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Abstract

Random walks on expanders are a central and versatile tool in pseudorandomness. If an
arbitrary half of the vertices of an expander graph are marked, known Chernoff bounds for
expander walks imply that the number M of marked vertices visited in a long n-step random
walk strongly concentrates around the expected n/2 value. Surprisingly, it was recently shown
that the parity of M also has exponentially small bias.

Is there a common unification of these results? What other statistics about M resemble the
binomial distribution (the Hamming weight of a random n-bit string)? To gain insight into such
questions, we analyze a simpler model called the sticky random walk. This model is a natural
stepping stone towards understanding expander random walks, and we also show that it is a
necessary step. The sticky random walk starts with a random bit and then each subsequent bit
independently equals the previous bit with probability (1 + λ)/2. Here λ is the proxy for the
expander’s (second largest) eigenvalue.

Using Krawtchouk expansion of functions, we derive several probabilistic results about the
sticky random walk. We show an asymptotically tight Θ(λ) bound on the total variation distance
between the (Hamming weight of the) sticky walk and the binomial distribution. We prove that
the correlation between the majority and parity bit of the sticky walk is bounded by O(n−1/4).
This lends hope to unifying Chernoff bounds and parity concentration, as well as establishing
other interesting statistical properties, of expander random walks.

1 Introduction

Expander graphs and random walks on their vertices are an essential and widely employed tool
in pseudorandomness, and related areas like coding theory. In this paper, we are interested in a
particular simple random walk model where we mark half of the vertices of an expander graph,
and look at how many marked vertices an n-step random walk visits. This model has already been
explored in many influential works. In particular, expander Chernoff bounds show that the number
of marked vertices visited is concentrated around n/2 with exponential tails [3, 5]. In his recent
breakthrough construction of ε-balanced codes, Ta-Shma [10] proved that the parity of the number
of visited marked nodes has exponentially small bias. This fact is quite striking since there are
distributions on n bits that are (n − 1)-wise independent yet have fixed parity, so one might not
expect a sensitive function like parity to exhibit such strong concentration for expander random
walks in general.
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Let w denote the bit string indicating which steps visit a marked node in an n-step expander
random walk starting at a random node. The above two results show nontrivial properties that w
shares with a purely random bit string. This naturally raises questions about what other statistical
similarities might hold between w and purely random strings. For instance, are the parity bit
and majority bit of w (almost) uncorrelated? This can be viewed as a unification of the above-
mentioned concentration results for the high order bit and low order bit of the Hamming weight of
w. More generally, given some arbitrary symmetric property of w (i.e., one that only depends on
its Hamming weight), how does its probability deviate in an expander random walk compared to a
purely random string? What is the total variation distance (TVD) between the Hamming weight
distribution of w and the binomial distribution? Surprisingly, to the best of our knowledge, these
and many other similar questions relating to the “pseudobinomiality” properties of the weight of
the sequence w, seem unexplored.

Towards gaining insight into and making progress on such questions, we analyze a simpler
distribution over the n-bit strings called the sticky random walk as a necessary stepping stone
towards understanding the general expander walk. The sticky random walk S(n, λ) is an n-step
walk on a Markov chain with two states 0, 1. The start state is chosen uniformly at random, and
at each subsequent step, we stick to the same state with probability 1+λ

2 , and change states with

probability 1−λ
2 . Let s be the n-bit string listing the states visited by S(n, λ). The sticky random

walk has served as a useful proxy for analyzing the actual expander random walk. Chernoff bounds
for a slight variant of the sticky random walk imply similar bounds on the expander random walk, as
explicitly pointed out by Kahale [5] and also revisited in the recent work by Rao and Regev [8] who
obtained tighter bounds. Such a translation, however, only works for estimating the probability of
monotone events. For non-monotone functions like parity, it is not known if one can deduce bounds
for the expander random walk from their counterparts for the sticky random walk.

Nevertheless, understanding the simpler sticky random walk model is a meaningful first step
towards understanding the general expander walk model. In fact, it is a necessary step, as there are
expanders where the behavior of the random walk coincides with the sticky walk (i.e., the sequences
w and s above are identically distributed). We make this (probably folklore) relationship between
these two models explicit in Section 7 (see Theorem 1.4 below).

1.1 Our Results

We answer some of the questions proposed above in the case of the sticky random walk. Our main
technique is to represent (a function related to) the probability density function of the Hamming
weight of the sticky random walk in the basis of Krawtchouk functions. The Krawtchouk basis is
a handy choice to compare this distribution with the binomial distribution. We show the following
result on the TVD between these distributions in Section 4. In all our results we think of λ as
being fixed and the length of the walk n to be growing.

Theorem 1.1. The total variation distance between the weight distribution of the sticky random
walk and the binomial distribution is Θ(λ).

Note that the above shows both an upper and lower bound. For the upper bound, we show a
stronger claim that an appropriately weighted `2 distance between the two distributions is bounded
from above by O(λ2) for λ small enough (the above then follows by Cauchy-Schwarz). However,
as λ → 1, the `2 version of the bound fails to hold, and in fact we prove that this distance grows
exponentially in n for λ > 0.95 (Section 4.2). For the lower bound, the event of the Hamming
weight being in the range n/2 ±

√
n exhibits a Ω(λ) deviation in probability between these two
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distributions.

Our next result (in Section 5) shows that the parity and majority bits of the sticky random
walk are uncorrelated (up to lower order terms).

Theorem 1.2. The probability that the Hamming weight of an n-step sticky random walk is even
and larger than n/2 is 1

4 + o(1). The same result holds for the other three symmetric cases.

The explicit lower order term that we derive is O(n−1/4), but we believe the true error should be
bounded by O(n−1/2). The analysis hinges on an upper estimate for the probability that the sticky
random walk has weight exactly bn/2c, which is again obtained via the Krawtchouk expansion. We
note that the arguments for the parity bias from [10] and the Chernoff bound from [3] are quite
different. The above theorem hints that Krawtchouk functions might offer a more general tool that
can unify these two arguments.

Next, we verify that the residues of the Hamming weight of the sticky walk with respect to any
fixed modulus m are almost equidistributed (Section 6). This in particular shows that for any fixed
` the ` least significant bits of the (binary representation of the) Hamming weight of the sticky
random walk are nearly uniformly distributed.

