
Log-rank and lifting for AND-functions

Shachar Lovett ∗ Alexander Knop † Sam McGuire ‡ Weiqiang Yuan §

October 18, 2020

Abstract

Let f : {0, 1}n → {0, 1} be a boolean function, and let f∧(x, y) = f(x ∧ y) denote the AND-function
of f , where x ∧ y denotes bit-wise AND. We study the deterministic communication complexity of f∧
and show that, up to a logn factor, it is bounded by a polynomial in the logarithm of the real rank of
the communication matrix of f∧. This comes within a logn factor of establishing the log-rank conjecture
for AND-functions with no assumptions on f . Our result stands in contrast with previous results on
special cases of the log-rank conjecture, which needed significant restrictions on f such as monotonicity
or low F2-degree. Our techniques can also be used to prove (within a logn factor) a lifting theorem for
AND-functions, stating that the deterministic communication complexity of f∧ is polynomially related
to the AND-decision tree complexity of f .

The results rely on a new structural result regarding boolean functions f : {0, 1}n → {0, 1} with a
sparse polynomial representation, which may be of independent interest. We show that if the polynomial
computing f has few monomials then the set system of the monomials has a small hitting set, of size
poly-logarithmic in its sparsity. We also establish extensions of this result to multi-linear polynomials
f : {0, 1}n → R with a larger range.

1 Introduction

Communication complexity has seen rapid development in the last couple of decades. However, most of the
celebrated results in the field are about the communication complexity of important concrete functions, such
as set disjointness [25] and gap Hamming distance [2]. Unfortunately, the understanding of communication
complexity of arbitrary functions is still lacking.

Probably the most famous problem of this type is the log-rank conjecture [17]. It speculates that
given any total boolean communication problem, its deterministic communication complexity is polyno-
mially related to the logarithm of the real rank of its associated communication matrix. Currently, there
is an exponential gap between the lower and upper bounds relating to the log-rank conjecture. The best
known upper bound [18] states that the communication complexity of a boolean function F is at most
O(
√

rank(F) log rank(F)), where rank(F) denotes the real rank of the communication matrix of F . On the
other hand, the best known lower bound [11] states that there exist a boolean function F with communication
complexity Ω(log2(rank(F))).

Given this exponential gap and lack of progress for general communication problems, many works [3,5,6,
8–11,13,14,16,19–21,23,26,29–32] focused on the communication complexity of functions with some restricted
structure. In particular, the study of composed functions was especially successful, and produced the so-
called lifting method, which connects query complexity measures of boolean functions with communication
complexity measures of their corresponding communication problems.

∗Computer Science and Engineering, University of California, San Diego. Research supported by NSF award 2006443. Email:
slovett@ucsd.edu
†Mathematics, University of California, San Diego. Email: aaknop@gmail.com
‡Computer Science and Engineering, University of California, San Diego. Research supported by NSF award 1909634 and a

Simons Investigator award. Email: shmcguir@eng.uscd.edu
§Institute for Interdisciplinary Information Sciences, Tsinghua University. Email: yuanwq17@mails.tsinghua.edu.cn

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 155 (2020)

Concretely, given a boolean function f : {0, 1}n → {0, 1} and a gadget g : {0, 1}` × {0, 1}m → {0, 1}, the
corresponding lifted function is the following communication problem: Alice gets as input x ∈ ({0, 1}`)n,
Bob gets as input y ∈ ({0, 1}m)n, and their goal is to compute the composed function f ◦ gn, defined as
(f ◦ gn)(x, y) = f(g(x1, y1), . . . , g(xn, yn)). Lifting theorems allow to connect query complexity measures
of the underlying boolean function f with communication complexity measures of the composed function.
Figure 1 lists some notable examples.

Gadget Query Model Communication Model Total Functions Reference

Indm
Pdt Pcc No [24]

BPPdt BPPcc No [10]

IPlogm
Pdt Pcc No [4]

BPPdt BPPcc No [3]

EQlogm P∧-dt Pcc No [21]

⊕ P⊕-dt Pcc Yes [13]

g deg rank Yes [27]

Figure 1: Query-to-communication lifting theorems. The parameter m is polynomial in n; g in the last line is
any function that has as sub-functions both an AND and an OR. Pcc denotes determenistic communication
complexity, Pdt denotes decision tree complexity, BPPdt denotes the probabilistic decision tree complexity
with bounded error, BPPcc denotes the probabilistic communication complexity with bounded error, P∧-dt

denotes AND-decision tree complexity, deg denotes the real degree, and rank denotes the real rank.

Of particular interest to us are lifting theorems with very simple gadgets. The reason for that is twofold.
First, using complex gadgets (such as inner product or indexing) yields sub-optimal bounds in applications.
A second and perhaps more important reason is that the study of composed functions with complex gadgets
does not bring us any closer towards the understanding of general communication problems. This is because
the corresponding lifting theorems connect the communication complexity of the lifted function to well-
studied query measures of the underlying boolean function (such as decision tree complexity, or degree as a
real polynomial), and hence does not shed new light on general communication problems.

Thus, in this paper we consider gadgets which are as simple as they could be — one-bit gadgets. In fact,
there are only two non-equivalent one-bit gadgets: one-bit XOR, which yields XOR-functions; and one-bit
AND, which yields AND-functions. As we shortly discuss, they naturally correspond to query models which
extend the standard ones: parity-decision trees and AND-decision trees.

XOR-functions. XOR-functions have been studied in several works [13, 14, 16, 19, 20, 26, 29–32]. Given a
boolean function f : {0, 1}n → {0, 1}, its corresponding XOR-function is f⊕ = f ◦ ⊕n, defined as f⊕(x, y) =
f(x⊕ y). A natural query measure corresponding to the communication complexity of XOR-functions is the
Parity-Decision Tree (PDT) model. This model is an extension of the standard decision tree model, where
nodes can query an arbitrary parity of the bits. To see the connection, note that if f can be computed by a
PDT of depth d (denoted by P⊕-dt(f) = d), then f⊕ has a communication protocol of complexity 2d. This is
by simulating the computation in the PDT: whenever the PDT needs to compute the parity of x⊕y on some
set S of coordinates, each player computes the corresponding parity on their input, and then they exchange
the answers, which allows to compute the corresponding parity on x ⊕ y as well, and continue to traverse
the tree. Thus we have Pcc(f⊕) ≤ 2P⊕-dt(f).

In the other direction, [13] proved that P⊕-dt(f) is at most a polynomial in the communication complexity
of f⊕. That is, P⊕-dt(f) ≤ poly (Pcc(f⊕)). Thus, the two measures are equivalent, up to polynomial factors.

If one considers the log-rank conjecture for XOR-functions, then a simple observation [29] is that the rank
of the communication matrix of f⊕ is equal to Fourier sparsity of f . Thus, in order to prove the log-rank

2

conjecture for XOR-functions it is sufficient to show that P⊕-dt(f) is at most a polynomial in the log of the
Fourier sparsity of f . Unfortunately, the latter relation is currently unknown.

AND-functions. The goal of this paper is to develop an analogous theory of AND-functions. Let f :
{0, 1}n → {0, 1} be a boolean function. Its corresponding AND-function is f∧ = f ◦∧n, defined as f∧(x, y) =
f(x∧y). Similar to the case of XOR-functions, there is a corresponding natural query model, AND-Decision
Tree (ADT), where each node in the decision tree can query an arbitrary AND of the input bits. We denote
by P∧-dt(f) the minimal depth of an ADT computing f . Also here, efficient ADTs for f imply efficient
communication protocols for f∧, where Pcc(f∧) ≤ 2P∧-dt(f). Our main focus in this work is

(i) lifting theorems for AND-functions, and

(ii) the log-rank conjecture for AND-functions.

Concretely, we will show that assuming that f∧ has either (i) efficient deterministic communication protocol
or (ii) low rank, then f has an efficient ADT. As we will shortly see, understanding both questions is directly
related to understanding the monomial structure of polynomials computing boolean functions.

1.1 Main results

Let f : {0, 1}n → {0, 1} be a boolean function. It is computed by a unique multi-linear polynomial over the
reals. That is, f(x) =

∑
s fs

∏
i∈s xi, where s ⊆ [n] and fs ∈ R are real-valued coefficients. The sparsity

of f , denoted spar(f), is the number of nonzero coefficients in the decomposition. This is related to AND-
functions, as a simple observation (Claim 4.1) is that this also equals the rank of its communication matrix,
namely rank(f∧) = spar(f).

