
Variants of the Determinant Polynomial and VP-completeness

Prasad Chaugule∗, Nutan Limaye†, and Shourya Pandey‡

Indian Institute of Technology, Bombay (IITB)

October 7, 2020

Abstract

The determinant is a canonical VBP-complete polynomial in the algebraic complexity
setting. In this work, we introduce two variants of the determinant polynomial which we
call StackDetnpXq and CountDetnpXq and show that they are VP and VNP complete respec-
tively under p-projections. The definitions of the polynomials are inspired by a combinatorial
characterisation of the determinant developed by Mahajan and Vinay (SODA 1997). We
extend the combinatorial object in their work, namely clow sequences, by introducing ad-
ditional edge labels on the edges of the underlying graph. The idea of using edge labels is
inspired by the work of Mengel (MFCS 2013).

1 Introduction

In an influential paper of Valiant [Val79], a complexity theoretic view of algebraic computation
was presented. This work led to a classification of polynomials based on the ease of computing
them. Consequently, complexity classes such as VF, VBP, VP and VNP were defined and
investigated in many follow-up papers. These algebraic classes were designed with the intention
of mimicking Boolean complexity classes. It was believed that they would give rise to equally
interesting, but potentially easier to resolve questions. For example, the question of separating
the classes VP and VNP turned out to be very interesting, like its Boolean counterpart, namely
the famous question of separating NP from P.

While there are many parallels between these two worlds, over the years, many crucial
differences between them have also surfaced. Specifically, in the Boolean world, many naturally
occurring problems have been found to be complete for the classes NP and P1. Although many
naturally occurring polynomials are known to be complete2 for VNP, until very recently no
natural polynomial was known to be complete for VP.

The process of finding many complete problems for a complexity class is crucial in many
ways. For one, each complete problem presents a potentially different way of understanding the
class. It also makes the complexity class rich and robust. In this work, we contribute to the
class of VP-complete polynomials.

∗prasad@cse.iitb.ac.in
†nutan@cse.iitb.ac.in Funded by SERB project File no. MTR/2017/000909.
‡shouryap@cse.iitb.ac.in
1A problem P is said to be complete for a Boolean complexity class C if P P C and any problem P 1 in C

reduces to P in polynomial time.
2A polynomial PnpXq is said to be complete for an algebraic complexity class A if PnpXq can be computed

in A and any polynomial P 1mpY q can be obtained from PnpXq by setting the variables in X to variables in Y or
field constants. For formal definitions see Section 2

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 152 (2020)

Until as recently as 2014, hardly any natural VP-complete polynomials were known. In Du-
rand et. al. [DMM`14] and Mahajan et al. [MS18], many interesting and fairly natural families
of polynomials were shown to be VP-complete. In [CLV19], a few more polynomials complete
for VP were presented. All these polynomials were based on counting graph homomorphisms3.

In this work we define two fairly simple to state variants of the determinant polynomial and
show that they are VP and VNP complete. As the determinant is known to be complete for
the class VBP (a class known to be contained in VP), this gives a satisfactory way of using the
same base polynomial, namely the determinant polynomial, whose generalisations capture the
class VP and VNP.

The determinant polynomial is a central object of study in algebraic complexity theory.
Classically, the determinant has been studied for many centuries by mathematicians, physicists,
numerical analysts and computer scientists.

The determinant is known to be easy to compute. In this respect, it enjoys a rather rare
place in computation; it is an extremely useful quantity which is also efficiently computable.
The classical efficient algorithms for the determinant are typically variants of the Guassian elim-
ination method. In last three to four decades, other approaches for computing the determinant
have also been proposed. One such example is an innovative approach proposed by Mahajan
and Vinay [MV97], which gave the first combinatorial characterization of the determinant that
yielded an efficient algorithm.

In this work, we take our inspiration from this combinatorial characterization of the deter-
minant polynomial and define two variants of the determinant which we call StackDetn and
CountDetn. We show that they are complete for the classes VP and VNP, respectively.

The main proof idea comes from a paper of Mengel [Men13], which introduces character-
isations of VP and VNP using Algebraic Branching Programs4 (ABPs) with memory. In that
work, informally speaking, it is shown that when ABPs are appended with stack-like mem-
ory, then they capture the class VP, and when they are appended with counter-like memory,
they characterise the class VNP. We use these ideas and combine them with the combinatorial
characterisation of the determinant to define our polynomial families.

The proof that shows that the determinant polynomial is complete for VBP can be adapted in
a very straightforward way along with the ABP with memory characterisations of VP and VNP
from the work of [Men13], to obtain polynomial families that are hard for these classes. How-
ever, like many other classes of polynomials (see for instance polynomial families from [Raz08]
and [Men11]), they are circuit-description dependent. From the work started by Durand et
al. the quest has been to find circuit-description independent polynomial families complete for
VP. We are able to achieve that here. The polynomial families we obtain here are circuit-
description independent as desired and are variants of the determinant polynomial, which make
them substantially different from the previous works [DMM`14], [MS18], [CLV19].

Combinatorial characterisation of the determinant. Let Y be an mˆm matrix, with
pi, jqth entry equal to yi,j . It is known that the determinant of Y is sum of signed cycle covers
of the directed graph represented by Y . This is one of the many combinatorial definitions of
the determinant, but as is, it is not known to give rise to an efficient computational procedure.
Mahajan and Vinay generalized cycle covers using a notion of clow sequences and proved that
the sum of signed clow sequences also equals the determinant. They then proved that the signed
sum of clow sequences is efficiently computable.

3See also [Eng16] for interesting variants of homomorphism polynomials.
4An algebraic branching program (ABP) is a directed layered acyclic graph with a source s and a sink t. The

edges are labelled with formal variables or field constants. The weight of an s to t path π is the product of the
weights on the edges of π. The polynomial computed by the ABP is the sum of weights of all the s to t paths.
For more details see [SY10].

2

StackDetm and CountDetm. We also use sum of signed clow sequences to define our
polynomial. In our case, the graph has some additional edge labels. For StackDetm (for
CountDetm), the labels come from a stack alphabet (counter alphabet, resp.). Based on these
labels, we get two types of clow sequences; those which are stack-realizable (counter-realizable)
and those which are not. The polynomial sums only the prior clow sequences. We show
that StackDetm is VP-complete and that CountDetm is VNP-complete. The VP upper bound
(Section 3.1) comes from the observation that an ABP with stack-like memory, which was
introduced by [Men13], can compute this polynomial efficiently. Similarly, VNP upper bound
for CountDetm (Section 3.2) comes from the observation that an ABP with random-access
memory, which was also introduced in [Men13], can compute this polynomial efficiently.

For the hardness proofs (Section 4, Section 6) we use ideas from [CLV19] about the block-
tree structure of a universal circuit and ideas from [MV97] regarding cancellations of certain
bad clow sequences.

2 Preliminaries

Let G “ pV,Eq be a directed graph. A walk pu1, u2, . . . , uk`1q in G is called a closed walk, or a
clow, if u1 “ uk`1, u1 is the least numbered vertex in the walk and for any 2 ď i ď k, ui ‰ u1.
The vertex u1 is called the head of the clow. We use degpCq to denote the number of edges in C
(counted with multiplicity), i.e. in this case k.

Definition 1 (A clow sequence [MV97]). A clow sequence pC “ xC1, . . . C`y in a graph G “ pV,Eq
is an ordered tuple of clows such that HeadpC1q ă HeadpC2q ă HeadpC3q ă . . . ă HeadpC`q and
degppCq “

ř`
i“1 degpCiq “ n, where n “ |V |. The sign of a clow sequence, signpCq, is p´1qn``.

We define two types of directed graphs, namely Stack graphs and Counter graphs.

Definition 2 (Stack graphs and Counter graphs). A stack graph is a directed graph G “

pV,E,Σ, φq, where V is a set of vertices, E is a set of edges. The set Σ is a symbol set. The
function φ labels every edge of the graph with either Pushpsq, Poppsq for some s P Σ or with
No-op.

A counter graph is a directed graph G “ pV,E,Σ, φq, where V is a set of vertices, E is a set
of edges. The set Σ is a symbol set. The function φ labels every edge of the graph with either
Readpsq, Writepsq for some s P Σ or with No-op.

For any s P Σ, Pushpsq, Poppsq are stack operations. Similarly, Readpsq, Writepsq are
counter operations. No-op is both a stack operation as well as a counter operation. Let
s1 “ ra1, a2, . . . , ams and s2 “ rb1, b2, . . . , bns be two sequences of stack operations (or counter
operations) then concatenation of s1 followed by s2 (denoted as s1 ˝ s2) is the ordered se-
quence ra1, a2, . . . , am, b1, b2, . . . , bns. It is easy to extend this definition of concatenation of two
sequences to any number of sequences.

Let W “ pu1, . . . , uk`1q be a walk of length k in a stack graph (or counter graph) G. We
define SeqrWs to be the sequence of stack operations (counter operations, respectively) along
the edges in this walk, i.e. rφpu1, u2q, φpu2, u3q, . . . , φpuk, uk`1qs.

We now define stack-realizable sequences and counter-realizable sequences.

Definition 3 (Stack-realizable sequence). A stack-realizable sequence of operations is a sequence
of stack operations which can be inductively formed using the following rules :

• The empty sequence is a stack-realizable sequence.

• If P is a stack-realizable sequence then Pushpsq ˝ P ˝ Poppsq is stack-realizable @s P Σ.

3

• If P is a stack-realizable sequence then No-op ˝ P and P ˝ No-op are also stack-realizable.

• If P and Q are stack-realizable sequences then P ˝ Q is a stack-realizable sequence.

For example, rPushpaq, Pushpbq, Poppbq, Pushpcq, No-op, Poppcq, Poppaq, No-ops is a stack-realizable
sequence, whereas rPushpaq, Poppbqs is not.

Definition 4 (Counter-realizable sequence). A sequence of counter operations P is said to be
counter-realizable if the following properties hold:

• For every s P Σ, Writepsq and Readpsq occur equal number of times in P and

• for every prefix P’ of P, the number of times Writepsq occurs in P’ is at least as much as
the number of times Readpsq appears in P’.

A directed walk W in a stack graph (or counter graph) G is called stack-realizable walk
(or counter-realizable walk, respectively) if and only if SeqrWs is stack-realizable (or counter-
realizable, respectively).

Definition 5 (A realizable clow sequence). A clow sequence pC “ xC1, C2, . . . , C`y of a stack graph
(or counter graph) G is called stack-realizable (or counter-realizable, respectively) if and only if
SeqrC1s˝SeqrC2s˝ . . .˝SeqrC`s is a stack-realizable sequence (or counter-realizable, respectively).

Let X be a set of variables. The edges of the stack graph or counter graph may be labelled
with variables from X as per a labeling function L : E Ñ X. For a clow C “ pu1, u2, . . . , uk`1q,
monpCq denotes monomial formed by multiplying the labels of the edges in C, i.e. monpCq “
śk
i“1 L ppui, ui`1qq. Moreover, monppCq “

ś`
i“1monpCiq.