Theorem 1.3. For any fixed m ≥ 2, the total variation distance between the residues modulo
m of the binomial random variable and the Hamming weight of the n-step sticky walk is at most
exp(−Ωm(n)).

Recall that TaShma established such a result for the m = 2 case even for the expander random
walk [10]. We execute a similar analysis, albeit only for the sticky walk, using m’th roots of unity
(in the place ±1) to track the bias. We suspect extending this analysis to adjacency matrices of
expanders (instead of the 2 × 2 sticky walk transition matrix) can establish this equidistribution
result for general expander walks, though we have not verified this.

Establishing the analogs of Theorems 1.1 and 1.2 for expander random walks, however, remain
interesting challenges. It is our hope that this work will spur such results.

Finally, the following confirms that analyzing sticky random walks is necessary in order to
establish the corresponding claim for expander random walks. We should note that the graph family
constructed does not fit the standard definition of an expander family, as degree-boundedness of
the graph is not enforced. This is not a significant issue as the analysis of random walks on
graphs always proceed by abstracting only the spectral properties of the graph. Further, we believe
sampling a sparse regular subgraph with a similar structure should yield a similar claim for a
bounded-degree expander family.

Theorem 1.4. There is a family of regular graphs whose nontrivial eigenvalues are bounded in
magnitude by λ, half of whose vertices are marked, such that the bit string indicating which steps
of a random walk visits a marked vertex has the same distribution as the sticky random walk.

We conclude the introduction by mentioning a very interesting work of Bazzi on pseudobinomi-
ality [1]. This work establishes an upper bound on the total variation distance between the binomial
distribution and the weight distribution of a δ-biased random sequence, based on the entropy of
the latter distribution. One can show that the sticky random walk sequence s is λ-biased (see
Lemma 4.1). The bound on TVD in [1] is at best O(

√
δn) and is only meaningful when the bias is

tiny, which isn’t the case for the sticky random walk. Also, calculating the entropy of the weight
distribution of s seems as hard, if not harder, than the Krawtchouk based calculations we use to
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directly bound the total variation distance in Section 4. In fact, it could be the case that the best
approach to estimate the entropy of the weight distribution of the sticky random walk is via the
entropy-difference bound [2] together with our bound on total variation distance.

1.2 Open Problems

Our results give rise to some immediate follow-up questions. Can the O(λ) TVD bound between
the sticky and binomial distribution be extended to give a non-trivial bound (that is bounded away
from 1) for any fixed λ < 1? Theorem 1.3 showed that any fixed number of least significant bits of
(the Hamming weight of) the sticky walk are near uniform, but can this result be extended to other
bits, for example the middle bit? Are there other symmetric properties of the sticky walk that
resemble purely random strings? The error term on the non-correlation result claimed in Theorem
1.2 is O(n−1/4) but the true bound should probably be O(n−1/2).

A more important family of questions relate to extending our results from the sticky walk to the
general expander walk model. For instance, can a TVD upper bound between the expander walk
and the binomial distribution be shown? Also, can the method of Krawtchouk functions used in
Theorem 1.2 give insight towards unifying the Chernoff and parity bias results for expander random
walks? In general, can we show distributions of various symmetric functions on expander walks
are statistically close to the corresponding distributions on random strings? Moment generating
function results from [5, 8] allow bounds or monotone symmetric functions to be lifted from the
sticky walk to the expander walk, but no relationships are known for non-monotone functions like
parity.

2 Preliminaries

2.1 Conventions and Notation

Asymptotics. In our asymptotic analysis, we will take λ to be constant and observe asymptotics
as n → ∞. Take o,O, ω,Ω to be the standard definitions. We will say f . g to mean f ≤ Cg
for some absolute constant C independent of n and λ. We also say f = g + O(h) when we mean
|f−g| ≤ O(h), and analogously for o,Ω, and ω. We also denote ∼ to be shorthand for = (1+o(1)).

Miscellaneous. For a bit string s, we will denote |s| to be the Hamming weight of s. N (µ, σ2)
is the Gaussian distribution with mean µ and variance σ2. We write Ber(p) to be the Bernoulli
distribution on {0, 1} where 1 has probability p and 0 has probability 1−p, and write Bin(n, 1/2) to
be the binomial distribution of

∑n
i=1 bi with independent choices of bi ∼ Ber(1/2). Let 1E represents

the indicator variable of the event E. When written as a function, 1S(i) is 1 if i ∈ S, and is 0
otherwise. [n] = {1, 2, . . . , n} denotes the set of the first n positive integers, and [n]0 = {0} ∪ [n].([n]
k

)
denotes the set of all size k subsets of [n].

2.2 Definitions

In this paper, we will work with distributions on [n]0 and see how close they are to one another.
For this reason, we state the standard definitions of the `p distance between distributions

Definition 2.1 (`p Distance/TVD). Let Y and Z be distributions on [n]0. For p ≥ 1, we define
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the `p distance between Y and Z to be

||Y − Z||p =

(
n∑
i=0

|Y (i)− Z(i)|p
)1/p

.

The total variation distance (TVD) between Y and Z is simply 1
2 ||Y − Z||1.

Of course the first type of distribution we should formally define is the sticky random walk
itself.

Definition 2.2 (Sticky Random Walk). The sticky random walk S(n, λ) is a distribution on n-bit
strings s, where s1 ∼ Ber(1/2), and for 2 ≤ i ≤ n and b ∈ {0, 1}, we have Pr[si = b|si−1 = b] = 1+λ

2 .
In cases where n and λ are evident, only S may be used to denote the distribution.

Define a bit string to be homogeneous if it only consists of 1’s or of 0’s. Given a bit string, we
define a run to be a homogeneous substring that isn’t a proper substring of another homogeneous
substring. Intuitively, the sticky walk can be seen as a Markov chain on two states, where you stick
to the same state with probability 1+λ

2 and transition to the other with probability 1−λ
2 . Thus

the probability of a string is really only dependent on how many consecutive pair of bits are equal
(equivalently the number of runs), rather than the precise value of the bits. Another thing to note
is that λ can be seen as a parameter measuring the stickiness of a bit to its preceding one. Notice
when λ = 0 there is no stickiness present, and the sticky walk is just n independent coin flips.

