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Abstract. We advance the theory of QBF proof systems by showing the first
simulation of the universal checking format QRAT by a theory-friendly system. We
show that the sequent system G fully p-simulates QRAT, including the Extended
Universal Reduction (EUR) rule which was recently used to show QRAT does not
have strategy extraction. Because EUR heavily uses resolution paths our technique
also brings resolution path dependency and sequent systems closer together. While
we do not recommend G for practical applications this work can potentially show
what features are needed for a new QBF checking format stronger than QRAT.

1 Introduction

Various applications can be naturally expressed as quantified Boolean formulas
(QBF) and QBF solvers have become powerful tools in recent years. However
different solvers act in radically different ways, thus universally verifying the
results of these solvers is difficult but highly desired. The proof system QRAT has
been proposed as a universal checking format for QBF solvers and preprocessors.
However, while QRAT appears to be strong enough for many modern techniques
[3, 11, 13], it was shown that unless P = PSPACE it is asymmetrical on true and
false QBFs [4]. While the asymmetry is not as serious as an unconditional lower
bound, it does make us question the longevity of the format.

In order to fix this we must look for alternatives, but we do not want to
sacrifice any of QRAT’s strengths, especially QRAT’s short proofs for formulas
with PSPACE-hard strategies. This unfortunately makes it hard (PSPACE-hard
in fact) for most other QBF proof systems to simulate QRAT. Nonetheless, in
this paper we find a proof system able to capture QRAT’s full power, that does
not share QRAT’s asymmetry problems. We show a p-simulation of QRAT by a
theoretical sequent calculus, known as G, created by Krajı́ček and Pudlák [17].

It was surprising that QRAT was this powerful to begin with. Most QBF sys-
tems have a property known as strategy extraction: There exist polynomial time
algorithms to extract from a proof a circuit that tells us how a quantified variable
should be played it order to witness the QBF as true or false. The QBF proof sys-
tem extended Frege+∀-Red was shown to have a conditional optimality among
QBF proof systems with strategy extraction [2]. The propositional versions of
QRAT and extended Frege+∀-Red, known as DRAT and extended Frege [12], are
p-equivalent. Yet QRAT unexpectedly ended up not having strategy extraction
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(unless P = PSPACE) [4], showing that extended Frege+∀-Red is not powerful
enough to simulate QRAT.

G is powerful enough, because it sacrifices automatability for a high degree
of non-determinism. For example, let A, B, and C be three QBFs. If A ` B and
B ` C are known implications, G allows you to “cut” the QBF B and derive
A ` C. Knowing which B should be cut is very difficult to automate, because
the scope ranges over all QBFs. While other QBF systems use a cut, G is the only
known QBF system that allows cut objects to be QBFs themselves. For example,
the resolution rules cuts over a variable. As a consequence, it is a weaker proof
system that is easier to automate.

Our simulation of QRAT also depends on G’s quantifier introduction rule,
which, just like the cut rule, uses a QBF that is removed from the formula.
This QBF witnesses a new quantifier, which is added to the derivation. In other
systems this is function is performed by reduction rules [5] such as the one found
in Extended Frege+∀-Red. However, that reduction rule only has witnesses on the
level of propositional circuits [1], not on QBFs. G’s QBF witnesses are needed
when dealing with QRAT.

Unlike G, QRAT has no way of using a QBF witness. In terms of cut rules,
QRAT seems to be of intermediate strength as it would appear that the non-
deterministic objects are propositional circuits. In this regard, QRAT is similar
to Extended Frege+∀-Red. However, QRAT uses a stronger universal reduction
rule compared to Extended Frege+∀-Red: extended universal reduction (EUR).

This rule is the culprit as to why QRAT breaks strategy extraction. We give it
the most attention in our simulation argument. Without EUR, QRAT has efficient
strategy extraction for false QBFs. Strategy extraction for true QBF is always
possible in QRAT since EUR ends up being useless for true formulas [7]. This is
precisely the reason why QRAT is asymmetric on true and false. It is also the
reason that every other rule except EUR can be simulated by using a strategy
extraction technique, writing the circuit construction for QRAT rules explicitly
in G and then formally proving them. But for the hardest part, simulating the
EUR rule, it is strictly necessary to use all the QBF level non-determinism that G
can manage.

EUR works by utilising the theory of dependency schemes, which helps
alleviate some of the rigidity when dealing with how quantifiers are ordered.
The relationship between dependency schemes and other QBF techniques is
somewhat mysterious, and we hope that our result also sheds some light on
these. Any simulation proof using a sound calculus is automatically a soundness
argument and therefore we show another soundness proof for QRAT. This means
that our simulation on the EUR rule ends up formalising how the dependencies
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Fig. 1. Simulation structure for QBF calculi, a dashed line indicates a conjectured simulation has
not been found, the lack of one implies a conditional or unconditional lower bound

work. In particular we provide a new soundness idea for dependency schemes
using resolution paths, which is what EUR uses.

2 Overview of contributions

In this paper, we show that G simulates QRAT, which by transitivity can simulate
other systems (see Figure 1). We believe this sets the most important condition
for future universal QBF checking formats. If we want f to be our next universal
checking format, then ideally f should p-simulate G.

While G has many rules, many of them are straightforward and do little
more than represent the definition of Boolean operations. Using these rules
to capture the complex reasoning in QRAT, requires some work. Essentially,
another soundness argument has to be made for QRAT but formalised entirely in
G. Our p-simulation proof therefore takes up the entirety of this paper. There are,
however, some fundamental ideas that allow the proof of p-simulation to happen,
which we will mention here.

2.1 Simulation by strategy extraction.

Many QBF proof systems have the strategy extraction property for Skolem or
Herbrand functions. If you have a proof system f and a proof system g that has
strategy extraction, then one method for proving that f p-simulates g is to take a
g-proof, extract the circuits via strategy extraction and then construct an f -proof
validating the circuits as witnesses. This technique first saw use putting extended
Frege+ ∀-Red into a normal form [1].

This is the idea behind our G p-simulation of QRAT’s rules. In Section 4, we
use the strategy extraction procedures from [3, 7] to observe how the use of each



QRAT rule builds a strategy circuit. We use this strategy building technique to
give us two main theorems:

Theorem 1. Given a CNF φ closed under prefix Π . Suppose that the QRAT
rules QRATA or ATA can add C to φ, or the QRAT rules QRATE or ATE can
remove C from φ ∧ C. Then the sequent Πφ ` Π ′φ ∧ C has a polynomial size
G proof. Where Π ′ contains all variables from Π and any additional variables
from C.

Theorem 2. Given a CNF ψ = φ∧ (C ∨ l) closed under prefix Π . Suppose that
the QRAT rule QRATU can reduce C ∨ l to C, where C is a clause and l is a
literal. Then the sequent Πφ∧ (C ∨ l) ` Πφ∧C has a polynomial size G proof.

2.2 Formalising independence.

Formalising strategy extraction does not work for the only remaining rule EUR.
Instead, in order to simulate EUR it is necessary to formalise what makes EUR
sound, namely independence. In Section 5 we do exactly this, we come up with
a sequent that represents the independence that EUR uses and then show that
it has a short G proof. These sequents of Theorem 3 use QBFs and most of the
work here is using the dependency scheme to come up with the correct witnesses
to introduce the quantifiers.

Theorem 3. For any CNF φ with a subset χ1 and let C denote the set of all
clauses of the resolution paths from χ1, in the existential literals of a prefix Π . G
can prove Π(φ\χ1), Π

∧
D∈CD ` Πφ in a polynomial size proof.

Using QBF witnesses for EUR. While strategy extraction for circuits is not
possible for EUR, EUR still preserves whether a QBF is true or false and therefore
whether Skolem or Herbrand functions exist. Instead of expressing the strategies
via propositional circuits and using them to create witnesses, we create witnesses
out of QBFs. Using QBFs instead of circuits is adequate for our G proofs because
we can make cuts and instantiations with QBFs. In Section 5.2 we find the correct
QBF witnesses and we can cut with the sequent from Theorem 3 to show that
this gives us p-simulation of EUR.

Theorem 4. Let φ be a CNF with Π a prefix. Suppose that the QRAT rule
QRATU can reduce clause C ∨ l to C, where C is a clause and l is a literal. Then
the sequent Πφ ∧ (C ∨ l) ` Πφ ∧ C has a polynomial size G proof.