We are now ready to formally define the Stack Determinant polynomial.

Definition 6 (Stack Determinant polynomial). Let Gn “ pV,E,Σ,Φq be a stack graph such that
V “ tu1, u2, . . . , u4nu, Σ “ ts1, . . . , snu, E “ tpui, ujq | 1 ď i, j ď 4nu, and Lppui, ujqq “ xi,j.
Let the function Φ be defined as follows.

Φppup, uqqq “

$

&

%

Pushpsiq if q “ p` 1 and p “ 4ˆ pi´ 1q ` 1
Poppsiq if q “ p` 1 and p “ 4ˆ pi´ 1q ` 3
No-op otherwise

The Stack Determinant polynomial over the variable set X is defined as follows.

StackDetnpXq “
ÿ

All stack´realizable clow
sequences pC of degree |V |.

signppCq ¨monppCq

Definition 7 (Count Determinant polynomial). Let Gn “ pV,E,Σ,Φq be a counter graph such
that V “ tu1, u2, . . . , u4nu, Σ “ ts1, . . . , snu, E “ tpui, ujq | 1 ď i, j ď 4nu, and Lppui, ujqq “
xi,j. Let the function Φ be defined as follows.

Φppup, uqqq “

$

&

%

Writepsiq if q “ p` 1 and p “ 4ˆ pi´ 1q ` 1
Readpsiq if q “ p` 1 and p “ 4ˆ pi´ 1q ` 3
No-op otherwise

The Count Determinant polynomial over the variable set X is defined as follows.

CountDetnpXq “
ÿ

All counter´realizable clow
sequences pC of degree |V |.

signppCq ¨monppCq

We now define other variants of stack determinant polynomial and the counter determinant
polynomial where the stack symbol set Σ is of constant size, we fix Σ “ t0, 1u which is of size 2.

4

Definition 8 (Stack Determinant polynomial with Σ “ t0, 1u). Let Gn “ pV,E,Σ,Φq be a
stack graph such that V “ tu1, u2, . . . , u8nu, Σ “ t0, 1u, E “ tpui, ujq | 1 ď i, j ď 8nu, and
Lppui, ujqq “ xi,j. Let the function Φ be defined as follows.

Φppup, uqqq “

$

’

’

’

’

&

’

’

’

’

%

Pushp0q if q “ p` 1 and p mod 8 “ 1
Pushp1q if q “ p` 1 and p mod 8 “ 3
Popp0q if q “ p` 1 and p mod 8 “ 5
Popp1q if q “ p` 1 and p mod 8 “ 7
No-op otherwise

The Stack Determinant polynomial over the variable set X is defined as follows.

StackDetp2qn pXq “
ÿ

All stack´realizable clow
sequences pC of degree |V |.

signppCq ¨monppCq

Definition 9 (Count Determinant polynomial with Σ “ t0, 1u). Let Gn “ pV,E,Σ,Φq be a
counter graph such that V “ tu1, u2, . . . , u8nu, Σ “ t0, 1u, E “ tpui, ujq | 1 ď i, j ď 8nu, and
Lppui, ujqq “ xi,j. Let the function Φ be defined as follows.

Φppup, uqqq “

$

’

’

’

’

&

’

’

’

’

%

Writep0q if q “ p` 1 and p mod 8 “ 1
Writep1q if q “ p` 1 and p mod 8 “ 3
Readp0q if q “ p` 1 and p mod 8 “ 5
Readp1q if q “ p` 1 and p mod 8 “ 7
No-op otherwise

The Count Determinant polynomial over the variable set X is defined as follows.

CountDetp2qn pXq “
ÿ

All counter´realizable clow
sequences pC of degree |V |.

signppCq ¨monppCq

We now define a notion of projections called p-projections and use them to define complete
polynomials for algebraic complexity classes.

Definition 10. A polynomial family tfnu is said to be a projection of a family tgnu, denoted as
tfnu ď tgnu, if for every fn (where n P N), there exist some m P N where fn can be computed
by gm by setting the variables of gm to either the variables of fn or the field constants. If m is
polynomially bounded in n, it is said to be a p-projection, denoted by tfnu ďp tgnu.

A p-bounded family tfnu is complete for class C, if fn P C and for every tgnu P C, tgnu ďp
tfnu.

We now state our main theorems

Theorem 11. StackDetnpXq and StackDet
p2q
n pXq are VP-complete over any field under p-

projections.

Theorem 12. CountDetnpXq and CountDet
p2q
n pXq are VNP-complete over any field under p-

projections.

3 Upper bounds for variants of determinant family

In this section we prove that StackDetnpXq and StackDet
p2q
n pXq are in VP while for the class

VNP, we show that CountDetn and CountDet
p2q
n are in VNP. We show this by giving a polyno-

mial (in n) sized Stack Branching Program (SBP) for StackDetn and StackDet
p2q
n . We also give

a polynomial sized Random Access Branching Program (RABP) for CountDetn and CountDet
p2q
n .

5

SBPs and RABPs were defined by Mengel in [Men13] to characterize the classes VP and VNP,
respectively. We use this characterisation for our upper bound. We recall the definitions of SBP
and RABP from [Men13].

Definition 13 (SBP [Men13]). A stack branching program G “ pV,Eq (over Σ) is an algebraic
branching program with an additional function φ : E ÝÑ

Ť

aPΣtPushpaq, PoppaquYtNo-opu. The
polynomial computed by G is fG “

ř

P monpPq, where the sum is over all the stack-realizable
s-t paths in G. The size of a stack branching program G is the number of vertices in it, that is,
|V |

Definition 14 (RABP [Men13]). A random access branching program G “ pV,Eq (over Σ) is an
algebraic branching program with an additional function φ : E ÝÑ

Ť

aPΣtWritepaq, Readpaqu Y
tNo-opu. The polynomial computed by G is fG “

ř

P monpPq, where the sum is over all the
counter-realizable s-t paths in G. The size of a random access branching program G is the
number of vertices in it.

Lemma 15 ([Men13]). A family tfnu is in VP if and only if there exist a stack branching
program family Sn of size polypnq to compute tfnu. A family tfnu is in VNP if and only if there
exist a random access branching program family Rn of size polypnq to compute tfnu.

The upper bound proofs are motivated by the ABP upper bound for the Determinant
polynomial proved by [MV97].

The determinant is known to be equal to the sum of signed clow sequences. This com-
binatorial definition of the determinant was used in [MV97] to obatin an ABP upper bound.
Those familiar with the proof of [MV97] may notice that the definitions of StackDetnpXq,

StackDet
p2q
n pXq, CountDetnpXq and CountDet

p2q
n pXq are inspired by this definition of the de-

terminant. We observe that, just like the combinatorial definition of the determinant is used to

obtain an ABP upper bound in [MV97], our definitions of StackDetnpXq/StackDet
p2q
n pXq and

CountDetnpXq/CountDet
p2q
n pXq allow us to compute them using an SBP and RABP, respectively.

3.1 StackDetnpXq and StackDet
p2q
n pXq are in VP

We show that StackDetnpXq is in VP. Let Gn “ pV,E,Σ,Φq and L be as in the definition of
StackDetnpXq. Consider the complete directed graph G1n “ pV,Eq, i.e Gn without the stack
symbols and labels. Let An denote the adjacency matrix of this graph under the labelling L,
i.e. Anri, js “ xi,j . From the result of [MV97], we get an ABP, say Bn, that computes the
determinant of An.

From Bn we obtain an SBP Sn, by simply defining the function φ. We inherit φ from the
Φ defined in the stack graph Gn as follows. Let Bn be the graph underlying the ABP Bn. In
Bn some edges are labelled with X variables, while some other edges are labelled with field
constants. The function φ for all edges which are labelled with field constants is set to No-op.
Consider any edge pp, qq in Bn that is labelled with an X variable. Suppose the edge is labelled
xi,j , then we let φppp, qqq “ Φppui, ujqq.

The following statement can now be proved in a straightforward way, which finishes the
proof of the upper bound.

Claim 16. Let pC be any clow sequence in Gn. The SBP Sn has a stack-realizable path from s
to t with weight signppCq ¨monppCq if and only if pC is a stack-realizable clow sequence of degree
|V |.

6

Proof. Let us start by recalling the construction of an ABP for the determinant polynomial
from [MV97]. First recall that the determinant polynomial Detn is defined as follows in [MV97].

DetnpG
1
nq “

ÿ

C a clow sequence of degree |V |

signpCqmonpCq

It was shown that there exist an algebraic branching program Bn (with s as the source vertex
and t as the sink vertex and two special nodes t` and t´) of size Opn3q which computes DetnpGq.
The ABP Bn has the following properties.

• For every clow sequence C “ xC1, C2, . . . , Cky of degree |V | and positive signature, there
exists a unique s´ t path P in Bn such that path P is obtained by unwinding the clows
in the clow sequence C “ xC1, C2, . . . , Cky into paths, P1,P2, . . . ,Pk, respectively and then
stitching these paths together in order P1 followed by P2 and so on upto Pk and then
followed by a single edge ê labelled by +1 from t` to t. For negative signature, it is
similar; except the last edge is labelled -1 and is from t´ to t.

• The variable labels on the edges (except the last edge) in s´ t path P in Bn are consistent
with the variable labels on the edges in the closed walks in the clow sequence C of Gn.

• There are no s´ t paths in Bn other than the kind of paths stated above.

As the SBP Sn has the same underlying graph as Bn, i.e. Bn, ignoring Φ, we get a bijection
between clow sequences of the stack graph Gn and s to t paths in Bn.

Stack graph Sn is obtained by specifying φ along with Bn. Note that the set of s to t paths
in Sn and Bn continue to be the same. In Sn some paths become stack-realizable under the
function φ. Consider a stack-realizable path P in Sn. It has a corresponding clow sequence pC
associated with it in Gn. As the labels of P are consistent with those on pC, we get that pC is a
stack-realizable clow sequence.

Conversely, if we start with a stack-realizable clow sequence of Gn, we will find an s to t
stack-realizable path in Sn. This finishes the proof.

Remark 17. StackDet
p2q
n pXq can be proved to be in VP using ideas similar to the ideas used

to prove StackDetnpXq in VP.

3.2 CountDetn and CountDetp2qn is in VNP

We first show that CountDetnpXq is in VNP. Let Gn “ pV,E,Σ,Φq and L be as in the definition
of CountDetnpXq. Consider the complete directed graphG1n “ pV,Eq, i.eGn without the counter
symbols and labels. Let An denote the adjacency matrix of this graph under the labelling L,
i.e. Anri, js “ xi,j . From the result of [MV97], we get an ABP, say Bn, that computes the
determinant of An.

From Bn we obtain an RABP Rn, by simply defining the function φ. We inherit φ from the
Φ defined in the counter graph Gn as follows. Let Bn be the graph underlying the ABP Bn.
In Bn some edges are labelled with X variables, while some other edges are labelled with field
constants. The function φ for all edges which are labelled with field constants is set to No-op.
Consider any edge pp, qq in Bn that is labelled with an X variable. Suppose the edge is labelled
xi,j , then we let φppp, qqq “ Φppui, ujqq.