2.3 Krawtchouk Functions

To analyze this sticky random walk, we heavily rely on the basis of Krawtchouk functions. Hence
we define these functions here and state some standard identities of these functions without proof.

Definition 2.3 (Krawtchouk Functions). The Krawtchouk function Kk : [n]0 → R is defined to be

Kk(`) =
∑

y∈{0,1}n
|y|=k

(−1)α·y

for each integer 0 ≤ ` ≤ n and an artbirary n-bit string α of Hamming weight ` (the specific choice
of α does not matter due to symmetry).

It can be shown that these functions form an orthogonal basis of the functions mapping [n]0 → R
with respect to the inner product

〈f, g〉 = Eb∼Bin(n,1/2)[f(b)g(b)]. (1)

From the definition it is not hard to show that (e.g. Section 2.2 of [9]).

Eb∼Bin(n,1/2)[Kr(b)Ks(b)] = 0, (2)

which shows that the Krawtchouk functions indeed form an orthogonal basis with respect to the
inner product in (1). Furthermore, one can verify the following identities hold (see [9]).

Eb∼Bin(n,1/2)[Kk(b)2] =

(
n

k

)
(3)
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(
n

`

)
Kk(`) =

(
n

k

)
K`(k). (4)

Identities (2) and (3) allow us to explicitly expand any function uniquely as a sum of Krawtchouk
functions.

Proposition 2.4. For function f : [n]0 → R, there exists a unique expansion f(`) =
∑n

k=0 f̂(k)Kk(`)
where

f̂(k) =
1(
n
k

)Eb∼Bin(n,1/2)[f(b)Kk(b)]

for each integer 0 ≤ k ≤ n.

3 Using Krawtchouk Functions to Analyze the Sticky Walk

To help us analyze the sticky walk, we define the function p : [n]0 → R to be p(`) = Prs∼S [|s|=`]
(n`)2−n

,

and look at the Krawtchouk expansion. Doing so results in the following lemma.

Lemma 3.1. We have

p̂(k) =
1(
n
k

)Es∼S [Kk(|s|)].

Proof. We just apply Proposition 2.4 to get that

p̂(k) =
1(
n
k

)Eb∼Bin(n,1/2)[p(b)Kk(b)]

=
1(
n
k

) n∑
b=0

(
n

b

)
2−np(b)Kk(b)

=
1(
n
k

) n∑
b=0

Pr
s∼S

[|s| = b]Kk(b)

=
1(
n
k

)Es∼S [Kk(|s|)].

What follows is a useful lemma that displays how Krawtchouk expanding p(`) can help analyze
probabilities of the sticky distribution.

Lemma 3.2. For s ∼ S(n, λ), we can evaluate

Pr[|s| = `] =
1

2n

n∑
k=0

K`(k)E[Kk(|s|)]
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Proof. To estimate this probability, we can use Lemma 3.1 to find

Pr[|s| = `] =

(
n

`

)
2−np(`)

=

(
n
`

)
2n

n∑
k=0

p̂(k)Kk(`)

=
1

2n

n∑
k=0

(
n
`

)
Kk(`)E[Kk(|s|)](

n
k

)
=

1

2n

n∑
k=0

K`(k)E[Kk(|s|)]

where we used the reciprocity relation (4) at the end.

Notice that these lemmas didn’t depend on the specific distribution S(n, λ), and so these lemmas
are applicable for arbitrary distributions on [n]0. For our purposes, the sticky walk versions will be
used for our analysis done in the next sections.

4 Total Variation Distance Bounds

4.1 Upper Bounding the TVD Between the Sticky and Binomial Distribution

Upper bounding the TVD requires calculating the expectation of various sums and products of
sticky walk random variables. We will abstract out these calculations in the following lemmas.
Analogous expressions for the general expander walk model were also analyzed in Lemmas 3.3 and
4.2 in Rao and Regev [8]. In particular, [8] gives upper bounds on these quantities in the general
expander walk, while we give exact values for the simpler sticky walk.

Lemma 4.1. Let s ∼ S(n, λ). For even-sized subsets A ⊂ [n] where a1 < · · · < am are the elements

of A in increasing order, define shift(A) =
∑|A|/2

i=1 (a2i − a2i−1) . For any A ⊂ [n], we have

E

[∏
i∈A

(−1)si

]
=

{
0 |A| odd

λshift(A) |A| even
.

Proof. Since the sticky walk is a Markov chain where (−1)si has the same sign as (−1)si−1 with
probability 1+λ

2 , we can rewrite these random variables in terms of a product of independent random
variables representing the transitions of the chain. In particular, we define a new random variable
u ∈ {0, 1}n, where u1 ∼ Ber(1/2) and ui ∼ Ber

(
1−λ
2

)
for 2 ≤ i ≤ n. One can easily check that

(−1)si is the same random variable as
∏i
j=1(−1)uj = (−1)

∑i
j=1 uj . Hence we have

E

[∏
i∈A

(−1)si

]
= E[(−1)

∑
i∈A

∑i
j=1 uj ] =

am∏
j=1

E[(−1)
∑
i∈A;i≥j uj ]

Note when |A| is odd, the factor when j = 1 is 0 since E[(−1)
∑
i∈A u1 ] = E[(−1)u1 ] = 0. Hence

the total expectation is 0. Otherwise, when |A| is even, the j = 1 term is just E[(−1)|A|u1 ] = 1.

For j ≥ 2, one sees that if Aj = {i ∈ A : i ≥ j} is of odd cardinality, then E[(−1)
∑
i∈A;i≥j uj ] =

E[(−1)uj ] = λ, and is 1 otherwise. The set of j such that |Aj | is odd is simply the integers in

7



(a1, a2]∪ (a3, a4]∪ · · · ∪ (am−1, am], of which there are shift(A). Consequently, upon multiplying all
the j factors, we derive that the expectation is λshift(A) for |A| even.

Lemma 4.2. For all nonnegative integers k and s ∼ S(n, λ),

• E[K2k(|s|)] =
∑n−k

m=k

(
m−1
k−1
)(
n−m
k

)
λm, and

• E[K2k+1(|s|)] = 0.

