
A Note on Hardness under Projections for Graph

Isomorphism and Time-Bounded Kolmogorov

Complexity

Eric Allender
Department of Computer Science, Rutgers University

allender@cs.rutgers.edu

Azucena Garv́ıa Bosshard
School of Informatics, University of Edinburgh

agarvia@student.ethz.ch

Amulya Musipatla
School of Computer Science, Carnegie Mellon University

amusipat@andrew.cmu.edu

October 26, 2020

Abstract

This paper focuses on a variant of the circuit minimization problem
(MCSP), denoted MKTP, which studies resource-bounded Kolmogorov
complexity in place of circuit size. MCSP is not known to be hard for any
complexity class under any kind of m-reducibility, but recently MKTP
was shown to be hard for DET under m-reductions computable in NC0,
by presenting an AC0 reduction from the rigid graph isomorphism problem
to MKTP, and combining that with a theorem of Torán, showing that DET
AC0-reduces to the rigid graph isomorphism problem, and then appealing
to the “Gap Theorem” of [1]. Here, we show that these reductions can
be accomplished by means of projections. Thus MKTP is hard for DET
under projections, and the rigid graph isomorphism problem is hard for
DET under uniform projections.

1 Introduction

The Minimum Kolmogorov Time-Bounded Complexity Problem (MKTP) has
attracted attention due to its connection to the Minimum Circuit Size Problem
(MCSP). MKTP is the problem of determining whether a string s has complexity
less than a certain threshold, where this complexity is defined as the minimum
of |d|+ t over all descriptions, d, of s given that a Universal Turing Machine can

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 158 (2020)

output the ith bit of s in time t on input (d, i). This problem and its variants
are introduced in [3].

In this paper, we improve the known hardness result for MKTP by Allender
and Hirahara, that MKTP is hard for DET under non-uniform NC0 reductions
[7], and show that MKTP is in fact hard for DET under non-uniform projections.
In other words, the existing reduction had each output bit depending on a
constant number of input bits while in our reduction each output bit depends
on at most one input bit.

Clearly this type of reduction is much more restrictive, which helps motivate
interest in this result. For instance, if someone were to show that there is a
problem in DET that requires superpolynomial size on depth-three threshold
circuits, then this lower bound would now carry over immediately to MKTP;
whereas this would not follow immediately from the NC0-reduction of [7].

Time-Bounded Kolmogorov complexity and circuit complexity are polyno-
mially related, although there is no known ≤P

T reduction between MKTP and
MCSP. Due to this connection, results regarding MKTP tend to follow through
immediately with MCSP and it has historically been easier to find hardness
results for MKTP. Recently, Allender and Hirahara [7] proved an implication
between the hardness of MKTPA and MCSPA, for many oracles A. These prob-
lems are widely studied due to the belief that they might be NP-intermediate, at
least under uniform AC0 reductions (which one might be able to prove without
settling the P vs NP question).

There is ample reason to believe that MCSP /∈ P; if MCSP were computable
in P then there would be no cryptographically-secure one-way functions [14].
Additionally, many supposedly-intractable problems, whose conjectured diffi-
culty underlies various cryptographic systems, such as the Discrete Log assump-
tion, are solvable in BPPMCSP and BPPMKTP [3].

Some evidence that MCSP might not be NP-hard comes from the fact that
many canonical NP-complete problems, such as SAT, are actually complete un-
der very restrictive reductions (TIME(poly(log n))), whereas Murray and Williams
[16] show that MCSP is not complete under this type of reduction; they prove
that for every δ < 1

2 , there is no TIME(nδ) reduction from PARITY to MCSP.
[16] also proves that there would be interesting consequences of NP-hardness
results for MCSP, for instance, if MCSP is NP-hard under polynomial-time re-
ductions, then EXP 6= NP ∩ P/poly and consequently, EXP 6= ZPP. Further
improvements in this direction were recently presented by Fu [10].

