynomial time. J. Comput. Syst. Sci., 65(4):672–694,
2002.

[Imp95] Russell Impagliazzo. Hard-core distributions for somewhat hard problems. In 36th Annual
Symposium on Foundations of Computer Science, Milwaukee, Wisconsin, USA, 23-25 October
1995, pages 538–545, 1995.

[Kab01] Valentine Kabanets. Easiness assumptions and hardness tests: Trading time for zero error. J.
Comput. Syst. Sci., 63(2):236–252, 2001.

[Kan82] Ravi Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Information and
Control, 55(1-3):40–56, 1982.

46

[Kli01] Adam R. Klivans. On the derandomization of constant depth circuits. In 4th International
Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX
2001 and 5th International Workshop on Randomization and Approximation Techniques in
Computer Science, RANDOM 2001, volume 2129 of Lecture Notes in Computer Science,
pages 249–260, 2001.

[KW98] Johannes Köbler and Osamu Watanabe. New collapse consequences of NP having small
circuits. SIAM J. Comput., 28(1):311–324, 1998.

[Lev87] Leonid A. Levin. One-way functions and pseudorandom generators. Combinatorica,
7(4):357–363, 1987.

[Lok09] Satyanarayana V. Lokam. Complexity lower bounds using linear algebra. Foundations and
Trends in Theoretical Computer Science, 4(1-2):1–155, 2009.

[MW20] Cody D. Murray and R. Ryan Williams. Circuit lower bounds for nondeterministic quasi-
polytime from a new easy witness lemma. SIAM Journal on Computing, pages 300–322,
2020.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149–
167, 1994.

[OS17] Igor Carboni Oliveira and Rahul Santhanam. Pseudodeterministic constructions in subex-
ponential time. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 665–677, 2017.

[Raz87] Alexander A Razborov. Lower bounds on the size of bounded depth circuits over a complete
basis with logical addition. Mathematical Notes of the Academy of Sciences of the USSR,
41(4):333–338, 1987.

[Raz89] Alexander A. Razborov. On rigid matrices (in Russian), 1989. Steklov Mathematical Institute.
Paper at http://people.cs.uchicago.edu/˜razborov/files/rigid.pdf.

[RSS18] Ninad Rajgopal, Rahul Santhanam, and Srikanth Srinivasan. Deterministically counting sat-
isfying assignments for constant-depth circuits with parity gates, with implications for lower
bounds. In 43rd International Symposium on Mathematical Foundations of Computer Science,
MFCS 2018, August 27-31, 2018, Liverpool, UK, volume 117 of LIPIcs, pages 78:1–78:15,
2018.

[SFM78] Joel I. Seiferas, Michael J. Fischer, and Albert R. Meyer. Separating nondeterministic time
complexity classes. J. ACM, 25(1):146–167, 1978.

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing,
1987, New York, New York, USA, pages 77–82, 1987.

[Smo93] Roman Smolensky. On representations by low-degree polynomials. In 34th Annual Sympo-
sium on Foundations of Computer Science, Palo Alto, California, USA, 3-5 November 1993,
pages 130–138, 1993.

[STV01] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators without the
XOR lemma. J. Comput. Syst. Sci., 62(2):236–266, 2001.

47

http://people.cs.uchicago.edu/~razborov/files/rigid.pdf

[SV10] Ronen Shaltiel and Emanuele Viola. Hardness amplification proofs require majority. SIAM J.
Comput., 39(7):3122–3154, 2010.

[Uma03] Christopher Umans. Pseudo-random generators for all hardnesses. J. Comput. Syst. Sci.,
67(2):419–440, 2003.

[Val77] Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In Mathematical
Foundations of Computer Science 1977, 6th Symposium, Tatranska Lomnica, Czechoslovakia,
September 5-9, 1977, Proceedings, volume 53 of Lecture Notes in Computer Science, pages
162–176, 1977.

[Vin05] N. V. Vinodchandran. A note on the circuit complexity of PP. Theor. Comput. Sci., 347(1-
2):415–418, 2005.

[Vio19] Emanuele Viola. Matching Smolensky’s correlation bound with majority. Electronic Collo-
quium on Computational Complexity (ECCC), 26:175, 2019.