Before describing our results, we need one more definition. Let F be a set system (family of sets). A set H
is a hitting set for F if it intersects all the sets in F . Of particular interest to us are set systems that correspond
to the monomials of boolean functions. Given a boolean function f , define M(f) = {s : fs 6= 0, s 6= 0} to
be the set system of the non-constant monomials of f . We exclude the constant term as it is irrelevant for
the purpose of constructing hitting sets, and it simplifies some of the later arguments. Note that |M(f)| ∈
{spar(f), spar(f)− 1}.

Our main combinatorial result is that set systems corresponding to the monomials of boolean functions
have small hitting sets.

Theorem 1.1. Let f : {0, 1}n → {0, 1} be a boolean function with sparsity spar(f) = r. Then there exists a
hitting set H for M(f) of size |H| = O((log r)5).

This result can be seen as an analog of a similar result for union-closed families. A set system F is
union-closed if it is closed under taking unions; namely, if S1, S2 ∈ F then also S1 ∪ S2 ∈ F . A famous
conjecture of Frankl [7] is that in any union-closed family F there is an element which belongs to at least
half the sets in the set system. Assume |F| = r; the best known result in this direction is that F has a
hitting set of size log(r) [15], which implies that one of its elements belongs to a 1/ log(r) fraction of sets in
the set system. We view Theorem 1.1 as a qualitative extension of this result to more general set systems.

Our main application of Theorem 1.1 is a near-resolution of the log-rank conjecture for AND-functions.
Our bounds nearly match the conjectured bounds (poly-log in the rank), except for an extra log(n) factor
that we are currently unable to eliminate.

Theorem 1.2 (Log-rank Theorem for AND-functions). Let f : {0, 1}n → {0, 1} be a boolean function. Let
r = spar(f) = rank(f∧). Then f can be computed by an AND-decision tree of depth

P∧-dt(f) = O((log r)5 · log n).

In particular, the deterministic communication complexity of f∧ is bounded by

Pcc(f∧) = O((log r)5 · log n).

3

Note that if f : {0, 1}n → {0, 1} is a function of sparsity at least n0.1, say, then Theorem 1.2 proves the
log-rank conjecture for its corresponding AND-function. Thus, the only remaining obstacle is to extend the
result to very sparse functions.

Observe that Theorem 1.2 implies a lifting theorem for AND-functions. Assume that f∧ has deterministic
communication complexity C. The rank of the associated communication matrix is then at most 2C , which
by Theorem 1.2 gives an ADT for f of depth O(C5 log n). We can improve the exponent 5 to 3 by directly
exploiting the existence of a communication protocol.

Theorem 1.3 (Lifting Theorem for AND-functions). Let f : {0, 1}n → {0, 1} be a boolean function. Let
C = Pcc(f∧) denote the deterministic communication complexity of its corresponding AND-function. Then
f can be computed by an AND-decision tree of depth

P∧-dt(f) = O(C3 · log n).

1.2 Proof overview

We first discuss how our combinatorial theorem (Theorem 1.1) implies the log-rank theorem (Theorem 1.2).
It relies on showing that sparse boolean functions have efficient AND-decision trees (ADTs).

Let f be a boolean function with spar(f) = r. Our goal is to construct an ADT for f of depth poly(log r)·
log(n). This directly implies Theorem 1.2, as the sparsity of f equals the rank of its AND-function f∧, and
an ADT for f of depth d implies a protocol for f∧ which sends 2d bits.

It will be convenient to first consider another model of decision trees, called zero decision trees. A
(standard) decision tree computing f has zero decision tree complexity d, if any path from root to leaf in it
queries at most d variables which evaluate to 0. We denote by P0-dt(f) the minimal such d over all decision
trees that compute f . It is shown in [21] (see also Claim 4.4) that ADT complexity and zero DT complexity
are tightly connected. Concretely, for any boolean function f they show that

P0-dt(f) ≤ P∧-dt(f) ≤ P0-dt(f) · dlog(n+ 1)e.

Thus, we will show that P0-dt(f) ≤ poly(log r), which implies our target bound of P∧-dt(f).
Theorem 1.1 gives that there is a hitting set size h = poly(log r) which intersects all the monomials of f .

In particular, there is a variable xi that intersects at least a 1/h fraction of the monomials of f . The decision
tree will first query xi, and then branch depending on whether xi = 0 or xi = 1. We use the simple fact
that the sparsity of f cannot increase when variables are fixed, and continue this process, until the value of
the function is determined. Observe that every time that we query a variable and get 0, we eliminates a 1/h
fraction of the monomials. If we get a 1 the number of monomials can either stay the same or decrease, but
it cannot increase. So, as f starts with r monomials, we get that the maximal number of 0s queried before
all monomials are eliminated is at most h · log(r). Hence P0-dt(f) ≤ h · log(r) = poly(log r), as claimed.

Thus, from now on we focus on proving Theorem 1.1. Let f be a boolean function of sparsity r, and let
M(f) denote the set system of its monomials. We consider four complexity measures associated with it:

1. The hitting set complexity (HSC) is the minimal size of a hitting set for it. This is what we are trying
to bound, and can be phrased as an covering integer program.

2. The fractional hitting set complexity (FHSC) is the fractional relaxation for HSC. Here, we want a
distribution over variables that hits every monomial with high probability, which can be phrased as a
fractional covering linear program.

3. The fractional monotone block sensitivity (FMBS) is the dual linear program. The reason for the name
would become clear soon. It can be phrased as a fractional packing linear program.

4. The monotone block sensitivity (MBS) is the integral version of FMBS. It equals the maximal number
of pairwise disjoint monomials in f . Equivalently, it is block sensitivity of f at 0n. It can be phrased
as a packing integer program.

4

More generally, given s ⊆ [n], let fs denote the restriction of f given by setting xi = 1 for all i ∈ s. It
will be convenient to identify s with its indicator vector 1s ∈ {0, 1}n. Thus, for z ∈ {0, 1}n, we denote by
fz the restriction of f to the 1s in z. Define HSC(f, z), FHSC(f, z), FMBS(f, z), MBS(f, z) to be the above
four measures for the monomials of fz. It is simple to observe (see Claim 2.15) that for each z we have:

MBS(f, z) ≤ FMBS(f, z) = FHSC(f, z) ≤ HSC(f, z).

As a first step, we use existing techniques in boolean function analysis techniques to bound MBS(f, z) in
terms of the sparsity of f . We show in Lemma 3.1 that

MBS(f, z) ≤ O((log spar(fz))2) ≤ O((log r)2).

Thus, to complete the picture, we would like to show that if MBS(f, z) is low then so is HSC(f, z). This
however is false, if one compares them point wise (for a single z). However, we show that the measures are
equivalent (up to polynomial factors) if instead we consider their maximal value over all z. Define

MBS(f) = max
z∈{0,1}n

MBS(f, z)

and similarly define FMBS(f),FHSC(f),HSC(f). We show in Lemma 3.2 that

FMBS(f) = O(MBS(f)2),

linear programming duality gives FHSC(f) = FMBS(f), and we show in Lemma 3.3 that

HSC(f) = O(FHSC(f) · log r).

This completes the proof of Theorem 1.1.
We also briefly discuss Theorem 1.3. The improved exponent is obtained by using the bound MBS(f) =

O(Pcc(f∧)), which we prove in Corollary 4.9. Its proof is based on the observation that if MBS(f) = b then
f∧ embeds as a sub-function unique disjointness on b bits, and combine it with known lower bounds on the
communication complexity of unique disjointness.

1.3 Generalizations

Several of our definitions and techniques readily extend to non-boolean functions, namely to functions f :
{0, 1}n → R. We refer the reader to Section 2 for the relevant definitions and Section 5 for a detailed
discussion of the generalized results. Here, we briefly state some of the results.

Theorem 1.4. Let f : {0, 1}n → R be a multlinear polynomial with sparsity r. Suppose MBS(f) = m. Then
the hitting set complexity of f is bounded by

HSC(f) = O(m2 log r).

Theorem 1.5. Let f : {0, 1}n → S for S ⊂ R. Assume that spar(f) = r and |S| = s. Then the hitting set
complexity of f is bounded by

HSC(f) = O(s4(log r)5).

Theorem 1.6. Let F = {S1, · · · , Sr} be a set system. Then for any m ≥ 1, at least one of the following
holds:

1. F has a hitting set of size h = O(m2 log r).

2. There exists a subset T ⊂ [n] so that FT = {S1 \ T, · · · , Sr \ T} contains m pairwise disjoint sets.

5

Acknowledgements. S.L. thanks Kaave Hosseini, who was involved in early stages of this work. S.M.
thanks Russell Impagliazzo for useful discussions throughout the course of this work.

