
TOTAL FUNCTIONS IN THE POLYNOMIAL HIERARCHY

ROBERT KLEINBERG∗, DANIEL MITROPOLSKY†, AND CHRISTOS PAPADIMITRIOU†

Abstract. We identify several genres of search problems beyond NP for which existence of
solutions is guaranteed. One class that seems especially rich in such problems is PEPP (for
“polynomial empty pigeonhole principle”), which includes problems related to existence theorems
proved through the union bound, such as finding a bit string that is far from all codewords,
finding an explicit rigid matrix, as well as a problem we call Complexity, capturing Complexity
Theory’s quest. When the union bound is generous, in that solutions constitute at least a
polynomial fraction of the domain, we have a family of seemingly weaker classes α-PEPP, which
are inside FPNP|poly. Higher in the hierarchy, we identify the constructive version of the Sauer-
Shelah lemma and the appropriate generalization of PPP that contains it. The resulting total
function hierarchy turns out to be more stable than the polynomial hierarchy: it is known that,
under oracles, total functions within FNP may be easy, but total functions a level higher may
still be harder than FPNP.

1. Introduction

The complexity of total functions has emerged over the past three decades as an intriguing
and productive branch of Complexity Theory. Subclasses of TFNP, the set of all total functions
in FNP, have been defined and studied: PLS, PPP, PPA, PPAD, PPADS, and CLS. These
classes are replete with natural problems, several of which turned out to be complete for the
corresponding class, see e.g. [4, 5].

Each of these classes corresponds naturally to a very simple existential argument. For example,
PLS is the class of all total functions whose proof of totality relies on the fact that every finite dag
must have a sink, while PPAD captures this true existential statement: “If a finite directed graph
has an unbalanced node (i.e., a node whose in-degree differs from its out-degree), then it must
have another unbalanced node.” The class of total functions PPP (for “polynomial pigeonhole
principle”) captures the well known fact that “if there are more pigeons than pigeonholes, there
must be a pigeonhole with two or more pigeons.” This latter complexity class has attracted
much attention due to its close connections to cryptography, and there has been recent progress
towards natural complete problems [2, 8, 13].

More recently a logic-inspired class PTFNP (for “provable TFNP”) was identified containing
all of the above classes [6], its definition motivated by the existential proof point of view described
above. It was also pointed out in [6] that finitariness is necessary for the definition of a meaningful
class of total functions, in that any non-finitary existence theorem — that is, one that also holds
for infinite structures — results in a computational problem that is provably easy. Also recently,
an intriguing link between the possibility of TFNP-hardness and average-case hardness was
discovered [7].

The simple statement on which PPP is based has a very natural “dual” variant, call it the
empty pigeonhole principle, namely: “if there are more pigeonholes than pigeons, then there must

∗ Cornell University.
† Columbia University.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 153 (2020)

2 TOTAL FUNCTIONS IN THE POLYNOMIAL HIERARCHY

be an empty pigeonhole.” Concretely, given a circuit C mapping [2n − 1] to [2n]1, find a bit
string of length n that is not in C’s range. Call this problem Empty. One could even define a
class based on the empty pigeonhole principle, call it PEPP (for “polynomial empty pigeonhole
principle,” the set of all total function problems polynomial-time reducible to Empty). At first
sight, PEPP may seem very close to PPP — identical, perhaps? — until one notices that PEPP
is not obviously in NP! For PPP, one can guess and check the offending pigeonhole and the two
pigeons in it — but for PEPP? Once the empty pigeonhole has been guessed, proving it is empty
requires one to look at all pigeons. An alternation of quantifiers appears to be at work!

In this paper we introduce a hierarchy of total search problems analogous to the polynomial
hierarchy of decision problems. TFNP is the first level of the hierarchy, and the class PEPP just
defined is at the second level of this hierarchy, denoted TFΣ2. Actually, we shall soon see that
there is a natural and interesting search problem occupying the third level of the hierarchy. (For
the formal definition of TFΣi and some basic facts about this hierarchy, see the Appendix.)

The first result we prove in this direction is that, despite the apparent similarity and “sym-
metry” outlined above, PEPP contains PPP — and in fact, all of FNP (Theorem 1; the proof is
easy).

Empty and PEPP are closely associated with the familiar probabilistic argument known as the
union bound. There is a formal way to see this: Consider a generic instance of Empty, that is, a
circuit C mapping [2n− 1] to [2n]; the task is to find a possible output in [2n] not in the circuit’s
range. Interpret now an input x as x = yz, where |z| = n−m and |y| = m, and where y encodes
a “bad event” — in the sense of the union bound — with probability 2−m (2−m − 2−n for one of
the events), while z indexes the 2n−m (respectively, 2n−m− 1) elements of the whole probability
space of size 2n that constitute the bad event. Hence, the empty pigeonhole principle can be
interpreted as the union bound. Many of the important natural problems in PEPP correspond
to existential proofs through the union bound, or more generally through counting.

One of these problems is Remote Point: Given a code — generically, a circuit mapping [2k]
to [2n] where k < n and the codewords are the range of the circuit — find an n-bit string that
is far from all codewords (as far in Hamming distance, that is, as is guaranteed by the union
bound). It is not hard to see that Remote Point is PPEP-complete. The important open
problem here is the complexity of the special case of Remote Point in which the circuit is a
linear function in GF2; this is a much studied problem [1].