Torán [17] proved that Graph Isomorphism (GI) is hard for DET under AC0

reductions, and showed that this holds even for “rigid” graphs (graphs with no
nontrivial automorphisms). Graph isomorphism is in BPPMCSP and BPPMKTP

[4] and even lies in ZPPMKTP [6]. The Rigid Graph Isomorphism Problem (RGI)
reduces to MKTP under NC0 reductions [7]. Since RGI is hard for DET under
AC0 reductions [17] and even under NC0 reductions [7], this yielded the first
proof that MKTP is hard for a well-studied complexity class under some notion
of m-reduction.

Here, we show that the reduction from DET to RGI can even be a uniform
projection, and we observe that the reduction from RGI to MKTP in [7] is

2

actually a non-uniform projection, thus yielding the first proof that MKTP is
hard for a well-studied complexity class under projections. Subsequently, a
larger complexity class (which is believed to contain intractable problems and
which does contain RGI) was also shown to reduce to MKTP under (nonuniform)
projections [5].

For that reason, this article does not focus on the reduction from RGI to
MKTP (which has been superseded by [5]). It may still be of use to other
researchers, to know that RGI is hard for DET under uniform projections, and
this does not follow from the later work. Thus this reduction may now be viewed
as the main contribution of the current paper.

2 Preliminaries

We assume familiarity with basic complexity theory, such as the complexity
classes L and NL (deterministic and nondeterministic logspace, respectively)
and the circuit complexity classes AC0 and NC1. The required background can
be found in a textbook such as [18].

The Graph Isomorphism problem (GI) is the problem of determining whether
two graphs are isomorphic. We sometimes assume that various vertices are
assigned a “color” (and that isomorphisms must respect the colors of vertices);
this so-called Colored GI is well-known to be equivalent to GI [15]. We will also
refer to RGI: the restriction of GI to rigid graphs. A rigid graph is one that
has no automorphisms, and RGI asks to determine whether two rigid graphs are
isomorphic.

#L is the class of counting functions f(x) that correspond to problems in
NL [8]. More formally, it is the class of functions f : {0, 1}∗ → N where f(x)
computes the number of accepting paths on input x for some Turing Machine
deciding a problem in NL. For example, the problem of determining whether a
graph has a path from node s to t is in NL. Its corresponding counting problem
of counting the number of paths between s and t is in #L. In fact, computing
any f(x) for f ∈ #L is reducible to computing the number of paths in a directed
graph Gx. That is, there is an AC0-computable function G such that f(x) is
the number of s− t paths in the graph G(x).

It is useful to identify a class of languages whose complexity coincides with
that of #L. If f ∈ #L, define Lf to be {(x, i, b) : the i-th bit of f(x) is b}.
Given a function f ∈ #L and a problem A, we say that f reduces to A if Lf
reduces to A.

The determinant class (DET) is the class of problems that are NC1-Turing
reducible to the problem of computing the determinant of a matrix. This class
can equivalently be described as NC1(#L) [8], i.e. the class of problems that are
NC1-Turing reducible to #L.

A projection is a very restrictive type of reduction, which is computed by
a family of circuits that have no gates (other than NOT gates). Thus every
output bit (other than bits that are set to constants in {0, 1}) is connected by a
wire to some input bit or its negation. We consider only projections computed

3

⊕
⊕
⊕

⊕
⊕

Figure 1: Funnel structure on 6 inputs.

by circuits of polynomial size. We write A≤proj
m B if A is reducible to B via a

projection (possibly computed by a nonuniform family of circuits). If A≤proj
m B

via a uniform family of circuits (consult [18] for a discussion of uniformity), then
we write A≤fop

m B. Here, “fop” stands for first-order projection, because of their
use in the study of descriptive complexity [13, 2] (where uniform AC0 can be
viewed as characterizing the expressive power of first-order logic).

2.1 Chinese remainder representation

Let Bn = {p1, ..., pn}, with p1 < ... < pn, denote the set of the first m primes
and let M =

∏
p∈Bn

p. The Chinese remainder representation of an integer x
in base Bn is defined as (x1, ..., xn), where xi = x mod pi for all i ∈ [m]. This
representation is unique whenever 0 ≤ x < M .