2 Preliminaries

This section introduces a number of complexity measures used in the proofs of our main results. We start
by collecting some simple definitions, proceed to define the complexity measures, and then provide some
examples which clarify some aspects of these definitions.

Throughout this section, fix a boolean function f : {0, 1}n → R. We identify elements of {0, 1}n with
subsets of [n]. Namely, we identify z ∈ {0, 1}n with the set {i : zi = 1}, and shorthand [n]\z = {i : zi = 0}.
Given two inputs z, w ∈ {0, 1}n we denote by z ∨w their union and by z ∧w their intersection. The partial
order on {0, 1}n is defined by the relation z ≤ w, satisfied precisely when z is a subset of w. Define
fz : {0, 1}[n]\z → R to be the restriction of f to inputs which are consistent with the 1s in z; namely
fz(w) = f(z∨w). DefineW(f, z) =

{
w ∈ {0, 1}[n]\z : f(z) 6= f(z ∨ w)

}
and note that it can be equivalently

defined as W(f, z) =
{
w ∈ {0, 1}[n]\z : fz(w) 6= fz(0)

}
.

Recall also the notation from the proof overview. Any f : {0, 1}n → R can be written uniquely as a mul-
tilinear real-valued polynomial f(x) =

∑
s⊆[n] αs

∏
i∈s xi. The sparsity of f , denoted spar(f), is the number

of nonzero coefficients in the polynomial expansion of f . Next, let M(f) = {s ⊆ [n] : αs 6= 0, s 6= 0n}
denote the set system of non-zero, non-constant monomials in f when written as a multilinear polynomial.
We emphasize that the coefficient α∅ is not included in M(f); α∅ is inessential, since we are interested in
hitting sets for monomials and ∅ is trivially hit by any set. Observe that |M(f)| ∈ {spar(f), spar(f)− 1}.

For any set system F over [n], an element z ∈ F is minimal if there does not exist w ∈ F with w < z.

Claim 2.1. Fix f : {0, 1}n → R, z ∈ {0, 1}n and W(f, z), M(fz) as above. Then, for any w ∈ {0, 1}n, w
is a minimal element in W(f, z) if and only if w is a minimal element in M(fz).

Proof. We assume for simplicity that z = ∅ so that fz(w) = f(w), f(∅) = α∅ and write W = W(f, ∅).
Suppose w ∈ M(f) is a minimal element. Writing f as a multilinear polynomial, we get f(w) =

∑
u≤w αu.

Since αw is minimal, f(w) = α∅ + αu and so f(w) 6= f(∅) and w ∈ W. Additionally, w is minimal in W
because if w′ < w then the non-constant terms of f(w′) =

∑
u≤w′ αu are all 0, hence f(w′) = f(0) and

w′ 6∈ W.
In the other direction, suppose w ∈ W is a minimal element. Assume there is w′ < w inM(f); choosing

such a minimal w′, we would get f(w′) 6= f(0) which violates the minimality of w. Similarly, if w 6∈ M(f)
then we get f(w) =

∑
u≤w αu = f(0), which violates the assumption that w ∈ W. Thus w is a minimal

element in M(f).

2.1 Monotone block sensitivity

First, we consider monotone block sensitivity, a variant of the standard notion of block sensitivity due to
Nisan and Szegedy [22]. In a nutshell, this is a “directed” restriction of block sensitivity, where we can only
change an input by flipping 0’s to 1’s. We also define MBS (and all other complexity measures introduced
later in this section) with respect to real-valued functions over {0, 1}n. This differs from block sensitivity,
which is usually (though not always) studied in the context of boolean-valued functions. The generalization
to real-valued f will be immaterial to some of our proofs, permitting us to draw more general conclusions
regarding the monomial structure of multilinear polynomials; see Section 5 for more details.

Say that two inputs z, w are disjoint if z ∧ w = 0n; namely, their corresponding sets are disjoint.

Definition 2.2 (Monotone block sensitivity). For f : {0, 1}n → R and z ∈ {0, 1}n, the monotone block
sensitivity of f at z, denoted MBS(f, z), is the largest integer k such that there exist k pairwise disjoint
inputs w1, . . . , wk ∈ W(f, z). We denote MBS(f) = maxz MBS(f, z).

For two motivating examples, observe that for the n-bit AND and OR functions we have MBS(AND) = 1
and MBS(OR) = n, respectively.

6

Remark 2.3. We emphasize that W(f, z) ⊆ {0, 1}[n]\z, so each wi is disjoint from z. This corresponds to
the standard definition of block sensitivity where we restrict each block wi to be disjoint from the support of
z.

Remark 2.4. Suppose w1, . . . , wk are minimal witnesses that MBS(f, z) = k in the sense that for any i ∈ [k]
there is no w′i < wi so that w′i ∈ W(f, z). Then by Claim 2.1, each wi is a minimal element in M(fz).

As alluded to in the proof overview, MBS(f, z) can be phrased as the value of a particular set packing
linear program (LP). Fixing z, writeW =W(f, z). The program optimizes over variables aw for each w ∈ W.

maximize
∑
w∈W

aw

subject to
∑

w∈W:wi=1

aw ≤ 1 for all i ∈ [n]

aw ∈ {0, 1} for all w ∈ W

Fractional monotone block sensitivity (FMBS) is obtained by relaxing the constraints in the above LP,
allowing variables aw to assume non-integral values in [0, 1]. We use an alternative formulation of FMBS
whose equivalence to the LP formulation is simple to verify.

Definition 2.5 (Smooth distribution). A distribution D over {0, 1}n is said to be p-smooth if for any i ∈ [n]
it holds that Prw∼D[wi = 1] ≤ p.

Definition 2.6 (Fractional monotone block sensitivity). The fractional monotone block sensitivity of a
function f : {0, 1}n → R at an input z ∈ {0, 1}n, denoted FMBS(f, z), is equal to 1/p, where p > 0 is
the smallest number for which there exists a p-smooth distribution D supported on a subset of W(f, z). We
denote FMBS(f) = maxz FMBS(f, z).

Remark 2.7. To see the equivalence between this definition of FMBS and the LP formulation, notice that
a solution {aw : w ∈ W(f, z)} to the LP with s =

∑
aw gives rise to a 1/s-smooth distribution D over

W(f, z) via D(w) = aw/s.

Remark 2.8. Clearly, any solution to the fractional program for FMBS is a solution to the integral pro-
gram for MBS. Hence, both being maximization problems, FMBS upper bounds MBS. Later, we prove
in Lemma 3.2 that the converse of this inequality holds in the sense that FMBS(f) is upper bounded by a
polynomial in MBS(f).

Remark 2.9. Fractional block sensitivity (the non-monotone variant) was considered by Tal in [28]. Tal
mentions explicitly the problem of finding separations between fractional block sensitivity and sensitivity.

2.2 Hitting set complexity

Next, we consider hitting set complexity. This can be viewed as a variant of certificate complexity, a
commonly-studied quantity in standard query complexity.

Definition 2.10 (Hitting set complexity). The hitting set complexity of a function f : {0, 1}n → R at
an input z ∈ {0, 1}n, denoted HSC(f, z), is the minimal size of a set H ⊆ [n] which intersects all sets
in W(f, z). In other words, for every w ∈ W(f, z) there is some i ∈ H so that wi = 1. We denote
HSC(f) = maxz HSC(f, z).

Similarly to MBS, it is simple to see that the n-bit AND and OR functions have HSC(ANDn) = 1 and
HSC(ORn) = n, respectively.

Remark 2.11. It suffices to consider H ⊆ [n] which have non-empty intersection with any minimal element
of W(f, z). This is simply because if H hits an element w then it also hits every superset of w.

7

Remark 2.12. Suppose H ⊆ [n] with |H| = b witnesses HSC(f, 0n) = b. By the previous remark and
Claim 2.1, one can see that H is hitting set of M(f).