Other natural problems in PEPP appear to capture interesting aspects of complexity. To start
with the more indirect one, Rigid Matrix Completion is the following problem: find a rigid
matrix in GFn×n

2 (that is, an n × n matrix whose rank cannot collapse to something tiny by
manipulating very few entries, details supplied later) given several of its entries. Rigid matrices
have been shown [14] to be abundant, and to capture logarithmic-depth circuit complexity, while
their explicit construction has remained an important open problem since Valiant’s paper. We
define the relevant problem as a completion variant of the explicit construction problem — that
is, part of the matrix is specified — to overcome a familiar impediment: without a binary input
of some substantial length, one is dealing with a sparse problem, and current techniques seem
unable to fathom the complexity of such problems. A second problem in the same vein, Ramsey-
Erdős completion, embodies Erdős’s famous 1959 proof that the n-th Ramsey number is at
least 2

n
2 , historically one of the first applications of the probabilistic method.

1We denote the set {0, 1, · · · ,M − 1} by [M]. We shall see that it is easy to construct circuits with arbitrary
integer domains and ranges.

TOTAL FUNCTIONS IN THE POLYNOMIAL HIERARCHY 3

Complexity is a problem asking, given a bit string of length n, to find an explicit Boolean
function with log n inputs which requires Ω(n

log2 n
) gates — that is, an explicit exponential lower

bound. The problem is, again, defined through a circuit. The circuit interprets its input gates
as the representation of a circuit with log n inputs and O(n

log2 n
) gates, where besides the usual

Boolean gates we also allow oracle gates with fan-in log n. The output of the circuit is the
Boolean function computed by this circuit, encoded as a bit string of length 2logn = n. The
input to the problem (on the basis of which the circuit is constructed and the computation of
the circuit is carried out) is interpreted as an oracle, encoding in its n bits the answers to all
possible oracle inputs. The task is to discover an n-bit string that is not in the range of this
circuit under this oracle — that is to say, a Boolean function with log n variables which therefore
requires Ω(n

log2 n
) gates to be computed with the given oracle. The oracle here is needed, again,

to render a unary function binary.
Is this problem PEPP-complete, or otherwise hard in a demonstrable sense? This is the most

important problem left open in this paper. We are aware of one immediate obstacle: it turns
out that many of the problems we discussed above, Complexity among them, belong in a
significantly weakened subclass of PEPP. Let α be a positive quantity, possibly a function of n,
and define the class α-PEPP (pronounced abundant PEPP) to be the variant in which the given
circuit does not map [2n] to [2n + 1], but instead [2n] to [(1 + α) · 2n + 1]; evidently, PEPP =
0-PEPP, while many of the problems in PEPP discussed are known to belong to α-PEPP for
some constant α.

We prove two theorems on α-PEPP. First, we establish that the precise value of α is in some
sense irrelevant, in that any class α-PEPP with α between 1

poly and poly can be reduced to any
other such class through FPNP reductions (Theorem 7; it is not known whether polynomial time
reductions are possible here). Second, it turns out that for any problem in α-PEPP with n input
gates there is a small set of outputs (strings of length dn log(1+α)e) such that, for any input, one
of them is an empty pigeonhole. (The proof is by — what else? — the union bound.) It follows
that α-PEPP is contained in FPNP|poly, FPNP with polynomial advice; we see no reason why
PEPP should be so confined.

So far we have been discussing problems and classes in TFΣ2, the next level after TFNP of
what can be called the polynomial total function hierarchy. It turns out that there is at least one
interesting problem further up. Shattering is the following problem: we are given a circuit C
with k input gates and n output gates, which is supposed to represent a family of 2k subsets of
[n]. We must return either a collision in this circuit, establishing that the family has fewer than
2n distinct sets; or otherwise a d-subset of [n], call it D, which is shattered by the family — that
is, every subset of D can be written as D ∩ C(x) for some set C(x) in the family; such a set is
guaranteed to exist by the Sauer-Shelah lemma [10, 12, 15], as long as C has no collisions and k
is large enough as a function of n and d. Notice immediately that there are two alternations of
quantifiers in this existential result: there is a set D such that for every subset G of D there is
an output C(x) of C such that G = D ∩ C(x): we are in the class TFΣ3! In fact, we show that
Shattering belongs to a very natural subclass of TFΣ3: it belongs to PPPΣ2 , the pigeonhole
principle class when the function mapping pigeons to pigeonholes can use a Σ2 oracle in its
computations.

4 TOTAL FUNCTIONS IN THE POLYNOMIAL HIERARCHY

2. The Problems in PEPP

Empty is the following search problem: Given a circuit C with Boolean gates mapping [2n−1]
to [2n], find a y ∈ [2n] such that y 6= C(x) for all x ∈ [2n − 1].

Remark: In this paper, we shall blur the distinction between bitstrings and binary integers. Our
Boolean circuits have a domain and range whose cardinality is not necessarily a power of two,
which may seem peculiar. In this paper we shall consider Boolean circuits mapping [M] to [N],
where M,N are arbitrary integers greater than one. Such a circuit C has dlogMe inputs and
dlogNe outputs, and for all x C(x) is defined to be C(M − 1) if x ≥ M , and also for all x
C(x) = N − 1 whenever the value computed by C on input x (or on input M − 1 if x ≥ M) is
at least N . Hence, Empty can be defined in terms of any circuit C : [M] 7→ [M + 1] — or even
C : [M] 7→ [N] as long as M < N . For larger N the problem may be easier, but it is reducible
to Empty (as long as logN ≤ poly logM).

Coming back to Empty, we can now define a class of total functions PEPP as all total
functions that are polynomial-time reducible to Empty. One rather immediate — and yet a
little surprising — fact to observe about PEPP is the following:

Theorem 1. FNP ⊆ PEPP.