[Vio20] Emanuele Viola. New lower bounds for probabilistic degree and AC0 with parity gates. Elec-
tronic Colloquium on Computational Complexity (ECCC), 27:15, 2020.

[vMP06] Dieter van Melkebeek and Konstantin Pervyshev. A generic time hierarchy for semantic mod-
els with one bit of advice. In 21st Annual IEEE Conference on Computational Complexity
(CCC 2006), 16-20 July 2006, Prague, Czech Republic, pages 129–144, 2006.

[VW20] Nikhil Vyas and R. Ryan Williams. Lower bounds against sparse symmetric functions of
ACC circuits: Expanding the reach of #SAT algorithms. In 37th International Symposium
on Theoretical Aspects of Computer Science, STACS 2020, March 10-13, 2020, Montpellier,
France, volume 154 of LIPIcs, pages 59:1–59:17, 2020.

[Wil07] Ryan Williams. Algorithms and resource requirements for fundamental problems. PhD thesis,
Ph. D. Thesis, Carnegie Mellon University, CMU-CS-07-147, 2007.

[Wil13] Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds. SIAM
J. Comput., 42(3):1218–1244, 2013.

[Wil14] Ryan Williams. Nonuniform ACC circuit lower bounds. Journal of the ACM (JACM), 61(1):2,
2014.

[Wil16] R. Ryan Williams. Natural proofs versus derandomization. SIAM J. Comput., 45(2):497–529,
2016.

[Wil18a] R. Ryan Williams. New algorithms and lower bounds for circuits with linear threshold gates.
Theory Comput., 14(1):1–25, 2018.

[Wil18b] Richard Ryan Williams. Limits on representing boolean functions by linear combinations of
simple functions: Thresholds, ReLUs, and low-degree polynomials. In 33rd Computational
Complexity Conference, CCC 2018, June 22-24, 2018, San Diego, CA, USA, pages 6:1–6:24,
2018.

[Yao85] Andrew Chi-Chih Yao. Separating the polynomial-time hierarchy by oracles (preliminary
version). In 26th Annual Symposium on Foundations of Computer Science, Portland, Oregon,
USA, 21-23 October 1985, pages 1–10, 1985.

[Žák83] Stanislav Žák. A Turing machine time hierarchy. Theoretical Computer Science, 26(3):327–
333, 1983.

48

A A Hardness Amplification Lemma

In this section, we prove our non-standard XOR Lemma. We remark that the proof is already implicit in
Levin’s proof of XOR Lemma [Lev87, GNW95].

Reminder of Lemma 3.8. Let f : {0, 1}n → {0, 1} be a boolean function. Let δ < 1
2 , For any k ≥ 1, let

εk = (1− δ)k−1 (1
2 − δ

)
. If f cannot be (1− δ)-approximated in `1 distance by [0, 1]Sum ◦ C circuits of

complexity O
(

n·s
(δ·εk)2

)
, then f⊕k cannot be (1

2 + εk)-approximated by C circuits of size s.

Proof. We prove the contrapositive, i.e., given a C circuit C of size s approximating f⊕k on at least a(1
2 + εk

)
-fraction of inputs, we show how to construct a [0, 1]Sum ◦ C circuit Q approximating f with a

much better guarantee.
For an input x to f⊕k, we write x = yz such that |y| = n, |z| = (k− 1)n. Our proof is by induction on

k. The case k = 1 is clearly trivial. Assuming the hypothesis holds for k− 1, we now consider the following
two cases.

Case 1. Suppose for some y ∈ {0, 1}n, we have∣∣∣∣Pr
z
[f⊕k(y, z) = C(y, z)]− 1

2

∣∣∣∣ > εk

1− δ
= (1− δ)k−2 ·

(
1
2
− δ

)
= εk−1.

Then, we can fix one such y, and note that either circuit C′(z) := C(y, z) or ¬C′(z) approximates f⊕(k−1)

well enough so that we can reduce it to the case of k− 1.

Case 2. Otherwise, we have that for all y ∈ {0, 1}n:∣∣∣∣Pr
z
[f⊕k(y, z) = C(y, z)]− 1

2

∣∣∣∣ ≤ εk

1− δ
.

We define

T(y) :=Pr
z
[C(y, z) = f⊕k(y, z)]

=Pr
z
[C(y, z) = f (y)⊕ f⊕(k−1)(z)].