And finally, our main theorem is that G p-simulates QRAT. In other words, if
QRAT has a proof that QBF Ψ is true, one can construct a G proof of sequent
` Ψ and if QRAT has a proof that Ψ is false, one can construct a G proof of
sequent Ψ `.



Theorem 5. G p-simulates QRAT.

The proof of this follows directly from the short proofs from the various
theorems as one can use the cut rule to chain all the sequents together.

3 Preliminaries

Quantified Boolean formulas. Quantified Boolean formulas (QBF) extend
propositional logic with quantifiers ∀,∃ that work on propositional atoms [14].
We use notation A[x/y] to replace all instances of term y with term x in A. The
standard QBF semantics is that ∀xΨ is satisfied by the same Boolean assign-
ments as Ψ [0/x]∧Ψ [1/x] and ∃xΨ is satisfied by the same Boolean assignments
as Ψ [0/x] ∨ Ψ [1/x].

For QRAT, we consider QBFs in prenex normal form Πφ with φ being a
conjunction of clauses. The prefixΠ is arranged in a linear order (we use x <Π y
to denote x is left of y). For prefixes Π and Π ′ let Π ⊆ Π ′ mean for every
variable ∃x in Π , ∃x is in Π ′, and for every variable ∀y in Π , ∀y is in Π ′. And
if a and b are variables in Π with a ≤Π b then a ≤Π′ b.

If the prefix Π quantifies all variables in φ, then we say Πφ is closed. A
closed prenex QBF may be thought of as a game between two players. One
player is responsible for assigning values to the existentially quantified variables,
and the other responsible for the universally quantified variables. The existential
player wins the game if the formula evaluates to true once all assignments have
been made, the universal player wins if the formula evaluates to false. The players
take turns to make assignments according to the quantifier prefix, so the order of
the prefix dictates the turns of the game.

A strategy for the universal player on QBF Πφ is a method for choosing
assignments for each universal u that depends only on variables earlier than u in
Π . For each individual u we call a function that gives a winning strategy for the
universal player a Herbrand function. The dual concept for the existential player
is the Skolem function.

Clausal proofs. A proof system is a polynomial time function that maps
proofs to theorems. Proof system f is said to p-simulate proof system g if there
is a polynomial time mapping τ from g proofs to f proofs such that for each
g-proof π, f(τ(π)) = g(π).

In propositional logic, a literal is a variable (x) or its negation (¬x), a clause
is a disjunction of literals and a formula in conjunctive normal form (CNF) is a
conjunction of clauses. For a literal l, we denote its basic variable as var(l), if
l = var(l) then l̄ = ¬var(l), and if l = ¬var(l) then l̄ = var(l). For a clause
C, C̄ represents the conjunction

∧
c∈C c̄, each c̄ can be thought of as a singleton

clause. It is natural to understand a CNF as a set of clauses, and a clause as a set



of literals. As such we will use notation C ∈ φ to indicate that CNF φ has the
clause C in its matrix. Similarly l ∈ C indicates that clause C contains literal l.
Set notation is also used to define sub-clauses and sub-formulas.

Unit propagation. Unit propagation simplifies a CNF φ by building a partial
assignment and applying it to φ. It builds the assignment by satisfying any literal
that appears in a singleton (unit) clause. Doing so may negate opposite literals
in other clauses and result in them effectively being removed from that clause.
In this way, unit propagation can create more unit clauses and can keep on
propagating until no more unit clauses are left. We denote by φ `1 ⊥ that unit
propagation derives the empty clause from φ. Unit propagation is used heavily to
check the rules of DRAT and QRAT.

3.1 The rules of QRAT

Definition 6. Fix a prefix Π , assume that Π is strictly ordered. Now consider a
clause D and a literal l (not necessarily in D) we define, OlD = {k ∈ D | k <Π
l, k ∈ D}, I lD = {k ∈ D | k >Π l, k ∈ D}. OlD is called the outer clause and
I lD is called the inner clause.

The first rule ATA/ATE is a simple propositional implication using unit
propagation.

Definition 7 (Asymmetric Tautology Addition/Elimination (ATA)/(ATE)).
Let φ be a CNF with Π a prefix. Let C be a clause not in φ. Let Π ′ be a

prefix including the variables of C and φ, Π ⊂ Π ′.
Suppose φ ∧ C̄ `1 ⊥. Then we can make the following inferences.

Πφ
(ATA)

Π ′φ ∧ C
Πφ ∧ C

(ATE)
Πφ

The next rules, QRATA and QRATE, deal with adding or removing a clause,
but this time the Skolem function for a particular existential literal l changes as a
result of this rule. This means that QRATA and QRATE preserve truth but do not
necessarily preserve the strategies.

Definition 8 (Quantified Resolution Asymmetric Tautology Addition/Elimination
(QRATA)).

Let Πφ be a PCNF with closed prefix Π and CNF matrix φ. Let C be a
clause not in φ. Let Π1 and Π2 be disjoint prefixes and x a variable such that
Π ⊆ Π1∃xΠ2. The difference in prefix is simply to allow new variables.

If there is existential literal l, with var(l) = x such that for every D ∈ φ
with l̄ ∈ D, φ ∧ C̄ ∧ l̄ ∧ ŌlD `1 ⊥, then we can derive:



Πφ
(QRATA)

Π1∃xΠ2φ ∧ (C ∨ l)
Π1∃xΠ2φ ∧ (C ∨ l)

(QRATE)
Π1∃xΠ2φ

Example 9. ∀x∃y(x ∨ y) ∧ (x̄ ∨ ȳ) is true, so it has a QRAT proof. To prove
∀x∃y(x ∨ y) ∧ (x̄ ∨ ȳ) in QRAT we need to remove all the clauses. QRATE can
remove (x̄ ∨ ȳ) wrt to literal ȳ as the only clause with y in it is (x ∨ y) and the
condition (x∨y)∧ x̄∧x∧y `1 ⊥ holds. When (x∨y) is the only clause left we
can use QRATE wrt to literal y since the condition is vacuously true (there are
no clauses left with ȳ in them). We are left with the empty CNF which confirms
our starting QBF true.

The next rule QRATU removes a literal from a clause, the condition is similar
to that of QRATA/QRATE but uses a universal literal instead of an existential
one.

Definition 10 (Quantified Resolution Asymmetric Tautology Universal (QRATU)).

Let Π1∃xΠ2φ be a PCNF with closed prefix Π1∀uΠ2 and CNF matrix φ.
Let C ∨ l be a clause with universal literal l, with var(l) = u.

If for every D ∈ φ with l̄ ∈ D, φ ∧ C̄ ∧ ŌlD `1 ⊥, then we can derive

Π1∀xΠ2φ ∧ (C ∨ l)
(QRATU w.r.t. l)

Π1∀xΠ2φ ∧ C

The definition of the final rule: Extended Universal Reduction (EUR) is based
on the resolution paths (see Definition 26, in Section 5). Informally, a resolution
path is a path in the graph with vertices that are clauses, where an edge indicates
that a variable in a set S can be resolved between the two clauses. Originally, it
was defined using the version of resolution path that allowed the pivot variable
to be immediately re-used. This is in fact weaker than in Definition 11, as we get
more dependencies. But Definition 11 is in line with the intention of EUR which
is to exploit independence to make reductions.

Definition 11. Let Π1∃xΠ2φ be a PCNF with closed prefix Π1∀uΠ2 and CNF
matrix φ. Let C ∨ l be a clause with universal literal l, with var(l) = u.

If the resolution path C(φ ∧ C,C,S) (see Definition 26 later in Section 5)
contains no clause D such that l̄ ∈ D, when S is the set of existential variables
right of l in the prefix (i.e. in Π2), then we can derive

Π1∀lΠ2φ ∧ (C ∨ l)
(EUR)

Π1∀lΠ2(φ ∧ C)



A QRAT search starts with a closed prenex CNF Ψ and uses the six QRAT
rules to modify the QBF. A search is a proof of the truth of Ψ if it removes all
clauses and we are left with an empty CNF and proves the falsity of Ψ if it adds
an empty clause. The six rules are only required in search mode, once we have
determined whether a QBF is true or false the rules can be relaxed. QRAT proofs
of truth are allowed to add any clause arbitrarily, and QRAT proofs of falsify are
allowed to arbitrarily delete a clause [8].