Proof. We prove that Sat can be reduced to Empty. Let φ be a CNF formula with n variables,
without loss of generality not satisfied by the all-true truth assignment. Consider now the
following polynomially computable function C from [2n − 1] to [2n]: For every truth assignment
t different from the all-true one 1n, C tests whether t satisfies φ. If it does, then C(t) = 1n, and
if it does not then C(t) = t. Now, if we could solve Empty, that is, if we could find a solution
s ∈ [2n] not in the range of C, then we would have solved the Sat problem for φ: If s 6= 1n then
φ is satisfiable and s satisfies it; otherwise, φ is unsatisfiable. �

This result suggests that PEPP is genuinely a subclass of TFΣ2, the generalization of TFNP
to the first level of the polynomial hierarchy. Once we are dealing with TFΣ2, it is tempting
to define classes such as PEPP as the set of all problems that can be reduced through FPNP

reductions — not just polynomial-time reductions — to a specific problem, such as Empty in the
case of PEPP. This option becomes relevant when dealing with α-PEPP in the next subsection.

As we sketched in the introduction, Empty and PEPP can be alternatively thought as a
computationally constructive form of the union bound. A most prominent and early use of the
union bound is in Shannon’s work on codes, and this is captured by the following problem,
Remote Point: given a code, which generically means a circuit C mapping [M] to [N] with
N > M , find a bitstring x ∈ [N] whose Hamming distance from any codeword y, that is, any y
such that y = C(z) for some z ∈ [M] is at least d, where d is the largest integer such that the
Hamming ball of radius d− 1 has fewer than N/M elements.

Proposition 2. Remote Point is in PEPP.

Proof. Its proof of totality is an application of the union bound. �

In fact, Remote Point is strictly speaking PEPP-complete, because any instance of Empty
is also an instance of Remote Point with d = 1.

Next we introduce two problems in PEPP capturing two other classical applications of the
union bound. In δ-Rigid Matrix Completion, where 0 < δ < 1

3 , we are given the first dlog ne
rows of an n × n matrix with elements in GF2. We seek to complete this to a full matrix in

TOTAL FUNCTIONS IN THE POLYNOMIAL HIERARCHY 5

GFn×n
2 that is δ-rigid: it cannot be turned into a matrix of rank ≤ δn by changing nδ or fewer

entries in each row.
Why do we have to phrase the quest for the rigid matrix as a completion problem? The reason

is that the alternative (“Given n, find an n× n rigid matrix”) is a sparse problem, that is, it has
a polynomially (in n) many instances of length ≤ n, which places it in complexity limbo, see
e.g. [9]; alternatively, if n is given in binary, then the problem is even more ill-posed since an
exponentially long output is required2.

To see that δ-Rigid Matrix Completion reduces to Empty, consider the circuit C : [M] 7→
[N] where N = 2n(n−logn) is the total number of possible completions of the matrix, and [M] is
the total number of matrices of the form (L + S), where L is a δn-rank n × n extension (there
are 22δn2−n logn such matrices), and S is a matrix that has at most nδ ones per row (there are at
most

(
n
nδ

)
≤ 2n

2δ such matrices. Thus, there are at most 22δn1+2δ−n logn < 2n
2−n logn sums, and

thus M < N .
Ramsey-Erdős completion is the problem of finding an n-node graph with no independent

set of size 2dlog ne and no clique of this size, given the connectivity of dlog ne nodes in the graph.
There are at least 2n

2−2ndlogne > M such completions, while the number of objects of the form
(A,G), where A is either a clique or an independent set of size 2dlog ne and G is the remaining
connectivity of the graph is N = 2(n2)−(2dlogne2). It follows from the standard calculation that
M < N . We have established this result:

Proposition 3. δ-Rigid Matrix Completion and Ramsey-Erdős completion are in PEPP.

Of these problems Ramsey-Erdős completion seems the easiest computationally, as it
belongs in a variant of BPP in which nO(logn) computations are allowed.

2.1. The Problem Complexity. The field of Complexity Theory is about identifying a Boolean
function with v variables requiring a number of gates that grows faster than polynomially in
v. It is well known since Shannon’s union bound proof [11] that almost all Boolean functions
with v variables have complexity at least 2

cv
log v for some c > 0; however, no explicit function of

complexity that is not O(v) is known.
We can now define Complexity: given a bitstring x of length n, find a Boolean function with

v = blog nc+1 inputs which cannot be computed by an x-oracle circuit with c · n
log2 n

gates, where
c > 0 is a fixed constant. Here, by “x-oracle circuit” we mean a Boolean circuit which, besides
the traditional And, Or, Not gates also has an Oracle gate, with fan-in blog nc, which when
its inputs are the bits b1, . . . , bblognc, the value of the gate is the b+ 1-th bit of x, where b < n is
the integer spelled by the bits.

We shall assume that, for each k, ` > 0, we have a standard representation Rk,` of such oracle
circuits, where k is the number of inputs to the circuit and ` is the fan-in of the oracle gates.
Rk,` is a partial function (that is, possibly undefined) from bitstrings to circuits, such that:

• Every x-oracle circuit K has at least one bitstring z such that Rk,`(z) = K.
• Given z, K = Rk,`(z) can be decoded in polynomial time.
• If K has g gates, the length of all z’s such that Rk,`(z) = K is at most c · g log2 g, where
c is a constant.

2A related question is, how large should be the given part of the matrix in order to avoid sparsity? Giving the
first row is not enough, since, there are, up to isomorphism, n + 1 such rows, and a similar argument precludes
finitely many rows. With logn rows in the input, the problem is arguably no longer sparse.

6 TOTAL FUNCTIONS IN THE POLYNOMIAL HIERARCHY

It is easy to see that these desiderata are satisfied by several standard and natural representations
(for example, encoding every bit by two bits to create delimiters, encoding gate names by binary
integers ≤ g and similarly with gate types, and finally encoding the adjacency lists of the circuit
graph). The extra log g in the last item is due to the oracle gate, whose adjacency list requires
log2 g bits.

