
Non-adaptive vs Adaptive Queries

in the Dense Graph Testing Model

Oded Goldreich∗ Avi Wigderson†

September 8, 2021

Abstract

We study the relation between the query complexity of adaptive and non-adaptive testers in
the dense graph model. It has been known for a couple of decades that the query complexity of
non-adaptive testers is at most quadratic in the query complexity of adaptive testers. We show
that this general result is essentially tight; that is, there exist graph properties for which any
non-adaptive tester must have query complexity that is almost quadratic in the query complexity
of the best general (i.e., adaptive) tester.

More generally, for every q : N → N such that q(n) ≤
√
n and constant c ∈ [1, 2], we show

a graph property that is testable in Θ(q(n)) queries, but its non-adaptive query complexity
is Θ(q(n)c), omitting poly(log n) factors and ignoring the effect of the proximity parameter
ε. Furthermore, the upper bounds hold for one-sided error testers, and are at most quadratic
in 1/ε.

These results are obtained through the use of general reductions that transport properties
of ordered structured (like bit strings) to those of unordered structures (like unlabeled graphs).
The main features of these reductions are query-efficiency and preservation of distance to the
properties. This method was initiated in our prior work (ECCC, TR20-149), and we significantly
extend it here.

∗Faculty of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, Israel. E-mail:
oded.goldreich@weizmann.ac.il. Partially supported by the Israel Science Foundation (grant No. 1041/18) and
by the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation pro-
gramme (grant agreement No. 819702).
†School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA. E-mail: avi@ias.edu. Research

partially supported by NSF grant CCF-1900460.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 3 of Report No. 160 (2020)

Contents

1 Introduction 1
1.1 Property testing in the dense graph model . 1
1.2 Our main results . 2
1.3 Techniques . 4

1.3.1 The basic ideas . 4
1.3.2 Beyond basic ideas . 5

1.4 Complexities that also depend on the proximity parameter 6
1.5 Organization . 7

2 Preliminaries 8

3 The Main Result 11

4 Generalizations 18
4.1 Smaller complexity gaps . 18
4.2 Lower levels of complexity . 20

5 Accommodating one-sided error testers 22
5.1 Developing tools for the proof . 23
5.2 The actual proof . 28

6 Proof of Theorem 1.7 37
6.1 Revising Theorem 1.4 . 37
6.2 Translation to complexities that also depend on the proximity parameter 46

7 Open Problems 49

References 50

Appendix A: Proof of Theorem 2.3 51

Appendix B: Proof of Claim 2.6.1 52

1

1 Introduction

The fundamental relation between adaptive and non-adaptive oracle machines has been studied in a
variety of models. In particular, this relation has been studied also in the context of property testing
in various settings. Specifically, in the setting of testing the satisfiability of linear constraints, it was
shown that adaptivity offers absolutely no gain [2]. A similar result holds for testing monotonicity
of sequences of positive integers [5]. In contrast, an exponential gap between the adaptive and
non-adaptive complexities exists in the context of testing other properties of functions [5]. Lastly,
we mention that an even more dramatic gap exists in the setting of testing graph properties in the
bounded-degree model [18] (see also [6, Thm. 9.2]).

We follow [15, 12] in studying the relation between adaptive and non-adaptive oracle machines
in the context of testing graph properties in the dense graph model. This is definitely a natural
model, and the study is quite refined because it is known that, in this model, the gap between the
query complexities of adaptive and non-adaptive machines is at most quadratic [1, 13]. Our results
answer several natural open problems regarding possible relations between these complexities (cf. [6,
Sec. 8.5.4]): Essentially, we show that any relation that is not ruled out by the quadratic upper
bound is actually possible (i.e., occurs for some graph properties).

Our results are outlined in Section 1.2, following a brief review of the model (provided in
Section 1.1). In Section 1.3 we describe some of the ideas used towards proving these results. We
hint that the notion of robustly self-ordered graphs and local self-ordering procedures for them,
introduced and studied in our prior work [14], play a central role in our proofs.

1.1 Property testing in the dense graph model

Property testing refers to algorithms of sublinear query complexity for approximate decision; that
is, given oracle access to an object, these algorithms (called testers) distinguish objects that have a
predetermined property from objects that are far from the property. Different models of property
testing arise from different query access and different distance measures.

In the last couple of decades, the area of property testing has attracted significant attention
(see, e.g., [6]). Much of this attention was devoted to testing graph properties in a variety of models
including the dense graph model, introduced in [10] and surveyed in [6, Chap. 8]. In this model
graphs are represented by their adjacency predicate and distances are measured as the ratio of the
number of differing adjacencies to the maximal number of vertex-pairs.

Specifically, a (simple undirected) graph G = ([n], E) is represented by the adjacency predicate
g : [n] × [n] → {0, 1} such that g(u, v) = 1 if and only if {u, v} ∈ E, and oracle access to a graph
means oracle access to its adjacency predicate (equiv., adjacency matrix). The distance between
the graphs G = ([n], E) and G′ = ([n], E′) is defined as the fraction of entries (in the adjacency
matrix) on which the two graphs disagree. Lastly, recall that a graph property is a set of graphs
that is closed under isomorphism; that is, if G is isomorphic to G′ and Π is a graph property, then
G ∈ Π if and only if G′ ∈ Π. (In other words, graph properties are actually properties of unlabeled
graphs.)

Definition 1.1 (testing graph properties in the dense graph model): A tester for a graph property
Π is a probabilistic oracle machine that, on input parameters n and ε, and oracle access to an
n-vertex graph G = ([n], E) outputs a binary verdict that satisfies the following two conditions.

1. If G ∈ Π, then the tester accepts with probability at least 2/3.

1

2. If G is ε-far from Π, then the tester accepts with probability at most 1/3, where G is ε-far
from Π if for every n-vertex graph G′ = ([n], E′) ∈ Π the adjacency matrices of G and G′

disagree on more than ε · n2 entries.

We say that the tester is non-adaptive if it determines all its queries based on its explicit input
parameters (n and ε) and its internal coin tosses, independently of answers provided to prior queries.
Otherwise, we say that the tester is adaptive.

The query complexity of a tester for Π is a function (of the parameters n and ε) that represents the
number of queries made by the tester on the worst-case n-vertex graph, when given the proximity
parameter ε > 0. The dependency of the complexity on n is the primary concern, and one often
views ε as an arbitrary small constant. (Definitely ε ≥ n−2, although one often envisions ε > n−Ω(1)

and even ε > 1/ log n.) In light of these dispositions, when stating that the query complexity is
Ω(q(n)), we mean that this bound holds for all sufficiently small ε > 0; that is, there exists a
constant ε0 > 0 such that distinguishing between n-vertex graphs in Π and n-vertex graphs that
are ε0-far from Π requires Ω(q(n)) queries.

1.2 Our main results

The focus of this paper is on the relation between the query complexity of adaptive and non-
adaptive testers in the dense graph model. It has been known for a couple of decades that the
query complexity of non-adaptive testers is at most quadratic in the query complexity of adaptive
testers [1, 13], and the question of whether this relation is tight has been open since.

The first indication that non-adaptive testers may need more queries than adaptive ones was
provided in [15] in the context of promise problems. In that context (of promise problems), an
almost quadratic separation was proved in [12, Thm. 5.7].1 In the standard context (i.e., no
promise), separations were proved in [12], with the largest one being roughly a power of 3/2; that
is, a graph property was presented for which the general query complexity is Õ(q) but non-adaptive
testers require Ω(q3/2) queries. Our main result is an almost quadratic separation in the standard
context; that is, we prove the following –

Theorem 1.2 (an almost quadratic gap between non-adaptive and adaptive query complexities):
There exists a graph property of n-vertex graphs that is testable by an adaptive oracle machine that
makes O(ε−1 ·

√
n · log n) queries but testing it non-adaptively requires Ω(n) queries.

Theorem 1.2 asserts that the gap between the query complexity of non-adaptive testers and adaptive
ones may be quadratic. Answering open problems raised in [12, Sec. 1.3] (see also [6, Sec. 8.5.4]),
we prove that the gap can take the form of any function that is at most (almost) quadratic; that
is, we prove the following –

Theorem 1.3 (generalizing Theorem 1.2 to smaller gaps between non-adaptive and adaptive query
complexities): For every function g : N→ N such that g(n) ≤

√
n, there exists a graph property Π

that satisfies the following two conditions:

1. There exists a general (i.e., adaptive) tester of Π that makes O(ε−1 ·
√
n · log n) queries, and

any such tester must make Ω(
√
n) queries.

1Both the aforementioned results hold also in a model in which the graph property may depend on the proximity
parameter ε.

2

2. Any non-adaptive tester must make Ω(g(n) ·
√
n) queries, and there exists such a tester that

makes O(ε−2 · g(n) ·
√
n · log n) queries.

Actually, the upper bound is O(ε−2 · g(n) ·
√
n+ ε−1 ·

√
n · log n).

(Recall that n denotes the number of vertices in the tested graph.)

Note that in Theorem 1.2 there was no need to state the lower bound for adaptive testers and
the upper bound for non-adaptive testers, since they roughly follow from the fact that the query
complexity of non-adaptive testing is at most quadratic in the query complexity of adaptive test-
ing [1, 13].

Theorem 1.3 refers to graph properties that are testable in query complexity q(n)/ε such that
q(n) = Õ(n−0.5). It establishes a conjecture in [12, Sec. 1.3] (which referred to the case of g(n) =

q(n)1− 2
t , for every constant t ∈ N) as a special case. Theorem 1.3 also answers (negatively) an

open problem in [12, Sec. 1.3] that asks whether the foregoing relations (i.e., g’s of the form

g(n) = q(n)1− 2
t for some t ∈ N) are the only possible ones. We further generalized the result to

obtain analogous bounds for any lower level of query complexity; that is, we replace the special
case of q(n) = O(n−0.5 · log n) by q(n) = O(f(n) log n) for any f(n) ≤ n−0.5.

Theorem 1.4 (generalizing Theorem 1.3 to lower levels of query complexity): For every functions
f, g : N→ N such that f(n) ≤

√
n and g(m) ≤ m, there exists a graph property Π that satisfies the

following two conditions:

1. There exists a general (i.e., adaptive) tester of Π that makes O(ε−1 · f(n) · log n) queries, and
any such tester must make Ω(f(n)) queries.

2. Any non-adaptive tester must make Ω(g(f(n)) · f(n)) queries, and there exists such a tester
that makes O(ε−2 · g(f(n)) · f(n) · log n) queries.

Actually, the upper bound is O(ε−2 · g(f(n)) · f(n) + ε−1 · f(n) · log n).

We mention that Part 1 establishes a hierarchy theorem for testing graph properties in the dense
graph model. This theorem is slightly weaker than [11, Thm. 4] (i.e. it applies to any f(n) ≤

√
n

rather than to any f(n) ≤ n and has a log n factor gap between its bounds), but its proof seems
simpler and is definitely totally different.

Lastly, we prove that essentially the same upper bounds can be obtained by one-sided error
testers (i.e., testers that always accept graphs in Π).

Theorem 1.5 (a one-sided error version of Theorem 1.4):2 For every functions f, g : N→ N such
that f(n) ≤

√
n and g(m) ≤ m, there exists a graph property Π that satisfies the following two

conditions:

1. There exists a one-sided error tester of Π that makes O(ε−1 · f(n) · log3 n) queries, and any
tester must make Ω(f(n)) queries.

2. Any non-adaptive tester must make Ω(g(f(n)) · f(n)) queries, and there exists a one-sided
error non-adaptive tester that makes O(ε−2 · g(f(n)) · f(n) · log3 n) queries.

We stress that the lower bounds hold also for two-sided error testers. Note that the upper bounds
have extra poly(log n) factors (compared to Theorem 1.4).

2Actually, the upper bounds hold provided that ε > n−0.49. Otherwise, the trivial tester that checks all entries
works using O(1/ε4.1) queries.

3

1.3 Techniques

The notion of robustly self-ordered graphs and local self-ordering procedures for them, introduced
and studied in our prior work [14], play a central role in our proofs. These notions and the relevant
results are reviewed in the preliminaries (i.e., Section 2).3

Loosely speaking, a robustly self-ordered graph is as far as possible from having even approximate
automorphisms; that is, for any t, any permutation of the vertices that displaces t out of the n
vertices must “displace” Ω(t · n) edges. In other words, a graph G = ([n], E) is called robustly
self-ordered if for every permutation π : [n] → [n] it holds that G and π(G) differ on Ω(n) · |{v ∈
[n] : π(v) 6= v}| vertex-pairs, where π(G) = ([n], {{π(u), π(v)} : {u, v} ∈ E}); that is, if π has t
non-fixed-points, then the symmetric difference between the (labeled) graphs is Ω(t · n).

As for local self-ordering procedure for G, given oracle access to an arbitrary isomorphic copy
of G, denoted G′, and a vertex v in G′, it is required to identify the name (or location) of v in
G, while making few queries to G′. That is, a local self-ordering procedure for G is a randomized
algorithm that, on input v ∈ [n] and oracle access to G′ = π(G), makes poly(log n) queries to G′

and outputs π−1(v) (with probability at least 1− n−c, for any desired constant c). We stress that
π is a priori uknown to this procedure, but indeed π−1(v) is partial information about π that is
obtained by the procedure.

1.3.1 The basic ideas

Our first contribution is showing that local self-ordering procedures do exist for some robustly
self-ordered graphs. Specifically, we use the fact that random graphs are robustly self-ordered [14,
Prop. 7.1] and prove that they have a local self-ordering procedure (in a very strong sense).4

As we advocated in [14], working with robustly self-ordered graphs offers a way of embedding
(naturally ordered) bit strings in unlabeled graphs such that relative distances are approximately
preserved. As for local self-ordering procedures, they offer a way of sampling these embedded
bits along with their location. Hence, the robust self-ordering allows to transport lower bounds
regarding ordered objects to the domain of unlabeled graphs, whereas local self-ordering offer a
way to transport upper bounds in the same direction.

The source of the quadratic gap. Let us first present a testing problem (on ordered structures –
matrices) that is the source of our quadratic gap, while noting that robust self-ordering and local
self-ordering will come into play when embedding this problem in an unordered structure (unlabeled
graphs). The property consists of a pair of n-by-n matrices A = (ai,j) and B = (bi,j) coupled with
bijections (on their rows and columns), denoted πr, πc, φr, φc : [n] → [n], such that aπr(i),πc(j) =
bφr(i),φc(j). In this case, we may write π(A) = φ(B). We are given oracle access both to entries in

the two matrices and to the four bijections; that is, we can ask for the (i, j)th entry of each of the
matrices as well as for the value of each of the bijections at any point of our choice. The testing
task is to determine whether such a sextuple satisfies the property or is far from satsfying it.5

Note that a non-adaptive tester must make Ω(n) queries to the entries of the matrices, because
otherwise it is unlikely that it will make a query (i1, j1) to matrix A and a query (i2, j2) to matrix

3The following formulations are slightly different from those used in [14].
4This strong sense allows us to incur a lower overhead than what would follow from using a generic local self-

ordering procedure. Specifically, our overhead is O(logn) rather than poly(logn).
5The definition of distance will be weighted, making each oracle have equal weight. Alternatively, each of the

bijections is repeated n times.

4

B such that (πr(i1), πc(j1)) = (φr(i2), φc(j2)). Failing to make such a pair of queries does not allow
for distinguishing the case that π(A) = φ(B) is random from the case that A and B are random
and independent of one another, where in both cases all bijections are random. Here the Birthday
Paradox is (negatively) applied to the set of entries.

In contrast, an adaptive tester may make O(
√
n) queries to each of the bijections and find

(w.h.p.) i1 and i2 such that πr(i1) = φr(i2) as well as j1 and j2 such that πc(j1) = φc(j2). In
this case, it has obtained two pairs (i1, j1) and (i2, j2) such that (πr(i1), πc(j1)) = (φr(i2), φc(j2)).
Then, it can make the corresponding queries to A and B, respectively, which is something that a
non-adaptive algorithm cannot do. Note that the answers are different with probability that equals
the relative distance between the permuted matrices π(A) and φ(B). Here the Birthday Paradox
is (positively) applied to the set of rows (and columns), which are quadratically smaller.

Embedding the two-matrix problem in a graph property. Loosely speaking, we embed the two matrices
in the connection between two robustly self-ordered graphs that have local self-ordering procedures.
In this embedding, the local self-ordering procedures play the role of the (inverses of the) foregoing
bijections, which are not given to us explicitly in the setting of testing graph properties. This offers
us a way to transport the foregoing adaptive tester into one that tests graphs in which the two
matrices are embedded. Loosely speaking, we let the matrix determine a bipartite graph between
two parts of a robustly self-ordered graph, and use the local self-ordering procedure to emulate the
foregoing bijections. On the other hand, the robustness of the self-ordering of the graph guarantees
that one must respect the structure of the matrix as embedded (rather than freely permute rows
and columns in a way that is not consistent with the original bijections).

We stress that local self-ordering procedures for robustly self-ordered graphs play a central role in
our testers, and proving their existence in the dense graph model is one of the contributions of this
paper. We actually present two different procedures: One that carries a small failure probability on
each input (see Theorem 2.6), and one that makes no failures on almost all inputs (see Claim 5.5).

1.3.2 Beyond basic ideas

As stated above, our proofs are based on embedding Boolean matrices in robustly self-ordered
graphs, but the question is how exactly is this done. One way is proposed in our prior work [14]:
We take two robustly self-ordered graphs that exhibit a gap between their ranges of vertex degrees
and connect them by a bipartite graph that corresponds to the Boolean matrix. As argued implicitly
in [14, Lem. 9.3], this yields a robustly self-ordered graph, no matter which matrix is embedded
(equiv., bipartite graph is used).

Specifically, in [14, Const. 9.2], the two graphs had the same edge density, since they are taken
from the same construction, but they have a different size (by a constant factor) and so their ranges
of vertex degrees are sufficiently far apart.6 We use this idea when proving Theorems 1.2–1.4, but
it relies on the fact that when we sample vertices of the combined graph we are likely to get a
proportional number of vertices in each of the original two graphs. Hence, this method is not
adequate for one-sided error testing (i.e., proving Theorem 1.5).

The alternative, employed in our proof of Theorem 1.5, is using two robustly self-ordered graphs
of vastly different edge density (e.g., one with edge-density 0.1 and one with edge density 0.9). Fur-
thermore, each induced subgraph of logarithmic size in each of these graphs will have approximately

6Specifically, all vertex degrees in one graph are at most 1.1k, all vertex degrees in another are at least 3.4k. The
first graph has 2k vertices and the second has 7k vertices, and we connect them by two k-by-k bipartite graphs.

5

the same edge density as the entire graph. Moreover, in order to maintain the degree separation
also in the combined graph, we use only bipartite graphs of edge density 0.5 ± 0.1 (with induced
subgraphs that maintain this density).7

The fact that each induced subgraph of logarithmic size in the combined graph provides a good
approximation of the degrees of almost all vertices allows us to determine to which part almost
each vertex belongs. Analogous requirements are imposed on the local self-ordering procedures that
we use towards obtaining one-sided error testers: Each subset of logarithmic size allows for self-
ordering almost all vertices of each graph that satisfies the tested property (i.e., with the exception
of a logarithmic number of vertices). In both cases, random subsets are used to detect graphs that
are far from the property, whereas no subset causes rejection of graphs in the property.

Needless to say, the local self-ordering procedures for these non-explicit graphs are non-explicit
themselves, and their computational complexity is huge. What is small (i.e., logarithmic in the
size of the graph) is the number of queries that they make. The same holds also for the local
self-ordering procedure that we use for the two-sided error tester. Although we know of explicit
constructions of robustly self-ordered graphs [14, Part II], we do not know of a local self-ordering
procedures for them (not even in the query complexity sense that suffices here). Instead, in this
case too, we use local self-ordering procedures that work on the non-explicit robustly self-ordered
graphs.

1.4 Complexities that also depend on the proximity parameter

As stated in Section 1.1, the primary focus of property testing is on the dependence of the query
complexity on the size parameter (i.e., n). Indeed, Theorems 1.2–1.5 follow this disposition, but
once established they raise the question of what happens in the more general case when one is also
interested in the complexities that may depend arbitrarily on the proximity parameter (i.e., ε). In
this section, we address this question.

Specifically, Theorems 1.2–1.5 refer to the dependence of the query complexity on the size of
the tested graph (i.e., n), and focus on the case that the proximity parameter is set to some small
positive constant. Actually, the upper bounds do specify the (polynomial) dependence on the
(reciprocal of the) proximity parameter, but the lower bounds do not. Furthermore, the results
do not refer to arbitrary dependence of the query complexity on the proximity parameter. In this
section, we rectify this state of affairs for Theorems 1.2–1.4. We start by stating a special of our
general result: This special case refers to query complexity that (essentially) depends only on the
proximity parameter.

Theorem 1.6 (size-oblivious complexities, a special case):8 For every monotonically non-increasing
function f ′ : (0, 1]→ N and every constant c ∈ (1, 2], there exists a graph property Π that satisfies
the following two conditions:

1. There exists a general (i.e., adaptive) tester of Π that makes Õ(ε−2 · f ′(Ω(ε))) queries, and
any such tester must make min(Ω(f ′(O(ε))),

√
εn) queries.

2. Any non-adaptive tester of Π must make min(Ω(f ′(O(ε))),
√
εn)c queries, and there exists

such a tester that makes Õ(ε−2 · f ′(Ω(ε))c) queries.

7We do not provide explicit constructions for these ingredients; for example, a bipartite graph with the foregoing
parameters constitutes an optimal two-source extractor (for which explicit constructions are still unknown, cf. [19, 4]).

8Actually, if f ′(Ω(ε)) >
√
εn, then we get a lower bound related to f ′(Ω(ε′)) such that ε′ is minimal such that

f ′(Ω(ε′)) ≤
√
ε′n.

6

In particular, for any constant d > 0, we get general query complexity Õ(ε−(d+2)) and non-adaptive
query complexity Ω(min(ε−2d,

√
n)).

Theorem 1.6 is a special case of the following result.

Theorem 1.7 (a generalization of Theorem 1.4): For every functions f, g : N × (0, 1] → N that
are monotonically non-decreasing in the first parameter and monotonically non-increasing in the
second parameter and every n ∈ N and ε > 0 such that f(n, ε) ≤

√
εn and g(m, ε) ≤ m, there exists

a graph property Π that satisfies the following two conditions:

1. There exists a general (i.e., adaptive) tester of Π that makes Õ(ε−2 · f(n,Ω(ε))) queries, and
any such tester must make Ω(f(n,O(ε))) queries.

2. Any non-adaptive tester of Π must make Ω(g(f(n,O(ε)))·f(n,O(ε))) queries, and there exists
such a tester that makes Õ(ε−2 · g(f(n,Ω(ε)),Ω(ε)) · f(n,Ω(ε))) queries.

For example, for any c ≥ d > 0 and every f, g as in Theorem 1.4, we get general query complexity
Õ(ε−(c+2)) · f(n) and non-adaptive query complexity Ω(min(ε−(c+d) · g(n) · f(n),

√
n)).

We point out that Theorem 1.7 differs from Theorem 1.4 also when considering query complexities
that depend only on the size of the graph. This is the case because the O(log n) factor that appears
in the upper bounds of Theorem 1.4 is replaced in Theorem 1.7 by an O(log f(n,Ω(ε))) factor. On
the other hand, Theorem 1.7 poses additional (natural) conditions on the functions f and g (and
also has a larger slackness in terms of ε).