The following statement can now be proved in a straightforward way, which finishes the
upper bound proof.

7

Claim 18. Let pC be any clow sequence in Gn. The RABP Rn has a counter-realizable path
from s to t with weight signppCq ¨monppCq if and only if pC is a counter-realizable clow sequence
of degree |V |.

Proof. The proof of this claim is very similar to the proof of Claim 16. As in the proof of
Claim 16, we consider the branching program Bn from [MV97] computing the determinant
polynomial Detn.

The RABP Rn has the same underlying graph as Bn, i.e. Bn, ignoring Φ, we get exactly the
same correspondence between clow sequences of the stack graph Gn and s to t paths in Bn.

The counter graph Rn is obtained by specifying φ along with Bn. Note that the set of s to
t paths in Rn and Bn continue to be the same. In Rn some paths become counter-realizable
under the function φ. Consider a counter-realizable path P in Rn. It has a corresponding clow
sequence pC associated with it in Gn. As the labels of P are consistent with those on pC, we get
that pC is a counter-realizable clow sequence.

Conversely, if we start with a counter-realizable clow sequence of Gn, we will find an s to t
counter-realizable path in Rn. This finishes the proof.

Remark 19. CountDet
p2q
n pXq can be proved to be in VNP using ideas similar to the ideas used

to prove CountDetnpXq in VNP.

4 StackDetnpXq is hard for VP

In this section we prove that StackDetnpXq is VP-hard. We start by proposing two simple
approaches for proving the hardness and discuss why they do not seem to work directly.

• The first way is to mimic the construction used to show that the determinant polynomial
is VBP hard. Start with a stack branching program P computing f . P has designated
nodes s and t. Add an extra vertex, say α, and add edges from t to α and from α to s.
Also add self-loops on all the vertices of P other than s and t. Then do the following.

(a) Firstly observe that the stack-realizable clow sequences of this graph can be parti-
tioned into two sets, say G and B. Prove that the clow sequences in B pairwise cancel
each other and their weights add up to zero.

(b) Moreover, show that the signed clow sequences in G are in one-to-one correspondence
with the monomials of f .

(c) Finally prove that the sum of signed clow sequences in G is equal to StackDetn.

While (a) and (b) above can be proved, (c) does not seem to be true. This is because
we do not have any control over the map φ used in P . Note that in the definition of
StackDetn Φ is a fixed map, whereas, in P , φ depends on the polynomial f . For instance,
it is possible that stack symbols repeat themselves several times in φ, while in Φ they do
not as per the definition. To obtain a graph along with the Φ as defined in StackDetn
does not seem feasible in this straightforward proof idea.

• A possible fix to the above problem is to update the definition of StackDetn so that it
allows for a φ that arises from the underlying stack branching program P that computes
f . Unfortunately, that leads to polynomial families that are circuit-description dependent.

It turns out that the first approach above is what we plan to use. Our proof steps consist of
the additional effort required to make this approach work.

The hardness proof proceeds in three stages. We begin with the following proof outline.

8

Step 1 Let Um be a universal circuit ([Raz08, SY10, DMM`14]) of size polypmq computing
an m-variate, degree polypmq polynomial fmpY q P VP. We obtain a universal block
circuit Ũm, which has some more structure than Um and computes fmpY q.

Step 2 We take the directed graph underlying the circuit Ũm and transform it into another
graph GN with N vertices, where N “ polypmq and N “ 4n for some parameter n.
The graph GN has the following properties.

– All the cycle covers of GN have the same sign (say +ve sign w.l.o.g.).

– All the cycle covers can be classified into two categories: good cycle covers, say
G, and bad cycle covers, say B; and the sum of weights of the good cycle covers
equals fmpY q. (We will define these notions formally below.)

Step 3 From GN we obtain a stack graph HN with the following properties.

– The sum of weights of stack-realizable cycle covers in HN equals the sum of
weights of cycle covers in G, i.e. equal to fmpY q.

– Moreover, the set of stack-realizable clow sequences in HN which are cycle covers,
equals G and the sum of signed weights of stack-realizable clow sequences that
are not cycle covers equals 0.

– Overall, the sum of signed weights of stack-realizable clow sequences of HN

equals fmpY q.

We can now interpret HN as a complete graph, where Lppui, ujqq “ 0 if pui, ujq is not
an edge in HN . We will show that the polynomial StackDetn defined with respect
to HN equals fmpY q.

The Step 1 and 2 above are obtained using the ideas of Block Trees from [CLV19]. Step 3
above uses the cancellation trick from [MV97], but now in the context of stack-realizable clow
sequences (instead of clow sequences) and with respect to an SBP (instead of an ABP).

4.1 VP-hardness of StackDetnpXq Step 1

Recall that from the constructions in [Raz08, SY10, DMM`14], we can assume the following
properties about the universal circuit. The circuit Um has m variables, size spmq and each even
layer is a ` gate, while each odd layer is a ˆ gate. The output gate is a ˆ gate. The ˆ gates are
multiplicatively disjoint and have fan-in bounded by 2. The input gates have fanin 0, fanout 1.
The total depth5 of the circuit is 2crlogms` 1, where c is some fixed constant. Say it computes
a polynomial fmpY q of degree polypmq6.

We now create a circuit Ũm, which will have the same depth, each even layer will again
consist of ` gates and each odd layer of ˆ gates. It will continue to be multiplicatively disjoint
and its size will be polypspmqq. It is created as follows:

• Block structure. In the jth layer of Ũm we create tpjq “ 2t
j
2

u many blocks. The blocks

on the j layer are denoted by B
pjq
1 , B

pjq
2 , . . . , B

pjq
tpjq.

• Gates. If j is odd - Let g1, . . . , gr be the ˆ gates appearing in Um in layer j. In Ũm,
each block B has one copy of g1, . . . gr.

If j is even - Let g1, . . . , gr be the ` gates appearing in Um in layer j. Each block B in
jth layer in Ũm has spmq sub-blocks. Each sub-block has one copy of g1, . . . , gr. (That is,

5The depth of the circuit is the length of the longest input gate to output gate path.
6This description is slightly different as compared to the one in [DMM`14], but it is easy to see that we can

get this form for a universal circuit using ideas from [Raz08].

9

there are spmq copies of each gate in each block and there are tpjq many blocks. So each
gate is copied tpjq ¨ spmq times. Note that this is polynomially bounded in polypmq.)

• Wires: Let g be a ` gate in layer j with children g1, g2, . . . gr in Um. Then the copy of g

in B
pjq
i has copies of g1, . . . , gr from block B

pj`1q
i as its children for each i P tpjq.

Let g be a ˆ gate in layer j with children gleft, gright in Um. Also among the different gates

that use gleft, let g be the kth such gate. Then (the unique) copy of g in B
pjq
i has kth copy

of gleft from block B
pj`1q
2i´1 as its child. Similarly, among the gates that use gright, let g be

the k1th such gate. Then the copy of g in B
pjq
i has k1th copy of gright from block B

pj`1q
2i as

its child. Finally, we only keep the minimal circuit, i.e. we remove gates that eventually
do not feed into the output gate.

This completes the description of Ũm. The construction is exactly the same as the construc-
tion of D1n in [CLV19]. We call this the universal block circuit.

We state and prove the following claim which finishes step 1.

Claim 20. The polynomial computed by Ũm is fmpY q and the size of the circuit is polynomial
in spmq, say ppmq, which in turn is polynomial in m.

Proof. We start by noting that each gate in Ũm is a copy of a gate in Um. We show that the
polynomial computed at any gate g̃ in Ũm is equal to the polynomial computed by the gate g
in Um of which g̃ is a copy. We do this layer-by-layer, starting with the lowermost layer.

The lowermost layer has input gates, and it is clear that the claim holds for these gates.
Assuming that the claim is true for all gates of layer j ` 1, where j is some positive integer,
consider now a gate g̃ in layer j of Ũm such that g̃ is a copy of gate g in Um. We have two cases:

• g is a ` gate. Let g1, g2, ¨ ¨ ¨ , gr be its children in Um. By construction, g̃ has copies
g̃1, g̃2, ¨ ¨ ¨ , g̃r of g1, g2, ¨ ¨ ¨ , gr, respectively, appearing in layer j ` 1 as the children of g̃.
By our hypothesis, g̃i computes the same polynomial in Ũm that gi computes in Um, for
all i P rrs. Therefore g̃ also computes the polynomial in Ũm that is computed by g in Um.

• g is a ˆ gate. Let gleft and gright be the two children of g in Um. By construction, g̃ has
copies g̃left and g̃right of gleft and gright respectively appearing in layer j` 1 as the children
of g̃. By our hypothesis, g̃left and g̃right compute the same polynomial in Ũm that gleft and
gright compute in Um, respectively. Therefore g̃ also computes the polynomial in Ũm that
is computed by g in Um.

Since the output gate of Ũm is a copy of the output gate of Um, therefore the polynomial
computed by Ũm is indeed fmpY q.

Moreover, note that each gate g in Um is copied in Ũm at most tpjq ¨ spmq times, regardless
of whether g is a ˆ gate, a ` gate, or an input gate. Therefore, the number of gates in Ũm
is no more than

ř2crlogms`2
j“1 tpjq ¨ spmq “ spmq ¨

ř2crlogms`2
j“1 2t

j
2

u “ 3spmqp2crlogms`1 ´ 1q ă

3spmqp2c¨logm`c`1q “ 3 ¨ 2c`1 ¨ spmq ¨mc, which is polynomially bounded in spmq, as spmq “
Θppolypmqq.

4.2 VP-hardness of StackDetnpXq Step 2

We now consider the graph underlying the universal block circuit created in Step 1. We direct
all the edges in this graph from top (i.e. from the output gate) to bottom (to the input gates).

10

ˆ

` `

ˆ ˆ ˆ

x1 x2 x1 x3 x2 x3 x1 x1 x2 x3 x1 x2 x2 x3

ˆ ˆ ˆ ˆ

` `

ˆ

Figure 1: Um computing px1x2 ` x1x3qpx1x2 ` x2x3q and the corresponding Ũm

The top-most layer has a single vertex, which is the output gate. Each layer j has tpjq-many
blocks. We denote this directed graph by Vppmq, where ppmq is the number of vertices in this
graph. We take two views of this underlying graph; a coarse view and a fine view. The fine
view is simply the whole graph Vppmq, while the coarse view is the graph formed by the block
structure.
Block Tree. For the coarse view, we think of each block of Vppmq as a vertex. We call these
block vertices. Two blocks vertices B,B1 are said to be connected if and only if Du P B and
v P B1 such that there is an edge between u and v in Vppmq. We refer to pB,B1q as a block edge.
By observing the connections in Vppmq, it is easy to see that the coarse view results into a tree.
We call this tree T∆pmq, where ∆pmq denotes the number of leaf nodes in the tree. Let B be
a vertex in T∆. If B is on an even layer, then it has only one child. We call these the unary
blocks. If it is on an odd layer then it has two children. We call these blocks binary blocks. A
path formed by block edges is called a block path.
When m is clear from the context, we use Vp and T∆ to talk about these two graphs.