Coming back to Complexity, it is, evidently, a computational problem that captures certain
aspects of Complexity Theory. We shall show that it is a total problem, and in fact one in the
class PEPP.

The argument is essentially Shannon’s: given input x of length n, we construct a circuit Cx
implementing the following polynomial-time (in n) algorithm: on any input y also of length n,
Cx interprets y as a binary representation of an x-oracle circuit Ky = Rk,`(y) with k = blog nc+1

input gates and fan-in ` = blog nc, and goes on to construct it (if Rk,`(y) is undefined, Cx outputs
a default string). Next, Cx simulates Ky consecutively on each possible input in [2blognc+1]. The
output of Cx is then the concatenation of these 2blognc+1 bits output by the circuit Ky, in the
order in which they were produced.

In other words, the circuit Cx maps M = [2n] (all inputs y of length n) to N = 22blognc+1

possible outputs, and it is clear that N > M . Therefore, if we were able to solve Empty and
obtain a possible output not realized by any possible input, we would be able to find the table of
a Boolean function with blog nc+ 1 inputs which cannot be represented by n bits, and therefore
requires Ω(n

log2 n
) gates. This completes the proof of the following result:

Proposition 4. Complexity is in PEPP.

2.2. Wasteful counting and α-PEPP. When the union bound is used to prove the existence of
objects with a certain property by showing that a random object satisfies the property with
positive probability, this success probability is typically not exponentially small. The reason is
that this genre of existence proof seems inherently wasteful: the union bound adds probabilities
of events that typically overlap, while counting objects such as non-rigid matrices and circuits
typically counts the same object many times (for example, all permutations of gate names),
and there seems to be no way to be accurate enough. To capture the complexity of the search
problems implied by union bound arguments with a significant “margin of error”, we define a
family of complexity classes α-PEPP, parameterized by a function α : N→ R+.

The complexity class α-PEPP is defined to consist of all total functions that are polynomial-
time reducible to the following α-Empty problem. An instance of α-Empty is given by a
bitstring of length n interpreted as a description of a circuit C mapping [M] to [N], where
N/M > 1 + α. The search problem is to find y ∈ [N] such that y 6= C(x) for all x ∈ [M].

Note that 0-PEPP = PEPP. The complexity class 1-PEPP, which we will denote by APEPP
in the sequel, contains most of the search problems introduced earlier in this section.

Proposition 5. The problems δ-Rigid Matrix Completion, Ramsey-Erdős completion,
and Complexity all belong to APEPP.

Proof. Above, we presented reductions from δ-Rigid Matrix Completion, Ramsey-Erdős
Completion, and Complexity to Empty with the following parameters.

• For a δ-Rigid Matrix Completion instance of size n×n, the reduction yields a circuit
of size poly(n) mapping [M] to [N], where M = 22δn1+2δ−n logn and N = 2n

2−n logn,

N/M = 2n
2 − 2n1+2δ.

TOTAL FUNCTIONS IN THE POLYNOMIAL HIERARCHY 7

The ratio N/M exceeds 2 when δ < 1
3 , n ≥ 64.

• For a Ramsey-Erdős Completion instance with n vertices, the reduction yields a
circuit of size poly(n) mapping [M] to [N], where M = 2(n2)−(2dlogne2), N = 2n

2−2ndlogne,

N/M = 2(n+1
2)−2ndlogne−(2dlogne2).

The ratio N/M exceeds 2 when n ≥ 23.
• For a Complexity instance of length n, the reduction yields a circuit of size poly(n)

mapping [M] to [N], where M = 2n, N = 22blognc+1 ,

N/M = 22blognc+1−n.

The ratio N/M is greater than 2 for all n ∈ N.3

Thus, the reductions presented earlier verify that all three problems belong to APEPP. �

It seems unlikely that APEPP contains a PEPP-complete problem, due to the following upper
bound on the complexity of APEPP.

Theorem 6. For any function α(n) > 1
poly(n) , we have α-PEPP ⊆ FPNP|poly.

Proof. We need only show that α-Empty ∈ FPNP|poly. Consider a circuit C mapping [M] to
[N], where N/M > 1 + α. Let R(C) denote the range of C, i.e. the set of all y ∈ [N] such that
there exists x ∈ [M] with C(x) = y. The probability that a random y ∈ [N] belongs to R(C)
is at most M/N < 1/(1 + α). Hence, if k = dn/αe and y1, y2, . . . , yk are independent random
elements of [N], the probability that {y1, . . . , yk} ⊆ R(C) is less than (1 + α)−k < e−n. By the
union bound, a random k-tuple (y1, y2, . . . , yk) ∈ [N]k has positive probability of containing a
valid solution to every length-n instance of α-Empty. In fact, this probability is greater than
1− 2n · e−n.

Given an NP oracle and an advice string (y1, . . . , yk) such that every α-Empty instance has a
solution in the set {y1, . . . , yk}, it becomes easy to solve α-Empty in O(kn) time: for 1 ≤ i ≤ k
one queries the NP oracle to find out if there exists an x ∈ [M] such that C(x) = yi, and one
outputs the first yi for which the oracle confirms that no such x exists. �

We conclude this section by showing a collapse of the complexity classes α-PEPP for 1
poly(n) ≤

α(n) ≤ 2poly(n) under FPNP reductions.

Theorem 7. If 1
poly(n) ≤ α(n) ≤ 2poly(n), then α-PEPP and APEPP are equivalent under FPNP

reductions.