Proof. Using the definition, we rewrite

Kk(|s|) =
∑

α∈{0,1}n
|α|=k

(−1)
∑n
i=1 αisi =

∑
T∈([n]k )

(−1)
∑
i∈T si =

∑
T∈([n]k )

∏
i∈T

(−1)si . (5)

Then from Lemma 4.1, we have

E[Kk(|s|)] =
∑

T∈([n]k )

E

[∏
i∈T

(−1)si

]
=

{
0 k odd∑

T∈([n]k ) λ
shift(T ) k even

where f is defined as in Lemma 4.1. We now evaluate

E[K2k(|s|)] =
∑

T∈([n]2k)

λshift(T ) =

n−k∑
m=k

( ∑
T∈([n]2k)

shift(T )=m

1

)
λm

Hence to prove the lemma, it suffices to show the number of subsets T ∈
([n]
2k

)
with shift(T ) = m is(

m−1
k−1
)(
n−m
k

)
. Let t1 < t2 < · · · < t2k be the elements of T . We claim the desired subsets T are in

bijection with a k-tuple (d1, . . . , dk) of positive integers summing to m, paired with an n−m letter
word consisting of n −m − k A’s and k B’s. To construct the pair from a subset T , we can set
di = t2i − t2i−1 and the n−m letter word to be At1−1CBAn−t2k where C =©k−1

i=1 (BAt2i+1−t2i−1)
(◦ is concatenation). Since shift(T ) = m, the di are positive integers summing to m, and the word
can easily be verified to have n−m− k A’s and k B’s.

Now given a (d1, . . . , dk) and a word, we can construct a T with shift(T ) = m as follows. The
word will be of the form Aa1BAa2B · · ·AakBAak+1 where each ai ≥ 0. We then set t1 = a1 + 1,
and assign t2, . . . , t2k inductively as follows.

t2i = t2i−1 + di

t2i+1 = t2i + ai+1 + 1

Finally we set T = {ti}2ki=1. It can then be verified all ti ∈ [n] and shift(T ) = m. In fact, one can
check the two constructed maps are inverses of each other. Hence we have established the bijection
and counting the number of such T is simply counting the number of k-tuples and word pairs,
which by standard counting methods is

(
m−1
k−1
)(
n−m
k

)
. The desired result follows.

We are now ready to establish some upper bounds using the lemmas above. We first upper
bound the weighted `2 distance between the sticky walk and binomial distribution by defining a
suitable function and taking the Krawtchouk expansion.
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Lemma 4.3. Let s ∼ S(n, λ) for λ < 0.16 and define p(`) := Prs∼S [|s|=`]
(n`)2−n

. Then we have

Eb∼Bin(n,1/2)

[
(p(b)− 1)2

]
≤ O(λ2) .

Proof. Let us write p(`) =
∑n

k=0 p̂(k)Kk(`) where

p̂(k) =
1(
n
k

)Eb∼Bin(n,1/2)[p(b)Kk(b)] (6)

from Proposition 2.4. From the definition, we can verify K0(`) = 1 for all `. Combining this fact
with (6) implies that p̂(0) = 1 too. Hence,

Eb∼Bin(n,1/2)[(p(b)− 1)2] = Eb∼Bin(n,1/2)

( n∑
k=1

p̂(k)Kk(b)

)2


=

n∑
k=1

p̂(k)2
(
n

k

)

=

n∑
k=1

1(
n
k

)E[Kk(|s|)]2 (7)

where only the diagonal terms of the square survive due to the orthogonality relations (2) and (3).
Adding the k = 0 term back in (7) will simply give the expression for E[p(b)2] (and will be stated
as a subsequent corollary).

From Lemma 4.2 and the generating function relation ( x
1−x)k =

∑
m≥k

(
m−1
k−1
)
xm,

Eb∼Bin(n,1/2)[(p(b)− 1)2] =
∑

1≤k≤n/2

1(
n
2k

) (n−k∑
m=k

(
m− 1

k − 1

)(
n−m
k

)
λm

)2

(8)

≤
∑

1≤k≤n/2

(
n
k

)2(
n
2k

) (n−k∑
m=k

(
m− 1

k − 1

)
λm

)2

≤
∑

1≤k≤n/2

(
n
k

)2(
n
2k

) ( λ

1− λ

)2k

(9)

With the following claim (whose proof will be deferred to the appendix) we can deduce a lower
bound.

Claim 4.4. For 1 ≤ k ≤ n/2, we can bound
(nk)

2

( n2k)
≤ e3

√
2

4π2 · 42k.

Hence by combining (9) and Claim 4.4, we conclude

Eb∼Bin(n,1/2)[(p(b)− 1)2] ≤ e3
√

2

4π2

∑
1≤k≤n/2

(
4λ

1− λ

)2k

≤ 4e3
√

2

π2
λ2

(1− 5λ)(1 + 3λ)

<

(
λ

0.16

)2

,

which is a nontrivial O(λ2) bound that is strictly less than 1.
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Remembering our prior observation that the sum in Equation (7) is 1 less than E[p(b)2], we
immediately get the following corollary.

Corollary 4.5. Let s, p be defined as in Lemma 4.3. We can then bound

Eb∼Bin(n,1/2)[p(b)2] =
n∑
k=0

1(
n
k

)E[Kk(|s|)]2 ≤ 1 +O(λ2).

Going back to proving the main result of the section, the brunt of the work was actually done
in Lemma 4.3. We can now simply apply convexity to establish the desired TVD upper bound
between the sticky and binomial distribution.

Theorem 4.6. Let s ∼ S(n, λ) with λ < 0.16. We can then bound the TVD between S(n, λ) and
Bin(n, 1/2),

1

2

n∑
`=0

|Pr[|s| = `]−
(
n

`

)
2−n| ≤ O(λ).

Proof. By convexity, and then Lemma 4.3, we get

n∑
`=0

|Pr[|s| = `]−
(
n

`

)
2−n| = Eb∼Bin(n,1/2)[|p(b)− 1|] ≤

√
Eb∼Bin(n,1/2)[(p(b)− 1)2] ≤ O(λ)

for λ < 0.16.

