
High-Probability List-Recovery,
and Applications to Heavy Hitters

Dean Doron*

Department of Computer Science
Ben Gurion University

deand@bgu.edu

Mary Wootters†

Departments of Computer Science
and Electrical Engineering

Stanford University
marykw@stanford.edu

Abstract

An error correcting code C : Σk → Σn is efficiently list-recoverable from input list size `
if for any sets L1, . . . ,Ln ⊆ Σ of size at most `, one can efficiently recover the list L = {x ∈
Σk : ∀j ∈ [n], C(x)j ∈ Lj}. While list-recovery has been well-studied in error correcting codes,
all known constructions with “efficient” algorithms are not efficient in the parameter `. In
this work, motivated by applications in algorithm design and pseudorandomness, we study
list-recovery with the goal of obtaining a good dependence on `. We make a step towards
this goal by obtaining it in the weaker case where we allow a randomized encoding map and a
small failure probability, and where the input lists are derived from unions of codewords. As
an application of our construction, we give a data structure for the heavy hitters problem in
the strict turnstile model that, for some parameter regimes, obtains stronger guarantees than
known constructions.

*The work was done at Stanford, supported by NSF award CCF-1763311.
†Supported by NSF award CCF-1844628 and NSF-BSF award CCF-1814629.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 3 of Report No. 162 (2020)

1 Introduction

Let C : Σk → Σn be an error correcting code. We say that C is (efficiently) list-recoverable1 from list-size
` with output list-size L if, for any lists L1, . . . ,Ln ⊆ Σ with |Li| ≤ ` for all i, there is an (efficient)
algorithm to recover the list

L = {x ∈ Σk : ∀i ∈ [n], C(x)i ∈ Li},

and |L| ≤ L. List recovery has historically been studied in the context of list-decodable codes, where
it has been used as a tool to obtain efficient list-decoding algorithms (see, e.g., [GS98, GR08, GW13,
Kop15, HRZW19]). However, even though efficient list-recovery algorithms have been developed,
all of them have a poor dependence on the parameter `. For example, [HRZW19] presents near-
linear-time (in n) list-recovery algorithms, but the output list L has size doubly-exponential in `.

In this work, we are motivated by the following goal (which we do not fully achieve):

Goal 1.1. For ` ≥ 2, design a family of codes C : Σk → Σn so that:

1. C can be encoded in time O(n);

2. The rate k/n of the code is a constant (independent of n and `);

3. The alphabet size |Σ| is polynomial in ` (and independent of n);

4. The code C can be list-recovered in time O(n · `) (linear in both n and `), with output list size
|L| = O(`).

To the best of our knowledge, this goal is open even if we allow the output list size |L| and the
running time to depend polynomially on `, rather than linearly.

Goal 1.1 is desirable for several reasons. First, it represents a bottleneck in our understanding
of algorithmic coding theory, and it seems likely that achieving it would involve developing new
techniques that would be useful elsewhere. Second, list-recovery with reasonable dependence on `
is related to questions in pseudorandomness, where the the parameter ` is often very large (see our
discussion in Section 1.2). Third, as we explore in this paper, obtaining Goal 1.1 has applications
in algorithm design, in particular to algorithms for heavy hitters.

Probabilistic list-recovery with good dependence on `. In this work, we make progress on
Goal 1.1 by achieving a relaxed version where the encoding map C : Σk → Σn is allowed to be
randomized, and where the input lists are generated from unions of codewords; we must succeed
with high probability over the randomness in C. In particular, our main result implies the follow-
ing theorem.

Theorem 1.2 (informal; weaker than main result). For all ` > 0, there is a randomized encoding map
C : Σk → Σn so that

1. C can be encoded in time O(n);

2. The rate of C, k/n, is a constant independent of ` and n;
1In this paper we focus on zero-error list-recovery, which is the definition given here. Other works focus on the more

general problem of list-recovery from errors, in which C(x)i needs to be in Li only for some fraction of the i-s.

1

3. The alphabet size |Σ| is polynomial in ` (and independent of n);

4. For any list x(1), x(2), . . . , x(`) ∈ Σk, there is an algorithm that runs in time O(n` polylog(`)) that
has the following guarantee. With probability at least 1 − o(1) over the randomness of C, given the
lists Li = {C(x(j))i : j ∈ [`]}, the algorithm returns a list L so that x(i) ∈ L for all i, and so that
|L| = O(`).

This statement is weaker than our main result because in fact our result still holds even if
a random subset of the lists Li in Item 4 are erased, and moreover the result still holds when
some of the lists Li in Item 4 contain some extra “distractor” symbols that occur according to any
sufficiently “nice” distribution. We defer the formal statement of our list-recovery guarantee to
Section 6.

Our code is essentially an expander code with aggregated symbols. That is, we begin with an ex-
pander code C0 : Σk

0 → Σn
0 , as in [SS96], and we aggregate together the symbols as in [ABN+92].

(We discuss this construction in more detail below.) Our recovery algorithm uses ideas from pre-
vious algorithms, propagating information around the underlying expander graph given some
advice. What makes our work different are the facts that (a) we leverage the randomness of C and
a small failure probability, and (b) our underlying expander graph comes from a high-dimensional
expander.2 In particular, using the randomness in C we are able to obtain an algorithm with run-
ning time near-linear in `, and using a high-dimensional expander we are able to boost our success
probability to a level appropriate for an application to heavy hitters, which we discuss next.

Motivation from Heavy Hitters. One of the reasons we are interested in Goal 1.1 is because of
the potential algorithmic applications of such a code. To illustrate this potential, we work out an
application of our construction to the heavy hitters problem. We emphasize that our focus is on
the parameter regime whereN is very large, specifically logN � poly(1/ε). In particular, we are
interested in optimizing the dependence on N , rather than on ε.

The set-up is as follows. We are given a stream of updates (x(i),∆(i)), for x(i) in some universe
U of sizeN , and ∆(i) ∈ R. For allm,x, we assume that f(x) ,

∑
j∈[m] ∆(j) ·1x(j)=x > 0. we think of

f(x) as the “frequency” of item x. The ∆-s are updates: we may add or remove some quantity of
each item x, provided that f(x) never becomes negative. This is called the strict turnstile model. The
goal is to maintain a small data structure (a “sketch”) so that, afterm (efficient) updates (x(i),∆(i)),
we can (efficiently) query the data structure to return a list of ε-heavy hitters. That is, we would like
to recover a list L of size at mostO(1/ε) that contains all x ∈ U so that f(x) ≥ ε ·‖f‖1 ,

∑
x∈U f(x).

The beautiful Count-Min Sketch (CMS) data structure of Cormode and Muthukrishnan [CM05]
gives a solution to this problem. It uses optimal space O(ε−1 logN) and has update time O(logN).
However, the query time to return all O(1/ε) heavy hitters is large, O(N logN) (essentially, one
performs a point query for each x ∈ U to see if it is a heavy hitter). The work [CM05] showed
how to alleviate this with a so-called “dyadic trick,” bringing the query time to O(log2N) at the
cost of an extra logN factor in both the space and update time.3 (See Table 1 for a summary of the
parameters in these and other works).

2We note that the construction of [DHK+19] is similar to ours, also using [ABN+92]-style symbol aggregation with
a high-dimensional expander. However, in that work they have a more ambitious goal—list-decoding with no random-
ness in the encoder—but in return the parameters are not close to those in Goal 1.1.

3See also the work by Cormode and Hadjieleftheriou [CH10] who consider a generalization of the dyadic trick that
trades off between the query time and the overhead in update time and space.

2

Reference Space Update Query Failure probability

[CM05] O
(

logN
ε

)
O(logN) O(N logN) N−c

[CM05] (“dyadic trick”) O
(

log2N
ε

)
O(log2N) O

(
log2 N
ε

)
N−c

[LNNT16a] O
(

logN
ε

)
O(logN) O

(
log1+γ N

ε

)
N−c

[LNW18]? Õ
(
log2N

)
Õ
(
ε log2N

)
1
ε poly(logN) N−c

[CN20]? O
(

logN
ε

)
Õ(logN) 1

ε poly(logN) 0

This work O
(

logN
ε

)
O(logN) O

(
logN
ε

)
N− poly(ε)

This work O
(

logN
εc

)
O
(

logN
εc

)
O
(

logN
εc

)
N−c

Table 1: Some relevant results on ε-heavy hitters in the strict turnstile model where the universe has size
N , for logN � poly(1/ε). We consider schemes with failure probability δ ≥ 1/poly(N); see the discussion
in Section 1.3 for smaller failure probability where the works marked with ? shine. The Õ notation hides
log log(N) factors and log(1/ε) factors. Above, c is a constant independent of N and ε, and γ is any constant
larger than 0. Unfortunately, the failure probability for our algorithm is only N− poly(ε), rather that N−c for
some constant c. By repeating our algorithm poly(1/ε) times we can boost the success probability to N−c.
We note that each of Space, Update, Query time for [CM05] (with the dyadic trick) and [LNW18] can be
multiplied by εc if one replaces the failure probability with N−εc and the results from [LNNT16a, Theorem
9] remain the same for that larger failure probability.

The starting point for our work is the work of Larsen, Nelson, Nguyễn and Thorup [LNNT16a].
That work studied a much more general problem—heavy hitters for all `p norms in the general
turnstile model—but for the special case of the `1 norm and the strict turnstile model, they were
able to get a nearly optimal algorithm, with the same space and update time complexity as the orig-
inal CMS, but with query time O(ε−1 log1+γ N) for any constant γ > 0. That work highlighted a
connection to list-recovery (see [LNNT16a, Section C]; a similar connection is also present in earlier
works on group testing and compressed sensing, for example [INR10, NPR11, NPR12, GNP+13,
GLPS17]), which is one of our motivations to study Goal 1.1.

The approach of [LNNT16a] was the following (we have modified the description to be more
explicitly coding-theoretic). To perform an update on an item x ∈ U , encode it as C(x) ∈ Σn

with our (randomized) encoding function. Then insert each symbol C(x)j into n different ε-heavy
hitters data structures that work on universe Σ (this could be a small CMS sketch, or something
else). To query all of the heavy hitters, we first query each smaller data structure to find a list
Lj . Notice that since |Σ| � |U|, it does not matter that the query algorithm for the small data
structures is slow. Now, we do list-recovery on the lists Lj to recover a list L that contains all of
the heavy hitters.4

However, as Goal 1.1 remains open, [LNNT16a] did not use a list-recoverable code to obtain
their results. Instead, they (like us) took advantage of the fact that the lists Lj can be viewed as
random variables over the randomness in the encoding map C, and then use a construction based
on “cluster-preserving clustering” to solve the problem. While in some sense this construction
must be a list-recoverable code for randomized input lists, it is not clear (to us) how to extract a
natural code out of it: the work [LNNT16a] took the perspective of graph clustering, rather than

4Provided that the output L of the list-recovery algorithm is not too large, we can use an additional large CMS data
structure to efficiently do point queries on each item x ∈ L, pruning it down to O(1/ε).

3

coding theory. In contrast, our code is very natural in the context of coding theory, as it is simply
an expander code with aggregated symbols (albeit using a high-dimensional expander for the
underlying graph).

As an example of the utility of our construction, we plug our randomized list-recoverable code
(as in Theorem 1.2) into the framework of [LNNT16a]. This gives us an algorithm for heavy hit-
ters that, in some parameter regimes, even slightly outperforms that of [LNNT16a]. When ε is
constant and N is growing, we are able to improve the query time from O(log1+γ N) to O(logN).
In particular, we prove the following theorem. (See Table 1 for a comparison to other work when
logN � poly(1/ε)).

Theorem 1.3 (informal; see Theorem 5.11). There is a data structure that solves the heavy hitters prob-
lem in the strict turnstile model, that uses space O(ε−1 logN), update time O(logN), and query time
O(ε−1 logN polylog(1/ε)), with failure probability δ = N−Θ(ε3), as long as ε ≥ (logN)−Ω(1).

By repeating this data structureO(ε−3) times, we obtain a data structure that takes spaceO(ε−4 logN),
update time O(ε−3 logN) and query time O(ε−4 logN polylog(1/ε)), with failure probability δ = N−c.

Our algorithm has the added property that a successful L of size O(1/ε) not only contains all
the true heavy hitters, but also does not contain “false-positives”, in the sense that each x ∈ L
satisfies, say, f(x) ≥ ε

4‖f‖1. This property also applies to most previous heavy hitters algorithms.

Contributions. To summarize, our main contributions are the following.

1. A code with probabilistic list-recovery. We give a natural code construction that achieves a
probabilistic version of Goal 1.1, as per Theorem 1.2. Our code construction leverages recent
progress in high-dimensional expanders in order to succeed with high probability. We hope
that our construction and techniques may be used in the the future to make further progress
on Goal 1.1.

2. Proof of concept: application to heavy hitters. As an illustration of the utility of our
construction—and as an proof-of-concept meant to encourage study of Goal 1.1—we obtain
a new data structure for ε-heavy hitters in the strict turnstile model. Our data structure has
slightly stronger guarantees than existing constructions for failure probability 1/ poly(N)
when ε is constant and the universe size N is growing (although it is outperformed by pre-
vious work when ε is small compared to 1/ log(N)).

1.1 Construction Overview

In this section, we give a brief overview of our probabilistically list-recoverable code. We use this
code to solve the ε-heavy-hitters problem following the paradigm described above, by using small
heavy-hitters sketches for each symbol of the (randomized) encoding C(x) of x ∈ U .

At a high level, we construct our code C : Σk
0 → Σn′ as follows. We start with some base code

C0 : Σk
0 → Σn

0 , as well as a bipartite expander graph G = (R,L,E), where L = [n] and R = [n′], for
some n′ = O(n).5 We will need C0 and G to have specific properties, which we will come to below.
For x ∈ Σk

0 , we generate the encoding C(x) as follows. For j ∈ [n′], the encoded symbol C(x)j
will be gotten as the concatenation of the symbols C0(x)i for i ∈ ΓG(j), where ΓG(j) denotes the

5Using the notation of the technical sections below, Σ0 = Fq , Σ = Fm2
q for some constant m2, and n′ = |V2| = O(n).

4

x̃ = π1(x) ∈ Σk
0

C0(x̃) ∈ Σn
0 L = [n]

M

C0

π2

R = [n′] for n′ = O(n)

C0(x̃)im2

C0(x̃)i2

C0(x̃)i1

C(x)j = (C0(x̃)i1 , . . . C0(x̃)im2
)...