Proof. For any positive integers N, k, let T : [Nk] → [N]k denote the function that takes the
binary representation of a number x ∈ [Nk], writes x in base N as a sequence of k digits
(each an element of [N]), and outputs the binary string obtained by concatenating the binary
representations of each of these k base-N digits.

Suppose β(n), γ(n) : N→ R+ are any two functions such that

k(n)
∆
= dlog1+β(n)(1 + γ(n))e ≤ poly(n).

3Actually, the ratio is greater than or equal to 2 for all n, but it is equals 2 when n+ 1 is a power of 2. Since
the definition of α-Empty requires the strict inequality N/M > 1+α, we need to correct for this technicality with
a small modification in the definition of Complexity, tweaking the problem definition to use a slightly smaller
constant c so that all circuits of the appropriate size or less can be encoded in n− 1 bits, instead of n.

8 TOTAL FUNCTIONS IN THE POLYNOMIAL HIERARCHY

We can reduce β-Empty to γ-Empty as follows. Given a length-n bitstring describing a circuit
that computes a function C : [M]→ [N], let k = k(n) and construct the description of a circuit
that computes the function C ′ : [Mk]→ [Nk] defined via the following composition:

[Mk]
T−→ [M]k

Ck−→ [N]k
T−1

−→ [Nk].

Here Ck denotes the function that applies C to each element of a k-tuple.
Assuming N/M > 1 + β(n), we have Nk/Mk > (1 + β(n))k ≥ 1 + γ(n), by the definition of

k. Hence, by solving an instance of γ-Empty and applying the function T , we obtain a k-tuple
(y1, . . . , yk) that is not in the range of the function Ck : [M]k → [N]k. Now, given an NP oracle,
we can proceed as in the proof of Theorem 6 to find y ∈ [N] such that for all x ∈ [M], y 6= C(x).
Namely, for 1 ≤ i ≤ k one queries the NP oracle to find out if there exists some xi ∈ [M] such
that C(xi) = yi. If such an xi existed for each i, then Ck(x1, . . . , xk) would equal (y1, . . . , yk)
contradicting our assumption that (y1, . . . , yk) is not in the range of Ck. Therefore, for at least
one value of i the oracle will answer that no xi ∈ [M] satisfies C(xi) = yi, and we can output
this yi as a solution of the given β-Empty instance.

We have shown a FPNP reduction from β-PEPP to γ-PEPP whenever log1+β(n)(1 + γ(n)) =

poly(n). If 1
poly(n) ≤ α(n) ≤ 2poly(n), then a reduction from α-PEPP to APEPP is obtained by

taking β = α and γ ≡ 1, and a reduction from APEPP to α-PEPP is obtained by taking β ≡ 1
and γ = α. �

3. The Shattering Problem

We recall the definition of shattering, an important notion in finite set theory and classical
learning theory:

Definition 8. A family of sets over some finite universe, F = {s1, s2, . . .}, shatters a set s if for
every subset t ⊆ s, there exists si ∈ F such that t = s ∩ si.

The famous Sauer-Shelah lemma guarantees shattering properties if the family is large enough.
Here it is stated in its “strong” form:

Theorem 9. (Sauer-Shelah Lemma, Strong.) A family F of finite sets shatters at least |F | sets.

The more well-known statement of the Sauer-Shelah lemma is the weak form, which follows
from the above:

Corollary 10. (Sauer-Shelah Lemma, Weak.) If a family of sets F over a universe of n elements
satisfies |F | >

∑d−1
i=0

(
n
i

)
, then F must shatter a set of cardinality at least d.

Proof. (Of the weak form from the strong form:) There are at most
∑d−1

i=0

(
n
i

)
sets in an n-element

universe that have size less than d. �

It is natural to consider the search problem resulting from this lemma: given a family of sets
over n elements, which can be represented as n bit strings, find a large shattered set. This search
problem is interesting for two reasons: first, its standard proof uses a counting argument that
is, in essence, non-constructive, and second, it involves multiple alternations: given a family find
the set (exists) such that for all subsets there exists a corresponding set in the family. In fact,
this has one more alternation than all the problems we have considered previously, which belong
in TFΣ2. Instead, this belongs in TFΣ3.

Definition 11. Let BinomSum(n, d) denote
∑d−1

i=0

(
n
i

)
.

TOTAL FUNCTIONS IN THE POLYNOMIAL HIERARCHY 9

Definition 12. In the Shattering problem, we are given as inputs parameters n, d, and k >
log(BinomSum(n, d)), and a circuit computing a function C : {0, 1}k → {0, 1}n, representing
2k indexed sets the collection of which we will denote F . The search problem is to output either
a pair of indices x1 6= x2 such that C(x1) = C(x2) (a collision, in which case the premise of the
Sauer-Shelah lemma is not satisfied), or a subset Y ⊆ [n] of size |Y | = d that is shattered by the
F , the range of C.

The following is now clear:

Proposition 13. Shattering is in TFΣ3.

Proof. Consider the Turing Machine M((n, d, k, C), s, (u, i)), which:
(1) checks that k > log(BinomSum(n, d));
(2) checks whether s is a string representing a tuple x1, x2 of k-bit strings, in which case it

accepts if C(x1) = C(x2) and rejects otherwise;
(3) checks whether s is an n-bit string, in which case it accepts if s∩u = s∩C(i) and rejects

otherwise.
Clearly, s solves Shattering on the input (n, d, k, C) when the conditions of the Sauer-Shelah
lemma are not satisfied, or, if ∀u∃i s.t. M((n, d, k, C), s, (u, i)) = 1. That Shattering is total
is a consequence of the Sauer-Shelah lemma. �

More interestingly, we can place Shattering in a generalization of PPP that lies within
TFΣ3:

Theorem 14. Shattering is in PPPΣ2

The main technical result is the following lemma, from which the theorem follows naturally.