Example 12. Take the false QBF ∃x∀u∃y(x∨ u∨ y)∧ (x̄∨ ū∨ y)∧ (ȳ). There
are no resolution paths in the variables right of u that connect clauses (x∨ u∨ y)
and (x̄ ∨ ū ∨ y). The only paths from each join to (ȳ) but are unable to reuse
the same literal to connect the opposing clause. This means that (x ∨ u ∨ y) can
be reduced to (x ∨ y) via EUR and then (x̄ ∨ ū ∨ y) can be reduced to (x̄ ∨ y)
by the same argument. The empty clause can be added with the ATA rule as
(x ∨ y) ∧ (x̄ ∨ y) ∧ (ȳ) `1 ⊥.

3.2 The sequent system G

Let Γ and ∆ each be sets of logical formulas1. A sequent Γ ` ∆ expresses
that any Boolean assignment that satisfies every formula in Γ also satisfies
at least one formula in ∆. Sequents can be used for propositional logic, first
order logic and QBF. In QBF we have to be careful about how we talk about
assignments, because there are many examples in the QBF literature where
assignments are over bound variables. When we are talking about how sequents
work, the assignments ignore bound variables, ∀uΨ(u) has the same satisfying
assignments as Ψ(0) ∧ Ψ(1), the variable u is ignored.

In a G sequent Γ ` ∆. Γ and ∆ are sets of QBFs, note here that these QBFs
are not necessarily in prenex form and they are also not necessarily closed, so
they may contain a mix of bound and free variables. The rules of G are given in
Figure 2.

The main difference between G and propositional sequent calculi are the
quantifier rules (∃ `), (` ∃), (∀ `) and (` ∀). The rules (` ∃) and (∀ `) are
the most flexible, allowing you to replace a term (which can be expressed by a
QBF) with a quantified variable. We include the proviso that if the term contains
any free variables these variables cannot be bound elsewhere [16]. Finding the
best term to replace is crucial to the simulation argument used in this paper. The
rules (∃ `) and (` ∀) are stricter, not only is one only allowed to substitute for
a variable p, but once bound that variable must disappear entirely. This often

1 Classically, sequents work on ordered multisets, but have exchange and contraction rules that
make it the same as sets. The multiset version adds only polynomially many lines to derivations
and we are interested in polynomial simulation, so we present a p-equivalent system here.



(`)
A ` A (⊥ `)⊥ ` (` >)` >

Γ ` Σ (• `)
∆,Γ ` Σ

Γ ` Σ (` •)
Γ ` Σ,∆

Γ ` Σ,A
(¬ `)¬A,Γ ` Σ

A,Γ ` Σ
(` ¬)

Γ ` Σ,¬A

A,Γ ` Σ
(•∧ `)

B ∧A,Γ ` Σ
A,Γ ` Σ

(∧• `)
A ∧B,Γ ` Σ

Γ ` Σ,A Λ ` ∆,B
(` ∧)

Γ,Λ ` Σ,∆,A ∧B

Γ ` Σ,A
(` •∨)

Γ ` Σ,B ∨A
Γ ` Σ,A

(` ∨•)
Γ ` Σ,A ∨B

A,Γ ` Σ B,Λ ` ∆
(∨ `)

A ∨B,Γ,Λ ` Σ,∆

Γ ` Σ,A A,Λ ` ∆
(cut)

Γ,Λ ` Σ,∆

A(B), Γ ` Σ
(∀ `)

∀xA(x), Γ ` Σ
Γ,` Σ,A(p)

(` ∀)
Γ ` Σ,∀xA(x)

A(p), Γ ` Σ
(∃ `)

∃xA(x), Γ ` Σ
Γ,` Σ,A(B)

(` ∃)
Γ,` Σ,∃xA(x)

A, B are QBFs and Γ,Λ,Σ,∆ are sets of QBFs,
Variable p does not appear free on the lower sequents in (∃ `), (` ∀).

The free variables of B are not bound in A in (∀ `), (` ∃).

Fig. 2. Rules of the sequent calculus G [17]



means that the other G rules (such as the other quantifier rules) need to be applied
first to remove instances of p from the other side of the sequent.

Example 13. The QBF ∀x∃y(x ∨ y) ∧ (¬x ∨ ¬y) is true as seen in Example 12.
There are no free variables, but we nevertheless understand it to be true under
all assignments. The sequent ` ∀x∃y(x ∨ y) ∧ (¬x ∨ ¬y) represents this and
can be proved from the rules of G. We can start with axiom z ` z and use the
negation and disjunction rules in LK to get sequent ` z ∨ ¬z and similarly we
can get ` ¬z ∨¬¬z, LK has a conjunction rule to put these together and we can
continue in G.

` (z ∨ ¬z) ∧ (¬z ∨ ¬¬z)
(` ∃)

` ∃y(z ∨ y) ∧ (¬z ∨ ¬y)
(` ∀)

` ∀x∃y(x ∨ y) ∧ (¬x ∨ ¬y)

As we can observe, this proof is cut-free. This means it has to build up
the sequents starting from the innermost connectives, working its way outward.
Because this formula is small without many variables, the proof is also small,
but cut becomes more practical in larger more complicated formulas.

The most important thing to notice about this proof is that (¬z) is used as
the witness in (` ∃) to quantify y. Since there is only one QBF and it is on the
right hand side, the witness also tells us the Skolem function. For (` ∃) we do
not have to quantify all instances of ¬z into y.

After we apply (` ∃), we have sequent ` ∃y(z ∨ y) ∧ (¬z ∨ ¬y). This
sequent should be read as: in all assignments to the free variables (z is only free
variable left), the sequent ` ∃y(z ∨ y) ∧ (¬z ∨ ¬y) is true. It is intuitive to see
how (` ∀) soundly applies here, replacing z with x and giving us the final QBF.
In this example we used variable z to eventually become the variable x. In later
examples and proofs, to avoid renaming every variable we will sometimes use
the same symbols for variables before and after they are quantified.

Example 14. Given a set of free variables X suppose we have a CNF φ(X) and
we quantify the X variables with a prefix Π . Consider a set of variables X ′ with
|X ′| = |X| and then let Π ′ be the X ′ version of Π . Similarly define X ′′ and
Π ′′.

Πφ(X) ` Π ′φ(X ′) can be proven in G by starting with φ(X) ` φ(X) and
adding the X variables when quantifying the left hand side variables and X ′

variables when quantifying the right hand side variables. Π ′′φ(X ′′) ` Π ′φ(X ′)
and Πφ(X) ` Π ′′φ(X ′′) can be proved in a similar way and through G’s
connective rules we can get sequentΠφ(X)∨Π ′′φ(X ′′) ` Π ′φ(X ′)∧Π ′′φ(X ′′).
This allows the sequent to be expressed entirely on the left hand side as (Πφ(X)∨
Π ′′φ(X ′′)) ∧ (¬Π ′φ(X ′) ∨ ¬Π ′′φ(X ′′)) `. This sequent expresses little more



than the law of non-contradiction for QBF but we can add more quantifiers to
make it interesting.

We can use (∀ `) with witness Π ′′φ(X ′′) to turn it into the universal variable
z to get ∀z(Πφ(X) ∨ z) ∧ (¬Π ′φ(X ′) ∨ ¬z) `. Expressed in PCNF (and G is
able to change to this PCNF ) this becomes a instance of the Select family which
have PSPACE-hard strategies [4]. The formulas looks like ∀zΠΠ̄ ′∃T (φ(X) ∨
z)∧ (φ̄(X ′, T )∨¬z). Π̄ ′ switches the quantifiers used but retains the same order
and φ̄(X ′, T ) expresses ¬φ(X ′) using Tseitin variables T . The ∨z and ∨¬z are
distributed throughout all the clauses in order to make this a PCNF.

Every Select formula has a short refutation in QRAT. The way do that is to
reduce z and ¬z literals. Since the φ(X) clauses and φ̄(X ′, T ) clauses do not
share any literals there is no resolution path between them and every z and ¬z
can be reduced with EUR. What we are left with is a formula in the Duality
family which has short refutations in Extended Frege+∀-Red which QRAT is
able to simulate [4].

Even for very basic tautologies G proofs require many lines, and we will see
in our simulation that although the simulation is polynomial, it uses considerably
more lines. To simplify our explanation, and avoid reinventing the wheel, we
omit certain steps, particularly in propositional logics as we are focused mainly
on QBF.