Construction of GN.

• For any binary block B and any vertex u P B, we do the following. Let B` and Br be the
two children of B in T∆. Let u` P B` and ur P Br such that pu, u`q and pu, urq are edges
in Vp. We sub-divide the edge pu, urq into pu, zuq and pzu, urq. We delete the edge pu, zuq
from the graph, but retain the edge pzu, urq. For any node u in a binary block, we use
Couplepuq to denote the pair of edges tpu, u`q, pzu, urqu. (Couplepuq is not defined for a u
in a unary block.)

Note that this creates a new graph which is disconnected. If we look at the coarse view of
this new graph then it is a collection of ∆ block paths, let us call them P1, . . . ,P∆. Each
block path contains exactly one leaf node of T∆. We will assume that the block paths are
numbered such that the ith leaf node of T∆ belongs to Pi.

• We add two more vertices for each block path. We add a source vertex si and a sink vertex
ti for each i P r∆s. We also add edges from si to all the vertices in the first block in the
block path Pi. The vertices in the last block in any block path are vertices corresponding
to input gates in Ũm and hence are labelled with input variables Y . Let u be a vertex in
the leaf block of the path Pi labelled y P Y . We add a directed edge pu, tiq and label it
with y. (We do this for each vertex in every leaf block of all block paths.) The graphs
thus obtained are called R1, . . . ,R∆.

• We now identify ti with si`1 for 1 ď i ď ∆ ´ 1. We use R to denote the graph thus
formed and θi to denote the vertex formed by identifying ti with si`1 for 1 ď i ď ∆´ 1.

11

Addtionally, we want to ensure that the number of vertices in the resultant graph is a
multiple of 4 (This will help in defining a stack graph in the next step). To ensure this,
we add three7additional vertices α1, α2, α3 and the following directed edges to obtain a
graph DN : pt∆, α3q, pα3, α2q, pα2, α1q, pα1, s1q.

• We add self-loops on all the vertices except on α1, α2 and α3. The edges which are not
labelled with variables from Y are labelled 1.

The graph thus obtained is denoted by GN , where N is the number of vertices in it. It is
easy to note that N “ polypppmqq which is polypmq. We have also ensured that N “ 4n for
some parameter n.

Definition 21. We say that a cycle cover C “ xC1, . . . , Cky of GN is a good cycle cover if for
any vertex u appearing in C for which Couplepuq is defined, either both the edges in Couplepuq
are present in C or neither is. All the other cycle covers are called bad cycle covers. Let G
denote the set of all good cycle covers of GN and B denote the set of all the bad cycle covers.

Claim 22. All the cycle covers of GN have the same sign. Moreover, the sum of weights of
good cycle covers equals fmpY q.

Proof. Recall the graphs R1, . . . ,R∆ that we created from P1, . . . ,P∆. Consider any path π
from si to ti in Ri. The first edge of π must be from si to a vertex belonging to the first block,
and the last edge of π must be from a vertex belonging to the last block to the vertex ti. All
intermediate edges must connect adjacent blocks. So, the number of edges in π is one more
than the number of blocks in Ri. Therefore all paths from si to ti in Ri have the same number
of edges, say pi.

Consider any path Π from s1 to t∆. For any 2 ď i ď ∆, the vertex si must belong to
Π (because deleting si disconnects the graph into two components, where s1 and t∆ belong to
different components). This means Π can be viewed as a composition of the paths π1, π2, . . . , π∆,
where πi is a path from si to ti for all 1 ď i ď ∆. This path πi is also a path in Ri, so it has
length pi. Therefore the path Π has length p1 ` p2 ` ¨ ¨ ¨ ` p∆, which we call q, say. In all, any
path from s1 to t∆ has the same length q.

Let C “ xC1, C2, ¨ ¨ ¨ , Cky be a cycle cover of GN , and consider a cycle of the cycle cover
C that α1 belongs to, say C1. The only incoming edge to α1 is via t∆, and the only edge
outgoing from α1 is to α2. This means the edges pt∆, α1q and pα1, α2q belong to C1. The only
outgoing edge from α2 is to α3, and the only outgoing edge from α3 is to s1. Therefore, the
edges pα2, α3q and pα3, s1q also belong to C1. So, C1 contains a path from t∆ to s1 via α1, α2

and α3. The remaining part of C1 is a path from s1 to t∆. This path does not use the vertices
α1, α2, and α3, so it is also a path in R. As shown before, any such path from s1 to t∆ has
length q “ p1 ` p2 ` ¨ ¨ ¨ ` p∆. Therefore C1 is a cycle of length q ` 4.

Consider a cycle Cj ‰ C1 in the cycle cover C. This cycle cannot use the vertices α1, α2 and
α3. Furthermore, if Cj is not a loop, then it is a cycle in R, which contradicts the fact that R
is a DAG. Therefore Cj is a loop. In all, the cycle cover C has exactly one cycle C1 of length
q ` 4 passing through α1, α2, and α3, and N ´ q ´ 4 loops covering the vertices not present in
the cycle C1. Either way, the sign of any cycle cover C is fixed. It is also easy to see from the
above discussion that there is a one-to-one correspondence between a path Π from s1 to t∆ in
R and cycles covers of GN .

7Recall that the Definition of StackDetnpXq requires that the total number of vertices of underlying graph is
a multiple of 4. As ∆ is a power of 2, it is easy to note that adding three new vertices will always make the total
number of vertices of graph GN a multiple of 4.

12

We will now show that the good cycle covers of GN have a one-to-one correspondence with
the proof trees of Ũm. Let T be any proof tree of Ũm. For any vertex u corresponding to a ˆ
gate of Ũm, such that ul is the left child and ur is the right child of u in T , split the edge pu, urq
into pu, zuq and pzu, urq and delete edge pu, zuq. This splits T into ∆ paths Q1, Q2, ¨ ¨ ¨ , Q∆,
where Qi belongs to Ri for each i P r∆s. These ∆ paths (when concatenated appropriately)
trace out a path Π in DN . This path can be completed into a cycle C1 in GN . This cycle
C1 along with self-loops on all the other vertices outside of C1, forms a cycle cover C of GN .
Note that, the way this cycle cover was created, for each u in a binary block of Vp, either both
edges of Couplepuq are present in C or neither edge of Couplepuq is present in C. Therefore C
is a good cycle cover. It is easy to see that the cycle cover has weight equal to the monomial
computed by T in Ũm.

For the converse, we show that a good cycle cover of GN can be traced back to a unique
parse tree of Ũm. Let C “ xC1, C2, ¨ ¨ ¨ , Cky be a good cycle cover of GN . Let C1 be the big
cycle and the rest of the cycles in the cover be self-loops. Let E1 denote the edges that C1

shares with graphs P1,P2, . . . ,P∆. As this is a good cycle cover, for each vertex u in C1 for
which Couplepuq is defined, edges pu, u`q and pzu, urq are both present in C1. We will identify
zu with u for all such vertices. This will give rise to a unique parse tree of Ũm.

Remark 23. To be able to sum over only the good cycle covers, we need a mechanism to
ensure that the edges in Couplepuq are either both activated or both deactivated. In Valiant’s
work [Val79] for instance, this is ensured by using an iff graph gadget. If we can come up with
such a gadget then we will be able to show that Detn is VP-complete, thereby showing VP= VBP.
Unfortunately, we are not able to do that. We ensure coupling using the stack symbols.

x1 x1 x2 x3 x1 x2 x2 x3

ˆ ˆ ˆ ˆ

` `

ˆ

s1

t1

x1 x1

s2

t2

x2 x3

s3

t3

x1 x2

s4

t4

x2 x3

Figure 2: Graphs P1, . . . ,P∆ and R1, . . . ,R∆.

4.3 VP-hardness of StackDetnpXq Step 3

We would like to modify the graph GN so that we filter out good cycle covers, while killing all
the bad cycle covers. That is, we would like to simultaneously activate both the coupled edges
of a vertex u or simultaneously de-activate both the coupled edges, in any cycle cover. We
achieve this using stack symbols. Specifically, we create a stack graph HN from GN to achieve
this.

Construction of HN . For a vertex u for which Couplepuq is defined, we set φppu, u`qq “
Pushpsuq and φppzu, urqq “ Poppsuq. For all the other edges, φ is set to No-op.

Claim 24. Consider the stack graph HN constructed as above.

13

• The sum of weights of stack-realizable cycle covers in HN equals the sum of weights of
cycle covers in G, i.e. equal to fmpY q.

• Moreover, the set of stack-realizable clow sequences in HN which are cycle covers, equals
G and the sum of signed weights of stack-realizable clow sequences that are not cycle covers
equals 0.

Proof. Part 1. From the proof of Claim 22, we have that there is a bijection between parse
trees of Ũm and good cycle covers of GN . To prove the first part of the claim, we will show that
there is a bijective map from a good cycle covers of GN to stack-realizable cycle covers of HN .

We start with some notations. Let C be a good cycle cover in GN . Let TC be the unique
parse tree corresponding to C. Let C “ xC1, . . . , Cky and C1 be the long cycle, while all other
Cis be self-loops. (Any good cycle cover has this structure as we established in the proof of
Claim 22.) Let UC “ tu1, . . . , uτu be the subset of vertices in C1 for which Couple is defined.
Note that the output gate, let us call it u˚, of TC belongs to UC .

We say that a vertex u P UC has rank k, denoted as rankpuq, if it appears at distance 2k´1
from the leaves in TC . (Note that, vertices in UC appear at only odd distance from the leaves
in TC .)

For u P UC such that rankpuq “ 1, u` and ur are leaves, i.e. nodes corresponding to input
gates. For a vertex u in UC such that rankpuq ą 1, let u` and ur be its two children in TC . Let
u1 be u`’s unique child in TC and let u2 be the unique child of ur in TC . Note that u1, u2 P UC
and rankpu1q “ rankpu2q “ rankpuq ´ 1.

Let ΠC be the unique path traced out by C1 in R. (Recall, R is the graph obtained by
concatenating Ri for i P r∆s as described in the construction.)

For a vertex u P UC , such that rankpuq “ 1, we use Πrus to denote the subpath of ΠC from
u to ur. Given the structure of the subtree rooted at u in TC , and assuming that ur appears in
Ri`1 for some i P r∆´ 1s, we get that Πrus “ pu, u`q ¨ pu`, θiq ¨ pθi, zuq ¨ pzu, urq. (Recall that θi
was the vertex obtained by identifying ti of Ri with si`1 of Ri`1 for i P r∆´ 1s.)

On the other hand, for u P UC and rankpuq ą 1 such that ur appears in Ri`1 for some
i P r∆´ 1s, we use Πrus to denote the subpath of Π corresponding to the entire subtree rooted
at u in TC . Specifically, for the given the structure of the subtree rooted at u in TC , Πrus “
pu, u`q¨pu`, u

1q¨Πru1s ¨pθi, zuq¨pzu, urq¨pur, u
2q¨Πru2s. We will now prove the following statement.

