High-Probability List-Recovery, and Applications to Heavy Hitters

Dean Doron∗
Department of Computer Science
Stanford University
ddoron@stanford.edu

Mary Wootters†
Departments of Computer Science
and Electrical Engineering
Stanford University
marykw@stanford.edu

Abstract
An error correcting code \(C: \Sigma^k \to \Sigma^n \) is list-recoverable from input list size \(\ell \) if for any sets \(L_1, \ldots, L_n \subseteq \Sigma \) of size at most \(\ell \), one can efficiently recover the list \(L = \{ x \in \Sigma^k : \forall j \in [n], C(x)_j \in L_j \} \). While list-recovery has been well-studied in error correcting codes, all known constructions with “efficient” algorithms are not efficient in the parameter \(\ell \). In this work, motivated by applications in algorithm design and pseudorandomness, we study list-recovery with the goal of obtaining a good dependence on \(\ell \). We make a step towards this goal by obtaining it in the weaker case where we allow a randomized encoding map and a small failure probability, and where the input lists are derived from unions of codewords. As an application of our construction, we give a data structure for the heavy hitters problem in the strict turnstile model that, for some parameter regimes, obtains stronger guarantees than known constructions.

∗Supported by NSF award CCF-1763311.
†Supported by NSF award CCF-1844628 and NSF-BSF award CCF-1814629.
1 Introduction

Let $C : \Sigma^k \rightarrow \Sigma^n$ be an error correcting code. We say that C is (efficiently) list-recoverable\(^1\) from list-size ℓ if, for any lists $L_1, \ldots, L_n \subseteq \Sigma$ with $|L_i| \leq \ell$ for all i, there is an (efficient) algorithm to recover the list

$$L = \{ x \in \Sigma^k : \forall i \in [n], C(x)_i \in L_i \}.$$

List recovery has historically been studied in the context of list-decodable codes, where it has been used as a tool to obtain efficient list-decoding algorithms (see, e.g., [GS98, GR08, GW13, Kop15, HRZW19]). However, even though efficient list-recovery algorithms have been developed, all of them have a poor dependence on the parameter ℓ. For example, [HRZ19] presents near-linear-time (in n) list-recovery algorithms, but the output list L has size doubly-exponential in ℓ.

In this work, we are motivated by the following goal (which we do not fully achieve):

Goal 1.1. For $\ell \geq 2$, design a family of codes $C : \Sigma^k \rightarrow \Sigma^n$ so that:

1. C can be encoded in time $O(n)$;
2. The rate k/n of the code is a constant (independent of n and ℓ);
3. The alphabet size $|\Sigma|$ is polynomial in ℓ (and independent of n);
4. The code C can be list-recovered in time $O(n \cdot \ell)$ (linear in both n and ℓ), with output list size $|L| = O(\ell)$.

To the best of our knowledge, this goal is open even if we allow the output list size L and the running time to depend polynomially on ℓ, rather than linearly.

Goal 1.1 is desirable for several reasons. First, it represents a bottleneck in our understanding of algorithmic coding theory, and it seems likely that solving it would involve developing new techniques that would be useful elsewhere. Second, list-recovery with reasonable dependence on ℓ is related to questions in pseudorandomness, where the the parameter ℓ is often very large (see our discussion in Section 1.3). Third, as we explore in this paper, obtaining Goal 1.1 has applications in algorithm design, in particular to algorithms for heavy hitters.

Probabilistic list-recovery with good dependence on ℓ. In this work, we make progress on Goal 1.1 by solving a relaxed version where the encoding map $C : \Sigma^k \rightarrow \Sigma^n$ is allowed to be randomized, and where the input lists are generated from unions of codewords; for a fixed such input list, we must succeed with high probability over the randomness in C. In particular, our main result implies the following theorem.

Theorem 1.2 (informal; weaker than main result). For all $\ell > 0$, there is a randomized encoding map $C : \Sigma^k \rightarrow \Sigma^n$ so that

1. C can be encoded in time $O(n)$;
2. The rate of C, k/n, is a constant independent of ℓ and n;

\(^1\)In this paper we focus on zero-error list-recovery, which is the definition given here. Other works focus on the more general problem of list-recovery from errors, in which $C(x)_i$ needs to be in L_i only for some fraction of the i-s.
3. The alphabet size $|\Sigma|$ is polynomial in ℓ (and independent of n);

4. For any list $x^{(1)}, x^{(2)}, \ldots, x^{(\ell)} \in \Sigma^k$, there is an algorithm that runs in time $O(n \ell \text{polylog}(\ell))$ that has the following guarantee. With probability at least $1-o(1)$ over the randomness of \mathcal{C}, given the lists $\mathcal{L}_i = \{C(x)_i : j \in [\ell]\}$, the algorithm returns a list \mathcal{L} so that $x^{(i)} \in \mathcal{L}$ for all i, and so that $|\mathcal{L}| = O(\ell)$.

This statement is weaker than our main result because in fact our result still holds even if a random subset of the lists \mathcal{L}_i in Item 4 are erased, and moreover the result still holds when some of the lists \mathcal{L}_i in Item 4 contain some extra “distractor” symbols that occur according to a particular distribution motivated by our applications to heavy hitters. We discuss this application in more detail below.

Our code is essentially an expander code with aggregated symbols. That is, we begin with an expander code $C_0: \Sigma_0^k \rightarrow \Sigma_n^k$, as in [SS96], and we aggregate together the symbols as in [ABN+92]. (We discuss this construction in more detail below.) Our recovery algorithm follows ideas from previous algorithms, propagating information around the underlying expander graph given some advice. What makes our work different are the facts that (a) we leverage the randomness of \mathcal{C} and a small failure probability, and (b) our underlying expander graph comes from a high-dimensional expander. In particular, using the randomness in \mathcal{C} we are able to obtain an algorithm with running time near-linear in ℓ, and using a high-dimensional expander we are able to boost our success probability to a level appropriate for our application to heavy hitters, which we discuss next.

Motivation from Heavy Hitters. One of the reasons we are interested in Goal 1.1 is because of the potential algorithmic applications of such a code. To illustrate this potential, we work out an application of our construction to the heavy hitters problem.

The set-up is as follows. We are given a stream of updates $(x^{(i)}, \Delta^{(i)})$, for $x^{(i)}$ in some universe \mathcal{U} of size N, and $\Delta^{(i)} \in \mathbb{R}$. For all m, x, we assume that $f(x) \triangleq \sum_{j \in [m]} \Delta^{(j)} \cdot 1_{x^{(j)} = x} > 0$. This is called the strict turnstile model. The goal is to maintain a small data structure (a “sketch”) so that, after m (efficient) updates $(x^{(i)}, \Delta^{(i)})$, we can (efficiently) query the data structure to return a list of ε-heavy hitters. That is, we would like to recover a list \mathcal{L} of size at most $O(1/\varepsilon)$ that contains all $x \in \mathcal{U}$ so that $f(x) \geq \varepsilon \cdot \|f\|_1 \triangleq \sum_{x \in \mathcal{U}} f(x)$.

The beautiful Count-Min Sketch (CMS) data structure of Cormode and Muthukrishnan [CM05] gives a solution to this problem. It uses (optimal) space $O(\varepsilon^{-1} \log N)$ and has update time $O(\log N)$. However, the query time to return all $O(1/\varepsilon)$ heavy hitters is large, $O(N \log N)$ (essentially, one performs a point query for each $x \in \mathcal{U}$ to see if it is a heavy hitter). The work [CM05] showed how to alleviate this with a so-called “dyadic trick,” bringing the query time to $O(\log^2 N)$ at the cost of an extra $\log(N)$ factor in both the space and update time. (See Table 1 for a summary of the parameters in these and other works.)

The starting point for our work is the work of Larsen, Nelson, Nguyen and Thorup [LNNT16]. That work studied a much more general problem—heavy hitters for all ℓ_p norms in the general turnstile model—but for the special case of the ℓ_1 norm and the strict turnstile model, they were

2We note that the construction of [DHK+19] is similar to ours, also using [ABN+92]-style symbol aggregation with a high-dimensional expander. However, in that work they have a more ambitious goal—list-decoding with no randomness in the encoder—but in return the parameters are not close to those in Goal 1.1.

3Here, we think of $f(x)$ as the “frequency” of item x. The Δ-s are updates: we may add or remove some quantity of each item x, provided that $f(x)$ never becomes negative.
able to get a nearly optimal algorithm, with the same space and update time complexity as the
original CMS, but with query time $O(\varepsilon^{-1} \log^{1+\gamma} N)$ for any constant $\gamma > 0$. That work highlighted
a connection to list-recovery (see [LNNT16, Section C]), which is one of our motivations to study
Goal 1.1.

Their approach was the following (we have modified the description to be more explicitly
coding-theoretic). To perform an update on an item $x \in U$, encode it as $C(x) \in \Sigma^n$ with our (randomized) encoding function. Then insert each symbol $C(x)_j$ into n different ε-heavy hitters
data structures that work on universe Σ (this could be a small CMS sketch, or something else). To
query all of the heavy hitters, we first query each smaller data structure to find a list L_j. Notice
that since $|\Sigma| \ll |U|$, it does not matter that the query algorithm for the small data structures is
slow. Now, we do list-recovery on the lists L_j to recover a list L that contains all of the heavy
hitters.4

However, as Goal 1.1 remains open, [LNNT16] did not use a list-recoverable code to obtain
their results. Instead, they (like us) took advantage of the fact that the lists L_j can be viewed as
random variables over the randomness in the encoding map C, and then use a construction based on “cluster-preserving clustering” to solve the problem. While in some sense this construction
must be a list-recoverable code for randomized input lists, it is not clear (to us) how to extract a
natural code out of it: the work [LNNT16] took the perspective of graph clustering, rather than
coding theory. In contrast, our code is very natural in the context of coding theory, as it is simply an
aggregated expander code (albeit using a high-dimensional expander for the underlying graph).

As an example of the utility of our construction, we plug our randomized list-recoverable code
(as in Theorem 1.2) into the framework of [LNNT16]. This gives us an algorithm for heavy hitters
that, in some parameter regimes, even slightly outperforms that of [LNNT16]. When ε is con-
stant and N is growing, we are able to improve the query time from $O(\log^{1+\gamma} N)$ to $O(\log N)$. In
particular, we prove the following theorem. (See Table 1 for a comparison to other work when
$\log N \gg \text{poly}(1/\varepsilon)$).

Theorem 1.3 (informal; see Theorem 5.11). There is a data structure that solves the heavy hitters problem
in the strict turnstile model, which takes space $O(\varepsilon^{-1} \log N)$, update time $O(\log N)$, and query time
$O(\varepsilon^{-1} \log N \text{polylog}(1/\varepsilon))$, with failure probability $\delta = N^{-\Theta(\varepsilon^3)}$, as long as $\varepsilon \geq (\log N)^{-\Omega(1)}$.

By repeating this data structure $O(\varepsilon^{-3})$ times, we obtain a data structure that takes space $O(\varepsilon^{-4} \log N)$,
update time $O(\varepsilon^{-3} \log N)$ and query time $O(\varepsilon^{-4} \log N \text{polylog}(1/\varepsilon))$, with failure probability $\delta = N^{-c}$.

Our algorithm has the added property that a successful \mathcal{L} of size $O(1/\varepsilon)$ not only contains all
the true heavy hitters, but also does not contain “false-positives”, in the sense that each $x \in \mathcal{L}$
satisfies, say, $f(x) \geq \frac{\varepsilon}{4} \|f\|_1$. This property also applies to most previous heavy hitters algorithms.

Contributions. To summarize, our main contributions are the following.

1. We give a natural code construction that achieves a probabilistic version of Goal 1.1. Our
code construction leverages recent progress in high-dimensional expanders in order to suc-
cceed with high probability. We hope that our construction and techniques may be used in
the the future to make further progress on Goal 1.1.

4Provided that the output \mathcal{L} of the list-recovery algorithm is not too large, we can use an additional large CMS data
structure to efficiently do point queries on each item $x \in \mathcal{L}$, pruning it down to $O(1/\varepsilon)$.

3
Table 1: Relevant results on ε-heavy hitters in the strict turnstile model where the universe has size N, for $\log N \gg \text{poly}(1/\varepsilon)$. We consider schemes with failure probability $\delta \geq 1/\text{poly}(N)$; see the discussion in Section 1.2 for smaller failure probability where the works marked with \star shine. The \mathcal{O} notation hides $\log \log(N)$ factors and $\log(1/\varepsilon)$ factors. Above, c is a constant independent of N and ε, and γ is any constant larger than 0. Unfortunately, the failure probability for our algorithm is only $N^{-\gamma \text{poly}(\varepsilon)}$, rather that N^{-c} for some constant c. By repeating our algorithm $\text{poly}(1/\varepsilon)$ times we can boost the success probability to N^{-c}. We note that each of Space, Update, Query time for [CM05] (with the dyadic trick) and [LNW18] can be multiplied by ε^c if one replaces the failure probability with N^{-c} and the results from [LNNT16, Theorem 9] remain the same for that larger failure probability.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Space</th>
<th>Update</th>
<th>Query</th>
<th>Failure probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>[CM05]</td>
<td>$O \left(\frac{\log N}{\varepsilon} \right)$</td>
<td>$O(\log N)$</td>
<td>$O(N \log N)$</td>
<td>N^{-c}</td>
</tr>
<tr>
<td>[CM05] ("dyadic trick")</td>
<td>$O \left(\frac{\log^2 N}{\varepsilon} \right)$</td>
<td>$O(\log^2 N)$</td>
<td>$O \left(\frac{\log^2 N}{\varepsilon} \right)$</td>
<td>N^{-c}</td>
</tr>
<tr>
<td>[LNNT16]</td>
<td>$O \left(\frac{\log N}{\varepsilon} \right)$</td>
<td>$O(\log N)$</td>
<td>$O \left(\frac{\log^3 N}{\varepsilon} \right)$</td>
<td>N^{-c}</td>
</tr>
<tr>
<td>[LNW18] \star</td>
<td>$O \left(\frac{\log^2 N}{\varepsilon} \right)$</td>
<td>$O \left(\frac{\varepsilon \log^2 N}{\varepsilon} \right)$</td>
<td>$\frac{1}{\varepsilon} \text{poly}(\log N)$</td>
<td>N^{-c}</td>
</tr>
<tr>
<td>[CN20] \star</td>
<td>$O \left(\frac{\log N}{\varepsilon^c} \right)$</td>
<td>$O(\log N)$</td>
<td>$O \left(\frac{\log N}{\varepsilon^c} \right)$</td>
<td>0</td>
</tr>
<tr>
<td>This work</td>
<td>$O \left(\frac{\log N}{\varepsilon^c} \right)$</td>
<td>$O(\log N)$</td>
<td>$O \left(\frac{\log N}{\varepsilon^c} \right)$</td>
<td>$N^{-\text{poly}(\varepsilon)}$</td>
</tr>
<tr>
<td>This work</td>
<td>$O \left(\frac{\log N}{\varepsilon^c} \right)$</td>
<td>$O(\log N)$</td>
<td>$O \left(\frac{\log N}{\varepsilon^c} \right)$</td>
<td>N^{-c}</td>
</tr>
</tbody>
</table>

2. As an illustration of the utility of our construction—and as a proof-of-concept meant to encourage study of Goal 1.1—we obtain a new data structure for ε-heavy hitters in the strict turnstile model. Our data structure has slightly stronger guarantees than existing constructions for failure probability $1/\text{poly}(N)$ when ε is constant and the universe size N is growing.

1.1 Construction Overview

In this section, we give a brief overview of our probabilistically list-recoverable code. We use this code to solve the ε-heavy-hitters problem following the paradigm described above, by using small heavy-hitters sketches for each symbol of the (randomized) encoding $\mathcal{C}(x)$ of $x \in \mathcal{U}$.

At a high level, we construct our code $\mathcal{C}: \Sigma_0^k \rightarrow \Sigma^\gamma_{\varepsilon^c}$ as follows. We start with some base code $\mathcal{C}_0: \Sigma_0^k \rightarrow \Sigma_0^\gamma$, as well as a bipartite expander graph $G = (R, L, E)$, where $L = [n]$ and $R = [n']$, for some $n' = O(n)$. We will need \mathcal{C}_0 and G to have specific properties, which we will come to below. For $x \in \Sigma_0^k$, we generate the encoding $\mathcal{C}(x)$ as follows. For $j \in [n']$, the encoded symbol $\mathcal{C}(x)_j$ will be gotten as the concatenation of the symbols $\mathcal{C}_0(x)_i$ for $i \in \Gamma_G(j)$, where $\Gamma_G(j)$ denotes the neighbors of j in the graph G. This sort of “aggregation along an expander” technique, introduced in [ABN+92], has become a standard distance amplification technique in error correcting codes. Because of the concatenation, our final alphabet Σ will be $\Sigma = \Sigma_0^{\gamma_{\varepsilon^c}}$.

To perform list recovery, we will start with a small piece of “advice,” and then recover the (hopefully unique) message x consistent with that advice. We will generate our final list \mathcal{L} by iterating over all possible values of the advice. Towards this end, we will choose some coordinate $j \in [n']$ for which \mathcal{L}_j is not erased, and some $\sigma^* \in \mathcal{L}_j$ as our guess for $\mathcal{C}_0(x)_{|\Gamma_G(j)}$ to act as our advice. Given this advice σ^*, we wish to keep propagating information until we obtain enough

5Using the notation of the technical sections below, $\Sigma_0 = F_q, \Sigma = F_q^{m_2}$ for some constant m_2, and $n' = |V_2| = O(n)$. 4

coordinates of C_0 that would allow us to uniquely determine x; this amounts to decoding the code C_0 from erasures.

In the exposition below, we start with a naive attempt to do this propagation, and build up the properties that we will need C_0 and G to satisfy as we refine it. Our construction is depicted in Figure 1.

A naive attempt. Our first attempt (which will not work) is the following. Let $j \in [n']$ be as above, so we assume that we are given as advice the m_2 symbols $C_0(x)|_{\Gamma_G(j)}$, our goal is to recover (a hopefully unique) x given this advice and given the input lists $L_{j'}$ for $j' \in [n']$. Choose some coordinate $j' \in [n']$ such that $\Gamma_G(j) \cap \Gamma_G(j') \neq \emptyset$. As we already know the symbols in the coordinates indexed by $\Gamma_G(j)$, this gives us partial information about $C(x)_{j'}$ in the form of $|\Gamma_G(j) \cap \Gamma_G(j')|$ elements of Σ_0 in known locations. One can hope that this information would be enough to pinpoint a specific entry in the list $L_{j'}$, allowing us to recover all symbols of $C_0(x)$ in the coordinates indexed by $\Gamma_G(j')$, and keep going in the same manner until enough information is propagated.