Lemma 15. The following substitutions can be made in short G proofs, based
on logical equivalence laws:

– Double negation
– De Morgan’s laws
– Distributive laws
– We can treat ‘,’ on the left part of a sequent as interchangeable with ‘∧’
– We can treat‘,’ on the right part of a sequent as interchangeable with ‘∨’

Proof. We can get these rules from the known power of LK , the propositional
fragment of G. LK is known to p-simulate Frege systems [16]. And the laws of
equivalence can be used as axioms in a Frege system. ut

The next lemmas show us common applications of the quantifier rules.

Lemma 16. Given QBFs A and B and a prefix Π = Q1x1, . . . ,Qnxn contain-
ing variables that may or may not be in A or B. If we can derive the sequent
A ` B in an m length proof, we can derive the sequent ΠA ` ΠB in a
O(m+ |Π|) length proof.



Proof. We define Πi = Qn−i+1xn−i+1, . . . ,Qnxn and we define Ai and Bi
in the reverse order starting with An = A and Bn = B. Let y1 . . . yn be
propositional variables. We define Ai−1 = Ai[yn−i+1/xn−i+1] and Bi−1 =
Bi[yn−i+1/xn−i+1].
Induction hypothesis: ΠiAi ` ΠiBi has G proof of length 2i+m.
Base case: When i = 0, Πi is empty so we can use the proof of A ` B, however
we replace the variables in the steps of the proof so that we get A0 ` B0.
Inductive step: If Qn−i = ∃, then we apply (` ∃) using yi+1 as the term that
we replace with bound variable xi+1 in Bn−i+1, now yi+1 no longer appears on
the right part of the sequent, only appearing on the left part where we can use
(∃ `) to quantify An−i+1 replacing yi+1 with xi+1.

Symmetrically, if Qn−i = ∀, then we apply (∀ `) using yi+1 as the term that
we replace with bound variable xi+1 in An−i+1, now yi+1 no longer appears
on the left part of the sequent, only the right part, where we can use (` ∀) to
quantify Bn−i+1 replacing yi+1 with xi+1.

Once we reach i = n we get ΠA ` ΠB and we have only used 2|Π|+m
steps. ut

Corollary 17. For any propositional formulas A and B, and quantifier prefix
Π there are short G proofs of Π(A ∧B) ` ΠA.

Lemma 18. For any QBF φ with free variables x and y, the sequent Π∃x∃yφ `
Π∃y∃xφ has a short G proof.

Proof. We can follow this particular G derivation. The key is that while quantify-
ing the right hand side using (` ∃) for x and y, we do not need to interrupt by
quantifying the left hand side until a ∀ quantifier appears. It is only (` ∀) and
(∃ `) which require the other side be quantified first. ut

Lemma 19. For any QBF φ where the variable x does not occur. If A,B ∈
{Π∃xφ,Πφ,Π∀xφ} then A ` B has a short G proof.

Proof. We start with sequent φ ` φ we can use any of (` ∀), (∀ `), (` ∃), (∃ `)
as x and y do not appear anywhere in φ. Then Lemma 16 allows us to addΠ . ut

4 Using strategies to simulate QRAT rules

In this section we use strategy extraction to show a G simulation of rules ATA,
ATE, QRATA, QRATE and QRATU. The final rule EUR does not have strategy
extraction. Since, G does not allow empty disjunctions or conjunctions, we treat
⊥ as the empty disjunction and > as the empty conjunction.



We break the proofs of simulation up into new lemmas. Because we do not
care too much about the order of clauses in a CNF we can afford to be ambiguous
to whether (•∧ `) or (∧• `) is used in a proof so we just use (∧ `) to signify
this. Similarly we can use (` ∨) in this way. Firstly we show that how we can
turn unit propagation into a proof of a useful sequent in G.

Lemma 20. If conjunctive normal form formula φ can be shown to be contra-
dictory via unit propagation, then the sequent φ ` has a polynomially bounded
proof in G. (Recall that an empty right hand side of a sequent is equivalent to the
empty disjunction).

Proof. We can prove this by induction on the number of unit clauses needed to
derive a contradiction.
Inductive Hypothesis: If CNF φ can be shown to be a contradiction in m many
unit propagation steps. There is G proof of sequent φ ` in O(m) many lines.
Base Case: Suppose we reach a contradiction using unit literals x and x̄ we can
represent this with G sequent x, x̄ `.

We can now strengthen the left side of the sequent to whatever we want,
adding the remaining clauses.
Inductive Step: Suppose we have a CNF φ and a unit clause l, divide φ into
three parts, φl contains clauses of the form C ∨ l, φl̄ contains clauses of the
form C ∨ l̄ and φ0 contains clauses C where l /∈ C and l̄ /∈ C. Suppose via the
induction hypothesis that φl, φ0,

∧
C∨l̄∈φl̄

C ` is proven in G. Then we do the
following:

φl, φ0,
∧
C∨l̄∈φl̄

C `
(` •)

φl, φ0,
∧
C∨l̄∈φl̄

C ` l̄
l̄ ` l̄ (• `)

φl, φ0, l̄ ` l̄
(∨ `)

φl, φ0, l̄ ∨
∧
C∨l̄∈φl̄

C ` l̄
(¬ `)

¬l̄, φl, φ0, l̄ ∨
∧
C∨l̄∈φl̄

C `
(Lemma 15)

φ `

The QRAT rules modify existing Skolem functions in order to preserve the
truth of QBFs when changing the formula. Imagine we already have a Skolem
function for existential literal l in a CNF φ, let us modify that Skolem function so
now it returns true whenever all outer clauses OlD for clauses D with l̄ ∈ D ∈ φ
are true and just play the same in all other cases. What we will show is that G
can confirm formally that this will still be a Skolem function.

Lemma 21. Let φ be a CNF and for literal l define l′ = l ∨
∧l̄∈D
D∈φO

l
D where

OlD ⊆ D, l̄ /∈ OlD, then φ ` φ[l′/l].



Proof. Let us consider each clause in φ. There are three cases for the sequents
we want to prove. 1. K ` K for l, l̄ /∈ K, K ∈ φ. 2. K ∨ l ` K ∨ l ∨

∧l̄∈D
D∈φO

l
D,

for K ∨ l ∈ φ. 3. K ∨ l̄ ` K ∨ ¬(l ∨
∧l̄∈D
D∈φO

l
D), for K ∨ l̄ ∈ φ. We now prove

each case:

1. Achieved by the axiom in G.
2. We can take K ∨ l ` K ∨ l and weaken the right side with

∧l̄∈D
D∈φO

l
D.

3. We can prove this by a derivation in G.

OlK ` OlK (` ¬)
` OlK ,¬OlK (Lemma 15)
` OlK ∨ ¬OlK (Lemma 15)

K ∨ l̄ ` OlK ∨ ¬OlK (` ∨)
K ∨ l̄ ` K ∨

∨l̄∈D
D∈φ ¬OlD K ∨ l̄ ` K ∨ l̄

(` ∧)
K ∨ l̄ ` (K ∨ l̄) ∧ (K ∨

∨l̄∈D
D∈φ ¬OlD)

(Lemma 15)
K ∨ l̄ ` K ∨ (l̄ ∧

∨l̄∈D
D∈φ ¬OlD)

(Lemma 15)
K ∨ l̄ ` K ∨ ¬(l ∨

∧l̄∈D
D∈φO

l
D)

Therefore if φ is not the empty CNF we can gain the conjunction φ ` φ[l′/l].
If φ is the empty CNF then ⊥ ` ⊥ suffices. ut

l′ = l ∨
∧l̄∈D
D∈φO

l
D is actually the modification of the Skolem function that

allows QRATA to happen [7]. We show using a G sequent that under the QRATA
condition it is sound to add the new clause.

Lemma 22. Let l′ = l∨
∧l̄∈D
D∈φO

l
D, and for all D ∈ φ, l̄ ∈ D we have φ,¬(C ∨

l ∨ OlD) is a contradiction via unit propagation. G can derive a short proof of
φ ` C ∨ l′.

Proof. For each D ∈ φ, l̄ ∈ D, the sequent φ, C̄, l̄, ŌlD ` can be proved in G
using Lemma 20. We can use rule (` ¬) and Lemma 15 to get φ ` C ∨ l ∨OlD.
If there are some D ∈ φ, l̄ ∈ D we can take a conjunction, using (` ∧) to get
φ ` C ∨ l ∨

∧l̄∈D
D∈φO

l
D, as required.