From the definition, it follows directly that∣∣∣∣T(y)− 1
2

∣∣∣∣ ≤ εk

1− δ
. (24)

Also, since C approximates f⊕k on at least 1
2 + εk fraction of inputs, we have

E
y
[T(y)] ≥ 1/2 + εk. (25)

Now let Z1, Z2, . . . , Z` be a sequence of i.i.d. random variables, where each Zi is uniformly random
from {0, 1}n(k−1). We then define

T̃(y) := E
i←[`]

[
C(y, Zi) = f (y)⊕ f⊕(k−1)(Zi)

]
. (26)

49

Setting ` = O
(

n
(δεk)2

)
, and applying a Chernoff bound, we have

Pr
{Zi}

[∣∣∣T(y)− T̃(y)
∣∣∣ ≥ δεk

2(1− δ)

]
≤ 2−n−1.

By a union bound, we can fix an assignment Zi = zi for each of Zi such that∣∣∣T(y)− T̃(y)
∣∣∣ ≤ δεk

2(1− δ)
(27)

holds, for all y ∈ {0, 1}n. Then from (25), (27), and (24) it follows directly that

E
y
[T̃(y)] ≥ 1

2
+ εk −

δεk

2(1− δ)
, (28)

and for all y, ∣∣∣∣T̃(y)− 1
2

∣∣∣∣ ≤ εk

1− δ
+

δεk

2(1− δ)
.

Letting r := 2εk+δεk
1−δ , we define:

P̃(y) :=

(
T̃(y)− 1

2
r

+
1
2

)
.

Note that P̃(y) ∈ [0, 1] since
∣∣∣T̃(y)− 1

2

∣∣∣ ≤ r
2 . From (28), we have

E
y
[P̃(y)] =

(
Ey[T̃(y)]− 1

2
r

+
1
2

)

≥

 εk − δεk
2(1−δ)

r
+

1
2

=

 εk − δεk
2(1−δ)

+ εk
1−δ +

δεk
2(1−δ)

r

=

εk
(
1 + 1

1−δ

)
εk · 2+δ

1−δ

=
2− δ

2 + δ
= 1− 2δ

2 + δ
≥ 1− δ. (29)

Finally, we use the samples {(zi, f⊕(k−1)(zi)}, to construct a Sum ◦ C circuit Q as follows:

Q(y) :=

(
Pri[f⊕(k−1)(zi) 6= C(y, zi)]− 1

2
r

+
1
2

)
.

Note that Q can be implemented as a sum of ` + 1 C circuits (one for the constant function 1), as
f⊕(k−1)(zi) can all be replaced by the corresponding constants. The size of Q is bounded by O

(
n·s

(δεk)2

)
.

The sum of absolute values of coefficients in Q is bounded by O(1/r) = O
(

n
(δεk)2

)
. Therefore, the

complexity of Q is O
(

n·s
(δεk)2

)
.

Finally, note that

C(y, Zi) = f (y)⊕ f⊕(k−1)(Zi)⇔ f (y) = C(y, Zi)⊕ f⊕(k−1)(Zi),

50

and therefore, from (26), it follows that

Q(y) =

{
P̃(y) f (y) = 1
1− P̃(y) f (y) = 0

.

From the above, one can see that for all y, we have Q(y)− f = P̃(y)− 1. Therefore, from (29) and
note that P̃(y) ∈ [0, 1], we have ∥∥Q− f

∥∥
1 ≤ E

y

[
1− P̃(y)

]
≤ δ.

Also, since P̃(y) ∈ [0, 1] for all y, Q(y) ∈ [0, 1] for all y as well. Putting everything together, Q is the
desired [0, 1]Sum ◦ C circuit and this completes the proof.

B Refuter for Robustly Often Nondeterministic Time Hierarchy Theorem

In this section, we construct a refuter for the “robustly often” nondeterministic time hierarchy theorem. This
refuter is used in the construction of rigid matrices (Theorem 1.5).

Reminder of Theorem 4.8. For any time-constructible function T(n) such that n ≤ T(n) and T(n+ 1) ≤
O(T(n)). There is an NTIME[T(n)] machine AT

RO and an algorithmRT
RO such that:

1. Input. The input for RT
RO is a pair (M, 1n), with the promise that M is a nondeterministic Turing

machine runs in o(T(n)) time.