We can also phrase HSC(f, z) as the value of a certain set covering LP. Putting W = W(f, z), the LP
optimizes over the variable {bi : i ∈ [n]} as follows:

minimize
∑
i∈[n]

bi

subject to
∑

i∈[n]:wi=1

bi ≥ 1 for all w ∈ W

bi ∈ {0, 1} for all i ∈ [n]

One can easily verify that this LP is dual to the LP defining monotone block sensitivity. Fractional
hitting set complexity is obtained from hitting set complexity by relaxing each constraint bi ∈ {0, 1} to
bi ∈ [0, 1]. We give an alternative definition, equivalent to the LP formulation:

Definition 2.13 (Fractional hitting set complexity). The fractional hitting set complexity of a function
f : {0, 1}n → R at an input z ∈ {0, 1}n, denoted FHSC(f, z), is 1/p, where p > 0 is the smallest number
for which there exists a distribution D of indices i ∈ [n] with the property that Pri∼D[wi = 1] ≥ p for each
w ∈ W(f, z). We denote FHSC(f) = maxz FHSC(f, z).

Remark 2.14. The same reasoning as the FMBS case can be used to show that this definition is equivalent
to the LP definition. Also by analogous reasoning, FHSC(f, z) ≤ HSC(f, z) (recalling that FHSC is a
minimization problem).

The LPs defining FHSC and FMBS are dual, so linear programming duality yields FHSC(f, z) =
FMBS(f, z). Combined with the remarked-upon relationships between MBS/FMBS and HSC/FHSC, we
conclude the following:

Claim 2.15. For any function f : {0, 1}n → R and input z ∈ {0, 1}n,

MBS(f, z) ≤ FMBS(f, z) = FHSC(f, z) ≤ HSC(f, z).

2.3 Some informative examples

To digest the definitions, some examples are in order. We start by noting that there are large gaps in the
inequalities from Claim 2.15 for fixed z. These correspond to integrality gaps for the set cover and hitting set
linear programs (of which FHSC(f, z) and FMBS(f, z) are a special case), which are central to combinatorial
optimization.

The first example gives a separationbetween FMBS(f, z) and MBS(f, z).

Example 2.16 (Projective plane). For a prime power m, let P be the set of 1-dimensional subspaces of F3
m

and L the set of 2-dimensional subspaces of F3
m. P is the set of points and L is the set of lines. Note that

|P | = |L| = m2 +m+ 1.
It is well-known that P and L form a projective plane, in that they enjoy the following relationship:

1. Any two points in P are contained in exactly one line in L. Moreover, each point is contained in m+1
lines.

2. Any two lines in L intersect at exactly one point in P . Moreover, each line contains m+ 1 points.

3. There are 4 points, no 3 of which lie on the same line.

8

For more background on finite geometry, see, for example, [1].
Let n = m2 + m + 1, thinking of each i ∈ [n] as corresponding to a point pi ∈ P . For lines ` ∈ L, let

S` = {i ∈ [n] : pi is contained in `} be the set of (indices of) points incident to ` and define f : {0, 1}n →
{0, 1} as

f(z) =
∨
`∈L

(∧
i∈S`

zi

)
.

Since any two lines intersect at a point, any `1, `2 ∈ L have S`1 ∩ S`2 6= ∅. This implies MBS(f, 0n) = 1.
On the other hand, because each line contains m+ 1 points, Pri∈[n][i ∈ S`] = (m+ 1)/(m2 +m+ 1) when i
is uniform and therefore FMBS(f, 0n) ≈ m ≈

√
n.

The next example gives a similar separation between FHSC(f, z) and HSC(f, z).

Example 2.17 (Majority). For n even, let f(z) = 1[
∑

i zi ≥ n/2] be the Majority function. The minimal
elements of M(f) consist of sets s with n/2 members.

Any set s of size at most n/2 will fail to hit [n]\s ∈M(f). Therefore any hitting set for the monomials of
f , namely for M(f), has size more than n/2. In particular, HSC(f, 0n) = n/2 + 1 (clearly n/2 + 1 suffices).
On the other hand, the uniform distribution over [n] satisfies Pr[i ∈ s] = 1/2 for any minimal monomial
s ∈M(f). Hence FHSC(f, 0n) = 2.

These two examples show that it will be necessary to utilize the fact that MBS and HSC are defined as the
maximum over all inputs.

The next examples shows that HSC(f) and MBS(f) can be constant while spar(f) grows exponentially.

Example 2.18 (AND-OR). Consider a string z ∈ {0, 1}2n written as z = xy for x, y ∈ {0, 1}n. Define

f(x, y) =
∧

j∈[n]

(xj ∨ yj) .

One can verify that HSC(f) = MBS(f) = 2. On the other hand, writing f as a multilinear polynomial yields

f(x, y) =
∏
j∈[n]

(xi + yj − xj · yj),

which clearly has sparsity exponential in n.

Note that this holds for the global (i.e. maximizing over {0, 1}n) definitions of MBS and HSC. To see the
significance of this example, recall from the proof overview that we are interested in eventually showing
MBS(f) ≤ O((log spar(f))2). This example shows that this latter inequality can be very far from the truth;
we are able to make up for this discrepancy by using the low-sparsity assumption multiple times.

Finally, we include an example which will become relevant to our applications to communication com-
plexity in Section 4.

Example 2.19 (Redundant indexing). Let k ≥ 1, and consider two sets of variables {xS}S⊆[k] and {yi}i∈[k]
of sizes 2k and k, respectively. Let n = 2k + k and define

f(x, y) =
∑
i∈[k]

(∏
S : i∈S

xS

)
(1− yi)

∏
j 6=i

yj

 .

In words, f(x, y) = 1 when y has weight exactly k − 1 with yi = 0 and xS = 1 for every S containing i.
By the mutilinear representation, one can see that the sparsity of f is 2k ∼ log n. Moreover, HSC(f) ≤ 2.

To see why, consider an input z = (a, b) and note that f restricted to inputs w = (x, y) ≥ z becomes

f ′(x, y) =
∑

i:bi=0

 ∏
S:i∈S,aS=0

xS

 (1− yi)

 ∏
j:j 6=i,bj=0

yj

 .

9

In particular, if a 6= 1[2
k] then the variable x[2k]\a hits all the monomials, and if a = 1[2

k] then any two yi, yj
hit all the monomials.

We view this as an important example in understanding the log n factor currently present in the state-
ments of Theorem 1.2 and Theorem 1.3. This connection will be discussed in more detail in Section 6.

3 Proof of Theorem 1.1

We recall the statement of Theorem 1.1.

Theorem 1.1. Let f : {0, 1}n → {0, 1} be a boolean function with sparsity spar(f) = r. Then there exists a
hitting set H for M(f) of size |H| = O((log r)5).

The proof relies on three lemmas which provide various relationships between spar(f), MBS(f) and
HSC(f), as well as their fractional variants. In this subsection, we will state the lemmas and show how
Theorem 1.1 follows as a consequence. Then, in the following subsections, we prove the lemmas.

The first gives an upper bound on the monotone block sensitivity of a boolean-valued f in terms of its
sparsity.

Lemma 3.1. For any boolean function f : {0, 1}n → {0, 1}, MBS(f) = O(log(spar(f))2).

We stress that this only holds for boolean-valued functions. To some extent, we will be able to relax this
condition when we consider generalizations in Section 5. Additionally, we note that this inequality can be
very from tight: Example 2.18 gives a function with constant MBS but exponential sparsity.

The second lemma shows that FMBS and MBS are equivalent up to a polynomial factor. Unlike
Lemma 3.1, this holds for any real-valued function.

Lemma 3.2. For any function f : {0, 1}n → R, FMBS(f) = O(MBS(f)2).

The third lemma, which also holds for any real-valued function, upper bounds the hitting set complexity
of f in terms of FMBS(f) and spar(f).

Lemma 3.3. For any function f : {0, 1}n → R, HSC(f) ≤ FMBS(f) · log(spar(f)).

Theorem 1.1 now follows quite readily from the three lemmas.

Proof of Theorem 1.1. Fix a boolean function f with sparsity r as in the theorem statement. By Lemma 3.1,
MBS(f) = O((log r)2). By Lemma 3.2, FMBS(f) = O((log r)4). Finally, by Lemma 3.3, HSC(f) ≤
O((log r)5), as desired.

3.1 MBS from sparsity

We begin by proving Lemma 3.1.

Lemma 3.1. For any boolean function f : {0, 1}n → {0, 1}, MBS(f) = O(log(spar(f))2).

The proof uses a well-known relationship between the degree and the sensitivity of boolean functions [22].
The sensitivity S(f) of a boolean function f is the largest s so that there exists an input z and s coordinates
{i1, . . . , is} so that f(z) 6= f(z ⊕ eij) for all j ∈ [s].

Claim 3.4 (Nisan-Szegedy, [22]). For any boolean function f : {0, 1}n → {0, 1}, S(f) = O(deg(f)2).