If φ is the empty CNF, there are no D ∈ φ such that l̄ ∈ D. If there are no
D ∈ φ such that l̄ ∈ D, then l′ = l ∨>, so instead we start with ` > weakening
the right hand side and strengthening the left hand side to get φ ` C ∨ l∨>. ut

Theorem 1 Given a CNF φ closed under prefix Π . Suppose that the QRAT rules
QRATA/ATA can add C to φ, or the QRAT rules QRATE/ATE can remove C from



φ ∧ C. Then the sequent Πφ ` Π ′φ ∧ C has a polynomial size G proof. Where
Π ′ contains all variables from Π and any additional variables from C.

Proof. Suppose that C is added via ATA or removed via ATE, this means that
the unit propagation φ, C̄ `1 ⊥ holds. Using Lemma 20 gives a short G proof of
φ, C̄ `.

We then continue using propositional rules to get φ ` φ ∧ C and Lemma 16
to get Πφ ` Πφ ∧ C.

φ, C̄ `
(` ¬)

φ ` ¬C̄
(Lemma 15)

φ ` C φ ` φ
(` ∧)

φ ` φ ∧ C
(Lemma 16)

Πφ ` Πφ ∧ C

Suppose that C = C ′ ∨ l is added via QRATA or removed via QRATE and
also suppose there is existential literal l, with var(l) = x such that for every
D ∈ φ with l̄ ∈ D, φ ∧ C̄ ∧ ŌlD `1 ⊥ Let Π ′ = Π1∃xΠ2. Then the sequent we
need to prove is Π1∃xΠ2φ ` Π1∃xΠ2φ ∧ (C ′ ∨ l).

Let l′ = l∨
∧
D3l̄O

l
D using the definition of outer clauses. We will eventually

use l′ as a witness for (` ∃) in G. But firstly, we can use Lemmas 21 and 22 to
get φ ` φ[l′/l] and φ ` (C ∨ l′) in a short proof. We can then proceed in a G
proof utilising Lemma 16.

φ ` φ[l′/l] φ ` C ′ ∨ l′
(` ∧)

φ ` φ[l′/l] ∧ (C ′ ∨ l′)
(Lemma 16)

Π2φ ` Π2φ[l′/l] ∧ (C ′ ∨ l′)
(` ∃)

Π2φ ` ∃xΠ2φ ∧ (C ′ ∨ l)
(∃ `)

∃xΠ2φ ` ∃xΠ2φ ∧ (C ′ ∨ l)
(Lemma 16)

Π1∃xΠ2φ ` Π1∃xΠ2φ ∧ (C ′ ∨ l)

When using QRATE and ATE Π ′ = Π but for QRATA and ATA C could
contain variables not in Π . However we can derive Πφ ` Π ′φ using Lemma 19
and then use the cut rule. ut

Example 23. Suppose we have QBF ∀x∃y(¬x ∨ ¬y) and we want to add clause
(x ∨ y). In QRAT this is a single line. In G the simulation given by Theorem 1 is
as follows (note we will not detail derivations using Lemma 15).

We use y′ = y ∨ x. So first we show Lemma 21 that the existing clause
¬x ∨ ¬y works under this change.



¬x ` ¬x (` ¬)` ¬x,¬¬x
(L. 15)` ¬x ∨ ¬¬x (• `)¬x ∨ ¬y ` ¬x ∨ ¬¬x ¬x ∨ ¬y ` ¬x ∨ ¬y

(` ∧)
¬x ∨ ¬y ` (¬x ∨ ¬y) ∧ (¬x ∨ ¬¬x)

(L. 15)
¬x ∨ ¬y ` ¬x ∨ (¬y ∧ ¬¬x)

(L. 15)
¬x ∨ ¬y ` ¬x ∨ ¬(y ∨ ¬x)

Next we show Lemma 22 that the new clause x ∨ y is implied by this
substitution.

¬x ` ¬x (¬ `)¬x,¬¬x `
(• `)¬x ∨ ¬y,¬x,¬y,¬¬x `

(` ¬)¬x ∨ ¬y ` ¬¬x,¬¬y,¬¬¬x
(L. 15)¬x ∨ ¬y,` x ∨ y ∨ ¬x

And finally we takes these two clauses together and add the quantifiers,
quantifying over y′ = y ∨ x on the right hand side.

¬x ∨ ¬y ` ¬x ∨ ¬(y ∨ ¬x) ¬x ∨ ¬y,` x ∨ y ∨ ¬x
(` ∧)

¬x ∨ ¬y ` (¬x ∨ ¬(y ∨ ¬x)) ∧ (x ∨ y ∨ ¬x)
(` ∃)

¬x ∨ ¬y ` ∃y′(¬x ∨ ¬y′) ∧ (x ∨ y′)
(∃ `)

∃y(¬x ∨ ¬y) ` ∃y′(¬x ∨ ¬y′) ∧ (x ∨ y′)
(∀ `)

∀x∃y(¬x ∨ ¬y) ` ∃y′(¬x ∨ ¬y′) ∧ (x ∨ y′)
(` ∀)

∀x∃y(¬x ∨ ¬y) ` ∀x∃y′(¬x ∨ ¬y′) ∧ (x ∨ y′)

We now do the same for QRATU, but with the Herbrand function.

Lemma 24. Let φ be a CNF and l′ = l ∧
∨l̄∈D
D∈φ Ō

l
D, where OlD ⊂ D, l̄ /∈ OlD,

then φ[l′/l] ` φ.

Proof. We need to show three different implications on clauses in φ. 1. K ` K
for l, l̄ /∈ K. 2. K ∨ l ∧

∨l̄∈D
D∈φ Ō

l
D ` K ∨ l. 3. K ∨ ¬(l ∧

∨l̄∈D
D∈φ Ō

l
D) ` K ∨ l̄.

These can be proven in the following ways:

1. Achieved by the axiom rule (`) in G.
2. We can take K ∨ l ` K ∨ l and strengthen the left side with

∨l̄∈D
D∈φ Ō

l
D.

3. If OlK is empty then we prove ⊥ ` K ∨ l̄ using (` •) on ⊥ `, otherwise we
takeOlK ` OlK and weaken the right hand side with (` ∨) to getOlK ` K∨ l̄.



K ∨ l̄ ` K ∨ l̄ (` •)
K ∨ l̄ ` K ∨ l̄, OlK

OlK ` O
l
K (` •)

OlK ` K ∨ l̄, O
l
K (• `)∧l̄∈D

D∈φO
l
D ` K ∨ l̄, O

l
K

(∨ `)
K ∨ l̄ ∨

∧l̄∈D
D∈φO

l
D ` K ∨ l̄, O

l
K OlK ` K ∨ l̄

(cut)
K ∨ l̄ ∨

∧l̄∈D
D∈φO

l
D ` K ∨ l̄

(L. 15)
K ∨ ¬(l ∧

∨l̄∈D
D∈φ Ō

l
D) ` K ∨ l̄

We can repeatedly use the (` ∧) rule to get φ[l′/l] ` φ. In the case that φ is
the empty CNF, > ` > suffices. ut

In QRATA we showed in Lemma 22 we could add the new clause when
written in terms of the Skolem function, here we show that we can make a
QRATU reduction when written in terms of the new Herbrand function.

Lemma 25. Let φ be a CNF and l′ = l ∧
∨l̄∈D
D∈φ Ō

l
D where OlD ⊆ D, l̄ /∈ OlD,

and for every D ∈ φ with l̄ ∈ D, φ ∧ ¬C ∧ ŌlD is a contradiction via unit
propagation. Then φ,C ∨ l′ ` C has a short proof in G.

Proof. For any D ∈ φ with l̄ ∈ D, φ, C̄, ŌlD is a contradiction via unit propa-
gation and so we can use Lemma 20 to get a short proof of sequent φ, C̄, ŌlD `
and thus with Lemma 15, (` ¬) and double negation rule φ, ŌlD ` C. If
there is at least one D ∈ φ with l̄ ∈ D, we can use (∨ `) repeatedly to get
φ,

∨l̄∈D
D∈φ Ō

l
D ` C. We then continue in G

φ,
∨l̄∈D
D∈φ Ō

l
D ` C (•∧ `)

φ, l ∧
∨l̄∈D
D∈φ Ō

l
D ` C

C ` C (• `)
φ,C ` C

(∨ `)
φ,C ∨ l ∧

∨l̄∈D
D∈φ Ō

l
D ` C

If there are no clauses D ∈ φ with l̄ ∈ D then l′ = l ∧ ⊥

C ` C

⊥ ` (` •)⊥ ` C (∧ `)
l ∧ ⊥ ` C (∨ `)

C ∨ l ∧ ⊥ ` C (• `)
φ,C ∨ l ∧ ⊥ ` C

ut

Theorem 2 Given a CNF ψ = φ ∧ (C ∨ l) closed under prefix Π . Suppose that
the QRAT rule QRATU can reduce C ∨ l to C. Then the sequent Πφ∧ (C ∨ l) `
Πφ ∧ C has a polynomial size G proof.