Lemma 15. Using a Σ2 oracle, one can compute a polynomial time function M mapping distinct
sets in F to distinct sets shattered by F .

Proof. (Lemma 15, informal). M is defined recursively on the size of F . For collections of size
|F | = 1, the single element of F is mapped to the empty set which is certainly shattered by F .

Assume now that M(F ′) is defined for all collections F ′ of size |F ′| < |F | (i.e. M defined for
collection of size 1, . . . , |F |−1). We show how to defineM on F , first with an informal argument.

Suppose we have identified an element x that is in at least one but not all sets of F . Then we
can write F = F0 ∪ F1, dividing F into collections F0 of sets containing x, and F1 of sets that
do not contain x.

Since |F0|, |F1| < |F |, by induction there exists M0 : F0 → {0, 1}n and M1 : F1 → {0, 1}n
mapping each subcollection to sets shattered by that subcollection. Define M : F → {0, 1}n as
follows:

(1) For s ∈ F1, reuse the shattered set, i.e. let F (s) = F1(s).
(2) For s ∈ F0, if ∀s′ ∈ F1,M1(s′) 6= M0(s), we reuse the label for s, i.e. M(s) = M0(s).

If ∃s′ ∈ F1 such that M1(s′) = M0(s), then it must be that F shatters both M0(s) and
M0(s) ∪ x. Hence we can assign M(s) = M0(s) ∪ x

In the informal construction above, we assumed that x is in some but not all sets of F . To
define M consistently, we go through all elements in the universe {0, 1, . . . , n− 1} in order, and
we divide F into those sets that contain the element and those that don’t — since these sets are
n-bit strings, we divide them into those strings with 1 in the first coordinate, and those with 0
in first coordinate). It is possible that one side is empty and the other is all of F ; in this case,

10 TOTAL FUNCTIONS IN THE POLYNOMIAL HIERARCHY

we continue splitting by containment of subsequent elements. When one side is empty, then all
labels assigned to sets in the non-empty side are reused. This gives a way to build a complete
binary tree of subfamilies starting with F at level 0, and where the i + 1-st level comes from
splitting the previous level by containment of element i. M then is built recursively from the
leaves up. �

Proof. (Lemma 15) We describe how to compute M(s) for a given s ∈ F . Define Tn to be the
labeled binary tree with 2n leaves representing n-bit strings; level i contains nodes labelled by
the 2i binary strings of length i, and the children of a node labelled with s ∈ {0, 1}i is s · 0 and
s · 1.

The idea is to go up Tn, beginning from the leaf representing set s, computing y(n), , y(n−1), . . . , y1.
This path is unique and has length n; denote this path with P , and its nodes as P (n), . . . , P (0),
from leaf to root (we will interchangeably use P (i) to refer to both a node in Tn, and its associated
label, a string of length i).

(1) When we begin at node P (n) we initialize y with the empty set label yn = 0n

(2) Assume we have traversed Tn up to level i, i.e. P (i).
(3) If the node P (i) is the right child of P (i− 1), move up to P (i− 1) with y(i−1) := yi.
(4) For P (i) that is the left child of P (i − 1), denote the right child of P (i − 1) (sibling of

P (i)) and its label as P ′(i), and denote by FP ′(i) the subcollection of sets in F that have
the label P ′(i) as its prefix (i.e., those sets that agree on the inclusion/exclusion decisions
of the first i elements represented by node P ′(i)). We check whether FP ′(i) also shatters
yi, in which case we reuse yi but flipping bit i to 1, i.e. y(i−1) := yi; y

(i−1)
i := 1. Whether

FP ′(i) (or any particular subfamily corresponding to a node in Tn) shatters y can be
established in O(i) time: the algorithm checks whether ∀z ∈ {0, 1}n∃w ∈ {0, 1}k(C(w) ∈
FP ′(i))∧ (z∩y = C(w)∩y). This can be determined with one call to the Σ2 oracle. Note
that C(w) ∈ FP ′(i) can be represented as an ∧ of i equalities.

The following invariant is maintained throughout the algorithm: after completing level i,
FP (i) shatters yi. This is clearly true at level n. With level i completed, if the algorithm assigns
yi−1 = yi, the invariant is maintained as y does not change. The only way yi−1 changes is if
yi−1

1 = 1; this implies both FP (i) and FP ′(i) shattered yi.
If |F | = 1 (the range of C is one set), assigning the empty set to the lone element is correct.

For s 6= s′ in the range of C, let P (i) be their lowest common ancestor in level i < n. Denote its
children as P (i+ 1) and P ′(i+ 1); without loss of generality, P (i) is on the path for s and P ′(i)
is on the path for s′. Consider the algorithm at level i+ 1 when run on both inputs to compute
the shattered sets y and y′: if y(i+1) 6= y′(i+1), they will remain different for the remainder of the
algorithm since at level j we can only change the j-th bit. If y(i+1) = y′(i+1), then both P (i+ 1)

and P ′(i+ 1) shatter y(i+1) so the algorithm will set yi 6= y′i. �

Proof. (Lemma 15 =⇒ Theorem) Given an instance C of Shattering, we shall describe an
instance H of PigeonholeΣ2 — that is, a hashing circuit with k input gates and 2k−1 possible
outputs, whose computation makes calls to a Σ2 oracle — which solves this instance. First, the
circuit H determines through an oracle call if C has a collision, and, if it does — two strings
x, y ∈ [2k] such that x > y and C(x) = C(y) — it computes a perturbation of the identity
permutation on [2k] which exposes the collision: H maps x to y, if x 6= 2k − 1 it maps 2k − 1 to
x, and H is the identity on all other strings.