Theorem 1.7 is proved in two steps. First, we use graph blow-up to derive a new version
of Theorem 1.4 from Theorem 1.3, where in the new version the O(log n) factor (in the upper
bounds) is replaced by an O(log f(n)) factor. This step uses ideas and results of [11] as well as
new ideas: The former are used in order to establish the lower bounds, whereas the latter are used
in order to establish the upper bounds. Specifically, we address the problem of testing properties
derived by graph blow-up, which was avoided in [11] (since it applied graph blow-up to properties
of maximum complexity (i.e., Θ(n2))), whereas we apply it to properties of intermediate complexity
(i.e., Θ̃(n1/2)). In particular, we prove that the set of n/n′-factor blow-ups of the n′-vertex graphs
(presented in the proof) of Theorem 1.3 can be tested using poly(1/ε) · Õ(

√
n′) queries. Next, we

apply the methodology of [7] to the result of the first step. In general, this methodology transforms
existential results regarding graph properties of almost arbitrary size-dependent query complexity
to results that support almost any query complexity. (In [7], this methodology was applied to the
results of [11].)

We stress that the proof of Theorem 1.7 uses ideas that are significantly different from those that
appeared in the proofs of Theorems 1.2–1.5. The tools used include graph blow-up, distribution
testing (sic), and “packing” several differently padded properties into a single one. The new ideas
appear in the first step, which is captured by Theorem 6.1. Lastly, we warn that the proof of
Theorem 1.7 makes essential use of approximations of the density of subsets of vertices, and thus
it yields a two-sided error tester.

1.5 Organization

In Section 2 we review the definitions of robustly self-ordered graphs and local self-ordering pro-
cedures for them, and prove the existence of the latter in random graphs (Theorem 2.6). These

7

notions and the corresponding results play a central role in establishing our property testing re-
sults (i.e., Theorems 1.2–1.7). Our most basic result result (Theorem 1.2), which asserts an almost
quadratic gap between non-adaptive and adaptive testers, is proved in Section 3.

The proof of Theorem 1.2 also serves as basis for modifications that establish Theorems 1.3–1.7.
The modifications used to establish Theorems 1.3 and 1.4 are presented in Section 4. While these
modifications are relatively simple, establishing Theorem 1.5 requires several additional ideas (see,
e.g., the proof of Claim 5.5, the design of Construction 5.7, and the proof of Proposition 5.9). In
fact, the proof of Theorem 1.5, presented in Section 5, is the most technically involved part of this
paper. An overview of this proof is provided at the beginning of Section 5.

The proof of Theorem 1.7 appears in Section 6. We stress that Section 5 and Section 6 are
independent of one another, and can be read in arbitrary order. Both sections build directly on
Sections 3 and 4.

The appendices contain proofs that have appeared elsewhere. They are included for sake of
self-containment and because we shall refer to sub-claims that appear in them. We also include
some open problems (in Section 7).

2 Preliminaries

The following definitions and results are mostly reproduced from [14], with a few modifications,
which will be spelled out. One of these modifications is merely in notation, and others are substan-
tial. Unless explicitly stated differently, by graphs we mean labeled (simple) graphs.

Self-ordered graphs. For a graph G = (V,E), and a bijection φ : V → V ′, we denote by φ(G)
the graph G′ = (V ′, E′) such that E′ = {{φ(u), φ(v)} : {u, v}∈E}, and say that G′ is isomorphic to
G. The set of automorphisms of the graph G = (V,E), denoted aut(G), is the set of permutations
that preserve the graph G; that is, π ∈ aut(G) if and only if π(G) = G. We say that a graph
is asymmetric (equiv., self-ordered) if its set of automorphisms is a singleton, which consists of the
trivial automorphism (i.e., the identity permutation). Following [14], we actually prefer the term
self-ordered, because we take the perspective that is offered by the following equivalent definition.

Definition 2.1 (self-ordered (a.k.a asymmetric) graphs): The graph G = ([n], E) is self-ordered if
for every graph G′ = (V ′, E′) that is isomorphic to G there exists a unique bijection φ : V ′ → [n]
such that φ(G′) = G.

In other words, given an isomorphic copy G′ = (V ′, E′) of a fixed graph G = ([n], E), there is a
unique bijection φ : V ′ → [n] that orders the vertices of G′ such that the resulting graph (i.e.,
φ(G′)) is identical to G. Indeed, if G′ = G, then this unique bijection is the identity permutation.

Robustly self-ordered graphs. In this work, we use a notion, introduced by us in [14] and
called robust self-ordering, which is a quantitative version self-ordering. Unlike in [14, Part I], our
focus in this work is on dense graphs with a high level of robust self-ordering. Hence, we say that
a graph G = ([n], E) is robustly self-ordered if, for every permutation π : [n]→ [n], the size of the
symmetric difference between G and π(G) (i.e., |E4{{π(u), π(v)} :{u, v}∈E}|) is Ω(n) times the
number of non-fixed-points under π (i.e., |{i∈ [n] :π(i) 6= i}|).9

9This notation is a “scaled up” version of the notation in [14]. Specifically, in [14, Def. 1.2] a graph was defined
to be robustly self-ordered if, for every permutation π : [n] → [n], the size of the symmetric difference between G

8

Definition 2.2 (robustly self-ordered graphs): A graph G = ([n], E) is said to be γ-robustly self-
ordered if for every permutation π : [n]→ [n] it holds that

|E4{{π(u), π(v)} :{u, v}∈E} | ≥ γ · n · |{i ∈ [n] :π(i) 6= i}|. (1)

An infinite family of graphs {Gn = ([n], En)}n∈N is called robustly self-ordered if there exists a
constant γ > 0 such that for every n the graph Gn is γ-robustly self-ordered.

Note that |En4{{π(u), π(v)} :{u, v}∈En}| ≤ n · |{i ∈ [n] :π(i) 6= i}| always holds.
While our focus in [14, Part II] was on constructing robustly self-ordered graphs, here we are

content with their mere existence. Actually, it will be beneficial for us to use the fact that, with
high probability, a random graph is robustly self-ordered.

Theorem 2.3 (a random graph is robustly self-ordered [14, Prop. 7.1]): A random n-vertex graph
Gn = ([n], En) is Ω(1)-robustly self-ordered with probability 1− exp(−Ω(n)).

For sake of self-containment, the proof is reproduced in Appendix A. We mention that the result
is implicit in the proof of [16, Thm. 3.1].

Locally self-ordering a graph. By Definition 2.1 a graph G = ([n], E) is called self-ordered if
for every graph G′ = (V ′, E′) that is isomorphic to G there exists a unique bijection φ : V ′ → [n]
such that φ(G′) = G. One reason for our preferring the term “self-ordered” over the classical term
“asymmetric” is that we envision being given such an isomorphic copy G′ = (V ′, E′) and asked to
find its unique isomorphism to G, which may be viewed as ordering the vertices of G′ according
to (their name in) G. While the foregoing formulation is global in nature (i.e., one is given the
entire graph and is asked to find the entire isomorphism), here we are interested in its local version:
Given a vertex in G′ (and oracle access to the adjacency predicate of G′), we wish to find the
corresponding vertex in G while making poly(log n) many queries to G′.

We stress that, unlike in [14, Sec. 4.4], we do not require this task to be performed in poly(log n)-
time; we only bound the number of queries to G′. Another difference is that we allow randomized
algorithms; these algorithms may fail (but not err) with small probability. We mention that, even
under these relaxations, it is not clear whether graphs having local self-ordering procedures exist10,

Definition 2.4 (locally self-ordering a self-ordered graph): We say that a self-ordered graph G =
([n], E) is locally self-ordered if there exists a randomized algorithm that, given a vertex v in any
graph G′ = (V ′, E′) that is isomorphic to G and oracle access to the adjacency predicate of G′,
makes poly(log n) queries to G′, fail with probability at most 1/2, and otherwise output φ(v) ∈ [n]
for the unique bijection φ : V ′ → [n] such that φ(G′) = G.

Indeed, the isomorphism φ orders the vertices of G′ in accordance with the original (or target)
graph G. We stress that the foregoing algorithm may depend arbitrarily on the graph G and may
not be efficient. Effectively, it is only required that, given v ∈ V ′, with probability at least 1/2,
the answers given to the queries to G′ determine φ(v) ∈ [n], and otherwise we get a failure notice

and π(G) is Ω(1) times the number of non-fixed-points under π. Likewise, the parameter γ in [14, Def. 1.2] is the
constant hidden in the Ω(1) notation (rather than in the Ω(n) notation).

10An indication to the non-triviality of this problem arises from the fact that most graphs (equiv., random graphs)
do not have a deterministic local self-ordering procedure. This fact can be proved analogously to Footnote 12.

9

rather than a wrong answer. Clearly, the failure probability can be reduced to n−ω(1) by repetitions,
while maintaining a query complexity of poly(log n), but since we care about the specific bounds
we define a stronger notion that we can achieve at low cost (see Theorem 2.6). This notion, called
reliable locators, is a subset S of the vertices of G such that the subgraph of G induced by S is
self-ordered and unique in G, and every other vertex has a unique “signature” with respect to S
(i.e., its sequence of adjacencies with S is unique).

Definition 2.5 (reliable locator of a self-ordered graph): A set of vertices S ⊂ [n] is called a
reliable locator of a graph G = ([n], E) if the following two conditions hold

1. The subgraph of G induced by S is self-ordered and is not isomorphic to any other induced
subgraph of G.

2. For every v ∈ [n] \ S, the adjacencies of v with S uniquely determine v; that is, for every
u 6= v in [n] \ S there exists s ∈ S such that {u, s} ∈ E if and only if {v, s} 6∈ E.

We stress that it is not required that all induced subgraphs of G are not isomorphic to one another;
it is only required that none of the other induced subgraphs is isomorphic to the reliable locator.
Hence, the first condition allows for identifying reliable locators in any graph G′ that is isomorphic
to G, since S′ is a reliable locator of G′ if and only if the subgraph of G′ induced by S′ is isomorphic
to the subgraph of G induced by any of its reliable locators. The first condition also allows for
self-ordering the vertices of S′ (i.e., these vertices can be identified via structure of the (unlabeled)
induced subgraph). The second condition then allows us to locally self-order each other given vertex
in G′, where a vertex outside S′ is identified via its adjacencies to the identified vertices of S′.

We shall prove a stronger statement for random graphs, asserting that, in a random graph
(whp), at least 99% of the logarithmically-sized sets are reliable locators. Note that the fact that
reliable locators exist will not be good enough for our applications, where we shall be given oracle
access to an isomorphic copy of G and need to find a reliable locator for it (rather than for G).
In contrast, the fact that random subsets are reliable locators of G will allow us to find reliable
locators in any graph that is isomorphic to G.

Theorem 2.6 (locally self-ordering a random graph):11 With probability 1− (1/poly(n)) over the
uniform distribution of n-vertex graphs Gn, all but 1/poly(n) fraction of the O(log n)-sized sets
are reliable locators for Gn, where poly denotes any polynomial (and the hidden constant in the
O-notation is proportional to its degree).

We stress again that a reliable locator of G′ that is isomorphic to G is uniquely identified by the
unlabeled subgraph of G′ induced by it, and that given this subgraph the set is recognized as a
reliable locator by a thought experiment on G. That is, if G′ = (V ′, E′) is isomorphic to G and
G = φ(G′) for some unknown to us bijection φ : V ′ → [n], then given S′ we can determine whether
S′ is a reliable locator of G′ (equiv., φ(S′) is a reliable locator of G) by inspecting the subgraph
of G′ induced by S′ and checking whether this subgraph is isomorphic to the subgraph induced by
some reliable locator of G. We stress that the latter check is a thought experiment that is based

11We mention that the same holds for graphs that are generated by a O(logn)2-wise independent process. This
is the case since the proof takes a (careful) union bound over events that refer to subgraphs of the random n-vertex
graph that are induced by vertex-sets of size O(logn).

10

on the fact that we know G, and so we know all its reliable locators and the subgraphs that they
induce.

Proof: The driving observation is that, for a random graph, with overwhelmingly high probability,
disjoint subsets of logarithmic size induce subgraphs that are not isomorphic to one another. An
analogous claim holds also for non-disjoint subsets, but the probability is less overwhelming in this
case. In particular, it is not true that each such subset induces a subgraph that is not isomorphic
to any other induced subgraph.12 But it is true that, in a random graph (with high probability),
almost all subsets have this feature. This follows from the fact that, in a random graph, each subset
has this feature with high probability.

Claim 2.6.1 (a fixed O(log n)-subset in a random n-vertex graph satisfies Condition 1 of Defini-
tion 2.5): For sufficiently large ` = O(log n) it holds that for every fixed `-subset S of [n], with
probability exp(−Ω(`)) over the choice of Gn, the subgraph of Gn induced by S is not isomorphic to
the subgraph of Gn induced by any other `-subset of [n]. Furthermore, with probability exp(−Ω(`))
over the choice of Gn, the subgraph of Gn induced by S is self-ordered.

Note that the failure probability is not small enough to support a union bound over all `-subsets
of [n]. Claim 2.6.1 follows as a special case of [8, Clm. 8.2], which referred to the case that only
the adjacencies of vertices in S are random. For sake of self-containment, the proof is reproduced
in Appendix B.

Combining Claim 2.6.1 with the fact that, in a random graph Gn, with probability
(
n
2

)
·2−`, the

vertices in [n] \ S have different neighborhood in S (i.e., satisfies Condition 2), we conclude that
each `-subset is a reliable locator of at least a 1− exp(−Ω(`)) fraction of the n-vertex graphs. The
claim follows by an averaging argument, while recalling that we can pick ` = O(log n) to be large
enough so that exp(−Ω(`)) = 1/poly(n).

Corollary 2.7 (by Theorems 2.3 and 2.6): There exists a family of robustly self-ordered graphs
{Gn = ([n], En)}n∈N such that Gn is an n-vertex graph for which all but at most a 1/poly(n)
fraction of the O(log n)-sized sets are reliable locators. Furthermore, each vertex in Gn has degree
(0.5± 0.01) · n.

3 The Main Result

In this section we prove Theorem 1.2, while hinting that Theorems 1.3–1.5 will be proved (in
Sections 4 and 5) by modifications to the proof presented here.

Theorem 3.1 (Theorem 1.2, restated): There exists a graph property Π that is testable by adaptive
algorithms that make O(ε−1 ·

√
n · log n) queries but testing it non-adaptively requires Ω(n) queries,

where n denotes the number of vertices in the tested graph and ε denotes the proximity parameter.

12Consider a collection C of (`− 1)-subsets of [n/2] such that the pairwise intersections are of size at most log2 n <
`/2. Specifically, we may have |C| = exp(Ω(logn)2). Now, for each S ∈ C and {i, j} ∈

({(n/2)+1,...,n}
2

)
, consider the

0-1 random variable ζS,{i,j} = ζS,{i,j}(G) indicating whether the subgraphs of a random graph G that is induced

by S ∪ {i} is identical to the subgraph of G induced by S ∪ {j}. Note that p = E[ζS,{i,j}] = 2−(`−1) � 1/|C|, and
that ζS1,{i1,j1} and ζS2,{i2,j2} are independent if {i1, j1} 6= {i2, j2}. Furthermore, for different sets S1, S2 ∈ C, the

co-variance of ζS1,{i,j} and ζS2,{i,j} is upper-bounded by q = Θ(2−|S1∪S2|) = O(2−(2(`−1)−log2 n)) = O(n · p2). Hence,
the variance of the sum of all ζS,{i,j}’s is O(|C| ·n2 ·p)+O(|C|2 ·n2 ·q), which equals O(|C|2 ·n3 ·p2). Using Chebyshev’s

inequality, it follows that the probability that none of the events hold is O(|C|2·n3·p2)
(|C|·n2·p)2 = O(n−1).

11

Proof: For every n, we set k = n/9 and ` = O(log k), and use a family of robustly self-ordered
graphs {Gk = ([k], Ek) : k ∈ N} such that for each Gk all but an exp(−Ω(`)) fraction of the `-sized
sets are reliable locators. Furthermore, each vertex in Gk has degree (0.5±0.01)·k. Recall that such
graphs are provided by Corollary 2.7. Using these graphs we consider the following construction
that consists of a copy of G2k and a copy of G7k such that the first (resp., last) k vertices of G2k

and the first (resp., last) k vertices of G7k are connected according to some k-by-k Boolean matrix.
These two matrices will be identical in the case of graphs in the property, and will be far apart in
the construction used for showing the lower bound on non-adaptive testers.

G2k

G7k

1

i

k

k + 1

k + i

2k

...

...

...

...

2k + 1

2k + j

3k

3k + 1

4k

5k

6k

7k

8k

8k + 1

8k + j

9k

...

...

...

...

...

...

...

...

...

a i,j

bi,j

B

A

Figure 1: The graph GA,B.

Construction 3.1.1 (the graph property Π): Let G2k = ([2k], E2k) and G7k = ([7k], E7k) be as
postulated in Corollary 2.7.

• For two k-by-k Boolean matrices A = (ai,j) and B = (bi,j), we define the graph GA,B =
([9k], EA,B) such that

EA,B = E2k ∪ {{2k + i, 2k + j} : {i, j} ∈ E7k}
∪{{i, 2k + j} : i, j ∈ [k] ∧ ai,j = 1} ∪ {{k + i, 8k + j} : i, j ∈ [k] ∧ bi,j = 1}. (2)

That is, GA,B consists of a copy of G2k and a copy of G7k that are connected by two bipartite
graphs that are determined by A and B, respectively. The first bipartite graph connects [k] to
{2k+1,, 3k} and the second bipartite graph connects {k+1, ..., 2k} to {8k+1,, 9k}. See
Figure 1.

12

• We define the property Π =
⋃
n∈N Πn such that Πn is the set of all graphs that are isomorphic

to some n-vertex graph GA,A; that is,

Π9k =
{
π(GA,A) : A ∈ {0, 1}k×k ∧ π ∈ Sym9k

}
(3)

where Sym9k denote the set of all permutations over [9k].

Note that, given a graph of the form π(GA,A), the vertices of G2k are easily identifiable (as having
degree at most 0.51 · 2k + 2k < 3.1k).13

Claim 3.1.2 (lower bound for non-adaptively testing Π): Any non-adaptive tester for Π9k has
query complexity Ω(k).

Proof: We first show that Ω(k) non-adaptive queries are required in order to distinguish the
following two distributions.

1. The uniform distribution over Π9k; that is, the distribution generated by picking uniformly
A ∈ {0, 1}k×k and π ∈ Sym9k, and outputting π(GA,A).

2. The distribution generated by picking uniformly and independently A,B ∈ {0, 1}k×k and
π ∈ Sym9k, and outputting π(GA,B).

The key point here is that a non-adaptive machine determines its queries beforehand, and so it
suffices to analyze the probability that a fixed sequence of q queries distinguishes the two distribu-
tions. Furthermore, the two q-long sequences of answers provided by these two distributions to a
fixed q-long sequence of queries are distributed identically, unless the sequence of queries contains
two queries (u1, v1) and (u2, v2) that refer to corresponding entries in the matrices A and B; that is,
unless (π−1(u1), π−1(v1)−2k) ∈ [k]2 equals (π−1(u2)−k, π−1(v2)−8k).14 However, the probability

that this event occurs is upper-bounded by
(
q
2

)
· 2k2

(9k)2
· 1

(9k)2−1
< q2/6000k2.

On the other hand, distinguishing these two distributions is essential for testing Π, since the
first distribution is supported by Π, whereas (as shown next) graphs selected according to the
second distribution are Ω(1)-far from Π, with overwhelmingly high probability. To prove the latter
claim, consider a random graph π(GA,B) generated according to the second distribution and an
arbitrary graph φ(GC,C) ∈ Π. Then, with probability at least 1 − exp(−Ω(k2)), the matrices A
and B disagree on at least k2/3 of their entries. Fixing such A and B (as well as π), we consider
the following cases, where γ ∈ (0, 1] is a constant such that all Gk’s are γ-robustly self-ordered (see
Definition 2.2).

Case 1: d
def
= |{i ∈ [9k] : π(i) ∈ [2k] ∧ φ(i) 6∈ [2k]}| ≥ γ · k/9.

Using the different in degrees between the vertices in G2k and G7k, which is at least 0.3k,
it follows that the symmetric difference between π(GA,B) and φ(GC,C) is at least d · 0.3k >
0.03γ · k2.

13In contrast, the vertices of G7k have degree at least 0.49 · 7k > 3.4k.
14Indeed, assuming that π−1(u1), π−1(u2)−k ∈ [k] and π−1(v1)−2k, π−1(v2)−8k ∈ [k], these queries are answered

by the values aπ−1(u1),π−1(v1)−2k and bπ−1(u2−k),π−1(v2)−8k, and these values are informative (towards distinguishing

the two distributions) if and only if (π−1(u1), π−1(v1)− 2k) = (π−1(u2 − k), π−1(v2)− 8k).

13

Case 2: d < γ · k/9 and d′
def
= |{i ∈ [9k] : π(i) 6= φ(i)}| ≥ k/4.

Using the γ-robust self-ordering of the graphs G2k and G7k, it holds that the symmetric
difference between π(GA,B) and φ(GC,C) is at least (γ · (d′ − d) − d) · 2k, which is at least
(γ · d′ − 2d) · 2k = Ω(k2).

(Letting D1 = {i ∈ [9k] : π(i) ∈ [2k] ∧ φ(i) 6∈ [2k]} and D2 = {i ∈ [9k] : π(i) 6∈ [2k] ∧ φ(i) ∈
[2k]}, we only count on the contribution of the vertices in either {i ∈ [9k] \ D1 : π(i) ∈
[2k] \ {φ(i)}} or {i ∈ [9k] \ D2 : π(i) ∈ {2k + 1, ..., 9k} \ {φ(i)}}, and subtract for each
contribution d units per their potential neighbours in either D1 or D2.)

Case 3: d′ < k/4.

In this case, we consider the set D = {i ∈ [9k] : π(i) 6= φ(i)}, which is smaller than k/4, and
the set

∆ = {(i, j)∈ [k]2 :ai,j 6=bi,j & i, k + i 6∈D & 2k + j, 8k + j 6∈D}.

Recalling that |{(i, j)∈ [k]2 : ai,j 6= bi,j}| ≥ k2/3, it follows that |∆| ≥ k2

3 − |D| · k = Ω(k2).
Lastly note that each entry in ∆ contributes one unit to the symmetric difference between
π(GA,B) and φ(GC,C), since the corresponding adjacencies in π(GA,B) are different whereas
these adjacencies are equal in φ(GC,C). We stress that (i, j) ∈ ∆ contributes to the symmetric
difference because this entry appears in the same location in both graphs (i.e., π(i) = φ(i),
π(k + i) = φ(k + i), π(2k + j) = φ(2k + j), and π(8k + j) = φ(8k + j)), whereas ai,j 6= bi,j
implies that either ai,j 6= ci,j or ai,j 6= ci,j .

Hence, we have shown that in all cases the symmetric difference between π(GA,B) and φ(GC,C) is
Ω(k2), whereas these are O(k)-vertex graphs.

Claim 3.1.3 (upper bound for adaptively testing Π): There exists an adaptive tester for Π9k of
query complexity O(ε−1 ·

√
k · log k).

Proof: The basic idea is for the tester to first identify the copies of G2k and G7k in the tested
graph G′, and then to index vertices in G′ according to their location in G2k and G7k via the local
self-ordering procedure (specifically via reliable locators). If these procedures fail, then we can
definitely reject. More generally, we test whether G′ is close to some graph of the form π(GA,B)
for some matrix pair (A,B) and a bijection π : [9k] → [9k]. Assuming that this is the case, we
generate samples of O(

√
k/ε) vertices in the two parts of G′, and expect to obtain Ω(1/ε) pairs of

vertices (of G′) that correspond to vertex-pairs (i, k + i) in G2k and Ω(1/ε) pairs of vertices (of
G′) that correspond to vertex-pairs (j, 6k + j) in G7k. These pairs allow us to compare Ω(1/ε)2

corresponding entries in the two matrices, since the (i, j)th entry in A (resp., in B) is represented
by the adjacency of the ith vertex of G2k and the jth vertex of G7k (resp., the k + ith vertex of
G2k and the 6k+ jth vertex of G7k). Each of these entries is uniformly distributed in [k]× [k], and
Ω(1/ε) of them are independently distributed (and so we shall use them).