Clearly, when we have no guarantee on the input lists L_i, this approach fails miserably, as it may be the case that $L_{j'}$ contains numerous elements in $\Sigma_0^{m_2}$ that agree in some of the m_2 locations, and the information coming from our advice for j will not uniquely pin down an element of $L_{j'}$. However, note that for a completely random input list $L_{j'}$, such an attempt would be successful with probability at least $1 - |L_{j'}| / |\Sigma_0|$, and we could set the parameters in such a way that $|L_{j'}| \ll |\Sigma_0|$. That is, in this case it would become reasonably likely that the choice of $\sigma^* \in L_{j'}$ would uniquely pin down an element $\sigma \in L_{j'}$, allowing us to propagate information to another vertex in the graph. The hope is that we could propagate this information throughout the graph, using the fact that G is an expander to guarantee that most vertices will be determined. Of course, the problem with this is that we do not want to assume that the input lists are completely random, but this leads us
Injecting randomness. While we won’t get completely random lists \mathcal{L}_j as we might have wanted for the naive attempt, we can make the input lists randomized via a randomized encoding. More specifically, our base code C_0 will be deterministic, and to apply C we will make use of two permutations: a permutation π_1 acting on the universe \mathcal{U} and a permutation π_2 acting on $[n]$. More formally, given $x \in \Sigma_0^n$, we first apply $\pi_1(x)$ and apply the encoding C_0 to $\pi_1(x)$. Next, we permute the coordinates of the outcome according to π_2. Finally, we aggregate symbols according to G, yielding $C(x) \in \Sigma_0^{n'}$. Roughly speaking, the first permutation—which will be pairwise independent—will make $C_0(x)$ uniformly distributed over the code’s image, even conditioned the value of $C_0(x')$ for some $x' \neq x$. The second permutation will make sure that querying any particular symbol $C_0(x)_j$ symbol will behave like sampling a uniformly random symbol in $C_0(x)$, and even more strongly, combined with π_1 it will behave like a random sampling from a nearly uniform distribution over Σ_0.

Analyzing the permutation-aided construction carefully, we are able to show that indeed, with probability roughly $1 - \eta$ for $\eta \approx \sqrt{|\mathcal{L}_{j'}|}/\sqrt{|\Sigma_0|}$, we can pinpoint a single list element of $\mathcal{L}_{j'}$. One conceptual observation that will help us establish that result is the fact that the distribution of symbols in most codewords of a high-rate code is close to uniform, and indeed we will need the rate of C_0 to be very high (see Section 3.3). We leave the more technical details to Section 5.

Although promising, this approach is still problematic. We start with $m_2 = O(1)$ symbols that we know, and at each iteration the set of revealed coordinates grows by a small constant factor, using the expansion properties of G. As initially our sets are of constant size, we cannot hope for success probability much greater than $1 - \eta$ for the initial propagation steps. A failure probability of η, even if we disregard the need for a problematic union bound over all propagation steps, is far too large for us, and in particular for our application to heavy hitters. The problem described here is common to various expander-based techniques, and in this work we resolve it by choosing G to be a special expander graph that comes from a high-dimensional expander, and by choosing C_0 to be a suitable Tanner code. We discuss these modifications next.

Using high-dimensional expanders to get a good head start. We resolve the issue described above—that we cannot possibly get a good failure probability if we start with only a few known symbols—by using techniques from high-dimensional expanders. Suppose that, starting with only the advice σ^* for m_2 symbols of $C_0(x)$, we could deterministically identify find a large subset $\mathcal{T} \subseteq [n']$ for which we know all symbols of $C_0(x)$ indexed by $\Gamma_G(\mathcal{T})$. This way, concentration bounds can kick in, and hopefully each propagation step would be successful with probability roughly $\eta^{|\mathcal{T}|}$, provided we can get enough independence between query attempts at the same propagation step. We defer the independence issue to the technical sections (this ends up following from the amount of independence we have in our permutations π_1 and π_2), and concentrate on obtaining such a \mathcal{T}.

Recall that we work over the bipartite expander graph $G = (R = [n'], L = [n], E)$. We will construct G', a tripartite extension of G, with an added middle layer M, $|M| = O(n)$, having the following property. Identify each vertex j of R with a subset $\Gamma_G(j) \subset [n]$ of cardinality m_2 in the natural way. Each vertex in M is identified with a subset $S \subset [n]$ of cardinality m_1, for $1 < m_1 < m_2$, such that S is connected to all its m_1 elements on the left, and to all its supersets on the right. More specifically, each vertex j in R will be connected to all $\binom{m_1}{m_2}$ subsets of $\Gamma_G(j)$ in M.
(See Figure 1 for an illustration.)

We will choose the code C_0 to be a Tanner code with respect to the structure of the graph G. That is, as before, we associate the n symbols of a codeword $C_0(x)$ with the left hand vertices L of G, and we define C_0 so that a codeword $C_0(x)$ is a labeling of L so that to following property holds: For every j in an appropriate subset $T \subset R$, the labels on the vertices of $\Gamma_G(j)$ form a codeword in some error correcting code C_{00} of length m_2 with good distance; in particular, given any m_1 symbols of $C_{00}(x')$ for some x', we can recover all of $C_{00}(x)$.

The reason to choose C_0 like this is the following. Say we know that j and j' are in the set T, and that they have a common neighbor in M. This implies that $|\Gamma_G(j) \cap \Gamma_G(j')| \geq m_1$, since there is some set of size m_1 that both of those sets contain. In particular, by our choice of C_{00}, once we know the symbols of $\Gamma_G(j)$, we can deterministically reveal all symbols of $\Gamma_G(j')$ by decoding C_{00}. Then we can continue this process until we recover the symbols in $\Gamma_G(j)$ for all $j \in T$. By counting constraints, it turns out that we can choose T to be large and still have a high-rate code C_0. This gives us our set T so that we can deterministically fill in the symbols of $\Gamma_G(T)$ to use as a head start and increase our success probability.

How do we construct such a tripartite graph, that on the one hand has not too many vertices in R and M (i.e., $R = O(n)$ and $M = O(n)$), but on the other hand has favorable intersection and expansion properties? This is where high-dimensional expanders enter the picture, and indeed the tripartite graph comes from an $(m_2 - 1)$-dimensional simplicial complex (see Section 3.1 for the formal definitions). A similar object was used in [DHK+19] as a double sampler, and in [DDHRZ20] as a multilayer agreement sampler. We note that the construction of [DHK+19] is quite similar to ours, as they also use the symbol-aggregation technique of [ABN+92]; the main difference in the construction is that we use a very specific inner code C_0 that uses the structure of G as part of its parity checks, while the work of [DHK+19] chooses C_0 to be an arbitrary code with good distance.

In our actual construction, the code C_0 is a bit more involved, and its constraints arise both from the special subset T of R and from an additional bipartite expander. Each of the two types of constraints is helpful for a different aspect of our algorithm. Roughly speaking, the constraints that come from $T \subseteq R$ help us as described above (filling in the set $\Gamma_G(T)$ to get a head start). The other constraints are there to ensure that the final code C_0 has good enough distance to allow for the final unique decoding. All in all, we are able to achieve a set T that has size about $|T| \approx \text{poly}(\varepsilon) \cdot n$. We remark that this is the point where we don’t quite get the failure probability that we want, resulting in a sub-optimal dependence on ε for our application to heavy hitters: we want failure probability $\exp(-n)$ (we will choose n logarithmic in N, so this would be $\text{poly}(1/N)$), and we end up with failure probability $\exp(-|T|) = \exp(-\text{poly}(\varepsilon)n)$.

There are plenty of details that are swept under the rug in the description above, including implementation details needed to keep the recovery algorithm linear-time. We give the recovery algorithm in detail in Section 4. We present our list-recovery algorithm in the context of a query algorithm for heavy hitters, since for our analysis we want to focus on the distribution of input lists that arises from the heavy hitters example, and it is easiest to present everything together. In particular, the input lists do not arise simply from the union of ℓ codewords $C(x)$, but (a) may be erased if the corresponding small data structure failed, and (b) may contain extraneous symbols that arise from items $x^{(i)}$ that appear in the stream that are not heavy hitters.
1.2 Related Work

Algorithmic List-Recovery. List-recovery was originally introduced as an avenue towards list-decoding, where the goal is, given a vector $z \in \Sigma^n$, to recover the list L of all messages $x \in \Sigma^k$ so that $C(x)$ is sufficiently close to z in Hamming distance. For example, the celebrated list-decoding algorithm of Guruswami and Sudan for Reed-Solomon codes [GS98] is in fact a list-recovery algorithm. However, the Guruswami-Sudan algorithm stops working at the so-called Johnson bound, which in the context of list-recovery means that the rate k/n of the code can be at most $1/\ell$. Since the Guruswami-Sudan algorithm, there has been a great deal of work, mostly based on algebraic constructions, aimed at surpassing the Johnson bound for list-decoding and list-recovery. In particular, the works [GR08, GW13, Kop15, KRZSW18] show variations of Reed-Solomon codes, like folded RS codes and multiplicity codes, can be efficiently list-decoded and list-recovered beyond the Johnson bound. For list-recovery, these constructions are able to obtain rate $k/n = \Omega(1)$, but unfortunately the size of the lists L returned (and in particular the running time of the algorithm that returns that list) is at least quasipolynomial in ℓ [GR08, KRZSW18], and sometimes exponential in ℓ. Moreover, those constructions naturally have large alphabet sizes, polynomial in n. In order to reduce the alphabet size, constructions using algebraic geometry codes have been used (e.g. [GX12, GX13, GK16]), although these works still have parameters with an exponential dependence on ℓ. Moreover, all of the works mentioned above have polynomial—and not linear—time recovery algorithms. Using expander-based techniques (e.g. that of [AEL95]), these algorithms can be improved to near-linear time in n (e.g., [HRZW19]), but at the cost of increasing the dependence on ℓ to doubly-exponential.

In addition to algebraic constructions, there have also been a few constructions of purely graph-based codes, which are more similar to our constructions. The work of [GI04] gives a linear-time algorithm for list-recovery of graph-based codes, which does even better in the setting of mixture-recovery (similar to the setting that we study here) where the input lists are generated from unions of codewords. That work achieves output list size $|L|$ exactly equal to ℓ, but has rate $O(1/\ell)$ and the alphabet size is exponential in ℓ. The work of [HW18] gives an $O(n)$-time algorithm for list-recovering graph-based codes (the expander codes of [SS96, Zém01], with an appropriate inner code); these can have high rate (close to 1), but unfortunately the dependence on ℓ in other parameters is quadruply-exponential.

The work of Dinur, Harsha, Kaufman, Livni-Navon and Ta-Shma [DHK+19], which directly inspired our work, used double-samplers derived from high-dimensional expanders, combined with an expander-based symbol aggregation technique of [ABN+92] that we also use. The goal of that work was to give an efficient list-decoding algorithm for any code that follows the [ABN+92] construction. This is much more general that what we are aiming to do (since we get to carefully design our code before applying the [ABN+92] construction), and also the goal is different (list-decoding in the worst case, rather than randomized list-recovery). That work is able to get efficient (polynomial-time) algorithms, but when one tries to turn their algorithm into a list-recovery algorithm in the most direct way, the parameters are not close to those in Goal 1.1; in particular, the algorithm is only poly(n)-time, and the dependence on ℓ is again exponential. It is not clear (to us) how to use the approach of [DHK+19] to achieve Goal 1.1.

We also mention a recent work of [DDHRZ20] that suggests an approach for constructing locally testable codes. In particular, as in our construction they also use the underlying graph (an agreement expander coming from a high-dimensional expander) both for symbol manipulation and for defining the parity checks. However, their goal is quite different than ours: they obtain locally
testable codes via lifting a set of “smaller” locally testable codes, extending the natural Tanner tests.

Heavy Hitters. The first work with provable guarantees for the heavy hitters problem was [MG82], which applied to the cash register model where each of the updates $\Delta^{(i)}$ are equal to 1. We work in the more general strict turnstile model described above. For the strict turnstile model, the Count-Min Sketch data structure of [CM05] above already gets good results, and the best current results for the parameter regime we are motivated by (in particular, with failure probability $1/\poly(N)$, and where $\log N \gg \poly(1/\varepsilon)$) are those of [LNNT16] described above. It is known [JST11] that $\Omega(\varepsilon^{-1} \log N)$ words of memory are required for this setting, and thus the space used by these works is optimal.

Two recent works studied heavy hitters in the strict turnstile model when the failure probability is extremely small (or zero). In [LNW18], the authors modify the Count-Min Sketch by looking at different hash functions, and they present a data structure with failure probability δ with space $\tilde{O}(\log(\varepsilon N) (\varepsilon^{-1} + \log(1/\delta)))$, update time $\tilde{O}(\log^2(1/\varepsilon) \log(\varepsilon N) (1 + \varepsilon \log(1/\delta)))$, and query time $\tilde{O}(\varepsilon^{-1} \log^2(1/\varepsilon) \log(\varepsilon N) \log(1/\delta))$. For $\delta = N^{-\varepsilon}$ and $\log N \gg \poly(1/\varepsilon)$, this gives the parameters stated in Table 1. However, when δ is much smaller—for example, $\delta = N^{\Omega(1/\varepsilon)}$—this gives better results that the works previously discussed, and in particular implies a result that is uniform over all sets of heavy hitters by union bounding over the $N^{\Omega(1/\varepsilon)}$ choices for such sets. In [CN20], the authors give a randomized construction of a data structure that also solves the heavy hitters problem uniformly over all streams $x^{(1)}, x^{(2)}, \ldots$ (that is, with error probability zero assuming that the data structure was constructed correctly). This scheme uses space $O(\varepsilon^{-1} \log(N \varepsilon))$, has update time $\tilde{O}(\log^2(1/\varepsilon) \log(\varepsilon N))$, and query time $\varepsilon^{-1} \polylog(N)$.

That work actually provides solutions to several problems, not just heavy hitters, via a construction of list-disjunct matrices.

One can generalize to the general turnstile model, where there is no guarantee that $f(x)$ is positive at each point in the stream, and one can generalize to ℓ_p-heavy hitters, where the goal is to return all x so that $|f(x)| \geq \varepsilon \|f\|_p$. There has been a great deal of work along both of these lines; see [LNNT16] and the references therein. In particular, for ℓ_p heavy hitters in the general turnstile model, the work [LNNT16] gives a data structure with space $O(\varepsilon^{-p} \log N)$, update time $O(\log N)$, and query complexity $\varepsilon^{-p} \polylog(n)$.

We briefly discuss the approach of [LNNT16], in order to illustrate the differences between their approach and ours. While that work inspired the list-recovery approach we take, and they also use error correcting codes and expander graphs, the construction itself is quite different. That work takes the perspective of graph clustering. In more detail, their sketch can output a graph in which each heavy hitter is represented by a well-connected cluster in the graph. They then develop a clustering algorithm that can recover the clusters, and hence the heavy hitters. In order to make the connection to graph clustering, they first encode x with an error correcting code C_0 as we do; but they only need this code to have good distance, as they do not go down the list-recovery route. Then they break $C_0(x)$ up into n' chunks. Before putting the j-th of these chunks into the j-th smaller data structure, they append it with tags $h_j(x)$ and $\{h_{\Gamma(j),i}(x)\}$, where the h_j are hash functions and Γ is the adjacency function for an expander graph G. Thus, the j-th chunk of $C_0(x)$ is essentially connected by edges in G to the other chunks of $C_0(x)$, and in particular the chunks of list-recoverable elements.

6We note that here the guarantee is to return a list L of size $O(1/\varepsilon)$ containing all the true heavy hitters, although in both [LNW18] and [CN20], the list is allowed to contain elements with frequencies $f(x) \ll \varepsilon \|f\|_1$, while most of the heavy-hitters work surveyed above, including ours, does not have such false positives.
$C_0(x)$ form a cluster that can be recovered by a clustering algorithm.

1.3 Motivating Goal 1.1 from Pseudorandomness

In this section, we briefly explain why Goal 1.1—and in particular, getting a good dependence on the parameter ℓ—is of interest in pseudorandomness. There is a tight connection between error correcting codes and fundamental constructions in pseudorandomness, notably the equivalence between (strong) seeded extractors and list-decodable codes [Tre01, TSZ04]. It turns out that list recovery can also play a prominent role in the study of related objects from extractor theory. In *seeded condensers*, first studied in [RR99], our goal is to “improve” the quality of a random source X using few additional random bits. A bit more formally, given a random variable $X \sim \{0, 1\}^n$ with min-entropy k, a condenser $\text{Cond}: \{0, 1\}^n \times \{0, 1\}^d \rightarrow \{0, 1\}^m$ is such that $\text{Cond}(X, U_d)$ has min-entropy k', where we want the entropy rate to improve, namely, $\frac{k'}{m} \gg \frac{k}{n}$, and to maintain a small entropy gap $m - k'$. (For the formal definition, see, e.g., [GUV09].) List recoverable codes in the *errors* model give seeded condensers, and vice versa. More specifically, the input and output entropies k and k' are almost in one-to-one correspondence with the (logarithm of the) output and input list sizes, $\log |L|$ and $\log \ell$ (for the precise statement, see [DMOZ20]). Thus, to get meaningful condensers from list-recoverable codes, the dependence between L and ℓ needs to be good, in all regime of parameters, and in particular handle ℓ that grows arbitrarily with the message length. In fact, the best list-recoverable code in this regime is the (folded) Parvaresh-Vardy code [GUV09], giving $|L| = \ell^{O(1)}$. The connection between condensers and list-recoverable codes was recently utilized in the *computational* setting to construct nearly-optimal pseudorandom generators for polynomial-sized circuits [DMOZ20].