T

Figure 1: Illustration of our construction. The coordinates of the inner code C0 live on the vertices of L. The
final code C consists of symbols aggregated by vertices in R. The randomness in the encoding comes from
the permuations π1 and π2, which scramble the messages in Σk and the coordinates in [n], respectively. We
use the vertices in T ⊆ R to define parity checks that partially define the code C0. The “middle layer” M is
not used in the definition of the code, but is a necessary auxiliary structure for our recovery algorithm.

neighbors of j in the graphG. This sort of “aggregation along an expander” technique, introduced
in [ABN+92], has become a standard distance amplification technique in error correcting codes.
Because of the concatenation, our final alphabet Σ will be Σ = Σm2

0 .
To perform list recovery, we will start with a small piece of “advice,” and then recover the

(hopefully unique) message x consistent with that advice. We will generate our final list L by
iterating over all possible values of the advice. Towards this end, we will choose some coordinate
j ∈ [n′] for which Lj is not erased, and some σ? ∈ Lj as our guess for C0(x)|ΓG(j) to act as our
advice. Given this advice σ?, we wish to keep propagating information until we obtain enough
coordinates of C0 that would allow us to uniquely determine x; this amounts to decoding the code
C0 from erasures.

In the exposition below, we start with a naive attempt to do this propagation, and build up the
properties that we will need C0 and G to satisfy as we refine it. Our construction is depicted in
Figure 1.

A naive attempt. Our first attempt (which will not work) is the following. Let j ∈ [n′] be as
above, so we assume that we are given as advice the m2 symbols C0(x)|ΓG(j); our goal is to recover
(a hopefully unique) x given this advice and given the input lists Lj′ for j′ ∈ [n′]. Choose some co-
ordinate j′ ∈ [n′] such that ΓG(j)∩ΓG(j′) 6= ∅. As we already know the symbols in the coordinates
indexed by ΓG(j), this gives us partial information about C(x)j′ in the form of |ΓG(j) ∩ ΓG(j′)|
elements of Σ0 in known locations. One can hope that this information would be enough to pin-
point a specific entry in the list Lj′ , allowing us to recover all symbols of C0(x) in the coordinates
indexed by ΓG(j′), and keep going in the same manner until enough information is propagated.

Clearly, when we have no guarantee on the input lists Li, this approach fails miserably, as it
may be the case thatLj′ contains numerous elements in Σm2

0 that agree in some of them2 locations,

5

and the information coming from our advice for j will not uniquely pin down an element of Lj′ .
However, note that for a completely random input list Lj′ , such an attempt would be successful with
probability at least 1−

∣∣Lj′∣∣ / |Σ0|, and we could set the parameters in such a way that
∣∣Lj′∣∣� |Σ0|.

That is, in this case it would become reasonably likely that the choice of σ? ∈ Lj would uniquely
pin down an element σ ∈ Lj′ , allowing us to propagate information to another vertex in the graph.
The hope is that we could propagate this information throughout the graph, using the fact that G
is an expander to guarantee that most vertices will be determined. Of course, the problem with
this is that we do not want to assume that the input lists are completely random, but this leads us
to our next attempt, where we inject randomness into the encoding procedure.

Injecting randomness. While we won’t get completely random lists Lj as we might have wanted
for the naive attempt, we can make the input lists randomized via a randomized encoding. More
specifically, our base code C0 will be deterministic, and to apply C we will make use of two per-
mutations: a permutation π1 acting on the universe U and a permutation π2 acting on [n]. More
formally, given x ∈ Σk

0 , we first apply π1(x) and apply the encoding C0 to π1(x). Next, we per-
mute the coordinates of the outcome according to π2. Finally, we aggregate symbols according
to G, yielding C(x) ∈ Σn′ . Roughly speaking, the first permutation—which will be pairwise
independent—will make C0(x) uniformly distributed over the code’s image, even conditioned
the value of C0(x′) for some x′ 6= x. The second permutation will make sure that querying any
particular symbol C0(x)j symbol will behave like sampling a uniformly random symbol in C0(x),
and even more strongly, combined with π1 it will behave like a random sampling from a nearly
uniform distribution over Σ0.

Analyzing the permutation-aided construction carefully, we are able to show that indeed, with
probability roughly 1 − η for η ≈

∣∣Lj′∣∣ /√|Σ0|, we can pinpoint a single list element of Lj′ . One
conceptual observation that will help us establish that result is the fact that the distribution of
symbols in most codewords of a high-rate code is close to uniform, and indeed we will need the
rate of C0 to be very high (see Section 3.3). We leave the more technical details to Section 5.

Although promising, this approach is still problematic. We start with m2 = O(1) symbols that
we know, and at each iteration the set of revealed coordinates grows by a small constant factor,
using the expansion properties of G. As initially our sets are of constant size, we cannot hope for
success probability much greater than 1− η for the initial propagation steps. A failure probability
of η, even if we disregard the need for a problematic union bound over all propagation steps, is far
too large for us, and in particular for our application to heavy hitters. The problem described here
is common to various expander-based techniques, and in this work we resolve it by choosing G to
be a special expander graph that comes from a high-dimensional expander, and by choosing C0 to
be a suitable Tanner code. We discuss these modifications next.

Using high-dimensional expanders to get a good head start. We resolve the issue described
above—that we cannot possibly get a good failure probability if we start with only a few known
symbols—by using techniques from high-dimensional expanders. Suppose that, starting with
only the advice σ? for m2 symbols of C0(x), we could deterministically identify a large subset T ⊆
[n′] for which we know all symbols of C0(x) indexed by ΓG(T). This way, concentration bounds can
kick in, and hopefully each propagation step would be successful with probability roughly η|T |,
provided we can get a enough independence between query attempts at the same propagation
step. We defer the independence issue to the technical sections (this ends up following from the

6

amount of independence we have in our permutations π1 and π2), and concentrate on obtaining
such a T .

Recall that we work over the bipartite expander graph G = (R = [n′], L = [n], E). We will
construct G′, a tripartite extension of G, with an added middle layer M , |M | = O(n), having
the following property. Identify each vertex j of R with a subset ΓG(j) ⊂ [n] of cardinally m2

in the natural way. Each vertex in M is identified with a subset S ⊂ [n] of cardinality m1, for
1 < m1 < m2, such that S is connected to all its m1 elements on the left, and to all its supersets on
the right. More specifically, each vertex j in R will be connected to all

(
m2

m1

)
subsets of ΓG(j) in M .

(See Figure 1 for an illustration.)
We will choose the code C0 to be a Tanner code with respect to the structure of the graph G.

That is, as before, we associate the n symbols of a codeword C0(x) with the left hand vertices L of
G, and we define C0 so that a codeword C0(x) is a labeling of L so that to following property holds:
For every j in an appropriate subset T ⊂ R, the labels on the vertices of ΓG(j) form a codeword
in some error correcting code C00 of length m2 with good distance; in particular, given any m1

symbols of C00(x′) for some x′, we can recover all of C00(x′).
The reason to choose C0 like this is the following. Say we know that j and j′ are in the set T ,

and that they have a common neighbor in M . This implies that |ΓG(j) ∩ ΓG(j′)| ≥ m1, since there
is some set of size m1 that both of those sets contain. In particular, by our choice of C00, once we
know the symbols of ΓG(j), we can deterministically reveal all symbols of ΓG(j′) by decoding C00.
Then we can continue this process until we recover the symbols in ΓG(j) for all j ∈ T . By counting
constraints, it turns out that we can choose T to be large and still have a high-rate code C0. This
gives us our set T so that we can deterministically fill in the symbols of ΓG(T) to use as a head
start and increase our success probability.

How do we construct such a tripartite graph, that on the one hand has not too many vertices
in R and M (i.e., R = O(n) and M = O(n)), but on the other hand has favorable intersection and
expansion properties? This is where high-dimensional expanders enter the picture, and indeed the
tripartite graph comes from an (m2 − 1)-dimensional simplicial complex (see Section 3.1 for the
formal definitions). A similar object was used in [DHK+19] as a double sampler, and in [DDHRZ20]
as a multilayer agreement sampler. We note that the construction of [DHK+19] is quite similar to
ours, as they also use the symbol-aggregation technique of [ABN+92]; the main difference in the
construction is that we use a very specific inner code C0 that uses the structure of G as part of its
parity checks, while the work of [DHK+19] chooses C0 to be an arbitrary code with good distance.

In our actual construction, the code C0 is a bit more involved, and its constraints arise both
from the special subset T of R and from an additional bipartite expander. Each of the two types of
constraints is helpful for a different aspect of our algorithm. Roughly speaking, the constraints that
come from T ⊆ R help us as described above (filling in the set ΓG(T) to get a head start). The other
constraints are there to ensure that the final code C0 has good enough distance to allow for the final
unique decoding. All in all, we are able to achieve a set T that has size about |T | ≈ poly(ε) · n.
We remark that this is the point where we don’t quite get the failure probability that we want,
resulting in a sub-optimal dependence on ε for our application to heavy hitters: we want failure
probability exp(−n) (we will choose n logarithmic in N , so this would be poly(1/N)), and we end
up with failure probability exp(−|T |) = exp(−poly(ε)n).

There are plenty of details that are swept under the rug in the description above, including
implementation details needed to keep the recovery algorithm linear-time. We give the recovery
algorithm in detail in Section 4. We present our list-recovery algorithm in the context of a query

7

algorithm for heavy hitters, since for our analysis we want to focus on the distribution of input
lists that arises from the heavy hitters example, and it is easiest to present everything together. In
particular, the input lists do not arise simply from the union of ` codewords C(x), but (a) may be
erased if the corresponding small data structure failed, and (b) may contain extraneous symbols
that arise from items x(i) that appear in the stream that are not heavy hitters.

1.2 Motivating Goal 1.1 from Pseudorandomness

In this section, we briefly explain why Goal 1.1—and in particular, getting a good dependence on
the parameter `—is of interest in pseudorandomness. There is a tight connection between error
correcting codes and fundamental constructions in pseudorandomness, notably the equivalence
between (strong) seeded extractors and list-decodable codes [Tre01, TSZ04]. It turns out that list
recovery can also play a prominent role in the study of related objects from extractor theory. In
seeded condensers, first studied in [RR99], the goal is to “improve” the quality of a random source
X using few additional random bits. A bit more formally, given a random variable X ∼ {0, 1}n

with min-entropy k, a condenser Cond : {0, 1}n × {0, 1}d → {0, 1}m is such that Cond(X, Ud) has
min-entropy k′, where we want the entropy rate to improve, namely, k

′

m �
k
n , and to maintain a

small entropy gap m − k′. (For the formal definition, see, e.g., [GUV09].) List recoverable codes
in the errors model6 give seeded condensers, and vice versa. More specifically, the input and
output entropies k and k′ are almost in one-to-one correspondence with the (logarithm of the)
output and input list sizes, log |L| and log ` (for the precise statement, see [DMOZ20]). Thus, to
get meaningful condensers from list-recoverable codes, the dependence between L and ` needs
to be good, in all regime of parameters, and in particular handle ` that grows arbitrarily with the
message length. In fact, the best list-recoverable code in this regime is the (folded) Parvaresh-
Vardy code [GUV09], giving |L| ≈ `.7 The connection between condensers and list-recoverable
codes was recently utilized in the computational setting to construct nearly-optimal pseudorandom
generators for polynomial-sized circuits [DMOZ20].

The model of zero-error list recovery, described in Goal 1.1 (when |L| depends nicely on ` and
` can be arbitrary), has applications to pseudorandomness too. A (strong) disperser is a function
Disp : {0, 1}n × {0, 1}d → {0, 1}m such that for any random variable X ∼ {0, 1}n with sufficient
min-entropy, the support of Disp(X, Ud) is large. Such dispersers have found several applica-
tions, and are tightly connected to open problems in expander graphs. It is not hard to show, and
we do so in Appendix B, that dispersers, in some parameter regime, are equivalent to zero-error
list-recoverable codes. We are not aware of this equivalence being stated elsewhere. For complete-
ness, we note that dispersers in another parameter regime give rise to erasure list-decodable codes
[BADTS20].

Finally, observe that in order to get good pseudorandomness primitives from list-recoverable
codes, efficient recovery is not an issue, and all that is needed is an efficient encoding.

Even though a probabilistic guarantee as in Theorem 1.2 does not immediately yield improved
pseudorandom objects, it is our hope that our progress on Goal 1.1 is a first step towards achieving
that goal, which would imply improved dispersers.

6In the errors model, we are given L1, . . . ,Ln ⊆ Σ with |Li| ≤ ` for all i, and we require the list L ={
x ∈ Σk : Pri∈[n][Ci(x) ∈ Li] ≥ 1− γ

}
to be small, for some error parameter γ.

7Note, however, that the rate of the code in [GUV09] is only k−Ω(1) for k being the message length.

8

1.3 Related Work

Algorithmic List-Recovery. List-recovery was originally introduced as an avenue towards list-
decoding, where the goal is, given a vector z ∈ Σn, to recover the list L of all messages x ∈ Σk so
that C(x) is sufficiently close to z in Hamming distance. For example, the celebrated list-decoding
algorithm of Guruswami and Sudan for Reed-Solomon codes [GS98] is in fact a list-recovery algo-
rithm. However, the Guruswami-Sudan algorithm stops working at the so-called Johnson bound,
which in the context of list-recovery means that the rate k/n of the code can be at most 1/`. Since
the Guruswami-Sudan algorithm, there has been a great deal of work, mostly based on algebraic
constructions, aimed at surpassing the Johnson bound for list-decoding and list-recovery. In par-
ticular, the works [GR08, GW13, Kop15, KRZSW18] show variations of Reed-Solomon codes, like
folded RS codes and multiplicity codes, can be efficiently list-decoded and list-recovered beyond
the Johnson bound. For list-recovery, these constructions are able to obtain rate k/n = Ω(1), but
unfortunately the size of the lists L returned (and in particular the running time of the algorithm
that returns that list) is at least quasipolynomial in ` [GR08, KRZSW18], and sometimes exponen-
tial in `. Moreover, those constructions naturally have large alphabet sizes, polynomial in n. In
order to reduce the alphabet size, constructions using algebraic geometry codes have been used
(e.g. [GX12, GX13, GK16]), although these works still have parameters with an exponential depen-
dence on `. Moreover, all of the works mentioned above have polynomial—and not linear—time
recovery algorithms. Using expander-based techniques (e.g. that of [AEL95]), these algorithms
can be improved to near-linear time in n (e.g., [HRZW19]), but at the cost of increasing the depen-
dence on ` to doubly-exponential.