The crucial point is that we apply the Birthday paradox to the k rows (resp., columns) of these
matrices rather than to their k2 entries. Adaptivity is used in order to query the relevant entries
(rather than querying all entries in the generalized rectangle spanned by the sampled rows and
columns). We stress that the collisions (of rows and of columns, which are indexed by vertices
in G2k and G7k, respectively) can be identified only after self-ordering the sampled vertices, and
identification is performed using the local self-ordering procedure.

14

The actual tester. Recalling that ` = O(log n) and following the foregoing outline, our tester first
selects a sample that will be used to identify the G2k and G7k parts of G′ and to index the vertices
in these parts (see Steps 1 and 2). Then, an additional sample is chosen and it is used for testing
that G′ has the form π(GA,B) for some matrices A and B and a permuation π (see Steps 3–5).
This additional sample is large enough to cause collisions among rows (resp., among columns) of
the two matrices, which in turn allow for testing the equality of A and B (in Step 6). Specifically,
the tester proceeds as follows, on input ε > 0 and oracle access to G′ = ([9k], E′).

1. Selecting a sample for degree estimation: We select uniformly at random a set of 9` vertices,
denoted S, and inspect the subgraph of G′ induced by S. If it contains less than 1.9` or more
than 2.1` vertices of degree at most 3.1`, then we halt and reject. (We may also reject if
any of the other vertices has degree less than 3.4`, but this is unuseful because this check is
performed in Step 3 based on a larger sample.)

In the sequel, we say that a vertex has low degree if it contains at most 3.1` neighbors in S;
otherwise, we say that it has high degree.

(Recall that a graph in Π9k has 2k vertices of degree at most 0.51 · 2k + 2k < 3.1k and 7k
vertices of degree at least 0.49 · 7k > 3.4k.)

2. Finding reliable locators in the initial sample: Let S1 be a random `-subset of the low degree
vertices selected in Step 1, and S2 be a random `-subset of the high degree vertices. (Recall
that S contains more than ` low (resp., high) degree vertices.) If the subgraph of G′ induced
by S1 (resp., by S2) is not isomorphic to the subgraph of G2k (resp., of G7k) that is induced
by some reliable locator of G2k (resp., of G7k), then we halt and reject.

Otherwise, we let π1 (resp., π2) denote the unique isomorphism between the subgraph of G′

induced by S1 (resp., S2) and the subgraph of G2k (resp., of G7k) induced by the (unique)
reliable locator that we identified for G2k (resp., for G7k).

(Note that no queries are made in this step: The subgraphs of G2k and G7k that are induced
by the various `-subsets are hard-wired in the tester.)

3. Sampling the two parts of the graph and locating the sampled vertices: We select uniformly
at random a set of O(

√
k/ε) vertices, denoted R, and let R1 and R2 denote the low and high

degree vertices, where these degrees are approximated according to S. That is, for each vertex
r ∈ R, we check its neighborhood in S, by making |S| queries.

If R2 contains a vertex of degree less than 3.4`, then we reject.

Using the local self-ordering procedure (based on the reliable locator S1 (resp., S2)), we
determine the location in G2k (resp., G7k) of each vertex in R1 (resp., R2). Specifically, we
determine that vertex v in R1 corresponds to vertex i in G2k if the sequence of adjacencies of
v with S1 (in G′) match the adjacencies of i with π1(S1) (in G2k); that is, if for every s ∈ S1

it holds that {v, s} ∈ E′ if and only if {i, π1(s)} ∈ E2k. Ditto for v ∈ R2 (using S2 and π2).

If any of these invocation fails, then we reject. Ditto if two different vertices were assigned
the same location. Otherwise, we define π1 : R1 → [2k] and π2 : R2 → [7k] (or rather extend
them from Si to Si ∪ Ri) accordingly; that is, π1(v) (resp., π2(v)) is the location of v ∈ R1

(resp., v ∈ R2) in G2k (resp., G7k).

15

4. Using the sample to test isomorphism of each part of G′ to the corresponding part in a generic
GA,B: We test that the subgraph of G′ induced by R1 (resp., R2) equals the subgraph of G2k

induced by π1(R1) (resp., the subgraph of G7k induced by π2(R2)). This test is performed by
checking O(1/ε) vertex-pairs at random; that is, for every selected vertex-pair (u, v) ∈ R1×R1,
we check whether its adjacency in G′ fits the adjacency of (π1(u), π1(v)) in G2k (and ditto for
R2 and G7k (via π2)).

5. Using the sample to complete a test of isomorphism of G′ to a generic GA,B: We test that

there are no edges between R1,1
def
= {u ∈ R1 : π1(u) ∈ [k]} and R2,2

def
= {v ∈ R2 : π2(v) ∈

{k + 1, ..., 7k}}, and ditto between R1,2
def
= {u ∈ R1 : π1(u) ∈ {k + 1, ..., 2k}} and R2,1

def
=

{v ∈ R2 : π2(v) ∈ [6k]}. This test is performed by checking O(1/ε) vertex-pairs at random;
that is, for every selected vertex-pair (u, v) ∈ (R1,1 × R2,2) ∪ (R1,2 × R2,1), we reject if u is
connected to v in G′.

6. Testing that A = B: We call a pair (i, j) ∈ [k]2 a matrix-collision if there exists u1, v1 ∈ R1

and u2, v2 ∈ R2 such that π1(u1) = i = π1(v1) − k and π2(u2) = j = π2(v2) − 6k. In such a
case, we call i a row-collision, and call j a column-collision.

(Note that, if G′ ∈ Π, then we are likely to see Θ(1/ε) row-collision (resp., column-collision).
Furthermore, in this case, every matrix-collision (i, j) satisfies {π−1

1 (i), π−1
2 (j)} ∈ E′ if and

only if {π−1
1 (k + i), π−1

2 (6k + j)}, since these edges correspond to the (i, j)th entry in the
matrix A such that G′ is isomorphic to GA,A.)

Letting I (resp., J) denote the set of row-collisions (resp., column-collision), we select a
random set of min(|I|, |J |,Θ(1/ε)) disjoint pairs P ⊆ I × J (i.e., distinct (i1, j1), (i2, j2) ∈ P
satisfy both i1 6= i2 and j1 6= j2). For each (i, j) ∈ P , we query G′ on the pairs (π−1

1 (i), π−1
2 (j))

and (π−1
1 (k + i), π−1

2 (6k + j)), and reject if the answers are different.

If we did not reject so far, then we accept.

We stress that in Step 6 we only make O(1/ε) queries; these queries are determined adaptively
based on the information gathered in Step 3 (i.e., the values (π1(v) :v∈R1) and (π2(v) :v∈R2) that
were determined there). Hence, we only query O(1/ε) pairs out of all |R1| · |R2| = O(k/ε2) pairs.

Analysis of the foregoing algorithm. The query complexity of the algorithm is O(ε−1 ·
√
k · log k),

where Step 3 dominates the number of queries made. Specifically, for each vertex in R, we invoked
the local self-ordering procedure, which results in quering its neighborhood in S; that is, we queried
all pairs in R× S.

Let us first verify that graphs in Π are accepted with probability at least 1−exp(−Ω(`)), where
the unlikely rejection events are solely due to Steps 1–3 (i.e., either a wrong approximation of a
vertex’s degree (in either Step 1 or Step 3) or failure to sample a reliable locator in Step 2).15 In
contrast, if all vertices of G′ ∈ Π are correctly categorized (based on their approximated degrees
per their neighborhood in S) and a reliable locator was found, then π1 (resp., π2) equals the unique
isomorphism between the subgraph of G′ induced by the low degree vertices and G2k (resp., the

15Note that a wrong approximation of a vertex degree may lead to placing it in the wrong Ri, which may lead to
rejection at later steps. Failure to find a reliable locator in Step 2 may also be due to S containing too few low (resp.,
high) degree vertices, which is also highly unlikely. Specifically, a degree approximation error occurs with probability
at most n · exp(−Ω(`)) = exp(−Ω(`)), whereas failure to sample a reliable locator occurs with probability at most
exp(−Ω(`)).

16

subgraph of G′ induced by the high degree vertices and G7k). In this case, all subsequent checks
will be successful, and our tester will always accept.

On the other hand, suppose that G′ = ([9k], E′) is ε-far from Π. As a warm-up, consider the
case that G′ = π(GA,B), for some matrix pair (A,B) and a bijection π : [9k] → [9k]. In this
case, B must be 81ε-far from A, since the adjacencies determined by B constitute a 1/81 fraction
of all vertex-pairs. It follows that if we reach Step 6, then we reject with high probability, since
we are likely to inspect Ω(1/ε) disjoint matrix-collisions, which are uniformly and independently
distributed in [k]2. Intuitively, if G′ is close enough to some π(GA,B), then the same argument
holds, and otherwise Steps 1–5 reject with high probability. The actual analysis follows.

Let V1 denote the set of vertices of G′ that have degree at most 3.2k, and V2 ⊆ [9k] \ V1 denote
the set of vertices of G′ that have degree at least 3.3k. We may assume that the degrees of all
vertices are well approximated by their neighborhoods in the sample S (selected in Step 1), since
this holds with probability at least 1−exp(−Ω(`)). It follows that all vertices in V1∪V2 are correctly
categorized as low and high degree vertices. We may also assume that |V1 ∪ V2| ≥ 9k − ε′k, since
otherwise Step 3 rejects with high probability (because vertices of degree in (3.2k, 3.3k) are most
likely to be placed in R2 and cause rejection per their too low degree).

Assuming that Steps 1 and 2 were completed successfully (i.e., without rejection), we define
a function φ1 : V1 → [2k] ∪ {⊥} such that φ1(v) denotes the answer of the local self-ordering
(based on S1) to the input v, which may be a failure symbol, denoted ⊥, where failure may occur
because the subgraph of G′ induced by V1 is not necessarily isomorphic to G2k. Similarly, we define
φ2 : V2 → [7k]∪{⊥}. Note that φi agrees with πi on Ri, where πi is defined exactly in this manner
in Step 3.

Letting ε′ = Ω(ε), we may assume that φi does not evaluate to ⊥ on more than ε′k points,
since otherwise such a point is sampled (w.h.p.) by Step 3, leading it to reject. Likewise, φi does
not have more than ε′k points that have an image with several pre-images under φi, where here a
Birthday argument proves the claim (since the collision probability is at least 1/ε′k). In particular,
it follows that |V1| ≤ (2 + 2ε′) · k (resp. |V2| ≤ (7 + 2ε′) · k), because otherwise φ1 (resp., φ2) would
have had more than ε′k points that have an image with several pre-images under it.

Denote by V ′i ⊆ Vi the set of vertices that were not discarded above; that is, V ′i = {v ∈ Vi :
φi(v) 6=⊥& |φ−1

i (φi(v))|=1}. Using |V1| ≥ 9k − |V2| − ε′k ≥ (2− 3ε′) · k (resp. |V2| ≥ (7− 3ε′) · k),
we note that |V ′1 | ≥ (2− 5ε′) · k and |V ′2 | ≥ (7− 5ε′) · k must hold, and define φ′i as the restriction
of φi to V ′i . Lastly, let φ′ : V ′1 ∪ V ′2 → [9k] such that φ′(v) = φ′i(v) if v ∈ V ′1 and φ′(v) = 2k + φ′i(v)
otherwise, and let φ be an arbitrary extension of φ′ to a permutation over [9k].

Relying on Step 4 (and assuming that it does not reject w.h.p), we infer that the subgraph of
φ(G′) induced by [2k] (resp., by {2k+ 1, ..., 9k}) is 6ε′-close to G2k (resp., to G7k (when relabeling
its vertices by subtracting 2k to each label)). Relying on Step 5 (and assuming that it does not
reject w.h.p), we infer that φ(G′) is 7ε′-close to some GA,B for some matrices A and B. Recalling
that G′ is ε-far from Π (and using ε = 8ε′), we infer that A and B must disagree on more than
ε′ · 81k2 entries, which means that they are 81ε′-far apart. We claim that in this case Step 6 rejects
with high probability.

We stress that so far we have not conditioned the sets R1 and R2; the foregoing inferences that
involve Steps 3–5 were thought experiments.16 Recalling that |V1| = (2k ± 0.3k), we observe that

16We argued that if certain conditions do not hold, then one of these steps would reject with high probability (when
using random R1 and R2). However, we continued assuming that the conditions do hold, and did not condition the
distribution of R1 and R2.

17

with high probability (over the choice of R1 and R2), Step 6 defines a set of at least 1/ε disjoint
matrix-collision pairs, and that these pairs are independently and uniformly distributed in [k]× [k].
Such a pair (i, j) causes rejection if the following conditions hold:

1. A and B disagree on (i, j) (i.e., ai,j 6= bi,j);

2. φ−1
1 (i) and φ−1

1 (k + i) are in V ′1 , which implies π1(φ−1
1 (i)) = i and π1(φ−1

1 (k + i)) = k + i;

3. φ−1
2 (j), φ−1

2 (6k + j) ∈ V ′2 , which implies π2(φ−1
2 (j)) = j and π2(φ−1

2 (6k + j)) = 6k + j.

The probability that this event holds is lower-bounded by 81ε′ − 5ε′ − 5ε′ > 8ε, and the claim
follows.

Combining Claims 3.1.2 and 3.1.3, the theorem follows.

Digest. Note that the proof of Claim 3.1.2 only uses the hypothesis that the graphs {Gk}k∈N are
robustly self-ordered, whereas the proof of Claim 3.1.3 only uses the hypothesis that these graphs
can be locally self-ordered (via a reliable locator of logarithmic size). The robust self-ordering is
used to infer that if π(GA,B) is far from π′(GA′,B′), then either π is far from π′ or (A,B) is far from
(A′, B′). The local self-ordering procedure is used in order to associate vertices of π(GA,B) with
rows or columns of either A or B.

We note that, in contrast to the situation in the bounded-degree graph model (cf. [14, Thm. 4.7]),
the local self-ordering procedures that we used are not computationally efficient. This is the reason
that our testers are also not computationally efficient. The logarithmic gap between the square
root of the lower bound on the query complexity of non-adaptive testers and the query complexity
of our adaptive tester is due to the query complexity of our local self-ordering procedure, which we
indeed tried to minimize. Lastly, we comment that “local reversed self-ordering” (cf. [14, Def. 4.8])
requires very high query complexity in the dense graph model (unlike in the bounded-degree graph
model [14, Thm. 4.9]).

4 Generalizations

In this section we prove Theorems 1.3 and 1.4. The proofs are obtained by gradual modifications of
the proof of Theorem 3.1, presented in Section 3. While these modifications are relatively simple,
establishing Theorem 1.5 requires several additional ideas, which will be presented in Section 5.

4.1 Smaller complexity gaps

Theorem 3.1 asserts that the gap between the query complexity of non-adaptive testers and adaptive
ones may be almost quadratic. Answering open problems raised in [12, Sec. 1.3] (see also [6,
Sec. 8.5.4]), we next prove that the gap can take the form of any function that is at most (almost)
quadratic. This exhibits a richer range of gaps than conjectured in [12].

Theorem 4.1 (Theorem 1.3, restated): For every function g : N→ N such that g(n) ≤
√
n, there

exists a graph property Π that satisfies the following two conditions:

1. The general (adaptive) query complexity of testing Π lies between Ω(
√
n) and O(ε−1·

√
n·log n).

18

2. The non-adaptive query complexity of testing Π lies between Ω(g(n) ·
√
n) and O(ε−2 · g(n) ·√

n+ ε−1 ·
√
n · log n).

Note that in Theorem 3.1 there was no need to state the non-adaptive upper bound and the adaptive
lower bound, since they roughly follows from the fact that the non-adaptive complexity is at most
quadratic in the general complexity [1, 13]; specifically, for g(n) =

√
n, Theorem 3.1 implies an

upper bound of O(O(ε−1 ·
√
n · log n)2) = O(ε−2 ·n · log2 n) on the query complexity of non-adaptive

testers, and a lower bound of Ω(Ω(n)1/2) = Ω(
√
n) on the query complexity of adaptive testers.

Proof Sketch: We use the same property as in the proof of Theorem 3.1, except that we utilize
matrices in which each column is repeated Θ(n/g(n)2) times (in consecutive columns). Intuitively,
this redundancy effectively shrinks the matrix size from n2 (in Theorem 3.1) to n · g(n)2, thus
reducing the complexity of non-adaptive tester from O(

√
n2) = O(n) to O(

√
g(n) · n) = O(g(n) ·√

n). On the other hand, a lower bound that is a square root of the effictive matrix-size still holds.
Turning to the complexity of general (adaptive) testing, we observe that it remains a square root
of the number of rows, which did not change (not even effectively). Details follow.

We first outline the modification to Construction 3.1.1. Setting k = n/9 (as before), we let
t = k/g(n)2 (be the number of repetitions), and modify the property Π as follows.

• For two k-by-k Boolean matrices A = (ai,j) and B = (bi,j), we define the graph GA,B =
([9k], EA,B) exactly as in Eq. (2).

• We say that a matrix A = (ai,j) is t-column-redundant if ai,j = ai,j′ for every i, j, j′ ∈ [k] such
that dj/te = dj′/te.
We define the property Π =

⋃
n∈N Πn such that Πn is the set of all graphs that are isomorphic

to some n-vertex graph GA,A for some t-column-redundant matrix A. That is, the only
difference between Πn and its definition in Construction 3.1.1 is that A is t-column-redundant;
each of its columns is repeated t times, in consecutive columns.

The proofs of Claims 3.1.2 and 3.1.3 remain almost intact under the relevant modifications. In
particular, the lower bound for non-adaptive testers is still a square root of the actual information
contents of the matrices, which in this case equals

√
k · (k/t), which in turn equals Ω(

√
n · g(n)2) =

Ω(g(n) ·
√
n).

Specifically, we consider the problem of distinguishing the uniform distribution on Πn and
the distribution generated by picking two random and independent t-column-redundant matrices
A = (ai,j) and B = (bi,j) and outputting π(GA,B) for a random π ∈ Symn. In this case, the
probability that two specific queries correspond to entries (i, j) in A and (i, j′) in B such that
dj/te = dj′/te is 1

k ·
t
k , which means that distinguishing these distributions requires Ω(

√
k2/t)

non-adaptive queries. On the other hand, with overwhelmingly high probability, two random and
independent t-column-redundant matrices disagree on more than k2/3 of their entries.

The adaptive tester is as in the proof of Claim 3.1.3, except that we slightly modify Step 6;
specifically, the pair (i, j) ∈ [k]2 is considered a matrix-collision if there exists u1, v1 ∈ R1 and
u2, v2 ∈ R2 such that π1(u1) = i = π1(v1) − k and dπ2(u2)/te = dj/te = d(π2(v2)− 6k)/te. (In
this case, as in the proof of Claim 3.1.3, for each selected matrix-collision (i, j), we query G′ on the
pairs (π−1

1 (i), π−1
2 (j)) and (π−1

1 (k + i), π−1
2 (6k + j)), and reject if the answers are different.)

The query complexity of this modified algorithm is O(ε−1 ·
√
k · log k) as before, and the analysis

of Step 6 is extended to show that if φ(G′) is far from Π but close to some GA,B, then, for any

19

t-column-redundant matrix C it holds that either A or B is far from C. To see that, in this case,
the modified Step 6 rejects (w.h.p) consider α, β ∈ {0, 1}t such that for every γ ∈ {0t, 1t} either α
or β disagrees with γ on at least d entries. Then, the probability that a random entry in α disagrees
with a random entry in β is at least d/t.17

We now turn to the two remaining claimed bounds. The upper bound on non-adaptive testers
follows by considering a non-adaptive version of the foregoing adaptive tester, with a crucial varia-
tion in Step 6. First note that Steps 1–5 use adaptivity only in their identification of the Si’s and
Ri’s. We can avoid this adaptivity by querying the corresponding samples; specifically, denoting
the sample taken in Step 1 (resp., Step 3) by S (resp., R), we query S × R (rather than querying⋃
i∈{1,2}(Si × Ri)), and use the identification of the Si’s and Ri’s only in the interpretation of the

answers. Note that |S| · |R| = O(` ·
√
k/ε) = O(ε−1√n log n). (In particular, we benefit from the

fact that the local self-ordering procedure, which relies on a reliable locator, is non-adaptive.)18

As for Step 6, the key observation is that we can select a random subset R′ of O(g(n)/ε) vertices
of R, and make non-adaptive queries to all pairs in R × R′, which means making O(g(n) ·

√
n/ε2)

queries. The point is that the number of non-repeated columns is k/t = g(n)2, and R′ is likely to
yield Θ(1/ε) column-collisions, where j is a column-collision if there exists u2, v2 ∈ R2 such that
dπ2(u2)/te = dj/te = d(π2(v2)− 6k)/te. Again, the identification of the Si’s and Ri’s as well as of
the matrix-collisions takes place only in the interpretation of the answers.

Lastly, we turn the lower bound on adaptive testers. This bound follows merely by considering
collisions among samples of the k rows of the matrix. Specifically, we used the same distributions
as in the proof of the lower bound for non-adaptive testers (i.e., the modified Claim 3.1.2), and
observe that Ω(

√
k) adaptive queries are needed in order to find vertices of G′ that are mapped (by

π) to location i and i+ k, for some i ∈ [k].

4.2 Lower levels of complexity

Using the idea of redundancy, we can get gaps at lower levels of complexity. Specifically, starting
from Theorem 4.1, we replace

√
n by f(n) ≤

√
n (and replace g(n) by g(f(n))).19

Theorem 4.2 (Theorem 1.4, restated): For every functions f, g : N → N such that f(n) ≤
√
n

and g(m) ≤ m, there exists a graph property Π that satisfies the following two conditions:

1. The general (adaptive) query complexity of testing Π lies between Ω(f(n)) and O(ε−1 · f(n) ·
log n).

2. The non-adaptive query complexity of testing Π lies between Ω(g(f(n)) · f(n)) and O(ε−2 ·
g(f(n)) · f(n) + ε−1 · f(n) · log n).

17Denoting the fraction of 1-entries in α (resp., β) by p (resp., q), observe that the probability that random entries
disagree equals p(1− q) + (1− p)q = p+ q− 2pq. Assuming, w.l.o.g., that p+ q ≤ 1, we have p+ q− 2pq ≥ (p+ q)/2.
On the other hand, the relative distance of α from a constant string is at least min(p, 1− p), and ditto for β. Hence,
min(p, 1− p, q, 1− q) ≥ d/t, and (p+ q)/2 ≥ d/t follows.

18This is not so crucial given that the query complexity of this procedure is polylogarithmic, and such a bound
would have been preserved under the transformation from adaptive to non-adaptive algorithms. Still, this saves us a
polylogarithmic factor.

19Indeed, it would have been more consistent to replace g(n) by g(f(n)2), but doing so would have made the current
statement slightly more complex.