The model of zero-error list recovery, described in Goal 1.1 (when $|L|$ depends nicely on ℓ and ℓ can be arbitrary), has applications to pseudorandomness too. A (strong) disperser is a function $\text{Disp}: \{0, 1\}^n \times \{0, 1\}^d \rightarrow \{0, 1\}^m$ such that for any random variable $X \sim \{0, 1\}^n$ with sufficient min-entropy, the support of $\text{Disp}(X, U_d)$ is large. Such dispersers have found several applications, and are tightly connected to open problems in expander graphs. It is not hard to show, and we do so in Appendix B, that dispersers, in some parameter regime, are equivalent to zero-error list-recoverable codes. We are not aware of this equivalence being stated elsewhere. For completeness, we note that dispersers in another parameter regime give rise to erasure list-decodable codes [BADTS20].

Finally, observe that in order to get good pseudorandomness primitives from list-recoverable codes, efficient recovery is not an issue, and all that is needed is an efficient *encoding*.

1.4 Open Questions and Future Work

In this work we have made progress towards Goal 1.1 by constructing a randomized code that supports, with high probability, linear-time list-recovery from certain lists. This was enough for our application to heavy hitters, but many open questions still remain.

1. **The most obvious open question is to fully attain Goal 1.1.** In addition to furthering our knowledge in algorithmic coding theory, it seems likely that attaining Goal 1.1 (or the te
niques used to do it), would have other applications in algorithm design, as well as in pseudorandomness (as per Section 1.3).

2. While we are able to use techniques from high-dimensional expansion to obtain a failure probability of $N^{-\Omega(\varepsilon^3)}$ (in the setting of ε-heavy hitters), we would like a failure probability of $N^{-\Omega(1)}$. This would yield a heavy hitters scheme for the strict turnstile model that is nearly optimal in all parameters, not just in the dependence on N.

3. In this paper we studied only zero-error list-recovery (or, more accurately, list-recovery from a small fraction of erasures). While this question is interesting and challenging on its own, one can ask about extending our results to list-recovery from errors. In particular, this might lead to improved heavy-hitters schemes in the general turnstile model.

4. We motivated our “probabilistic list-recovery” model by an application to heavy hitters. However, we suspect that there are many other algorithmic applications for such a model and for our construction. As one example, if one could obtain Theorem 1.2 with $|\Sigma| = \tilde{O}(\ell)$ (rather than polynomial in ℓ), then by a construction of Kautz and Singleton [KS64] this would yield optimal constructions of probabilistic group testing matrices with sublinear-time decoding, matching a recent result of [PS20] in a black-box way.

1.5 Organization

In Section 2, we set notation, introduce necessary definitions from error correcting codes and formally introduce the heavy hitters problem, and we state a few claims we will need about the pairwise independent permutations, expander graphs, and concentration bounds.

In Section 3 we describe the code C that we will use. As discussed above, we construct C by aggregating symbols of an inner code C_0, according to a high-dimensional expander. We introduce the tools from high-dimensional expanders that we need in Section 3.1, and then we discuss the code C_0 in Section 3.2. In Section 3.3, we show that C_0 (and indeed, any code with high enough rate) will have the property that for a random x, $C_0(x)$ will have a roughly uniform distribution of symbols, an important property that we will use in the analysis. In Section 3.4, we finally define our code C by aggregating symbols of C_0 according to a high-dimensional expander.

We work out the application to heavy hitters in Section 4. In particular, we describe the data structure and update procedure sketched above (which is similar to that of [LNNT16]) in the beginning of Section 4 and in Section 4.2. We describe the query procedure—which implicitly describes the efficient list-recovery algorithm of the informal Theorem 1.2—in Section 4.3.

In Section 5, we show that our query procedure/list-recovery algorithm is actually correct, given input lists that are generated by a heavy hitters instance. In particular, the informal Theorem 1.2 on list-recovery follows from this analysis when the frequency vector f is exactly ℓ-sparse with $f(x) \in \{0, 1\}$, and Theorem 1.3 about the more general heavy hitters problem follows from Theorem 5.11, our main result in Section 5.

2 Preliminaries

For a positive integer n, we denote by $[n]$ the set $\{1, \ldots, n\}$. The density of a set $B \subseteq A$ is $\rho(B) = \frac{|B|}{|A|}$. We use base 2 for logarithms unless stated otherwise. The statistical distance between two
random variables X and Y over the same domain Ω is defined as

$$|X - Y| = \max_{A \subseteq \Omega} (\Pr[X \in A] - \Pr[Y \in A]).$$

If $|X - Y| \leq \varepsilon$ we say that X is ε-close to Y and denote it by $X \approx_\varepsilon Y$. We denote by U_n the random variable distributed uniformly over \{0, 1\}n. For a set A, we denote by U_A the random variable distributed uniformly over the elements of A.

For a vector $f \in \mathbb{R}^n$, we let $\|f\|_p$ to be its induced ℓ_p norm, i.e., $\|f\|_p = (\sum_{i \in [n]} |f[i]|^p)^{1/p}$, and $\|f\|_\infty = \max_{i \in [n]} |f[i]|$. We let $\|f\|_0$ be the support size of f, i.e., $|\{i \in [n] : f[i] \neq 0\}|$. We will often identify f with the function $f : [n] \to \mathbb{R}$ in the natural way (where $[n]$ can be replaced by an arbitrary domain).

For a bipartite graph $G = (R, L, E)$ and $v \in R$, we denote by $\Gamma_G(v)$ the set of vertices in L that are adjacent to v. For a set $A \subseteq R$, we denote $\Gamma_G(A) = \bigcup_{v \in A} \Gamma_G(v)$. We sometimes treat $\Gamma_G(v)$ as a vector, and then we require some fixed ordering of E. As it will be clear from context, we also treat $\Gamma_G(\cdot)$ as the right-neighborhood function, namely mapping $\Gamma_G(u)$ for $u \in L$ to the its neighbors in R.

2.1 Error Correcting Codes

A linear code C of message length k and block length n over \mathbb{F}_q is a linear subspace of \mathbb{F}_q^n of dimension k. We will often identify a linear code with its encoding function, $C : \mathbb{F}_q^k \to \mathbb{F}_q^n$, and often identify a codeword $c \in C$ with a function $c : [n] \to \mathbb{F}_q$ in the natural way. The rate of C is $r = \frac{k}{n}$, and its distance is

$$d = \min_{x, y \in C, x \neq y} \Delta(x, y) = \min_{x \in C, x \neq 0} \Delta(x, 0),$$

for Δ being the Hamming distance (the latter equality only holds when C is linear). The code’s relative distance is $\delta = \frac{d}{n}$.

A code is uniquely decodable from ε erasures (or, εn fraction of erasures) if given $x \in (\mathbb{F}_q \cup \{\bot\})^n$ with at most ε coordinates $i \in [n]$ in which $x[i] = \bot$, there is at most a single $c \in C$ such that $x[i] = c[i]$ whenever $x[i] \neq \bot$. The Reed-Solomon code over \mathbb{F}_q of block length $n \leq q$ and dimension k is the subspace of all degree-$(k - 1)$ univariate polynomials over \mathbb{F}_q. The Reed-Solomon code has distance $d_{RS} = n - k + 1$, and as any code, is uniquely decodable from $d_{RS} - 1$ erasures.

We will make use of Tanner codes [Tan81]. Given a biregular bipartite graph $G = (R, L = [n], E)$ with right-degree D, and an inner code $C_0 \subseteq \Sigma^D$, we define the corresponding tanner code by

$$C = \{ c \in \Sigma^n : \forall r \in R, c|_{\Gamma_G(r)} \in C_0 \},$$

where we choose an ordering of the edges at each vertex of R. Note that C is linear if C_0 is a linear code.

As discussed above, Our work is inspired by the problem of list recovery from erasures. Formally, a code $C \subseteq \Sigma^n$ is (γ, ℓ, L) list recoverable from erasures if for every $S_1, \ldots, S_n \subseteq \Sigma$ such that $|S_i| \leq \ell$ for at least $(1 - \gamma)n$ of the i-s and $S_i = \Sigma$ for the remaining, there are at most L codewords $c \in C$ so that $c \in S_1 \times \ldots \times S_n$.

12
2.2 The Heavy Hitters Problem

In this work we consider the ε-heavy hitters problem, in the ℓ_1 norm. Set some threshold parameter $\varepsilon > 0$, and a universe \mathcal{U} of size N. We see a stream of updates $(x^{(i)}, \Delta^{(i)}) \in \mathcal{U} \times \mathbb{R}$ for $i = 1, \ldots, m$, and we want to maintain $f \in \mathbb{R}^N$ for $f(x) = \sum_{i \in [m]} \Delta^{(i)} 1_{x^{(i)} = x}$ in a way that supports updates and one allowed query, as follows.

Update Given $x \in \mathcal{U}$ and $\Delta \in \mathbb{R}$ with finite precision, update $f(x) \leftarrow f(x) + \Delta$.

ε-HH Query Return a list of all ε-heavy hitters: All $x \in \mathcal{U}$ that satisfy $|f(x)| \geq \varepsilon \|f\|_1$. Note that there are at most $1/\varepsilon$ such elements.

We may also require our data structure to support a 1-query. I.e., returning an estimation of $f(x)$ given any $x \in \mathcal{U}$. We work in the strict turnstile model, meaning that each update Δ may be an arbitrary number, but we are promised that $f(x) \geq 0$ for all $x \in \mathcal{U}$ at every step of the stream.

As in previous works, we work in the RAM model. Each machine word can store integers up to $\max \{N, \|f\|_1\}$. Standard word operations take constant time. We count space in terms of the number of words stored, and time in terms of the number of word operations. Moreover, we assume standard field operations take constant time. In particular, we will perform arithmetic in \mathbb{F}_N and \mathbb{F}_q, for $q = q(\varepsilon)$ to be set later on.

We will rely on the following sketches-based ε-heavy hitters data structures.

Theorem 2.1 (Count Min Sketch, [CM05]). For any $\varepsilon, \delta > 0$ and positive integer N, there exists an algorithm that maintains $f \in \mathbb{R}^N$ in the strict turnstile model and supports the following procedures using space $O(\frac{1}{\varepsilon} \log \frac{1}{\delta})$.

- An update, which is done in time $O(\log \frac{1}{\delta})$.
- A 1-query, which is done in time $O(\log \frac{1}{\delta})$ with accuracy ε and failure probability δ. More specifically, given $x \in [N]$, the 1-query procedure outputs $\hat{f}(x)$ such that $\hat{f}(x) \geq f(x)$ (with probability 1), and with probability at least $1 - \delta$ it holds that $\hat{f}(x) \leq f(x) + \frac{\varepsilon}{\delta} \|f\|_1$.

Outputting the ε-heavy hitters using Theorem 2.1 would take $O(N \log \frac{1}{\delta})$ time, and one should think of $\delta = \frac{1}{\text{poly}(N)}$. A significantly better running time was achieved by Cormode and Muthukrishnan using the “dyadic trick”.

Theorem 2.2 (Count Min Sketch with the dyadic trick, [CM05]). For any $\varepsilon, \delta > 0$ where $\varepsilon \geq \delta$ and $\delta \leq \frac{1}{\log N}$, and positive integer N, there exists an algorithm that maintains $f \in \mathbb{R}^N$ in the strict turnstile model and supports the following procedures using space $O(\frac{1}{\varepsilon} \log \frac{1}{\delta} \cdot \log N)$.

- An update, which is done in time $O(\log \frac{1}{\delta} \cdot \log N)$.
- An ε-HH query, which is done in time $O(\frac{1}{\varepsilon} \log \frac{1}{\delta} \cdot \log N)$ with failure probability δ. More specifically, the query procedure outputs a list $\mathcal{L} \subseteq [N]$ such that $\{x \in [N] : |f(x)| \geq \varepsilon \|f\|_1\} \subseteq \mathcal{L}$ (with probability 1), and with probability at least $1 - \delta$ it holds that $\mathcal{L} \subseteq \{x \in [N] : |f(x)| \geq \frac{\varepsilon}{\delta} \|f\|_1\}$. That is, \mathcal{L} always contains all ε-heavy hitters and with probability at least $1 - \delta$, it does not contain any elements which are not $\frac{\varepsilon}{\delta}$-heavy hitters.

For general ε and δ, the log $\frac{1}{\delta}$ factors should be replaced with $\log \left(\frac{\log(\varepsilon N)}{\varepsilon \delta} \right)$.

13
Larsen et al. succeeded in getting optimal space requirement and update time, and nearly optimal query time. For simplicity, we state their result for $\delta = \frac{1}{\text{poly}(N)}$.

Theorem 2.3 ([LNNT16], Theorem 9). For any $\varepsilon \in (0, 1/2)$, sufficiently large positive integer N, $\delta \in \left(\frac{1}{\text{poly}(N)}, 1/2\right)$, and a constant $\gamma \in (0, 1/2)$, there exists an algorithm that maintains $f \in \mathbb{R}^N$ in the strict turnstile model and supports the following procedures using space $O\left(\frac{1}{\varepsilon} \log N\right)$.

- An update, which is done in time $O(\log N)$.
- An ε-HH query, which is done in time $O\left(\frac{1}{\varepsilon} \log^{1+\gamma} N\right)$ with failure probability δ, with a one-sided error guarantee as in Theorems 2.1 and 2.2.

Finally, note that whenever we state a space requirement for an algorithm, we account for the space needed to initialize and maintain the workspace, as well as the auxiliary space needed to perform update and query procedures.

2.3 Permutations and Pseudorandom Permutations

For a positive integer n, we denote by S_n the set of all permutations over $[n]$.

Definition 2.4 (pseudorandom permutation). We say that a random variable $\pi \sim S_n$ is a k-wise permutation if for any distinct $i_1, \ldots, i_k \in [n]$ it holds that $(\pi(i_1), \ldots, \pi(i_k))$ is the uniform distribution over k-tuples of distinct elements from $[n]$.

For $k = 2$, a simple affine transformations work.

Theorem 2.5. For every prime number n there exists a strongly explicit pairwise permutation π with support size $(n-1)n$. Specifically, given a prime field \mathbb{F}, the set of all permutations $\pi(x) = ax + b$ for $a \in \mathbb{F}^*$ and $b \in \mathbb{F}$ yields a pairwise permutation.

2.4 Expander Graphs

Given an undirected graph G with a diagonal degree matrix D and an adjacency matrix A_G, its transition matrix is given by $A = D^{-1}A_G$, and we denote its second largest eigenvalue by $\lambda(G)$. In Section 3.1 we generalize this notion to weighted bipartite graphs. We will make use of Tanner’s inequality, relating vertex expansion and spectral expansion.

Theorem 2.6 ([Tan84]). Let $G = (V, E)$ be an undirected regular graph with $\lambda(G) \leq \lambda$. Then, for every $A \subseteq V$ we have

$$|\Gamma_G(A)| \geq \frac{1}{\rho(A) + (1 - \rho(A))\lambda^2} \cdot |A|.$$

We will need the following bipartite expanders.

Lemma 2.7. For any positive integers N and $M \leq N$ there exists a biregular bipartite graph $G = ([N], [M], E)$ with left-degree $D = \Theta(\log N/M)$ such that the following holds. There exists a universal constant $c > 0$ such that for every set $A \subseteq [N]$ satisfying $K \leq c \cdot \frac{M}{\log(N/M)}$, it holds that $|\Gamma_G(A)| \geq \frac{D}{4}|A|$.

Moreover, a uniformly random biregular bipartite graph with the parameters N, M and D as above satisfy that property with probability at least $1 - 2^{-\Omega(M)}$. Such a random graph can be sampled in time $O(ND)$.
Proof (sketch): A vertex expansion of D_4 readily follows from good spectral expansion (e.g., by Tanner’s inequality for bipartite graphs we will soon state), and a random bipartite expander is a good spectral expander with overwhelming probability (see, e.g., [BDH18]). A direct, vertex expansion result, can be found in [SS96]. We note that an even better vertex expansion is possible using lossless expanders, but it will not be crucial for our application. Lastly, sampling a uniformly random biregular bipartite graph can be done via the configuration model in linear time.

2.5 Auxiliary Claims

A series of random variables $X_1, \ldots, X_n \sim \{0, 1\}$ are k-wise independent if for any distinct $i_1, \ldots, i_k \in [n]$ it holds that $E[X_{i_1} \cdot \ldots \cdot X_{i_k}] = E[X_{i_1}] \cdot \ldots \cdot E[X_{i_k}]$. Good tail bounds for bounded-independence are known.

Theorem 2.8 ([SSS95]). Let $X_1, \ldots, X_n \sim \{0, 1\}$ with $\mu = \frac{1}{n} \sum_{i \in [n]} E[X_i]$. Let $\delta \geq 1$, and let k be a positive integer satisfying $k \leq \frac{\delta \mu e^{-1/3} n}{3}$. Then, if the random variables are k-wise independent, it holds that

$$\Pr \left[\left| \frac{1}{n} \sum_{i \in [n]} X_i - \mu \right| \geq \delta \mu \right] \leq e^{-k/2}.$$

The above theorem can be extended to the case in which the random variables are negatively correlated. We will need the following extension of negative dependence (studied, e.g., in [PS97, IK10] for the completely independent case).

Theorem 2.9. Let $X_1, \ldots, X_n \sim \{0, 1\}$ be such that for every $i \in [n]$, $E[X_i] \leq \mu$, and moreover, k is an even integer such that for any distinct $i_1, \ldots, i_{k'} \in [n]$ where $k' \leq k$ it holds that

$$E \left[\prod_{j \in [k']} X_{i_j} \right] \leq \mu^{k'}.$$

Then, for any $\delta \geq 1$,

$$\Pr \left[\left| \frac{1}{n} \sum_{i \in [n]} X_i - \mu \right| \geq \delta \mu \right] \leq e^{-k/2},$$

assuming $k \leq \frac{\delta \mu e^{-1/3} n}{3}$.

Claim 2.10. Let A and E be any two events such that $\Pr[E] \geq 1 - \varepsilon$ for some $0 < \varepsilon < 1$. Then, $|\Pr[A|E] - \Pr[A]| \leq \varepsilon$.