Theorem 2.1. The problem of obtaining the binary representation of an integer
given its Chinese remainder representation is in NC1 (and even in uniform TC0)
[9, 12].

3 Main Theorem

In this section, we show that DET≤fop
m RGI. Our proof closely follows the devel-

opment in [17]. The complexity of DET can be characterized by the complexity
of counting paths in graphs. The first step toward building our reduction is to
show that counting paths modk reduces to RGI via projections.

3.1 Counting paths mod k with RGI

It is convenient to consider arithmetic circuits consisting of mod gates of fan-in
two. For that reason, we introduce the following definition:

Definition 3.0.1. C∗n[k] denotes a circuit on n inputs with a funnel-like (or
tree-like) structure of fan-in 2 mod k gates. This structure has depth log(n)
such that the ith layer connects the outputs of the i− 1th layer in pairs.

See Figure 1 for an example of such a structure.

4

z1

z0

u1,1

u1,0

u0,1

u0,0

y1

y0

x1

x0

⊕x
y z

Figure 2: The graph G2 representing a mod2 gate.

The motivation behind this definition is to turn a mod k gate of arbitrary
fan-in into a structure that computes the same function but using only gates of
fan-in 2.

For completeness, we include the following definition and lemma from [17].

Definition 3.0.2. Let k ≥ 2 and denote by ⊕ the addition in Zk. We define
the undirected graph Gk = (V,E), given by the set of k2 + 3k nodes

V = {xa, ya, za | a ∈ {0, ..., k − 1}} ∪
{ua,b | a, b ∈ {0, ..., k − 1}}

and edges

E = {(xa, ua,b) | a, b ∈ {0, ..., k − 1}} ∪
{(yb, ua,b) | a, b ∈ {0, ..., k − 1}} ∪
{(ua,b, za⊕b) | a, b ∈ {0, ..., k − 1}}

Figure 2 shows the graph that corresponds to the mod2 gate.

Lemma 3.1. Fix k ≥ 2, for any a, b ∈ {0, ..., k − 1},

1. there is an automorphism ϕ in Gk mapping x0 to xa and y0 to yb, and

2. every automorphism ϕ in Gk mapping x0 to xa and y0 to yb, maps z0 to
za⊕b

Armed with this gadget, we can now make further progress toward reducing
counting paths to RGI.

5

Lemma 3.2. For any NL machine M and for any k ∈ N, there is a first-order
projection that maps string y to a string x and a circuit C containing only
fan-in two mod k gates such that C on input x outputs P mod k, where P is
the number of accepting paths of M on input x. The size of the projection is
polynomial in |y| and k.

Proof. We may assume without loss of generality that the NL machine M has
exactly one accepting configuration, which is also a halting configuration. We
may also assume that M keeps track of the number of steps that it has executed,
so that its configuration graph is acyclic. Consider the graph G consisting of
all configurations of M on input y, and note that the number of nodes in G
is polynomial in |y|. Let s denote the node of G corresponding to the initial
configuration of M on input y, and let t denote the node corresponding to the
accepting configuration. Clearly P is equal to the number of paths in G from s
to t, and also G can be constructed from y via a uniform projection.

First, given s and t, consider assigning the following weight function w to
all the edges of G. Let N(u) denote the set of all neighbors of u, and let V be
the set of vertices of G.

w(u, v) =

1 if u = s

0 if u = t(there are no edges(t, v))∑
x∈N(u) w(x, u) otherwise

Under this weight function, P equals the sum of the edge weights going into
t. Expanding on this, for any number k, computing P mod k is as simple as
modifying each weight such that w∗(u, v) = w(u, v) mod k.

This can be envisioned as a circuit C such that each node except s is a
modk gate, and the output of a gate is an input of another if there is a directed
edge between the two in G. The only other input to any gate is a 1 if there is
an edge directed from s to its corresponding vertex. Each gate has at most |V |
inputs.