20

Proof Sketch: As in the proof of Theorem 4.1, we use the same property as in the proof of
Theorem 3.1, except that we utilize matrices in which each row is repeated Θ(n/f(n)2) times and
each column is repeated Θ(n/(g(f(n)) · f(n))2) times. Specifically, we set k = n/9, m = f(n),
t′ = k/m2 and t = k/g(m)2 = t′ · m2/g(m)2 ≥ t′, and modify the definition of Π =

⋃
n∈N Πn

such that Πn is the set of all graphs that are isomorphic to some n-vertex graph GA,A such that
A = (ai,j) satisfies ai,j = ai,j′ for every i, i′, j, j′ ∈ [k] such that di/t′e = di′/t′e and dj/te = dj′/te.
We call such matrices (t′, t)-redundant

The proofs of all four bounds remain almost intact under the relevant modifications. Starting
with the lower bound for non-adaptive testers, we observe that it is still a square root of the
actual information contents of the matrices, which in this case equals

√
(k/t′) · (k/t), which in

turn equals Ω(
√
f(n)2 · g(f(n))2) = Ω(g(f(n)) · f(n)). Specifically, we consider the problem of

distinguishing the uniform distribution on Πn and the distribution generated by picking two random
and independent (t′, t)-redundant matrices A = (ai,j) and B = (bi,j) and outputting π(GA,B) for
a random π ∈ Symn. In this case the probability that two specific queries correspond to entries
(i, j) in A and (i′, j′) in B such that di/t′e = di′/t′e and dj/te = dj′/te is t′

k ·
t
k , which means that

distinguishing these distributions requires Ω(
√
k2/t′t) non-adaptive queries. On the other hand,

with high probability, two random and independent (t′, t)-redundant matrices disagree on more
than k2/3 of their entries.20

The adaptive tester is again a modification of the tester presented in the proof of Claim 3.1.3,
where the modification is confined to taking a smaller sample in Step 3, and adapting Step 6
to the current redundancy; specifically, in Step 3 we take a sample of O(f(n)/ε) vertices (i.e.,
|R| = O(f(n)/ε)), and in Step 6 we consider the pair (i, j) ∈ [k]2 to be a matrix-collision if there exists
u1, v1 ∈ R1 and u2, v2 ∈ R2 such that dπ1(u1)/t′e = di/t′e = d(π1(v1)− k)/t′e and dπ2(u2)/te =
dj/te = d(π2(v2)− 6k)/te. The query complexity of this modified algorithm is O(ε−1 · f(n) · log n),
and the analysis of Step 6 is extended to show that if φ(G′) is far from Π but close to some GA,B,
then, for any (t′, t)-redundant matrix C it holds that either A or B is far from C.21

The upper bound on non-adaptive testers follows by considering a non-adaptive version of the
foregoing adaptive tester. The observations and modifications regarding this matter that were made
in the proof of Theorem 4.1 apply here (without any change). Specifically, recall that for Step 6 we
can select a random subset R′ of O(g(f(n))/ε) vertices of R, and make non-adaptive queries to all
pairs in R × R′, which means making O(g(f(n)) · f(n)/ε2) queries. The point is that the number
of non-repeated rows (resp., columns) is k/t′ = f(n)2 (resp., k/t = g(f(n))2), and R (resp., R′)
is likely to yield Θ(1/ε) row-collisions (resp., column-collisions), where i is a row-collision if there
exists u1, v1 ∈ R1 such that dπ1(u1)/t′e = di/t′e = d(π1(v1)− k)/t′e and j is a column-collision if
there exists u2, v2 ∈ R2 such that dπ2(u2)/te = dj/te = d(π2(v2)− 6k)/te.

Lastly, we turn the lower bound on adaptive testers. This bound follows merely by considering
collisions (in the revised sense) among samples of the k rows of the matrix. Specifically, we used
the same distributions as in the proof of the lower bound for non-adaptive testers, and observe that
Ω(
√
k/t′) = Ω(f(n)) adaptive queries are needed in order to find vertices of G′ that are mapped

(by π) to location i and i′ + k, for some i, i′ ∈ [k] such that di/t′e = di′/t′e.

20This holds provided that t′ = o(n), and otherwise the claims hold vacuously.
21To see that, in this case, the modified Step 6 rejects (w.h.p) consider α, β ∈ {0, 1}t

′×t such that for every

γ ∈ {0t
′×t, 1t

′×t} either α or β disagrees with γ on at least d entries. Then, as detailed in Footnote 17, the
probability that a random entry in α equals a random entry in β is at least d/t′t.

21

5 Accommodating one-sided error testers

Recall that a tester for a graph property Π is said to have one-sided error probability if it accepts
every graph in Π with probability 1; otherwise, we say that it has two-sided error probability.

We show that a (significant) variant of the graph property defined in the proof of Theorem 4.2
can be tested with one-sided error probability within almost the same query complexity. In particu-
lar, although we shall define some new notions and establish some new results before getting to the
lower bounds, the proof of the lower bounds will use simple modifications of the prior proofs. The
new notions and results will be mostly used in the description and analysis of the testers, which
are quite complex. (Of course, some of these modifications will appear in the graph property itself,
and the proof of the lower bound will need to deal with them, but doing so will not be difficult.)
In any case, our goal is to prove the following –

Theorem 5.1 (Theorem 1.5, restated): For every functions f, g : N → N such that f(n) ≤
√
n

and g(m) ≤ m, there exists a graph property Π that satisfies the following two conditions:

1. The general (adaptive) query complexity of testing Π lies between Ω(f(n)) and O(ε−1 · f(n) ·
log3 n), where the upper bound holds for a one-sided error tester and the lower bound holds
for two-sided error testers.

2. The non-adaptive query complexity of testing Π lies between Ω(g(f(n)) · f(n)) and O(ε−2 ·
g(f(n)) · f(n) · log2 n + ε−1 · f(n) · log3 n), where the lower bound holds for two-sided error
testers and the upper bound holds for a one-sided error tester.

Actually, the upper bounds hold provided that ε > n−0.49.

Otherwise (i.e., if ε ≤ n−0.49), the trivial tester that checks all entries works using O(1/ε4.1) queries.

Overview of the proof of Theorem 5.1. The issues that we shall address are rooted in the
proof of Theorem 3.1, but we deal with them in a way that also accommodates the modification
made to derive Theorem 4.2. Hence, we refer to the proof of Theorem 4.2 rather than to that of
Theorem 3.1.

As stated above, we shall use a variant of graph property Π that was used in the proof of
Theorem 4.2, and so the lower bounds remain valid (although we shall have to show this too).
Furthermore, we will need to modify the testers (which are based on the tester presented in the
proof of Claim 3.1.3), which evidently have two-sided error probability. This error probability (on
graphs in Π) has three sources:

1. A wrong categorization of vertices (w.r.t the Si’s and Ri’s) caused by a wrong approximation
of their degrees (which takes place in Steps 1 and 3, respectively).

2. Failure to sample (in Step 1) a proportional number of vertices on each side of the graph,
where we refer to the copies of G2k and G7k used in the construction of graphs in Π9k.

3. Failure to find a reliable locator (for each side) in Step 2.

These errors seem unavoidable. For starters, when taking a small sample of the graph vertices, it
may happen with (small) positive probability that the sample does not provide a correct estimate

22

for the degrees of some vertices in the graph (e.g., all sampled vertices may happen to be neighbors
of some vertex). Likewise, it may happen (although rarely) that all vertices sampled in Step 1 hit
one side of the graph. And, similarly, it may happen that a small sample (as taken in Step 2) does
not contain a reliable locator, because not all polylogarithmic-sized subsets of the vertex-set are
reliable locators.

Faced with these problems, we take two steps. First, we move away from notions that re-
quire correct performance with respect to all the graph’s vertices, but only guarantee it with high
probability. Instead, we devise notions that allow for few exceptional vertices, but guarantee such
performance with probability 1 (when the graph is in the property). For example, rather than
seeking a sample that estimates correctly the degrees of all vertices in a graph, we seek samples
that (for graphs in the property) always estimate correctly the degrees of all but logarithmically
many vertices. (Needless to say, these samples will provide good estimations, with high probability,
for any vertex in any graph.) An analogue relaxation is employed to the notion of a reliable locator.
Furthermore, we show that both these relaxations can be achieved.

Second, given that we cannot rely on Step 1 to hit the two sides of the graph in proportion to
their size, we use a different way of obtaining two robustly self-ordered graphs with significantly
different vertex degrees. Specifically, we use random graphs with different edge density. Note that
we can detect the case that a sample is extremely biased towards vertices of one of the two sides
(or graphs), and in this case we proceed without rejecting (rather than reject based on statistic
evidence). In this case, graphs that are far from the property will be rejected by the subsequent
steps, which will produce (with high probability) an absolute witness for violation of the property.

Organization of the proof. In Section 5.1, we develop the tools that will be used in the actual proof.
These include a relaxed notion of reliable locators, called pseudo-locators, that allows for location
failures on very few vertices of the graph (Definition 5.4), and a proof that in a random graph
all logarithmically-sized subsets are pseudo-locators (Claim 5.5). The actual proof is presented in
Section 5.2. Its core is the descriptions of the modified graph property (Construction 5.7) and of
the modified adaptive tester (presented in the proof of Proposition 5.9).

5.1 Developing tools for the proof

As noted above, in previous sections, distinguishing the vertices in the two sides of the graph (i.e.,
in copies of G2k and G7k) was based on the fact that these vertices have different degrees, but
this difference is detected based on the assumption that the sample taken in Step 1 hits each side
in proportion to its size. Although this happens with high probability, it does not happen with
probability 1, and so we cannot rely on this reasoning for one-sided error testers. The solution
is to use different edge densities in the two sides, which means that we need an alternative to
Construction 3.1.1. Specifically, for a small constant p > 0 (e.g., p = 0.1), we replace the graphs
G2k and G7k used there, with two 2k-vertex graphs, one of edge density p, and the other of edge
density 1− p. Both graphs will be robustly self-ordered and their edge density will be preserved by
any induced subgraph of size Ω(log k). Hence, we first prove the following –

Claim 5.2 (robust self-ordering of G(n, p) and vertex degrees in it): For any constant p ∈ (0, 1),
let G(n, p) be the Erdos–Renyi random n-vertex graph in which each pair of vertices is connected
with probability p independently of all other vertex-pairs. Then:

1. With probability 1− exp(−Ω(n)), the graph is robustly self-ordered.

23

2. For sufficiently large ` = O(log n), with probability 1− exp(−Ω(`2)), the following two condi-
tions hold:

(a) Every set of ` vertices induces a subgraph of edge density (1± 0.01) · p.

(b) For each set of ` vertices S there are at least n − 2` vertices v ∈ [n] \ S such that the
number of neighbors that v has in S is (1± 0.01) · p · `.

We mention that Part 1 is implicit in the proof of [16, Thm. 3.1]. We highlight the fact that all
`-subsets provide a good approximation of the degrees of almost all vertices (Part 2b). Indeed, for
every vertex there exists `-subsets that fail to provide a good approximation to its degree, but no
`-subset fails for more than ` vertices (outside it).22

Proof Sketch: Part 2a follows by the fact that the probability that any fixed `-subset induces a
subgraph with deviating edge density is exp(−Ω(min(p, 1− p) · `2)), which is exp(−Ω(`2)) since p
is constant.23 Hence, the effect of p is hidden by the Ω-notation, and the same phenomenon will
happen in the later parts.

Part 2b follows by the fact that, for each `-set S and each v ∈ [n] \ S, the probability that the
number of neighbors that v has in S is not (1± 0.01) · p · ` is exp(−Ω(`). Applying a union bound,
it follows that the probability that there exists an `-set for which there are `+ 1 deviating vertices
is at most (

n

`

)
·
(

n

`+ 1

)
· exp(−Ω(`))`+1,

which is exp(−Ω(`2)). (We highlight the fact that allowing ` exceptional vertices, which means
that violation requires ` + 1 vertices rather than 1, raises the probability to the power of ` + 1,
which in turn enables the application of a union bound over all `-sets of [n].)

Part 1 follows by a simple adaptation of the proof of Theorem 2.3, which is presented in
Appendix A. Specifically, the probability that two different vertex-pairs disagree on whether or
not they form an edge is q = 2p(1 − p) rather than 1/2, and Eq. (9) is modified accordingly (i.e.,
n · |T |/20 is replaced by n · |T | · q/10).

Connecting graphs sampled from G(n, 0.1) and G(n, 0.9). For any constant p < 1/2, part 2b
of Claim 5.2 offers a way of distinguishing vertices in (a graph sampled from) G(n, p) from vertices in
(a graph sampled from) G(n, 1−p), but this way may be frustrated if the two graphs are connected
arbitrarily (or almost so) as in Construction 3.1.1. We solve this problem by connecting these two
graphs by a bipartite graph in which the edge density is 0.5±p, for say p = 0.1, where the slackness
offers enough room to encode information (of the embedded matrices). Furthermore, we need every
`-by-` bipartite subgraph to have the same density up to a factor of 1± 0.01. Actually, we use the
following claim, which is formulated in terms of matrices rather than in terms of bipartite graphs,
since this allows to capture the slackness (reflected by ∗-entries) in a more elegant manner.

Claim 5.3 (all logarithmically sized submatrices are balanced in a random p-slacked matrix): For
any constant p ∈ [0, 0.5), let M(n, p) be the distribution on n-by-n matrices over {0, 1, ∗} such

22The choice of ` as the number of exceptional vertices is immaterial; we could have chosen c` for any small or larger
positive constant c. (Making c smaller can be supported by making ` = O(logn) larger, whereas our applications can
tolerate O(`) exceptional vertices with no real effect.) Analogous comments apply to our relaxation of the notion of
a reliable locator (see Definition 5.4 and Claim 5.5).

23Using a union bound over all
(
n
`

)
subsets, the claim follows.

24

that each entry is 0 (resp., 1) with probability q = (1 − p)/2, independently of all other entries,
and equals ∗ otherwise. Then, for sufficiently large ` = O(log n), with probability 1− exp(−Ω(`2)),
every `-by-` submatrix has (1± 0.01) · q · `2 entries of value 0, and ditto for value 1. Furthermore,
each row (resp., column) in the matrix has (1± 0.01) · q ·n entries of value 0, and ditto for value 1.

The proof of Claim 5.3 is by a straightforward counting argument (as used in the proof of Part 2a
of Claim 5.2).24 We shall use an arbitrary matrix M that satisfies the condition of Claim 5.3.

Intuitively, for some small constant p > 0 (e.g., p = 0.1), the graphs in our revised property

Π will consist of a pair of graphs, denoted G
(p)
2k and G

(1−p)
2k , drawn from G(2k, p) and G(2k, 1 − p)

respectively, that are connected by biparite graphs that are determined by two matrices in which
the ∗-entries of M are replaced by Boolean values. But before presenting this construction, we

introduce another feature that we wish the graphs G
(·)
2k’s to possess.

The foregoing modifications to Construction 3.1.1 are aimed at removing the sources of errors
of Types 1 & 2 discussed in the overview of the proof. We are now going to deal with errors of
Type 3 (i.e., failure to sample a reliable locator).

Relaxing the notion of a locator. Recall that the remaining source of error (on graphs in
Π) in our original tester is the failure to sample a reliable locator (for each side) in Step 2. The
problem is that not all `-subsets are reliable locators (although almost all of them are). We resolve
this problem by defining a relaxed notion of a locator, and showing that, with high probability,
in both G(2k, p) and G(2k, 1 − p), all `-subset satisfy this relaxed definition. The nature of the
relaxation is allowing the locator to correctly identify all but very few of the vertices (as opposed
to all in the original definition). When using the following definition, the threshold parameter τ
will be set to p · (1− p).

Definition 5.4 (pseudo-locators): A set of vertices S ⊂ [n] is a pseudo-locator (for threshold τ) of
a graph G = ([n], E) if the following two conditions hold

1. The subgraph of G induced by S is not isomorphic to any subgraph of G that is induced
by any |S|-set that misses more than τ · |S| vertices of S (i.e., any |S|-set S′ such that
|S′ ∩ S| < (1− τ) · |S|).

2. There exists a set U ⊆ [n]\S of n−2 · |S| vertices such that, for every v ∈ U , the adjacencies
of v with any subset that induces the same unlabeled subgraph as S uniquely determine v;
that is, for every u 6= v in U and every S′ such that the subgraph of G induced by S′ is
isomorphic via some φ : [n]→ [n] to the subgraph of G induced by S, there exists s ∈ S such
that {u, s} ∈ E if and only if {v, φ(s)} 6∈ E.

In other words: For every u 6= v in U and every S′, let H (resp., H ′) denote the subgraph of
G induced by S (resp., S′), and suppose that φ(H) = H ′. Then, there exists s ∈ S such that
{u, s} ∈ E if and only if {v, φ(s)} 6∈ E. (U stands for unexceptional.)

(In light of Condition 1, it suffices to consider in Condition 2 sets S′ such that |S′∩S| ≥ (1−τ)·|S|).

Definition 5.4 relaxes both conditions of Definition 2.5: In Condition 1 of Definition 5.4 we requires
that only |S|-subsets that intersect S in less than (1− τ) · |S| vertices induce a subgraph that is not

24Indeed, for p = 0, Claim 5.3 yields a non-explicit two-source extractor (cf. [19]) with almost optimal parameters.

25

isomorphic to the one induced by S; that is, we discard |S|-subsets that have a larger intersection
with S and do not require that the subgraph induced by S is asymmetric. In light of the fact that
Condition 1 was relaxed, the revised Condition 2 refers not only to the adjacencies with S but
also to the adjacencies with any subset that induces the same unlabeled subgraph as S. On the
other hand, in the revised Condition 2 we allow for |S| exceptional vertices (even in case S′ = S,
which is the only case considered in Definition 2.5). Using both relaxations, we shall prove that,
in a random graph, all logarithmically-sized subsets are pseudor-locators (Claim 5.5). But before
proving this claim, let us spell out how a pseudo-locator will be used.

Suppose that G′ = (V ′, E′) is isomorphic to G = ([n], E); that is, G = φ(G′) for some unknown
to us bijection φ : V ′ → [n]. Now, if S′ is a pseudo-locator of G′ (equiv., φ(S′) is a pseudo-locator
of G), then, given v ∈ V ′ \ S′ we can identify φ(v) by inspecting the subgraph of G′ induced by
S′ ∪ {v}. Specifically, we look in G for an |S′|-subset S ⊂ [n] and a vertex i ∈ [n] \ S such that the
subgraph of G induced by S ∪{i} is isomorphic to the subgraph of G′ induced by S′ ∪{v} and this
isomorphism maps i to v. (In other words, we seek a bijection π : S ∪ {i} → S′ ∪ {v} such that
π(i) = v and for every j, j′ ∈ S ∪ {i} it holds that {j, j′} ∈ E if and only if {π(j), π(j′)} ∈ E′.) If
G′ is indeed isomorphic to G and v is not one of the 2 · |S| exceptional vertices, then there exists
a single i that satisfies this condition (although S need not be unique). If G′ is not isomorphic to
G, then anything may happen, but if the number of i’s satisfying the foregoing condition is not
one, then we shall announce failure. We stress that, while we actually query G′ for the subgraph
induced by S′∪{v}, looking for suitable S and i in G is a thought experiment (since G is fixed and
known to us).

Claim 5.5 (pseudo-locators in a random graph): For any constant p ∈ (0, 1) and sufficiently
large ` = O(log n), with probability 1− exp(−Ω(`2)) over the choice of G(n, p), all `-subsets of the
vertex-set are pseudo-locators for threshold p · (1− p).

Proof: Fixing an arbitrary `-subset, S, we shall upper-bound by exp(−Ω(`2)) the probability
that S is not a pseudo-locator of G(n, p) (for threshold p · (1− p)). This probability is low enough
so to support a union bound over all `-subsets; specifically,

(
n
`

)
· exp(−Ω(`2)) = exp(−Ω(`2)), for

sufficiently large ` = O(log n).
For p = 1/2, Condition 1 of being a pseudo-locator (i.e., sufficiently different `-subsets induce

non-isomorphic subgraphs) is implicit in the proof of Claim 2.6.1, which is presented in Appendix B.
Specifically, the probability that the subgraphs of a random graph induced by S and S′ are isomor-
phic was upper-bounded in Eq. (10)&(11) by

`!

|S ∩ S′|!
· 2−Ω((`−|S∩S′|)·`). (4)

Using |S ∩ S′| < 3`/4, the foregoing is upper-bounded by exp(−Ω(`2)), which allows us to apply
a union bound (over all relevant `-subsets S′’s) and get an upper bound of

(
n
`

)
· exp(−Ω(`2)) =

exp(−Ω(`2)). As for a general p ∈ (0, 1), it is handled by observing that all that changes is the
probability of disagreement, which is q = 2p(1 − p) rather than 1/2, and the threshold (which
is p(1 − p) rather than 1/4). Specifically, as in the proof of Part 2 of Claim 5.2, the probability
that two different vertex-pairs disagree is q = 2p(1 − p) rather than 1/2, and Eq. (4) is modified
accordingly (cf. Eq. (6) below), while noting that the derived bound is

`!

|S ∩ S′|!
· qΩ((`−|S∩S′|)·`) < `0.5q` · qΩ(q·`2) = exp(−Ω(`2)), (5)

26

where we use |S ∩ S′| < (1 − 0.5q) · ` and q = Ω(1). This establishes Condition 1 (of being
pseudo-locator).

We seize the opportunity to state a related fact that will be used for establishing Condition 2.
We claim that, for every `-subset S′ and a bijection π : S → S′, the probability that the subgraph
of G(n, p) induced by S is isomorphic via π to the subgraph induced by π(S) (i.e., {w,w′} is an
edge in the first subgraph iff {π(w), π(w′)} is an edge in the second subgraph) is upper-bounded
by

min
(
q|FP(π)|·(`−|FP(π)|)/3, q(

(`−|FP(π)|)/3
2)

)
(6)

where FP(π)
def
= {v ∈ S : π(v) = v}. This fact, which generalizes Eq. (10), is actually established

en route to establishing Eq. (5). Note that if |FP(π)| > 0.1q · `, then Eq. (6) is upper-bounded by
qΩ(q·`2) = exp(−Ω(`2)).

Before proceeding to Condition 2 (of being pseudo-locator), we highlight the fact that the Ω(`)
lower bound on the symmetric difference between the subsets S and S′, which yields a probability
upper bound of exp(−Ω(`2)), enables the application of a union bound on all `-subsets. Analogously,
as we shall see, allowing for ` exceptions in localization, which means that failure requires more that
` mistakes (rather than one), implies that the probability that an `-subset is not a pseudo-locator
vanishes exponentially with `2 (i.e., another ` factor on top of what we get for one mistake). Again,
such an upper bound enables the application of a union bound over all `-subsets.

Turning to Condition 2 of Definition 5.4, we stress that we shall show that S can be used to
locate almost all vertices in [n]\S, although the vertices of S itself may not be all uniquely located.
Still, using Eq. (6) it follows that most vertices in S are uniquely located, and we shall show that
almost all vertices in [n] \ S have significantly different adjacencies in S. Hence, the uncertainty
regarding the location of few vertices in S is compensated by the large difference between the
adjacencies in S of almost all vertices in [n] \ S. Details follow, where we start with a description
of a process that identifies the exceptional vertices in [n] \ S.

We consider an iterative process that starts with U = [n] \ S and searches for a pair of vertices
in U such that their adjacencies to the set S disagree on at most 0.9 · q · ` entries; that is, we look
for w 6= w′ in U such that |{s∈S : {w, s}∈E ⇔ {w′, s} 6∈E}| ≤ 0.9 · q · `. If such a pair does not
exist, then we halt and output U , which is considered a success. Otherwise, we omit both vertices
in the pair from U , and proceed to the next iteration. (We may halt without output after `/2
unsuccessful iterations).

Vertices in U are correctly located by S. We show that if the process outputs U (after at most
`/2 iterations), then U constitutes a set as required in Condition 2. Recall that here we consider
arbitrary u 6= v in U and any bijection φ : S ∪ {u} → S′ ∪ {v} (for any S′) such that φ(u) = v
and the subgraphs induced by S and by S′ = φ(S) are isomorphic via φ. Using Condition 1, it
suffices to consider sets S′ such that |S′ ∩ S| ≥ (1− 0.5q) · `, since the other sets induce subgraphs
that are not isomorphic to the one induced by S. Furthermore, using Eq. (6) and a union bound,
we may assume that φ(s) = s for at least (1 − 0.6q) · ` of the vertices s ∈ S ∩ S′, because the
probability that this does not hold for some S′ and φ is exp(−Ω(`2)) (over the choice of G(n, p)).25

25Specifically, using |S ∩ S′| ≥ (1− 0.5q) · `, we show that (with probability at least 1− exp(−Ω(`2))) it holds that
|{s ∈ S ∩ S′ : φ(s) = s}| ≥ (1 − 0.6q) · `. To see this note that if at least 0.1 · q · ` of the vertices in S ∩ S′ are not
fixed-points of φ, then the subgraphs of G(n, p) induced by S and φ(S) are equal (i.e., for every w,w′ ∈ S it holds

that {w,w′} is an edge iff {φ(w), φ(w′)} is an edge) with probability at most q(
0.1q`/3

2). Using a union-bound over all

27

The punchline is that, by construction of U , the neighborhoods of different vertices u and v in U
disagree on more than 0.9 · q · ` entries (i.e., |{s∈S :{u, s}∈E ⇔ {v, s} 6∈E}| > 0.9q`), and (using
|{s∈S :φ(s) 6= s}| ≤ 0.6q · `) this implies that there exists s ∈ S ∩ S′ such that {u, s} ∈ E if and
only if {v, φ(s)} 6∈ E, where we also used φ(s) = s.