We give the easy proof in Appendix A.1.
3 The Randomized Encoding Procedure

The construction of \(\mathcal{C} \), outlined in Section 1, will require quite a few primitives. The next subsection discusses bipartite graphs coming from high-dimensional expanders, culminating in Theorem 3.6 that described the graphs \(G \) and \(G_{\text{mid}} \) we will use. For the reader’s convenience, we include in Table 2 a table of parameters that we will set throughout the construction.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Role</th>
<th>Setting/notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varepsilon)</td>
<td>The parameter for (\varepsilon)-heavy hitters</td>
<td></td>
</tr>
<tr>
<td>(\delta)</td>
<td>The failure probability for list-recovery/heavy-hitters</td>
<td></td>
</tr>
<tr>
<td>(N)</td>
<td>The size of the universe (\mathcal{U}) in heavy hitters</td>
<td>(n = \Theta(\log \frac{1}{\varepsilon} N))</td>
</tr>
<tr>
<td>(n)</td>
<td>The length of the code (C_0)</td>
<td>(k = \Theta(n))</td>
</tr>
<tr>
<td>(k)</td>
<td>The length of the message encoded by (C_0)</td>
<td>(q^k = N), and we will set (q = \text{poly}(1/\varepsilon))</td>
</tr>
<tr>
<td>(q)</td>
<td>The size of the field we work over</td>
<td></td>
</tr>
<tr>
<td>(</td>
<td>V_1</td>
<td>)</td>
</tr>
<tr>
<td>(</td>
<td>V_2</td>
<td>)</td>
</tr>
<tr>
<td>(m_2)</td>
<td>The size of the sets (T \in V_2)</td>
<td>(m_2 = 8)</td>
</tr>
<tr>
<td>(\Sigma)</td>
<td>The size of the sets (T \in V_2)</td>
<td>(\Sigma = \mathbb{F}_q^{m_2})</td>
</tr>
<tr>
<td>(\alpha, \alpha', \alpha'')</td>
<td>The rate of the codes (C_0, C_0',) and (C_0'') are at least (1 - \alpha, 1 - \alpha'), and (1 - \alpha''), respectively.</td>
<td>(\alpha = \alpha' + \alpha''), and all three are (\Theta \left(\frac{\log q}{q} \right))</td>
</tr>
<tr>
<td>(\tau)</td>
<td>The distance of (C_0'') (and hence a bound on the distance of (C_0))</td>
<td>(\tau = \Theta(1/q))</td>
</tr>
<tr>
<td>(\beta)</td>
<td>We have (</td>
<td>V_2</td>
</tr>
</tbody>
</table>

Table 2: A summary of the notation used in the construction

3.1 HDXs-Based Bipartite Expanders

Before giving Theorem 3.6, we need additional preliminaries. A \(d \)-dimensional simplicial complex \(X \) is a family of sets of some ground set \([n]\) that is downwards closed to containment, each of cardinality at most \(d + 1 \). For each integer \(i \geq 0 \) we denote by \(X(i) \) the set of \(i \)-dimensional faces, which are the sets of cardinality \(i + 1 \) in \(X \). A complex is pure if every \(i \)-dimensional face is a subset of some \(d \)-dimensional face.

Let \(X \) be a pure \(d \)-dimensional complex. Given a probability distribution \(D_d \) on \(X(d) \), we extend it to a distribution \(D \) over sequences \(s_0 \subset s_1 \subset \ldots \subset s_d \) for \(s_i \in X(i) \) in the natural way: Choose \(s_d \sim D_d \), and repeatedly choose \(s_{i-1} \subset s_i \) by removing a uniformly random element from \(s_i \). We let \(D_i \) be the distribution induced this way on \(X(i) \). For each \(i \) we can consider the space of functions \(f : X(i) \rightarrow \mathbb{R} \), which together with the inner product \(\langle f, g \rangle_i = \mathbb{E}_{s \sim D_i}[f(s)g(s)] \) form the inner product space \(L^2(X(i)) \).
Fix $b < a \leq d$. Let $G_{a,b} = (R, L, E)$ be the weighted bipartite graph with $R = X(a)$, $L = X(b)$,
$$E = \{(s, t) \in R \times L : t \subset s\},$$
and the weight on an edge (s, t) is $\Pr[D_a = s \land D_b = t]$. Let $M_{a,b} : L^2(X(a)) \to L^2(X(b))$ be the bipartite adjacency operator defined by
$$(M_{a,b}f)(t) = \sum_{s \in X(a)} \Pr[D_a = s \mid D_b = t] \cdot f(s)$$
for every $t \in X(b)$. We denote by $\lambda(G_{a,b})$ the spectral norm of $M_{a,b}$ when restricted to $\{1\}^\perp$, the orthogonal complement of the constant functions. Namely,
$$\lambda(G_{a,b}) = \sup_{f, g \perp 1} \frac{(M_{a,b}f, g)_{b}}{\|f\| \cdot \|g\|}.$$

We can further define the two-step lower walk as follows. Given $s \in X(a)$, we choose $s' \in X(a)$ by first choosing $t \in X(b)$ given that $t \subset s$ and then choose s' given that $t \subset s'$. We denote the corresponding operator by $D_{a,b}$, and one can see that $D_{a,b} = M_{a,b}^\dagger M_{a,b}$, where $M_{a,b}^\dagger : L^2(X(b)) \to L^2(X(a))$ is the disjoint operator with respect to the inner products defined by D_a and D_b on $X(a)$ and $X(b)$, i.e., the unique operator for which
$$(f, M_{a,b}g)_a = (M_{a,b}^\dagger f, g)_b$$
for all $f : X(a) \to \mathbb{R}$ and $g : X(b) \to \mathbb{R}$. Denoting $\lambda(D_{a,b})$ as the second largest eigenvalue of the self-adjoint operator $D_{a,b}$, this implies that $\lambda(D_{a,b}) = \lambda(G_{a,b})^2$.

If X is a good enough high-dimensional expander then $G_{a,b}$ has favorable spectral properties. This connection has been studied, e.g., in [KM17, KO20, DK17, DDFH18, DD19] and we now make it formal.

Definition 3.1 (link). Given a d-dimensional simplicial complex X equipped with a distribution D, the link of $s \in X(i)$ is a $d - (i + 1)$-dimensional simplicial complex defined by $X_s = \{t \mid s \subset t \in X\}$. The associated probability measure for the link of s is defined by $\Pr_{D,s}[t] = \Pr[D \cup s \mid s]$.

Definition 3.2 (underlying graph). Given a d-dimensional simplicial complex X equipped with a distribution D, the underlying graph of X is the graph whose vertices are $X(0)$ and edges are $X(1)$, with the restriction of D to the vertices and edges.

Definition 3.3 (spectral expander). A d-dimensional simplicial complex is a λ-HDX if for every $i < d - 1$ and every $s \in X(i)$, the underlying graph of the link X_s is a λ-spectral expander, namely its second normalized eigenvalue in magnitude is bounded by λ.\(^{10}\)

Theorem 3.4 ([DK17]). Let X be a d-dimensional λ-HDX. Then, for any integers $b < a \leq d$ it holds that
$$\lambda(D_{a,b}) \leq \frac{b + 1}{a + 1} + O(b(a - b)\lambda).$$

\(^{10}\)Here we give the definition of a two-sided HDX, also known as a two-sided link expander or a two-sided local spectral expander. If instead we only require the second eigenvalue to be bounded, this gives rise to the weaker, one-sided, notion. Our results also hold using the weaker variant, due to the result in [KO20].
We will use a family of λ-HDXs due to Lubotzky, Samuels and Vishne.

Theorem 3.5 ([LSV05a, LSV05b]). For infinitely many values of n, for every $\lambda > 0$ and every positive integer d, there exists an explicit infinite family of d-dimensional λ-HDXs. Furthermore:

1. The simplicial complex can be computed in time $\text{poly}(n)$.
2. The distributions D_d and D_0 are uniform.
3. For every $i < d$, each $s \in X(i)$ is contained in at most $D = D(d, \lambda)$ d-dimensional faces. Note that for constants λ and d, D is constant as well.

More specifically, given λ, letting q be the smallest prime larger than $\frac{4}{\lambda^2}$, there exists such a λ-HDX for each n satisfying $n = q^{cm}$ for some $c = c(d)$ and any large enough $m \in \mathbb{N}$. Also, $D = q^d$.

Hence, there exists a universal constant $c > 0$ such that for infinitely many values of n and any two integer constants m_2 and $m_1 = m_2 - w$ for some constant $w > 0$ we have an $(m_2 - 1)$-dimensional λ-HDX X with $X(0) = [n]$ for $\lambda = \lambda(m_1 - 1, m_2 - 1) \in (0, 1)$ being the largest constant for which both $\lambda(D_{m_2-1,m_1-1}) \leq 1 - \frac{w}{2m_2}$ and $\lambda(D_{m_2-1,0}) \leq \frac{2}{m_2}$. Equipped with X, we are now ready to give the bipartite graphs we work with.

Theorem 3.6. For any positive integers m_2 and $m_1 = m_2 - w$ (for some positive integer w), and for infinitely many values of n,11 there exist sets $V_1 \subseteq \binom{[n]}{m_1}$ and $V_2 \subseteq \binom{[n]}{m_2}$, a bipartite biregular graph $G = (V_2, [n], E)$ and a weighted bipartite graph $G_{\text{mid}} = (V_2, V_1, E_{\text{mid}}, W)$ such that the following holds:

1. The graphs G and G_{mid} are inclusion graphs. Namely, in G, each $s \in V_2$ is connected to all its m_2 elements, and in G_{mid}, each $s \in V_2$ is connected to all its subsets of cardinality m_1. Thus, G has right-degree m_2 and G_{mid} has right-degree $\binom{m_2}{m_1}$.
2. There exists a constant $C = C(m_2) > 1$ such that $|V_2| = C \cdot n$ and $|V_1| \leq C \cdot n$.
3. It hold that $\lambda(G)^2 \leq \frac{2}{m_2}$.
4. Let $G_2 = (V_2, E_2)$ be the two-step random walk graph of G. Then, $\lambda(G_2)$, the second largest eigenvalue, in magnitude, of G_2, is bounded by $\frac{2}{m_2}$.
5. It holds that $\lambda(G_{\text{mid}})^2 \leq 1 - \frac{w}{2m_2}$. In particular, G_{mid} is connected.
6. Both G and G_{mid} can be computed in time $\text{poly}(n)$.

Proof: We set $V_2 = X(m_2 - 1)$, $V_1 = X(m_1 - 1)$, $G = G_{m_2-1,0}$ and $G_{\text{mid}} = G_{m_2-1,m_1-1}$. The fact that G_{mid} is unweighted (or, all its edge weights are the same), and is biregular, follows from the uniformity of D_0 and D_{m_2-1}. Also, note that the random walk operator of G_2 is self-adjoint, so all its eigenvalues are nonnegative. All the items then follow from the above discussion.

Note that we do not use the full power of HDXs-based containment graphs (say, as in [DHK+19]). In particular, we will not use the spectral properties of G_{mid}, but only that it is connected.

We conclude this section by giving two lemmas regarding the expansion properties of bipartite graphs. The first is a straightforward extension of the expander mixing lemma for bipartite graphs.

11More specifically, for any given n_0 there is such an n satisfying $n_0 \leq n \leq C \cdot n_0$ where $C = C(m_2)$.
Lemma 3.7. Let $G = (R, L, E)$ be a (possible weighted) bipartite graph with $\lambda(G) \leq \lambda$. Then, for any $A \subseteq L$ and $B \subseteq R$ it holds that

$$|\Pr[E(A, B)] - \alpha \cdot \beta| \leq \lambda \sqrt{\alpha \beta (1 - \alpha)(1 - \beta)},$$

where we denote $\alpha = \Pr_{v \sim L}[v \in A]$ and $\beta = \Pr_{v \sim R}[v \in B]$.

The second is an extension of Tanner’s inequality, given in Theorem 2.6.

Lemma 3.8. Let $G = (R = [N], L = [n])$ be a (possible weighted) bipartite graph with $\lambda(G) \leq \lambda$, and denote $C = \frac{N}{n} \geq 1$. Assume that the induced probability distributions on L and R are uniform. Then, for every $S \subseteq R$ it holds that

$$|\Gamma_G(S)| \geq \frac{1}{\rho(S) + \lambda(1 - \rho(S))} \cdot \frac{|S|}{C}.$$

We defer the proof of Lemma 3.8 to Appendix A.2.

3.2 The Base Code C_0

We set $m_2 = 8$ and $m_1 = w = 4$. From here onward, set n to be some integer for which the graphs G, G_{mid} and G_2 from Theorem 3.6 exist. Our code C_0 will be

$$C_0 = C'_0 \cap C''_0,$$

where:

- C'_0 is a linear high rate Tanner code constructed from a subgraph of G.
- C''_0 is a linear high rate Tanner code with noticeable distance.

In what follows, we give the construction of both codes. To this end, we set some parameters. Fix some $\alpha', \alpha'' > 0$ (to be chosen later), and define

$$\beta = \frac{\alpha'}{(m_2 - m_1)C},$$

where C is the constant, depending on m_2, that is guaranteed to us by Theorem 3.6. Also, set $\alpha = \alpha' + \alpha''$.

3.2.1 The code C'_0

For an inner code for C'_0, we use the following code.

Claim 3.9. There exists a constant $q_00 \in \mathbb{N}$ such that q_00 is the smallest prime power larger than m_2 and so that for every $q \geq q_00$ there exists a linear code $C_{00} \subseteq \mathbb{F}_q^{m_2}$ with the following properties.

1. C_{00} has dimension m_1.
2. C_{00} has distance $\delta_{00}m_2 \geq m_2 - m_1 + 1$. Thus, it is uniquely decodable from $m_2 - m_1$ erasures.

Proof: For a prime power $q_00 \geq m_2 + 1$, the standard Reed-Solomon code satisfies these requirements.

19
Fix a prime power \(q \geq m_2 + 1 \) to be determined later. We define the code \(C'_0 \subseteq \mathbb{F}_q^n \) as follows. Let \(T \subseteq V_2 \) be some set of \(\beta|V_2| \) vertices of \(V_2 \). Then,

\[
C'_0(T) = \{ c \in \mathbb{F}_q^n : \forall T' \in T, c|_{T'} \in C_{00} \}.
\]

The rate of \(C'_0(T) \) can be lower bounded in a standard way.

Claim 3.10. \(C'_0(T) \) has rate at least \(1 - \alpha' \).

Proof: The code \(C_0 \) is defined by

\[
|T| \left(1 - \frac{m_1}{m_2} \right) m_2 \leq (m_2 - m_1)\beta|V_2|
\]

linear equations, so its dimension is at least \(n - (m_2 - m_1)\beta Cn \geq (1 - \alpha')n \).

We will not establish distance for \(C'_0 \), but we will require a certain connectivity property from our set \(T \).

Claim 3.11. There exists a subset \(T \subseteq V_2 \) of size \(\beta|V_2| \) and an ordering \(T = \{T_1, \ldots, T_{\beta|V_2|}\} \) such that for every integer \(1 < i \leq \beta|V_2| \), there is a path of length two from \(T_i \) to \(T_j \) in \(G_{\text{mid}} \) for some \(j < i \). The subset and its ordering can be found deterministically in time \(O(n) \).

Proof: Consider the two-step walk graph \(G_2 \). The graph \(G_2 \) is connected, and in particular contains an induced tree \(T \subseteq V_2 \) of size \(\beta|V_2| \). Such a tree can be found deterministically in time \(O(|V_2|) = O(n) \), say by performing depth-first search from an arbitrary starting vertex. The ordering can be determined according to the inorder traversal on the (partial) DFS tree.

Fixing \(T \) to be the set guaranteed by the above claim, from here onward we denote \(C'_0 = C'_0(T) \). The following easy claim will clarify our choice of \(T \).

Claim 3.12. For \(i > j \), let \(T_i, T_j \in T \) such that there exists a path of length two from \(T_i \) to \(T_j \) in \(G_{\text{mid}} \). Let \(c_j : T_j \rightarrow \mathbb{F}_q \) and \(c_i : T_i \rightarrow \mathbb{F}_q \cup \{\perp\} \) be such that \(c_i|_{T_i \cap T_j} = c_j|_{T_i \cap T_j} \). Then, there is at most one possibility to complete \(c_i \) to a codeword of \(C_{00} \), and such a completion can be done in constant time.

The claim follows using Claim 3.9 and the fact that \(|T_i \cap T_j| \geq m_1 \). Applying the above two claims iteratively, we can conclude the following.

Corollary 3.13. Denote \(U = \Gamma_G(T) \subseteq [n] \). Then, for any \(c_1 : T_1 \rightarrow \mathbb{F}_q \in C_{00} \) and \(v \in \mathbb{F}_q^{[n]\setminus U} \) there exists at most one \(c \in \mathbb{F}_q^n \) such that \(c|_{T_1} = c_1, c|_{[n]\setminus U} = v \) and \(c \in C'_0 \).

Moreover, given any \(c_1 : T_1 \rightarrow \mathbb{F}_q \in C_{00} \), the unique \(c|_U \) can be found, if exists, deterministically, in time \(O(n) \).

3.2.2 The Code \(C''_0 \)

For \(C''_0 \), we will use the following code.
Theorem 3.14. There exists a prime power q_{00} such that the following holds for any integer $q \geq q_{00}$, a positive integer n and $\alpha'' > 0$. There exists an explicit linear code $C'_0 \subseteq \mathbb{F}_q^n$ of rate $1 - \alpha''$ and relative distance $\delta'' = c \frac{\log(1/\alpha'')}{\log(1/\alpha''\alpha''')}$ for some universal constant $c > 0$ that is uniquely decodable from up to $\tau = \delta''$ fraction of erasures in time $\text{poly}(\log(1/\alpha'')) \cdot n$.

Moreover, C'_0 is a Tanner code with a Reed-Solomon code as as inner code. Namely, there exists a bipartite graph $G'' = (L = [n], R, E'')$ with right-degree D' such that

$$C'_0 = \{ c \in \mathbb{F}_q^n : \forall v \in R, c|_{\Gamma_G''(v)} \in C_{RS} \}$$

for some suitable Reed-Solomon code $C_{RS} \subseteq \mathbb{F}_q^{D'}$. In particular, we may take q_{00} to be the smallest prime power larger than D'.