Now, we replace each gate in C by C∗|V |(k). This structure has |V | − 1 gates

at the level closest to the inputs and depth dlog(|V |)e, where |V | is the number
of vertices in G (Fig. 1). As explained above, this structure has the property
that every gate in the circuit has a maximum of two inputs, but the output of
the structure still computes mod k of all inputs to the structure. The structures
are connected in the same way as in C, with the exception that the ith input
to the funnel for gate v is connected to the output of the structure for gate i if
there is an edge from i to v in G, and otherwise it is connected to a constant 0.

Clearly, there is a projection that produces an encoding of this circuit (as an
adjacency matrix), given G, and hence there is a projection that produces the
circuit given y, since the composition of two projections is a projection. The
input to the circuit consists of a 1 feeding into the node s, and 0’s feeding into
any other input gate.

There are three classes of bits in the adjacency matrices of the circuit.

6

s

u

t

v

u⊕
⊕

⊕

v⊕
⊕

⊕

t⊕
⊕

⊕
1 →

⊕
⊕

v →
s→

0→
u→

ordering of the entry wires
for each funnel

Figure 3: An example of a graph being transformed into a circuit with fan-
in 2 addition mod Zk as described in Lemma 3.2 The output of the circuit
corresponds to P mod Zk where P is the number of s − t paths in the graph,
assuming the unconnected wires have input 0.

7

• Those that represent the internal structure of a funnel and are therefore
fixed.

• Those that are fixed to be 0 because they represent the connection between
two gates that cannot be connected due to the ordering of the wires.

• Those that correspond exactly to an edge in Gx and are therefore depen-
dent only on the bit that represents that edge in the adjacency matrix of
Gx because of the ordering imposed on the input wires of any structure.

It is routine to verify that the connections are sufficiently uniform, so that this
is a first-order projection. (In order to make the uniformity argument more
transparent, one can adopt a naming convention for the gates in the circuit,
where the gates have names of the form (D,w) where D is a configuration of
M and w is the name of the wth gate in the copy of C∗|V |(k) for configuration

D.) �

See Figure 3 for an example of the transformation in Lemma 3.2.

Lemma 3.3. For each fixed p ∈ {0, 1, ..., k− 1}, there is a projection that takes
as input a fan-in 2 circuit C consisting of modk gates (as in Lemma 3.2) and
some input x, and produces as output two graphs G1 and G2 such that there is
an isomorphism between the two if and only if C(x) = p.

Proof. We first proceed by mapping any modk gate to the graph structure de-
scribed in Lemma 3.1. This can be done via a projection since each structure
is fixed. If one gate’s output feeds into another gate’s input, we connect the k
outputs to the k inputs correspondingly. A naive approach would lead to a re-
duction that is not a projection, because checking if, say, gate h is the “first” or
the “second” input to gate g would involve checking several bits of the adjacency
matrix.

Under the construction in Lemma 3.2, however, for any funnel structure, we
know exactly which input wire corresponds to any gate’s output. This means
that for any input vertex in the mod k graph, we know exactly which connection
to look for in the circuit, meaning that each bit of the adjacency matrix will
depend on at most one bit of the circuit’s matrix. As a consequence, we know
that all bits but one in each column are fixed to be 0, making this a very sparse
matrix.

In order to create an instance of RGI, we create two copies of the graph
described above; let’s call them G0 and G1. Let the nodes corresponding to
the input gates (in each graph) be {(gi, j) : 1 ≤ i ≤ n, 0 ≤ j ≤ k − 1}, and let
the nodes corresponding to the output gates be {h, j) : 0 ≤ j ≤ k − 1}. In G0

we give color i to (gi, 0) and we give color n + 1 to (h, 0); in G1 we give color
i to (gi, xi) and we give color n + 1 to (h, p). Note that the coloring given to
G0 yields a simulation of the circuit C on the all-zero input (in which case it is
guaranteed to output 0), whereas the coloring given to G1 yields a simulation of
the circuit on input x. (Nodes that are in the gadgets corresponding to a given
gate g can be given color g, in order to maintain rigidity.) As in [17], we can