Proof. Let Π = Π1∀xΠ2 with x = var(l). Let l′ = l ∧
∨l̄∈D
D∈φ Ō

l
D using the

definition of outer clauses. φ[l′/l] ` φ and φ,C ∨ l′ ` C by Lemmas 25 and 24.

φ[l′/l] ` φ φ,C ∨ l′ ` C
(cut)

φ[l′/l], C ∨ l′ ` C
φ[l′/l] ` φ

(• `)
φ[l′/l], C ∨ l′ ` φ

(` ∧)
φ[l′/l], C ∨ l′ ` φ ∧ C

(Lemma 15)
φ[l′/l] ∧ (C ∨ l′) ` φ ∧ C

(Lemma 16)
Π2φ[l′/l] ∧ (C ∨ l′) ` Π2φ ∧ C (∀ `)
∀xΠ2φ ∧ (C ∨ l) ` Π2φ ∧ C (` ∀)
∀xΠ2φ ∧ (C ∨ l) ` ∀xΠ2φ ∧ C (Lemma 16)

Π1∀xΠ2φ ∧ (C ∨ l) ` Π1∀xΠ2φ ∧ C
ut

The problem of strategies for EUR. In [4] it was shown that strategy extraction
for EUR is not possible for circuits (under complexity assumptions), so using
propositional witnesses as in Theorem 1 and 2 will not work. But we have not
yet used a key property of G- witnesses with quantifiers. We will give a QBF
witness for EUR in Section 5.2, but in order to have any hope of using it we must
do some G formalisation of the dependency condition that allows EUR to work.

5 Resolution path independence

5.1 Resolution paths

We recap the reflexive resolution dependency scheme used in QRAT. This is
the most difficult part of QRAT for G to simulate, therefore we give it the most
attention. This is also the rule that allows QRAT to be stronger than Herbrand
strategy extraction [4].

With resolution paths, the idea is to ask the question: can these two clauses
both appear in the same connected proof? The reason we talk about paths is we
consider clauses as vertices on a graph where vertices are connected by an edge
if they share a variable and the literals are in opposite polarities, in other words
an edge represents that a resolution can happen between the clauses.

The resolution path between two clauses is a path in this graph. From a clause
C we can define the set of vertices reachable via resolution paths as C. However
only particular literals can be used to move in the path. We should not reuse
the same variable twice in succession. E.g. If we start with clause x ∨ y we can
add ȳ ∨ z to C, but we should not use ȳ as the next pivot, as the introduction of
this clause removes it via resolution. In Definition 26 we treat this formally by
keeping a set of usable literals L.



We also take into consideration the situation in QBF, in dependency schemes
we only consider resolution paths on existential variables and only at certain
levels. Instead of talking about existential variables and quantification orders we
give a set of variables S for which we only consider resolution paths on, and
build the theory from that.

Definition 26. Consider a CNF φ and subset χ of clauses in φ and a subset S
of variables. L(φ, χ,S) lists the S-literals on the resolutions paths from χ and
C(φ, χ,S) lists the clauses on the the resolution paths from χ. These are found
using an iterative procedure until reaching a fix-point.
Initialisation. We start with the clauses in χ and the S literals in those clauses.
L(φ, χ,S)← {l | there is C ∈ χ s.t. l ∈ C, var(l) ∈ S} and C(φ, χ,S)← χ.
Adding a clause. If there if some D such that p̄ ∈ D and p ∈ L(φ, χ,S), then
we can update L(φ, χ,S) and C(φ, χ,S). L(φ, χ,S)← L(φ, χ,S) ∪ {q ∈ D |
q 6= p̄, var(q) ∈ S} and C(φ, χ,S)← C(φ, χ,S) ∪ {D}We continue this until
we reach fix-point, in other words for all p ∈ L(φ, χ,S) if D ∈ φ and p̄ ∈ D,
then {q ∈ D | q 6= p̄, var(q) ∈ S} ⊂ L(φ, χ,S) and D ∈ C(φ, χ,S). Fix-point
is reached in polynomial time.

In QBF we use the resolution path to talk about connected Q-Resolution [15]
proofs, and since Q-Resolution only resolves on existential pivots we need only
to consider paths through existential variables. The lack of resolution path is
used to show independence of clauses with opposing universal literals. So if all
clauses with u in it cannot be connected via a resolution path to clauses with
ū, then the universal player is free to choose whatever value of u, as whether
there is a refutation is independent of the choice of clauses. We also only need to
consider resolution paths using existential variables to the right of u in the prefix,
as the question is whether there will be a refutation once the universal player has
made their move.

The theories of resolution paths are used in QRAT, specifically in the EUR
rule which allows a clause C ∨ u to be strengthened to C when u is a universal
variable and there is no D ∈ C(φ ∧ C,C,S) with ¬u in it, S being the set of
inner existential variables with respect to u. The way to show a simulation of
EUR is to formalise the property of resolution path independence into a sequent.

Theorem 3 For any CNF φ with a subset χ1 and let C = C(φ, χ1,S), where
S is the set of existential variables of a prefix Π . G can prove the sequent
Π

∧
D∈CD,Π(φ\χ1) ` Πφ in a polynomial size proof.

Proof. Define the following:

– φ1 contains all clauses in all resolution paths of χ1. (φ1 =
∧
D∈C(φ,χ1,S)D.)



– χ2 contains the remaining clauses not reachable via resolution paths from
χ1. (χ2 = φ \ φ1.)

– φ2 closes χ2 under resolution paths. (φ2 =
∧
D∈C(φ,χ2,S)D.)

– L1 is all outgoing literals on res. paths from χ1. (L1 = L(φ, χ1,S).)
– L2 is all outgoing literals on res. paths from χ2. (L2 = L(φ, χ2,S).)

Overlapping Clauses. Note that the existence of a resolution path between
clauses D1 and D2 is symmetric. By definition, clauses of χ2 are not in φ1, but
also clauses of χ1 are not in φ2. However resolution paths are not necessarily
transitive, C could have a path to D and D could have a path to E, but if the
variable used to enter D from C is the same literal to exit D to get to E that
paths cannot be conjoined. This means φ1 and φ2 (which we can also think of as
sets of clauses) are not necessarily disjoint.

First we observe that if there is some D ∈ φ1 ∩ φ2 then there is a unique
“entry” literal z ∈ D, var(z) ∈ S such that z̄ ∈ L(φ, χ1,S) and z̄ ∈ L(φ, χ2,S),
in other words z̄ is an outgoing literal in both sets of paths.

We can prove this because there must be at least one S-literal z̄ ∈ L(φ, χ1,S)
that puts D ∈ C(φ, χ1,S) via z ∈ D and there must be at least one S-literal
z̄′ ∈ L(φ, χ2,S) that puts D ∈ C(φ, χ2,S) via z′ ∈ D. If z 6= z′, then z′ we
can make a path between χi and χj by reaching D from a path χ1 using literal z
to enter D and reverse the path from χ2 to D, now using z′ to exit D.
Finding Existential Witnesses. We want to show a sequent with two QBFs on
the left hand side that use the same quantified variables, but in order to do this we
have to treat the variables as different before they are quantified. For each x ∈ L
we use x1 and x2. For the right hand side we need terms that act as existential
witnesses, we can assign each S-literal a propositional term l′ in the literals l1, l2

but the expression depends on l and l̄’s inclusion in the sets L1 and L2

If an S-literal l is in L1 its negation cannot be in L2 and vice versa, otherwise
there would be a resolution path between χ1 and χ2.