In addition to algebraic constructions, there have also been a few constructions of purely graph-
based codes, which are more similar to our constructions. The work of [GI04] gives a linear-
time algorithm for list-recovery of graph-based codes, which does even better in the setting of
mixture-recovery (similar to the setting that we study here) where the input lists are generated from
unions of codewords. That work achieves output list size |L| exactly equal to `, but has rate O(1/`)
and the alphabet size is exponential in `. The work of [HW18] gives an O(n)-time algorithm
for list-recovering graph-based codes (the expander codes of [SS96, Zém01], with an appropriate
inner code); these can have high rate (close to 1), but unfortunately the dependence on ` in other
parameters is quadruply-exponential.

The work of Dinur, Harsha, Kaufman, Livni-Navon and Ta-Shma [DHK+19], which directly in-
spired our work, used double-samplers derived from high-dimensional expanders, combined with
an expander-based symbol aggregation technique of [ABN+92] that we also use. The goal of that
work was to give an efficient list-decoding algorithm for any code that follows the [ABN+92] con-
struction. This is much more general that what we are aiming to do (since we get to carefully
design our code before applying the [ABN+92] construction), and also the goal is different (list-
decoding in the worst case, rather than randomized list-recovery). That work is able to get efficient
(polynomial-time) algorithms, but when one tries to turn their algorithm into a list-recovery algo-
rithm in the most direct way, the parameters are not close to those in Goal 1.1; in particular, the
algorithm is only poly(n)-time, and the dependence on ` is again exponential. It is not clear (to us)
how to use the approach of [DHK+19] to achieve Goal 1.1.

We also mention a recent work of [DDHRZ20] that suggests an approach for constructing lo-
cally testable codes. In particular, as in our construction they also use the underlying graph (an
agreement expander coming from a high-dimensional expander) both for symbol manipulation and
for defining the parity checks. However, their goal is quite different than ours: they obtain locally

9

testable codes via lifting a set of “smaller” locally testable codes, extending the natural Tanner
tests.

Heavy Hitters. The first work with provable guarantees for the heavy hitters problem was by
Misra and Gries [MG82], which applied to the cash register model where each of the updates ∆(i)

are equal to 1. We work in the more general strict turnstile model described above. For the strict
turnstile model, the Count-Min Sketch data structure of [CM05] above already gets good results,
and the best current results for the parameter regime we are motivated by (in particular, with
failure probability 1/poly(N), and where logN � poly(1/ε)) are those of [LNNT16a] described
above. It is known [JST11] that Ω(ε−1 logN) words of memory are required for this setting, and
thus the space used by these works are optimal.

We next mention three works that study heavy hitters when the failure probability is extremely
small (or zero) [LNW18, CN20, NNW14]. Relative to our work, these works achieve—as with
[LNNT16a]—a better dependence on ε but worse dependence on N ; however, these works can
additionally get away with extremely small or even zero failure probability. In [LNW18], the
authors modify the Count-Min Sketch by looking at different hash functions, and they present
a data structure with failure probability δ with space Õ

(
log(εN)

(
ε−1 + log(1/δ)

))
, update time

Õ(log2(1/ε) log(εN) (1 + ε log(1/δ)), and query time Õ(ε−1 log2(1/ε) log(εN) log(1/δ)). For δ =
N−c and logN � poly(1/ε), this gives the parameters stated in Table 1. However, when δ is much
smaller—for example, δ = N−Ω(1/ε)—this gives better results than the works previously discussed,
and in particular implies a result that is uniform over all sets of heavy hitters by union bounding
over the NO(1/ε) choices for such sets. In [CN20], the authors give a randomized construction of
a data structure that also solves the heavy hitters problem uniformly over all streams x(1), x(2), . . .
(that is, with error probability zero assuming that the data structure was constructed correctly).
This scheme uses space O(ε−1 log(Nε)), has update time Õ(log2(1/ε) log(εN)), and query time
ε−1 polylog(N).8 That work actually provides solutions to several problems, not just heavy hitters,
via a construction of list-disjunct matrices. Finally, we mention the work of [NNW14], which gives a
fully deterministic construction of a data structure for heavy hitters (and more generally for `∞/`1
sparse recovery) with zero error probability; the space and query time is O(ε−2 poly log(N)), and
the update time is O(ε−1 poly log(n)).9

We note that there are algorithms that achieve O(logN) update and query time for constant ε,
but with only a constant failure probability. For example, such an algorithm is given in the full
version of [LNNT16a] (see [LNNT16b, Theorem 10]).

One can generalize to the general turnstile model, where there is no guarantee that f(x) is pos-
itive at each point in the stream, and one can generalize to `p-heavy hitters, where the goal is to
return all x so that |f(x)| ≥ ε‖f‖p. There has been a great deal of work along both of these lines;
see [LNNT16a] and the references therein. In particular, for `p heavy hitters in the general turnstile
model, the work [LNNT16a] gives a data structure with spaceO(ε−p logN), update timeO(logN),
and query complexity ε−p polylog(n).

We briefly discuss the approach of [LNNT16a], in order to illustrate the differences between

8We note that here the guarantee is to return a list L of size O(1/ε) containing all the true heavy hitters, although
in both [LNW18] and [CN20], the list is allowed to contain elements with frequencies f(x)� ε‖f‖1, while most of the
heavy-hitters work surveyed above, including ours, does not have such false positives.

9We note that in [NNW14], the query time to recover the list of the heavy hitters is Ω(N) and the space involves a
single factor of log(N), but the “dyadic trick” can be used to obtain the bounds mentioned above.

10

their approach and ours. While that work inspired the list-recovery approach we take, and they
also use error correcting codes and expander graphs, the construction itself is quite different. That
work takes the perspective of graph clustering. In more detail, their sketch can output a graph
in which each heavy hitter is represented by a well-connected cluster in the graph. They then
develop a clustering algorithm that can recover the clusters, and hence the heavy hitters. In order
to make the connection to graph clustering, they first encode x with an error correcting code C0 as
we do; but they only need this code to have good distance, as they do not go down the list-recovery
route. Then they break C0(x) up into n′ chunks. Before putting the j-th of these chunks into the
j-th smaller data structure, they append it with tags hj(x) and {hΓ(j)i(x)}, where the hj are hash
functions and Γ is the adjacency function for an expander graph G. Thus, the j-th chunk of C0(x)
is essentially connected by edges in G to the other chunks of C0(x), and in particular the chunks of
C0(x) form a cluster that can be recovered by a clustering algorithm.

We note that [BNS19] was also inspired by [LNNT16a], and builds on their approach to de-
velop differentially private heavy-hitters algorithms. In fact, that work even casts the scheme of
[LNNT16a] as a list-recovery scheme, in a relaxed definition of list-recovery that is different from
our relaxed version in Theorem 1.2. In particular, their notion of list-recovery will not handle input
lists L1, . . . ,Ln that are generated by any ` distinct messages, as we handle in Theorem 1.2.10

Algorithmic applications of list-recovery. Our work is inspired by the use of list-recovery in
[LNNT16a], but there is a rich history of using list-recoverable codes in similar algorithmic ap-
plications. One example is group testing, where the goal is to identify d “positive” items out of a
universe of size N , given tests of the form

∨
i∈I 1[i is positive] for subsets I ⊂ [N]. A classic con-

struction of Kautz and Singleton [KS64] reduces this question to the question of list-recovery. This
connection, and elaborations on it, has been exploited in several works, which aim to both mini-
mize the number of tests and to develop sublinear-time algorithms to recover the set of positive
items [INR10, NPR11].

A second example, even closer to our work, is in compressed sensing. In compressed sensing,
the goal is to approximately recover an approximately sparse vector v ∈ RN given linear mea-
surements Av for some A ∈ Rt×N . The heavy-hitters problem is closely related, as a (linear)
solution to the heavy hitters problem can approximately recover the support of v. List-recoverable
codes have been used in the context of compressed sensing in a similar way as it was used in
[LNNT16a]: associate each i ∈ [N] with a message, and encode it with a list-recoverable code
to get a codeword C(i) = (c1, . . . , cn) ∈ Σn. Then reduce the compressed sensing problem to n
smaller instances of the same problem for vectors of length |Σ|: for each j ∈ [n], we have a vector
w(j) indexed by Σ so that the entry w(j)

σ is obtained by aggregating all of the coordinates vi of v
so that C(i)j = σ. Now we can either recurse or solve these smaller problems in another way.
Previous works [NPR12, GNP+13, GLPS17] have observed that a good list-recoverable code (e.g.,
satisfying Goal 1.1) would solve this problem. However, they ran into the same issue that we did,

10In a bit more detail, the notion of list-recovery in [BNS19] allows for L1, . . . ,Ln to be generated by ` messages
x(1), . . . , x(`), provided that the messages lie in distinct “buckets,” according to any fixed bucketing of the message
space. The choice of the code may depend on the bucketing. In this language, the result of [LNNT16a] (see [BNS19,
Theorem 3.6]) says that it is possible to obtain a code with constant rate, output list size L = O(`), and alphabet size that
is polynomial in the number of buckets, and a polynomial-time decoding algorithm. If the number of buckets is poly(`),
the alphabet size is also poly(`), as we would hope, but as the number of buckets grows (to approach the general case
with |Σ|k buckets of size one, where there is no “bucketing” restriction) the alphabet size grows accordingly.

11

namely that we do not know of any such codes. Instead, they either used sub-optimal codes or
developed work-arounds, as we describe below.

The work of [NPR12] was, to the best of our knowledge, the first to apply list-recovery in
compressed sensing. We mention two results in that work that use a framework quite similar to
that of [LNNT16a] (and thus to ours), making explicit use of (sub-optimal) list-recoverable codes.
The first result is based on the list-recoverability of Reed-Solomon codes. As RS codes do not
achieve Goal 1.1, this results in a sub-optimal number of measurements, but is nice and simple.
The second is based on Parvaresh-Vardy (PV) codes. PV codes have good rate and output list-size,
but unfortunately the alphabet size is very large. To get around this, [NPR12] (inspired by the
work [NPR11] on group testing mentioned above) considered a code constructed by repeatedly
concatenating PV codes with themselves. This does not lead to a code that achieves Goal 1.1—
the rate depends on `, and either the alphabet size or the rate must depend on n—but they are
able to make these dependencies not too bad. This leads to schemes with near-optimal number
of measurements t, although the schemes only work for non-negative signals. Further, since PV
codes do not have near-linear-time algorithms, the recovery algorithm runs in time poly(t) rather
than near-linear in t.

The work of [GNP+13] follows a similar outline, using the Loomis-Whitney-based codes of
[NPRR18]. For d > 0 some integer parameter, these are codes C : [N]→ [N1/d]d−1 are (`, `d/(d−1))-
list-recoverable in time O(`d/(d−1) logN). In terms of the desiderata of Goal 1.1, this does give
near-linear-time recovery with good dependence on `; however the alphabet size is huge, growing
exponentially in the message length. In [GNP+13], they deal with this by applying the scheme
mentioned above recursively until the alphabet size becomes manageable. As a result, they are
able to get a nearly optimal number of measurements, with a recovery time that depends poly-
nomially (but not linearly) on logN , and with an extremely small error probability, smaller than
1/ poly(N).

We also mention [GLPS17], which uses list-recoverable codes (PV codes) in a more complicated
way to achieve a near-optimal compressed sensing algorithm in the uniform (“forall”) model. They
also treat the indices i as messages and encode them with a list-recoverable code, but they de-
velop more machinery—using an expander to add linking information between the symbols for
example—in order to reduce to the list-recovery problem.

1.4 Open Questions and Future Work

In this work we have made progress towards Goal 1.1 by constructing a randomized code that
supports, with high probability, linear-time list-recovery from certain lists. This was enough for
our application to heavy hitters, but many open questions still remain.

1. The most obvious open question is to fully attain Goal 1.1. In addition to furthering our
knowledge in algorithmic coding theory, it seems likely that attaining Goal 1.1 (or the tech-
niques used to do it), would have other applications in algorithm design, as well as in pseu-
dorandomness (as per Section 1.2).

2. While we are able to use techniques from high-dimensional expansion to obtain a failure
probability of N−Ω(ε3) (in the setting of ε-heavy hitters), we would like a failure probability
of N−Ω(1).

12

3. In this paper we studied only zero-error list-recovery (or, more accurately, list-recovery from
a small fraction of erasures). While this question is interesting and challenging on its own,
one can ask about extending our results to list-recovery from errors. In particular, this might
lead to improved heavy-hitters schemes in the general turnstile model.

4. We motivated our “probabilistic list-recovery” model by an application to heavy hitters.
However, we hope that there are many other algorithmic applications for such a model
and for our construction. Indeed, there are several algorithmic applications of list-recovery
mentioned in Section 1.3 (e.g., [INR10, NPR11, NPR12, GNP+13]) that explicitly use list-
recoverable codes and would be improved by codes that achieve Goal 1.1. It is our hope
that some of these applications could also be improved by better constructions of the prob-
abilistically list-recoverable codes that we study here. As one example, if one could obtain
Theorem 1.2 with |Σ| = Õ(`) (rather than polynomial in `), then by the construction of Kautz
and Singleton mentioned above [KS64] this would yield optimal constructions of probabilis-
tic group testing matrices with sublinear-time decoding, matching a recent result of [PS20]
in a black-box way.

1.5 Organization

In Section 2, we set notation, introduce necessary definitions from error correcting codes and
formally introduce the heavy hitters problem, and we state a few claims we will need about the
pairwise independent permutations, expander graphs, and concentration bounds.

In Section 3 we describe the code C that we will use. As discussed above, we construct C by
aggregating symbols of an inner code C0, according to a high-dimensional expander. We introduce
the tools from high-dimensional expanders that we need in Section 3.1, and then we discuss the
code C0 in Section 3.2. In Section 3.3, we show that C0 (and indeed, any code with high enough
rate) will have the property that for a random x, C0(x) will have a roughly uniform distribution of
symbols, an important property that we will use in the analysis. In Section 3.4, we finally define
our code C by aggregating symbols of C0 according to a high-dimensional expander.

We work out the application to heavy hitters in Section 4. In particular, we describe the data
structure and update procedure sketched above in the beginning of Section 4 and in Section 4.2.
We describe the query procedure—which implicitly describes the efficient list-recovery algorithm
of the informal Theorem 1.2—in Section 4.3.