Proof: Let $G'' = ([n], R, E'')$ be the regular bipartite graph given in Lemma 2.7, for $|R| = \frac{\alpha''}{\alpha'''} n$. Thus, G'' has left-degree $D = \Theta(\log(1/\alpha''))$ and right-degree $D' = \frac{4D}{\alpha'''}$. Let $C_{RS} \subseteq \mathbb{F}_q^{D'}$ be a Reed-Solomon code of distance $d_{RS} = 5$, and define the Tanner code C'' accordingly. In this setting, C_0'' indeed has dimension at least

$$n - |R| (D' - \dim(C_{RS})) = n - 4|R| = (1 - \alpha'') n.$$

To bound δ'', assume towards a contradiction that there exists a codeword $z \in C''$ of Hamming weight less than $\delta'' n \geq \frac{\alpha'' n}{4 \log(1/\alpha''\alpha''')}$, and let $I \subseteq [n]$ be the set of its nonzero coordinates. Let $U \subseteq \hat{R}$ be the set of constraints that see at least 1 and less than d_{RS} neighbors in I, and let c'' be the constant guaranteed by Lemma 2.7. Thus,

$$D \cdot |I| \geq |U| + d_{RS} |\Gamma_G(I) \setminus U| \geq d_{RS} \cdot \frac{D}{4} |I| - (d_{RS} - 1) |U|,$$

where we have used the expansion property of G''. As

$$(d_{RS} - 1) |U| \geq (d_{RS} - 1) D \cdot |I| - d_{RS} \cdot \frac{3D}{4} |I|,$$

we get

$$|U| \geq D \left(1 - \frac{3}{4} \cdot \frac{d_{RS}}{d_{RS} - 1} \right) \cdot |I| \geq 1,$$

in contradiction of the fact that z was a codeword, and thus should have no violated constraints. We can thus set $c = \frac{c''}{4}$ and q_{00} to be the smallest prime power which greater than D'.

To establish efficient decoding, we follow a very similar reasoning. Given $w \in (\mathbb{F}_q \cup \{ \perp \})^n$, let $E_w \subseteq [n]$ be the set of erased coordinates in w. We perform the following.

1. Initialize $w_0 \leftarrow w$ and $E_0 \leftarrow E_w$.

2. For $i = 0, 1, 2, \ldots$,

 (a) If $E_i = \emptyset$, break and return $\hat{w} = w_i$.

 (b) Let U_i be the set of constraints in R that see at least 1 and less than d_{RS} neighbors in E_i. As $|E_i| \leq \delta'' n$, it holds that $|U_i| \geq \frac{D}{16} |E_i|$, following our calculations above.
(c) As the Reed-Solomon code is uniquely decodable from \(d_{RS} - 1 \) erasures, we can decode each constraint in \(U_i \), and therefore can replace each \(w_i[j] = \perp \) with the correct symbol in \(\mathbb{F}_q \) whenever \(j \in \Gamma_G(U_i) \cap E_i \). Update \(w_i \) to \(w_{i+1} \) accordingly.

(d) Set \(E_{i+1} = E_i \setminus \Gamma_G(U_i) \).

To complete the correctness of the decoding procedure, we need to argue that \(\Gamma_G(U_i) \cap E_i \) is never empty. This is clear, as \(|E_{i+1}| \geq 1 \) whenever \(E_i \) itself is nonempty.

Finally, we want to argue that the above procedure can be performed efficiently. Toward this end, first let us bound the number of times Item 2 above is performed. Each constraint in \(U_i \) is adjacent to at least one vertex of \(E_i \). It holds that
\[
|\Gamma_G(U_i) \cap E_i| \geq \frac{1}{16} |E_i|,
\]
as otherwise we would have a vertex in \(E_i \) with more than \(D \) adjacent vertices. Thus, \(|E_{i+1}| \leq \frac{15}{16} |E_i| \), and so \(O(\log n) \) iterations suffice. At each iteration, we need to compute \(U_i \) and \(\Gamma_G(U_i) \cap E_i \), which takes \(O(D|E_i|) \) time, and perform unique decoding of Reed-Solomon from erasures for \(|\Gamma_G(U_i) \cap E_i| \) times. Unique decoding of Reed-Solomon from erasures amounts to performing a univariate polynomial interpolation over \(\mathbb{F}_q \). Fast, FFT-based, interpolation can be done in \(O(D' \log^2 D' \log \log D') \) field operations (see, e.g., [VZGG13, Section 10.2]). Overall, the decoding running time is bounded by
\[
\sum_i \left(O(D|E_i|) + |\Gamma_G(U_i) \cap E_i| \cdot O(D' \log^2 D' \log \log D') \right) = O(D) \cdot \sum_i |E_i| + O(D' \log^2 D' \log \log D') \cdot |E_0|,
\]
and since \(D'|E_0| \) is bounded from above by a constant, the above is at most
\[
O(\log^2 D' \log \log D') \cdot n = \text{poly}(\log(1/\alpha'')) \cdot n.
\]

3.2.3 Putting \(C_0' \) and \(C_0'' \) Together to Obtain \(C_0 \)

Fix \(q \) to be the a prime power larger than \(q_{00}, q_{00}', i.e., larger than
\[
\max \left\{ m_2 + 1, D' + 1 \right\} = \Theta \left(\frac{\log(1/\alpha'')}{\alpha''} \right),
\]
and instantiate \(C_0' \) and \(C_0'' \) accordingly (we will determine the precise value of \(q \) later on). Thus,
\[
C_0 = C_0' \cap C_0''
\]
is a linear code over \(\mathbb{F}_q^n \) with rate at least
\[
r_0 \geq 1 - \alpha' - \alpha'' = 1 - \alpha.
\]

We can lower-bound its distance by the distance of \(C_0'' \), but we will not use this property directly.
For the choice of parameters, we set
\[\alpha' = \alpha'' = \frac{c_0 \log q}{q}, \]
where \(c_\alpha > 1 \) is a universal constant chosen to satisfy \(q \geq D' + 1 \). Thus,
\[\alpha = \frac{2c_\alpha \log q}{q} \quad \text{and} \quad \tau \geq \frac{c_\tau}{q} \quad (2) \]
for some universal constant \(c_\tau \), where we recall that \(\tau \) is the fraction of erasures that \(C_0'' \) can handle in Theorem 3.14.

To conclude this section, we argue that \(C_0 \) admits nearly-linear time encoding procedure.

Lemma 3.15. There exists a deterministic algorithm that on input \(x \in \mathbb{F}_q^{k(1-r_0)n} \), runs in time \(O(\log q \cdot n) \) and outputs \(C_0(x) \in \mathbb{F}_{q^n}^n \), given access to \(\mathcal{T}, G \) and \(G'' \). The algorithm uses \(\text{poly}(n) \) preprocessing time and \(O(\log q \cdot n) \) auxiliary space.

Proof: The encoding amounts to encoding a Tanner code, imposing the constraints of both \(C'_0 \) and \(C''_0 \). We can think of \(C'_0 \) as a low density LDPC code with coefficients from \(\mathbb{F}_q \) over its edges, by identifying each parity check of Reed-Solomon with a separate vertex. Namely, there exists \(G_{LDPC} = (L = [n], R_{LDPC}, E_{LDPC}) \) such that \(G_{LDPC} \) is right-regular with degree
\[d_{LDPC} = \max \{ D', m_2 \} = D', \]
\[|R| = \alpha \cdot n, \] and each \(e \in E_{LDPC} \) is assigned with \(c(e) \in \mathbb{F}_q \), such that
\[C_0 = \left\{ x \in \mathbb{F}_q^n : \forall u \in R, \sum_{e=(u,v)} c(e) = 0 \right\}. \]

In our case, computing \(G_{LDPC} \) given access to the graphs used in the Tanner codes can be done in time \(O(D' \cdot n) \), as the parity check matrix of the Reed-Solomon code can be easily computed.

Fortunately, Kobayashi and Shibuya gave a linear time encoding algorithm for \(q \)-ary LDPC codes. Formally, their result goes as follows.

Theorem 3.16 ([KS12]). Let \(H \) be an \(m \times n \) parity check matrix of some linear code \(C : \mathbb{F}_q^k \rightarrow \mathbb{F}_q^n \), let \(nz(H) \) be the number of its nonzero entries and let \(rw(H) \) be the maximal number of nonzero entries in each row. Then, there exists an algorithm that runs in time \(O(nz(H) + m \cdot rw(H)) \) and computes \(C(x) \) given \(x \in \mathbb{F}_q^k \). The algorithm uses \(\text{poly}(n) \) preprocessing time and \(O(nz(H) + m \cdot rw(H)) \) auxiliary space.

We note that the preprocessing step in [KS12] involves inversion of square matrices of dimension roughly \(an \), however it suffices to store matrices of dimension roughly \(D' \times an \) in the preprocessing step.

In our case, both \(nz(H) \) and \(m \cdot rw(H) \) amounts to
\[|E_{LDPC}| = D' \cdot |R| = \alpha D' \cdot n = O(\log q \cdot n), \]
and so the lemma follows from Theorem 3.16.

3.3 High-Rate Codes Have Many Balanced Codewords

We argue that C_0, and in fact any high rate code, has many codewords whose empirical distribution is close to uniform (we will prove a slightly stronger claim). Towards this end, we first extend the standard Shannon entropy, as well as the Kullback-Leibler divergence, to arbitrary logarithm bases.

Definition 3.17 (Shannon entropy, KL divergence). Let X be a random variable distributed over some domain Ω, and let $q \geq 2$ be any integer. The q-ary Shannon entropy of X is given by

$$H_q(X) = \sum_{z \in \Omega} \Pr[X = z] \log_q \frac{1}{\Pr[X = z]}.$$

The q-ary KL divergence between two random variables $X, Y \sim \Omega$ is given by

$$D_q(X \| Y) = \sum_{z \in \Omega} \Pr[X = z] \log_q \frac{\Pr[X = z]}{\Pr[Y = z]}.$$

In particular, if $\Omega = \mathbb{F}_q^\ell$ then $D_q(X \| U_\Omega) = \ell - H_q(X)$.

Note that $H_q(X) \in [0, \log_q |\Omega|]$, and $H_q(X) = \log_q |\Omega|$ if and only if X is the uniform distribution over Ω.

Given a codeword $c \in \mathbb{F}_q^n$, we write $H_q(c)$ to denote the q-ary entropy of the corresponding empirical distribution c over \mathbb{F}_q for which $\Pr[c = \sigma] = \Pr_{i \in [n]}[c_i = \sigma]$. Given two codewords $c, c' \in \mathbb{F}_q^n$, we write $H_q(c, c')$ to denote the q-ary entropy of the empirical distribution (c, c') over \mathbb{F}_q^2 for which $\Pr[(c, c') = (\sigma, \sigma')] = \Pr_{i \in [n]}[c_i = \sigma \land c'_i = \sigma']$.

The following claim is a direct corollary of Pinsker’s inequality (see, e.g., [Gra11, Section 6.3]).

Claim 3.18. Let $c, c' \in \mathbb{F}_q^n$ be such that $H_q(c, c') > 2(1 - \gamma)$ for some $\gamma \geq 0$. Then,

$$|(c, c') - U_{\mathbb{F}_q \times \mathbb{F}_q}| \leq \sqrt{\ln q \cdot \gamma}.$$

The same holds for the empirical distribution of a single copy. Namely, if $c \in \mathbb{F}_q^n$ is such that $H_q(c) \geq 1 - \gamma$ then $|c - U_{\mathbb{F}_q^n}| \leq \sqrt{\frac{1}{2} \ln q \cdot \gamma}$.

Next, we show that there are not many (c, c')-s with small $H_q(c, c')$. First, we exhibit a nice property of $H_q(\cdot)$.

Claim 3.19. Let $X \sim F_q$ be any empirical distribution of a vector in \mathbb{F}_q^n. Then, the number of $c \in \mathbb{F}_q^n$ whose empirical distribution is identical to X is at most $q^{nH_q(X)}$.

Similarly, if $X \sim F_q^2$ is any empirical distribution of a pair of vectors, each in \mathbb{F}_q^n, then the number of $(c, c') \in \mathbb{F}_q^n \times \mathbb{F}_q^n$ whose empirical distribution is identical to X is at most $q^{nH_q(X)}$.

For the proof, see [CS04, Section 2].

Claim 3.20. Fix some $0 < \gamma < 1$. The number of vectors $(c, c') \in \mathbb{F}_q^n \times \mathbb{F}_q^n$ satisfying $H_q(c) < 2(1 - \gamma)$ is at most $n^{2d} \cdot q^{(1-\gamma)2n}$.

24
Proof: Fix any empirical distribution $X \sim \mathbb{F}_q^2$ satisfying $H_q(X) < 2(1 - \gamma)$. By Claim 3.19, there are at most $q^{(1-\gamma)2n}$ vectors $c \in \mathbb{F}_q^n$ whose symbols distribute according to X. As there are at most $(n+q-1)^2 \leq n^{2q}$ such distributes overall, we get our desired bound.

We are now ready to prove our main lemma for this section.

Lemma 3.21. Let $\mathcal{C} \subseteq \mathbb{F}_q^n$ be an error correcting code of rate $1 - \alpha$ such that $\frac{n}{\log n} \geq \frac{2q}{\alpha \log q}$. Then,

$$\Pr_{(c, c') \in \mathcal{C} \times \mathcal{C}} \left[|(c, c') - U_{\mathbb{F}_q \times \mathbb{F}_q}| \leq \sqrt{2 \ln \frac{q}{\alpha}} \right] \geq 1 - q^{-\alpha n}.$$

Proof: Let $B \subseteq \mathbb{F}_q^n \times \mathbb{F}_q^n$ be the set of codewords (c, c') for which $|(c, c') - U_{\mathbb{F}_q \times \mathbb{F}_q}| > \sqrt{2 \ln \frac{q}{\alpha}} \triangleq \varepsilon$. By Claim 3.18, each $(c, c') \in B$ satisfies $H_q(c, c') < 2(1 - \gamma)$ for $\gamma = \frac{\varepsilon^2}{\ln q}$. Thus, by Claim 3.20, $|B| \leq n^{2q} \cdot q^{(1-\gamma)2n}$. As $|\mathcal{C} \times \mathcal{C}| = q^{(1-\alpha)2n}$, we get that

$$\Pr_{(c, c') \in \mathcal{C} \times \mathcal{C}} \left[|(c, c') - U_{\mathbb{F}_q \times \mathbb{F}_q}| \geq \varepsilon \right] \leq \frac{n^{2q}q^{(1-\gamma)2n}}{q^{(1-\alpha)2n}} = q^{-\left(\gamma - \frac{q \log q}{n}\right)2n}.$$

As $\gamma - \alpha - \frac{q \log q}{n} \geq \frac{\alpha}{2}$, the lemma follows.

3.4 The Randomized Encoding \mathcal{C}

We fix some universe \mathcal{U} of cardinality N, a heavy hitters threshold $\varepsilon > 0$ and a designated failure probability $\delta > 0$, and write $N = q^k$, where $q = q(\varepsilon)$ is the parameter guaranteed to us from Section 3.2 whose exact value we will soon determine.

We also set some small $\zeta > 0$, and fix an independence parameter

$$t = n^{1-\zeta}.$$

One can think of ζ as an arbitrary small constant, but it will help us setting $\zeta = o(1)$, and will be possible as long as ε is not too small.

Let

$$\mathcal{C}_0 : \mathbb{F}_q^k \rightarrow \mathbb{F}_q^n$$

be the error correcting code from Section 3.2, so $n = \frac{k}{\log q} = O(\log_q N)$. Let $G = (V_2, [n], E)$ be the biregular bipartite graph guaranteed to us by Theorem 3.6, with right-degree m_2, and $V_2 = C \cdot n$. We use the following families of permutations.

- Let $\pi_1 \sim S_N$ be the pairwise permutation family guaranteed to us by Theorem 2.5. We enumerate the support of π_1 as $\pi_1^{(1)}, \ldots, \pi_1^{(\ell_1)}$, where $\log \ell_1 = O(\log N)$.

- Let $\pi_2 \sim S_n$ be a truly uniform permutation. Each $\pi_2 \sim \pi_2$ can be explicitly described using n words, and it takes $O(n)$ time to sample from π_2 (say by an efficient Fisher-Yates shuffle).

Denote $\Sigma = \mathbb{F}_q^{m_2}$. Given $\pi_1 \sim \pi_1$ and $\pi_2 \sim \pi_2$, the encoding

$$\mathcal{C}^{\pi_1, \pi_2} : \mathbb{F}_q^k \rightarrow \Sigma^{\lfloor V_2 \rceil}$$

goes as follows. Given $x \in [N]$,
1. Compute $x_0 = \pi_1(x)$.

2. Compute $y_0 = C_0(x_0) \in \mathbb{F}_q^n$.

3. Permute the coordinates of y_0 according to π_2. Namely, let $y \in \mathbb{F}_q^n$ be such that $y[i] = y_0[\pi_2(i)]$ for every $i \in [n]$.

4. Aggregate the symbols of y according to G. Namely, let $c \in \Sigma^{V_2}$ be the word in which for every $T \in V_2$, $c[T] = y|_{\Gamma_G(T)} \in \mathbb{F}_q^{m_2}$.

5. Output c.

First, note that C has constant rate: $\frac{r_0}{C_0 \cdot m_2}$. We next argue for the efficiency of the encoding.

Lemma 3.22. The encoding of C can be computed in time $\mathcal{O}(\log N)$ and space $\mathcal{O}(\log N)$ with a preprocessing step which takes $\mathcal{O}(\log N)$ time. More specifically, given T, G, and G'', $x \in \mathbb{F}_q^k$, $i_1 \in \{0, 1\}^\ell$, and $\pi_2 \sim \pi_2$, then

$$C_{\pi_1, \pi_2}(x)$$

can be computed in time $\mathcal{O}(|V_2| \cdot m_2)$.

Proof: The preprocessing step includes the following.

- Computing the representation of G as an adjacency list in time $\mathcal{O}(n)$ (see Theorem 3.6).
- Computing the set $T \subseteq V_2$ (see Section 3.2). This takes $\mathcal{O}(n)$ time.
- Computing the representation of G''. We draw G'' uniformly at random, and aggregate the error in the end. By Lemma 2.7, this takes $\mathcal{O}(n)$ time.
- Performing the preprocessing step for the encoding of C_0. By Lemma 3.15 we can do this in time $\mathcal{O}(n)$ too.
- Drawing $i_1 \in \{0, 1\}^\ell$ uniformly at random, as well as $\pi_2 \sim \pi_2$ uniformly at random. By the discussion above, this takes $\mathcal{O}(n)$ time.

Observe, furthermore, that the preprocessing step uses $\mathcal{O}(\log q \cdot n)$ space. Once everything is in place,

- Applying π_1 can be done in constant time,
- Computing $C_0(x)$ can be done in $\mathcal{O}(\log q \cdot n)$ time (see Lemma 3.15),
- Permuting according to π_2 can be done in linear time, and,
- Folding according to G ca be done in time $\mathcal{O}(|V_2| \cdot m_2) = O(n)$.