For any u P UC , SeqrΠruss is stack-realizable in HN . (1)

If we are able to show this, then in particular for u˚ P UC we will get that Πru˚s is stack-
realizable. This will then imply that ps1, u

˚q ¨ Πru˚s ¨ pθ∆, t∆q is also stack-realizable, because
both ps1, u

˚q and pθ∆, t∆q are No-op edges.
We prove (1) by induction on rankpuq. Suppose rankpuq “ 1 and say ur P Ri`1, then as

noted above, Πrus “ pu, u`q ¨ pu`, θiq ¨ pθi, zuq ¨ pzu, urq. From our function φ defined for HN , we
see that SeqrΠruss “ Pushpsuq ˝ No-op ˝ No-op ˝Poppsuq. Therefore it is stack-realizable.

Suppose rankpuq “ k ą 1 and say that ur P Ri`1. In this case, as noted above, we have
Πrus “ pu, u`q ¨ pu`, u

1q ¨Πru1s ¨pθi, zuq ¨ pzu, urq ¨ pur, u
2q ¨Πru2s. From this, we see that SeqrΠruss “

Pushpsuq ˝ No-op ˝ SeqrΠru1ss ˝No-op ˝ Poppsuq ˝No-op ˝ SeqrΠru2ss. As rankpu1q, rankpu2q ă k,
by induction hypothesis we have that SeqrΠru1ss and SeqrΠru2ss are stack-realizable. Therefore,
we get that SeqrΠruss is also stack-realizable.

It is not hard to argue that bad cycle covers of GN get mapped to cycle covers of HN , which
are not stack-realizable.

Part 2. Recall that in the proof of Claim 22 we showed that any cycle cover of GN consists
of one big cycle and a collection of self-loops. Similarly, it is easy to see that in HN any clow

14

sequence has a certain structure: except for one clow, which will be of length ě p` 4, all other
clows in the clow sequence are self-loops.

We first note that this unique long clow will contain the vertex α1. Suppose it does not
contain α1, then no other clow in the clow sequence can cover α1 (as all other clows are self-loops
and α1 does not have a self-loop on it). But suppose α1 is not covered by any clow in the clow
sequence, then the degree of such a clow sequence is strictly less than |V |.

Under the ordering in which vertex α1 gets the lowest number, say 1, the long clow will be
the first clow in the sequence, say C1 and α1 will be its head.

We will adopt ideas from [MV97] in order to argue that the sum of weights of stack-realizable
clow sequences which are not cycle covers is 0 in HN . Like in [MV97], we define an involution
on the signed clow sequences. (Recall that an involution is a bijective map ψ such that ψ2 is
identity.) The map ψ will have the property that any stack-realizable clow sequence pC which is
not a cycle cover, is paired off with another stack-realizable clow sequence pC1 which is again not a
cycle cover and the monomials corresponding to pC and pC1 are the same, but signppC1q “ ´signppCq.
For clow sequence pC which is a cycle cover, the map ψ maps it to itself, i.e. it is identity for
cycle covers.

Let pC be a stack-realizable clow sequence, which is not a cycle cover. We start walking along
the edges of C1 starting from the head. One of the following two cases will happen first.

• Case 1. Either we will encounter a vertex v in C1 such that there exists a Ci P pC for
i ą 1, such that Ci is a self-loop at vertex v.

• Case 2. Or we will encounter a vertex u that has β ě 1 self-loops in C1.

First note that, if pC is not a cycle cover then one of the two cases must occur.
Suppose Case 1 occurs. In this case, consider pC1 obtained from pC by merging cycle Ci with

C1, by attaching it at v in C1. We will define ψ of pC to be this pC1. It is easy to see that if pC is a
stack-realizable clow sequence, then so is pC1. Both have the same set of edges. And pC1 has one
less component than pC, i.e. their signs are opposite.

On the other hand, suppose Case 2 occurs. In this case, consider pC1 obtained from pC by
detaching one of the β-many self-loops from u and adding that as a separate cycle in pC1. To
observe that pC1 thus obtained is a stack-realizable clow sequence, we first note that there is no
other clow in pC1 with the same head as this newly added self-loop. This is easy to see, because if
say there was already a clow in pC1 with u as its head, then we would have been in Case 1 above.
We also observe that if pC is stack-realizable, then detaching a self-loop, which is a No-op edge,
will ensure that pC1 is also stack-realizable. Here again, pC and pC1 have the same set of edges and
pC has one less component than pC1, i.e. they have opposite signs.

Note that in both the cases above, if ψppCq “ pC1 then ψppC1q “ pC. Hence, we have the desired
involution.

With this claim we are now almost done. We will now show that there is an ordering of
the vertices of HN , which gives a graph Gn “ pV,E,Σ,Φq as defined in Definition 6 and a
labelling function L as defined in Definition 6, such that fmpY q can be obtained as a projection
of StackDetnpXq defined with respect to Gn, which finishes the proof.

We now come up with such an ordering. We start by ordering vertices θ1, . . . , θ∆´1 and
α1, α2 and α3. Note that these vertices must appear in any cycle, which is not a self-loop. If we
start traversing any such cycle from α1, then we will visit these vertices in the following order
xα1, s1, θ1, . . . , θ∆´1, t∆, α3, α2, α1y. We number these vertices in the reverse order, i.e. α1 gets
numbered 1, α2 gets 2, α3 is numbered 3, t∆ is numbered 4 and so on till s1 is numbered ∆` 4.
This numbering ensures that all the edges that appear between these vertices get No-op label
on them.

15

Now, let u1, u2 . . . , uτ be the vertices for which Couple is defined. Let Couplepuiq “
tpui, ui`q, pzui , uirqu. For every i P rτ s, let the four vertices ui, ui`, zui , uir be numbered as
4pi´ 1q ` 1` p∆` 4q, 4pi´ 1q ` 2` p∆` 4q, 4pi´ 1q ` 3` p∆` 4q and 4pi´ 1q ` 4` p∆` 4q
respectively8. It is easy to check that such an ordering always gives distinct numbers to all the
vertices of the graph and this ordering is consistent with Φ from Definition 6.

The labelling function L retains the labels of all the edges of HN as they are. For any two
vertices u, v in HN , such that there is no edge in HN between u and v, we add such an edge
in Gn, but set Lppu, vqq “ 0. This labelling function now ensures that when we consider the
StackDet polynomial with respect to Gn we obtain fmpY q.

5 StackDet
p2q
n pXq is hard for VP

In this section, we give steps for the construction of a graph H 1M where M “ polypmq and

M “ 8n (for some n) such that StackDet
p2q
n pXq of H 1M under our projection is equal to fmpY q.

We consider the stack graph HN constructed from the universal circuit Um as discussed in
Section 4 and convert it into another stack graph H 1M where the stack symbol set is of a
constant size, that is, 2. The idea here is to encode the symbols in the stack symbol set
Σ “ ts1, s2, . . . , snu using binary alphabet Σp2q “ t0, 1u such that in every encoding the number
of occurrences of zeroes is equal to the number of occurences of ones. Let κ : Σ ÝÑ Σ˚

p2q be

a variable length encoding where for 1 ď i ď n, κpsiq “ 0i1i. We fix some notations, let s is
encoded as a binary string b “ b1b2b3 . . . bj then j is called the length of the encoding denoted
as `psq “ j and κipsq “ bi. Let bR denote the reverse of string b, that is, bR “ bjbj´1 . . . b2b1.

Steps for converting HN to H 1M Consider the stack graph HN constructed from the uni-
versal circuit Um as discussed in Section 4. We delete the α1, α2 and α3 vertices (and the edges
incident on them) from graph HN and we add 79 new vertices α

1

1, α
1

2, . . . , α
1

7. We also add the
following directed edges: pt∆, α7q, pα7, α6q, . . . , pα3, α1q, pα, s1q.

For every symbol si P Σ, there exist two directed edges pu1, v1q and pu2, v2q in stack graph
HN such that φppu1, v1qq “ Pushpsiq and φppu2, v2qq “ Poppsiq. For every symbol si P Σ, we
make the following modifications to graph HN . It is easy to note that the length of encoding
of si, that is `psiq “ 2i. For the sake of clarity, we assume `psiq “ j.

1. We delete the edge pu1, v1q. We add 2j ´ 2 new vertices, say d1, d2, d3, . . . , d2j´2. We add
the edges tpu1, d1quYtpdi, di`1q|1 ď i ď p2j ´ 3quYtpd2j´2, v1quYtpdi, diq|1 ď i ď 2j ´ 2u.
We set the labels on newly added edges to constant 1. We set φpu1, d1q “ Pushpκ1psiqq
and φpd2k´2, v1q “ Pushpκkpsiqq. For every even t P r2j ´ 2s, we set φppdt, dt`1qq “

Pushpκ t
2
`1psiqq. (see Figure 3)

2. We delete the edge pu2, v2q. We add 2j ´ 2 new vertices, say d
1

1, d
1

2, d
1

3, . . . , d
1

2j´2. We add

the edges tpu2, d
1

1quYtpd
1

i, d
1

i`1q|1 ď i ď p2j ´ 3quYtpd
1

2j´2, v2quYtpd
1

i, d
1

iq|1 ď i ď 2j´2u.

We set the labels on newly added edges to constant 1. We set φpu1, d
1

1q “ Poppκ1ps
R
iqq

and φpd
1

2k´2, v1q “ Poppκkps
R
iqq. For every even t P r2j ´ 2s, we set φppd

1

t, d
1

t`1qq “

Poppκ t
2
`1ps

R
iqq. (see Figure 4).

Finally, the labels of all the self-looped vertices of graph H 1M are changed from constant 1
to ´1. We now state our main Lemma.

8It is not too hard to see that ∆` 4 is a multiple of 4. (As ∆ is a power of 2.)
9It is easy to see that adding 7 new vertices will make the total number of vertices a multiple of 8.

16

Pushp0q Pushp0q Pushp1q Pushp1q

Pushps2q

u1 v1

u1 v1

d1 d2 d3 d4 d5 d6

Figure 3: Edge pu1, v1q of graph HN (upper figure) is transformed to a directed path from u1

to v1 in graph H 1M (lower figure)

Popp1q Popp1q Popp0q Popp0q

Popps2q

u2 v2

u2 v2

d11 d12 d13 d14 d15 d16

Figure 4: Edge pu2, v2q of graph HN (upper figure) is transformed to a directed path from u2

to v2 in graph H 1M (lower figure)

Lemma 25. Consider the stack graph H 1M constructed above

1. The signature of every stack-realizable cycle cover in H 1M is same, W.L.O.G, we assume
it to be positive. Moreover, the sum of weights of stack-realizable cycle covers in H 1M is
equal to fmpY q.

2. The sum of signed weights of stack-realizable clow-sequences which are not cycle covers
equals 0.

It is easy to see that the proof ideas of Lemma 24 can be used to prove Lemma 25. We
therefore skip the details of the proof of Lemma 25.