In Section 5, we show that our query procedure/list-recovery algorithm is actually correct,
given input lists that are generated by a heavy hitters instance. In particular, the informal Theo-
rem 1.2 on list-recovery follows from this analysis when the frequency vector f is exactly `-sparse
with f(x) ∈ {0, 1}, and Theorem 1.3 about the more general heavy hitters problem follows from
Theorem 5.11, our main result in Section 5. In Section 6, we abstract out our formal theorem about
probabilistic list-recovery that generalizes Theorem 1.2.

2 Preliminaries

For a positive integer n, we denote by [n] the set {1, . . . , n}. The density of a set B ⊆ A is ρ(B) =
|B|
|A| . We use base 2 for logarithms unless stated otherwise. The statistical distance between two

13

random variablesX and Y over the same domain Ω is defined as

|X − Y | = max
A⊆Ω

(Pr[X ∈ A]− Pr[Y ∈ A]) .

If |X − Y | ≤ ε we say that X is ε-close to Y and denote it by X ≈ε Y . We denote by Un the
random variable distributed uniformly over {0, 1}n. For a set A, we denote by UA the random
variable distributed uniformly over the elements of A.

For a vector f ∈ Rn, we let ‖f‖p to be its induced `p norm, i.e., ‖f‖p = (
∑

i∈[n] |f [i]|p)1/p, and
‖f‖∞ = maxi∈[n] |f [i]|. We let ‖f‖0 be the support size of f , i.e., |{i ∈ [n] : f [i] 6= 0}|. We will
often identify f with the function f : [n] → R in the natural way (where [n] can be replaced by an
arbitrary domain).

For a bipartite graph G = (R,L,E) and v ∈ R, we denote by ΓG(v) the set of vertices in L that
are adjacent to v. For a set A ⊆ R, we denote ΓG(A) =

⋃
v∈A ΓG(v). We sometimes treat ΓG(v) as

a vector, and then we require some fixed ordering of E. As it will be clear from context, we also
treat ΓG(·) as the right-neighborhood function, namely mapping ΓG(u) for u ∈ L to its neighbors
in R.

2.1 Error Correcting Codes

A linear code C of message length k and block length n over Fq is a linear subspace of Fnq of
dimension k. We will often identify a linear code with its encoding function, C : Fkq → Fnq , and
often identify a codeword c ∈ C with a function c : [n] → Fq in the natural way. The rate of C is
r = k

n , and its distance is
d = min

x,y∈C,x 6=y
∆(x, y) = min

x∈C,x 6=0
∆(x,0),

for ∆ being the Hamming distance (the latter equality only holds when C is linear). The code’s
relative distance is δ = d

n .
A code is uniquely decodable from e erasures (or, en -fraction of erasures) if given x ∈ (Fq ∪ {⊥})n

with at most e coordinates i ∈ [n] in which x[i] =⊥, there is at most a single c ∈ C such that
x[i] = c[i] whenever x[i] 6=⊥. The Reed-Solomon code over Fq of block length n ≤ q and dimension
k is the subspace of all degree-(k − 1) univariate polynomials over Fq. The Reed-Solomon code
has distance dRS = n− k + 1, and as any code, is uniquely decodable from dRS − 1 erasures.

We will make use of Tanner codes [Tan81]. Given a biregular bipartite graphG = (R,L = [n], E)
with right-degree D, and an inner code C0 ⊆ ΣD, we define the corresponding tanner code by

C =
{
c ∈ Σn : ∀r ∈ R, c|ΓG(r) ∈ C0

}
,

where we choose an ordering of the edges at each vertex of R. Note that C is linear if C0 is a linear
code.

As discussed above, our work is inspired by the problem of list recovery from erasures. For-
mally, a code C ⊆ Σn is (γ, `, L) list recoverable from erasures if for every S1, . . . , Sn ⊆ Σ such that
|Si| ≤ ` for at least (1− γ)n of the i-s and Si = Σ for the remaining, there are at most L codewords
c ∈ C so that c ∈ S1 × . . .× Sn.

14

2.2 The Heavy Hitters Problem

In this work we consider the ε-heavy hitters problem, in the `1 norm. Set some threshold pa-
rameter ε > 0, and a universe U of size N . We see a stream of updates (x(i),∆(i)) ∈ U × R for
i = 1, . . . ,m, and we want to maintain f ∈ RN for f(x) =

∑
i∈[m] ∆(i)1x(i)=x in a way that supports

updates and one allowed query, as follows.

Update Given x ∈ U and ∆ ∈ R with finite precision, update f(x)← f(x) + ∆.

ε-HH Query Return a list of all ε-heavy hitters: All x ∈ U that satisfy |f(x)| ≥ ε‖f‖1. Note that
there are at most 1/ε such elements.

We may also require our data structure to support a 1-query. I.e., returning an estimation of f(x)
given any x ∈ U . We work in the strict turnstile model, meaning that each update ∆ may be an
arbitrary number, but we are promised that f(x) ≥ 0 for all x ∈ U at every step of the stream.

As in previous works, we work in the RAM model. Each machine word can store integers
up to max {N, ‖f‖1}. Standard word operations take constant time. We count space in terms of
the number of words stored, and time in terms of the number of word operations. Moreover, we
assume standard field operations take constant time. In particular, we will perform arithmetic in
FN and Fq, for q = q(ε) to be set later on.

We will rely on the following sketches-based ε-heavy hitters data structures.

Theorem 2.1 (Count Min Sketch, [CM05]). For any ε, δ > 0 and positive integer N , there exists an
algorithm that maintains f ∈ RN in the strict turnstile model and supports the following procedures using
space O(1

ε log 1
δ).

• An update, which is done in time O(log 1
δ).

• A 1-query, which is done in timeO(log 1
δ) with accuracy ε and failure probability δ. More specifically,

given x ∈ [N], the 1-query procedure outputs f̂(x) such that f̂(x) ≥ f(x) (with probability 1), and
with probability at least 1− δ it holds that f̂(x) ≤ f(x) + ε

4‖f‖1.

Outputting the ε-heavy hitters using Theorem 2.1 would take O(N log 1
δ) time, and one should

think of δ = 1
poly(N) . A significantly better running time was achieved by Cormode and Muthukr-

ishnan using the “dyadic trick”.

Theorem 2.2 (Count Min Sketch with the dyadic trick, [CM05]). For any ε, δ > 0 where ε ≥ δ and
δ ≤ 1

logN , and positive integer N , there exists an algorithm that maintains f ∈ RN in the strict turnstile
model and supports the following procedures using space O(1

ε log 1
δ · logN).

• An update, which is done in time O(log 1
δ · logN).

• An ε-HH query, which is done in timeO(1
ε log 1

δ · logN) with failure probability δ. More specifically,
the query procedure outputs a list L ⊆ [N] such that {x ∈ [N] : |f(x)| ≥ ε‖f‖1} ⊆ L (with prob-
ability 1), and with probability at least 1 − δ it holds that L ⊆

{
x ∈ [N] : |f(x)| ≥ ε

4‖f‖1
}

. That
is, L always contains all ε-heavy hitters and with probability at least 1 − δ, it does not contain any
elements which are not ε

4 -heavy hitters.

For general ε and δ, the log 1
δ factors should be replaced with log

(
log(εN)
εδ

)
.

15

Larsen et al. succeeded in getting optimal space requirement and update time, and nearly
optimal query time. For simplicity, we state their result for δ = 1

poly(N) .

Theorem 2.3 ([LNNT16a], Theorem 9). For any ε ∈ (0, 1/2), sufficiently large positive integer N ,
δ ∈

(
1

poly(N) , 1/2
)

, and a constant γ ∈ (0, 1/2), there exists an algorithm that maintains f ∈ RN in the

strict turnstile model and supports the following procedures using space O(1
ε logN).

• An update, which is done in time O(logN).

• An ε-HH query, which is done in time O
(

1
ε log1+γ N

)
with failure probability δ, with a one-sided

error guarantee as in Theorems 2.1 and 2.2.

Finally, note that whenever we state a space requirement for an algorithm, we account for the
space needed to initialize and maintain the workspace, as well as the auxiliary space needed to
perform update and query procedures.

2.3 Permutations and Pseudorandom Permutations

For a positive integer n, we denote by Sn the set of all permutations over [n].

Definition 2.4 (pseudorandom permutation). We say that a random variable π ∼ Sn is a k-wise
permutation if for any distinct i1, . . . , ik ∈ [n] it holds that (π(i1), . . . ,π(ik)) is the uniform distribution
over k-tuples of distinct elements from [n].

For k = 2, a simple affine transformations work.

Theorem 2.5. For every prime number n there exists a strongly explicit pairwise permutation π with
support size (n − 1)n. Specifically, given a prime field F, the set of all permutations π(x) = ax + b for
a ∈ F? and b ∈ F yields a pairwise permutation.

2.4 Expander Graphs

Given an undirected graph G with a diagonal degree matrix D and an adjacency matrix AG, its
transition matrix is given by A = D−1AG, and we denote its second largest eigenvalue by λ(G). In
Section 3.1 we generalize this notion to weighted bipartite graphs. We will make use of Tanner’s
inequality, relating vertex expansion and spectral expansion.

Theorem 2.6 ([Tan84]). Let G = (V,E) be an undirected regular graph with λ(G) ≤ λ. Then, for every
A ⊆ V we have

|ΓG(A)| ≥ 1

ρ(A) + (1− ρ(A))λ2
· |A|.

We will need the following bipartite expanders.

Lemma 2.7. For any positive integers N and M ≤ N there exists a biregular bipartite graph G =
([N], [M], E) with left-degree D = Θ(log N

M) such that the following holds. There exists a universal
constant c > 0 such that for every set A ⊆ [N] satisfying K ≤ c · M

log(N/M) , it holds that |ΓG(A)| ≥ D
4 |A|.

Moreover, a uniformly random biregular bipartite graph with the parameters N , M and D as above
satisfy that property with probability at least 1 − 2−Ω(M). Such a random graph can be sampled in time
O(ND).

16

Proof (sketch): A vertex expansion of D
4 readily follows from good spectral expansion (e.g., by

Tanner’s inequality for bipartite graphs we will soon state), and a random bipartite expander is
a good spectral expander with overwhelming probability (see, e.g., [BDH18]). A direct, vertex
expansion result, can be found in [SS96]. We note that an even better vertex expansion is possible
using lossless expanders, but it will not be crucial for our application. Lastly, sampling a uniformly
random biregular bipartite graph can be done via the configuration model in linear time.

2.5 Auxiliary Claims

A series of random variables X1, . . . , Xn ∼ {0, 1} are k-wise independent if for any distinct i1, . . . , ik
in [n] it holds that E [Xi1 · . . . ·Xik] = E [Xi1] · . . . ·E [Xik]. Good tail bounds for bounded indepen-
dence are known.

Theorem 2.8 ([SSS95]). Let X1, . . . , Xn ∼ {0, 1} with µ = 1
n

∑
i∈[n] E[Xi]. Let δ ≥ 1, and let k be a

positive integer satisfying k ≤ δµe−1/3n. Then, if the random variables are k-wise independent, it holds
that

Pr

∣∣∣∣∣∣ 1n
∑
i∈[n]

Xi − µ

∣∣∣∣∣∣ ≥ δµ
 ≤ e−k/2.

The above theorem can be extended to the case in which the random variables are negatively
correlated. We will need the following extension of negative dependence (studied, e.g., in [PS97,
IK10] for the completely independent case).11

Theorem 2.9. Let X1, . . . , Xn ∼ {0, 1} be such that for every i ∈ [n], E[Xi] ≤ µ, and moreover, k is an
even integer such that for any distinct i1, . . . , ik′ ∈ [n] where k′ ≤ k it holds that

E

 ∏
j∈[k′]

Xij

 ≤ µk′ .
Then, for any δ ≥ 1,

Pr

∣∣∣∣∣∣ 1n
∑
i∈[n]

Xi − µ

∣∣∣∣∣∣ ≥ δµ
 ≤ e−k/2,

assuming k ≤ δµe−1/3n.

Claim 2.10. Let A and E be any two events such that Pr[E] ≥ 1 − ε for some 0 < ε < 1. Then,
|Pr[A|E]− Pr[A]| ≤ ε.

We give the easy proof in Appendix A.1.

11To see that one can extend Theorem 2.8 to our setting, we first note that we can assume without loss of generality
that E[Xi] = µ for every i ∈ [n]. In such a case, denoting Z = 1

n

∑
i∈[n] Xi − µ, one can show that for an even k,

E[Zk] ≤ E[Z̃k], where Z̃ being the same as Z, but we replace {X1, . . . , Xn}with
{
X̃1, . . . , X̃n

}
– independent random

variables with E[X̃i] = E[Xi]. From here we can use standard bounds on E[Z̃k] to get the desired result.

17

3 The Randomized Encoding Procedure

The construction of C, outlined in Section 1, will require quite a few primitives. The next subsection
discusses bipartite graphs coming from high-dimensional expanders, culminating in Theorem 3.6
that describes the graphs G and Gmid we will use. For the reader’s convenience, we include in
Table 2 a table of parameters that we will set throughout the construction.

Parameter Role Setting/notes
ε The parameter for ε-heavy hitters
δ The failure probability for

list-recovery/heavy-hitters
N The size of the universe U in heavy hitters
n The length of the code C0 n = Θ(log1/εN)

k The length of the message encoded by C0 k = Θ(n)

q The size of the field we work over qk = N , and we will set
q = poly(1/ε)

V1 The left-hand side of the bipartite graph
Gmid, used for the initial propagation step.

|V1| = Θ(n)

V2 The right-hand side of the bipartite graph
used to define C′0, corresponding to sets
T ⊆ [n].

|V2| = Θ(n)

m2 The size of the sets T ∈ V2 m2 = 8

Σ The alphabet for the code C Σ = Fm2
q

α, α′, α′′ The rate of the codes C0, C′0, and C′′0 are at
least 1− α, 1− α′, and 1− α′′, respectively.

α = α′ + α′′, and all three are
Θ
(

log q
q

)
τ The distance of C′′0 (and hence a bound on

the distance of C0)
τ = Θ(1/q)

β We have |V2|β = |T |. β = Θ(α) = Θ
(

log q
q

)
Table 2: A summary of the notation used in the construction

3.1 HDXs-Based Bipartite Expanders

Before giving Theorem 3.6, we need additional preliminaries. A d-dimensional simplicial complex
X is a family of sets of some ground set [n] that is downwards closed to containment, each of
cardinality at most d + 1. For each integer i ≥ 0 we denote by X(i) the set of i-dimensional faces,
which are the sets of cardinality i+1 inX . A complex is pure if every i-dimensional face is a subset
of some d-dimensional face.