The lemma is thus concluded.

As stated, our combinatorial objects (graph families, permutation families) exist for infinite value of n. However, with negligible loss in parameters, we can assume from here onward that we can handle any positive integer n by performing standard modifications (and in particular, we will perform field arithmetic even when we do not explicitly say the field’s cardinality is a prime power).
4 The Heavy Hitters Algorithm

Recall that we fixed some universe U of cardinality $N = q^k$, and were given heavy hitters parameters $\varepsilon, \delta > 0$. Also, recall that we set $n = O(\log_q N)$ following the parameters of our code C, and the parameter q is yet to be set, and will be set later on as a function of ε. We will use the primitives defined in Section 3, and the following ingredients from Section 2.2.

- Let CMS be the data structure from Theorem 2.1, instantiated with failure probability $\delta_1 = \frac{\varepsilon}{3|\Sigma|}$, threshold parameter ε, and universe size N. For simplicity, we assume that $\delta \leq |\Sigma|^{-1}$. Thus, by Theorem 2.1, the space requirement is $S_1 = O(\frac{1}{\varepsilon} \log \frac{1}{\delta})$, the update time is $U_1 = O(\log \frac{1}{\delta})$ and the 1-query time is $Q_1 = O(\log \frac{1}{\delta})$. It is instructive to think of $\delta = \frac{1}{\text{poly}(N)}$.

- Let InnerHH be the data structure from Theorem 2.3, instantiated with $\gamma = \frac{1}{4}$, failure probability $\delta_2 = c_\varepsilon \log q$ for some constant c_ε later to be determined, threshold parameter ε, and universe size $|\Sigma|$, recalling that $|\Sigma| = q^m$. Note that $\delta_2 \leq \frac{1}{|\Sigma|}$ for a large enough q. By Theorem 2.2, the space requirement is $S_2 = (\frac{1}{\varepsilon} \log q)$, the update time is $U_2 = O(\log q)$ and the query time is $Q_2 = O(\log^2 q)$.

Remark 1 (Choice of InnerHH). We remark that if we wanted to instantiate InnerHH with, say, a Count-Min Sketch (rather than the construction of [LNNT16] from Theorem 2.3), our construction would still work, with a slightly worse dependence on ε.

4.1 Setting Up the Workspace

We allocate the space needed for a single instance of CMS, CMS, and n instances of InnerHH, HH_T for every $T \in V_2$. This takes space

$$S_1 + |V_2| \cdot S_2 = O\left(\frac{n}{\varepsilon} \cdot \log q + \frac{\log(1/\delta)}{\varepsilon} \right).$$

Next, draw the randomness $r \sim r$ needed for the auxiliary data structure instances of CMS and InnerHH, where the randomness is independent among the instances. We use r_T when we want to explicitly refer to the randomness used by the individual auxiliary sketch HH_T.

Finally, we allocate the space needed to compute C, including the preprocessing step. This includes computing the required graphs and drawing the randomness for the permutations. By Lemma 3.15, this takes $O(\log N)$ space. We will also need another $O(\log N)$ words for auxiliary computations. We record the overall space requirement in the following lemma.

Lemma 4.1 (space requirement). The overall space used is $O\left(\frac{\log(N/\delta)}{\varepsilon} \right)$.

4.2 The Update Procedure

We are given $x \in U$ and $f(x) = \Delta \in \mathbb{R}$.

1. Perform an update to CMS on the input (x, Δ).

2. For every $T \in V_2$, compute $c_T = C_{\pi_1, \pi_2}(x)[T] \in \Sigma$.
3. Upon computing each c_T, perform an update to HH_T on the input (c_T, Δ).

The next lemma readily follows from our discussions above.

Lemma 4.2 (update time). The above update procedure can be performed in time $O\left(\log \frac{N}{\delta^2}\right)$ and can be computed within the workspace’s auxiliary space.

Before we continue, we set a new helpful notation.

The function f_T. For $T \in V_2$ and $\sigma \in \Sigma$, let $f_T(\sigma)$ denote the frequency of σ at HH_T, namely

$$f_T(\sigma) = \sum_{x \in U} f(x) \cdot 1_{C(x)[T]=\sigma}.$$

Note that f_T is a function of π_1 and π_2. We would often want to specify it explicitly, so we denote it by $f_T^{\pi_1, \pi_2}$.

4.3 The Query Procedure

Our query procedure goes as follows. First, we apply the ε-heavy hitters algorithm on each inner ε-HH data structure. Treating the output of each application as an input list, we attempt to list-recover the code C. The list-recovery will start by establishing, for every initial “advice”, a large enough fraction of correct symbols induced by our set T given in Section 3. Then, we will attempt to propagate the information to additional symbols, relying on expansion properties and favorable properties of the input lists induced by the randomness used in the encoding process. Finally, we use the unique decoding algorithm of the code C_0. See Section 1 for a more elaborate high-level discussion of our list-recovery approach to the query procedure.

1. Run the heavy hitters algorithm with threshold parameter ε and error parameter δ_2 on each HH_T to obtain a list $L_{\pi_1, \pi_2, r}^T$ for every $T \in V_2$.

2. Choose an arbitrary $T^* \in T$ that satisfy $|L_{\pi_1, \pi_2, r}^T| \leq \frac{4}{\varepsilon}$, where T is the set given in Section 3. Initialize $L_{\pi_1, \pi_2, r}^{T^*} \leftarrow \emptyset$.

3. For each $\sigma^* \in L_{\pi_1, \pi_2, r}^{T^*}$,

 (a) Set $T_0 \leftarrow T$ and $\hat{y} \in (F_q \cup \{\bot\})^n$. We start with $\hat{y} = \bot^n$.

 (b) Denoting $U = \Gamma_G(T) \subseteq [n]$, use Corollary 3.13 and $\sigma^* : T^* \to F_q$ to find the unique $c|U$ that agrees with C''_0. If none exists, move on to the next σ^*.

 (c) Set $\hat{y}|_U = c|_U$.

 (d) For $i = 0, 1, 2, \ldots$,

 - Let $S_i = \Gamma_G(T_i)$, and note that we already know $\hat{y}[j]$ for every $j \in S_i$.
 - Let $F_i = \Gamma_G(S_i) \setminus T_i$, and set $T_{i+1} \leftarrow T_i$.
 - For every $T \in F_i$ such that $|L_{\pi_1, \pi_2, r}^T| \leq \frac{4}{\varepsilon}$,

 - By definition, there is some $j \in S_i$ such that $j \in \Gamma_G(T)$.

If there is a unique $\sigma \in \mathcal{L}_T^{\pi_1,\pi_2,r}$ such that $\sigma_j = \bar{y}[j]$,\footnote{Abusing notation, by σ_j we actually refer to $\sigma[j']$ for $j' \in [D]$, where j is the j-th element of $\Gamma_G(T)$.} set $\bar{y}|_{\Gamma_G(T)} \leftarrow \sigma$ and add T to \mathcal{T}_{i+1}.

- If $|\Gamma_G(\mathcal{T}_{i+1})| \geq (1 - \tau)n$, for the τ given in Theorem 3.14, break.

(e) Apply π_2^{-1} to the coordinates of \bar{y} to get \hat{y}_0.

(f) Run the unique decoding algorithm of C_0'' on \hat{y}_0 to recover all coordinates of \hat{y}_0. If the unique decoding failed, move on to the next σ^*.

(g) Check that $\hat{y}_0 \in C_0'$. If not, move on to the next σ^*.

(h) We know that $\hat{y}_0 \in C_0$. Add it to $\mathcal{L}_T^{\pi_1,\pi_2,r}$.

4. For every $\hat{y}_0 \in \mathcal{L}_T^{\pi_1,\pi_2,r}$,

(a) Retrieve the \hat{x}_0 satisfying $C_0(\hat{x}_0) = \hat{y}_0$.

(b) Compute $\hat{x} = \pi_1^{-1}(\hat{x}_0)$.

(c) Use CMS to obtain \hat{f}, an estimate of $f(\hat{x})$. If $\hat{f} \geq \varepsilon \|f\|_1$, add \hat{x} to the final heavy hitters list.

Lemma 4.3 (query time). The above query procedure takes \(\frac{\log N}{\varepsilon} \text{polylog}(q) \) time and can be computed within the workspace’s auxiliary space.

Proof: In the preprocessing step G and \mathcal{T} were already computed, as well as the graph G'' needed to decode C_0''. Running the heavy hitters algorithm on all HH_T-s in Item 1 takes $O\left(\frac{1}{\varepsilon} \log^2 q \cdot n\right)$ time. During Item 1, we will store not only \mathcal{L}_T, but also m_2 Red-Black trees, $H_{T,j}$ for $j \in [m_2]$. These data structures will store key-value pairs with keys in \mathbb{F}_q and support search and insert, each in time $O(\log q)$. These will have the property that for $a \in \mathbb{F}_q$ $H_{T,j}.\text{search}(a)$ will return a pointer to $\sigma \in \mathcal{L}_T$ if σ is the unique element of \mathcal{L}_T with $\sigma_j = a$, and otherwise it will return -1.

Note that we can initialize such data structures in time $O(m_2 |\mathcal{L}_T| \log q)$, so the total amount of time required is $O(nm_2 |\mathcal{L}_T| \log q) = O\left(\frac{n \log q}{\varepsilon}\right)$. Moreover, the space required to store both \mathcal{L}_T and the m_2 search trees is $O(q \cdot m_2 + |\mathcal{L}_T|)$ for each T, for a total of $O(n/\varepsilon)$ space.

Moving onto the next step of the algorithm, computing $c_{U,j}$ per σ^*, takes $O(n)$ time, for a total of $O(n/\varepsilon)$ time, recalling that there are at most $O(1/\varepsilon)$ values of σ^* to iterate through.

We now consider each iteration of Item 3d. For each σ^*, we essentially do a breadth-first search on the graph G, continuing along a path only if we add T to \mathcal{T}_{i+1}. At each step in this breadth-first search, we must decide whether or not to add T to \mathcal{T}_{i+1}, and whether to update $\bar{y}|_{\Gamma_G(T)}$. We do this by querying the data structures $H_{T,j}$ described above. In time $O(\log q)$, given a value of j and $\bar{y}[j]$, we query $H_{T,j}.\text{search}(\bar{y}[j])$. If it returns $\sigma \in \mathcal{L}_T$, we add T to \mathcal{T}_{i+1} and update \hat{y} in time $O(1)$. Otherwise we do nothing. Therefore, the total time at each step of the breadth-first search is $O(\log q)$, and so the total running time, per σ^*, is $O(n \log q)$, recalling that there are $O(n)$ vertices and edges in G. Thus, the total running time of Item 3d over all σ^* is $O\left(\frac{n \log q}{\varepsilon}\right)$.

Step Item 3e takes $O(n)$ time, and Item 3f take $\text{poly}(\log q) \cdot n$ time, following Theorem 3.14. To perform Item 3g, we need to check all the constraints of C_0'', which can be done in linear time. Overall, all iterations of Item 3 take $(\text{poly}(\log q) + O(1/\varepsilon)) \cdot n$ time. Retrieving \hat{x}_0 for each \hat{y}_0 takes $O(n \log q)$ time, given the preprocessing step of Lemma 3.15. Applying π_1^{-1} amounts to basic field
arithmetic. As there are at most $\frac{4}{\varepsilon}$ elements in $L^{\pi_1, \pi_2, r}$ (otherwise we can just abort and declare failure), we can maintain an overall running time of $\frac{n \cdot \text{poly}(\log q)}{\varepsilon}$.

For the auxiliary space needed to perform the query procedure, note that we can only store the \hat{y}_0s that end up being in the final heavy hitters list.\(^{13}\) Thus, we only need to store $O(n/\varepsilon)$ words, on top of the auxiliary space needed for the unique decoding algorithm and the auxiliary space needed for the HH\(_T\)-s and CMS, which is already allocated.

\[\text{Claim 5.2.} \quad \text{For every } \delta, \text{ a case is considered a failure, and we will later see that it happens with probability at most } \pi. \]

\[\text{Moreover, for any pairwise disjoint } T \in \mathcal{V}_2, \text{ any fixing of the randomness } \pi_1 \sim \pi_1 \text{ and } \pi_2 \sim \pi_2, \text{ and with probability at least } 1 - \delta_2 \text{ over } r \sim r, \text{ it holds that } T \text{ is good for } (\pi_1, \pi_2, r). \]

\[\text{Proof:} \quad \text{The fixing of } \pi_1 \sim \pi_1 \text{ and } \pi_2 \sim \pi_1 \text{ makes } f_T \text{ a deterministic function of its input. For any } T \in \mathcal{V}_2, \text{ it holds that} \]

\[\begin{align*}
\mathcal{L}^{\pi_1, \pi_2, r}_T \subseteq \{ \sigma \in \Sigma : f_T^{\pi_1, \pi_2}(\sigma) \geq \varepsilon \|f\|_1 \} \\
\text{with probability at least } 1 - \delta_2 \text{ over } r \sim r, \text{ and} \\
\{ \sigma \in \Sigma : f_T^{\pi_1, \pi_2}(\sigma) \geq \varepsilon \|f\|_1 \} \subseteq \mathcal{L}^{\pi_1, \pi_2, r}_T
\end{align*}\]

with probability 1.

For $\sigma \in \Sigma$, we define

\[S_\sigma = \{ \sigma' \in \Sigma \setminus \{\sigma\} : \exists j \in [m_2], \sigma_j' = \sigma_j \}. \quad (3)\]

\[\text{Lemma 5.3.} \quad \text{Fix } T \in \mathcal{V}_2, x \in \mathcal{U}. \text{ Fix } \sigma \in \Sigma. \text{ Then, there exists a constant } c_\varepsilon > 1 \text{ such that} \]

\[\Pr \left[\exists \sigma' \in S_\sigma, f_T^{\pi_1, \pi_2}(\sigma') \geq \frac{\varepsilon}{4} \|f\|_1 \left| C^{\pi_1, \pi_2}(x)[T] = \sigma \right. \right] \leq \frac{c_\varepsilon \log q}{\varepsilon \cdot \sqrt{q}}. \]

Moreover, for any pairwise disjoint $T, T_2, \ldots, T_t \in \mathcal{V}_2$ and an event $F_{\pi_1, \pi_2, T_2, \ldots, T_t}(x)$ whose randomness is over π_1 and $\pi_2^{-1}(T_2), \ldots, \pi_t^{-1}(T_t)$,

\[\Pr \left[\exists \sigma' \in S_\sigma, f_T^{\pi_1, \pi_2}(\sigma') \geq \frac{\varepsilon}{4} \|f\|_1 \left| C^{\pi_1, \pi_2}(x)[T] = \sigma \wedge F_{\pi_1, \pi_2, T_2, \ldots, T_t}(x) \right. \right] \leq \frac{c_\varepsilon \log q}{\varepsilon \cdot \sqrt{q}}. \]

\(^{13}\)As CMS may fail and return \hat{x} which is not a true heavy hitter, the final list might be larger than $\frac{1}{4}$. However, such a case is considered a failure, and we will later see that it happens with probability at most δ.

\[30\]
Proof: For the ease of presentation, we begin with the first statement, although it follows from the second. Then we explain how to prove the second statement.

We first observe that for any $\pi_1 \sim \pi_1$ and $\pi_2 \sim \pi_2$,

$$\max_{\sigma' \in S_q} f_{T}^{\pi_1,\pi_2}(\sigma') \leq \sum_{z \in \mathcal{U}\{x\}} f_{T}^{\pi_1,\pi_2}(z) \cdot 1 \{ \exists j \in T, C^{\pi_1,\pi_2}(x)[j] = C^{\pi_1,\pi_2}(x)[j] \} \quad (4)$$

and we will bound the latter using Markov’s inequality.

Since π_1 is a pairwise pseudorandom permutation, $(\pi_1(x), \pi_1(z)) = U_T \times U_T$. By Lemma 3.21, and using the fact that C_0 is surjective, with probability at least $1 - q^{-\alpha n}$ over $\pi_1 \sim \pi_1$,

$$(C_0(\pi_1(x)), C_0(\pi_1(z))) \triangleq (\epsilon, \epsilon')$$

satisfies

$$|(\epsilon, \epsilon') - U_{F_q \times F_q}| \leq \sqrt{2 \ln q \cdot \alpha} \triangleq \xi.$$ (5)

We will set q in such a way that

$$\frac{n}{\log n} \geq \frac{2q}{\alpha \log q} = \frac{q^2}{c_\alpha \log^2 q},$$

so the premise of Lemma 3.21 indeed holds. Denote this good event (5) by E_{π_1}.

For some $i \in [m_2]$ and any $a \in F_q$. Recall that x is fixed and fix some $z \neq x$. Fixing some $\pi_1 \sim \pi_1$ for which $E_{\pi_1} = 1$, we have that

$$\Pr [C^{\pi_1,\pi_2}(z)[T] = a | C^{\pi_1,\pi_2}(x)[T] = a] =$$

$$\Pr_{\pi_2 \sim \pi_2} \left[C_0(\pi_1(\pi_1(z)))_{\pi_2^{-1}(T_C(T)_{i})} = a \bigg| C_0(\pi_1(x))_{\pi_2^{-1}(T_C(T)_{i})} = a \right] \leq \frac{1}{q} + \xi,$$

as $\pi_2^{-1}(T_C(T)_{i})$ is simply a random element of $[n]$.