TOTAL FUNCTIONS IN THE POLYNOMIAL HIERARCHY 11

If C has no collision, then on input x ∈ [2k] H first computes the distinct set C(x) and then
implements the lemma to compute the corresponding set M(C(x)) shattered by the C family
of sets. If the set M(C(x)) if smaller than d, the computation ends here and the set is output,
in a representation which encodes subsets of [n] in order of increasing size; since by assumption
2k − 1 ≥ BinomSum(n, d), any set smaller than d can be represented. If the set is of size d or
larger, then the first d− 1 elements of the set are output. This completes the reduction. �

4. Discussion and Open Problems

We have introduced a polynomial hierarchy of total functions, whose first couple of levels are
populated with interesting computational problems and complexity subclasses with intriguing
structural properties. Naturally, a host of questions remain:

• Does this hierarchy behave in similar ways as the polynomial hierarchy — for example,
does it collapse upwards? As we have mentioned, the answer to this question is already
known, modulo relativization, and it is negative: there are oracles with respect to which
TFNP = FP and yet TFΣ2 6= FPNP [3]. We have not explored how this result extends
to higher levels.
• A very striking apparent difference between TFNP and TFΣ2 is the dearth of diversity
in the latter. There are half a dozen apparently distinct complexity subclasses of TFNP,
corresponding to natural genres of existence proofs. In contrast, in TFΣ2 we have iden-
tified PPEP, but — despite some intense daydreaming — no other credible class. For
example, recall that PLS is the class of all problems in TFNP reducible to Sink: “Given
the circuit representation of a DAG, find a sink” (details of the representation omitted).
It is natural to ask — and we did: “How about the problem Source? It is in TFΣ2, of
course, but does it define its own class?” It turns out that Source is in PEPP...

For TFNP, the invention of new natural subclasses is impeded by the result in [6],
establishing, through Herbrand’s Theorem, that any such subclass capturing a style of
existence proofs in first-order logic must correspond to a finitary property of first-order
structures: one that is false for infinite structures. How about the logic formulae corre-
sponding to TFΣ2? These would be the so-called Schönfinkel-Bernays formulae (first-
order formulae preceded by a sequence of quantifiers of the form ∀∗∃∗), a much studied
class in Logic but also in Complexity (it had been known for eight decades that this is
a decidable class). Is there a result restricting the usefulness of such formulae in charac-
terizing total search problems, analogous to — but perhaps stricter than — Herbrand’s
theorem for existentially quantified (Herbrand) formulas?
• Is Complexity complete for APEPP under PNP reductions? This would be a tremen-
dously interesting result. Naturally, any finer completeness result for Complexity would
be even more exciting.
• Is Remote Point with large d complete for APEPP under PNP reductions? That would
be very interesting as well — especially if it holds true even in the special case in which
the code is linear.

Appendix A. TFΣi and the Total Function Polynomial Hierarchy

Definition 16. (TFNP) A relation R(x, y) is in TFNP if it is polynomial and total (for every
x there exists y such that (x, y) is in the relation) and there exists a polynomial time Turing
machine M such that M(x, y) accepts iff R(x, y) holds.

12 TOTAL FUNCTIONS IN THE POLYNOMIAL HIERARCHY

Definition 17. (TFΣ2) A relation R(x, y) is in TFΣ2 if it polynomial, total, and there exists
a polynomial time Turing machine M and polynomial p(n) such that R(x, y) ⇐⇒ ∀z ∈
{0, 1}p(|x|)M(x, y, z) accepts.

Definition 18. (TFΣi) A relation R(x, y) is in TFΣi if it polynomial, total, and there exists a
polynomial time Turing machine M and polynomials p(n)1, . . . , p(n)i−1 such that R(x, y) ⇐⇒
∀z1 ∈ {0, 1}p(|x|)1∃z2 ∈ {0, 1}p(|x|)2∀z3 ∈ {0, 1}p(|x|)3 · · ·M(x, y, z1, z2, z3, · · · , zi−1) accepts.

At this point one may ask, what about a TFΠi? Could we define total function complexity
classes where the first quantifier is an exists? It turns out that such a definition results in a
complexity class that is polynomial-time reducible to TFΣi−1 and vice versa, and hence, does
not capture anything new. In this way, the total function hierarchy is different from its decision-
problem analogue, where, by the way of oracles, Σi−1 6= Πi 6= Σi.

Proposition 19. Let R(x, y) be a polynomial, total relation such that there exists a polynomial
time Turing machine M and polynomials p1(n), . . . , pi−1(n) such that R(x, y) ⇐⇒ ∃z1 ∈
{0, 1}p1(|x|)∀z2 ∈ {0, 1}p2(|x|)∃z3 ∈ {0, 1}p3(|x|) · · ·M(x, y, z1, z2, z3, · · · , zi−1) accepts. Every search
problem in TFΣi−1 can expressed with such a relation, and the search problem for any such re-
lation is polynomial-time reducible to TFΣi−1.

Proof. The fact that any search problem in TFΣi−1 can expressed with such a relation (one
that starts with ∃) is trivial: the relation is the same, and one can reuse the TFΣi−1 Tur-
ing Machine M , simply by ignoring z1. On the other hand, given a R(x, y) as above, by
totality for every x there is a y such that there exists z satisfying the rest of the condi-
tion; hence, the relation R(x, (y, z)) defined by R(x, (y, z)) ⇐⇒ ∀z2 ∈ {0, 1}p(|x|)2∃z3 ∈
{0, 1}p(|x|)3 · · ·M(x, y, z1, z2, z3, · · ·) is total, and is clearly in TFΣi−1. Hence one can solve
R(x, y) with one call to a TFΣi−1oracle, obtaining a pair (y, z) and discarding z. �

In other words, the total function polynomial hierarchy does not have “two symmetric sides”
like the classical one, but is a single tower of classes.