4.2 Limitations to the Upper Bound Approach

Unfortunately, the weighted `2 distance studied in Lemma 4.3 blows up as λ approaches 1. Looking
at the term in the sum of Equation (8) when k = m = (1/2− ε)n for some ε > 0 (will be specified

later), and applying the bounds
(
n
k

)k ≤ (nk) ≤ (nek )k yields

∑
1≤k≤n/2

1(
n
2k

) (n−k∑
m=k

(
m− 1

k − 1

)(
n−m
k

)
λm

)2

≥ 1(
n

(1−2ε)n
)((1/2 + ε)n

(1/2− ε)n

)2

λ(1/2−ε)n

≥
(
n

2εn

)−1((1/2 + ε)n

2εn

)2

λn/2

≥

(
λ1/2

(8eε)2ε

)n

For λ ≥ .94 and ε = .017, we have λ1/2 > .969 and (8eε)2ε < .967. Thus

Eb∼Bin(n,1/2)[(p(b)− 1)2] >

(
.969

.967

)n
which grows exponentially in n. Consequently, in order to show an O(λ) bound for all λ < 1, an
approach different from using the weighted `2 distance is required. Nevertheless, for the values of
λ in which this TVD bound holds, we can show the bound is tight.

10



4.3 Showing the TVD Bound is Tight

Consider s ∼ S(n, λ) and N ∼ N (0, 1). Set Yi = (−1)si and let Y =
∑n

i=1(−1)si be the ±1
variant of the sticky distribution. Similarly, let bi ∼ Ber(1/2) for 1 ≤ i ≤ n. Set Zi = (−1)bi and
let Z =

∑n
i=1Zi be the usual ±1 unbiased random walk. By the central limit theorem, we already

know Z√
n
→N in distribution as n→∞. We now state a similar result for Y , and defer the proof

to the appendix, as it requires lengthy calculation of the moments.

Lemma 4.7. As n→∞, Y
√

1−λ
(1+λ)n →N in distribution.

With this lemma, we have a good understanding of Y , and can show the tightness of the TVD
bound. The suggestion to consider an event like |Y | ≤ O(

√
n) was made by Salil Vadhan [11].

Theorem 4.8. For Y and Z defined above as the ±1 version of the S(n, λ) walk and the n-step
unbiased walk, respectively, we have

|Pr[|Z| ≤
√
n]− Pr[|Y | ≤

√
n]| ≥ Ω(λ)

for λ < 1.

Proof. By Lemma 4.7, for ε <
∫ 1√

1−λ
1+λ

e−x
2
dx, there exists a constant N(ε) such that for n > N(ε),

|Pr[|Z| ≤
√
n]− Pr[|Y | ≤

√
n]| =

∣∣∣∣Pr

[
|Z|√
n
≤ 1

]
− Pr

[
|Y |

√
1− λ

(1 + λ)n
≤
√

1− λ
1 + λ

]∣∣∣∣
≥ 2

∫ 1√
1−λ
1+λ

e−x
2
dx− ε ≥

∫ 1√
1−λ
1+λ

e−x
2
dx ≥ e−1

(
1−

√
1− λ
1 + λ

)
≥ λ

2e

where the last step follows from the easily verifiable inequality 1−
√

1−x
1+x ≥

x
2 for 0 ≤ x ≤ 1. Hence

we have demonstrated an event that gives an Ω(λ) gap between the distributions of Y and Z for
λ < 1. Since Y and Z are just shifted and dilated versions of the Hamming weight of S(n, λ) and
Bin(n, 1/2), respectively, we can deduce the TVD is Θ(λ) for λ < 0.16 due to Theorem 4.6.

5 Parity and Majority of the Sticky Walk are Almost Uncorre-
lated

Following the spirit of how Ta-Shma [10] showed the bias of the parity of an expander walk sampler
is exponentially small, we show some parity events of the sticky random walk are very close in prob-
ability to the corresponding probability under the binomial distribution. An interesting question to
consider is whether more refined events, such as whether the output is even and above expectation
is close to 1

4 . We show such results for the sticky distribution. Note that from Theorem 4.6 we
know the event probability in the sticky distribution will be within O(λ) of 1

4 , but in this section,
we derive an o(1) error bound.

Let s ∼ S(n, λ). We first demonstrate that similar to the binomial distribution, Pr[|s| even]
and Pr[|s| ≥ n/2] are close to 1/2. For the parity, we straightforwardly calculate

Pr[|s| even]− Pr[|s| odd] =
n∑
t=0

(−1)t Pr[|s| = t] = E[(−1)|s|] = E

[
n∏
i=1

(−1)si

]
= λn/2 · 1n even

(10)

11



using Lemma 4.1. Hence |Pr[|s| even] − 1
2 | ≤

λn/2

2 . Interestingly enough, this λn/2 bias is also
present in the parity bias calculation done by Ta-Shma for the expander walk in [10] (Section 3.2).
Furthermore, this calculation (combined with our work in Section 7) shows that this error term
cannot be improved to something smaller like λn.

Let a be a string and let a be the string formed by toggling every bit of a. Notice that
Pr[s = a] = Pr[s = a] since the number of runs are the same in both strings. Summing over
all strings of Hamming weight t, we get the symmetric relation Pr[|s| = t] = Pr[|s| = n − t],
which directly implies Pr[|s| > n/2] = Pr[|s| < n/2]. In the case n is odd, we immediately have
Pr[|s| > n/2] = 1/2. When n is even, we have

Pr[|s| > n/2] =
1

2
− Pr[|s| = n/2]

2
. (11)

We now prove a lemma that will help us bound Pr[|s| = n/2] in the sticky distribution.

Theorem 5.1. For s ∼ S(n, λ), λ < 1/5, and b ∼ Bin(n, 1/2), we can bound

Pr[|s| = `] .
√

(1 +O(λ2)) Pr[b = `].

Proof. To estimate this probability, we can use Lemma 3.2) to find

Pr[|s| = `] =
1

2n

n∑
k=0

K`(k)E[Kk(|s|)] ≤
1

2n

√√√√ n∑
k=0

(
n

k

)
K`(k)2

√√√√ n∑
k=0

E[Kk(|s|)]2(
n
k

) (12)

by Cauchy-Schwarz. Notice by Corollary 4.5,√√√√ n∑
k=0

E[Kk(|s|)]2(
n
k

) .
√

1 +O(λ2). (13)

Finally, by using Equation (3) we get√√√√ n∑
k=0

(
n

k

)
K`(k)2 =

√(
n

`

)
2n (14)

Combining (12), (13), and (14) yields

Pr[|s| = `] .
1

2n

√(
n

`

)
2n(1 +O(λ2)) =

√
(1 +O(λ2)) Pr[b = `]

as desired.