Since $\Pr[E_{\pi_1} = 1] \geq 1 - q^{-\alpha n}$, we get that, for any $a \in F_q$,

$$\Pr [C^{\pi_1,\pi_2}(z)[T] = a | C^{\pi_1,\pi_2}(x)[T] = a] \leq \frac{1}{q} + \xi + q^{-\alpha n} \triangleq \xi.$$ (5)

By a union bound over all m_2 values $j \in T$, it follows that

$$\Pr [\exists j \in T, C^{\pi_1,\pi_2}(x)[j] = C^{\pi_1,\pi_2}(x)[j] | C^{\pi_1,\pi_2}(x)[T] = \sigma] \leq m_2 \cdot \xi.$$ (5)

Thus, returning to the quantity Equation (4), using Markov’s inequality and linearity of expectation,

$$\Pr \left[\sum_{z \in \mathcal{U}\{x\}} f_{T}^{\pi_1,\pi_2}(z) \cdot 1 \{ \exists j \in T, C^{\pi_1,\pi_2}(x)[j] = C^{\pi_1,\pi_2}(x)[j] \} > \frac{\epsilon}{4} \| f \|_1 \right]$$

$$\leq \frac{4}{\epsilon \| f \|_1} \cdot \sum_{z \in \mathcal{U}\{x\}} f_{T}^{\pi_1,\pi_2}(z) \cdot \Pr [\exists j \in T, C^{\pi_1,\pi_2}(x)[j] = C^{\pi_1,\pi_2}(x)[j] | C^{\pi_1,\pi_2}(x)[T] = \sigma]$$

$$\leq \frac{4m_2 \xi}{\epsilon}.$$
We conclude from (4) that
\[
\Pr \left[\max_{\sigma' \in S_\sigma} f_{T, \pi_1, \pi_2}(\sigma') \geq \frac{\varepsilon}{4} \| f \|_1 \right] \leq \frac{4m_2 \xi}{\varepsilon}.
\]

Observing that \(\xi \) is dominated by \(\xi_1 = \sqrt{\alpha \cdot 2 \ln q} \) and recalling that \(\alpha = \frac{2c_\varepsilon \log q}{q} \), we conclude that
\[
\Pr \left[\max_{\sigma' \in S_\sigma} f_{T, \pi_1, \pi_2}(\sigma') \geq \frac{\varepsilon}{4} \| f \|_1 \right] \leq \frac{c_\varepsilon \log q}{\varepsilon q}
\]
for some constant \(c_\varepsilon(m_2) > 0 \), and this proves the first statement.

Finally, we move on to discuss the “Moreover” part of the lemma. Once \(\pi_1 \sim \pi_1 \) is fixed, the randomness is only over \(\pi_2 \). Note that for every \(\pi_2 \sim \pi_2, \pi_2^{-1}(T) \) and \(\pi_2^{-1}(T) \) are disjoint, for every \(2 \leq i \leq t \).

Denote
\[
I_{\pi_2} = \pi_2^{-1}(T_2) \cup \ldots \cup \pi_2^{-1}(T_t).
\]
We already established the fact that for most \(\pi_1 \sim \pi_1 \), the empirical distribution \((c, c') \) is close to \(U_{\pi_2} \times U_{\pi_2} \). Fix such a \(\pi_1 \). Now, given any \(\pi_2 \sim \pi_2 \) and an assignment \(I \) to \(C_{\pi_1, \pi_2}(x) \) in \(I_{\pi_2} \), it holds that
\[
\left| \{(c, c') - [(c, c') \{C_{\pi_1, \pi_2}(x) \in I_{\pi_2} \text{ is } I\}] \right| \leq \frac{tm_2}{n},
\]
so altogether
\[
\left| \{(c, c', C_{\pi_1, \pi_2}(x)[I_{\pi_2}]) - (U_{\pi_2}, U_{\pi_2}, C_{\pi_1, \pi_2}(x)[I_{\pi_2}]) \right| \leq \xi_1 + \frac{tm_2}{n},
\]
where the two copies of \(U_{\pi_2} \) are independent. Following the same outline as before, we get that, for any \(i \in T \),
\[
\Pr \left[C_{\pi_1, \pi_2}(x)[T] = a \left| C_{\pi_1, \pi_2}(x)[T] = a \wedge F_{\pi_1, \pi_2, T_2, \ldots, T_t}(x) \right] \leq m_2 \left(\frac{1}{q} + \xi_1 + \frac{tm_2}{n} + q^{-\alpha n} \right). \right.
\]

We will set \(q \) and \(\zeta \) such that
\[
\frac{tm_2}{n} \leq \frac{1}{q},
\]
and in particular, the \(\xi_1 \) term still dominates the bound above. Thus we may continue with the proof as before, and the same bound holds.

Given Lemma 5.3, we can now say something about the probability that a “heavy hitter” \(x \in U \) that yields the symbol \(\sigma \in \Sigma \) at \(T \) is confounded, in the sense that \(\mathcal{L}_{T, \pi_1, \pi_2}^{\pi_1, \pi_2} \) contains some \(\sigma' \in S_\sigma \). (Recall from Equation (3) that \(S_\sigma \) is the set of all \(\sigma' \neq \sigma \) so that \(\sigma_j = \sigma_j' \) for some \(j \in [m_2] \).)

Lemma 5.4. Fix \(x \in U \) such that \(f(x) \geq \varepsilon \| f \|_1 \) and fix \(T \in V_2 \). Let \(\sigma = C_{\pi_1, \pi_2}(x)[T] \). Then, with probability at least \(1 - \eta \) over \(\pi_1 \sim \pi_1, \pi_2 \sim \pi_2, \) and \(r \sim r \), we have \(S_\sigma \cap \mathcal{L}_{T, \pi_1, \pi_2}^{\pi_1, \pi_2} = \emptyset \).

Moreover, the above holds even conditioning on any event \(F_{\pi_1, \pi_2, r, T_2, \ldots, T_t}(x) \) whose randomness is over \(\pi_1, \pi_2^{-1}(T_2), \ldots, \pi_2^{-1}(T_t) \), and \(r_{T_2}, \ldots, r_{T_t} \), where \(T, T_2, \ldots, T_t \in V_2 \) are pairwise disjoint.
Proof: Fix $\sigma \in \Sigma$, and in the rest of the analysis we condition on $C_{\pi_1, \pi_2}(x)[T] = \sigma$ and $F = F_{\pi_1, \pi_2, T_2, \ldots, T_t}(x)$, recalling that r_T is independent of r_{T_2}, \ldots, r_{T_t}. We can write

$$\Pr \left[\exists \sigma' \in S_\sigma \cap L_{T}^{\pi_1, \pi_2, r} \mid C_{\pi_1, \pi_2}(x)[T] = \sigma \land F \right]$$

which is at most

$$\mathbb{E}_{(\pi_1, \pi_2) \sim \pi_1 \times \pi_2, r | C_{\pi_1, \pi_2}(x)[T] = \sigma, F} \left[\Pr_{\tau \sim r_T} \left[\exists \sigma' \in S_\sigma \cap L_{T}^{\pi_1, \pi_2, r} \mid T \text{ is good for } (\pi_1, \pi_2, r) \right] + \Pr_{\tau \sim r_T} \left[T \text{ is not good for } (\pi_1, \pi_2, r) \right] \right]$$

Now, $\Pr[T \text{ is not good for } (\pi_1, \pi_2, r_T)] \leq \delta_2$. For a good T, the event $\sigma' \in L_{T}^{\pi_1, \pi_2, r}$ implies that $f_T(\sigma') \geq \frac{\varepsilon}{4} \|f\|_1$. Thus, Equation (6) is at most

$$\Pr \left[\exists \sigma' \in S_\sigma, f_T^{\pi_1, \pi_2}(\sigma') \geq \frac{\varepsilon}{4} \|f\|_1 \mid C_{\pi_1, \pi_2}(x)[T] = \sigma, F \text{ holds, and } T \text{ is good for } (\pi_1, \pi_2, r) \right] + \delta_2.$$

By Claim 2.10, the above is at most

$$\Pr \left[\exists \sigma' \in S_\sigma, f_T^{\pi_1, \pi_2}(\sigma') \geq \frac{\varepsilon}{4} \|f\|_1 \mid C_{\pi_1, \pi_2}(x)[T] = \sigma \land F \right] + 2\delta_2.$$

Fix the randomness r_{T_2}, \ldots, r_{T_t}, so now $F = F_{\pi_1, \pi_2, T_2, \ldots, T_t}(x)$. By Lemma 5.3, the first term is at most

$$\frac{c_\varepsilon \log q}{\varepsilon \cdot \sqrt{q}}.$$

Overall, as $\delta_2 \leq \frac{c_\varepsilon \log q}{2\varepsilon \cdot \sqrt{q}}$, Equation (7) is at most

$$\frac{c_\varepsilon \log q}{\varepsilon \cdot \sqrt{q}} + 2\delta_2 \leq \frac{2c_\varepsilon \log q}{\varepsilon \cdot \sqrt{q}},$$

and so it is also true averaging over all fixings of r_{T_2}, \ldots, r_{T_t}. This proves the lemma. \hfill \blacksquare

Definition 5.5. Given $\pi_1 \sim \pi_1, \pi_2 \sim \pi_2$ and $r \sim r$, we say $T \in V_2$ is excellent for (π_1, π_2, r) w.r.t. some $x \in \mathcal{U}$ if both conditions hold:

1. $\{\sigma \in \Sigma : f_T^{\pi_1, \pi_2}(\sigma) \geq \varepsilon \|f\|_1\} \subseteq L_{T}^{\pi_1, \pi_2, r} \subseteq \{\sigma \in \Sigma : f_T^{\pi_1, \pi_2}(\sigma) \geq \frac{\varepsilon}{4} \|f\|_1\}$ (i.e., it is good).
2. Let $\sigma = C_{\pi_1, \pi_2}(x)[T]$. Then for all $\sigma' \in S_\sigma$, $f_T^{\pi_1, \pi_2}(\sigma) < \frac{\varepsilon}{4} \|f\|_1$.

We denote by $\text{Exc}(T, x, \pi_1, \pi_2, r) \in \{0, 1\}$ the indicator which is 1 if and only if T is excellent for (π_1, π_2, r) w.r.t. x.

Note that if T is excellent w.r.t. x, then there is no $\sigma' \neq \sigma = C_{\pi_1, \pi_2}(x)[T]$ in $L_{T}^{\pi_1, \pi_2, r}$ such that $\sigma'_j = \sigma_j$ for some $j \in |m_2|$.

Combining Lemma 5.4 and Claim 5.2, we can then conclude the following.
Corollary 5.6. Fix $x \in \mathcal{U}$ such that $f(x) \geq \varepsilon \|f\|_1$ and fix pairwise disjoint $T, T_2, \ldots, T_t \in V_2$. Then,
\[
\Pr[\text{Exc}(T, x, \pi_1, \pi_2, r) = 1] \geq 1 - 2\eta,
\]
and furthermore, for every $b_2, \ldots, b_t \in \{0, 1\}$,
\[
\Pr[\text{Exc}(T, x, \pi_1, \pi_2, r) = 1 \mid (\text{Exc}(T_2, x, \pi_1, \pi_2, r), \ldots, \text{Exc}(T_t, x, \pi_1, \pi_2, r)) = (b_2, \ldots, b_t)] \geq 1 - 2\eta.
\]

Proof: The first statement follows from a simple union bound. To see the second one, we observe that indeed
\[
(\text{Exc}(T_2, x, \pi_1, \pi_2, r), \ldots, \text{Exc}(T_t, x, \pi_1, \pi_2, r)) = (b_2, \ldots, b_t)
\]
is an event whose randomness is over $\pi_1, \pi_2^{-1}(T_2), \ldots, \pi_2^{-1}(T_t)$, and r_{T_2}, \ldots, r_{T_t}. \hfill \Box

5.1 The Propagation Step

We now begin analyzing the propagation over the expander. Observe that as T is large, $|S_0|$ is large too, in particular $|S_0| = \Omega(\beta n)$ (which follows from Lemma 3.7), but we will not use this fact directly.

We proceed to analyzing the propagation iterations.

Lemma 5.7. Fix any positive integer L. With probability at least $1 - 2^L \cdot 2^{-t}$ over $\pi_1 \sim \pi_1, \pi_2 \sim \pi_2$ and $r \sim r$, the following holds. For every integer $0 \leq i \leq L$,
\[
|T_{i+1}| \geq (1 + \mu_i) \cdot |T_i|
\]
for $\mu_i = \frac{1 - \rho(T_i)}{4Cm^2}$.

Proof: At each iteration i we condition on the previous iteration being successful, i.e., $|T_i| \geq (1 + \mu_i)|T_{i-1}|$. By Claim 2.10, we can analyze each iteration and then aggregate the error. Formally, we show by induction that for every i,
\[
\Pr[|T_{i+1}| \geq (1 + \mu_i) |T_i| \mid \forall j < i, |T_{j+1}| \geq (1 + \mu_j) |T_j|] \geq 1 - 2^i \cdot 2^{-t}.
\]

Setting $T_{-1} = \{T^*\}$, the inductive claim is immediate for $i = 0$. Fix some iteration $i \in [L]$, for L to be determined later, and assume the claim holds for iteration $i - 1$. In what follows, condition on the event that $|T_j| \geq (1 + \mu_{j-1}) |T_{j-1}|$ for all $j \leq i$.

For $T \in \mathcal{F}_i = \mathcal{F}_{i+1}^{\pi_1, \pi_2, r}$, let X_T be the indicator random variable (depending on π_1, π_2 and r), that is 1 if and only if T does not get added to $T_{i+1} = T_{i+1}^{\pi_1, \pi_2, r}$. Let $\tilde{F}_i \subseteq \mathcal{F}_i$ be a maximal set so that for all $T, T' \in \tilde{F}_i$ it holds that $\Gamma_G(T) \cap \Gamma_G(T') = \emptyset$. Such a set exists with
\[
|\tilde{F}_i| \geq \frac{1}{Cm^2} \cdot |\mathcal{F}_i|
\]
by considering the algorithm that greedily takes a set $T \in \mathcal{F}_i$ and excludes the at most Cm^2 T'-s that overlap with it (note that Cm^2 is the left-degree of G). By Corollary 5.6, we can use
Theorem 2.9 on the indicators \(\{X_T \}_{T \in \tilde{\mathcal{F}}_i} \), and we know that \(\mathbb{E}_{\pi_1, \pi_2, r}[X_T] \leq 2\eta \leq \frac{1}{2} \) since being excellent implies that we add \(T \) to \(\mathcal{T}_{i+1} \). Applying Theorem 2.9 with \(\delta = 1 \), we get that

\[
\Pr_{\pi_1, \pi_2, r} \left[\sum_{T \in \tilde{\mathcal{F}}_i} X_T > \frac{1}{2} |\tilde{\mathcal{F}}_i| \right] \leq e^{-t/2},
\]

where we used the fact that \(|\tilde{\mathcal{F}}_i| \gg t \). To see this, note that \(|\tilde{\mathcal{F}}_i| \geq |T_0| = \frac{n'}{m_2 - m_1} n = \Omega(n/q) \), \(t = n^{1-\epsilon} \), and we will set the parameters such that \(q \ll n^\epsilon \).

Next, we lower bound the size of \(|\mathcal{F}_i| \) using the expansion properties of \(G_2 \). By Tanner’s inequality (Theorem 2.6), we have

\[
|\Gamma_{G}(S_i)| \geq |T_i| \cdot \frac{1}{\rho(T_i)} + (1 - \rho(T_i)) \cdot \frac{4}{m_2} \geq |T_i| \cdot \left(1 + (1 - \rho(T_i)) \cdot \left(1 - \frac{4}{m_2} \right) \right) \geq |T_i| + \frac{1 - \rho(T_i)}{2} \cdot |T_i|,
\]

where we used the fact that \(m_2 \geq 8 \). Thus,

\[
|\mathcal{F}_i| \geq \frac{1 - \rho(T_i)}{2} \cdot |T_i|,
\]

and when the favorable case happens (that is, when \(\sum_{T \in \tilde{\mathcal{F}}_i} X_T \leq \frac{1}{2} |\tilde{\mathcal{F}}_i| \)),

\[
|T_{i+1}| \geq |T_i| + \frac{1}{2} |\tilde{\mathcal{F}}_i| \geq |T_i| + \frac{1 - \rho(T_i)}{4Cm_2} \cdot |T_i|.
\]

By Claim 2.10, we get that the probability that for every \(j \leq i + 1 \), \(|T_j| \geq (1 + \mu_{j-1}) |T_{j-1}| \) is at least

\[
1 - 2^j \cdot 2^{-t} - 2^{-t} = 1 - 2^{i+1} \cdot 2^{-t},
\]

as desired.

Finally, we wish to bound \(L \), the number of iterations needed (with high probability) until we can unique decode. We remark that the reason to bound \(L \) is only for the analysis of the failure probability; the running time of the algorithm is independent of \(L \), because we touch each vertex at most once. For the claim below, we recall that \(\beta \) is defined in Equation (1) and is defined so that \(|\mathcal{T}| = \beta |V_2| \); and \(\tau \) is defined in Equation (2) and is the fraction of erasures that the code \(C_0'' \) (and hence \(C_0 \)) can handle.

Claim 5.8. With probability at least \(1 - 2^{-t+L} \) over \(\pi_1 \sim \pi_1, \pi_2 \sim \pi_2 \) and \(r \sim r \), the propagation process of the query procedure stops (i.e., breaks the loop in Item 3d) within \(L = O(\tau^{-2} \log(1/\beta)) = \text{poly}(q) \) iterations.

Proof: Let us first find the smallest \(\rho(T_{i+1}) \) for which \(|\Gamma_{G}(T_{i+1})| \geq (1 - \tau)n \). By Tanner’s inequality for bipartite graphs (Lemma 3.8), we know that

\[
\rho(S_{i+1}) \geq \frac{1}{\rho(T_{i+1}) + \sqrt{\frac{2}{m_2} (1 - \rho(T_{i+1}))}} \cdot \rho(T_{i+1}).
\]

35
Thus, we can keep propagating until the first time that
\[\rho(T_{i+1}) \geq \frac{\sqrt{\frac{2}{m_2}}(1 - \tau)}{\tau + \sqrt{\frac{2}{m_2}}(1 - \tau)}. \]

We make use of the following claim:

Claim 5.9. It holds that
\[\frac{\sqrt{\frac{2}{m_2}}(1 - \tau)}{\tau + \sqrt{\frac{2}{m_2}}(1 - \tau)} \leq 1 - \frac{\sqrt{m_2} \cdot \tau^2}{\sqrt{2}}. \]

Proof: For brevity, denote \(a = \sqrt{\frac{m_2}{2}} > 1 \). Rearranging terms, we want to show that
\[\frac{1 - \tau}{(a - 1)\tau + 1} \leq 1 - a\tau^2. \]

The functions \(f(\tau^*) = \frac{1 - \tau^*}{(a - 1)\tau^* + 1} \) and \(g(\tau^*) = 1 - a\tau^* \) are monotonically decreasing for \(\tau \geq 0 \), and \(f(0) = g(0) = 1 \). They then intersect at
\[\tau_0 = \frac{-1 + \sqrt{4a - 3}}{2(a - 1)} \]

and \(f(\tau^*) \leq g(\tau^*) \) for \(\tau^* \in [0, \tau_0] \). \(m_2 \) was chosen such that \(a \leq 3 \), so \(\tau_0 \geq \frac{1}{2} \), and indeed \(\tau \) will be smaller than \(\frac{1}{2} \).