Let X be a pure d-dimensional complex. Given a probability distribution Dd on X(d), we
extend it to a distribution D over sequences s0 ⊂ s1 ⊂ . . . ⊂ sd for si ∈ X(i) in the natural way:
Choose sd ∼ Dd, and repeatedly choose si−1 ⊂ si by removing a uniformly random element from
si. We let Di be the distribution induced this way on X(i). For each i we can consider the space of
functions f : X(i) → R, which together with the inner product 〈f, g〉i = Es∼Di [f(s)g(s)] form the
inner product space L2(X(i)).

18

Fix b < a ≤ d. Let Ga,b = (R,L,E) be the weighted bipartite graph with R = X(a), L = X(b),

E = {(s, t) ∈ R× L : t ⊂ s} ,

and the weight on an edge (s, t) is Pr[Da = s ∧ Db = t]. Let Ma,b : L2(X(a)) → L2(X(b)) be the
bipartite adjacency operator defined by

(Ma,bf)(t) =
∑

s∈X(a)

Pr[Da = s | Db = t] · f(s)

for every t ∈ X(b). We denote by λ(Ga,b) the spectral norm of Ma,b when restricted to {1}⊥, the
orthogonal complement of the constant functions. Namely,

λ(Ga,b) = sup
f,g⊥1

〈Ma,bf, g〉b
‖f‖ · ‖g‖

.

We can further define the two-step lower walk as follows. Given s ∈ X(a), we choose s′ ∈ X(a)
by first choosing t ∈ X(b) given that t ⊂ s and then choose s′ given that t ⊂ s′. We denote the
corresponding operator by Da,b, and one can see that Da,b = M †a,bMa,b, where M †a,b : L2(X(b)) →
L2(X(a)) is the adjoint operator with respect to the inner products defined by Da and Db on X(a)
and X(b), i.e., the unique operator for which

〈f,Ma,bg〉a = 〈M †a,bf, g〉b

for all f : X(a) → R and g : X(b) → R. Denoting λ(Da,b) as the second largest eigenvalue of the
self-adjoint operator Da,b, this implies that λ(Da,b) = λ(Ga,b)

2.
IfX is a good enough high-dimensional expander thenGa,b has favorable spectral properties. This

connection has been studied, e.g., in [KM17, KO20, DK17, DDFH18, DD19] and we now make it
formal.

Definition 3.1 (link). Given a d-dimensional simplicial complex X equipped with a distribution D, the
link of s ∈ X(i) is a d− (i+ 1)-dimensional simplicial complex defined by Xs = {t \ s : s ⊆ t ∈ X}. The
associated probability measure for the link of s is defined by PrDs [t] = PrD[t ∪ s | s].

Definition 3.2 (underlying graph). Given a d-dimensional simplicial complex X equipped with a distri-
bution D, the underlying graph of X is the graph whose vertices are X(0) and edges are X(1), with the
restriction of D to the vertices and edges.

Definition 3.3 (spectral expander). A d-dimensional simplicial complex is a λ-HDX if for every i <
d − 1 and every s ∈ X(i), the underlying graph of the link Xs is a λ-spectral expander, namely its second
normalized eigenvalue in magnitude is bounded by λ.12

Theorem 3.4 ([DK17]). Let X be a d-dimensional λ-HDX. Then, for any integers b < a ≤ d it holds that

λ(Da,b) ≤
b+ 1

a+ 1
+O(b(a− b)λ).

12Here we give the definition of a two-sided HDX, also known as a two-sided link expander or a two-sided local
spectral expander. If instead we only require the second eigenvalue to be bounded, this gives rise to the weaker, one-
sided, notion. Our results also hold using the weaker variant, due to the result in [KO20].

19

We will use a family of λ-HDXs due to Lubotzky, Samuels and Vishne.

Theorem 3.5 ([LSV05a, LSV05b]). For infinitely many values of n, for every λ > 0 and every positive
integer d there exists an explicit infinite family of d-dimensional λ-HDXs. Furthermore:

1. The simplicial complex can be computed in time poly(n).

2. The distributions Dd and D0 are uniform.

3. For every i < d, each s ∈ X(i) is contained in at most D = D(d, λ) d-dimensional faces. Note that
for constants λ and d, D is constant as well.

More specifically, given λ, letting q be the smallest prime larger than 4
λ2 , there exists such a λ-HDX for each

n satisfying n = qcm for some c = c(d) and any large enough m ∈ N. Also, D = qd
2 .

Hence, there exists a universal constant c > 0 such that for infinitely many values of n and
any two integer constants m2 and m1 = m2 − w for some constant w > 0 we have an (m2 − 1)-
dimensional λ-HDXX withX(0) = [n] for λ = λ(m1−1,m2−1) ∈ (0, 1) being the largest constant
for which both λ(Dm2−1,m1−1) ≤ 1 − w

2m2
and λ(Dm2−1,0) ≤ 2

m2
. Equipped with X , we are now

ready to give the bipartite graphs we work with.

Theorem 3.6. For any positive integers m2 and m1 = m2 − w (for some positive integer w), and for
infinitely many values of n,13 there exist sets V1 ⊆

(
[n]
m1

)
and V2 ⊆

(
[n]
m2

)
, a bipartite biregular graph

G = (V2, [n], E) and a weighted bipartite graph Gmid = (V2, V1, Emid,W) such that the following holds.

1. The graphs G and Gmid are inclusion graphs. Namely, in G, each s ∈ V2 is connected to all its m2

elements, and in Gmid, each s ∈ V2 is connected to all its subsets of cardinality m1. Thus, G has
right-degree m2 and Gmid has right-degree

(
m2

m1

)
.

2. There exists a constant C = C(m2) > 1 such that |V2| = C · n and |V1| ≤ C · n.

3. It hold that λ(G)2 ≤ 2
m2

.

4. Let G2 = (V2, E2) be the two-step random walk graph of G. Then, λ(G2), the second largest eigen-
value, in magnitude, of G2, is bounded by 2

m2
.

5. It holds that λ(Gmid)2 ≤ 1− w
2m2

. In particular, Gmid is connected.

6. Both G and Gmid can be computed in time poly(n).

Proof: We set V2 = X(m2 − 1), V1 = X(m1 − 1), G = Gm2−1,0 and Gmid = Gm2−1,m1−1. The
fact that G is unweighted (or, all its edge weights are the same), and is biregular, follows from the
uniformity of D0 and Dm2−1. Also, note that the random walk operator of G2 is self-adjoint, so all
its eigenvalues are nonnegative. All the items then follow from the above discussion.

Note that we do not use the full power of HDXs-based containment graphs (say, as in [DHK+19]).
In particular, we will not use the spectral properties of Gmid, but only that it is connected.

We conclude this section by giving two lemmas regarding the expansion properties of bipartite
graphs. The first is a straightforward extension of the expander mixing lemma for bipartite graphs.

13More specifically, for any given n0 there is such an n satisfying n0 ≤ n ≤ C · n0 where C = C(m2).

20

Lemma 3.7. Let G = (R,L,E) be a (possibly edge-weighted) bipartite graph with λ(G) ≤ λ. Then, for
any A ⊆ L and B ⊆ R it holds that

|Pr[E(A,B)]− α · β| ≤ λ
√
αβ(1− α)(1− β),

where we denote Pre=(u,v)[u ∈ A ∧ v ∈ B], α = Pru∼L[u ∈ A], and β = Prv∼R[v ∈ B].
Note that we choose u ∼ L (and similarly v ∼ R) according to the distribution induced by the edges,

namely Pr[L = u] =
∑

v Pr[(u, v)].

The second is an extension of Tanner’s inequality, given in Theorem 2.6.

Lemma 3.8. Let G = (R = [N], L = [n], E) be a (possible weighted) bipartite graph with λ(G) ≤ λ, and
denote C = N

n ≥ 1. Assume that the induced probability distributions on L and R are uniform. Then, for
every S ⊆ R it holds that

|ΓG(S)| ≥ 1

ρ(S) + λ(1− ρ(S))
· |S|
C
.

We defer the proof of Lemma 3.8 to Appendix A.2.

3.2 The Base Code C0

We set m2 = 8 and m1 = w = 4. From here onward, set n to be some integer for which the graphs
G, Gmid and G2 from Theorem 3.6 exist. Our code C0 will be

C0 = C′0 ∩ C′′0 ,

where:

• C′0 is a linear high rate Tanner code constructed from a subgraph of G.

• C′′0 is a linear high rate Tanner code with noticeable distance.

In what follows, we give the construction of both codes. To this end, we set some parameters.
Fix some α′, α′′ > 0 (to be chosen later), and define

β =
α′

(m2 −m1)C
, (1)

where C is the constant, depending on m2, that is guaranteed to us by Theorem 3.6. Also, set
α = α′ + α′′.

3.2.1 The code C′0
For an inner code for C′0, we use the following code.

Claim 3.9. There exists a constant q00 ∈ N such that q00 is the smallest prime power larger than m2 and so
that for every q ≥ q00 there exists a linear code C00 ⊆ Fm2

q with the following properties.

1. C00 has dimension m1.

2. C00 has distance δ00m2 ≥ m2 −m1 + 1. Thus, it is uniquely decodable from m2 −m1 erasures.

21

Proof: For a prime power q00 ≥ m2 + 1, the standard Reed-Solomon code satisfies these require-
ments.

Fix a prime power q ≥ m2 + 1 to be determined later. We define the code C′0 ⊆ Fnq as follows.
Let T ⊆ V2 be some set of β|V2| vertices of V2. Then,

C′0(T) =
{
c ∈ Fnq : ∀T ∈ T , c|T ∈ C00

}
.

The rate of C′0(T) can be lower bounded in a standard way.

Claim 3.10. C′0(T) has rate at least 1− α′.

Proof: The code C0 is defined by

|T |
(

1− m1

m2

)
m2 ≤ (m2 −m1)β|V2|

linear equations, so its dimension is at least n− (m2 −m1)βCn ≥ (1− α′)n.

We will not establish distance for C′0, but we will require a certain connectivity property from
our set T .

Claim 3.11. There exists a subset T ⊆ V2 of size β|V2| and an ordering T =
{
T1, . . . , Tβ|V2|

}
such that

for every integer 1 < i ≤ β|V2|, there is a path of length two from Ti to Tj in Gmid for some j < i. The
subset and its ordering can be found deterministically in time O(n).

Proof: Consider the two-step walk graph G2. The graph G2 is connected, and in particular con-
tains a tree T ⊆ V2 of size β|V2|. Such a tree can be found deterministically in time O(|V2|) = O(n),
say by performing depth-first search from an arbitrary starting vertex. The ordering T1, . . . , Tβ|V2|
can be determined according to the inorder traversal on the (partial) DFS tree.

Fixing T to be the set guaranteed by the above claim, from here onward we denote C′0 = C′0(T).
The following easy claim will clarify our choice of T .

Claim 3.12. For i > j, let Ti, Tj ∈ T such that there exists a path of length two from Ti to Tj in Gmid. Let
cj : Tj → Fq and ci : Ti → Fq ∪ {⊥} be such that ci|Ti∩Tj = cj |Ti∩Tj . Then, there is at most one possibility
to complete ci to a codeword of C00, and such a completion can be done in constant time.

The claim follows using Claim 3.9 and the fact that |Ti ∩ Tj | ≥ m1. Applying the above two
claims iteratively, we can conclude the following.

Corollary 3.13. Denote U = ΓG(T) ⊆ [n]. Then, for any c1 : T1 → Fq ∈ C00 there exists at most one
c ∈ FUq such that c|T1 = c1 and c ∈ C′0|U .

Moreover, given any c1 : T1 → Fq ∈ C00, the unique c can be found, if exists, deterministically, in time
O(n).

22

3.2.2 The Code C′′0
For C′′0 , we will use the following code.

Theorem 3.14. There exists a prime power q′00 such that the following holds for any integer q ≥ q′00, a
positive integer n and α′′ > 0. There exists an explicit linear code C′′0 ⊆ Fnq of rate 1 − α′′ and relative
distance δ′′ = c

log(1/α′′)α
′′ for some universal constant c > 0 that is uniquely decodable from up to τ , δ′′

fraction of erasures in time poly(log(1/α′′)) · n.
Moreover, C′′0 is a Tanner code with a Reed-Solomon code as as inner code. Namely, there exists a bipartite

graph G′′ = (L = [n], R,E′′) with right-degree D′ such that

C′′0 =
{
c ∈ Fnq : ∀v ∈ R, c|ΓG′′ (v) ∈ CRS

}
for some suitable Reed-Solomon code CRS ⊆ FD′q . In particular, we may take q′00 to be the smallest prime
power larger than D′.

Proof: Let G′′ = ([n], R,E′′) be the regular bipartite graph given in Lemma 2.7, for |R| = α′′

4 n.
Thus, G′′ has left-degree D = Θ(log(1/α′′)) and right-degree D′ = 4D

α′′ . Let CRS ⊆ FD′q be a Reed-
Solomon code of distance dRS = 5, and define the Tanner code C′′0 accordingly. In this setting, C′′0
indeed has dimension at least

n− |R|
(
D′ − dim (CRS)

)
= n− 4|R| = (1− α′′)n.

To bound δ′′, assume towards a contradiction that there exists a codeword z ∈ C′′0 of Hamming
weight less than δ′′n , c′′

4
α′′n

log(1/α′′) , and let I ⊆ [n] be the set of its nonzero coordinates. Let U ⊆ R
be the set of constraints that see at least 1 and less than dRS neighbors in I , and let c′′ be the constant
guaranteed by Lemma 2.7. Thus,

D · |I| ≥ |U |+ dRS |ΓG(I) \ U | ≥ dRS ·
D

4
|I| − (dRS − 1) |U |,

where we have used the expansion property of G′′. As

(dRS − 1) |U | ≥ (dRS − 1)D · |I| − dRS ·
3D

4
|I|,

we get

|U | ≥ D
(

1− 3

4
· dRS
dRS − 1

)
· |I| ≥ 1,

in contradiction of the fact that z was a codeword, and thus should have no violated constraints.
We can thus set c = c′′

4 and q′00 to be the smallest prime power which is greater than D′.
To establish efficient decoding, we follow a very similar reasoning. Given w ∈ (Fq ∪ {⊥})n, let

Ew ⊆ [n] be the set of erased coordinates in w. We perform the following.