Proof of Lemma 3.1. Suppose MBS(f) = k, witnessed by pairwise disjoint z, w1, . . . , wk ⊆ [n]. Namely,
f(z) 6= f(z ∨ wi) for i ∈ [k]. Let g : {0, 1}k → {0, 1} denote the function obtained from f by identifying
variables in each wi and setting all variables not occurring in any wi to the corresponding bit in z. That is,
g(x) = f(z +

∑
xiwi). Note that S(g) = k, since g(0) 6= g(ei) for i ∈ [k], and spar(g) ≤ spar(f).

10

Let r = spar(f). We will reduce the degree of g to d = O(log r) by repeating the following process k/2
times: set to zero the coordinate which appears in the largest number of monomials of degree at least d.

Let Mi denote the number of monomials of degree at least d remaining after the i-th step. Initially
M0 ≤ r. Next, note that if Mi > 0, then there is a variable that occurs in at least a d/k fraction of
the monomials of degree ≥ d. We therefore obtain the recurrence Mi+1 ≤ (1 − d/k)Mi. After k/2 steps,
Mk/2 ≤ (1 − d/k)k/2r ≤ exp(−d/2)r < 1 for d = O(log r). As Mk/2 is an integer, we obtain that Mk/2 is
zero.

Let h denote the function obtained by this restriction process. Since Mk/2 = 0 we have deg(h) < d.

Moreover, since g had full sensitivity at 0k and we restricted only k/2 coordinates, S(h) ≥ k/2. Finishing
up, we have k/2 ≤ S(h) = O(deg(h)2) = O((log r)2), completing the proof.

3.2 Fractional vs. integral solutions for MBS

This subsection proves Lemma 3.2, restated here:

Lemma 3.2. For any function f : {0, 1}n → R, FMBS(f) = O(MBS(f)2).

We first need the following claim, which states that any function f : {0, 1}n → R is not too sensitive to
noise which is q-smooth for q � 1/FMBS(f).

Claim 3.5. Let f : {0, 1}n → R, z ∈ {0, 1}n and D a distribution on {0, 1}[n]\z. Assume that D is q-smooth
for some q ∈ (0, 1]. Then

Pr
w∼D

[f(z) 6= f(z ∨ w)] ≤ q · FMBS(f, z).

Proof. Assume FMBS(f, z) = 1/p. We may assume q < p as otherwise the claim is trivial. Let δ =
Prw∼D[f(z) 6= f(z ∨ w)]. Let D′ be the distribution D restricted to inputs w such that f(z) 6= f(z ∨ w).
Observe that D′ is (q/δ)-smooth, and is supported on inputs w such that f(z) 6= f(z∨w). As FMBS(f, z) =
1/p we have q/δ ≥ p which implies the claim.

Proof of Lemma 3.2. Let FMBS(f) = 1/p. Let z ∈ {0, 1}n such that FMBS(f, z) = 1/p, and let D be a
p-biased distribution supported on W(f, z).

Fix k to be determined later, and sample inputs w1, . . . , wk ∼ D independently. Let u denote all the
elements that appear at least in two of the wi, namely

u =
∨
i 6=j

(
wi

∧
wj

)
.

The main observation is that u is q-biased for q = (pk)2. This holds since for every ` ∈ [n] we have

Pr[u` = 1] ≤
∑
i6=j

Pr[(wi)` = 1, (wj)` = 1] ≤ k2p2.

Define the following “bad” events:

E0 = [f(z) 6= f(z ∨ u)], Et = [f(z ∨ wt) 6= f(z ∨ wt ∨ u)] for t ∈ [k].

We claim that Pr[Et] ≤ q/p = pk2 for all t = 0, . . . , k. The proof for E0 follows directly from Claim 3.5. To
see why it holds for Et for t = 1, . . . , k, define ut to be the elements that appear in two sets wi, excluding
wt, namely

ut =
∨

i 6=j, i,j 6=t

(
wi

∧
wj

)
.

Observe that wt, ut are independent, that ut is (pk)2-biased and that wt ∨u = wt ∨ut. Thus Claim 3.5 gives
that, for any fixing of wt, we have

Pr
ut

[f(z ∨ wt) 6= f(z ∨ wt ∨ ut) | wt] ≤ q · FMBS(f, z ∨ wt) ≤ q · FMBS(f) = q/p = pk2.

11

The claim for Et follows by averaging over wt.
Pick k = 1/(2

√
p), meaning Et occurs with probability at most 1/4 for each 0 ≤ t ≤ k. Then conditioning

on ¬E0 will increase the probability of any event by a factor of at most 1/(1 − 1/4) = 4/3. In particular,
because Pr[Et] ≤ pk2 = 1/4 for any t, we have Pr[Et|¬E0] ≤ 1/3 for any t 6= 0. This means that we can
sample the wt’s conditioned on ¬E0, and still be sure that every ¬Et occurs with probability at least 2/3.
Averaging, some setting of the {wt} satisfies ¬E0 and at least 2/3 of ¬Et for 1 ≤ t ≤ k. Fix these {wt}.

Define z′ = z ∨ u and w′t = wt \ u. For every 1 ≤ t ≤ k for which ¬Et holds, we have

f(z′) = f(z), f(z′ ∨ w′t) = f(z ∨ wt).

Thus f(z′) 6= f(z′ ∨w′t) for at least 2k/3 choices of w′t. Moreover, z′, w′1, . . . , w
′
k are pairwise disjoint. Hence

MBS(f) ≥ 2k/3. This completes the proof, by recalling that k = 1/(2
√
p) with FMBS(f) = 1/p.

A notable feature of this proof is that we need to employ upper bounds on the fractional block sensitivity
for more than one choice of input. This is actually necessary; there is a function f based on the projective
plane for which MBS(f, z) = 1 and FMBS(f, z) ∼

√
n at a point z. See Example 2.16 for details.

3.3 Hitting sets from sparsity

Our final lemma is an upper bound on the hitting set complexity of any f : {0, 1}n → R in terms of FMBS(f)
and log(spar(f)). Recall that FMBS and FHSC are equal, so such an upper bound implies that FHSC and
HSC are polynomially related for sparse boolean functions.

Lemma 3.3. For any function f : {0, 1}n → R, HSC(f) ≤ FMBS(f) · log(spar(f)).

Before proving it, we need two straightforward claims which we will use again later on. The first allows us
to find (non-uniformly) indices i ∈ [n] which hit a large fraction ofM(f), given that f has small FMBS/FHSC
at 0n.

Claim 3.6. Suppose FMBS(f, 0n) = FHSC(f, 0n) = k and this is witnessed by a distribution D over [n].
Then

1. Pri∼D[i ∈ w] ≥ 1/k for every w ∈M(f). That is, D is also a fractional hitting set for the monomials
of f .

2. There is some i in the support of D which hits a 1/k-fraction of M(f).

Proof. Note that the second part of the claim follows from the first by an averaging argument, so we are
contented to prove the first part of the claim.

Let D, FHSC(f, 0) = k be as stated, so that Pri∼D[i ∈ w] ≥ 1/k for all w ∈ W(f, z). By Claim 2.1, it
is the case that Pri∼D[i ∈ w] ≥ 1/k for any minimal monomial w. The measure of D on some w is non-
decreasing with respect to taking supersets, meaning Pri∼D[i ∈ w] ≥ 1/k for every monomial w ∈M(f).

The second claim says that FHSC(f) is non-increasing under restrictions. For simplicity, we only consider
reductions which set a single bit (which can be extended to more bits by induction).

Claim 3.7. Let f : {0, 1}n → R be a function, i ∈ [n] and b ∈ {0, 1}. Let f ′ : {0, 1}[n]\{i} → R be the
function obtained by restricting to inputs with xi = b. Then

FHSC(f ′) ≤ FHSC(f).

Proof. Fix z ∈ {0, 1}[n]\{i}. We will show that FHSC(f ′, z) ≤ FHSC(f, z∗) where z∗ = z if b = 0 and
z∗ = z ∪ {i} if b = 1. In either case, FHSC(f ′, z) ≤ FHSC(f) and hence FHSC(f ′) ≤ FHSC(f).

Consider first the case of b = 0, and assume that FHSC(f, z) = 1/p. Recall that fz is the restriction of
f to inputs x ≥ z, and that FHSC(f, z) = FHSC(fz, 0). By definition, there is a distribution D over [n]
such that for every w ∈ M(fz) we have Pri∼D[wi = 1] ≥ p. Observe that M(f ′z) ⊂ M(fz) since setting a
variable to 0 can only remove monomials. Thus we get FHSC(f ′, z) ≤ FHSC(f, z).