Hence, we have shown that, with probability at least 1−exp(−Ω(`2)) over the choice of G(n, p),
if the iterative process outputs U , then, for every u 6= v ∈ U and any φ : S ∪ {u} → S′ ∪ {v}, the
hypothesis that φ(u) = v and the subgraphs induced by S and by S′ = φ(S) are isomorphic via φ
(i.e., {w,w′} is an edge in the first subgraph iff {φ(w), φ(w′)} is an edge in the second subgraph)
implies that there exists s ∈ S such that {u, s} ∈ E if and only if {v, φ(s)} 6∈ E.

The process is successful with overwhelmingly high probability. It remains to prove that, with
probability at least 1− exp(−Ω(`2)) over G(n, p), the foregoing process is successful (i.e., does halt
with output in at most `/2 iterations). This is the case because the probability that the first `/2
iterations find pairs of the type sought (equiv., that `/2 such disjoint pairs exist), in G(n, p), is
upper-bounded by (

n

2

)`/2
· exp(−Ω(q · `))`/2 = exp(−Ω(`2)), (7)

where each fixed pair of vertices disagrees on at most 0.9 · q` of their neighbors with probability
at most exp(−Ω(q · `)), because they differs on neighboring any other vertex with probability q.
Again, the bound in Eq. (7) is small enough for allowing the application of a union bound over all(
n
`

)
sets (i.e., the S’s).

Corollary 5.6 (by Claims 5.2 and 5.5): For every p ∈ (0, 1) and sufficiently large ` = O(log n),

there exists a family of robustly self-ordered graphs {G(p)
n = ([n], E

(p)
n)}n∈N such that any `-subset

S ⊂ [n] of its vertices satisfies the following four conditions.

1. The subgraph of G
(p)
n induced by S has (1± 0.01) · p ·

(
`
2

)
edges.

2. For at least n−2` vertices v ∈ [n]\S, the number of neighbors that v has in S is (1±0.01) ·p`.

3. The set S is a pseudo-locator for threshold p · (1− p) of G
(p)
n .

Furthermore, each vertex in G
(p)
n has degree (1± 0.01) · p · n.

Combining Corollary 5.6 with Claim 5.3, we are finally ready to present the (revised) graph prop-
erty Π, and proceed to the actual proof.

5.2 The actual proof

We shall use a graph property that is a variant of the property used in Construction 3.1.1, as

adapted in Section 4.2. Here we start with the graphs G
(δ)
2k and G

(1−δ)
2k provided by Corollary 5.6,

and connect them using four different bipartite graphs that are derived from a fixed k-by-k matrix
M (provided by Claim 5.3) and two arbitrary k-by-k matrices A and B. The latter matrices will be
identical in the case of graphs in the property, but will be random and independent of one another
when proving the lower bounds. Unlike in Construction 3.1.1, only some of the entries of A and B

`-sets S′ and φ : S → S′, we get a probability bound of n` · exp(−Ω(`2)) = exp(−Ω(`2)).

28

(i.e., those that correspond to ∗-entries of M) will be encoded in the construction, but these entries
constitute a constant fraction of all entries and so the proofs of the lower bounds can handle this
change. Recall that this complication is introduced so to maintain a gap between the degrees of
the vertices that belong to the different sides of the constructed graph.

In accordance with the foregoing, we present the following (revised) graph property Π, which
is a variant of the property used in Construction 3.1.1, as adapted in Section 4.2 for any functions
f, g : N → N such that f(n) ≤

√
n and g(m) ≤ m. Indeed, the case of f(n) =

√
n and g(m) = m

corresponds to Construction 3.1.1 itself, where no redundancy is used, and it suffices for estab-
lishing a quadratic gap (between adaptive one-sided error testers and non-adaptive two-sided error
testers).26

Construction 5.7 (the revised graph property Π): For any δ ∈ (0, 0.5) and sufficiently large

` = O(log k), let G
(δ)
2k = ([2k], E

(δ)
2k) and G

(1−δ)
2k = ([2k], E

(1−δ)
2k) be as postulated in Corollary 5.6,

and let M be a k-by-k matrix that satisfies the conditions of Claim 5.3.

• For two k-by-k Boolean matrices A = (ai,j) and B = (bi,j), we define the graph GA,B =
([4k], EA,B) such that

EA,B = E
(δ)
2k ∪ {{2k + i, 2k + j} : {i, j} ∈ E(1−δ)

2k }
∪ {{i, 2k + j} : i, j∈ [k] ∧ mi,j � ai,j = 1}
∪ {{k + i, 3k + j} : i, j∈ [k] ∧ mi,j � bi,j = 1}
∪ {{i, 3k + j}, {k + i, 2k + j} : i, j∈ [k] ∧ mi,j = 1}

(8)

where mi,j � σ = mi,j if mi,j ∈ {0, 1} and mi,j � σ = σ otherwise (i.e., if mi,j = ∗).

That is, GA,B consists of a copy of G
(δ)
2k and a copy of G

(1−δ)
2k that are connected by four

bipartite graphs that is determined by the matrices M �A, M �B and M , respectively, where
� is defined such that Boolean entries of M dominate and entries of the other matrix are used
only for entries in which M is undetermined (as indicated by ∗). In other words, only entries
of A and B that correspond to ∗-entries of M are actually encoded in this construction.27

The first bipartite graph is determined by M � A and connects [k] to {2k + 1,, 3k}, the
second bipartite graph is determined by M�B and connects {k+1, ..., 2k} to {3k+1,, 4k},
whereas the other two bipartite graphs are determined by M and connect [k] to {3k+1,, 4k}
and {k + 1, ..., 2k} to {2k + 1,, 3k}.28 The first two bipartite graphs, which will be called
informative, encode entries of A and B that correspond to ∗-entries of M .

• For t′, t ∈ [k], we say that a k-by-k Boolean matrix A = (ai,j) is (t′, t)-redundant if ai,j = ai,j′

for every i, i′, j, j′ ∈ [k] such that di/t′e = di′/t′e and dj/te = dj′/te.
26In such a case, the second item may be skipped, and the third item may be simplified by allowing any k-by-k

matrix A.
27As noted above, these entries constitute a constant fraction of all entries, and this will suffice for our purpose:

Specifically, for uniformly and independently distributed A and B, with very high probability, the pair (M�A,M�B)
is far from any pair of the form (M � C,M � C).

28The latter two bipartite graphs, which are determined solely by M , are used in order to simplify the identification
of vertices based on their adjacencies in a small set T . Specifically, in this case, |T ∩ [2k]|/|T | determines the expected
number of neighbours that v ∈ [2k] (resp., v ∈ {2k+ 1, ..., 4k}) has in T upto ±2δ · |T |. Not using these two bipartite
graphs would have required either knowledge of |T ∩ {(i− 1)k + 1, ..., ik}|/|T | for i = 0, 1, 2 or using far more crude
approximations.

29

• For f, g : N→ N such that f(n) ≤
√
n and g(m) ≤ m, we let k = n/4, m = f(n), t′ = k/m2

and t = k/g(m)2, and define the property Π(f,g) = Π =
⋃
n∈N Πn such that Πn is the set of

all graphs that are isomorphic to some n-vertex graph GA,A such that A is (t′, t)-redundant.

Note that, given a graph of the form π(GA,A), the vertices in the copy of G
(δ)
2k are easily identifiable

as having degree (in π(GA,A)) at most 1.01·δ·2k+(1.01·(1−δ)/2+1.01·δ)·2k = 1.01·(1+3δ)·k < 1.4k,

where we use δ ≤ 0.1. (In contrast, the vertices in the copy of G
(1−δ)
2k have degree (in the 4n-vertex

graph π(GA,A)) at least 0.99 · (1− δ) · 2k + (0.99 · (1− δ)/2) · 2k = 0.99 · 3 · (1− δ) · k > 2.6k.)

Claim 5.8 (lower bound for non-adaptively testing Π): Any non-adaptive tester for Πn has query
complexity Ω(g(f(n)) · f(n)).

Proof Sketch: Following the proof of Claim 3.1.2 (modulo the adaptations presented in Sections 4.1
and 4.2), we observe that the lower bound is still a square root of the actual information contents
of the matrices, which yields a bound of Ω(

√
(k/t′) · (k/t)) = Ω(f(n) · g(f(n))).

Specifically, we consider the problem of distinguishing the uniform distribution on Πn and the
distribution generated by picking two random and independent (t′, t)-redundant matrices A = (ai,j)
and B = (bi,j) and outputting π(GA,B) for a random π ∈ Symn. In this case, the probability that
two specific queries correspond to entries (i, j) inM�A and (i′, j′) inM�B such that di/t′e = di′/t′e
and dj/te = dj′/te is t′

k ·
t
k , which means that distinguishing these distributions requires Ω(

√
k2/t)

non-adaptive queries. (This ignore the fact that distinguishing requires that mi,j = ∗, which only
acts in our favor.) On the other hand, with high probability, for two random and independent
(t′, t)-redundant matrices A and B, the matrices M �A and M �B disagree on more than δ · k2/3
of their entries. This is because the entries in A and B that correspond to the ∗-entries of M are
random and sufficiently independent (i.e., entries in different t′-by-t submatrices are independent)29

and their number is at least 0.99 · δ · k2. Note that a small δ merely means that the lower bound
holds for a smaller value of the proximity parameter.

Proposition 5.9 (upper bound for adaptively testing Π): There exists an adaptive tester for Πn

of query complexity O(ε−1 · f(n) · log3 n) if ε > n−0.49 and O(1/ε4.1) otherwise.

The alternative tester (for ε ≤ n−0.49) is trivial: In this case we can afford exploring the entire
graph, since n2 ≤ ε−4.1.30

Proof: Our starting point is the tester used in the proof of Claim 3.1.2 (modulo the adaptations
presented in Sections 4.1 and 4.2), but we need to significantly modify it so to avoid the (small)
error probability on graphs in Π. As outlined above, this is done by avoiding any rejection decision
that is based on statistical evidence. The main modifications are the following (whereas the actual
description of the tester will be provided later).

• A modification of Step 1: We select uniformly at random a sample of size `′ = O(`), denoted
T , to be used in all degree estimations (but not as a pool that contains the two locators, S1

and S2).31 In particular, we shall use the edge density in the subgraph induced by T in order

29In the case of f(n) =
√
n and g(m) = m (equiv., t′ = t = 1), the entries are totally independent.

30Indeed, 0.49 stands for any constant smaller than 0.5, and 4.1 > 2/0.49.
31Recall that in the original tester, the random sample S was used both for degree estimation and as a pool for

the selection of reliable locators (in Step 2).

30

to estimate how many vertices of T reside in the copy of G
(δ)
2k , and determine the thresholds

that distinguishes low and high degree vertices accordingly.

We stress that, in contrast to the original Step 1, we perform no checks in this modified step
(and, needless to say, never reject in it).

Actually, we may (and do) pick T arbitrarily (rather than at random).

• Branching and modification of Step 2: Since T may provide a wrong degree estimation for
few vertices, the identification of locators in the original Step 2 may be wrong, and lead to
subsequent errors (in locating vertices), which in turn may lead to rejecting graphs in Π.
We overcome the problem by branching to many executions, which use different samples for
the locators, such that in almost all branches the locators are correctly identified (based on
correct estimation of the vertices’ degrees). We shall reject only if most branches reject (or
rather if most sub-branches (introduced later) reject).

Specifically, we branch to `′ executions, using the same degree approximation sample, T , in
all of them. In the pth branch we select, almost independently of other branches, a sample

S(p), identify its low and high degree vertices (according to T), and select random `-sets, S
(p)
1

and S
(p)
2 , as in Step 2. These sets will be used as pseudo-locators (for threshold δ · (1 − δ)).

If S(p) contains less that ` vertices of one type, we reset S
(p)
i to be empty, but do not reject.

We do reject, in this branch, if S(p) contains at least ` vertices of type i, but the selected S
(p)
i

is not a pseudo-locator, where from this point onwards whenever we mention a pseudo-locator
we means a pseudo-locator for threshold δ · (1− δ).
We make sure that the samples S(p) taken in the different branches are dispersed in the sense
that any set of ` vertices is intersected by O(`) samples. This guarantees that the (at most)
` vertices that were wrongly categorised based on their degree (as approximated by T) only
affect the execution of O(`) < `′/100 of the branches.

• Secondary branching and adaptation of subsequent steps: Since a pseudo-locator may wrongly
locate few vertices, the outcomes provided by the original Step 3 may be wrong, and lead to
errors in the tests performed in subsequent steps, which in turn may lead to rejecting graphs
in Π. We overcome the problem by branching to many executions, which use different samples
for the subsequent steps, such that in almost all sub-branches all vertices are correctly located.

Specifically, in the pth foregoing branch, we branch again to `′ executions, all using the same

pseudo-locators S
(p)
1 and S

(p)
2 . In the qth sub-branch we select, almost independently of

other sub-branches, a sample R(p,q), identify its low and high degree vertices, denoted R
(p,q)
1

and R
(p,q)
2 , and locally self-order R

(p,q)
i using S

(p)
i . The later local self-ordering is performed

analogously to Step 3, although the S
(p)
i ’s may only be pseudo-locators. (If S

(p)
i is empty, we

define R
(p,q)
i as empty.)

We stress that if one of the S
(p)
i is empty, then we invoke the locally self-order only for the

other R
(p,q)
i′ ; in this case, if no failures or collision occurs, then we halt and accept. In any

case, if some failure or collision occurs when performing local self-ordering, then we halt and
reject in this sub-branch. (Recall that failure means that the procedure returns a failure

symbol on some vertex in R
(p,q)
i′ , and collision means that two different vertices in R

(p,q)
i′ were

assigned the same location.)

31

We make sure that the samples R(p,q) taken in the different sub-branches (referring to S(p)) are
dispersed in the very sense defined above. This guarantees that the (at most) ` vertices that

were wrongly located by S
(p)
i only affect the execution of O(`) < `′/100 of the sub-branches.

The remaining steps are performed almost as in the original testers, where rejection in them
will mean rejection in the corresponding sub-branch. The only significant modification is
that Step 5 is replaced by a testing of the fixed part of the bipartite graphs (i.e., the part
determined by the Boolean entries in the matrix M).

At the end, we reject if a majority of the sub-branches rejected; otherwise, we accept.

We first observe that the modified procedure never rejects a graph in Π. Intuitively, this holds be-
cause we either eliminated the sources of rejection (i.e., in Step 1) or confined them to few branches
and sub-branches. Specifically, the disperseness condition guarantees that the ` exceptional vertices
of G(δ) whose degree is badly approximated affect the execution of O(`) branches. Ditto for the `
exceptional vertices of G(1−δ). Analogously, the ` exceptional vertices of G(δ) that are incorrectly

located by S
(p)
1 affect the execution of O(`) sub-branches of the pth branch. Hence, in total, only

O(`) ·`′+(`′−O(`)) ·O(`) = O(` ·`′) of the sub-branches are affected, whereas a vast majority (e.g.,
more than 99%) of the other sub-branches vote for acceptance (and `′ is picked to dominate O(`)).
We shall also have to show that the resulting algorithm still rejects graphs that are far from Π. In
fact, we shall show that almost all sub-branches do so. But, first, let us spell out the algorithm.

The algorithm (claimed to be a one-sided error tester of Π). On input ε > n−0.49 and oracle access
to G′ = ([4k], E′), we proceed as follows.

1. Selecting a sample for degree estimation: We pick an arbitrary set of `′ = O(`), denoted T ,
and inspect the subgraph of G′ induced by T . Let d denote the average degree of vertices
in this subgraph, and let ρ̃ = 1 − (d/`′) be a rough approximation of the fraction of T that

resides in the copy of G
(δ)
2k (assuming G′ ∈ Π).

Indeed, if G′ ∈ Π and ρ denotes the (actual) fraction of vertices of T that resides in the copy

of G
(δ)
2k , then d = (1±0.01) · ((1−ρ)±δ) · `′±2`. Furthermore, in this case, almost all vertices

that reside in G
(δ)
2k have (1± 0.01) · (0.5− 0.5ρ+ (ρ± 0.5) · δ) · `′ neighbors in T , whereas the

other vertices have (1± 0.01) · (1− 0.5ρ− (1± 0.5) · δ) · `′ neighbors in T .

In light of the foregoing, we shall rule that a vertex has low degree if it has less than (0.75−
0.5 · ρ̃) · `′ neighbors in T .

2. Finding reliable locators for each branch: As stated above, we branch to `′ executions, using
the same degree approximation sample, T , in all of them. In the pth branch we select, almost
independently of other branches (see below), a sample S(p) of `′ vertices (in [4k] \ T), and
identify its low and high degree vertices (according to T).

If S(p) contains less that ` vertices of low (resp., high) degree, then we set S
(p)
1 (resp., S

(p)
2)

to be empty, but do not reject; otherwise (i.e., S(p) contains at least ` vertices of low (resp.,

high) degree), we select S
(p)
1 (resp., S

(p)
2) uniformly at random among all `-subsets of S(p)

that consists of vertices of low (resp., high) degree.

If the subgraph of G′ induced by S
(p)
1 6= ∅ (resp., by S

(p)
2 6= ∅) is not isomorphic to the

subgraph of G
(δ)
2k (resp., of G

(1−δ)
2k) that is induced by some pseudo-locator of G

(δ)
2k (resp., of

G
(1−δ)
2k), then we halt and reject.

32

Recall that we make sure that the samples S(p) taken in the different branches are dispersed
in the sense that any set of ` vertices is intersected by O(`) samples. As argued below (see
paragraph on bounding the deviation caused by the disperseness condition), this can be done
using S(p)’s that are distributed almost independently of one another.

3. Sampling the two sides of the graph in each sub-branch and locating the sampled vertices: In
the pth foregoing branch, we branch again to `′ executions, all using the same pseudo-locators

S
(p)
1 and S

(p)
2 . In the qth sub-branch we select, almost independently of other sub-branches, a

sample R(p,q) of O(f(n)/ε) vertices (in [4k] \ (T ∪ S(p))), and identify its low and high degree

vertices (according to T). Denoting the corresponding sets by R
(p,q)
1 and R

(p,q)
2 , we locally

self-order the vertices of R
(p,q)
i using S

(p)
i . If S

(p)
i is empty, then we reset R

(p,q)
i to be empty.

We locally self-order the vertices of R
(p,q)
1 using S

(p)
1 by querying G′ on all pairs R

(p,q)
1 × S(p)

1

and looking at our hard-wired copy of G
(δ)
2k . Specifically, letting S

(p)
1 = {s1,, s`} and

s0 = v ∈ R
(p,q)
1 × S(p)

1 be the vertex that we wish to locate, we look for an `-subset W =
{w1,, w`} and a vertex w0 ∈ [2k] such that {sj , sj′} ∈ E′ if and only if {wj , wj′} ∈ E(δ) for
every j, j′ ∈ {0, 1, ..., `}. If the foregoing condition identifies a unique w0, then we assign v to

location w0; otherwise, we consider the local self-ordering as failing on v. Ditto for v ∈ R(p,q)
2

(using S
(p)
2).

If any of these invocation fails, then we vote for rejection in the corresponding sub-branch
and suspend its execution. Ditto if two different vertices were assigned the same location.

Otherwise, we define a bijection π
(p,q)
i : R

(p,q)
i → [2k] according to the local self-ordering

procedure; that is, π
(p,q)
i (v) is the location of v ∈ R(p,q)

i in G
(ci)
2k , where c1 = δ and c2 = 1− δ.

Recall that we make sure that the samples S(p) taken in the different sub-branches are dis-
persed in the same sense as in Step 2.

4. Testing isomorphism of each side of G′ to the corresponding side in a generic GA,B: For

every p and q, we test that the subgraph of G′ induced by R
(p,q)
1 equals the subgraph of G

(δ)
2k

induced by π
(p,q)
1 (R

(p,q)
1), and ditto for R

(p,q)
2 and G

(δ)
2k . As in the original tester, this test is

performed by checking O(1/ε) vertex-pairs at random. Again, a failed check leads to voting
for rejection in the corresponding sub-branch (and suspension of its execution).

5. Completing a test of isomorphism of G′ to a generic GA,B: For every p and q, we test

that the subgraph of G′ induced by R
(p,q)
1 × R(p,q)

2 fits the Boolean entries of the matrix M .

Specifically, we pick O(1/ε) random vertex-pairs (u, v) in R
(p,q)
1 × R(p,q)

2 and check whether

the adjacency of u and v fits the (π
(p,q)
1 (u), π

(p,q)
2 (v))th entry in the matrix M ; that is, letting

(i, j)
def
= (π

(p,q)
1 (u), π

(p,q)
2 (v)), we vote for rejection in the current sub-branch if the relevant

condition among the following four conditions holds:

(a) For i, j ∈ [k]: if either mi,j = 0 and {u, v} ∈ E′ or mi,j = 1 and {u, v} 6∈ E′.
(b) For i, j ∈ {k + 1, ..., 2k}: if either mi−k,j−k = 0 and {u, v} ∈ E′ or mi−k,j−k = 1 and
{u, v} 6∈ E′.

(c) For i ∈ [k] and j ∈ {k + 1, ..., 2k}: if either mi,j−k 6= 1 and {u, v} ∈ E′ or mi,j−k = 1
and {u, v} 6∈ E′.

33

(d) For i ∈ {k + 1, ..., 2k} and j ∈ [k]: if either mi−k,j 6= 1 and {u, v} ∈ E′ or mi−k,j = 1
and {u, v} 6∈ E′.

The first (resp., second) condition refers to edges in the first (resp., second) informative
bipartite graph of a generic GA,B, where a bipartite graph is called informative if it depends on
the matrix A (resp., B). The third (resp., fourth) condition refers to edges in the first (resp.,
second) non-informative bipartite graph. Note that in the non-informative case mi,j = ∗
mandates a non-edge, whereas in the informative case determining the adjacency depends on
ai,j (resp., bi,j), and this will be checked by Step 6.

6. Testing that A = B: For every p and q, we call a pair (i, j) ∈ [k]2 a matrix-collision if there ex-

ists u1, v1 ∈ R(p,q)
1 and u2, v2 ∈ R(p,q)

2 such that dπ(p,q)
1 (u1)/t′e = di/t′e = d(π(p,q)

1 (v1)− k)/t′e
and dπ(p,q)

2 (u2)/te = dj/te = d(π(p,q)
2 (v2)− k)/te. In such a case, we call i a row-collision, and

call j a column-collision.

Letting I (resp., J) denote the set of row-collisions (resp., column-collision), we select a
random set of min(|I|, |J |,Θ(1/ε)) disjoint pairs P ⊆ I × J (i.e., distinct (i1, j1), (i2, j2) ∈ P
satisfy both i1 6= i2 and j1 6= j2). For each (i, j) ∈ P , we query G′ on the corresponding pairs

(u1, u2) and (v1, v2), where dπ(p,q)
1 (u1)/t′e = di/t′e = d(π(p,q)

1 (v1)− k)/t′e and dπ(p,q)
2 (u2)/te =

dj/te = d(π(p,q)
2 (v2)− k)/te, and vote for rejection in this sub-branch if all the following

conditions hold.

(a) The first pair (i.e., (u1, u2)) corresponds to a non-fixed entry of M ;

that is, m
π
(p,q)
1 (u1),π

(p,q)
2 (u2)

= ∗.

(b) The second pair (i.e., (v1, v2)) corresponds to a non-fixed entry of M ;

that is, m
π
(p,q)
1 (v1)−k,π(p,q)

2 (v2)−k = ∗.

(c) The answers to these two queries disagree;

that is, {u1, u2} ∈ E′ if and only if {v1, v2} 6∈ E′.