Ordering of the vertices of H 1M To finish the proof of the VP-hardness of StackDet
p2q
n pXq,

it is sufficient to describe the ordering of the vertices of graph H 1M such that edge label
function φ in graph H 1M is consistent with the edge label function φ described in the Def-
inition 8. We first order the vertices θ1, θ2, . . . , θ∆´1 and α1, α2, . . . , α7. It is easy to note
that all of these vertices must appear in any cycle which is not a self-loop. If we traverse
such a cycle starting from vertex α1, we visit these vertices in a particular order, the order
is xα1, s1, θ1, θ2, . . . , θ∆´1, t∆, α7, α6, . . . , α1y. We number these vertices in the reverse order,
that is, α1 gets numbered 1, α2 gets numbered 2, α3 gets numbered 3 and so on till α7 gets
numbered 7 and then t∆ gets numbered 8 and so on till s1 is numbered ∆` 8. This numbering
will ensure that all the edges which appears between these vertices gets labelled by No-op. It
is easy to note that for large enough m, ∆ is always some power of 2 and therefore a mul-
tiple of 8 and therefore, ∆ ` 8 is a multiple of 8. Since, the total number of occurrences of
zeroes and ones in every encoding is same, we know that the total number of occurrences of
Pushp0q, Pushp1q, Popp0q, Pushp1q as edge labels is same in graph H 1M . Let δ be the total number

17

of occurences of each of Pushp0q, Pushp1q, Popp0q, Pushp1q. We now partition the set of all the
push-pop-labelled edges (that is, edges which are not labelled by No-op) of graph H 1M into δ
number of sets where each set consists of four edges, say, pu1, v1q, pu2, v2q, pu3, v3q, pu4, v4q such
that Φppu1, v1qq “ Pushp0q,Φppu2, v2qq “ Pushp1q,Φppu3, v3qq “ Popp0q,Φppu4, v4qq “ Popp1q.
We label the elements of set δ as δ1, δ2, . . . , δj . For every δi, the tail of the edge pu1, v1q is num-
bered as ∆`8`8pi´1q`1, the head of the edge pu1, v1q is numbered as ∆`8`8pi´1q`2, the tail
of the edge pu2, v2q is numbered as ∆`8`8pi´1q`3, the head of the edge pu2, v2q is numbered
as ∆` 8` 8pi´ 1q` 4, the tail of the edge pu3, v3q is numbered as ∆` 8` 8pi´ 1q` 5, the head
of the edge pu3, v3q is numbered as ∆` 8` 8pi´ 1q` 6, the tail of the edge pu4, v4q is numbered
as ∆` 8` 8pi´ 1q ` 7 and the head of the edge pu4, v4q is numbered as ∆` 8` 8pi´ 1q ` 8. It
is easy to note that such an ordering will exhaust all the vertices of graph H 1M and it will also
ensure that every vertex gets a distinct number and is consistent with Φ from Definition 8.

6 VNP-hardness of CountDetnpXq and CountDet
p2q
n pXq

In this section we first show that CountDetnpXq is hard for VNP. We will first show that the
Permanent polynomial10 can be computed as a projection of CountDetnpXq. This will prove
that CountDetnpXq is VNP-hard over fields of characteristic ‰ 2. To show its hardness over
fields of characteristic 2, we will show that it can compute another polynomial, namely EC˚m, as
a projection, where n “ polypmq. This polynomial was shown to be VNP-complete over fields
of characteristic 2 in [Hru15].

6.1 VNP-hardness of CountDetnpXq over fields of characteristic ‰ 2

Let Y “ ty1,1, y1,2, . . . , ym,mu. We will show that PermmpY q can be obtained as a projection of
CountDetnpXq, where n “ polypmq. To prove this, we create a counter graph HN , such that
N “ polypmq and the following properties hold.

• All the counter-realizable cycle covers in HN have the same sign.

• Moreover, the sum of the weights of the counter-realizable clow sequences which are cycle
covers, equals Permm and the sum of the signed weights of the counter-realizable clow
sequences which are not cycle covers “ 0.

Then by simple re-ordering of the vertices of HN and adding edges to make it a complete graph
Gn, as in the definition of CountDetnpXq, we get that PermmpY q can be obtained as a projection
of CountDetnpXq.

In order to describe the construction of HN , we first create 2m smaller counter graphs,
W1, . . . ,Wm and R1, . . . , Rm. For each i P rms, Wi “ pV

w
i , E

w
i ,Σ

w
i , φ

w
i q is as follows.

• V w
i “ tswi , t

w
i uYtui,1, . . . , ui,muYtvi,1, . . . , vi,mu. E

w
i “

Ť

jPrmstps
w
i , ui,jquY

Ť

jPrmstpvi,j , t
w
i quY

Ť

jPrmstpui,j , vi,jqu. Σw
i “ tαi,1, αi,2, . . . , αi,mu.

• For each j P rms, φwi ppui,j , vi,jqq “ Writepαi,jq. φ
w
i is No-op for all other edges in Ewi .

Similarly, for each i P rms, Ri “ pV
r
i , E

r
i ,Σ

r
i , φ

r
i q can be described as follows.

• V r
i “ ts

r
i , t

r
i uYtai,1, . . . , ai,muYtbi,1, . . . , bi,mu. E

r
i “

Ť

jPrmstps
r
i , ai,jqu Y

Ť

jPrmstpbi,j , t
r
i quY

Ť

jPrmstpai,j , bi,jqu. Σr
i “ tα1,i, α2,i, . . . , αm,iu. For each j P rms, φri ppai,j , bi,jqq “ Readpαj,iq.

φri is No-op for all other edges in Eri .

10Recall that PermmpY q “
ř

σ: permutation of [m]

ś

iPrms yi,σpiq

18

Writepα1,2q

y1,2

y1,1

Writepα1,1q

y2,2

Writepα2,2q

Writepα2,1q

y2,1

Readpα2,1q

Readpα1,1q

Readpα2,2q

Readpα1,2q

u13 u14

u9 u10

u7

u21 u22

u17 u18

u6

u19 u20

u11 u12

u5

u23 u24

u15 u16

u4u8

u1 u2 u3

Figure 5: HN for m “ 2, all edges are labelled with constant 1

Let H 1N be the graph formed by identifying twi with swi`1 for 1 ď i ď m´1 and by identifying
twm with sr1 and also identifying tri with sri`1 for 1 ď i ď m´ 1. We also add labels on the edges
of H 1N . We define Lppui,j , vi,jqq “ yi,j for i, j P rms. For all other edges, L is set to 1. We first
make the following observation about H 1N .

Claim 26. For each monomial in M in PermmpY q, there is a unique counter-realizable path π
from sw1 to trm in H 1N such that

ś

ePπ Lpeq “M.
For any counter-realizable path π from sw1 to trm in H 1N ,

ś

ePπ Lpeq corresponds to a unique
monomial of PermmpY q.

Proof. From our construction of H 1N , it is easy to see that the vertices tw1 , t
w
2 , . . . , t

w
m and the

vertices tr1, t
r
2, . . . , t

r
m´1 are all cut-vertices in H 1N , and deleting any one of them disconnects the

vertices sw1 and trm. This means any path π from sw1 to trm passes through the vertices twi for
1 ď i ď m and tri for 1 ď i ď m ´ 1. Therefore, π can be viewed as a composition of the 2m
paths πw1 , π

w
2 , . . . , π

w
m, π

r
1, π

r
2, . . . , π

r
m in that order, where πwi is the subpath of π between swi and

twi for 1 ď i ď m, and πri is the subpath of π between sri and tri for 1 ď i ď m. In fact, for any
such 2m paths, their composition (in that order) is a path from sw1 to trm in H 1N .

We now proceed with the proof of the claim. Any monomial M in PermmpY q is of the
form

śm
i“1 yi,σpiq, where σ is a permutation of rms. The path π is constructed as follows:

take πwi to be the path swi , u
w
i,σpiq, v

w
i,σpiq, t

w
i , and πri to be the path sri , u

r
i,σ´1piq, v

r
i,σ´1piq, t

r
i , both

for 1 ď i ď m. Consider the sequence of counter operations along π, other than the No-op

operations. The only edges that have such operations are the edges puwi,σpiq, v
w
i,σpiqq for 1 ď i ď m

and puri,σ´1piq, v
w
i,σ´1piqq for 1 ď i ď m. This implies that the counter operations encountered in

π are Writepα1,σp1qq, Writepα2,σp2qq, . . . , Writepαm,σpmqq, Readpασ´1p1q,1q, Readpασ´1p2q,2q, . . . ,
Readpασ´1pmq,mq in that order. Now, σ is a permutation of rms, so the pairs pσ´1pjq, jq for
1 ď j ď m are a permutation of the pairs pj, σpjqq for 1 ď j ď m. Therefore, the m symbols
read are exactly the m symbols written, possibly in a different order. Since the write operations
all come before the read operations, this sequence of counter operations is indeed a counter-
realizable sequence. Moreover, the only edges that have labels other than 1 are the edges
puwi,σpiq, v

w
i,σpiqq for 1 ď i ď m, and these edges have labels yi,σpiq. Therefore, π is a counter-

realizable path from sw1 to trm in H 1N computing the monomial
ś

ePπ Lpeq “
śm
i“1 yi,σpiq “M.

19

Conversely, let π be a counter-realizable path from sw1 to trm in H 1N . For each 1 ď i ď m,
the path πwi is a path from swi to twi . Any such path clearly is of the form swi , u

w
i,fi
, vwi,fi , t

w
i

for some 1 ď fi ď m. Similarly, for each 1 ď i ď m, the path πri is a path from sri to tri
of the form sri , u

r
gi,i
, vrgi,i, t

r
i for some 1 ď gi ď m. We represent the jis and kis using two

functions f, g : rms Ñ rms defined as fpiq “ ji for all i P rms and gpiq “ ki for all i P rms.
From the previous paragraph, the sequence of counter operations along π other than No-op is
Writepα1,fp1qq, Writepα2,fp2qq, . . . , Writepαm,fpmqq, Readpαgp1q,1q, Readpαgp2q,2q, . . . , Readpαgpmq,mq
in that order. This sequence is counter-realizable, because π is a counter-realizable path.

For each 1 ď j ď m, the operation Readpαgpjq,jq appears in the sequence of counter opera-
tions. This means Writepαgpjq,jq is an operation earlier in the sequence. The only such write
operation appearing in the sequence is Writepαgpjq,fpgpjqqq, so fpgpjqq “ j. Similarly, for each
1 ď j ď m, the operation Writepαj,fpjqq appears in the sequence of counter operations, which
means Readpαj,fpjqq appears later in the sequence. The only such read operation appearing
in the sequence is Readpαgpfpjqq,fpjqq, so gpfpjqq “ j. Therefore fpgpjqq “ gpfpjqq “ j for all
j P rms, so f and g are both permutations of rms and are inverses of each other. We rewrite f
as σ and g as σ´1. The monomial computed by π is, therefore,

ś

ePπ Lpeq “
śm
i“1 yi,σpiq, which

is a monomial of PermmpYq.