1. Initialize w0 ← w and E0 ← Ew.

2. For i = 0, 1, 2, . . . ,,

(a) If Ei = ∅, break and return ŵ = wi.

23

(b) Let Ui be the set of constraints in R that see at least 1 and less than dRS neighbors in Ei.
As |Ei| ≤ δ′′n, it holds that |Ui| ≥ D

16 |Ei|, following our calculations above.

(c) As the Reed-Solomon code is uniquely decodable from dRS−1 erasures, we can decode
each constraint in U , and therefore can replace each wi[j] =⊥ with the correct symbol
in Fq whenever j ∈ ΓG(Ui) ∩ Ei. Update wi to wi+1 accordingly.

(d) Set Ei+1 = Ei \ ΓG(Ui).

To complete the correctness of the decoding procedure, we need to argue that ΓG(Ui)∩Ei is never
empty. This is clear, as D

16 |Ei| ≥ 1 whenever Ei itself is nonempty.
Finally, we want to argue that the above procedure can be performed efficiently. Toward this

end, first let us bound the number of times Item 2 above is performed. Each constraint in Ui is
adjacent to at least one vertex of Ei. It holds that

|ΓG(Ui) ∩ Ei| ≥
1

16
|Ei|,

as otherwise we would have a vertex in Ei with more than D adjacent vertices. Thus, |Ei+1| ≤
15
16 |Ei|, and soO(log n) iterations suffice. At each iteration, we need to compute Ui and ΓG(Ui)∩Ei,
which takes O(D|Ei|) time, and perform unique decoding of Reed-Solomon from erasures for
|ΓG(Ui) ∩ Ei| times. Unique decoding of Reed-Solomon from erasures amounts to performing
a univariate polynomial interpolation over Fq. Fast, FFT-based, interpolation can be done in
O(D′ log2D′ log logD′) field operations (see, e.g., [VZGG13, Section 10.2]). Overall, the decoding
running time is bounded by∑

i

(
O(D|Ei|) + |ΓG(Ui) ∩ Ei| ·O(D′ log2D′ log logD′)

)
= O(D) ·

∑
i

|Ei|+

O(D′ log2D′ log logD′) · |E0| = O(D) · |E0|+O(D′ log2D′ log logD′) · |E0|,

and since D′|E0| is bounded from above by a constant, the above is at most

O(log2D′ log logD′) · n = poly(log(1/α′′)) · n.

3.2.3 Putting C′0 and C′′0 Together to Obtain C0

Fix q to be the smallest prime power which is larger than q00, q′00, i.e., larger than

max
{
m2 + 1, D′ + 1

}
= Θ

(
log(1/α′′)

α′′

)
,

and instantiate C′0 and C′′0 accordingly (we will determine the precise value of q later on). Thus,

C0 = C′0 ∩ C′′0

is a linear code over Fnq with rate at least

r0 ≥ 1− α′ − α′′ = 1− α.

24

We can lower-bound its distance by the distance of C′′0 , but we will not use this property directly.
For the choice of parameters, we set

α′ = α′′ =
cα log q

q
,

where cα > 1 is a universal constant chosen to satisfy q ≥ D′ + 1. Thus,

α =
2cα log q

q
and τ ≥ cτ

q
(2)

for some universal constant cτ , where we recall that τ is the fraction of erasures that C′′0 can handle
in Theorem 3.14.

To conclude this section, we argue that C0 admits nearly-linear time encoding procedure.

Lemma 3.15. There exists a deterministic algorithm that on input x ∈ Fk=(1−r0)n
q , runs in timeO(log q ·n)

and outputs C0(x) ∈ Fnq , given access to T , G and G′′. The algorithm uses poly(n) preprocessing time and
O(log q · n) auxiliary space.

Proof: The encoding amounts to encoding a Tanner code, imposing the constraints of both C′0
and C′′0 . We can think of C0 as a low density LDPC code with coefficients from Fq over its edges,
by identifying each parity check of Reed-Solomon with a separate vertex. Namely, there exists
GLDPC = (L = [n], RLDPC, ELDPC) such that GLDPC is right-regular with degree

dLDPC = max
{
D′,m2

}
= D′,

|R| = α · n, and each e ∈ ELDPC is assigned with c(e) ∈ Fq, such that

C0 =

x ∈ Fnq : ∀u ∈ R,
∑

e=(u,v)

c(e) = 0

 .

In our case, computing GLDPC given access to the graphs used in the Tanner codes can be done in
time O(D′ · n), as the parity check matrix of the Reed-Solomon code can be easily computed.

Fortunately, Kobayashi and Shibuya gave a linear time encoding algorithm for q-ary LDPC
codes. Formally, their result goes as follows.

Theorem 3.16 ([KS12]). Let H be an m × n parity check matrix of some linear code C : Fkq → Fnq , let
nz(H) be the number of its nonzero entries and let rw(H) be the maximal number of nonzero entries in each
row. Then, there exists an algorithm that runs in time O(nz(H) + m · rw(H)) and computes C(x) given
x ∈ Fkq . The algorithm uses poly(n) preprocessing time and O(nz(H) +m · rw(H)) auxiliary space.

We note that the preprocessing step in [KS12] involves inversion of square matrices of dimen-
sion roughly αn, however it suffices to store matrices of dimension roughly D′ × αn in the prepro-
cessing step.

In our case, both nz(H) and m · rw(H) amounts to

|ELDPC| = D′ · |R| = αD′ · n = O (log q · n) ,

and so the lemma follows from Theorem 3.16.

25

3.3 High-Rate Codes Have Many Balanced Codewords

We argue that C0, and in fact any high rate code, has many codewords whose empirical distribution
is close to uniform (we will prove a slightly stronger claim). Towards this end, we first extend
the standard Shannon entropy, as well as the Kullback–Leibler divergence, to arbitrary logarithm
bases.

Definition 3.17 (Shannon entropy, KL divergence). Let X be a random variable distributed over some
domain Ω, and let q ≥ 2 be any integer. The q-ary Shannon entropy of X is given by

Hq(X) =
∑
z∈Ω

Pr[X = z] logq
1

Pr[X = z]
.

The q-ary KL divergence between two random variables X,Y ∼ Ω is given by

Dq(X‖Y) =
∑
z∈Ω

Pr[X = z] logq
Pr[X = z]

Pr[Y = z]
.

In particular, if Ω = F`q then Dq(X‖UΩ) = `−Hq(X).

Note thatHq(X) ∈ [0, logq |Ω|], andHq(X) = logq |Ω| if and only ifX is the uniform distribution
over Ω.

Given a codeword c ∈ Fnq , we write Hq(c) to denote the q-ary entropy of the corresponding
empirical distribution c over Fq for which Pr[c = σ] = Pri∈[n][ci = σ]. Given two codewords c, c′ ∈
Fnq , we write Hq(c, c

′) to denote the q-ary entropy of the empirical distribution (c, c′) over F2
q for

which Pr[(c, c′) = (σ, σ′)] = Pri∈[n][ci = σ ∧ c′i = σ′].
The following claim is a direct corollary of Pinsker’s inequality (see, e.g., [Gra11, Section 6.3]).

Claim 3.18. Let c, c′ ∈ Fnq be such that Hq(c, c
′) ≥ 2(1− γ) for some γ ≥ 0. Then,∣∣(c, c′)− UFq×Fq

∣∣ ≤√ln q · γ.

The same holds for the empirical distribution of a single copy. Namely, if c ∈ Fnq is such that Hq(c) ≥ 1− γ

then
∣∣c− UFq

∣∣ ≤√1
2 ln q · γ.

Next, we show that there are not many (c, c′)-s with small Hq(c, c
′). First, we exhibit a nice

property of Hq(·).

Claim 3.19. Let X ∼ Fq be any empirical distribution of a vector in Fnq . Then, the number of c ∈ Fnq whose
empirical distribution is identical to X is at most qnHq(X).

Similarly, if X ∼ F2
q is any empirical distribution of a pair of vectors, each in Fnq , then the number of

(c, c′) ∈ Fnq × Fnq whose empirical distribution is identical to X is at most qnHq(X).

For the proof, see [CS04, Section 2].

Claim 3.20. Fix some 0 < γ < 1. The number of vectors (c, c′) ∈ Fnq × Fnq satisfying Hq(c) < 2(1− γ) is
at most n2q · q(1−γ)2n.

26

Proof: Fix any empirical distribution X ∼ F2
q satisfying Hq(X) < 2(1 − γ). By Claim 3.19, there

are at most q(1−γ)2n vectors c ∈ Fnq whose symbols distribute according to X . As there are at most(
n+q−1

q

)2 ≤ n2q such distributes overall, we get our desired bound.

We are now ready to prove our main lemma for this section.

Lemma 3.21. Let C ⊆ Fnq be an error correcting code of rate 1− α such that n
logn ≥

2q
α log q . Then,

Pr
(c,c′)∈C×C

[∣∣(c, c′)− UFq×Fq
∣∣ ≤√2 ln q · α

]
≥ 1− q−αn.

Proof: LetB ⊆ Fnq ×Fnq be the set of codewords (c, c′) for which
∣∣(c, c′)− UFq×Fq

∣∣ > √2 ln q · α , ε.
By Claim 3.18, each (c, c′) ∈ B satisfies Hq(c, c

′) < 2(1 − γ) for γ = ε2

ln q . Thus, by Claim 3.20,
|B| ≤ n2q · q(1−γ)2n. As |C × C| = q(1−α)2n, we get that

Pr
(c,c′)∈C×C

[∣∣(c, c′)− UFq×Fq
∣∣ > ε

]
≤ n2qq(1−γ)2n

q(1−α)2n
= q
−
(
γ−α− q logq n

n

)
2n
.

As γ − α− q logq n

n ≥ α
2 , the lemma follows.

3.4 The Randomized Encoding C

We fix some universe U of cardinality N , a heavy hitters threshold ε > 0 and a designated failure
probability δ > 0, and write N = qk, where q = q(ε) is the parameter guaranteed to us from
Section 3.2 whose exact value we will soon determine. Throughout, we will assume some fixed
explicit bijection [N]→ Fkq .

We also set some small ζ > 0, and fix an independence parameter

t = n1−ζ .

One can think of ζ as an arbitrary small constant, but it will help us setting ζ = o(1), and will be
possible as long as ε is not too small.

Let
C0 : Fkq → Fnq

be the error correcting code from Section 3.2, so n = k
r0

= O(logqN). Let G = (V2, [n], E) be the
biregular bipartite graph guaranteed to us by Theorem 3.6, with right-degree m2, and V2 = C · n.
We use the following families of permutations.

• Let π1 ∼ SN be the pairwise permutation family guaranteed to us by Theorem 2.5. We
enumerate the support of π1 as π(1)

1 , . . . , π
(`1)
1 , where log `1 = O(logN).

• Let π2 ∼ Sn be a truly uniform permutation. Each π2 ∼ π2 can be explicitly described using
n words, and it takes O(n) time to sample from π2 (say by an efficient Fisher-Yates shuffle).

Denote Σ = Fm2
q . Given π1 ∼ π1 and π2 ∼ π2, the encoding

Cπ1,π2 : Fkq → Σ|V2|

goes as follows. Given x ∈ [N],

27

1. Compute x0 = π1(x).

2. Compute y0 = C0(x0) ∈ Fnq .

3. Permute the coordinates of y0 according to π2. Namely, let y ∈ Fnq be such that y[i] = y0[π2(i)]
for every i ∈ [n].

4. Aggregate the symbols of y according to G. Namely, let c ∈ ΣV2 be the word in which for
every T ∈ V2, c[T] = y|ΓG(T) ∈ Fm2

q .

5. Output c.

First, note that C has constant rate: r0
C·m2

. We next argue for the efficiency of the encoding.

Lemma 3.22. The encoding of C can be computed in time O(logN) and space O(logN) with a preprocess-
ing step which takes poly(logN) time. More specifically, given T , G, and G′′, x ∈ Fkq , i1 ∈ {0, 1}log `1 and
π2 ∼ π2, then

Cπ
(i1)
1 ,π2(x)

can be computed in time O(logN).

Proof: The preprocessing step includes the following.

• Computing the representation of G as an adjacency list in time poly(n) (see Theorem 3.6).

• Computing the set T ⊆ V2 (see Section 3.2). This takes O(n) time.

• Computing the representation of G′′. We draw G′′ uniformly at random, and aggregate the
error in the end. By Lemma 2.7, this takes O(n) time.

• Performing the preprocessing step for the encoding of C0. By Lemma 3.15 we can do this in
time poly(n) too.

• Drawing i1 ∈ {0, 1}`1 uniformly at random, as well as π2 ∼ π2 uniformly at random. By the
discussion above, this takes O(n) time.

Observe, furthermore, that the preprocessing step uses O(log q · n) space. Once everything is in
place,

• Applying π1 can be done in constant time,

• Computing C0(x) can be done in O(log q · n) time (see Lemma 3.15),

• Permuting according to π2 can be done in linear time, and,

• Folding according to G ca be done in time O(|V2| ·m2) = O(n).

The lemma is thus concluded.

As stated, our combinatorial objects (graph families, permutation families) exist for infinite
value of n. However, with negligible loss in parameters, we can assume from here onward that
we can handle any positive integer n by performing standard modifications (and in particular, we
will perform field arithmetic even when we do not explicitly say the field’s cardinality is a prime
power).

28

4 The Heavy Hitters Algorithm

Recall that we fixed some universe U of cardinality N = qk, and were given heavy hitters parame-
ters ε, δ > 0. Also, recall that we set n = O(logqN) following the parameters of our code C, and the
parameter q is yet to be set, and will be set later on as a function of ε. We will use the primitives
defined in Section 3, and the following ingredients from Section 2.2.

• Let CMS be the data structure from Theorem 2.1, instantiated with failure probability δ1 =
δ

3|Σ| , threshold parameter ε, and universe size N . For simplicity, we assume that δ ≤ |Σ|−1.
Thus, by Theorem 2.1, the space requirement is S1 = O(1

ε log 1
δ), the update time is U1 =

O(log 1
δ) and the 1-query time is Q1 = O(log 1

δ). It is instructive to think of δ = 1
poly(N) .