Next, consider the case of b = 1. Note that f ′z = fz∪{i} and hence FHSC(f ′, z) = FHSC(f, z ∪ {i}).

12

Proof of Lemma 3.3. Let k = FHSC(f, 0) ≤ FHSC(f), S0 = ∅, f0 = f and perform the following iterative
process. At time t ≥ 1, let St = St−1 ∪{it} where it ∈ [n] is the index which hits a 1/k-fraction ofM(ft−1),
guaranteed to exist by Claim 3.6. Let ft = ft−1|zit=0. At each step, the restriction zit = 0 sets every
monomial containing it to zero, causing the sparsity of ft−1 to decrease by a multiplicative factor (1− 1/k).
Let rt = |M(ft)|. Since St is a hitting set for M(f) when ft has no non-zero monomials, this process
terminates with a hitting set when

rt = (1− 1/k)tr0 ≤ e−t/kr0 < 1.

Therefore, taking t = k log r0 suffices.

4 Corollaries in communication complexity

4.1 Preliminaries

Fix a boolean function f : {0, 1}n → {0, 1}. Let f∧ = f ◦ ∧ denote the AND function corresponding to f ,
given by f∧(x, y) = f(x ∧ y). The sparsity of f characterizes the rank of f∧.

Claim 4.1. Let f : {0, 1}n → {0, 1} be a boolean function. Then spar(f) = rank(f∧).

Proof. Let f(z) =
∑

s fs
∏

i∈s zi be the multilinear polynomial computing f . Then f(x ∧ y), expanded as a
multilinear polynomial, equals

f(x ∧ y) =
∑
s

fs

(∏
i∈s

xi

)(∏
i∈s

yi

)
.

Hence we can write the 2n × 2n communication matrix of f∧(x, y) = f(x ∧ y) as

M =
∑
s

fsvsv
>
s

where vs ∈ {0, 1}2
n

is given by (vs)x =
∏

i∈s xi. The vs’s are linearly independent and therefore M has rank
equal to the number of non-zero entries in the sum.

We assume familiarity with the standard notion of a decision tree. Our primary interest is in a variant
of decision trees called AND decision trees, which strengthens decision trees by allowing queries of the
conjunction of an arbitrary subset of the variables, namely queries of the form ∧i∈Szi for arbitrary S ⊆ [n].
Let P∧-dt(f) denote the smallest depth of an AND decision tree computing f . The following simple connection
to the communication complexity of f∧ motivates our interest in this model:

Claim 4.2. Let f : {0, 1}n → {0, 1}. Then Pcc(f∧) ≤ 2P∧-dt(f).

Proof. Whenever the AND-decision tree queries a set S ⊆ [n], Alice and Bob privately evaluate a = ∧i∈Sxi
and b = ∧j∈Syj , exchange them and continue the evaluation on the sub-tree obtained by following the edge
labelled a ∧ b. If the decision tree height is d, this protocol uses 2d bits of communication. Correctness
follows from the observation that

∧
i∈S(xi ∧ yi) = (

∧
i∈S xi) ∧ (

∧
j∈S yj).

There is also a simple connection between AND-decision trees and sparsity:

Claim 4.3. Let f : {0, 1}n → {0, 1} with d = P∧-dt(f). Then spar(f) ≤ 3d.

Proof. Assume that f is computed by a depth-d AND decision tree, where the first query is ∧i∈Szi, and
where f1, f2 are the functions computed by the left and right subtrees, respectively. Note that both are
computed by AND decision trees of depth d− 1. We have

f(z) =
∏
i∈S

zi · f1(z) +

(
1−

∏
i∈S

zi

)
f2(z).

13

Thus
spar(f) ≤ spar(f1) + 2 · spar(f2).

The claim follows, since in the base case, functions computed by an AND-decision tree of depth 1 has sparsity
at most 2.

A related complexity measure introduced in [21], called the 0-decision tree complexity of f , is defined as
follows. The 0-depth of a (standard) decision tree T is largest number of 0-edges encountered on a root-to-
leaf path in T . The 0-decision tree complexity of f , denoted P0-dt(f), is the smallest 0-depth over all trees
T computing f . The following relationship between AND decision trees and 0-decision tree complexity is
from [21]:

Claim 4.4 ([21]). For any boolean function f : {0, 1}n → {0, 1},

P0-dt(f) ≤ P∧-dt(f) ≤ P0-dt(f) dlog(n+ 1)e .

For completeness, we include the short proof.

Proof. The first inequality follows since an AND query can be simulated by querying the bits in it one at a
time, until the first 0 is queried, or until they are all queried to be 1. In particular, at most a single 0 query
is made. This implies that an AND decision tree of depth d can be simulated by a standard decision tree of
0-depth d.

For the second inequality, let T be a decision tree computing f with 0-depth d. Consider the subtree
which is truncated after the first 0 is read. We can compute which leaf in the subtree is reached by doing
a binary search on the at most n + 1 options, which can be implemented using dlog(n+ 1)e computations
of ANDs. Then, the same process continues on the tree rooted at the node reached, which has 0-depth at
most d− 1.

The following example shows that this gap of log n cannot be avoided.

Example 4.5. For z ∈ {0, 1}n, let ind(z) ∈ [n] denote the first index i for which zi = 0. Let

f(z) =

{
1 if z = 1n or z = 1n−10

zind(z)+1 otherwise

Any decision tree computing f will have to query at most two zeroes, corresponding to zind(z) and xind(z)+1,

and hence P0-dt(f) ≤ 2. However, a direct calculation shows that spar(f) = Ω(n) and therefore, by Claim 4.3,
P∧-dt(f) = Ω(log n).

We also use a lemma closely related to Lemma 3.3.

Lemma 4.6. Let f : {0, 1}n → {0, 1} be an arbitrary boolean function. Then

P0-dt(f) = O(FMBS(f) · log spar(f)).

Proof. Let k = FHSC(f, 0) ≤ FHSC(f). By Claim 3.6, there is an i ∈ [n] that belongs to at least a (1/k)-
fraction of M(f). Query the variable xi and let bi ∈ {0, 1} be the outcome. Let f ′ : {0, 1}n → {0, 1} be the
function f restricted to xi = bi. Consider the sparsity of f ′:

• If xi = 0 then |M(f ′)| ≤ (1− 1/k)|M(f)|, as setting xi = 0 kills a (1/k)-fraction of the non-constant
monomials. Thus, as long as f is not a constant function, |M(f)| ≥ 1 and we have

spar(f ′) ≤ spar(f)− |M(f)|/k ≤ spar(f)(1− 1/2k).

• If xi = 1 then spar(f ′) ≤ spar(f), since fixing variables to constants cannot increase the number
monomials.

Let t the maximum number of 0’s queried along any path in the obtained decision tree. The sparsity of the
subfunction f ′ corresponding to a leaf must be 0 or else f ′ is non-constant. By, Claim 3.7 f ′ is constant
when (1− 1/2k)tspar(f) ≤ e−t/2kspar(f) < 1, which occurs when t ≥ 2k · log spar(f).

14

4.2 The log-rank conjecture

A weak version of the log-rank conjecture for AND-functions, which includes an additional log n factor, now
follows quite readily from the tools we have developed.

Theorem 1.2 (Log-rank Theorem for AND-functions). Let f : {0, 1}n → {0, 1} be a boolean function. Let
r = spar(f) = rank(f∧). Then f can be computed by an AND-decision tree of depth

P∧-dt(f) = O((log r)5 · log n).

In particular, the deterministic communication complexity of f∧ is bounded by

Pcc(f∧) = O((log r)5 · log n).

Proof. By Lemma 3.1, MBS(f) = O((log r)2). By Lemma 3.2, FMBS(f) = O((log r)4). By Lemma 4.6,
P0-dt(f) = O((log r)5). By Claim 4.4 this gives us an AND-decision tree of height O((log r)5 · log n). Finally,
we convert the AND-decision tree for f into a protocol for f∧ using Claim 4.2 with complexity O((log r)5 ·
log n).