Finally, analogously to the decision problem polynomial hierarchy, the total function poly-
nomial hierarchy can be understood through oracles; TFΣi ⊆ TFNPΣi−1 , and TFNPΣi−1 is
polynomial time reducible to TFΣi.

Theorem 20. TFΣi ⊆ TFNPΣi−1 ≤PT TFΣi, where the latter class indicates TFNPΣi−1problems
where the verifying Turing Machine has access to a Σi−1 oracle.

Proof. We present the proof for TFΣ2; the proof for other levels is analogous. The trivial
direction is that TFΣ2 ⊆ TFNPΣ1 . For a relation R(x, y) with verifying machine M(x, y, z)
we define a TFNPΣ1 machine M ′(x, y) which issues a single Σ1 query for whether ∀zM(x, y, z)
accepts, and outputs the answer. For the other direction, let R(x, y) be a TFNPΣ1 relation with
verifying Turing MachineMΣ1(x, y) which makes at most p(|x|) oracle queries in its computation,
each of length at most p(|x|). Define R′(x, (y,a, z)) where a ∈ {0, 1}p(|x|), z ∈ {0, 1}2p(|x|) by
whether w ∈ {0, 1}2p(|x|)M ′(x, (y,a, z,w)) accepts, where M ′ only accepts if:

(1) M(x, y) is an accepting computation given oracle answers a;
(2) if the i-th oracle answer in a is a yes answer, then the i-th string in z is a satisfying

assignment to the i-th query in the computation M(x, y) (possibly using only a prefix of
z);

(3) if the i-th oracle answer in a is a no answer, then the i-th string in w does not satisfy
the i-th query in the computation M(x, y).

TOTAL FUNCTIONS IN THE POLYNOMIAL HIERARCHY 13

Indeed, R(x, y) ⇐⇒ ∃a, zR′(x, (y,a, z)), and the latter is a TFΣ2 relation; to reduce R to R′,
compute R′ and discard a, z.

�

References

[1] N. Alon, R. Panigrahy, and S. Yekhanin, Deterministic approximation algorithms for the nearest
codeword problem, in Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, I. Dinur, K. Jansen, J. Naor, and J. Rolim, eds., Berlin, Heidelberg, 2009, Springer Berlin
Heidelberg, pp. 339–351.

[2] F. Ban, K. Jain, C. H. Papadimitriou, C. Psomas, and A. Rubinstein, Reductions in PPP, Inf.
Process. Lett., 145 (2019), pp. 48–52.

[3] H. Buhrman, L. Fortnow, M. Koucký, J. D. Rogers, and N. K. Vereshchagin, Does the polynomial
hierarchy collapse if onto functions are invertible?, Theory Comput. Syst., 46 (2010), pp. 143–156.

[4] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou, The complexity of computing a nash
equilibrium, SIAM J. Comput., 39 (2009), pp. 195–259.

[5] A. Filos-Ratsikas and P. W. Goldberg, Consensus halving is ppa-complete, in Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June
25-29, 2018, I. Diakonikolas, D. Kempe, and M. Henzinger, eds., ACM, 2018, pp. 51–64.

[6] P. W. Goldberg and C. H. Papadimitriou, Towards a unified complexity theory of total functions, in
9th Innovations in Theoretical Computer Science Conference, ITCS 2018, January 11-14, 2018, Cambridge,
MA, USA, A. R. Karlin, ed., vol. 94 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018,
pp. 37:1–37:20.

[7] P. Hubácek, M. Naor, and E. Yogev, The journey from NP to TFNP hardness, in 8th Innovations
in Theoretical Computer Science Conference, ITCS 2017, January 9-11, 2017, Berkeley, CA, USA, C. H.
Papadimitriou, ed., vol. 67 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017, pp. 60:1–
60:21.

[8] I. Komargodski, M. Naor, and E. Yogev, White-box vs. black-box complexity of search problems: Ramsey
and graph property testing, in 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2017, Berkeley, CA, USA, October 15-17, 2017, C. Umans, ed., IEEE Computer Society, 2017, pp. 622–632.

[9] S. R. Mahaney, Sparse complete sets for NP: solution of a conjecture of berman and hartmanis, in 21st
Annual Symposium on Foundations of Computer Science, Syracuse, New York, USA, 13-15 October 1980,
IEEE Computer Society, 1980, pp. 54–60.

[10] N. Sauer, On the density of families of sets, J. Combinatorial Theory Ser. A, 13 (1972), pp. 145–147.
[11] C. E. Shannon, The synthesis of two-terminal switching circuits, The Bell System Technical Journal, 28

(1949), pp. 59–98.
[12] S. Shelah, A combinatorial problem; stability and order for models and theories in infinitary languages,

Pacific J. Math., 41 (1972), pp. 247–261.
[13] K. Sotiraki, M. Zampetakis, and G. Zirdelis, Ppp-completeness with connections to cryptography, in

59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October
7-9, 2018, M. Thorup, ed., IEEE Computer Society, 2018, pp. 148–158.

[14] L. G. Valiant, Graph-theoretic arguments in low-level complexity, in Mathematical Foundations of Com-
puter Science 1977, 6th Symposium, Tatranska Lomnica, Czechoslovakia, September 5-9, 1977, Proceedings,
J. Gruska, ed., vol. 53 of Lecture Notes in Computer Science, Springer, 1977, pp. 162–176.

[15] V. N. Vapnik and A. J. Červonenkis, The uniform convergence of frequencies of the appearance of events
to their probabilities, Teor. Verojatnost. i Primenen., 16 (1971), pp. 264–279.

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