• Let InnerHH be the data structure from Theorem 2.3, instantiated with γ = 1
4 , failure prob-

ability δ2 = cε log q
2ε·√q for some constant cε later to be determined, threshold parameter ε, and

universe size |Σ|, recalling that |Σ| = qm2 . Note that δ2 ≤ 1
|Σ| for a large enough q. By Theo-

rem 2.2, the space requirement is S2 = O(1
ε log q), the update time is U2 = O(log q) and the

query time is Q2 = O(1
ε log2 q).

Remark 1 (Choice of InnerHH). We remark that if we wanted to instantiate InnerHH with, say, a Count-
Min Sketch (rather than the construction of [LNNT16a] from Theorem 2.3), our construction would still
work, with a slightly worse dependence on ε.

4.1 Setting Up the Workspace

We allocate the space needed for a single instance of CMS, CMS, and n instances of InnerHH,HHT

for every T ∈ V2. This takes space

S1 + |V2| · S2 = O

(
n

ε
· log q +

log(1/δ)

ε

)
.

Next, draw the randomness r ∼ r needed for the auxiliary data structure instances of CMS and
InnerHH, where the randomness is independent among the instances. We use rT when we want to
explicitly refer to the randomness used by the individual auxiliary sketch HHT .

Finally, we allocate the space needed to compute C, including the preprecessing step. This
includes computing the required graphs and drawing the randomness for the permutations. By
Lemma 3.15, this takes O(logN) space. We will also need another O(logN) words for auxiliary
computations. We record the overall space requirement in the following lemma.

Lemma 4.1 (space requirement). The overall space used is O
(

log(N/δ)
ε

)
.

4.2 The Update Procedure

We are given x ∈ U and f(x) = ∆ ∈ R.

1. Perform an update to CMS on the input (x,∆).

2. For every T ∈ V2, compute cT = Cπ1,π2(x)[T] ∈ Σ.

29

3. Upon computing each cT , perform an update to HHT on the input (cT ,∆).

The next lemma readily follows from our discussions above.

Lemma 4.2 (update time). The above update procedure can be preformed in time O
(
log N

δ

)
and can be

computed within the workspace’s auxiliary space.

Before we continue, we set a new helpful notation.

The function fT . For T ∈ V2 and σ ∈ Σ, let fT (σ) denote the frequency of σ at HHT , namely

fT (σ) =
∑
x∈U

f(x) · 1C(x)[T]=σ.

Note that fT is a function of π1 and π2. We will often want to specify it explicitly, so we denote it
by fπ1,π2

T .

4.3 The Query Procedure

Our query procedure goes as follows. First, we apply the ε-heavy hitters algorithm on each inner
ε-HH data structure. Treating the output of each application as an input list, we attempt to list-
recover the code C. The list-recovery will start by establishing, for every initial “advice”, a large
enough fraction of correct symbols induced by our set T given in Section 3. Then, we will attempt
to propagate the information to additional symbols, relying on expansion properties and favorable
properties of the input lists induced by the randomness used in the encoding process. Finally, we
use the unique decoding algorithm of the code C0. See Section 1 for a more elaborate high-level
discussion of our list-recovery approach to the query procedure.

1. Run the heavy hitters algorithm with threshold parameter ε and error parameter δ2 on each
HHr

T to obtain a list Lπ1,π2,r
T for every T ∈ V2.

2. Choose an arbitrary T ? ∈ T that satisfies
∣∣Lπ1,π2,r

T ?

∣∣ ≤ 4
ε , where T is the set given in Sec-

tion 3.14 Initialize Lπ1,π2,r ← ∅.

3. For each σ? ∈ Lπ1,π2,r
T ? ,

(a) Set T0 ← T and ŷ ∈ (Fq ∪ {⊥})n. We start with ŷ =⊥n.

(b) Denoting U = ΓG(T) ⊆ [n], use Corollary 3.13 and σ? : T ? → Fq to find the unique c
that agrees with C′0|U . If none exists, move on to the next σ?.

(c) Set ŷ|U = c.

(d) For i = 0, 1, 2, . . .,

• Let Si = ΓG(Ti), and note that we already know ŷ[j] for every j ∈ Si.
• Let Fi = ΓG(Si) \ Ti, and set Ti+1 ← Ti.
• For every T ∈ Fi such that

∣∣Lπ1,π2,r
T

∣∣ ≤ 4
ε ,

– By definition, there is some j ∈ Si such that j ∈ ΓG(T).

14We can assume without loss of generality that T ? is the first element in the ordered set T .

30

– If there is a unique σ ∈ Lπ1,π2,r
T such that σj = ŷ[j],15 set ŷ|ΓG(T) ← σ and add

T to Ti+1.
• If |ΓG(Ti+1)| ≥ (1− τ)n, for the τ given in Theorem 3.14, break.

(e) Apply π−1
2 to the coordinates of ŷ to get ŷ0.

(f) Run the unique decoding algorithm of C′′0 on ŷ0 to recover all coordinates of ŷ0. If the
unique decoding failed, move on to the next σ?.

(g) Check that ŷ0 ∈ C′0. If not, move on to the next σ?.

(h) We know that ŷ0 ∈ C0. Add it to Lπ1,π2,r.

4. For every ŷ0 ∈ Lπ1,π2,r,

(a) Retrieve the x̂0 satisfying C0(x̂0) = ŷ0.

(b) Compute x̂ = π−1
1 (x̂0).

(c) Use CMS to obtain f̂ , an estimate of f(x̂). If f̂ ≥ ε‖f‖1, add x̂ to the final heavy hitters
list.

Lemma 4.3 (query time). The above query procedure takes logN ·polylog(q)
ε time and can be computed within

the workspace’s auxiliary space.

Proof: In the preprocessing stepG and T were already computed, as well as the graphG′′ needed
to decode C′′0 . Running the heavy hitters algorithm on all HHr

T -s in Item 1 takes O
(

1
ε log2 q · n

)
time. During Item 1, we will store not only LT , but also m2 Red-Black trees, HT,j for j ∈ [m2].
These data structures will store key-value pairs with keys in Fq and support search and insert,
each in time O(log q). These will have the property that for a ∈ Fq HT,j .search(a) will return a
pointer to σ ∈ LT if σ is the unique element of LT with σj = a, and otherwise it will return −1.
Note that we can initialize such data structures in timeO(m2|LT | log q), so the total amount of time
required is O(nm2|LT | log q) = O

(
n log q
ε

)
. Moreover, the space required to store both LT and the

m2 search trees is O(q ·m2 + |LT |) for each T , for a total of O(n/ε) space.
Moving onto the next step of the algorithm, computing c|U , per σ?, takes O(n) time, for a total

of O(n/ε) time, recalling that there are at most O(1/ε) values of σ? to iterate through.
We now consider each iteration of Item 3d. For each σ?, we essentially do a breadth-first search

on the graph G, continuing along a path only if we add T to Ti+1. At each step in this breadth-first
search, we must decide whether or not to add T to Ti+1, and whether to update ŷ|ΓG(T). We do
this by querying the data structures HT,j described above. In time O(log q), given a value of j
and ŷ[j], we query HT,j .search(ŷ[j]). If it returns σ ∈ LT , we add T to Ti+1 and update ŷ in time
O(1). Otherwise we do nothing. Therefore, the total time at each step of the breadth-first search is
O(log q), and so the total running time, per σ?, is O(n log q), recalling that there are O(n) vertices
and edges in G. Thus, the total running time of Item 3d over all σ? is O

(
n log q
ε

)
.

Step Item 3e takes O(n) time, and Item 3f take poly(log q) · n time, following Theorem 3.14.
To perform Item 3g, we need to check all the constraints of C′0, which can be done in linear time.
Overall, all iterations of Item 3 take (poly(log q) +O(1/ε)) · n time. Retrieving x̂0 for each ŷ0 takes
O(n log q) time, given the preprocessing step of Lemma 3.15. Applying π−1

1 amounts to basic field

15Abusing notation, by σj we actually refer to σ[j′] for j′ ∈ [D], where j is the j′-th element of ΓG(T).

31

arithmetic. As there are at most 4
ε elements in Lπ1,π2,r (otherwise we can just abort and declare

failure), we can maintain an overall running time of n·poly(log q)
ε .

For the auxiliary space needed to perform the query procedure, note that we can only store the
ŷ0-s that end up being in the final heavy hitters list.16 Thus, we only need to store O(n/ε) words,
on top of the auxiliary space needed for the unique decoding algorithm and the auxiliary space
needed for the HHT -s and CMS, which is already allocated.

5 Correctness of the Query Procedure

In this section we will establish the correctness of the above query procedure, or, looking at it
differently, we will show that our lists are “random enough” to admit very good list recovery
parameters via our expander-based algorithm.

Set
η =

cη log q

ε · √q
for some constant cη soon to be determined.

Definition 5.1. We say T ∈ V2 is good for (π1, π2, r) if{
σ ∈ Σ : fπ1,π2

T (σ) ≥ ε‖f‖1
}
⊆ Lπ1,π2,r

T ⊆
{
σ ∈ Σ : fπ1,π2

T (σ) ≥ ε

4
‖f‖1

}
.

Claim 5.2. For every T ∈ V2, any fixing of the randomness π1 ∼ π1 and π2 ∼ π2, and with probability at
least 1− δ2 over r ∼ r, it holds that T is good for (π1, π2, r).

Proof: The fixing of π1 ∼ π1 and π2 ∼ π1 makes fT a deterministic function of its input. For any
T ∈ V2, it holds that

Lπ1,π2,r
T ⊆

{
σ ∈ Σ : fπ1,π2

T (σ) ≥ ε

4
‖f‖1

}
with probability at least 1− δ2 over r ∼ r, and{

σ ∈ Σ : fπ1,π2

T (σ) ≥ ε‖f‖1
}
⊆ Lπ1,π2,r

T

with probability 1.

For σ ∈ Σ, we define

Sσ = {σ′ ∈ Σ \ {σ} : ∃j ∈ [m2], σ′j = σj}. (3)

Lemma 5.3. Fix T ∈ V2, x ∈ U . Fix σ ∈ Σ. Then, there exists a constant cε > 1 such that

Pr
[
∃σ′ ∈ Sσ, fπ1,π2

T (σ′) ≥ ε

4
‖f‖1

∣∣∣ Cπ1,π2(x)[T] = σ
]
≤ cε log q

ε · √q
.

Moreover, for any pairwise disjoint T, T2, . . . , Tt ∈ V2 and an event Fπ1,π2,T2,...,Tt(x) whose randomness is
over π1 and π−1

2 (T2), . . . ,π−1
2 (Tt),

Pr
[
∃σ′ ∈ Sσ, fπ1,π2

T (σ′) ≥ ε

4
‖f‖1

∣∣∣ Cπ1,π2(x)[T] = σ ∧ Fπ1,π2,T2,...,Tt(x)
]
≤ cε log q

ε · √q
.

16As CMS may fail and return x̂ which is not a true heavy hitter, the final list might be larger than 1
ε

. However, such
a case is considered a failure, and we will later see that it happens with probability at most δ.

32

Proof: For the ease of presentation, we begin with the first statement, although it follows from the
second. Then we explain how to prove the second statement.

We first observe that for any π1 ∼ π1 and π2 ∼ π2,

max
σ′∈Sσ

fπ1,π2

T (σ′) ≤
∑

z∈U\{x}

fπ1,π2(z) · 1 {∃j ∈ T, Cπ1,π2(x)[j] = Cπ1,π2(x)[j]} (4)

and we will bound the latter using Markov’s inequality.
Since π1 is a pairwise pseudorandom permutation, (π1(x),π1(z)) = UU ×UU . By Lemma 3.21,

and using the fact that C0 is surjective, with probability at least 1− q−αn over π1 ∼ π1,

(C0(π1(x)), C0(π1(z))) , (c, c′)

satisfies ∣∣(c, c′)− UFq×Fq
∣∣ ≤√2 ln q · α , ξ1. (5)

We will set q in such a way that

n

log n
≥ 2q

α log q
=

q2

cα log2 q
,

so the premise of Lemma 3.21 indeed holds. Denote the indicator of this good event (5) by Eπ1 .
Fix some i ∈ [m2] and any a ∈ Fq. Recall that x is fixed and fix some z 6= x. Fixing some

π1 ∼ π1 for which Eπ1 = 1, we have that

Pr [Cπ1,π2(z)[T]i = a | Cπ1,π2(x)[T]i = a] =

Pr
π2∼π2

[
C0(π1(z))π−1

2 (ΓG(T)i)
= a

∣∣∣ C0(π1(x))π−1
2 (ΓG(T)i)

= a
]
≤ 1

q
+ ξ1,

as π−1
2 (ΓG(T)i) is simply a random element of [n].
Since Pr[Eπ1 = 1] ≥ 1− q−αn, we get that, for any a ∈ Fq,

Pr [Cπ1,π2(z)[T]i = a | Cπ1,π2(x)[T]i = a] ≤ 1

q
+ ξ1 + q−αn , ξ.

By a union bound over all m2 values j ∈ T , it follows that

Pr [∃j ∈ T, Cπ1,π2(x)[j] = Cπ1,π2(x)[j] | Cπ1,π2(x)[T] = σ] ≤ m2 · ξ.

Thus, returning to the quantity Equation (4), using Markov’s inequality and linearity of expecta-
tion,

Pr

 ∑
z∈U\{x}

fπ1,π2(z) · 1 {∃j ∈ T, Cπ1,π2(x)[j] = Cπ1,π2(x)[j]} > ε

4
‖f‖1


≤ 4

ε‖f‖1
·
∑

z∈U\{x}

fπ1,π2(z) · Pr [∃j ∈ T, Cπ1,π2(x)[j] = Cπ1,π2(x)[j] | Cπ1,π2(x)[T] = σ]

≤ 4m2ξ

ε
.

33

We conclude from (4) that

Pr

[
max
σ′∈Sσ

fπ1,π2

T (σ′) ≥ ε

4
‖f‖1

]
≤ 4m2ξ

ε
.

Observing that ξ is dominated by ξ1 =
√
α · 2 ln q and recalling that α = 2cα log q

q , we conclude
that

Pr

[
max
σ′∈Sσ

fπ1,π2

T (σ′) ≥ ε

4
‖f‖1

]
≤ cε log q

ε
√
q

for some constant cε(m2) > 0, and this proves the first statement.
Finally, we move on to discuss the “Moreover” part of the lemma. Once π1 ∼ π1 is fixed, the

randomness is only over π2. Note that for every π2 ∼ π2, π−1
2 (T) and π−1

2 (Ti) are disjoint, for every
2 ≤ i ≤ t.