– If either l or l̄ are in L1 and neither l nor l̄ are in L2 then let l′ = l1

– If either l or l̄ are in L2 and neither l nor l̄ are in L1 then let l′ = l2

– If l is in L1 ∩ L2 then l̄ /∈ L1 ∪ L2, define l′ = l1 ∨ l2
– If l̄ is in L1 ∩ L2 then l /∈ L1 ∪ L2, define l′ = ¬(l̄1 ∨ l̄2)

l′ preserves negation. We use each term l′ on the right hand side to replace
for l, these we will use as witnesses for (` ∃), but to do this we will first need
φ1

1, φ
2
2 ` φ′, where f1 is formula f with all S-literals l replaced by l1, f2 is f

with all S-literals l replaced by l2 and f ′ is f with all S-literals l replaced with
term l′.

Proving φ1
1, φ

2
2 ` φ′ requires our observation on entry literals. Without loss

of generality if a clause D ∈ φ is only in φ1 and not φ2, then D′ = D1 and it is



straightforward to prove φ1
1, φ

2
2 ` D1 since D1 ∈ φ1

1. However if D ∈ φ1 ∩ φ2

thenD = K∨z where z is the unique entry literal and we letK be the sub-clause
of remaining literals. z̄ must be in L1 ∩L2 so z′ = ¬(z̄1 ∨ z̄2). Every S-literal k
in K is also in L1 ∩ L2 so k′ = k1 ∨ k2. D′ = K ′ ∨ ¬(z̄1 ∨ z̄2).

D1 ` K1 ∨ z1
(∧ `)

φ1
1 ` K1 ∨ z1

(• `)
φ1

1, φ
2
2 ` K1 ∨ z1

D2 ` K2 ∨ z2
(∧ `)

φ2
2 ` K2 ∨ z2

(• `)
φ1

1, φ
2
2 ` K2 ∨ z2

(` ∧)
φ1

1, φ
2
2 ` K1 ∨ z1 ∧K2 ∨ z2

(` ∨)
φ1

1, φ
2
2 ` K ′ ∨ z1 ∧K ′ ∨ z2

(L. 15)
φ1

1, φ
2
2 ` K ′ ∨ ¬(¬z1 ∨ ¬z2)

We take all these individual sequents together into a conjunction and get
φ1

1, φ
2
2 ` φ′. We can strengthen φ2

2 to φ2 \ χ2
1 on the left hand side since clauses

from χ1 cannot appear in φ2. We end up with φ1
1, φ

2 \ χ2
1 ` φ′.

Adding the Quantifiers. We now add the quantifiers from innermost to outer-
most. When we need to quantify a universal variable y we require universal
quantifiers ∀y for both of the formulas on the left hand side. (∀ `) require a
witness and each time we can just use y itself, then we simply use variable y for
(` ∀) on the right hand side. For existential variables x we first quantify the right
hand side using the term x′. Now for the left hand side variable xi only appears
in one of the two formulas, so we can use that to quantify ∃x for each. Adding in
all the quantifiers grants us Πφ1, Π(φ\χ1) ` Πφ as required.

5.2 Extended Universal Reduction

Consider using universal reduction to reduce Πφ ∧ (C ∨ l) into Πφ ∧ C. The
condition in standard universal reduction is that all literals y ∈ C are quantified
to the left of l in prefix Π , i.e y <Π l. For the soundness, we can observe how
Herbrand functions are preserved moving backwards in the proof.

We have to show that if there is a Herbrand function σl for the succedent
then there is a Herbrand function σ′l for the antecedent. Because all variables
in C are left of l these variables we name this xl and this is the domain of the
Herbrand function and can be used to construct it. We let σ′l(xl) = 0 whenever
C is falsified, and σ′l(xl) = σl(xl) otherwise.

We note that σ′l for standard UR the universal player never downgrades her
outcome, when ¬C she always guarantees her victory, either winning where she
would have won otherwise or winning when she would have lost otherwise, when
C is true she plays according σl and, since all the outcomes are now the same,
she also does not downgrade her game.



In EUR we cannot use the condition ¬C as it may contain variables to the
right of l, but there is a similar situation where the universal player can safely set
l to 0. If she knows she can play her remaining moves such that the existential
player cannot satisfy every clause without l̄ in them, then it does not matter if she
satisfies all the clauses with l̄ in them by setting l to 0. She only has to guarantee
her victory on a subset of clauses that do not contain l̄. According to our EUR
condition, that subset can precisely be C(φ ∧ C,C,S), the set of clauses in the
resolutions paths from C, where S is all existential variables right of l.

In order to play this she requires foresight of the outcome for the remaining
moves. For this reason it cannot be used to build a circuit strategy. However,
Herbrand functions can still be made by using quantifiers on the variables right
of l. Let Π2 ⊂ Π be the part of the prefix strictly right of l. If we have Herbrand
function σl for Πφ ∧ C we can find another Herbrand function:

σ′l(xl) =

{
0 if ¬Π2(

∧
D∈C(φ∧C,C,S)D[⊥/l])

σl(xl) otherwise.

σ′l(xl) is a valid Herbrand function for Πφ ∧ C, but how is it also valid for
Πφ∧C∨l? This is due to the essential independence condition that is required for
EUR. If under some assignment to the free variables Π2(

∧
D∈C(ψ,C,S)D[⊥/l])

is true but Π2(φ ∧ C) is false, then Theorem 3 tells us Π2φ must be false, so C
becomes irrelevant to the refutation.

We have to show this all formally in G. We will prove as much as we can
before using Theorem 3.

Lemma 27. Let ∀uΠ2ψ be a QBF with Π2 a prefix, u a variable and ψ = φ ∧
C∨ l, where C is a clause and φ a CNF and literal l has variable u. Let S denote
the set of all existential literals in Π2. Let C be a shorthand for C(ψ,C ∨ l,S)
and assume that there is no D ∈ C with l̄ in D. Let ∆ be a shorthand for
Π2(

∧
D∈CD[⊥/l]). Let l′ be the formula l ∧∆. Then the following are provable

in polynomial size G proofs. (A) ∀uΠ2ψ ` ∆. (B) ∀uΠ2ψ ` Π2φ ∧ (C ∨ l′).
(C) ∀uΠ2ψ ` Π2(φ ∧ C), Π2(

∧
D∈CD).



Proof (Proof of A).
We start with

∧
D∈CD[⊥/l] `

∧
D∈CD[⊥/l].

∧
D∈CD[⊥/l] `

∧
D∈CD[⊥/l]

(∧ `)
φ[⊥/l] ∧ (C ∨ ⊥) `

∧
D∈CD[⊥/l]

By Lemma 16 we can add the Π2 on both sides. And finally by using (∀ `)
rule over a constant symbol⊥ (or> if l = ū), we get sequent ∀uΠ2(φ∧C∨ l) `
Π2(

∧
D∈CD[⊥/l]).

Proof (Proof of B). Let l′ = l ∧Π2(
∧
D∈CD[⊥/l]) we have to show what the

substitution [l′/l] can prove for every clause D ∈ φ.

1. For any D ∈ φ with l, l̄ /∈ D we have D ` D.
2. For any D ∈ φ with l ∈ D, we have D[l′/l] ` D.
3. For any D ∈ φ with l̄ ∈ D, we have D[l′/l] ` D,¬∆.

To show these we do the following:

1. D ` D is an axiom of G.
2. Let D = K ∨ l, note that l′ is just a strengthening of l so K ∨ l ` K ∨ l

comes out of strengthening the left hand side.

l ` l (` ∨)
l ` K ∨ l (∧ `)
l′ ` K ∨ l

K ` K (` ∨)
K ` K ∨ l (∨ `)

K ∨ l′ ` K ∨ l

3. Let D = K ∨ l̄, this makes the sequent we wish to prove K ∨ ¬(l ∧∆) `
K ∨ l̄,¬∆ which is an application of Lemma 15.

Now we take a conjunction of all cases of 1,2 and 3 along with C ∨ l′ and get
φ[l′/l] ∧C ∨ l′ ` φ ∧C ∨ l′,¬∆ We can use the negation rule to bring ∆ to the
LHS. Which allows us to cut with Lemma 27A to get ∀uΠ2ψ, φ[l′/l]∧(C∨ l′) `
φ∧(C∨l′). We can quantify both sides byΠ2 using the technique from Lemma 16
to get ∀uΠ2(φ ∧C ∨ l), Π2(φ[l′/l] ∧C ∨ l′) ` Π2(φ ∧C ∨ l′). Using u′ as the
term (where u′ = l′ if u = l and ū′ = l′ if ū = l) Π2(φ[l′/l] ∧ C ∨ l′) can be
quantified universally to get ∀uΠ2(φ ∧ C ∨ l) ` Π2(φ ∧ C ∨ l′).