We now construct the graph HN from graph H 1N . If m is odd, then we add a vertex α and
edges pα, sw1 q and ptrm, αq and ifm is even, then we add three vertices α1, α2, α3 and edges pα1, s

w
1 q

pα2, α1q, pα3, α2q and ptrm, α3q (see figure 5). This ensures that, N “ 4n for some parameter n,
where N is the number of vertices in HN . We set the weights of all the extra added edges as
1 and label it with No-op. We now add self-loops on all the vertices with weight 1 except the
α vertices. All the self-loop edges have the label of No-op on it. Consider the counter graph
HN constructed as above, we will argue that the sum of weights of counter-realizable cycle
covers in HN equals the PermmpY q and the sum of signed weights of counter-realizable clow
sequences that are not cycle covers equals 0. Without loss of generality, we assume that m is
odd. Similarly, we can extend our arguments for even m.

We already know from Claim 26 that there exists a bijection between the set of monomials in
PermmpY q and the set of counter-realizable paths between sw1 to trm in graph H 1N . It is therefore
sufficient to show a bijection between the set of counter-realizable paths between sw1 to trm in
graph H 1N and the set of all counter-realizable cycle covers of graph HN . We also argue that
the sign of every cycle cover of graph HN is same (w.l.o.g., we assume it to be positive). Since,
α is a vertex in HN without any self loop, any cycle cover C “ xC1, C2, C3, . . . , Cky of HN must
cover α with some cycle, w.l.o.g., we call it C1 which have both the edges pα, sw1 q and ptrm, αq,
and all other cycles in C are self-loops on all the vertices which are not covered in cycle C1. It
is easy to observe that the length of any cycle in HN which uses vertex α is always equal to
6m` 2. Therefore, the total number of vertices of graph HN which are not covered in this long
cycle and which will get covered by self loops in any cycle cover is N ´ 6m´ 2. It immediately
follows that the sign of every cycle cover of graph HN is same.

We now show a bijection between the set of all counter-realizable cycle covers of graph HN

and the set of counter-realizable paths between sw1 to trm in graph H 1N . It is easy to see that
a cycle cover C “ xC1, C2, C3, . . . , Cky of HN is counter-realizable iff the long cycle which uses
the vertex α is counter-realizable, w.l.o.g., we call the long cycle C1. It is easy to note that,
for any counter-realizable cycle cover C “ xC1, C2, C3, . . . , Cky, the cycle C1 must be formed by
an edge pα, sw1 q, followed by a unique counter-realizable directed path P between sw1 to trm (of
graph H 1N), followed by an edge ptrm, αq. Also, for every counter-realizable directed path P from
sw1 to trm (of graph H 1N), one can form a unique counter-realizable long cycle (and therefore a
counter-realizable cycle cover) in HN where the long cycle is pα, sw1 q, followed by directed path

20

P between sw1 to trm, followed by ptrm, αq. This finishes the first part of our argument.
We now argue that the sum of signed weights of all counter-realizable clow sequences of

graph HN which are not cycle covers is equal to 0. We first argue that there exist no clow
sequence in graph HN which does not contain the vertex α in any of its clow. Suppose there
exist some clow which does not contain α then we consider the graph formed by deleting the
vertex α in HN , in such a graph, the only closed walks possible are single-loops on each vertex of
such a graph. But the total degree of such a clow sequence can never be equal to N , therefore,
such a clow sequence is not a valid clow sequence. Let us assume that α is the least numbered
vertex in HN , say, numbered with 1. Since, α is a vertex without a self-loop, any clow involving
α must have edges pα, sw1 q and ptrm, αq. It is easy to see that in HN , any counter-realizable clow
sequence, say, C “ xC1, C2, . . . , Cky satisfies the property that except the first clow C1 (which
involves the vertex α), all other clows in the clow sequence C are self-loops. α1 will be the head
of C1. It is crucial to note that since all self–loops in graph HN are labelled with No-op, the
clow sequence C is counter-realizable iff the first clow C1 is counter-realizable.

We can now use similar ideas discussed in part 2 of the proof of Claim 24 to show that there
always exists an involution ψ on the set of counter-realizable clow sequences of graph HN such
that ψ will map any counter-realizable cycle cover to itself and for any counter-realizable clow
sequence which is not a cycle cover, say C, there exist another counter-realizable clow sequence
which is not a cycle cover, C1 such that ψpCq “ C1 and ψpC1q “ C and the monomials associated
with both C and C1 are same but their signatures are opposite.

Obtaining Gn from HN . To obtain Gn from this HN , we need to give an ordering on the
vertices that is consistent with Definition 7 and ensure that Gn is a complete graph. Ensuring
the latter is easy. We add all the missing edges and set L value for them to 0.

To describe the ordering, let us first assume that m is odd. When m is even, the ordering
can be worked out similarly. We first introduce some notation. For 1 ď i ď m´ 1 let us denote
the vertex obtained by fusing twi with swi`1 by θi. Let us denote the vertex obtained by fusing
twm with sr1 by θm. Also for 1 ď i ď m´ 1, let us denote the vertex obtained by fusing tri with
sri`1 by θ1i.

The ordering can now be described as follows. Vertex α is set to 1 and the vertex trm is set
to 2. The vertices θ11 to θ1m´1 are numbered in reverse order, i.e. θ1m´1 is set to 3, θ1m´2 to 4 and
so on up to θ11 is set to m ` 1. We also number the vertices θ1 to θm in reverse order starting
from 2m` 1 down to m` 2. We number the vertex sw1 as 2m` 211

Now, let us assume that the symbols in Σ are ordered in some arbitrary order, say a1, . . . , am2 .
In HN , let E be defined as te | φpeq ‰ No-opu. From our construction of HN , no two edges in
E share any endpoints. Also for each ai P Σ, there is a unique edge with Writepaiq on it and a
unique edge with Readpaiq on it. We now fix the following ordering: the tail of the edge with
Writepaiq on it is assigned 4pi´1q`1`p2m`2q and its head is assigned 4pi´1q`2`p2m`2q,
the tail of the edge with Readpaiq on it is assigned 4pi´ 1q ` 3` p2m` 2q and finally, its head
is assigned 4pi´ 1q ` 4` p2m` 2q.

6.2 VNP-hardness of CountDetnpXq over fields of characteristic “ 2

Over characteristic 2, Permm is known to be easy. Therefore, in order to prove VNP-hardness
over characteristic 2 fields, we use a different VNP-hard polynomial. This polynomial was
shown to be VNP-hard over characteristic 2 fields in a work of Hrubes [Hru15]. The polynomial
is based on the algebraic variant of the well-known Edge Cover problem. We start by defining
the polynomial.

11For an odd m, note that 2m` 2 is always a multiple of 4.

21

Definition 27. Let m “
`

τ
2

˘

for some parameter τ . Let G “ pV,Eq be a complete undirected
graph on τ vertices, i.e. V “ rτ s and E “ tpi, jq | 1 ď i ă j ď τu and let edge e “ pi, jq be
labelled with yi,j. EC˚mpY q “

ř

E1ĎE,E1 is an edge cover

ś

pi,jqPE1,iăj yi,j

In [Hru15], the above polynomial was shown to be VNP-hard. We will show that we can
write EC˚mpY q as a projection of CountDetnpXq, where n “ polypmq.

For this, we will define m ` 1 counter graphs, W,R1, . . . , Rm, which when interconnected
appropriately will give us another counter graph HN , where N “ polypmq and it has the
following two properties.

• All the counter-realizable clow sequences in HN have the same sign.

• Moreover, the sum of the weights of the counter-realizable clow sequences which are cy-
cle covers equals EC˚m and the sum of the signed weights of the counter-realizable clow
sequences which are not cycle covers “ 0.

Construction of W . For each edge pi, jq P E such that 1 ď i ă j ď τ , we add a directed
path ρi,j “ xpsi,j , iq, pi, jq, pj, ti,jqy in W . We will call si,j the source of ρi,j and ti,j the sink of
ρi,j . We arrange these paths in a linear order ρ1,2, . . . , ρ1,τ , ρ2,3, . . . , ρ2,τ , . . . ρτ´1,τ one after the
other. Addtionally, we do the following. We rename s1,2 as s1 and tτ´1,τ as tτ

• Add edges from s1 to all the other sources, i.e. @1 ď i ă j ď τ , add edge ps1, si,jq.

• Add edges from the sink of all the paths to tτ , i.e. @1 ď i ă j ď τ , add pti,j , tτ q.

• Also add edges from sink of a path to the sources of all the paths that come after it in
the above order.

• We define φppsi,j , iqq “ Writepαi,jq and φppj, ti,jqq “ Writepαj,iq for all i ď 1 ă j ď τ . We
also define φpps1, 1qq “ Writepα1,2q and φppτ, tτ qq “ Writepατ,τ´1q For all the other edges
we set φ to be No-op. We also assign Lppi, jqq “ yi,j (See Figure 6).

Let π be any path from s1 to tτ in W . We will say that an edge pi, jq of G is traversed in
π if ρi,j is in π, i.e. all the three edges in ρi,j are traversed in π. It is easy to see the following
property holds.

Observation 28. Let S Ď E, then there is a path πS in W such that it traverses exactly the
set of edges in S. Moreover, if S is an edge cover then for each vertex i P rτ s we would have at
least one edge pi, jq P S such that upon traversing the path πS we would have done Writepαi,jq
and Writepαj,iq for that edge.

Construction of R1, . . . , Rτ . We have one graph Ri for each vertex i P rτ s. This graph will
allow for reading the symbols αi,j for all j ‰ i. For each i P rτ s, we describe Ri “ pVi, Ei,Σi, φiq.

• Vi “
Ť

jPrτ s´tiutai,ju Y
Ť

jPrτ s´tiutbi,ju. Let min and max denotes the minimum and

maximum number in rτ s ´ tiu. Ei “ tpai,j , bi,jq | j P rτ s ´ tiuu Y tpai,min, ai,j1q | j
1 P rτ s ´

tiu and j1 ą minu Y tpbi,j , bi,maxq | j P rτ s´tiu and j ă maxu Y
Ť

kPrτ s´tiutpbi,k, ai,jq|j ą
ku. φppai,j , bi,jqq “ Readpαi,jq, where j ‰ i and φ for all the other edges is No-op (See
Figure 7).

We relabel ai,min as a˚i and we relabel bi,max as b˚i . We observe the following properties
about Ri.

Observation 29. 1. Let π be any path from a˚i to b˚i . There exists at least one j P rτ s, j ‰ i
such that we encounter Readpαi,jq along π.