Going back to (11), Theorem 5.1 with ` = n/2 now allows us to deduce

Pr[|s| > n/2] =
1

2
+O(n−1/4

√
1 + λ2).

Thus, we have shown that Pr[|s| even] and Pr[|s| > n/2] are near 1/2, which are properties shared
by purely random strings. However, we can go further and show a more refined equidistribution
result. One can calculate for b ∼ Bin(n, 1/2) that Pr[(|b| odd) ∧ (|b| > n/2)] = 1

4 + O(n−1/2). We
show an analogous result for the sticky walk, albeit with a worse o(1) error term.

12



Theorem 5.2. Let s ∼ S(n, λ). For a, b ∈ {0, 1}, denote the event

Eab = (|s| ≡ a (mod 2)) ∧ ((−1)b|s| > (−1)bn/2)

and pab = Pr[Eab]. Then pab = 1
4 +O(n−1/4

√
1 + λ2) for all a, b.

Proof. We show the result for p00 (symmetric arguments work for any pab). We split into cases when
n is even and odd. When n is even, notice that due to the symmetry Pr[|s| = t] = Pr[|s| = n− t],
p00 = p01 and p10 = p11. Hence from (10) we have λn/2 ≥ |p10 + p11 − p01 − p00| = 2|p10 − p00|.
From (11) and Theorem 5.1, we have p10 + p00 = 1

2 + O(n−1/4
√

1 + λ2), and so we can conclude

p00 = 1
4 +O(n−1/4

√
1 + λ2) as desired.

When n is odd, a little more effort is required to exploit symmetry. Let S be the set of n-bit
strings having a run of size ≥ 2 which doesn’t contain the nth bit, and let T be the set of n-bit
strings having a run of size ≥ 2 which doesn’t contain the 1st bit. Consider the map g : S → T
defined by toggling the last bit of the first run of size ≥ 2. It can be easily seen that g is a bijection.
Note that for any s ∈ S, s and g(s) have the same probability under the sticky walk distribution
(the map preserves the number of runs in the string). Furthermore, f changes the parity of the
input string. The image of all strings in S with even parity and Hamming weight > n/2 under g
will be all strings in T with odd parity and Hamming weight > n/2, along with some rogue strings
in T with Hamming weight (n − 1)/2. If we isolate these rogue cases, we can deduce, due to the
fact g preserves probability, that

Pr[(s ∈ S) ∧ E00] = Pr[(s ∈ T ) ∧ E10] + Pr

[
(s ∈ S) ∧

(
|g(s)| = n− 1

2

)
∧ E00

]
≤ Pr[(s ∈ T ) ∧ E10] +O(n−1/4

√
1 + λ2) (15)

by Theorem 5.1 with ` = n−1
2 . Notice any n-bit string has probability measure at most 1

2

(
1+λ
2

)n−1
in the sticky distribution. Furthermore, there are only O(n) strings not contained in S (such strings
must be of form 0kA or 1kA where A is a binary string that alternates 0s and 1s). Therefore we
can bound

|Pr[(s ∈ S) ∧ E00]− Pr[E00]| ≤ Pr[s /∈ S] . n

(
1 + λ

2

)n
. (16)

An analogous argument with set T gives

|Pr[(s ∈ T ) ∧ E01]− Pr[E01]| . n

(
1 + λ

2

)n
. (17)

Combining (15), (16), and (17) using an application of the triangle inequality allows us to bound

|p00 − p01| ≤ |Pr[E00]− Pr[(s ∈ S) ∧ E00]|+ |Pr[(s ∈ S) ∧ E00]− Pr[(s ∈ T ) ∧ E01]|
+ |Pr[(s ∈ T ) ∧ E01]− Pr[E01]|

. n−1/4
√

1 + λ2.

Since p00 + p01 = 1/2 for n odd, we can deduce p00 = 1
4 +O(n−1/4

√
1 + λ2).

One thing to note is that Theorem 5.1 is not tight (taking λ = 0 demonstrates this) solely due
to the application of Cauchy-Schwarz in (12). Tightening this bound (at least for ` near n/2) will
improve the error term in Theorem 5.2 as an immediate consequence.
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6 Sticky Walk Modulo m is Close to Uniform

In [10], Ta-Shma provides an argument on how the parity of the expander walk is unbiased. In this
section we use his method to show the sticky distribution modulo m is approximately uniform for
any fixed m and large n.

Lemma 6.1. Fix λ < 1 and m ≥ 2. For any nontrivial m’th root of unity ζ 6= 1 and s ∼ S(n, λ),
we have |E[ζ |s|]| ≤ exp(−Ω(n)).

Proof. One can verify E[ζ |s|] = 1ᵀMn1 where 1 is the unit vector with all coordinates equal and

M =

(
1+λ
2

1−λ
2

1−λ
2

1+λ
2

)(
1 0
0 ζ

)
=

(
1+λ
2

1−λ
2 ζ

1−λ
2

1+λ
2 ζ

)
.

Let λ1, λ2 be the eigenvalues of M . If M is diagonalizable, we know 1ᵀMn1 = c1λ
n
1 + c2λ

n
2 , and

if M is not diagonalizable we can write 1ᵀMn1 = (c1 + nc2)λ
n
1 for constants c1 and c2 (this can

be seen by writing M in Jordan normal form). Thus in either case, it suffices to show the norm of
both eigenvalues are strictly less than 1 to prove the lemma. From Gershgorin’s circle theorem, we
know the norms of the eigenvalues are at most 1+λ

2 + 1−λ
2 = 1.

Assume one eigenvalue has norm 1. Since the product of the eigenvalues is det(M) = λζ, we
deduce the eigenvalues are λz, ζ/z for some |z| = 1. Since λz + ζ/z = Tr(M) = 1+λ

2 (1 + ζ), we
particularly know λz + ζ/z and 1 + ζ have the same argument angle.

If ζ 6= −1, we must have the quotient of these two complex numbers be real. Consequently

0 =
λz + ζ/z

1 + ζ
−
(
λz + ζ/z

1 + ζ

)
=
λz + ζ/z

1 + ζ
− λ/z + z/ζ

1 + 1/ζ
=

(λ− 1)(z − ζ/z)
1 + ζ

.