By Lemma 5.7 and the above claim, it is sufficient to choose \(L \) so that
\[\left(1 + \frac{\sqrt{m_2} \cdot \tau^2}{\sqrt{2}} \right)^L \cdot \beta \geq 1 - \frac{\sqrt{m_2} \cdot \tau^2}{\sqrt{2}}, \]

and we get
\[L \leq \frac{4\sqrt{2}Cm_2^2 \log \frac{1}{\beta}}{\sqrt{m_2} \cdot \tau^2}, \]

as desired.

5.2 Determining the Parameters

We now set \(q, \zeta, \) and establish a lower bound on \(\varepsilon \). Collecting all constraints, we need to satisfy the following.

1. There exists a universal constant \(c_q \) such that \(q \geq c_q \).

2. \(\frac{n}{\log n} \geq \frac{q^2}{c_a \log^2 q} \).

3. \(\frac{tm_2}{n} \leq \frac{1}{q'} \), implying that \(q \leq \frac{1}{2}n^\zeta \).
4. $c_q \log q \leq \frac{1}{8}$.

5. $q \ll n^\zeta$.

Fix $q = \max \{c_q, \frac{1}{e^{2.25}}\}$. Item 4 readily holds, possibly after increasing c_q. For Item 2 to hold, we should require $\varepsilon \geq n^{-1/2.25}$. Setting ζ such that $q \leq n^{0.8}$, Items 3 and 5 hold. Combining these two requirements, we get $\varepsilon \geq n^{-16\zeta/45}$. Minimizing ζ, we set

$$\zeta = \frac{45 \log (1/\varepsilon)}{16 \log n}.$$

The probability bound of Claim 5.8 then becomes

$$2^{L-t/2} \leq 2^{-t/4} = 2^{-\Theta(\varepsilon^2.8125n)} \leq N^{-\Theta(\varepsilon^2.9)},$$

(8)

Note further that for $P \triangleq \max \left\{1, \Theta \left(\frac{\log(1/\delta)}{\varepsilon^2.9 \log N}\right)\right\}$,

$$N^{-P\cdot\Theta(\varepsilon^2.9)} \leq \frac{\delta}{3},$$

(9)

and we will use it soon.

5.3 Finishing the Proof

Everything is in place to establish the correctness of our algorithm, followed by a runtime analysis.

Theorem 5.10. With probability at least $1 - N^{-\Theta(\varepsilon^3)}$, the output list $L = L^{\pi_1, \pi_2, r}$ of our query procedure satisfies

$$\{x \in U : f(x) \geq \varepsilon \|f\|_1\} \subseteq L \subseteq \left\{x \in U : f(x) \geq \frac{\varepsilon}{4} \|f\|_1\right\},$$

where the randomness is over $\pi_1 \sim \pi_1$, $\pi_2 \sim \pi_2$, $r \sim r$ and the randomness of the preprocessing step.

Proof: Let $\tilde{\delta} = N^{-c\varepsilon^{2.9}}$ for a small enough constant $c > 0$ implied by Equation (8), and assume without loss of generality that $\delta \leq \tilde{\delta}$. Fix $x \in L$. First, we observe that with probability at least $1 - \tilde{\delta}$, all of the following events occur.

- The preprocessing step was successful (that is, the expander G'' is good enough).
- There exists $T^* \in T$ for which $|L_{T^*}| \leq \frac{4}{\tilde{\delta}}$. The latter follows from the fact that $\delta_2^{|T|} \leq \tilde{\delta}$, which holds assuming q is at least a large enough constant.
- All 1-query calls of CMS were successful. The latter follows from a simple union bound, recalling that $\delta_1 = \frac{\tilde{\delta}}{3|T|}$, where δ_1 is the failure probability of the large CMS instance as in the beginning of Section 4.

We consider two cases.

14The choice of $\varepsilon^{2.25}$ is for concreteness. In fact, one can replace it with $\varepsilon^{2+\gamma}$ for some carefully chosen $\gamma = o(1)$.
15Here too, one can replace $-\frac{1}{2.25}$ with $-\frac{1}{2} - \gamma$ for a small γ.

1. \(x \) is such that \(f(x) \leq \frac{\varepsilon}{3} \|f\|_1 \). Notice that we only add \(x \) to \(\mathcal{L} \) if we applied the update procedure of CMS on \(x \) and the 1-query procedure of CMS declares \(x \) to be a heavy hitter. As the 1-query procedure of CMS is successful, \(\hat{f}(x) < \varepsilon \|f\|_1 \) and we do not add it to our output list.

2. \(x \) is such that \(f(x) \geq \varepsilon \|f\|_1 \). Setting \(\sigma_x = C(x)[T^x] \), we know that \(f_{T^x}(\sigma_x) \geq f(x) \geq \varepsilon \|f\|_1 \).

As \(\|f\|_1 = \|f_{T^*}\|_1 \), by our promise on \(HH_{T^*} \), we get that \(\sigma_x \in \mathcal{L}_{T^*} \). By the analysis above, with probability at least \(1 - \delta \), our propagation step succeeds and we output \(\hat{x} = x \). As CMS succeeds, we add \(x \) to our output list.

The theorem follows from a union bound over at most \(\frac{4}{\varepsilon} \) elements.

To reduce the failure probability to our arbitrary \(\delta > 0 \), we duplicate our workspace \(P \) times, repeat each update \(P \) times and perform the query procedure \(P \) times as well. Note that we do not need to duplicate the CMS instance CMS, but just to reduce its failure probability by a negligible multiplicative factor of \(\frac{1}{P} \). Having \(P \) output lists, we can choose the one with at most \(\frac{4}{\varepsilon} \) elements (conditioned on all CMS 1-query calls being successful). With probability at least \(1 - \frac{2\delta}{3} \), both the CMS calls and the preprocessing step is successful, and by Equation (9) we reach our designated success probability of \(1 - \delta \).

Having established correctness, plugging in \(q \) we can collect Lemmas 4.1 to 4.3 to the following theorem.

Theorem 5.11. There exists a constant \(c > 0 \) such that the following holds for any positive integer \(N \), \(\delta > 0 \) and \(\varepsilon \geq (\log N)^{-0.4} \). Set \(P = \max \left\{ 1, \frac{c\log(1/\delta)}{\varepsilon \log N} \right\} \). Then, there exists an algorithm that maintains \(f \in \mathbb{R}^N \) in the strict turnstile model, after a preprocessing step which takes \(\text{poly}(\log N) + \log(1/\delta) \) time, and supports the following procedures using space \(\mathcal{O}\left(P \cdot \frac{\log N}{\varepsilon} \right) \).

1. An update, which is done in time \(\mathcal{O}\left(P \cdot \log \frac{N}{\delta} \right) \).

2. An \(\varepsilon \)-HH query, which is done in time

\[
\mathcal{O}\left(P \cdot \frac{\text{polylog}(1/\varepsilon)}{\varepsilon} \cdot \log N \right)
\]

with failure probability \(\delta \). More specifically, with probability at least \(1 - \delta \), the query procedure outputs a list \(\mathcal{L} \subseteq [N] \) such that \(|\mathcal{L}| \leq O(1/\varepsilon) \), and for all \(x \in \mathcal{U} \) so that \(f(x) \geq \varepsilon \|f\|_1 \), \(x \in \mathcal{L} \).

In particular, choosing the parameter \(P \), we have the following statements:

1. For \(\delta = N^{-\Theta(\varepsilon^3)} \), the space requirement is \(\mathcal{O}\left(\frac{1}{\varepsilon} \log N \right) \), the update time is \(\mathcal{O}(\log N) \), and the query time is \(\mathcal{O}\left(\frac{\text{polylog}(1/\varepsilon)}{\varepsilon} \log N \right) \).

2. For \(\delta = \frac{1}{\text{poly}(N)} \), the space requirement is \(\mathcal{O}\left(\frac{1}{\varepsilon^3} \log N \right) \), the update time is \(\mathcal{O}(\frac{1}{\varepsilon^3} \log N) \), and the query time is \(\mathcal{O}\left(\frac{1}{\varepsilon^3} \log N \right) \).

Acknowledgements

We would like to thank Jelani Nelson and Amnon Ta-Shma for helpful conversations. We thank Mahdi Cheraghchi and Venkat Guruswami for pointing out relevant related work.
References

40
<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
</table>

A Deferred Proofs

A.1 Proof of Claim 2.10

Proof: It holds that

$$\Pr[A|E] - \Pr[A] = \frac{\Pr[A \land E](1 - \Pr[E])}{\Pr[E]} - \Pr[A \land \neg E].$$

Thus, on the one hand,

$$\frac{\Pr[A \land E](1 - \Pr[E])}{\Pr[E]} - \Pr[A \land \neg E] \leq \frac{\Pr[A \land E](1 - \Pr[E])}{\Pr[E]} \leq 1 - \Pr[E] \leq \epsilon,$$

and on the other hand,

$$\frac{\Pr[A \land E](1 - \Pr[E])}{\Pr[E]} - \Pr[A \land \neg E] \geq -\Pr[A \land \neg E] \geq -\Pr[\neg E] \geq -\epsilon.$$
A.2 Proof of Lemma 3.8

Proof: For brevity, denote \(\rho = \rho(S) \). Let \(M : \mathbb{R}^L \to \mathbb{R}^R \) denote the bipartite adjacency operator, and let \(D \in \mathbb{R}^{N \times N} \) denote the matrix corresponding to the two-step random walk operator \(M^\dagger M \). By our assumption, \(\lambda_2(D) \leq \lambda \). Let \(\{ (\lambda_i, v_i) \}_{i \in [N]} \) be the orthonormal basis of \(D \) with respect to the inner-product defined by \(D_R \). As \(D_R \) is uniform, we will use the standard inner product.

Let \(\chi \) be the characteristic vector of \(S \). There exist \(\alpha_1, \ldots, \alpha_N \) such that \(\chi = \sum_{i \in [N]} \alpha_i v_i \), for \(\alpha_i = \langle \chi, v_i \rangle \). Thus, \(\chi^\dagger M^\dagger M \chi = \sum_{i \in [N]} \alpha_i^2 \lambda_i \). We also know that \(\lambda_1 = 1 \) and \(v_1 = \frac{1}{\sqrt{N}} 1 \) where \(1 \) is the all-ones vector in \(\mathbb{R}^N \). Thus, \(\alpha_1 = \langle \chi, v_1 \rangle = \frac{|S|}{\sqrt{N}} = \sqrt{N} \rho \). We can then write

\[
\chi^\dagger M^\dagger M \chi \leq \alpha_1^2 + \lambda \sum_{i=2}^{N} \alpha_i^2 = \alpha_1^2 + \lambda \left(\langle \chi, \chi \rangle - \alpha_1^2 \right) = N \rho^2 + \lambda \rho N (1 - \rho), \tag{10}
\]

observing that \(\langle \chi, \chi \rangle = |S| = \rho N \).

We now bound \(\chi^\dagger M^\dagger M \chi \) from below. The quantity \(\chi^\dagger M^\dagger M \chi \) measures the weighted sum of paths of length 2 on \(G \) that start and end in \(S \). Namely,

\[
\chi^\dagger M^\dagger M \chi = \sum_{x \in S} \sum_{y \in \Gamma(x)} \sum_{y \in S} M[v, x] M[y, v].
\]

Write \(d_S(v) = \sum_{x \in S} \Pr[D_R = x \mid D_L = v] \) and \(d^\dagger_S(v) = \sum_{x \in S} \Pr[D_L = v \mid D_R = x] \). Thus,

\[
\chi^\dagger M^\dagger M \chi = \sum_{v \in \Gamma(S)} d_S(v) \cdot d^\dagger_S(v).
\]

For sanity check, note that for \(G \) with all the edge weights being identical, \(d_S(v) = \frac{|S \cap \Gamma(v)|}{d} \) and \(d^\dagger_S(v) = \frac{|S \cap \Gamma(v)|}{d} \). By Cauchy-Schwarz,

\[
\chi^\dagger M^\dagger M \chi \geq \frac{1}{|\Gamma(S)|} \left(\sum_{v \in \Gamma(S)} \sqrt{d_S(v) \cdot d^\dagger_S(v)} \right)^2.
\]

As both \(D_R \) and \(D_L \) are uniform, we can write

\[
d_S(v) \cdot d^\dagger_S(v) = \sum_{x \in S} n \cdot W((x, v)) \sum_{y \in S} \sum_{y \in S} N \cdot W((y, v)) = nN \left(\sum_{x \in S \cap \Gamma(v)} W((x, v)) \right)^2,
\]

so

\[
\chi^\dagger M^\dagger M \chi \geq \frac{1}{|\Gamma(S)|} \left(\sum_{v \in \Gamma(S)} \sqrt{nN} \sum_{x \in S \cap \Gamma(v)} W((x, v)) \right)^2 = \frac{nN}{|\Gamma(S)|} \left(\sum_{x \in S} \sum_{i \in [d]} W((x, \Gamma(x, i))) \right)^2.
\]

As \(D_R \) is uniform, for each \(x \in S \) we have \(\sum_{i \in [d]} W((x, \Gamma(x, i))) = \frac{1}{N} \). Thus,

\[
\chi^\dagger M^\dagger M \chi \geq \frac{n|S|^2}{|\Gamma(S)|N} = \frac{\rho^2 nN}{|\Gamma(S)|}, \tag{11}
\]

43
Combining Equations (10) and (11), we get
\[|\Gamma(S)| \geq \frac{\rho^2 n N}{N p^2 + \lambda p N(1 - \rho)} = \frac{\rho^m}{\rho + \lambda(1 - \rho)} = \frac{1}{C \cdot (\rho + \lambda(1 - \rho))} \cdot |S|. \]

\[\blacksquare \]

B Strong Dispersers and Zero-Error List Recovery

For simplicity, we use a slightly different definition of list recovery, in which we bound the expected input lists size.

Definition B.1. We say that a code \(C \subseteq [M]^D \) is \((\ell, L)\) list-recoverable if for every \(S_1, \ldots, S_D \subseteq [M] \) such that \(\frac{1}{D} \sum_{i \in [D]} |S_i| \leq \ell \), there are at most \(L \) codewords \(c \in C \) such that \(c \in S_1 \times \ldots \times S_n \).

Definition B.2 (strong disperser). A function \(\text{Disp}: \{0, 1\}^n \times \{0, 1\}^d \rightarrow \{0, 1\}^m \) is a strong \((k, s)\) disperser if for every \((n, k)\) source \(X \) and an independent uniform \(Y \sim \{0, 1\}^d \) it holds that
\[|\text{Supp}(Y \circ \text{Disp}(X, Y))| > 2^{s+d}. \]

This object is sometimes referred to as a strong \((k, \varepsilon)\) disperser for \(\varepsilon = 1 - 2^{s-m} \).

Denote \(D = 2^d \) and \(M = 2^m \). Given a function \(f: \{0, 1\}^n \times \{0, 1\}^d \rightarrow \{0, 1\}^m \), we denote by \(C_f: \{0, 1\}^n \rightarrow [M]^D \) the encoding
\[C_f(x) = (f(1), \ldots, f(D)), \]
where we identify \(\{0, 1\}^d \) with \([D]\).

Claim B.3. Let \(\text{Disp}: \{0, 1\}^n \times \{0, 1\}^d \rightarrow \{0, 1\}^m \) be some function such that \(C_{\text{Disp}} \subseteq [M]^D \) is \((\ell, L)\) list-recoverable. Then, \(\text{Disp} \) is a strong \((k = \log L, s = \log \ell)\) disperser.

Proof: Assume towards a contradiction that \(\text{Disp} \) is not such a disperser, so there exists an \((n, k)\) source \(X \) for which the support of \(Y \circ \text{Disp}(X, Y) \) is small. In particular,
\[\sum_{i \in [D]} |\text{Supp}(\text{Disp}(X, i))| \leq D \cdot 2^s = D \cdot \ell. \]

Define \(\mathcal{L}_i = \{\text{Disp}(x, i) : x \in \text{Supp}(X)\} \), so \(\sum_{i \in [D]} |\mathcal{L}_i| \leq D \cdot \ell \). By definition, for every \(i \in [D] \) and \(x \in \text{Supp}(X) \) we have that \(C_{\text{Disp}}(x, i) \in \mathcal{L}_i \). By the list-recovery property it means that \(|\text{Supp}(X)| \leq L = 2^k \), in contradiction.

Claim B.4. Let \(\text{Disp}: \{0, 1\}^n \times \{0, 1\}^d \rightarrow \{0, 1\}^m \) be a strong \((k, s)\) disperser. Then, \(C_{\text{Disp}}: \{0, 1\}^n \rightarrow [M]^D \) is \((\ell = 2^s, L = 2^k)\) list-recoverable.

\footnote{We model an \((n, k)\) source \(X \) as a random variable distributed over \(\{0, 1\}^n \) such that for any element \(x \) in its support, \(\Pr[X = x] \leq 2^{-k} \). In particular, this implies that the support of \(X \) is of size larger than \(2^k \).}
Proof: Let $L_1, \ldots, L_D \subseteq [M]$ be such that $\sum_{i \in [D]} |L_i| \leq D \cdot \ell$. Let $T \subseteq [M] \times [D]$ be such that $(z, i) \in T$ if and only if $z \in L_i$. Let

$$L = \{ u \in C_{\text{Disp}} : \forall i \in [D], u_i \in L_i \},$$

and assume towards a contradiction that $|L| \geq L$. The set L is in one-to-one correspondence with the set

$$A = \{ x \in \{0, 1\}^n : \forall i \in [D], \text{Disp}(x, i) \in L_i \}.$$

Let Y be uniform over $[D]$, and let A be uniform over A independently of Y. Thus,

$$\text{Supp} (\text{Disp}(A, Y) \circ Y) \subseteq T,$$

and $T \leq D \cdot \ell$. This contradicts the disperser property,

$$|\text{Supp} (\text{Disp}(A, Y) \circ Y)| > D \cdot 2^s = D \cdot \ell,$$

observing that A is an $(n, \log L)$ source. ■