22

Writepα1,2q

y1,2

Writepα2,1q Writepα1,3q

y1,3

Writepα3,1q Writepα2,3q

y2,3

Writepα3,2q

s1,2 1 2 t1,2 s1,3 1 3 t1,3 s2,3 2 3 t2,3

Figure 6: Construction of W for τ “ 3 and m “ 3. For all 1 ď i ă j ď 3, we set φpsi,j , iq “
Writepαi,jq and φpj, ti,jq “ Writepαj,iq and Lppi, jqq “ yi,j

Readpα1,2q Writepα1,3q

a1,2 b1,2 a1,3 b1,3

Figure 7: Construction of R1 when m “ 3. All edges are labelled with constant 1

2. Let S Ď rτ sztiu, there exists a path from a˚i to b˚i , say πS, that encounters exactly the set
tReadpαi,jq | j P Su along it.

Construction of HN . We now interconnect W and R1, . . . , Rτ to create the graph HN as
follows. We add an edge from tτ to a˚1 . We also add edges from b˚i to a˚i`1 for 1 ď i ď τ ´ 1.
Finally, we add an edge from b˚τ to s1 and self-loops on all nodes other than b˚τ and s1. We first
observe the following properties about HN .

Claim 30. Let Π be any counter-realizable path from s1 to b˚τ in HN . The product of the Y
variables along Π, corresponds to a unique monomial in EC˚mpY q.

Conversely, if M is a monomial in EC˚m then there is a unique counter-realizable path Π in
HN from s1 to b˚τ such that the product of Y variables along Π equals M.

Proof. Let Π be a counter-realizable path from s1 to b˚τ in HN . Clearly, Π is obtained by
concatenating the following paths and edges in this order: π0¨ptτ , a

˚
1q¨π1¨pb

˚
1 , a

˚
2qπ2 . . . ¨pb

˚
τ´1, a

˚
τ q¨

πτ , where π0 is a directed path from s1 to tτ in W and πi is a directed path from a˚i to b˚i in
Ri for 1 ď i ď τ .

By part 1 of Observation 29, we know that for each i P rτ s, πi must encounter Readpαi,jq
for at least one j ‰ i. As the path is counter-realizable, there will not be any read operation
that does not have a corresponding write operation before it. Let S be a subset of edges of G
that are traversed in π0. As all reads must find a corresponding write along π0, we have that
for each vertex i, there must be at least one edge pi, jq in S, which results into Writepαi,jq and

23

Writepαj,iq along π0. Therefore, S must be an edge cover. Hence the monomial obtained by
taking product of the Y variables along the path gives rise to a monomial EC˚m.

Conversely, letM be a monomial in EC˚m. ThenM corresponds to a subset of edges S of E
that forms an edge cover of G. By Observation 28 we know that there exists a unique path in W
that traverses exactly the set of edges in S. Let us call this path πS . As S is an edge cover, we
know that for each i in the vertex set of G, there exists at least one j ‰ i such that Writepαi,jq
occurs in πS . For i P rτ s, let Ui “ tαi,j | j P rτ sztiu and Writepαi,jq occured along πSu. We
know that |Ui| ě 1 for i P rτ s. From the second part of Observation 29 we know that we can
uniquely append πS with paths πU1 , πU2 , . . . πUτ , where πUi is the unique path between a˚i and
b˚i that traverses the set Ui. Therefore the path πS ¨ptτ , a

˚
1q¨πU1 ¨pb

˚
1 , a

˚
2qπU2 . . . ¨pb

˚
τ´1, a

˚
τ q¨πUτ is

a counter-realizable path and the product of the Y variables along it gives rise to the monomial
M.

Consider the counter graph HN as defined in Section 6.2. We will argue that the sum
of weights of counter-realizable cycle covers in HN equals the EC˚mpY q and the sum of signed
weights of counter-realizable clow sequences which are not cycle covers equals 0. We already
know from Claim 30, that there exists a bijection between the set of monomials in EC˚mpY q and
the set of counter-realizable paths between s1 to b˚τ in graph HN . It is therefore sufficient to
show that there exists a bijection between the set of counter-realizable paths between s1 to b˚τ
in graph HN and the set consisting of all counter-realizable cycle covers of graph HN . Since,
we are working on fields of characteristic 2, sign of every cycle cover of graph HN is positive.

We now show a bijection between the set of all counter-realizable cycle covers of graph HN

and the set of counter-realizable paths between s1 to b˚τ in graph HN . It is easy to note that
any cycle cover C “ xC1, C2, C3, . . . , Cky of HN must use the edge pb˚τ , s1q, this is because, if it
does not use this edge, then there is no way to cover vertices s1 and b˚τ by any other cycle in
cycle cover C in graph HN . We assume that C1 is the cycle in cycle cover C which uses the
edge pb˚τ , s1q. It is also easy to note that all the vertices which are not covered in C1 must be
covered by self-loops on each of them in cycle cover C, that is, in other words, all cycles in the
cycle cover C, except C1 are all self-loops. This is because, after deleting vertices b˚τ and s1,
the only cycles left in graph HN are self-loops. It is easy to see that for any counter-realizable
clow sequence C “ xC1, C2, C3, . . . , Cky, the cycle C1 must be formed by an edge pb˚τ , s1q, followed
by a unique counter-realizable directed path P between s1 to b˚τ of graph HN . Also, for every
counter-realizable directed path P between s1 to b˚τ , one can form a unique counter-realizable
long cycle (and therefore a counter-realizable cycle cover) in HN where the long cycle is formed
by an edge pb˚τ , s1q, followed by a unique counter-realizable directed path P between s1 to b˚τ of
graph HN . This finishes the first part of our argument.

We now prove that the sum of all signed weights of counter-realizable clow sequences of graph
HN which are not cycle covers is equal to 0. We first show that there exist no clow sequence in
graph HN without using the vertex s1 in any of its clow. For the sake of contradiction, let us
assume that there exists a clow sequence pC “ xpC1, pC12, pC13, . . . , pC1ky which does not use vertex s1.
We now consider the graph formed by deleting the vertex s1 in HN , in such a graph, the only
closed walks possible are single-loops on each vertex of such a graph. It is easy to see that the
total degree of pC is always less than N , therefore, pC is not a valid clow sequence. Let us assume
that s1 is the least numbered vertex in HN , say, numbered with 1.

Since, s1 is a vertex without a self-loop, any clow which uses s1 must have the edge (b˚τ , s1).
It is easy to see that any counter-realizable clow sequence, say, C “ xC1, C2, . . . , Cky consists of
the big cycle C1 (which uses the vertex s1) and all other clows in C are self-loops. s1 will be the
head of C1. It is crucial to note that since all self–loops in graph HN are labelled with No-op,
the clow sequence C is counter-realizable iff the clow C1 is counter-realizable.

24

Using similar ideas discussed in part 2 of the proof of Claim 24, it can be shown that there
exists an involution ψ defined on the set of all counter-realizable clow sequences of graph HN ,
such that the function ψ maps every counter-realizable clow sequence which is also a cycle cover
to itself and for any counter-realizable clow sequence C, which is not a cycle cover, there exists
a counter-realizable clow sequence C1 which is also not a cycle cover such that the monomials
associated with both C and C1 are same but with opposite signatures, also, ψpCq “ C1 and
ψpC1q “ C.

Ordering of the vertices of HN To finish the proof we also show that we can give a complete
ordering of the vertices of HN consistent with Definition 7 and turn it into a complete graph to
obtain Gn to fit the dscription of Gn as in Definition 7. To make it a complete graph, simply
add all the missing edges and assign L for the newly added edges to 0. To get the ordering, fix
any arbitrary ordering for the set Σ, the stack alphabet of HN , say a1, a2, . . . , a|Σ|. In HN , let
E be defined as te | φpeq ‰ No-opu. From our construction of HN , no two edges in E share any
endpoints. Also for each ai P Σ, there is a unique edge with Writepaiq on it and a unique edge
with Readpaiq on it. We now fix the following ordering: the tail of the edge with Writepaiq on
it is assigned 4pi´ 1q` 1 and its head is assigned 4pi´ 1q` 2, the tail of the edge with Readpaiq
on it is assigned 4pi´ 1q ` 3 and finally, its head is assigned 4pi´ 1q ` 4.

Remark 31. VNP-hardness of CountDet
p2q
n pXq: The ideas used in Section 5 to prove the

VP-hardness of StackDet
p2q
n pXq can be adopted to prove the VNP-hardness of CountDet

p2q
n pXq.

The proof will broadly consist of three parts:

1. We encode the symbol set Σ into binary strings using binary alphabet Σp2q. This encoding
is exactly same as we discussed in Section 5

2. In the second step, we convert the graph HN (HN is the graph from Section 6.1 in case
of VNP-hardness for fields of char‰2 and from Section 6.2 in case of VNP-hardness for
fields of char=2) and modify it to another graph H 1M such that M “ 8n, for some n. This
is done on similar lines as in Section 5.

3. Finally, we order and number the vertices of graph H 1M such that the ordering will ensure
that every vertex in H 1M gets a distinct number and is consistent with Φ from Definition 9.
This is again on similar lines as in Section 5.

We skip the other details of this proof.

Acknowledgement : We would like to thank Nitin Saurabh for his useful comments on
the initial draft of this paper

References

[CLV19] Prasad Chaugule, Nutan Limaye, and Aditya Varre. Variants of homomorphism
polynomials complete for algebraic complexity classes. In Computing and Combi-
natorics - 25th International Conference, COCOON, volume 11653 of LNCS, pages
90–102. Springer, 2019.

[DMM`14] Arnaud Durand, Meena Mahajan, Guillaume Malod, Nicolas de Rugy-Altherre, and
Nitin Saurabh. Homomorphism polynomials complete for vp. In LIPIcs-Leibniz
International Proceedings in Informatics, volume 29, 2014.

25

[Eng16] Christian Engels. Dichotomy theorems for homomorphism polynomials of graph
classes. Journal of Graph Algorithms and Applications, 20(1):3–22, 2016.

[Hru15] Pavel Hrubes. On hardness of multilinearization, and VNP completeness in charac-
teristics two. Electronic Colloquium on Computational Complexity (ECCC), 22:67,
2015.

[Men11] Stefan Mengel. Characterizing arithmetic circuit classes by constraint satisfaction
problems. In ICALP, pages 700–711. Springer, 2011.

[Men13] Stefan Mengel. Arithmetic branching programs with memory. In International
Symposium on Mathematical Foundations of Computer Science, pages 667–678.
Springer, 2013.

[MS18] Meena Mahajan and Nitin Saurabh. Some complete and intermediate polynomials
in algebraic complexity theory. Theory of Computing Systems, 62(3):622–652, 2018.

[MV97] Meena Mahajan and V. Vinay. Determinant: Combinatorics, algorithms, and com-
plexity. Technical report, 1997.

[Raz08] Ran Raz. Elusive functions and lower bounds for arithmetic circuits. In Proceedings
of the fortieth annual ACM symposium on Theory of computing, pages 711–720.
ACM, 2008.

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results
and open questions. Foundations and Trends R© in Theoretical Computer Science,
5(3–4):207–388, 2010.

[Val79] L. G. Valiant. Completeness classes in algebra. In Proceedings of the Eleventh
Annual ACM Symposium on Theory of Computing, STOC ’79, pages 249–261, 1979.

26

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