(Note that in case one of the first conditions does not hold, we can check consistency of the
answer with the relevant Boolean entry of M . However, this is unnecessary in light of Step 5.)

If the majority of all sub-branches vote for rejection, then we reject. Otherwise we accept.

The query complexity of the algorithm. Step 3 makes
∑

i∈[2],p,q∈[`′] |R
(p,q)
i ×S(p)

i | = O(ε−1 ·f(n)·log3 n)
queries, and dominates the total number of queries made by the foregoing algorithm. The extra
O(log2 n) factor (in comparison to the Theorem 4.2) is due to the branching.

Analysis of the execution on graphs in Π. The key point in proving that graphs in Π are accepted
with probability 1 is showing that the categorization of vertices to low and high degree based on T
is always correct (i.e., it is correct for all but at most 2` vertices outside T , no matter which set T
is chosen in Step 1). This calls for an analysis of the categorization rule defined in Step 1, which
we undertake next.

Let G′ = π(GA,A) and T1 = T ∩π([2k]). Then, the sum of the number of neighbors that vertices
in T1 have in T is

|T1| ·
(

(1± 0.01) · δ · (|T1| − 1) + ((1± 0.01) · 1± δ
2
· |T2|

)
± 2` · |T |

34

≈ (1± 0.01) ·
(
ρ · δ + (1− ρ) · 1± δ

2

)
· |T | · |T1| ± 2` · |T |,

where ρ
def
= |T1|/|T |. Recalling that |T | = `′, this means that the average degree (in the subgraph

induced by T) of vertices in T1 is approximately (1±0.01)·((0.5−0.5ρ)+(ρ±0.5(1−ρ))·δ)·`′±(2`/ρ).
Similarly, for vertices in T2 = T \ T1 the average degree is approximately (1± 0.01) · ((1− 0.5ρ)−
(1 − ρ ± 0.5ρ) · δ) · `′ ± (2`/(1 − ρ)). Hence, using `′ > 400`, the average degree of vertices in the
subgraph induced by T is (1± 0.02) · (1− ρ+ (2ρ− 1± ρ(1− ρ))δ) · |T |, which means that ρ̃ ≈ ρ
(where ρ̃ is the estimate of ρ that was determined in Step 1). The foregoing calculations presume
that |T1|, |T2| ≥ `, but the claims are trivial if this condition does not hold (because in that case
min(ρ, 1 − ρ) � δ). Hence, a threshold of (0.75 − 0.5 · ρ̃) · `′ for the number of neighbors in T
correctly distinguishes all but ` of the vertices in π([2k]) \ T from those in ([4k] \ π([2k])) \ T .

Using the hypothesis that the S(p)’s are dispersed in the sense that the 2` exceptional vertices
appear in at most O(`) of the `′ branches, it follows that in the other branches the vertices of S(p)’s
and all corresponding R(p,q) are categorized correctly. In these branches, all but at most 2` of the
vertices in [n] are correctly located, which means that in at least `′−O(`) sub-branches all vertices
in R(p,q) are correctly located. (Recall that whenever the vertices of S(p) are categorized correctly,
we obtain corresponding pseudo-locators.) Setting the hidden constant in the O-notation to 300
(see below), it follows that at least `′ · (`′− 600`) of the sub-branches will not reject, which implies
that the tester accepts (provided that `′ > 1200`).

Bounding the deviation caused by the disperseness condition. The foregoing analysis relies on the
disperseness of the collection of S(p)’s and R(p,q)’s. We show that almost independent sampling of
the S(p)’s and R(p,q)’s satisfies this condition while not affecting the distribution of the sequence
of sub-branches too much. This is indeed the case per our choice of the constant 300 and the
hypothesis that ε > n−0.49 (and f(n) ≤ n0.5). Specifically, the probability that, when selecting `′

subsets of size O(f(n)/ε) = O(n0.99) in [n] \T (resp., in [n] \ (T ∪S(p))), there exists ` vertices that
occur in 150` sets is upper-bounded by(

n

`

)
·
(

`′

150`

)
·
(
` ·O(n0.99)

n− `− `′

)150`

= n−(0.5−o(1))`

where `·O(n0.99)
n−`−`′ represents the probability of one of the ` vertices appearing in a random O(n0.99)-

subset.

Analysis of the execution on graphs that are far from Π. We now turn to the case that G′ is ε-far
from Π, and show that each sub-branch rejects with high probability (while recalling that these
executions are almost independent). As a warm-up, consider the case that G′ = π(GA,B), for some
pair (A,B) of (t′, t)-redundant matrices and a bijection π : [4k] → [4k]. In this case, B must be
15δ−1 · ε-far from A, since the adjacencies determined by A and B constitute a (1 ± 0.01) · δ/16
fraction of all vertex-pairs. It follows that Step 6 rejects with high probability, since it is likely
to inspect Ω(1/ε) disjoint matrix-collisions, which are uniformly and independently distributed in
[k]2.32 Intuitively, if G′ is close enough to some π(GA,B), then the same argument holds, and
otherwise Steps 2–5 reject with high probability. The actual analysis follows.

Let V1 denote the set of vertices of G′ that are categorized as being of low degree (according to
T), and V2 = [4k] \ V1. We consider a single sub-branch, and simplify notations accordingly; that

32Indeed, if G′ = π(GA,B), then Step 6 is always reached.

35

is, we omit the superscripts (p) and (p, q). The following argument repeats some of the arguments
made in the proof of Claim 3.1.3, but these repetitions are called for since some of the objects (i.e.,
T and the Vi’s) are different here.

Assuming that Steps 1–2 were completed successfully (i.e., without rejection), we define a
function φ1 : V1 → [2k] ∪ {⊥} such that φ1(v) denotes the answer of the local self-ordering (based
on S1) to the input v, which may be a failure symbol, denoted ⊥, where failure may happen

because the subgraph of G′ induced by V1 is not necessarily isomorphic to G
(δ)
2k . Similarly, we

define φ2 : V2 → [2k] ∪ {⊥} based on S2. Note that φi agrees with πi on Ri.
Letting ε′ = Ω(ε), we may assume that φi does not evaluate to ⊥ on more than ε′k points,

since otherwise such a point is sampled (w.h.p.) by Step 3, leading it to reject. Likewise, φi
does not have more than ε′k points that have an image with several pre-images under φi, where
here a Birthday argument proves the claim (since the collision probability is at least 1/ε′k). In
particular, it follows that |Vi| ≤ (2 + 2ε′) · k, because otherwise φi would have had more than ε′k
points that have an image with several pre-images under it. (The latter assertion also uses the
randomness of S, which guarantees that each Vi is sampled proportionally by S, which implies that
if |Vi| > (2 + 2ε′) · k then (w.h.p.) Si is not empty.) Denote by V ′i ⊆ Vi the set of vertices that were
not discarded above; that is, V ′i = {v∈Vi : φi(v) 6=⊥& |φ−1

i (φi(v))|=1}. Using |Vi| ≥ (2− 2ε′) · k,
we note that |V ′i | ≥ (2− 4ε′) · k must hold, and define φ′i as the restriction of φi to V ′i . Lastly, let
φ′ : V ′1 ∪ V ′2 → [4k] such that φ′(v) = φ′i(v) if v ∈ V ′1 and φ′(v) = 2k+ φ′i(v) otherwise, and let φ be
an arbitrary extension of φ′ to a permutation over [4k].

Relying on Step 4 (and assuming that it does not reject w.h.p), we infer that the subgraph of

φ(G′) induced by [2k] (resp., by {2k+1, ..., 4k}) is 5ε′-close to G
(δ)
2k (resp., to G

(1−δ)
2k , when relabeling

its vertices by subtracting 2k to each label). Relying on Step 5 (and assuming that it does not
reject w.h.p), we infer that φ(G′) is 6ε′-close to some GA,B for some matrices A and B (which are
not necessarily (t′, t)-redundant). Recalling that G′ is ε-far from Π (and using ε′ = ε/7), we infer
that A and B must disagree on more than ε′ · 16 · k2 entries that are not fixed in M . We claim that
in this case Step 6 rejects with high probability.

Recalling that |Vi| = (2k ± 0.2k), we observe that with high probability (over the choice of R1

and R2), Step 6 defines a set of at least 10/ε disjoint matrix-collision pairs, and that these pairs
are independently and uniformly distributed in [k]× [k]. Such a pair (i, j) causes rejection if there
exists u1, v1 ∈ R1 and u2, v2 ∈ R2 such that the following conditions hold:

1. The corresponding queries, (u1, u2) and (v1, v2), are not fixed in M ; that is, mπ1(u1),π2(u2) =
mπ1(v1),π2(v2) = ∗.

2. These entries that are supposed to be equal in A and B; that is, dπ1(u1)/t′e = di/t′e =
d(π1(v1)− k)/t′e and dπ2(u2)/te = dj/te = d(π2(v2)− k)/te.

3. Yet, the foregoing entries are not identical in A and B; that is, aπ1(u1),π2(u2) 6= bπ1(v1),π2(v2).

The probability that this event holds (i.e., all three conditions hold) is lower-bounded by 15ε′ −
4ε′ − 4ε′ = ε, and the claim follows.

Claim 5.10 (upper bound for non-adaptively testing Π): There exists a non-adaptive tester for
Πn of query complexity O(ε−2 ·g(f(n)) ·f(n) · log2 n+ ε−1 ·f(n) · log3 n), if ε > n−0.49 and O(1/ε4.1)
otherwise.

36

Proof Sketch: We use a non-adaptive version of the adaptive tester presented in the proof of
Proposition 5.9. The observations and modifications regarding this matter that were made in the
proof of Theorem 4.1 apply here (without any change). Specifically, for Step 6, we select a random
subset R′ of O(g(f(n))/ε) vertices of each relevant R = R(p,q), and make non-adaptive queries to
all pairs in R × R′, which means making O(g(f(n)) · f(n)/ε2) queries.33 (This quantity has to
be multiplied by the number of sub-branches, whereas the O(ε−1 · f(n) · log3 n) term arises from
Step 3.)

Claim 5.11 (lower bound for adaptively testing Π): Any non-adaptive tester for Πn has query
complexity Ω(f(n)).

Proof Sketch: This bound follows merely by considering matrix-collisions among samples of the
k rows of the matrix. Specifically, we used the same distributions as in the proof of the lower
bound for non-adaptive testers, and observe that Ω(

√
k/t′) = Ω(f(n)) adaptive queries are needed

in order to find vertices of G′ that are mapped (by π) to location i and i′ + k, for some i, i′ ∈ [k]
such that di/t′e = di′/t′e.

Conclusion. Having established all four bounds, Theorem 5.1 follows.

6 Proof of Theorem 1.7

As stated in Section 1.4, we prove Theorem 1.7 in two steps. In the first step, presented in
Section 6.1, we use graph blow-ups to derive a version of Theorem 1.4 from Theorem 1.3, where in
this version the O(log n) factor (in the upper bounds) is replaced by an O(log f(n)) factor. In the
second step, presented in Section 6.2, we establish Theorem 1.7 by applying the methodology of [7]
to the result of the first step. Each of the two main proofs starts with an overview, which gives an
idea of the techniques involved.

6.1 Revising Theorem 1.4

In the following version of Theorem 1.4 the O(log n) factor in the upper bounds is replaced by an
O(log f(n)) factor. (On the other hand, the upper bound on adaptive testing increases by a factor
of 1/ε.)

Theorem 6.1 (a version of Theorem 1.4):34 For every functions f, g : N→ N such that f(n) ≤
√
n

and g(m) ≤ m, there exists a graph property Π that satisfies the following two conditions, for
ε ≥ 2/f(n)2:

1. There exists a general (i.e., adaptive) tester of Π that makes O(ε−2 · f(n) · log f(n)) queries,
and any such tester must make Ω(f(n)) queries.

2. Any non-adaptive tester of Π must make Ω(g(f(n)) · f(n)) queries, and there exists such a
tester that makes O(ε−2 · g(f(n)) · f(n) · log f(n)) queries.

33See also the relevant part of the proof of Theorem 4.2.
34The adaptive upper bound presumes f(n)/ε2 = o(n); otherwise we incur another O(log f(n)) factor. See Foot-

note 45.

37

The adaptive upper bound holds also for ε < 2/f(n)2.

Proof Sketch: We start with a rough outline of the proof, which is based on graph blow-ups (i.e.,
replacing vertices by clouds and connecting clouds that correspond to adjacent vertices by complete
bipartite graphs). For n′ = f(n)2, starting with a property of n′-vertex graphs as provided by
Theorem 1.3 and denoted Π′, we apply n/n′-factor blow-up to these graphs, obtaining a property
of n-vertex graphs, denoted Π. We prove that testing whether an n-vertex graph is in Π is closely
related to testing whether an n′-vertex graph is in Π′, where the query complexity of (adaptively)
testing Π′ is Õ(

√
n′/ε)). The foregoing strategy follows [11], but implementing it in the current

context is more complex (for reasons to be discussed shortly).
We first show that Π is not easier to test than Π′ by reducing testing Π′ to testing Π. This

reduction is identical to the one in [11] and its validity relies on the fact that (balanced) graph
blow-up preserve the relative distance between graphs. The latter result is highly non-trivial, but
it was proved in [17, Sec. 4] (see also [11, Lem. 4.3], which establishes a special case that suffices
for us).

The more challenging part is showing that Π is not harder to test than Π′. In [11], this was
proved by testing that the input graph is an n/n′-factor blow-up of some n′-vertex graph, while
using O(n′)2 queries, and testing that the n′-vertex graph is in Π′ by merely retreiving it. This
could be afforded in [11], since there the query complexity of Π′ was Ω(n′)2. Here, however, we
use a property Π′ of query complexity O(

√
n′/ε) and so we cannot afford such expensive tests.

Nevertheless, we show that Π is not harder to test than Π′ by using the same high-level strategy
with a totally different implementation. We stress that the latter claim (i.e., Π is not harder to
test than Π′) may not be true in general, but it does hold for the special case of Π′ that we shall
use (i.e., the properties presented in the proof of Theorem 1.3).35

In particular, in the special case that we use (i.e., Π′ of Theorem 1.3), we can reduce testing
Π to testing Π′ by using the fact that the graphs in Π′ are locally self-ordered (in a “uniform”
sense (i.e., essentially, the same local self-ordering procedure works for all graphs in Π′)).36 The
key observation is that using this local self-ordering procedure (for an unknown graph in Π′) we
can emulate oracle access to G′ ∈ Π′ by making queries to an n/n′-factor blow-up of G′, and if the
emulation fails then we can definitely reject.

The foregoing suffices if it is guaranteed that the tested graph is an n/n′-factor blow-up of some
n′-vertex graph, but we need to test Π without the foregoing guarantee. Towards this end, we design
a tester that first checks that the tested graph is “similar” to an n/n′-factor blow-up of an n′-vertex
graph for which the foregoing local self-ordering procedure of Π′ does not fail. Specifically, we test
the distribution induced by selecting uniformly a vertex in the tested graph and “locating” it in the
n′-vertex graph (equiv., determining the index of its cloud), accepting if this distribution is uniform
over [n′] and rejecting if it is far from the uniform distribution over [n′]. (Indeed, we combine the
local self-ordering procedure with a test of the uniform distribution over [n′], which has complexity
O(
√
n′/ε2).) Although this does not establish that the tested graph is close to being an n/n′-factor

of an n′-vertex graph (e.g., the density of edges between “clouds” is not necessarily either 0 or 1)37,

35In contrast, if Π′ is the set of all n′-vertex graphs, then testing Π′ is trivial but testing Π is not.
36Recall that Π′ consists of 9k-vertex graphs that are isomorphic to graphs of the form GA,A for some k-by-k matrix

A. The foregoing “uniformity” condition means that the same local self-ordering procedure works for all GA,A’s (and,
in fact, even for all GA,B ’s). This is because this specific procedure actually ignores the adjacencies that depend on
A (and B).

37Likewise, the clouds are not necessarily independent sets. Although we could have checked both conditions using
O(
√
n′/ε2) adaptive queries, it is not clear how to perform such a checking using less than Ω(n′) queries, which we

38

the foregoing similarity does suffice for emulating the specific tester of the specific Π′ that we use.
We stress that the latter claim relies both on the structure of Π′ and on the structure of the tester
for Π′.

The actual proof. Our starting point is Theorem 1.3, and our construction of Π includes all n-vertex
graphs that result from an n/f(n)2-factor blow-up of some f(n)2-vertex graph in the property of
Theorem 1.3. Specifically, letting n′ = f(n)2, we first invoke Theorem 1.3 and obtain a property
Π′ of n′-vertex graphs having a g(

√
n′) factor gap between its adaptive and non-adaptive query

complexities (which are Θ̃(
√
n′) and Θ(g(

√
n′) ·

√
n′), respectively, when ignoring factors that

depends on 1/ε). Next, we consider an n/n′-factor blow-up of each G′ ∈ Π′, resulting in an n-
vertex graph G, which means that the vertex set of G can be partitioned into n′ equal-sized sets,
called clouds, such that the edges between these clouds represent the edges of G′; that is, if {i, j}
is an edge in G′, then there is complete bipartite between the ith cloud and the jth cloud, and
otherwise there are no edges between this pair of clouds. (In particular, the clouds are independent
sets.) Hence, Π is the set of graphs obtained by a n/n′-factor blow-up of the graphs in Π′.

The lower bounds on the (adaptive and non-adaptive) query complexity of Π are derived by
reducing testing Π′ to testing Π. That is, we construct a tester T ′ for Π′ by invoking the tester
T for Π and emulating a n/n′-factor blow-up of the tested graph G′ (which is given to T ′ as an
oracle). Specifically, the query (〈u′, i〉, 〈v′, j〉) regarding the n/n′-factor blow-up of G′, denoted G,
is answered by querying G′ about (u′, v′), where indeed 〈u′, i〉 is adjacent to 〈v′, j〉 in G if and only
if u′ is adjacent to v′ in G′. Clearly, if G′ ∈ Π′, then G ∈ Π. Using [17, Sec. 4] it follows that if G′

is ε-far from Π′, then G is Ω(ε)-far from Π. (Alternatively we can use [11, Lem. 4.3] and the fact
that vertices in each G′ ∈ Π′ have significantly different neighborhoods.)38

The upper bounds on the (adaptive and non-adaptive) query complexity of Π are derived
by reducing testing Π to testing Π′. This reduction is far more complicated. In particular, we
cannot afford testing that the input graph G is an n/n′-factor blow-up of some n′-vertex graph,
because, unlike in [11], the (general) query complexity we aim at is poly(1/ε) · Õ(

√
n′) (rather than

poly(1/ε) ·O(n′)2).39 Likewise, we cannot afford a trivial test for Π′, again because we aim at query
complexity poly(1/ε) · Õ(

√
n′) (rather than poly(1/ε) ·O(n′)2). Nevertheless, we employ the same

strategy as in [11]: we first test whether the input graph G resembles (albeit in a weaker sense)
an n/n′-factor blow-up of some graph G′, and then test whether G′ is in Π′ by running a specific
tester for Π′ and emulating G′ (using queries to G). However, each of these steps is performed
differently than in [11]. In particular, we make crucial use of various features of Π′, including its
having (uniform) local self-ordering procedures.

The blow-up test. When testing whether G resembles an n/n′-factor of some n-vertex graph, we
take advantage of the fact that graphs in Π′ have locally self-ordered procedures; furthermore, with
very high probability, a random set of logarithmic size is (essentially) a reliable locator. Actually,
the locating procedure ignores the edges that connects the two parts of G′ ∈ Π′ (which are the only
edges on which graphs in Π′ differ); that is, it first determines the part in which the vertex resides,

cannot afford g(m) = o(m).
38In [11], this feature was called disperseness. That is, Π′ is α-dispersed if every two vertices in any G′ ∈ Π′ differ

on at least α ·n′ neighbors. Note that the property Π′ defined in the proof of Theorem 1.3 is Ω(1)-dispersed, since the
graphs in Π′ result from combining two robustly self-ordered graphs such that vertices in the two graphs have vastly
different degrees. (Now, by [11, Lem. 4.3], if Π′ is α-dispersed and G′ is ε-far from Π′, then G (i.e., the blow-up of
G′) is Ω(αε)-far from Π.)

39The property Π′ used in [11] is of extremely high query complexity (i.e., query complexity Θ(n′)2).

39

and then locates this vertex within its part (using the corresponding reliable locator).40

Specifically, we select a random set of O(log n′) vertices of G, denoted S′, and use it to locate
(in G′) a sample of O(

√
n′/ε2) random vertices (of G), which means that we make O(ε−2

√
n′ log n′)

queries to G. We stress that both samples are of vertices of the input n-vertex graph G, not of
the n′-vertex graph G′ that we envision. Nevertheless, when G is a n/n′-factor blow-up of G′ ∈ Π′,
the locating procedure behaves as if the vertices reside in an isomorphic copy of G′. (We may
assume that the vertices of S′ reside in different clouds, whereas when analyzing an invocation
of the locating procedure we consider only the adjacencies among S′ and the input vertex (to be
located).) Hence, when we invoke the locating procedure on a vertex of G, we either get a location
in G′ or else we can safely reject. Consequently, we may assume, that we always get a location in G′.
Next, we view these locations as a sample of O(

√
n′/ε2) vertices in G′, and employ a distribution

tester for uniformity (see, e.g., [6, Sec. 11.2.1]); that is, we test whether the sample looks as being
drawn (with repetitions) from the uniform distribution over the set of vertices of G′.

If G ∈ Π (and S′ is a reliable locator), then the distribution of locations in G′ assigned to
uniformly selected vertices of G is uniform over the vertices of G′, and the uniformity test accepts
with high probability. On the other hand, for any ε′ = Ω(ε) of our choice, if the distribution of
locations in G′ assigned to uniformly selected vertices of G is ε′-far from the uniform distribution
(over the vertices of some G′ ∈ Π′), then the uniformity test rejects with high probability. Hence,
we may assume that the distribution of locations in G′ is ε′-close to the uniform distribution. In
this case, the corresponding partition (S1,, Sn′) of the vertices of G (according to their label in
G′) is ε′-close to an n′-way partition to equal parts. That is, the distribution that results from
selecting uniformly i ∈ [n′] and v ∈ Si is ε′-close to the uniform distribution over

⋃
i∈[n′] Si.

A crucial fact is that the foregoing partition S = (S1, ..., Sn′) induces a mapping of the vertices
of the tested graph G to the vertices of a generic n′-vertex graph. Furthermore, if there are no
edges inside the Si’s and the density of edges between each pair (Si, Sj) is either 0 or 1, then G is
a (general) blow-up of an n′-vertex graph. Specifically, for an n′-way partition S = (S1, ..., Sn′) of
[n], we say that the graph G = ([n], E) is an S-blow-up of a graph G′ = ([n′], E′) if G is obtained by
replacing each vertex i ∈ [n′] with a cloud Si and connecting the ith and jth clouds by a complete
bipartite graph if and only if i is connected to j in G′. (Indeed, if S is an equipartitions, then G is
an n/n′-factor blow-up of G′.)

Loosely speaking, in the following second step, for S as determined in the blow-up test, we
test whether G is an S-blow-up of some graph in Π′; actually, we test whether G is an S-blow-up
of a graph of the form GA,A as in Construction 3.1.1 (modulo the modification in Section 4.1).
Specifically, let Φ′ denote the set of all graphs of this type (i.e., the said GA,A’s), and ΦS denote
the set of all graphs obtained by S-blow-up of some graph in Φ′. Note that Φ′ (resp., ΦS) is not
closed under isomorphism41, and that Π′ (resp., Π) is the set of all graphs that are isomorpophic
to some graph in Φ′ (resp., in ΦS). The following (second) step actually tests membership in the
set of graphs obtained by an S-blow-up of graphs in Φ′; that is, it tests membership in ΦS . Note
that if S is an equipartitions, then any graph in ΦS is isomorophic to an n/n′-factor blow-up of
some graph in Π′ (equiv., to a graph in Π).