Proof (Proof of C). Using l′ = l ∧Π2(
∧
D∈CD[⊥/l]), we make the following

derivation.



∆ ` ∆ (∧ `)
l′ ` ∆ (` •)
l′ ` ∆,C

C ` C (` •)
C ` ∆,C

(∨ `)
C ∨ l′ ` ∆,C

C ` C (• `)
C, φ ` C

φ ` φ
(• `)

C, φ ` φ
(` ∧)

C, φ ` φ ∧ C
(cut)

φ,C ∨ l′ ` φ ∧ C,∆
(Lemma 15)

φ ∧ C ∨ l′ ` φ ∧ C,∆
Now we quantify the Π2 variables using the same technique as Lemma 16 to

get Π2(φ∧C ∨ l′) ` Π2(φ∧C), ∆. In order to simplify the right hand side even
further, for every D ∈ C we take axioms D[⊥/l] ` D[⊥/l] and since l̄ does not
appear inD, we can always obtainD[⊥/l] ` D by weakening the right hand side.
We can strengthen the left hand side to

∧
D∈CD[⊥/l] and get the conjunction∧

D∈CD[⊥/l] `
∧
D∈CD. By Lemma 16 we get ∆ ` Π2(

∧
D∈CD), this we

can use to cut with our sequent.

Π2(φ ∧ C ∨ l′) ` Π2(φ ∧ C), ∆ ∆ ` Π2(
∧
D∈CD)

Π2(φ ∧ C ∨ l′) ` Π2(φ ∧ C), Π2(
∧
D∈CD)

We can simply cut with Lemma 27B to get ∀uΠ2ψ ` Π2(φ∧C), Π2(
∧
D∈CD).



Were we to show ∀uΠ2ψ ` Π2(φ ∧ C), proving EUR’s sequent in G would
be a matter of adding the remaining quantifiers with Lemma 16. ∀uΠ2ψ `
Π2(φ ∧ C), Π2(

∧
D∈CD) is almost what we need, the only disagreement is

when ∀uΠ2ψ is true, Π2(φ∧C) is false and Π2(
∧
D∈CD) is true. If that occurs,

then we can apply Theorem 3 and use it to tell us Π2φ must be false. However,
∀uΠ2ψ cannot possibly be true if Π2φ is false meaning this situation does not
occur and we effectively have ∀uΠ2ψ ` Π2(φ ∧ C). We can formalise this in G.

Theorem 4 Let φ be a CNF with Π a prefix. Suppose that the QRAT rule EUR
can reduce clause C ∨ l to C, where C is a clause and l is a literal. Then the
sequent Πφ ∧ (C ∨ l) ` Πφ ∧ C has a polynomial size G proof.

Proof. Let Π = Π1∀uΠ2, where u = var(l). Let C be shorthand for C(φ ∧
C,C,S) with S denoting all ∃ literals in Π2. Lemma 27 gets us most of the way
through this proof, but we need to use Theorem 3 with PCNF Π2(φ ∧ C) with
χ1 = C to obtain Π2φ,Π2

∧
D∈CD ` Π2(φ ∧ C).

We use (∀ `) to gain ∀uΠ2(φ∧C ∨ l) ` Π2(φ∧C ∨ l), and Corollary 17 to
gainΠ2(φ∧C∨ l) ` Π2φ. We cut these two with our sequent from Theorem 3 to
get ∀uΠ2(φ∧C∨l), Π2(

∧
D∈CD) ` Π2(φ∧C).Now we use Lemma 27 to gain

∀uΠ2(φ∧C∨l) ` Π2(φ∧C), Π2(
∧
D∈CD). Cutting these two sequents together

removesΠ2(
∧
D∈CD) and gets us ∀uΠ2(φ∧C∨l), Π2(φ∧C∨l) ` Π2(φ∧C).

Quantifying the free l on the left hand side contracts the two QBFs into one. We
can add the remaining quantifiers with Lemma 16.

6 Conclusion

Theorem 5 G p-simulates QRAT.

Proof. True QBF. If Ψ is a true QBF and we have a QRAT proof πQRAT. We
show that we can obtain a G proof πG of ` Ψ in polynomial time from πQRAT.

πQRAT is a sequence of lines L0 . . . Lm using steps ATE, QRATE and clause
addition.
Induction Hypothesis (on increasing i): We can obtain a polynomial size G
proof of Li ` Ψ
Base Case: (i = 0) The first QBF L0 in a QRAT proof is the initial QBF which
here is Ψ . Ψ ` Ψ is an axiom in G.
Inductive Step: We derive the sequent Li+1 ` Li depending on the QRAT rule.

– Clause addition: If we add clause C to CNF φ (under prefix Π) we use
Corollary 17 to gain sequent: Πφ ∧ C ` Πφ

– ATE: If we remove clause C from CNF φ (under prefixΠ) we use Theorem 1
to gain sequent: Πφ\{C} ` Πφ



– QRATE: If we remove clause C from CNF φ (under prefix Π)we use Theo-
rem 1 to gain sequent: Πφ\{C} ` Πφ

Since we have Li ` Ψ by the induction hypothesis we use the cut rule to get
Li+1 ` Ψ
Final Case: For the final line Lm we have the empty CNF. By the induction
hypothesis we have Πφ ` Ψ , where Πφ is Lm−1. The only difference for this
final step is that we have to deal with the empty CNF, but this is not difficult to
deal with. We represent Lm asΠ>. Using Theorem 1 we can getΠ> ` Π>∧φ.

To complete the proof we do the following G steps:

` > (L. 16)
` Π> Π> ` Π> ∧ φ

(cut)
` Π> ∧ φ

φ ` φ
(•∧ `)> ∧ φ ` φ

(L. 16)
Π> ∧ φ ` Πφ

(cut)
` Πφ Πφ ` Ψ

(cut)
` Ψ

False QBF. If Ψ is a false QBF and we have a QRAT proof πQRAT. We show that
we can obtain a G proof πG of Ψ ` in polynomial time from πQRAT.

πQRAT is a sequence of lines L0 . . . Lm using steps ATE, QRATE and clause
addition.
Induction Hypothesis: We can obtain a polynomial size G proof of Ψ ` Li.
Base Case: (i = 0) The first QBF L0 in a QRAT proof is the initial QBF which
here is Ψ . Ψ ` Ψ is an axiom in G.
Inductive Step: We derive the sequent Li ` Li+1 depending on the QRAT rule.

– Clause deletion: If we delete clause C from CNF φ (under prefix Π) we use
Corollary 17 to gain sequent: Πφ ` Πφ\{C}

– ATA: If we add clause C to CNF φ (under prefix Π) we use Theorem 1 to
gain sequent: Πφ ` Πφ ∧ C.

– QRATA: If we add clause C to CNF φ (under prefix Π) we use Theorem 1
to gain sequent: Πφ ` Πφ ∧ C.

– QRATU: If we remove literal l from clause C in CNF φ (under prefix Π) we
use Theorem 4 to gain sequent: Πφ ` Πφ\{C ∨ l} ∧ C.

We use the cut rule to cut Πφ to get Ψ ` Li+1

Final Case: For the final line Lm we have the empty clause. By the induction
hypothesis we also have Ψ ` Πφ, The final line either adds an empty clause via
ATA, or reduces a singleton universal literal l using EUR or QRATA.

If the empty clause is added via ATA we can use Lemma 20 to gain Πφ `
and then use cut to get Ψ `. If we use EUR or QRATU there is universal variable
u with literal l such that Π = Π1∀uΠ2



Ψ ` Πφ

⊥ ` ⊥
Π2φ\{l} ∧ ⊥ ` ⊥

Π2⊥ ` ⊥
∀uΠ2φ ` Π2⊥

Πφ ` ⊥ ⊥ `
Πφ `

Ψ `
We have finally proven that G p-simulates QRAT, but this is only the be-

ginning of the search for a new checking format for QBF. In our opinion, G is
not suitable in a practical setting. The next step in this search should be to find
out how or if extension variables can be used to represent full QBFs, in order
to simulate G. The hard part of this will be simulating the non-prenex QBFs.
Non prenex QBF solvers have recently seen some interest [10, 18], so getting a
practical proof system that has a way of handling them would be very beneficial.

While a genuine QBF-cut extended variable systems may exists and could be
used in practice, improvements in the direction of Propagation Redundancy [9]
would likely exist and we would want to develop QBF systems further along
these lines.
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