In particular, the log-rank conjecture for AND-functions is true for any f with spar(f) ≥ nc for any
constant c > 0. In some sense this is an extremely mild condition, which random f will satisfy with
exceedingly high probability. On the other hand, the log-rank conjecture is about structured functions;
rank and communication complexity are both maximal for random functions, whereas we are interested in
low-complexity functions/low-rank matrices. It could very well be the case that the ultra-sparse regime of
spar(f) = no(1) is precisely where the log-rank conjecture fails. We therefore see removing the log n factor
as an essential problem left open by this work. See Section 6 for additional discussion.

4.3 Lifting AND-functions

Since log(spar(f)) lower bounds the deterministic communication of f∧, the log-rank result from the previous
section immediately implies a new upper bound on the AND decision tree complexity of f . We can prove
a better upper bound by making use of our stronger assumption: instead of only assuming log(spar(f)) is
small, we assume that Pcc(f∧) is small.

If f has large monotone block sensitivity, then its AND-function embeds unique disjointness as a sub-
function. The unique disjointness function on k bits, denoted UDISJk, takes two inputs a, b ∈ {0, 1}k, and
is defined as the partial function:

UDISJk(a, b) =

0 if |a ∧ b| = 1

1 if |a ∧ b| = 0

undefined otherwise

,

where | · | is the Hamming weight.

Claim 4.7. Let f : {0, 1}n → {0, 1} be a boolean function with MBS(f) = k. Then f∧ contains as a sub-
matrix UDISJk. That is, there are maps x,y : {0, 1}k → {0, 1}n and c ∈ {0, 1} such that the following holds.
For any a, b ∈ {0, 1}k which satisfy that |a ∧ b| ∈ {0, 1}, it holds that

UDISJk(a, b) = f∧(x(a),y(b))⊕ c.

Proof. Let z, w1, . . . , wk ∈ {0, 1}n be pairwise disjoint such that f(z) 6= f(z ∨ wi) for all i ∈ [k]. We may
assume without loss of generality that f(z) = 1, otherwise replace f with its negation, and set c = 1.

Assume that Alice and Bob want to solve unique-disjointness on inputs a, b ∈ {0, 1}k, which we identify
with subsets of [k]. Define

x(a) = z ∨
∨
i∈a

wi, y(b) = z ∨
∨
j∈b

wj .

15

Observe that

x(a) ∧ y(b) =

{
z if a ∧ b = ∅
z ∨ wi if a ∧ b = {i}.

Thus we get that UDISJk(a, b) = f(x(a) ∧ y(b)) for all a, b.

It is well known that UDISJk is hard with respect to several communication complexity measures such
as deterministic, randomized and nondeterministic.

Theorem 4.8 ([12,25]). For any communication complexity measure ∆ ∈ {Pcc,BPPcc,NPcc},

∆(UDISJk) = Ω(k).

We immediately get the following corollary:

Corollary 4.9. Let f : {0, 1}n → {0, 1} be a boolean function and ∆ ∈ {Pcc,BPPcc,NPcc} be a communi-
cation complexity measure. Then MBS(f) = O(∆(f∧)).

Proof. Assume that MBS(f) = k. Claim 4.7 shows that any protocol for f∧ also solves UDISJk. Hence by
Theorem 4.8 we have k = O(∆(f∧)).

Taking ∆ = Pcc, we obtain the main theorem of this section:

Theorem 1.3 (Lifting Theorem for AND-functions). Let f : {0, 1}n → {0, 1} be a boolean function. Let
C = Pcc(f∧) denote the deterministic communication complexity of its corresponding AND-function. Then
f can be computed by an AND-decision tree of depth

P∧-dt(f) = O(C3 · log n).

Proof. Claim 4.1 gives that log spar(f) = log rank(f∧) ≤ C. By Claim 4.7, MBS(f) = O(C). By Lemma 3.2,
FMBS(f) = O(C2). Combining this upper bound on FMBS with the fact that log spar(f) ≤ C, we see, by
Lemma 4.6, that P0-dt(f) = O(C3). Finally, by Claim 4.4, we get that P∧-dt(f) = O(C3 · log n).

5 Generalizations to non-boolean functions

In this section, we extend our conclusion to general multilinear polynomials and set systems. The main
observation is that all measures introduced in Section 2 are defined for general real-valued functions. In
addition, both Lemma 3.2 and Lemma 3.3 are established for real-valued functions. The following theorem
holds true as the joint result of these two lemmas.

Theorem 1.4. Let f : {0, 1}n → R be a multlinear polynomial with sparsity r. Suppose MBS(f) = m. Then
the hitting set complexity of f is bounded by

HSC(f) = O(m2 log r).

Proof. By Lemma 3.2, FHSC(f) = O(m2). Then by Lemma 3.3, we obtain the claimed bound.

5.1 Finite-range functions

Lemma 3.1 is not true for general multilinear polynomials. Nevertheless, if we make the assumption that
the multilinear polynomial’s range is finite, denote its size by s, then we can bound the monotone block
sensitivity by a polynomial of log-sparsity and s.

Lemma 5.1. Let f : {0, 1}n → S be a multilinear polynomial where spar(f) = r and |S| = s. Then
MBS(f) = O(s2 log2 r).

16

Proof. Suppose MBS(f) = MBS(f, z) = k for z ∈ {0, 1}n, and let a = f(z) ∈ S. Define a polynomial
p : R → {0, 1} such that p(a) = 1 and p(b) = 0 for b ∈ S \ {a}. There exist such a polynomial of degree
deg(p) = |S| − 1. Define a boolean function g : {0, 1}n → {0, 1} by g(z) = p(f(z)). Note that MBS(g, z) = k
and spar(g) ≤ rs−1. Then by Lemma 3.1, we have k = O(log2(spar(g))) = O(s2 log2 r).

Combining it with Theorem 1.4, one can bound the hitting set complexity of finite-range functions.

Theorem 1.5. Let f : {0, 1}n → S for S ⊂ R. Assume that spar(f) = r and |S| = s. Then the hitting set
complexity of f is bounded by

HSC(f) = O(s4(log r)5).

The following example shows that a polynomial dependency on the range size is necessary in Theorem 1.5.

Example 5.2. Let f(x) = x1 + · · ·+ xs. Then spar(f) = s, the range of f has size s+ 1, and HSC(f) = s.

5.2 Set systems

Theorem 1.4 can also be interpreted in the language of set system.

Theorem 1.6. Let F = {S1, · · · , Sr} be a set system. Then for any m ≥ 1, at least one of the following
holds:

1. F has a hitting set of size h = O(m2 log r).

2. There exists a subset T ⊂ [n] so that FT = {S1 \ T, · · · , Sr \ T} contains m pairwise disjoint sets.

Proof. Let f(x) =
∑r

i=1

∏
j∈Si

xj . Fix m ≥ 1, and consider first the case that MBS(f) < m. In this case,

by Theorem 1.4, HSC(f) = O(m2 log r). Note that by construction, if H is a hitting set for the monomials
of f then H is a hitting set for F .

The other case is that MBS(f) ≥ m. Let z ∈ {0, 1}n be such that MBS(f, z) ≥ m. By definition,
this implies that fz has m minimal pairwise disjoint sets, which by Claim 2.1 implies that the polynomial
computing fz contains m pairwise disjoint monomials. Each such monomial is of the form Si \ T for
T = {i : zi = 1}.

6 Discussion

6.1 Ruling out the log n factor

Both results about communication complexities of AND-functions (Theorems 1.2 and 1.3) are not “tight”
in the sense that both of them have a log n factor in the right side of the inequality. Unfortunately, n can
be exponential in sparsity (see Example 2.19).

It is easy to see that if the log n factor is truly necessary in these theorems we are very close to refuting
the log-rank conjecture. Hence, we believe that a “tighter” version of the log-rank theorem (Theorem 1.2)
is true.

Conjecture 6.1. Let f : {0, 1}n → {0, 1} be a boolean function, where spar(f) = r. Then

P∧-dt(f) ≤ poly(log r).

Note that this conjecture would imply a “tighter” version of the lifting theorem as well.

17

6.2 Randomized complexity

The main results of this paper are concerned with the deterministic communication complexity of AND-
functions. However, Corollary 4.9 says that the randomized communication complexity of an AND-function
is lower bounded by its monotone block sensitivity. The relation between randomized communication com-
plexity and sparsity remains unclear. We conjecture that the relation between these two measures is the
same as the proved relation (Theorem 1.3) between sparsity and deterministic communication complexity.

Conjecture 6.2. Let f : {0, 1}n → {0, 1} be a boolean function. Suppose that BPPcc(f∧) = C. Then

log(spar(f)) ≤ poly(C) · log n.

In particular, f can be computed by an AND-decision tree of depth

Pcc(f∧) ≤ poly(C) · log n.