The second test. Let us first assume, for simplicity, that S = (S1,, Sn′) is an n′-way partition

40Recall that G′ ∈ Π′ is isomorphic to a 9k-vertex graph of the form GA,A which consists of two parts that are
connected according to the entries of the k-by-k matrix A. These two parts have 2k and 7k vertices, respectively,
and in each part almost every O(log k)-set of vertices constitutes a reliable locator for this part.

41In fact, each graph in Φ′ is (robustly) self-ordered.

40

of the vertices of G to equal parts, and consider what happens when we select at random a rep-
resentative in each Si, and test the corresponding induced subgraph, denoted R, for membership
in Φ′. Clearly, if G ∈ ΦS , then any such choice of representatives would result in a graph in Φ′

(i.e., R is always in Φ′), and the tester accepts with high probability. But if G is ε-far from ΦS ,
then (as shown in Claim 6.1.1) the expected distance between R and Φ′ is at least Ω(ε), and the
tester rejects with high probability. We stress that the foregoing implication is not a generic fact;
its validity relies on a feature of the specific property Π′ (and it does not hold regardless of Π′).42

Claim 6.1.1 (the distance of R from Φ′ reflects the distance of G from ΦS , special case): Suppose
that |Si| = n/n′ for every i ∈ [n′], and let R be defined as above (i.e., as the subgraph of G induced
by selecting a random representative in each Si). Then, the expected distance of R to Φ′ is at least
half the distance of G to ΦS minus 1/n′.

Recalling that 1
n′ ≤ ε/2, it follows that if G is ε-far from Π, then the expected distance of R to Φ′

is at least ε/4.

Proof: As noted above, the current claim, which is not generic, relies on a feature of the specific
property Φ′. Specifically, we rely on the fact that Φ′ is chracterized by two conditions:

1. The adjacency of some vertex-pairs is uniquely determined accross Φ′; that is, for some
(u′, v′) ∈ [n′]2 it holds that either u′ is adjacent to v′ in all graphs in Φ′ or u′ is not adjacent
to v′ in all graphs in Φ′.

2. All other vertex-pairs are matched such that, in each graph in Φ′, the adjacency of one vertex-
pair equals the adjacency of the vertex-pair matched to it. That is, if the vertex-pair (u′, v′) is
matched with the vertex-pair (u′′, v′′), then in each graph G′ in Φ′ it holds that u′ is adjacent
to v′ in G′ if and only if u′′ is adjacent to v′′ in G′.

For each vertex-pair of Type 1, the expected distance (in R) to the determined value equals the
fraction of vertex-pairs in G whose adjacency should be modified to fit any graph in ΦS (equiv.,
fit the n/n′-factor blow-up of any graph in Φ′). We next show that, for each pair of vertex-pairs
of Type 2, the expected distance (in R) to equality (between the adjacencies) is at least half the
distance to equality in G. Fixing any such pair (u′, v′) and (u′′, v′′), let ρ′ (resp., ρ′′) denote the
fraction of adjacent vertex-pairs among the corresponding clouds (in G).43 Then, the probability
that this pair of vertex-pairs should be modified in R is ρ′(1 − ρ′′) + (1 − ρ′)ρ′′, where the first
(resp., second) term corresponds to the probability that the first pair is adjacent and the second is
non-adjacent (resp., the first pair is non-adjacent and the second is adjacent). On the other hand,
the fraction of adjacencies that must be modified in G in order to get the same adjacencies between
the two pairs of clouds is min((1 − ρ′) + (1 − ρ′′), ρ′ + ρ′′), where the first (resp., second) term
corresponds to making the corresponding vertex-pairs adjacent (resp., non-adjacent). We note that
ρ′(1− ρ′′) + (1− ρ′)ρ′′ ≥ min((1− ρ′) + (1− ρ′′), ρ′ + ρ′′)/2.44 Lastly, we note that the number of

edges in G that reside within Si’s is upper-bounded by n′ ·
(
n/n′

2

)
< 1

n′ ·
(
n
2

)
.

42For example, this fact does not hold if Π′ is the set of all n′-vertex graphs. Consider a graph G that is obtained
by taking an n/n′-factor blow-up of an n′-vertex clique and omitting at random half of the edges in each K n

n′ ,
n
n′

.

Then, G is far from any graph in Φ, although any subgraph R selected as above is in Π′.
43That is, ρ′ (resp., ρ′′) is the fraction of vertex-pairs in the clouds of u′ and v′ (resp., in the clouds of u′′ and v′′)

that are adjacent in G.
44For example, assuming, without loss of generality, that ρ′ + ρ′′ ≤ 1, we note that ρ + ρ′′ − 2ρ′ρ′′ ≥ (ρ′ + ρ′′)/2,

since the function f(x, y) = x+ y − 4xy is non-negative in the region {(x, y)∈ [0, 1]2 : x+ y≤1}.

41

The foregoing discussion refers to a mental experiment of testing the random induced subgraph
R for membership in Φ′, but in reality we only have oracle access to the graph G. Hence, we test
R for Φ′ by invoking the tester for Π′ and emulating the answers to the queries made to R by
referring them to G. Specifically, recall that we may assume, without loss of generality, that the
tester for Π′ samples s random vertices and queries some pairs among these s vertices. (If the
tester is adaptive, then the queried pairs are determine by previous answers; otherwise, they are
determined beforehand.) Hence, we may sample s vertices in G, provide them to the tester of Π′,
and answer the queries regarding G′ by querying the corresponding pairs in G.

The latter outline ignores the fact that the number of vertices sampled by the tester for the
relevant Π′ is Θ(

√
n′/ε), and so the s vertices sampled in G are unlikely to reside in different

clouds. Instead, we sample 2s vertices in G, check the clouds in which they reside by using the
localization procedure (which was already used in the first step), identify s vertices that reside in
different clouds, and use them for the emulation of the tester.45 Note that this means that we
make O(s log n′) queries just for this purpose, but this is fine because the query complexity of the
specific tester that we use is Ω(

√
n′ log n′) anyhow. (Note that there is no need to map the vertices

of G to vertices of G′ via the localization procedure, which maps every vertex in Si to i, since the
subgraph of G that we explore is isomorphic to the corresponding subgraph of G′.)

Recall that the above description relied on the simplified assumption that all Si’s are of equal
size. But the success of the first test only allows us to assume that S = (S1,, Sn′) is ε′-close
to an n′-way partition of the vertices of G = ([n], E) to equal parts; that is, there exists an n′-

equipartition S
′
= (S′1,, S

′
n′) of [n] such that for all but at most ε′n of the vertices v ∈ [n] it holds

that v ∈ Si if and only if v ∈ S′i. Nevertheless, we shall proceed essentially as in the simplified case.
Specifically, we test that the corresponding n′-partite subgraph of G is an S-blow-up of a graph
in Π′ by selecting at random a representative in each Si, and testing the corresponding induced
subgraph. That is, the graph R is defined exactly as in the simplified case, although S is not
necessarily an equipartition; again, for every i, j ∈ [n′], the ith vertex of R is connected to the jth

vertex with probability that equals the fraction of edges between Si and Sj .

Claim 6.1.2 (the distance of R from Φ′ reflects the distance of G from Φ, general case): Suppose

that S is ε′-close to an n′-equipartition of [n], denoted S
′
. Then, the expected distance of R to Φ′

is at least half the distance of G to ΦS minus 1
n′ +O(ε′).

Proof: Let R′ be the induced subgraph of G obtained by selecting a random representative in each
S′i; that is, the ith vertex of R′ is connected to the jth vertex with probability that equals the
fraction of edges between S′i and S′j (in G). The key observation is that, for every n′-vertex graph
G′, the expected distance between R and G′ and the expected distance between R′ and G′ differ by
at most 8ε′. To see this, let E(A,B) denote the set of edges (in G) that connect the disjoint vertex
sets A and B, and note that the difference between the foregoing expectations is upper-bounded
by

1(
n′

2

) · ∑
{i,j}∈([n

′]
2)

∣∣∣∣∣ |E(Si, Sj)|
|Si| · |Sj |

−
|E(S′i, S

′
j)|

|S′i| · |S′j |

∣∣∣∣∣
≤ 1

n′(n′ − 1)
·
∑

i,j∈[n′]

∣∣∣∣∣ |E(Si, Sj)|
|S′i| · |S′j |

−
|E(S′i, S

′
j)|

|S′i| · |S′j |

∣∣∣∣∣+
1

n′(n′ − 1)
·
∑

i,j∈[n′]

∣∣∣∣∣ |E(Si, Sj)|
|S′i| · |S′j |

− |E(Si, Sj)|
|Si| · |Sj |

∣∣∣∣∣
45This presupposes that s = o(n′); otherwise we just find all vertices of G′ using O(n′ logn′) attempts.

42

=
1 + o(1)

n2
·
∑

i,j∈[n′]

∣∣|E(Si, Sj)| − |E(S′i, S
′
j)|
∣∣

+
1 + o(1)

n2
·
∑

i,j∈[n′]

|E(Si, Sj)|
|Si| · |Sj |

·
∣∣|Si| · |Sj | − |S′i| · |S′j |∣∣

≤ 1 + o(1)

n2
·
∑

i,j∈[n′]

SymDiff(Si × Sj , S′i × S′j)

+
1 + o(1)

n2
·
∑

i,j∈[n′]

∣∣|Si| · |Sj | − |S′i| · |S′j |∣∣
≤ 2 + o(1)

n2
·
∑

i,j∈[n′]

(
SymDiff(Si, S

′
i) · (|Sj |+ |S′j |) + SymDiff(Sj , S

′
j) · (|Si|+ |S′i|)

)
.

Observing that the symmetric difference between Sk and S′k consists of either Sk \ S′k or S′k \ Sk,
we get an upper bound of

2 + o(1)

n2
· 2 ·

∑
i,j∈[n′]

∣∣|Si| − |S′i|∣∣ · (|Sj |+ |S′j |) =
4 + o(1)

n2
· 2n ·

∑
i∈[n′]

∣∣|Si| − |S′i|∣∣ ,
which is upper-bounded by 17ε′. Next, applying Claim 6.1.1 we lower-bound the expected distance
between R′ and Φ′ by half the distance of G to Φ

S
′ minus 1/n′. Lastly, we note that the distance

between ΦS and Φ
S
′ is at most ε′, since an S-blow-up of any G′ ∈ Φ′ is ε′-close to an S

′
-blow-up of

G′ ∈ Φ′ (and vice versa). The claim follows.

With these preliminaries is place, recall that we test R for property Φ′ by invoking the corre-
sponding tester of Π′ and emulating the answers to the queries made to R by referring them to
G. Specifically, if the emulated tester asks to sample s vertices of G′, we sample 2s vertices in G,
indentify s vertices in different clouds, provide them to the tester of Π′, and answer the queries
regarding G′ by querying the corresponding pairs in G.

We warn that there is a potential problem with the foregoing outline. The problem is that we
sample the vertices of R according to a distribution that is ε′-close to the uniform one, whereas
the tester for Π′ presumes that the vertices are sampled uniformly. This problem is addressed by
considering the specific (adaptive) tester presented in the proof of Claim 3.1.3 (and modified in
Section 4.1), and observing that this specific tester is not significantly affected by a small change
in the distribution of the sampled vertices.46 Actually, we need to slightly modify this tester, as
follows:

• In the modified Step 6, the tester rejects if the number of matrix-collisions exceeds O(1/ε2)
and checks all matrix-collisions otherwise. (Recall that the original Step 6 does not check
the number of matrix-collisions, but rather selects uniformly O(1/ε) disjoint matrix-collisions
and checks them.)

Note that if the vertices are sampled uniformly, then, with high probability, the number of
matrix-collisions is O(1/ε2), since the number of row-collisions (resp., column-collisions) is

46Again, this feature does not hold in general. The point is that a sample of ω(1/ε′) elements drawn according to
a distribution that is ε′-close to distribution X may be easy to distinguish from a sample drawn from X. Hence, the
claim depends on what the tester does with the sampled vertices.

43

O(1/ε). This modification does not increase the complexity of the tester, which is dominated
by other steps. (The reason for this modification is discussed at the end of the proof of the
following claim.)

• We also slighly modify Step 2: While the original tester find reliable locator of size ` by
selecting these sets at random among the relevant parts of the sample S (which are each of
size O(`)), we find reliable locators of size `− ε2` by searching all possible candidates subsets
in S.

Note that these modifications have negligible effect when the vertices are sampled from the uniform
distribution.

Claim 6.1.3 (robustness of the tester of Claim 3.1.3): For a sufficiently small ε′ = Ω(ε), the
algorithm presented in the proof of Claim 3.1.3, modulo the foregoing modification, rejects with
high probability graphs that are ε-far from Π′ even if the vertices are sampled from a distribution
that is ε′-close to the uniform distribution on the vertices of the tested graph. The same holds for
the modified tester presented in Section 4.1.

We stress that the modified algorithms accepts graph in Π′, with high probability, when the vertices
are sampled from the uniform distribution.

Proof: Recall that the sampled vertices are used to provide degree estimates (in Step 1), derive
reliable locators (in Step 2), test isomorphism to a fixed graph via a fixed mapping (in Steps 4
and 5), and test equality betweeen matrices (in Step 6).47

The analysis of Step 1 (resp., Step 2) refers to the probability that a set of logarithmically many
vertices, selected uniformly and independently in the vertex set, is a good degree estimator (resp.,
reliable detector). The probability of failure is 1/poly(n′), which means that in both cases, for
` = O(log n′), the fraction of failed `-tuples is 1/poly(n′). Denoting each of these two failure sets
by B ⊂ [n′]`, we consider the probability that ` vertices drawn from a distribution that is ε′-close
to uniform yields an `-tuple in B. We shall use two features that hold for these two specific sets
(which capture failed events in Steps 1 and 2, respectively).48

1. The set B is closed under permutations of the sampled vertices; that is, for every (v1, ..., v`) ∈
[n′]` and every permutation π : [`]→ [`] it holds that (v1, ..., v`) ∈ B if and only if (vπ(1), ..., vπ(`)) ∈
B.

2. For some ρ = exp(−Ω(`)) and a sufficiently small constant ε2 > 0, the set B is “locally
ρ-sparse” in the sense that for every (v1, ..., vε2`) ∈ [n′]ε2` it holds that

|{(vε2`+1, ..., v`)∈ [n′]`−ε2` : (v1, ..., v`) ∈ B}| ≤ ρ · (n′)`−ε2`.
47In the original description, two samples of different sizes are taken in Steps 1 and 3.
48Actually, in Step 1 degrees are estimated based on 9` random vertices. More importantly, the estimates are all

good enough (w.v.h.p.), even if ε2 fraction of the vertices are selected adversarially (and only the rest are uniformly
distributed). Likewise, for Step 2, we consider the event in which the set of low degree vertices contains an (`−ε2`)-set
that is a reliable locator.

44

Using these two features49, we prove that, for sufficiently small constant ε0 > 0, it holds that `
samples drawn from any distribution X that is ε0-close to uniform yields an `-tuple in B with
probability at most exp(−Ω(`)). Towards this end, we fix some constant ε1 > 0 and call x ∈ [n′]
heavy if Pr[X =x] > (1 + ε1)/n′. Then, X is heavy with probability at most ε0/ε1, and assuming
that ε0/ε1 = ε2/t it follows that the probability that ` samples of X contain more than ε2` heavy
samples is at most(

`

ε2`+ 1

)
· (ε0/ε1)ε2`+1 = 2H2(ε2+o(1))` · (ε2/t)ε2`+1 < O(1/t)Ω(ε2`).

where H2 is the binary entropy function (and so H2(ε) < ε log2(1/ε) + O(ε)). On the other hand,
if this bad event does not occur, then the `-tuple resides in B with probability at most(

`

ε2`

)
· (1 + ε1)`−ε2` · ρ = exp(H2(ε2)`+ ε1`− Ω(`)),

where the first factor represents a choice of the heavy samples, the second factor represents the
probability of selecting a specific (`−ε2`)-tuple of non-heavy vertices, and the third factor represents
the density of B. Hence, for a sufficiently small ε1, ε2 > 0 and a sufficiently large constant t, the
claim follows (i.e., an `-sample drawn from X hits B with probability at most exp(−Ω(`))), where
this requires setting ε0 = ε1ε2/t > 0 (and using ε′ ≤ ε0).

For the other tests (performed in Steps 4–6), the issue at hand is hitting sets of vertex-pairs
(resp., pairs of vertex-pairs) that have density Ω(ε) (resp., density Ω(ε/n′)). These tests are an-
alyzed based on laws of large numbers, which presumes that the events in question are pairwise
independent. Hence, the analysis actually refers to 4-tuples (resp., 8-tuples) of vertices, and so a
deviation of ε′ in the sampling of single vertices translates to a deviation of O(ε′) in the distribution
of the relevant tuples. Actually, the analysis of Step 6 requites more care, and is outlined next.

Recall that the claim refers to a modification of the algorithm presented in of Claim 3.1.3.
Specifically, in Step 6, rather than checking O(1/ε) random matrix-collisions, we check all of them,
provided that their number does not exceed O(1/ε2). The need for this modification arises from
the fact that, in the current setting, the matrix-collisions are not necessarily distributed uniformly
among the matrix entries. This means that the distribution of collisions may be strongly slanted
towards vertices that appear with higher probability. Still, at least 1 − 2ε′ of the distribution is
assigned to vertices that appear with probability approximately 1/n′, and such vertices are likely
to form Ω(1/ε) matrix-collisions that are almost uniformly distributed among the matrix’s entries.
Hence, by checking all matrix-collisions, we benefit from the matrix-collisions that are almost
uniformly distributed (even in the case that there are more matrix-collisions that are far from
being uniformly distributed).

Combining Claims 6.1.2 and 6.1.3, we conclude that the (two-step adaptive) tester rejects graphs
that are ε-far from Π with high probability. Recall that the modified Step 6 is unlikely to reject
graphs in Π (since it rejects if the number of matrix-collisions exceeds O(1/ε2)), and it follows that
the (two-step adaptive) tester accepts graphs in Π with high probability. The same considerations
apply to the non-adaptive version of the foregoing tester, where in this version Step 6 is modified

49In contrast, the claim does not hold when the second feature does not hold. Consider for example a set B that
consist of all `-tuples that contain at least c occurances of the value 1, and a distribution X that assigns 1 probability
ε′ and is uniform over {2, ..., n′} otherwise. Then, |B| <

(
`
c

)
· (n′)`−c < |[n′]|`/poly(n′), but (for any constants ε′ > 0

and c) with very high probability ` samples of X form an `-tuple in B.

45

anyhow (see the end of the proof of Theorem 4.1). Hence, the claimed upper bounds follow, where
the crucial fact is that the query complexity of local self-ordering is O(log n′) rather than O(log n),
whereas the complexity of testing whether R′ is in Π′ refers to the size of R (which is an n′-vertex
graph). Specifically, note that the first test (i.e., the distribution test) makes O(ε−2

√
n′ · log n′)

queries, whereas the complexity of the second test is as stated in Theorem 1.3 (with n replaced by
n′).

Digest. The proof of Theorem 6.1 is based on using an n/n′-factor blow-up of the n′-vertex graphs
used in Theorem 1.3 (with n replaced by n′). The analysis of the resulting property is based on
the (highly non-trivial) fact that the blow-up operation preseves distances (see [17, Sec. 4] and [11,
Lem. 4.3]) and on specific features of the property used in Theorem 1.3. Specifically, we used both
features of the property itself and of the testers used to establish the complexity upper bounds.

We highlight the fact that the proof of Claim 6.1.3 contains a proof of the following result:
If X is close to the uniform distribution on [m] and B ⊆ [m]` has density at most exp(−Ω(`))
and satisfies some additional conditions, then the probability that ` samples drawn from X form an
`-tuple in B is exp(−Ω(`)). We stress that the claim does not hold in general, even when closeness
means variation distance o(1), but it does hold under some natural conditions. Specifically, a
sufficient condition is that, for some constant ε2 > 0, the residual set obtained from B by fixing ε2`
of the coordinates has density exp(−Ω(`)).

6.2 Translation to complexities that also depend on the proximity parameter

Here we use the methodology of [7], which transforms existential results regarding graph properties
of almost arbitrary size-dependent query complexity to results that support almost any query
complexity; that is, the latter complexities that may depend both on the size and on the proximity
parameter. One interesting aspect in this transformation is that it yields results also for complexities
that depend only on the proximity parameter. Using this methodology, we transform Theorem 6.1
to Theorem 1.7, which asserts rather tight complexity bounds that may also depend on the proximity
parameter.

Theorem 6.2 (Theorem 1.7, restated)50 For every functions f, g : N× (0, 1]→ N that are mono-
tonically non-decreasing in the first parameter and monotonically non-increasing in the second
parameter and every n ∈ N and ε > 0 such that f(n, ε) ∈ [O(1),

√
εn] and g(m, ε) ≤ m, there exists

a graph property Π that satisfies the following two conditions:

1. There exists a general (i.e., adaptive) tester of Π that makes O(ε−2 ·f(n,Ω(ε)) · log f(n,Ω(ε)))
queries, and any such tester must make Ω(f(n,O(ε))) queries.

2. Any non-adaptive tester must make Ω(g(f(n,O(ε)))·f(n,O(ε))) queries, and there exists such
a tester that makes O(ε−2 · g(f(n,Ω(ε)),Ω(ε)) · f(n,Ω(ε)) · log f(n,Ω(ε))) queries.

The proof adapts the strategy used in [7] to the current context. We apply this strategy to different
properties, and care both about the complexity of general and non-adaptive testing, but no new
ideas are used here. Still, for the sake of self-containment as well as greater clarity, we provide the
following proof sketch.

50As in Footnote 34, the adaptive upper bound presumes f(n, ε)/ε2 = o(n); otherwise we incur another
O(log f(n, ε)) factor.

46

Proof Sketch: The issue at hand is the difference between results regarding testing with a fixed
proximity parameter ε0 = Ω(1), hereafter referred to as Ω(1)-testing, and testing with varying
proximity parameter ε, hereafter referred to as ε-testing. The lower bounds of Theorem 6.1 refer
only to testing with a fixed proximity parameter, although the upper bounds extend to ε-testing.
Our goal is to provide relatively tight lower and upper bounds on the (general and non-adaptive)
query complexities of ε-testing, where the complexities may be arbitrary function os ε (as well as
of the size of the graph). We start with a rough outline of our proof strategy.51

Our starting point is Theorem 6.1, which we re-interpret in concrete (rather than functional)
terms. Essentially, for some universal constant c > 5, and for every fixed natural numbers q′, q′′, n′

such that
√

2c < q′ < q′′ < q′2 < n′, Theorem 6.1 asserts the existence of a property Π′n′,q′,q′′ of

n′-vertex graphs for which the query complexity of general 1/c-testing is between q′ and Õ(q′), and
the analogous non-adaptive complexity is between q′′ and Õ(q′′). Furthermore, the upper bound
extends to O(1/ε2) · Õ(q′) (resp., O(1/ε2) · Õ(q′′)), when testing with proximity parameter ε.

Now, for any ε > 0, suppose that we want to present a property of n-vertex graphs such that
ε-testing it has (general) complexity between q′ and poly(1/ε) · Õ(q′) and non-adaptive complexity
between q′′ and poly(1/ε) · Õ(q′′). Then, we set n′ =

√
cε · n and define a property of n-vertex

graphs, denoted Π, such that each graph in Π consist of a “base” graph from Π′n′,q′,q′′ and a clique
of size n− n′. The (n− n′)-vertex clique is viewed as a padding of the base graph, and the vertex
pairs in the base graph occupies an (n′/n)2 = c · ε fraction of [n]2.

The lower bounds on the complexities of ε-testing Π are derived by inference from the lower
bounds on 1/c-testing Π′n′,q′,q′′ . That is, we reduce 1/c-testing Π′n′,q′,q′′ to ε-testing Π, which
establishes the desired lower bounds (of q′ and q′′, resp). The upper bounds on the complexities
of ε-testing Π are obtained by testing that the base graph has size n′ (and that it is padded by
an (n − n′)-vertex clique), and 1/c-testing that the base graph is in Π′n′,q′,q′′ , (using the adequate
1/c-tester for Π′n′,q′,q′′). In particular, sampling a vertex in the base graph is emulated by sampling

O(n/n′) = O(1/
√
ε) vertices of the tested graph.