8

see that the circuit outputs p ∈ Zk if and only if G0 and G1 are isomorphic. It
is also observed in [17] that both graphs are rigid. �

Theorem 3.4. DET≤fop
m RGI

Proof. With the preceding two lemmas in hand, the rest of the proof proceeds
precisely as in the proof of [17, Theorem 5.3] (which is credited there to van
Melkebeek). A crucial ingredient of this proof is to make use of the set PGI,
which is defined to be

{((G,H), (I, J)) : (G,H) ∈ GI⇔ (I, J) 6∈ GI}.

(In our proof, the graphs G,H, I and J will all be rigid.) A tuple ((G,H), (I, J))
in PGI is considered to encode the Boolean value 1 if (G,H) ∈ GI, and will encode
0 if (I, J) ∈ GI.

Lemma 3.3 shows how, for any function f ∈ #L, any number p (where we will
be interested only in the case where p is prime), and any k < p, one can obtain
a first-order projection q such that, for any string x, q(x) is a pair (G,H) of
rigid graphs with the property that G and H are isomorphic iff f(x) ≡ k mod p.
We now want to create an instance of PGI, which means that we also want to
have a pair of graphs (I, J) that are isomorphic iff f(x) 6≡ k mod p. Note that,
if p is prime, then f(x) 6≡ k mod p if and only if (f(x) + (p− k))p−1 ≡ 1 mod p.
Note also that the function that maps (x, 1p) to f(x)p−1 is also in #L. Thus
the construction from Lemma 3.3 can be used to create the complete instance
of PGI encoding whether or not f(x) ≡ k mod p.

As in [17, Theorem 5.3] for any problem A ∈ DET, we observe that since A
is NC1-Turing reducible to the oracle Lf for some f ∈ #L, it is also NC1-Turing
reducible to the oracle

L′f = {(x, p, k)|p < a log |x| andf(x) ≡ k mod p}

by Theorem 2.1. (Here, the constant a is chosen so that the product of the first
na primes is larger than the numeric value of f(x) for any x of length n.) The
reduction presented in [17, Theorem 5.3] that produces an instance of RGI can
actually be implemented as a first-order projection with no additional changes,
where each query about f(x) in the original NC1-Turing reduction is replaced by
a list of queries asking if (x, p, k) ∈ L′f for all small primes p and all k < p. Thus
the only modification to the original construction that is required is provided
by Lemmas 3.2 and 3.3. �

Theorem 3.5. [AH] RGI is many-one reducible to MKTP under projections.

Proof. We consider the reduction from RGI to MKTP given in [7]. On input
(G0, G1), the reduction uses t permutations {πi} and a complex binary string x
of length t. The input is then mapped to the string π0(Gx0)π1(Gx1)...πi(Gxi),
which is complex if and only if G0 and G1 are not isomorphic. We note that to
obtain any bit of πi(Gxi

), the reduction only relies on the bit of Gxi
that maps

to it through the permutation πi. That is, if Gxi
(a, b) refers to the bit denoting

if vertex a is adjacent to b, then πi(Gxi
)(πi(a), πi(b)) = Gxi

(a, b). This is clearly
a projection. �

9

Our main result now follows directly from Theorems 3.4 and 3.5 .

Corollary 3.5.1. MKTP is hard for DET under many-one projections.

4 Conclusions and Open Questions

It is interesting to note that the simplicity of this reduction relies on enforcing
an inefficient structure of the output, meaning that a large majority of the bits
are fixed. In Lemmas 3.3 and 3.4, we turn a graph into a circuit and then into
a graph isomorphism problem. In both proofs, in order to maintain that the
reduction is projection, we require establishing an ordering of vertices. Using
this ordering means that most bits are fixed as zeros and are mainly used just
for formatting purposes.