Since λ 6= 1, we have z = ζ/z and so the eigenvalues are λz, z. The trace is 1
2(1 + λ)(1 + ζ) =

1
2(1 + λ)(1 + z2), so

λz + z =
1

2
(1 + λ)(1 + z2) ⇐⇒ z =

1 + z2

2
⇐⇒ z = 1.

However ζ = z2 = 1, a contradiction.

If ζ = −1, then λz,−1/z are the eigenvalues. The trace is now zero, so λz = 1/z. Since λ is a
nonnegative real, taking norms of both sides implies λ = 1, a contradiction. Hence the eigenvalues
are indeed less than 1.

Lemma 6.1 allows us to employ Lemma 4.2 in [7] (since all characters of Z/mZ are χ(n) = ζn

for some m’th root of unity ζ) to deduce the following.

Theorem 6.2. Let Um be the uniform distribution over [m], and let Sm(n, λ) be the distribution
of |s| (mod m) over [m], where s ∼ S(n, λ). The `1 distance between these two distributions can
then be bounded by

||Um − Sm(n, λ)||1 ≤ exp(−Ω(n))

where the implied constants only depend on m.
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7 Relationship Between the Sticky Walk and Expander Walk

Define a λ-expander1 to be a regular graph G such that all eigenvalues λ1 ≤ · · · ≤ λm of the
normalized adjacency matrix satisfy |λi| ≤ λ for 1 ≤ i ≤ m − 1. One of the main motivations to
study the sticky random walk is because of its perceived close relationship with the distributions
generated by expander walks. In particular, if (v1, . . . , vn) is a n-step expander walk on a λ-expander
G = (V,E), and W ⊂ V with |W | = |V |/2, we believe the distribution (1v1∈W , . . . ,1vn∈W ) is linked
to the sticky walk S(n, λ). In this section, we demonstrate one direction of this relationship by
explicitly constructing a λ-expander and vertex subset W of half the size such that the distribution
of (1v1∈W , . . . ,1vn∈W ) is precisely S(n, λ).

Theorem 7.1. There exists λ-expander G = (V,E) and vertex set W ⊂ V with |W | = |V |/2 such
that if (v1, . . . , vn) is a random walk on G, the random n-bit string (1v1∈W , . . . ,1vn∈W ) ∼ S(n, λ).

Proof. For simplicity, assume λ is rational, and take integer m such that (1−λ1+λ)m is an integer. Let
C0 and C1 be two m-cliques with an added self-loop at each vertex. Construct the graph G by
taking each vertex in C0 and connect it to (1−λ1+λ)m vertices in C1 in a cyclic uniform manner to

make this graph 2m
1+λ -regular (i.e. if we arbitrarily number the vertices in C0 and C1 from 1 to m,

just connect vertex i in C0 with the C1 vertices i, i+ 1, . . . , i+ (1−λ1+λ)m− 1 (mod m)). Note upon
setting W = C1, a random walk on this expander resembles the sticky random walk, because at
each step, m edges will keep us in the same clique, and (1−λ1+λ)m will move us to the other, which

gives us a 1+λ
2 chance of staying in the same clique and 1−λ

2 chance of moving to the other. Our
aim is to now show the eigenvalues of the normalized Laplacian, L, are within λ of 1.

To do so, we will first show all eigenvalues of L are ≤ 1+λ, and then demonstrate L has second
smallest eigenvalue 1− λ. Note that the second smallest eigenvalue is minv⊥1,||v||2=1 v

ᵀLv, and the

largest eigenvalue is wᵀLw, where w is the corresponding normalized eigenvector of this largest
eigenvalue. Since 1 ⊥ w, it suffices to show that for v ∈ R2m with ||v||2 = 1 and v ⊥ 1, we have
1 − λ ≤ vᵀLv ≤ 1 + λ. WLOG assume the first m rows/columns are the vertices in C0 and the
latter m are the vertices in C1. Let t = 1−λ

1+λm and let v = (a1, . . . , am, b1, . . . , bm). Recall from the
quadratic form version of the Laplacian and by construction of G that

(m+ t)vᵀLv =
∑

1≤i<j≤m
(ai − aj)2 +

∑
1≤i<j≤m

(bi − bj)2 +
∑

1≤i≤m
0≤j<t

(ai − bi+j)2

where indices are taken modulo m. Since v ⊥ 1, we have

1Unlike standard definitions, we do not restrict the degree of each vertex to be constant. The purpose of this
section is to show any analysis of expander walks cannot give better bounds than the sticky walk. Since analyses on
expander walks are based off of the spectral properties of the graph rather than its degree, restriction of the degrees
are unnecessary for our purposes.
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0 =

(
m∑
i=1

ai +

m∑
i=1

bi

)2

= 2m

(
m∑
i=1

a2i +

m∑
i=1

b2i

)
−

∑
1≤i<j≤m

(ai − aj)2 −
∑

1≤i<j≤m
(bi − bj)2 −

∑
1≤i≤m
0≤j<m

(ai − bi+j)2

= 2m||v||22 − (m+ t)vᵀLv −
∑

1≤i≤m
t≤j<m

(ai − bi+j)2

vᵀLv =
2m

m+ t
− 1

m+ t

∑
1≤i≤m
t≤j<m

(ai − bi+j)2 (18)

For one side, we can trivially upper bound (18)

vᵀLv ≤ 2m

m+ t
= 1 + λ.

For the lower bound of (18), we can use Cauchy-Schwarz to get

vᵀLv ≥ 2m

m+ t
− 2

m+ t

∑
1≤i≤m
t≤j<m

(a2i + b2i+j)

=
2m

m+ t
− 2m− 2t

m+ t
||v||22

=
2m

m+ t

= 1− λ.

Hence we can conclude the nonzero eigenvalues of L are within λ of 1. Thus, G is indeed a
λ-expander that models a S(n, λ) sticky walk.

Note that this construction gives a family of λ-expanders: one for each m where
(
1−λ
1+λ

)
m is an

integer. In order to extend the above theorem to degree-bounded expanders, we believe replacing
the cliques C0 and C1 with degree d expanders, and adding a random bi-regular bipartite graph

with degree
(
1−λ
1+λ

)
d between them will suffice, but we have not verified this.
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A Deferred Proofs

Claim 4.4. For 1 ≤ k ≤ n/2, we can bound
(nk)

2

( n2k)
≤ e3

√
2

4π2 · 42k.