2. Output. For any fixed M, for all large enough n, RT
RO(M, 1n) outputs a string x of length |x| ∈

[n, n + T(n)] such that AT
RO(x) 6= M(x).

3. Complexity. RT
RO is a deterministic algorithm, runs in poly(T(poly(T(n)))) time with adaptive

access to a SAT oracle.

Proof Sketch. Informally, the intuition behind the proof of Theorem 1.12 is as follows: We design the
algorithm AT

FS such that, if an algorithm M accepts a particular string x = 〈M, n, 0n/10〉, then by the
design of AT

FS and the assumption that M and AT
FS agree on all n-bit inputs, AT

FS (implicitly) enumerates
all possible witnesses for M(x), and forces M(x) to reject all of them. This implies that M rejects x, which
is a contradiction. The case where M rejects the string x can be handled similarly as well.

If we no longer have the restriction that M only guesses n/10 bits as the witness, then AT
FS cannot

enumerate all witnesses on the same input length. Instead, we can first pad the input length to be sufficiently
long (i.e. n + T(n)), then follow the same approach: enumerate all possible witnesses, and force M(x) to
reject all of them.

Encoding. Recall that we fix a natural enumeration of all nondeterministic Turing machines, and associate
the integer M with the M-th such machine. In the following, we use a slightly different encoding than that
in Theorem 4.6, to deal with the fact that the witness could be longer than n. For M, n ∈ N such that
n ≥ M + 2 and z ∈ {0, 1}∗, we encode them by

〈M, n, z〉ro := 1M01n−M−20z.

Note that |〈M, n, z〉ro| = n + |z|.

51

The Algorithm AT
RO. AT

RO is defined as follows.

• Given an input x, we parse it as x = 〈M, n, z〉ro. We reject immediately if there is no valid parsing,
or |z| > T(n).

• If |z| < T(n), AT
RO accepts x if both of the following hold:

1. z = 0` for some `.

2. M accepts x′ = 〈M, n, 0|z|+1〉ro in T(|x′|) steps.

• Otherwise, |z| = T(n), and AT
RO accepts x if both of the following hold:

1. M rejects 〈M, n, ε〉ro in T(n) steps with witness z.22 That is, VM(〈M, n, ε〉ro, T(n), z) = 0.

2. (This condition is only required when z 6= 1T(n).) M accepts x′ = 〈M, n, z + 1〉ro in T(|x′|)
steps.

By the construction above, the assumption T(n + 1) ≤ O(T(n)), and the fact that nondeterminis-
tic algorithms can be simulated with only constant overhead in running time, AT

RO is a nondeterministic
algorithm running in O(T(n)) time.

Construction of the Refuter. Now we design the refuter RT
RO. Let M be an o(T(n))-time nondetermin-

istic machine. For every sufficiently large n, we want to find an input x of length |x| ∈ [n, n + T(n)] such
that M(x) 6= AT

RO(x). Let L(n) be the list consisting of strings of the form 〈M, n, z〉ro for all z = 0` where
` ∈ {0, 1, 2, . . . , T(n)− 1} and z ∈ {0, 1}T(n), sorted in lexicographical order.

The following lemma can be proved similarly as Lemma 4.3.

Lemma B.1. If M runs in o(T(n)). For every sufficiently large n and integer 1 ≤ i ≤ |L(n)|, if L(n)
i =

〈M, n, z〉ro, then

AT
RO(L

(n)
i) =

M(L(n)

i+1) |z| < T(n),[
VM(L(n)

1 , T(n), z) = 0
]
∧M(L(n)

i+1) |z| = T(n) and i < |L(n)|,[
VM(L(n)

1 , T(n), z) = 0
]

i = |L(n)|.

Applying Lemma B.1, one can verify that the same algorithm in the proof of Theorem 4.6 also works
given the list

L(n)
1 ,L(n)

2 , . . . ,L(n)
|L(n)|.

Finally, note thatRT
RO runs in

O(log |L(n)|) · poly(T(poly(T(n)))) = poly(T(poly(T(n))))

time, which completes the proof.

22We use ε to denote empty string.

52
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