Given that MCSP and MKTP are related problems, we believe our result
should follow through for MCSP however we currently have no hardness results
for MCSP with relation to DET.

Acknowledgments

The work of the second and third authors was performed while they were par-
ticipants in the 2019 DIMACS REU program [11], and was supported by NSF
grant CCF-1852215. They also thank Lazaros Gallos and Parker Hund for or-
ganizing the REU program’s activities. The first author is supported in part by
NSF grant CCF-1909216.

References

[1] Manindra Agrawal, Eric Allender, and Steven Rudich. Reductions in cir-
cuit complexity: An isomorphism theorem and a gap theorem. Journal of
Computer and System Sciences, 57(2):127–143, 1998.

[2] Eric Allender, José L. Balcázar, and Neil Immerman. A first-order isomor-
phism theorem. SIAM Journal on Computing, 26(2):557–567, 1997.

[3] Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek,
and Detlef Ronneburger. Power from random strings. SIAM Journal on
Computing, 35(6):1467–1493, June 2006.

[4] Eric Allender and Bireswar Das. Zero knowledge and circuit minimization.
Information and Computation, 256:2–8, 2017. Special issue for MFCS ’14.

[5] Eric Allender, John Gouwar, Shuichi Hirahara, and Caleb Robelle. Cryp-
tographic hardness under projections for time-bounded kolmogorov com-
plexity. Manuscript, 2020.

10

[6] Eric Allender, Joshua A Grochow, Dieter Van Melkebeek, Cristopher
Moore, and Andrew Morgan. Minimum circuit size, graph isomorphism,
and related problems. SIAM Journal on Computing, 47(4):1339–1372, 2018.

[7] Eric Allender and Shuichi Hirahara. New insights on the (non-) hardness
of circuit minimization and related problems. ACM Transactions on Com-
putation Theory (TOCT), 11(4):1–27, 2019.

[8] Eric Allender and Mitsunori Ogihara. Relationships among PL, #L, and
the determinant. RAIRO - Theoretical Informatics and Applications, 30:1–
21, 01 1996.

[9] A. Chiu, G.I. Davida, and B. Litow. Division in logspace-uniform NC1.
RAIRO Theoretical Informatics and Applications, 35:259–276, 2001.

[10] Bin Fu. Hardness of sparse sets and minimal circuit size problem. In
Proc. Computing and Combinatorics - 26th International Conference (CO-
COON), volume 12273 of Lecture Notes in Computer Science, pages 484–
495. Springer, 2020.

[11] Azucena Garvia-Bosshard and Amulya Musipatla. A note on the relation-
ship between the determinant and time-bounded Kolmogorov Complexity.
Manuscript, see reu.dimacs.rutgers.edu/2019/projects.php, 2019.

[12] William Hesse, Eric Allender, and David A. Mix Barrington. Uniform
constant-depth threshold circuits for division and iterated multiplication.
Journal of Computer and System Sciences, 65:695–716, 2002.

[13] Neil Immerman. Descriptive complexity. Springer Science & Business Me-
dia, 2012.

[14] Valentine Kabanets and Jin-Yi Cai. Circuit minimization problem. In
Proceedings of the Thirty-second Annual ACM Symposium on Theory of
Computing, STOC ’00, pages 73–79, New York, NY, USA, 2000. ACM.

[15] Johannes Köbler, Uwe Schöning, and Jacobo Torán. The Graph Iso-
morphism Problem: Its Structural Complexity. Birkhauser Verlag, Basel,
Switzerland, Switzerland, 1993.

[16] Cody D. Murray and R. Ryan Williams. On the (non) NP-hardness of
computing circuit complexity. Theory of Computing, 13(4):1–22, 2017.

[17] Jacobo Torán. On the hardness of graph isomorphism. SIAM Journal on
Computing, 33(5):1093–1108, 2004.

[18] Heribert Vollmer. Introduction to Circuit Complexity: A Uniform Ap-
proach. Springer-Verlag New York Inc., 1999.

11

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