Proof. We can use Stirling’s approximation
√

2π
(
n
e

)n√
n ≤ n! ≤ e

(
n
e

)n√
n to bound(

n
k

)2(
n
2k

) =
n!(2k)!(n− 2k)!

k!2(n− k)!2

≤ e3

4π2
· n

n(2k)2k(n− 2k)n−2k

k2k(n− k)2n−2k

√
2n(n− 2k)

k(n− k)2

≤ e3

4π2
· 22k

(
n

n− k

)n(n− 2k

n− k

)n−2k√2

k

≤ e3
√

2

4π2

(
2n

n− k

)2k

≤ e3
√

2

4π2
· 42k

Lemma 4.7. As n→∞, Y
√

1−λ
(1+λ)n →N in distribution.

Proof. The idea is to use the method of moments (see Theorem 8.6 of [4]), which states the lemma
can be deduced if all moments of Y approach the moments of N as n→∞. The odd moments of
the Gaussian distribution is zero, and the 2k’th moment is (2k− 1)!! := (2k)!

2kk!
for all k ≥ 1 (see [6]).

Clearly E
[(

Y
√

1−λ
(1+λ)n

)2k+1
]

= 0 by the symmetry of Y .

It now remains to show that E
[(

Y
√

1−λ
(1+λ)n

)2k]
→ (2k − 1)!! as n → ∞. Let Pk denote the

set of unordered partitions of k into positive parts, where we express each partition as a multiset

of positive integers A = [a1, . . . , am] where
∑m

i=1 ai = k. We define g([a1, . . . , am]) =
(
∑m
i=1 ai)!∏m
i=1 ai!

. By

expanding (
∑n

i=1 Yi)
2k, collecting terms with the same multiset of degrees, and taking exponents

modulo 2,

E[Y 2k] = E

( n∑
i=1

Yi

)2k
 =

∑
P∈P2k

g(P )E

 ∑
T∈( [n]

|P |)

|P |∏
i=1

Y pi
ti

 =
∑
P∈P2k

g(P )E

 ∑
T∈( [n]

|P |)

∏
i;2-pi

Yti

 (19)

where P = [p1, . . . , p|P |] and T = {t1, . . . , t|P |}. Now let Po and Pe be the multiset containing
all odd and even elements of P (with multiplicity), respectively. Define h([a1, . . . , am]) to be the
number of ways to permute (a1, . . . , an) (e.g. g([1, 2, 2, 6]) = 12 since there are 12 ways of permuting
(1, 2, 2, 6), g([2, 2, 2]) = 1, and g([1, 4, 5, 6]) = 24). By Equation 5 and Lemma 4.2, we have

E

 ∑
T∈( [n]

|Po|)

∏
i∈T

Yi

 = E[K|Po|(|s|)] =

n−|Po|/2∑
m=|Po|/2

(
m− 1

|Po|/2− 1

)(
n−m
|Po|/2

)
λm.
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With this, we can rewrite

E

 ∑
T∈( [n]

|P |)

∏
i;2-pi

Yti

 = h(Pe)

(
n− |Po|
|Pe|

)
E

 ∑
T∈( [n]

|Po|)

∏
i∈T

Yi


= h(Pe)

(
n− |Po|
|Pe|

) n−|Po|/2∑
m=|Po|/2

(
m− 1

|Po|/2− 1

)(
n−m
|Po|/2

)
λm

∼ h(Pe)
n|Pe|

(|Pe|)!

n−|Po|/2∑
m=|Po|/2

(
m− 1

|Po|/2− 1

)
n|Po|/2

(|Po|/2)!
λm

= n|P |−|Po|/2 · h(Pe)

(|Po|/2)!(|Pe|)!

n−|Po|/2∑
m=|Po|/2

(
m− 1

|Po|/2− 1

)
λm (20)

and so by combining (19) and (20), we have

E[Y 2k] ∼
∑
P∈P2k

n|P |−|Po|/2 · g(P )h(Pe)

(|Po|/2)!(|Pe|)!

n−|Po|/2∑
m=|Po|/2

(
m− 1

|Po|/2− 1

)
λm. (21)

We just have to look at the leading term of this sum, which is when |P | − |Po|/2 is maximized
(since |P2k|, g(P ), and h(Pe) don’t depend on n). Note

|P | − |Po|
2

= (|Po|+ |Pe|)−
|Po|

2
=
|Po|+ 2|Pe|

2
≤
∑

p∈Po p+
∑

p∈Pe p

2
= k.

Hence the leading terms are when |P |−|Po|/2 = k, and these terms correspond to when all elements
of P are 1 or 2. In particular, the leading terms correspond to the multisets P with 2r 1’s and
k − r 2’s for 0 ≤ r ≤ k. In these cases, we can calculate |P | = k + r, |Po| = 2r, h(Pe) = 1 and

g(P ) = (2k)!
2k−r

Hence from (21) we get

E[Y 2k] ∼
k∑
r=0

(2k)!

2k−rr!(k − r)!

(
n−r∑
m=r

(
m− 1

r − 1

)
λm

)
nk

= (2k − 1)!!
k∑
r=0

(
k

r

)
2r

(
n−r∑
m=r

(
m− 1

r − 1

)
λm

)
nk.

Consequently, we have the 2k’th moment of Y
√

1−λ
(1+λ)n is

∼ (2k − 1)!!

(
1− λ
1 + λ

)k k∑
r=0

(
k

r

)
2r

(
n−r∑
m=r

(
m− 1

r − 1

)
λm

)

Taking n→∞ and evaluating the series with the well-known generating function identity ( x
1−x)r =

18



∑
m≥r

(
m−1
r−1
)
xm, we get that the 2k’th moment approaches

(2k − 1)!!

(
1− λ
1 + λ

)k k∑
r=0

(
k

r

)
2r

( ∞∑
m=r

(
m− 1

r − 1

)
λm

)
= (2k − 1)!!

(
1− λ
1 + λ

)k k∑
r=0

(
k

r

)(
2λ

1− λ

)r
= (2k − 1)!!

(
1− λ
1 + λ

)k (
1 +

2λ

1− λ

)k
= (2k − 1)!!.

Hence by the method of moments Y
√

1−λ
(1+λ)n →N in distribution as n→∞.
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