Observe that Conjecture 6.2 implies that randomness does not significantly help to compute AND-
functions. Concretely, it implies that

Pcc(f∧) ≤ poly (BPPcc(f∧)) · log n.

Interestingly, the log n factor in this conjecture is necessary as shown by the following example.

Example 6.3 (Threshold Functions). Let f : {0, 1}n → {0, 1} be the threshold function such that

f(x) = 1 ⇐⇒ |x| ≥ n− 1.

It is clear that spar(f) = n+1; however, BPPcc(f) = O(1). Indeed, let us consider the following randomized
AND-decision tree for f : it samples a subset S ⊆ [n] uniformly at random, then output the value of

qS(x) =

(∧
i∈S

xi

)
∨

(∧
i/∈S

xi

)
.

Note that if |x| ≥ n − 1 then qS(x) = 1 with probability 1. If |x| ≤ n − 2, let i, j be such that xi = xj = 0.
With probability 1/2 we have i ∈ S, j /∈ S or i /∈ S, j ∈ S, in both cases qS(x) = 0. In order to reduce the
error, repeat this for a few random sets S.

6.3 Sparsity vs coefficients size

Let f : {0, 1}n → {0, 1} and consider the multi-linear polynomial computing f , namely f(x) =
∑

s fs
∏

i∈s xi.
It is well known that the coefficients fs take integer values. In particular, if we denote by ‖f‖1 =

∑
|fs| the

L1 norm of the coefficients, then we get the obvious inequality

spar(f) ≤ ‖f‖1.

We note the following corollary of Theorem 1.2, which shows that ‖f‖1 cannot be much larger than spar(f).

Claim 6.4. Let f : {0, 1}n → {0, 1} and assume that spar(f) = r. Then ‖f‖1 ≤ nO(log r)5 .

Proof. By Theorem 1.2 we have P∧-dt(f) = d for d = O((log r)5 log n). By a similar proof to Claim 4.3, any
function f computed by an AND-decision tree of depth d has ‖f‖1 ≤ 3d. The claim follows.

We conjecture that the gap between sparsity and L1 is at most polynomial.

Conjecture 6.5. For any boolean function f , ‖f‖1 ≤ poly(spar(f)).

18

References

[1] Simeon Ball and Zsuzsa Weiner. An introduction to finite geometry, 2011. lecture notes,
https://web.mat.upc.edu/simeon.michael.ball/IFG.pdf. 9

[2] Amit Chakrabarti and Oded Regev. An optimal lower bound on the communication complexity of
gap-hamming-distance. SIAM J. Comput., 41(5):1299–1317, 2012. 1

[3] Arkadev Chattopadhyay, Yuval Filmus, Sajin Koroth, Or Meir, and Toniann Pitassi. Query-to-
communication lifting for BPP using inner product. In Christel Baier, Ioannis Chatzigiannakis, Paola
Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and
Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 35:1–35:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. 1, 2

[4] Arkadev Chattopadhyay, Yuval Filmus, Sajin Koroth, Or Meir, and Toniann Pitassi. Query-to-
communication lifting using low-discrepancy gadgets. Electronic Colloquium on Computational Com-
plexity (ECCC), 26:103, 2019. 2

[5] Arkadev Chattopadhyay, Nikhil S. Mande, and Suhail Sherif. The log-approximate-rank conjecture is
false. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 42–53.
ACM, 2019. 1

[6] Susanna F. de Rezende, Or Meir, Jakob Nordström, Toniann Pitassi, Robert Robere, and Marc Vinyals.
Lifting with simple gadgets and applications to circuit and proof complexity. CoRR, abs/2001.02144,
2020. 1

[7] Peter Frankl. On the trace of finite sets. J. Comb. Theory, Ser. A, 34(1):41–45, 1983. 3

[8] Mika Göös, Pritish Kamath, Toniann Pitassi, and Thomas Watson. Query-to-communication lifting for
PNP . Comput. Complex., 28(1):113–144, 2019. 1

[9] Mika Göös, Sajin Koroth, Ian Mertz, and Toniann Pitassi. Automating cutting planes is NP-hard. In
Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy,
editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC
2020, Chicago, IL, USA, June 22-26, 2020, pages 68–77. ACM, 2020. 1

[10] Mika Göös, Toniann Pitassi, and Thomas Watson. Query-to-communication lifting for BPP. In Chris
Umans, editor, 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berke-
ley, CA, USA, October 15-17, 2017, pages 132–143. IEEE Computer Society, 2017. 1, 2

[11] Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs. partition number.
SIAM J. Comput., 47(6):2435–2450, 2018. 1

[12] Mika Göös, Toniann Pitassi, and Thomas Watson. The landscape of communication complexity classes.
Comput. Complex., 27(2):245–304, 2018. 16

[13] Hamed Hatami, Kaave Hosseini, and Shachar Lovett. Structure of protocols for XOR functions. SIAM
J. Comput., 47(1):208–217, 2018. 1, 2

[14] Hamed Hatami and Yingjie Qian. The unbounded-error communication complexity of symmetric XOR
functions. arXiv preprint arXiv:1704.00777, 2017. 1, 2

[15] Emanuel Knill. Graph generated union-closed families of sets, 1994. 3

[16] Ming Lam Leung, Yang Li, and Shengyu Zhang. Tight bounds on communication complexity of symmet-
ric XOR functions in one-way and SMP models. In International Conference on Theory and Applications
of Models of Computation, pages 403–408. Springer, 2011. 1, 2

19

[17] László Lovász and Michael E. Saks. Lattices, möbius functions and communication complexity. In 29th
Annual Symposium on Foundations of Computer Science, White Plains, New York, USA, 24-26 October
1988, pages 81–90. IEEE Computer Society, 1988. 1

[18] Shachar Lovett. Communication is bounded by root of rank. J. ACM, 63(1):1:1–1:9, 2016. 1

[19] Nikhil S. Mande and Swagato Sanyal. On parity decision trees for fourier-sparse boolean functions.
Electronic Colloquium on Computational Complexity (ECCC), 27:119, 2020. 1, 2

[20] Ashley Montanaro and Tobias Osborne. On the communication complexity of XOR functions. arXiv
preprint arXiv:0909.3392, 2009. 1, 2

[21] Sagnik Mukhopadhyay and Bruno Loff. Lifting theorems for equality. In STACS 2019, 2019. 1, 2, 4, 14

[22] Noam Nisan and Mario Szegedy. On the degree of boolean functions as real polynomials. Computational
complexity, 4(4):301–313, 1994. 6, 10

[23] Toniann Pitassi, Morgan Shirley, and Thomas Watson. Nondeterministic and randomized boolean
hierarchies in communication complexity. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors,
47th International Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11,
2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 92:1–92:19. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. 1

[24] Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. Combinatorica, 19(3):403–
435, 1999. 2

[25] Alexander A. Razborov. On the distributional complexity of disjointness. Theoretical Computer Science,
106(2):385–390, 1992. 1, 16

[26] Swagato Sanyal. Near-optimal upper bound on fourier dimension of boolean functions in terms of
fourier sparsity. In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann,
editors, Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto,
Japan, July 6-10, 2015, Proceedings, Part I, volume 9134 of Lecture Notes in Computer Science, pages
1035–1045. Springer, 2015. 1, 2

[27] Alexander A. Sherstov. On quantum-classical equivalence for composed communication problems. Quan-
tum Information & Computation, 10(5&6):435–455, 2010. 2

[28] Avishay Tal. Properties and applications of boolean function composition. In Proceedings of the 4th
conference on Innovations in Theoretical Computer Science, pages 441–454, 2013. 7

[29] Hing Yin Tsang, Chung Hoi Wong, Ning Xie, and Shengyu Zhang. Fourier sparsity, spectral norm, and
the log-rank conjecture. In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science,
pages 658–667. IEEE, 2013. 1, 2

[30] Penghui Yao. Parity decision tree complexity and 4-party communication complexity of XOR-functions
are polynomially equivalent. arXiv preprint arXiv:1506.02936, 2015. 1, 2

[31] Shengyu Zhang. Efficient quantum protocols for XOR functions. In Proceedings of the twenty-fifth
annual ACM-SIAM symposium on Discrete algorithms, pages 1878–1885. SIAM, 2014. 1, 2

[32] Zhiqiang Zhang and Yaoyun Shi. Communication complexities of symmetric XOR functions. Quantum
Information & Computation, 9(3):255–263, 2009. 1, 2

20

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