The foregoing construction is tailored for a fixed value of the proximity parameter (i.e., Π
depends on ε (via the definition of n′ =

√
cε ·n)), whereas we seek properties that exhibit the desig-

nated complexity for any value of the proximity parameter. This is achieved by creating properties
that are the union of properties defined as above for a geometric sequence of values of the proxim-
ity parameter. Specifically, when seeking to establish general and non-adaptive query complexity
q : N× (0, 1]→ N and Q : N× (0, 1]→ N, we use the base properties Π′

c−in,q(n,c−2i−1),Q(n,c−2i−1)
, for

i = 1, ..., logc n. That is, we take the union of these properties after padding each of them to size n.
Establishing the lower and upper bounds in this case requires more care. Specifically, for the

lower bounds on the complexities of ε-testing, we show that the properties introduced for handling
the other values of the proximity parameter (i.e., the c−i’s for all i ∈ [logc n] \ {0.5 · logc(1/ε)})
do not interfere with the argument that refers to the value of the proximity parameter that is of
interest to us (i.e., ε). For the upper bounds on the complexities of ε-testing, we present testers
that first determine the size of the base graph that seems to underlie the tested graph (rejecting if
none fits). Next, our testers emulate testing the base graph (with suitable proximity), using the size
parameter n′ determined in the first step. (The fact that we only obtain a (rough) approximation
of the size of the base graph raises some difficulties, but they are resolved just as in [7, Sec. 4].
In particular, we rely on the fact that the testers used in the proof of Theorem 6.1 use the size
parameter only in order to sample vertices in the tested graph.)

51The following outline is adapted (with small changes) from [7, Sec. 1.2].

47

The actual proof. The ballpark of the general and non-adaptive query complexities are set to
q(n, ε) = f(n, ε) and Q(n, ε) = g(f(n, ε), ε) · f(n, ε), respectively. Following the foregoing outline,

we let Πn =
⋃
i∈[logc n] Π

(i)
n such that an n-vertex graph is in Π

(i)
n if it consists of a (n− ni)-vertex

clique, where ni = c−i · n, and a graph in Π′
ni,q(n,c−2i−1),Q(n,c−2i−1)

, which is called the base graph.

Note that each graph in Π
(i)
n is c−2i-close to a graph that consists of an (1− c−i) · n-vertex clique

and c−i · n isolated vertices.
The proofs of the following two claims are obtained by modification of corresponding proofs

that appear in [7], and additional details can be found there.52

Claim 6.2.1 (upper bounds): The property Πn is ε-testable in O(ε−2 · q(n, ε/c) · log q(n, ε/c))
queries. It is also ε-testable by O(ε−2 ·Q(n, ε/c) · logQ(n, ε/c)) non-adaptive queries.

Proof: We first approximate the number of “low degree” vertices (i.e., vertices of degree at most
n/c) up to an additive deviation of 0.1ε ·n. If the number of these vertices is approximately c−i

∗ ·n,
then we invoke a (c2i∗ · ε/2)-tester for

⋃
n′∈N Π′

n′,q(n,c−2i∗),Q(n,c−2i∗)
on the subgraph induced by the

“low degree” vertices. Here we use the fact that the tester for Π′
ni,q(n,c−2i∗−1),Q(n,c−2i∗−1)

actually

works for
⋃
n′∈N Π′

n′,q(n,c−2i∗−1),Q(n,c−2ii
∗−1)

. That is, we test the property by pretending that the

tested graph has ni vertices, whereas in reality it may have ni ± 0.1εn vertices. For sake of clarity,
we spell out the derived tester (as operating on input an n-vertex graph G and proximity parameter
ε, while letting ` = d0.5 logc(1/ε)e).

1. Determining i∗: The tester finds a vertex, denoted s, that seems to have degree at least
n/2, by sampling O(1) vertices and roughly approximating their degree (by considering their
adjacency relation to O(1) random vertices).

Letting B denote the set of vertices that do not neighbor s in G, the tester obtains a very
rough estimate of the size of B; specifically, using a sample of O(1/ε2) vertices, with high
probability, the deviation error is smaller than 0.1ε · n. If the estimated size of B is smaller
than 1.1 · c−(`+1) · n, then the tester sets i∗ = ` + 1, which corresponds to the case that the
base graph has less than ε

2 · n
2 vertex pairs. If, for some i∗ ∈ [`], the number of low-degree

vertices is (1± 0.1) · c−i∗ · n, then i∗ is set accordingly, which corresponds to a base graph of
size c−i

∗ · n; otherwise (i.e., if i∗ was not set), the tester rejects.

2. Testing whether the subgraph induced by [n] \B is a clique: The tester selects O(1/ε) random
vertices in G and checks that the vertices that neighbor s are adjacent to one another. If two
vertices that neighbor s were found not to be adjacent, then the tester rejects.

3. Testing the subgraph induced by B: If i∗ = ` + 1, then the tester accepts. Otherwise, the
tester invokes the (c2i∗ · ε/2)-tester for

⋃
n′∈N Π′

n′,q(n,c−2i∗−1),Q(n,c−2i∗−1)
on the subgraph of G

induced by B, and outputs the verdict of this tester. In particular, we invoke the general tester

52Specifically, the general strategy is first presented in the context of testing Boolean functions [7, Sec. 2], and then
adapted to testing graph properties, first in the bounded degree graph model and then in the dense graph model
(see [7, Sec. 3] and [7, Sec. 4], respectively). This is somewhat unfortunate for us, since our focus is on the dense
graph model. Furthermore, the main presentation (i.e., [7, Sec. 2–4]) refers to complexity bounds that only depend
on the proximity parameter, and it is extended to general complexity bounds in [7, Sec. 5]. Here, we incorporate all
the relevant modifications. Furthermore, the original presentation refers to general testers, but we extend it also for
non-adaptive testers.

48

of the proof of Theorem 6.1 and emulate each vertex selection (for the induced subgraph) by
sampling O(ci

∗
) vertices of G (in expectation).

The complexity of this emulation is

ci
∗ ·O((c2i∗ · ε/2)−2 · q(n, c−2i∗−1) · log q(n, c−2i∗−1)) = O(ε−2 · q(n, ε/c) · log q(n, ε/c)).

The query complexity of the purported ε-tester is upper-bounded byO(1/ε2)+O(ε−2q(n, ε/c) log q(n, ε/c)).
A corresponding non-adaptive tester is obtained by observing that Steps 1 and 2 can be made non-
adaptive by performing them for all O(1) sampled vertices (rather than for s only), and Step 3
can be made non-adaptive by performing it for all possible i∗ ∈ [`] while using the corresponding
non-adaptive tester of Theorem 6.1.

In analyzing the foregoing testers, we may assume that s has degree at least n/2, and that we
obtained a good approximation of the size of B. Hence, if G ∈ Πn, then Step 2 will never reject,
and Step 3 will accept with high probability. If G is ε-far from Π and Steps 1-2 do not reject, then
G is close to consisting of an (n− ni∗)-vertex clique and some ni∗-vertex graph that is c2i∗ · ε/2-far
from Π′

ni∗ ,q(n,c−2i∗−1),Q(n,c−2i∗−1)
. In this case, Step 3 rejects with high probability.

Claim 6.2.2 (lower bounds): The property Πn is not ε-testable in o(q(n, c2 · ε)) queries. Ditto for
o(Q(n, c2 · ε)) non-adaptive queries.

Proof: For any ε > 0, letting i = b0.5 logc(1/cε)c and n′ = c−in, we reduce 1/c-testing the
property Π′

n′,q(n,c−2i−1),Q(n,c−2i−1)
to ε-testing Πn by emulating answers to the queries issued by

the latter tester, which means that we emulate an n-vertex graph using queries to an n′-vertex
graph. Specifically, when 1/c-testing the n′-vertex graph G′ we invoke the ε-tester on an imaginary
n-vertex graph G that consists of G′ and an (n−n′)-vertex clique. Indeed, we can place the vertices
of G′ at fixed locations of our choice (e.g., we may just assign these vertices labels in [c−i · n]).

The crucial fact is that the vertices of the base graph have low degree, whereas the vertices
of the clique have high degree. This fact is used to prove the key observation that asserts that,

for any j ∈ [1 + logc n] \ {i}, graphs in Π
(i)
n are relatively far from graphs in Π

(j)
n ; that is, the

relative distance is at least |c−2i − c−2j |/2 > ε. The latter fact implies that if G′ is 1/c-far from

Π′
n′,q(n,c−2i−1),Q(n,c−2i−1)

, then G is ε-far from Πn rather than only being ε-far from Π
(i)
n . On the

other hand, G′ ∈ Π′
n′,q(n,c−2i−1),Q(n,c−2i−1)

implies G ∈ Πn.

Conclusion. Combining Claims 6.2.1 and 6.2.2, and using q(n, e) = f(n, ε) andQ(n, ε) = g(f(n, ε), ε)·
f(n, ε), we infer that the query complexity of ε-testing Πn is between Ω(f(n, c2 · ε)) and O(ε−2 ·
f(n, ε/c)·log f(n, ε/c)), whereas the corresponding non-adaptive complexity is between Ω(g(n, f(n, c2·
ε)) · f(n, c2 · ε)) and O(ε2 · g(n, f(n, ε/c)) · f(n, ε/c) · log f(n, ε/c)) , where we use g(m, ·) ≤ m. The
theorem follows.

7 Open Problems

While this paper provides a nearly-tight understanding of the query gap between adaptive and
non-adaprtive testing o f dense graph properties, it does leave some open problems. In particular:

49

1. Our separation results assert the mere existence of graph properties that exhibit gaps in their
testing complexity. This raises the question of whether such gaps can be proved for prop-
erties that are efficiently recognizable. Furthermore, one may seek efficient testers for such
properties; that is, testers whose time complexity is closely related to their query complexity.

For Theorems 1.2–1.4 and 1.6–1.7, this challenge was meet in a subsequent work [9] (see [9,
Cor. 1.9] and a subsequent comment), but it remains open for Theorem 1.5.

2. Regarding Theorem 1.5, which addresses one-sided error testers, it would be nice to have such
testers in the parameter regime of Theorems 1.6 and 1.7.

3. Our separation results are not meaningful for properties that can be tested within (general)
query complexity q(ε) ≤ Õ(1/ε2), since in this case Theorem 1.6 only yields a non-adaptive
lower bound of Ω((ε2 ·q(ε))2). Hence, the challenge is to establish a non-adaptive lower bound
of Ω(q(ε)2) for such cases (i.e., for any q(ε) ∈ [Õ(1/ε), poly(1/ε)]).

Recall that [12, Thm. 1.2] establishes a non-adaptive lower bound of Ω(q(ε)3/2) on testing a
(natural) graph property that has a general tester of complexity q(ε) = Õ(1/ε).

4. Turning to the high end of the the query complexity, we note that our separation results only
apply to properties that can be tested within (general) query complexity q(n) ≤ Õ(n1/2).
The challenge here is to establish a non-adaptive lower bound of Ω(q(n)2) for any q(n) ∈
[ω(n1/2), n].

5. Lastly, we mention the notion of rounds of adaptivity, which was studied in [3] when referring
to property testers. A k-round tester makes its queries in k rounds such that all queries made
in the ith round depend only on the tester’s explicit input, its randomness, and the answers
it has obtained to the queries made in the prior i− 1 rounds. Note that non-adaptive testers
use a single round, whereas the adaptive testers presented in our proofs use two rounds. The
begging question is what is the relation between the complexity of k-round testers versus
(k + 1)-round testers, for any k > 1.

Our results rely on graphs that are both robustly self-ordered and have local self-ordering proce-
dures. As we show, random graphs happen to satisfy these two features, but one may ask whether
one feature implies the other. This question is the focus of [9], where it is considered both for the
dense graph model (as here) and for the bounded-degree graph model.

References

[1] N. Alon, E. Fischer, M. Krivelevich and M. Szegedy. Efficient Testing of Large Graphs.
Combinatorica, Vol. 20, pages 451–476, 2000.

[2] E. Ben-Sasson, P. Harsha, and S. Raskhodnikova. 3CNF Properties are Hard to Test. SIAM
Journal on Computing, Vol. 35(1), pages 1–21, 2005.

[3] C. Canonne and T. Gur. An Adaptivity Hierarchy Theorem for Property Testing ECCC,
TR17-029, 2017.

[4] E. Chattopadhyay. Guest Column: A Recipe for Constructing Two-Source Extractors.
SIGACT News, Vol. 51 (2), pages 38–57, 2020.

50

[5] E. Fischer. On the Strength of Comparisons in Property Testing. Information Processing
Letters, Vol. 189 (1), pages 107–116, 2004.

[6] O. Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.

[7] O. Goldreich. Hierarchy Theorems for Testing Properties in Size-Oblivious Query Complexity.
Computational Complexity, Vol. 28 (4), pages 709–747, 2019.

[8] O. Goldreich. On Testing Asymmetry in the Bounded Degree Graph Model. ECCC, TR20-118,
2020.

[9] O. Goldreich. Robust Self-Ordering versus Local Self-Ordering. ECCC, TR21-034, 2021.

[10] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and
approximation. Journal of the ACM, pages 653–750, July 1998. Extended abstract in 37th
FOCS, 1996.

[11] O. Goldreich, M. Krivelevich, I. Newman, and E. Rozenberg. Hierarchy Theorems for Property
Testing. Computational Complexity, Vol. 21(1), pages 129–192, 2012.

[12] O. Goldreich and D. Ron. Algorithmic Aspects of Property Testing in the Dense Graphs
Model. SIAM Journal on Computing, Vol. 40, No. 2, pages 376–445, 2011.

[13] O. Goldreich and L. Trevisan. Three theorems regarding testing graph properties. Random
Structures and Algorithms, Vol. 23 (1), pages 23–57, August 2003.

[14] O. Goldreich and A. Wigderson. Robustly Self-Ordered Graphs: Constructions and Appli-
cations to Property Testing. ECCC, TR20-149, 2020. (Note: Numbered items refers to the
revised version.)

[15] M. Gonen and D. Ron. On the Benefit of Adaptivity in Property Testing of Dense Graphs.
Algorithmica, Vol. 58 (4), pages 811–830, 2010.

[16] J.H. Kim, B. Sudakov, and V.H. Vu. On the asymmetry of random regular graphs and random
graphs. Random Structures & Algorithms, Vol. 21 (3-4), pages 216–224, 2002.

[17] O. Pikhurko. An Analytic Approach to Stability. Discrete Mathematics, Vol. 310 (21), pages
2951–2964, 2010.

[18] S. Raskhodnikova and A. Smith. A Note on Adaptivity in Testing Properties of Bounded
Degree Graphs. ECCC, TR06-089, 2006.

[19] R. Shaltiel. An Introduction to Randomness Extractors. In 38th ICALP, Part II, Lecture
Notes in Computer Science (Vol. 6756), pages 21–41, Springer, 2011.

Appendix A: Proof of Theorem 2.3

For each (non-trivial) permutation µ : [n] → [n], letting T
def
= {i∈ [n] : µ(i) 6= i} denote its (non-

empty) set of non-fixed-points, we show that, with probability 1− exp(−Ω(n · |T |)), the size of the
symmetric different between a random n-vertex graph Gn = ([n], En) and µ(Gn) is Ω(n · |T |).

51

For every u, v ∈ [n] such that u < v, let χu,v = χµu,v(Gn) represent the event that the pair
(µ(u), µ(v)) contributes to the symmetric difference between Gn and µ(Gn); that is, χu,v = 1 if
exactly one of the edges {µ(u), µ(v)} and {u, v} is in Gn, since {u, v} is an edge of Gn if and only
if {µ(u), µ(v)} is an edge of µ(Gn). We shall prove that

Pr
Gn

 ∑
u<v∈[n]

χµu,v(Gn) <
n · |T |

20

 = exp(−Ω(n · |T |)). (9)

We prove Eq. (9) by using a d|T |/3e-subset I ⊆ T such that I ∩µ(I) = ∅. Let T ′ = T \ (I ∪µ−1(I)),
which implies T ′ ∩ I = ∅ and µ(T ′) ∩ I = ∅. Let J = ([n] \ T) ∪ T ′, and note that |J | =
n−|T |+ (|T |−2 · d|T |/3e) ≥ n− (2|T |/3)−2 ≥ (n/3)−2. Observe that, for every (u, v) ∈ J × I, it
holds that u 6= v and Pr[χu,v=1] = 1/2, where the equality is due to {u, v} 6= {µ(u), µ(v)}, which
holds since (u, v)∈J×I but µ(u), µ(v) ∈ [n]\I. Furthermore, the events the correspond to the pairs
in J×I are independent, because the sets {{u, v} : (u, v)∈J×I} and {{µ(u), µ(v)} : (u, v)∈J×I} are
disjoint; that is, (u, v) ∈ J× I implies (µ(u), µ(v)) ∈ ([n]\ I)× ([n]\ I). Hence (using n ≤ 3(|J |+2)
and |T | ≤ 3|I| (as well as 3(|J |+ 2) · 3|I| < 9.9 · |J | · |I|)), the l.h.s. of Eq. (9) is upper-bounded by

Pr
Gn

 ∑
(u,v)∈J×I

χµu,v(Gn) <
3(|J |+ 2) · 3|I|

20

 ≤ Pr
Gn

 ∑
(u,v)∈J×I

χµu,v(Gn) <
0.99 · |J | · |I|

2


= exp(−Ω(|J | · |I|))

which is exp(−Ω(n · |T |)). Having established Eq. (9), the claim follows by a union bound (over all
non-trivial permutations µ : [n]→ [n]); specifically, denoting the set of non-trivial permutations by
Pn, we upper-bound the probability that Gn is not 0.05-robust by∑

µ∈Pn

Pr
Gn

[µ violates the condition in Eq. (9)]

≤
∑
t∈[n]

(
n

t

)
· (t!) · exp(−Ω(n · t))

< n ·max
t∈[n]
{nt · exp(−Ω(n · t))}

= exp(−Ω(n))

where t represents the size of the set of non-fixed-points (w.r.t µ).

Appendix B: Proof of Claim 2.6.1

We start with the main claim. Recall that Gn denotes a uniformly distributed n-vertex graph, S
is a fixed `-subset of [n], and our goal is to upper-bound the probability that the subgraph of Gn
induced by S is isomorphic to the subgraph induced by some other subset. Hence, we let S′ 6= S
be an arbitrary `-subset of [n], and upper-bound the probability that the subgraphs of Gn induced
by S and S′ are isomorphic.

The case of S′∩S = ∅ is easy, because in this case the we may fix the subgraph of Gn induced by
S′, whereas a random `-vertex graph (i.e., the subgraph of Gn induced by S) is isomorphic to this

52

fixed graph with probability at most (`!) · 2−(`2) �
(
n
`

)−1
, where the inequality uses a sufficiently

large ` = O(log n). Hence, we can afford to take a union bound over all `-subsets that are disjoint
of S. However, for sets that are not disjoint of S, the foregoing probability bound does not hold,
and a more careful analysis is called for. Nevertheless, the foregoing analysis does provide a good
warm-up towards the rest.

Turning to the general case, for each `-set S′ ⊂ [n] such that S′ 6= S, we shall upper-bound the
probability that the subgraphs of Gn induced by S and S′ are isomorphic as a function of |S ∩ S′|.
For every bijection π : S → S′, let FP(π)

def
= {v ∈ S : π(v) = v} denote the set of fixed-points of π,

and note that |FP(π)| ≤ `− 1 (since S 6= S′). Now, let G = Gn denote the random n-vertex graph
and GR denote the subgraph of G induced by R. Then, we claim that the probability that there
exists a bijection π : S → S′ such that π(GS) = GS′ is upper-bounded by∑

π:S
1-1→S′

min
(

2−|FP(π)|·(`−|FP(π)|)/3, 2−((`−|FP(π)|)/32)
)

(10)

≤
∑

f∈{0,...,|S∩S′|}

`!

f !
· 2−max(6·f ·(`−f),(`−f)·(`−f−1))/18

<
`!

|S ∩ S′|!
· 2−Ω((`−|S∩S′|)·`) (11)

where f represents the size of FP(π).

Justifying Eq. (10). To justify the upper bound claimed in Eq. (10), consider an arbitrary bijection
π : S → S′, and identify a set I ⊆ S \ FP(π) such that π(I) ∩ I = ∅ and |I| ≥ (` − |FP(π)|)/3.
Define random variables χu,v(·) for {u, v} ∈

(
[n]
2

)
such that χu,v(G) = 1 if {u, v} is an edge in G and

χu,v(G) = 0 otherwise, and observe that π(GS) = GS′ if and only if χπ(u),π(v)(π(G)) = χπ(u),π(v)(G)

for every {u, v} ∈
(
S
2

)
. Noting that χπ(u),π(v)(π(G)) = χu,v(G), the first bound in Eq. (10) is justified

by

Pr
G

[
∀(u, v)∈

(
S

2

)
: χπ(u),π(v)(π(G)) = χπ(u),π(v)(G)

]
≤ Pr

G

[
∀(u, v)∈FP(π)×I : χu,v(G) = χπ(u),π(v)(G)

]
=

∏
(u,v)∈FP(π)×I

Pr
G

[
χu,v(G) = χu,π(v)(G)

]
= 2−|FP(π)|·|I|

≤ 2−|FP(π)|·(`−|FP(π)|)/3

where the equalities are due to the disjointness of the sets FP(π)× I and FP(π)× π(I) (to the fact
that π(u) = u for every u ∈ FP(π)), and to the fact that the different χu,v(G)’s are independent
and uniformly distributed in {0, 1}. Similarly, we justify the second bound in Eq. (10) by

Pr
G

[
∀{u, v}∈

(
S

2

)
: χπ(u),π(v)(π(G)) = χπ(u),π(v)(G)

]
≤ Pr

G

[
∀{u, v}∈

(
I

2

)
: χu,v(G) = χπ(u),π(v)(G)

]
53

=
∏

{u,v}∈(I2)

Pr
G

[
χu,v(G) = χπ(u),π(v)(G)

]
= 2−(|I|2)

≤ 2−((`−|FP(π)|)/32)

where the equalities are due to the disjointness of the sets
(
I
2

)
and

(
π(I)

2

)
, and to the fact that the

different χu,v(G)’s are independent and uniformly distributed in {0, 1}.

Finishing the proof of the main claim. Combining Eq. (10)&(11) with a union bound over all `-
subsets S′ ⊂ [n] that are different from S, we upper-bound the probability that the subgraphs of
G induced by S and by some other `-set are isomorphic by∑

S′∈([n]`)\{S}

`!

|S ∩ S′|!
· 2−Ω((`−|S∩S′|)·`) =

∑
i∈{0,...,`−1}

(
`

i

)
·
(
n− i
`− i

)
· `!
i!
· 2−Ω((`−i)·`) (12)

where the index i represents the size of the intersection with S. Using a sufficiently large ` =
O(log n), we have

∑
i∈{0,...,`−1}

(
`

i

)
·
(
n− i
`− i

)
· `!
i!
· 2−Ω((`−i)·`) =

∑
i∈{0,...,`−1}

(
`

i

)2

·
(
n− i
`− i

)
· (n− i)!

(n− `)!
· 2−Ω((`−i)·`)

<
∑

i∈{0,...,`−1}

n`−i ·
(
`

i

)2

· 2−Ω((`−i)·`)

< ` · max
i∈{0,...,`−1}

{
n`−i ·

(
`

i

)2

· 2−Ω((`−i)·`)

}
= ` ·

(
n · `2 · 2−Ω(`)

)
and the main claim follows.

Proving the furthermore claim. The furthermore claim follows by observing that the probability that
the subgraph of G induced by S is self-ordered is upper-bounded by an expression analogous to
Eq. (10), where S′ = S and the difference is that the identity permutation is excluded from the
sum. Hence, |FP(π)| < ` still holds, and so do the justifications given to Eq. (10).

54

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