Denote
Iπ2 = π−1

2 (T2) ∪ . . . ∪ π−1
2 (Tt).

We already established the fact that for most π1 ∼ π1, the empirical distribution (c, c′) is close to
UFq × UFq . Fix such a π1. Now, given any π2 ∼ π2 and an assignment I to Cπ1,π2(x) in Iπ2 , it holds
that ∣∣(c, c′)− [(c, c′)| {Cπ1,π2(x) in Iπ2 is I}]

∣∣ ≤ tm2

n
,

so altogether ∣∣(c, c′, Cπ1,π2(x)[Iπ2]
)
−
(
UFq , UFq , Cπ1,π2(x)[Iπ2]

)∣∣ ≤ ξ1 +
tm2

n
,

where the two copies of UFq are independent. Following the same outline as before, we get that,
for any i ∈ T ,

Pr
[
Cπ1,π′2(z)[T]i = a

∣∣∣ Cπ1,π′2(x)[T]i = a ∧ Fπ1,π2,T2,...,Tt(x)
]
≤ m2

(
1

q
+ ξ1 +

tm2

n
+ q−αn

)
.

We will set q and ζ such that
tm2

n
≤ 1

q
,

and in particular, the ξ1 term still dominates the bound above. Thus we may continue with the
proof as before, and the same bound holds.

Given Lemma 5.3, we can now say something about the probability that a “heavy hitter” x ∈ U
that yields the symbol σ ∈ Σ at T is confounded, in the sense that Lπ1,π2,r

T contains some σ′ ∈ Sσ.
(Recall from Equation (3) that Sσ is the set of all σ′ 6= σ so that σj = σ′j for some j ∈ [m2].)

Lemma 5.4. Fix x ∈ U such that f(x) ≥ ε‖f‖1 and fix T ∈ V2. Let σ = Cπ1,π2(x)[T]. Then, with
probability at least 1− η over π1 ∼ π1, π2 ∼ π2, and r ∼ r, we have Sσ ∩ Lπ1,π2,r

T = ∅.
Moreover, the above holds even conditioning on any event Fπ1,π2,r,T2,...,Tt(x) whose randomness is over

π1, π−1
2 (T2), . . . ,π−1

2 (Tt), and rT2 , . . . , rTt , where T, T2, . . . , Tt ∈ V2 are pairwise disjoint.

34

Proof: Fix σ ∈ Σ, and in the rest of the analysis we condition on Cπ1,π2(x)[T] = σ and F =
Fπ1,π2,r,T2,...,Tt(x), recalling that rT is independent of rT2 , . . . , rTt . We can write

Pr
[
∃σ′ ∈ Sσ ∩ Lπ1,π2,r

T

∣∣ Cπ1,π2(x)[T] = σ ∧ F
]

=

E
(π1,π2)∼π1×π2,r|Cπ1,π2 (x)[T]=σ,F

[
Pr
[
∃σ′ ∈ Sσ ∩ Lπ1,π2,rT

T

]]
(6)

which is at most

E
(π1,π2)∼π1×π2,r|Cπ1,π2 (x)[T]=σ,F

[
Pr
r∼rT

[
∃σ′ ∈ Sσ ∩ Lπ1,π2,r

T

∣∣ T is good for (π1, π2, r)
]

+

Pr
r∼rT

[T is not good for (π1, π2, r)]
]
.

Now, Pr[T is not good for (π1, π2, rT)] ≤ δ2. For a good T , the event σ′ ∈ Lπ1,π2,r
T implies that

fT (σ′) ≥ ε
4‖f‖1. Thus, Equation (6) is at most

Pr
[
∃σ′ ∈ Sσ, fπ1,π2

T (σ′) ≥ ε

4
‖f‖1

∣∣∣ Cπ1,π2(x)[T] = σ, F holds, and T is good for (π1,π2, r)
]

+ δ2.

By Claim 2.10, the above is at most

Pr
[
∃σ′ ∈ Sσ, fπ1,π2

T (σ′) ≥ ε

4
‖f‖1

∣∣∣ Cπ1,π2(x)[T] = σ ∧ F
]

+ 2δ2. (7)

Fix the randomness rT2 , . . . , rTt , so now F = Fπ1,π2,T2,...,Tt(x). By Lemma 5.3, the first term is at
most

cε log q

ε · √q
.

Overall, as δ2 ≤ cε log q
2ε·√q , Equation (7) is at most

cε log q

ε · √q
+ 2δ2 ≤

2cε log q

ε · √q
,

and so it is also true averaging over all fixings of rT2 , . . . , rTt . This proves the lemma.

Definition 5.5. Given π1 ∼ π1, π2 ∼ π2 and r ∼ r, we say T ∈ V2 is excellent for (π1, π2, r) w.r.t. some
x ∈ U if both conditions hold:

1.
{
σ ∈ Σ : fπ1,π2

T (σ) ≥ ε‖f‖1
}
⊆ Lπ1,π2,r

T ⊆
{
σ ∈ Σ : fπ1,π2

T (σ) ≥ ε
4‖f‖1

}
(i.e., it is good).

2. Let σ = Cπ1,π2(x)[T]. Then for all σ′ ∈ Sσ, fπ1,π2

T (σ) < ε
4‖f‖1.

We denote by Exc(T, x, π1, π2, r) ∈ {0, 1} the indicator which is 1 if and only if T is excellent for (π1, π2, r)
w.r.t. x.

Note that if T is excellent w.r.t. x, then there is no σ′ 6= σ = Cπ1,π2(x)[T] in Lπ1,π2,r
T such that

σ′j = σj for some j ∈ [m2].
Combining Lemma 5.4 and Claim 5.2, we can then conclude the following.

35

Corollary 5.6. Fix x ∈ U such that f(x) ≥ ε‖f‖1 and fix pairwise disjoint T, T2, . . . , Tt ∈ V2. Then,

Pr [Exc(T, x,π1,π2, r) = 1] ≥ 1− 2η,

and furthermore, for every b2, . . . , bt ∈ {0, 1},

Pr [Exc(T, x,π1,π2, r) = 1 | (Exc(T2, x,π1,π2, r), . . . ,Exc(Tt, x,π1,π2, r)) = (b2, . . . , bt)] ≥ 1− 2η.

Proof: The first statement follows from a simple union bound. To see the second one, we observe
that indeed

(Exc(T2, x,π1,π2, r), . . . ,Exc(Tt, x,π1,π2, r)) = (b2, . . . , bt)

is an event whose randomness is over π1, π−1
2 (T2), . . . ,π−1

2 (Tt), and rT2 , . . . , rTt .

5.1 The Propagation Step

We now begin analyzing the propagation over the expander. Observe that as T is large, |S0| is
large too, in particular |S0| = Ω(βn) (which follows from Lemma 3.7), but we will not use this fact
directly.

We proceed to analyzing the propagation iterations.

Lemma 5.7. Fix any positive integer L. With probability at least 1− 2L · 2−t over π1 ∼ π1, π2 ∼ π2 and
r ∼ r, the following holds. For every integer 0 ≤ i ≤ L,

|Ti+1| ≥ (1 + µi) · |Ti|

for µi = 1−ρ(Ti)
4Cm2

2
.

Proof: At each iteration i we condition on the previous iteration being successful, i.e., |Ti| ≥ (1 +
µi)|Ti−1|. By Claim 2.10, we can analyze each iteration and then aggregate the error. Formally, we
show by induction that for every i,

Pr [|Ti+1| ≥ (1 + µi) |Ti| | ∀j < i, |Tj+1| ≥ (1 + µj) |Tj |] ≥ 1− 2i · 2−t.

Setting T−1 = {T ?}, the inductive claim is immediate for i = 0. Fix some iteration i ∈ [L], for L to
be determined later, and assume the claim holds for iteration i− 1. In what follows, condition on
the event that |Tj | ≥ (1 + µj−1) |Tj−1| for all j ≤ i.

For T ∈ Fi = Fπ1,π2,r
i , let XT be the indicator random variable (depending on π1, π2 and r),

that is 1 if and only if T does not get added to Ti+1 = T π1,π2,r
i+1 . Let F̃i ⊆ Fi be a maximal set so that

for all T, T ′ ∈ F̃i it holds that ΓG(T) ∩ ΓG(T ′) = ∅. Such a set exists with∣∣∣F̃i∣∣∣ ≥ 1

Cm2
2

· |Fi|

by considering the algorithm that greedily takes a set T ∈ Fi and excludes the at most Cm2
2

T ′-s that overlap with it (note that Cm2 is the left-degree of G). By Corollary 5.6, we can use

36

Theorem 2.9 on the indicators {XT }T∈F̃i , and we know that Eπ1,π2,r[XT] ≤ 2η ≤ 1
4 since being

excellent implies that we add T to Ti+1. Applying Theorem 2.9 with δ = 1, we get that

Pr
π1,π2,r

∑
T∈F̃i

XT >
1

2

∣∣∣F̃i∣∣∣
 ≤ e−t/2,

where we used the fact that
∣∣∣F̃i∣∣∣ � t. To see this, note that

∣∣∣F̃i∣∣∣ ≥ |T0| = α′

m2−m1
n = Ω(n/q),

t = n1−ζ , and we will set the parameters such that q � nζ .
Next, we lower bound the size of |Fi| using the expansion properties of G2. By Tanner’s in-

equality (Theorem 2.6), we have

|ΓG(Si)| ≥ |Ti| ·
1

ρ(Ti) + (1− ρ(Ti)) · 4
m2

2

≥ |Ti| ·
(

1 + (1− ρ(Ti)) ·
(

1− 4

m2

))
≥ |Ti|+

1− ρ(Ti)
2

· |Ti| ,

where we used the fact that m2 ≥ 8. Thus,

|Fi| ≥
1− ρ(Ti)

2
· |Ti| ,

and when the favorable case happens (that is, when
∑

T∈F̃i XT ≤ 1
2 |F̃i|),

|Ti+1| ≥ |Ti|+
1

2

∣∣∣F̃i∣∣∣ ≥ |Ti|+ 1− ρ(Ti)
4Cm2

2

· |Ti| .

By Claim 2.10, we get that the probability that for every j ≤ i+ 1, |Tj | ≥ (1 + µj−1) |Tj−1| is at least

1− 2i · 2−t − 2−t = 1− 2i+1 · 2−t,

as desired.

Finally, we wish to bound L, the number of iterations needed (with high probability) until we
can unique decode. We remark that the reason to bound L is only for the analysis of the failure
probability; the running time of the algorithm is independent of L, because we touch each vertex
at most once. For the claim below, we recall that β is defined in Equation (1) and is defined so that
|T | = β|V2|; and τ is defined in Equation (2) and is the fraction of erasures that the code C′′0 (and
hence C0) can handle.

Claim 5.8. With probability at least 1− 2−t+L over π1 ∼ π1, π2 ∼ π2 and r ∼ r, the propagation process
of the query procedure stops (i.e., breaks the loop in Item 3d) within L = O

(
τ−2 log(1/β)

)
= poly(q)

iterations.

Proof: Let us first find the smallest ρ(Ti+1) for which |ΓG(Ti+1)| ≥ (1−τ)n. By Tanner’s inequality
for bipartite graphs (Lemma 3.8), we know that

ρ(Si+1) ≥ 1

ρ(Ti+1) +
√

2
m2

(1− ρ(Ti+1))
· ρ(Ti+1).

37

Thus, we can keep propagating until the first time that

ρ(Ti+1) ≥

√
2
m2

(1− τ)

τ +
√

2
m2

(1− τ)
.

We make use of the following claim:

Claim 5.9. It holds that √
2
m2

(1− τ)

τ +
√

2
m2

(1− τ)
≤ 1−

√
m2 · τ2

√
2

Proof: For brevity, denote a =
√

m2
2 > 1. Rearranging terms, we want to show that

1− τ
(a− 1)τ + 1

≤ 1− aτ2.

The functions f(τ?) = 1−τ?
(a−1)τ?+1 and g(τ?) = 1− aτ?2 are monotonically decreasing for τ ≥ 0, and

f(0) = g(0) = 1. They then intersect at

τ0 =
−1 +

√
4a− 3

2(a− 1)

and f(τ?) ≤ g(τ?) for τ? ∈ [0, τ0]. m2 was chosen such that a ≤ 3, so τ0 ≥ 1
2 , and indeed τ will be

smaller than 1
2 .

By Lemma 5.7 and the above claim, it is sufficient to choose L so that1 +

√
m2·τ2
√

2

4Cm2
2

L

· β ≥ 1−
√
m2 · τ2

√
2

,

and we get

L ≤ 4
√

2Cm2
2√

m2 · τ2
log

1

β
,

as desired.

5.2 Determining the Parameters

We now set q, ζ, and establish a lower bound on ε. Collecting all constraints, we need to satisfy
the following.

1. There exists a universal constant cq such that q ≥ cq.

2. n
logn ≥

q2

cα log2 q
.

3. tm2
n ≤

1
q , implying that q ≤ 1

8n
ζ .

38

4. cη log q
ε·√q ≤

1
8 .

5. q � nζ .

Fix q = max
{
cq,

1
ε2.25

}
.17 Item 4 readily holds, possibly after increasing cq. For Item 2 to hold, we

should require ε ≥ n−1/2.25.18 Setting ζ such that q ≤ n0.8ζ , Items 3 and 5 hold. Combining these
two requirements, we get ε ≥ n−16ζ/45. Minimizing ζ, we set

ζ =
45 log(1/ε)

16 log n
.

The probability bound of Claim 5.8 then becomes

2L−t/2 ≤ 2−t/4 = 2−Θ(ε2.8125n) ≤ N−Θ(ε2.9). (8)

Note further that for P , max
{

1,Θ
(

log(1/δ)
ε2.9 logN

)}
,

N−P ·Θ(ε2.9) ≤ δ

3
, (9)

and we will use it soon.

5.3 Finishing the Proof

Everything is in place to establish the correctness of our algorithm, followed by a runtime analysis.

Theorem 5.10. With probability at least 1−N−Θ(ε3), the output list L = Lπ1,π2,r of our query procedure
satisfies

{x ∈ U : f(x) ≥ ε‖f‖1} ⊆ L ⊆
{
x ∈ U : f(x) ≥ ε

4
‖f‖1

}
.

where the randomness is over π1 ∼ π1, π2 ∼ π2, r ∼ r and the randomness of the preprocessing step.

Proof: Let δ̃ = N−cε
2.9

for a small enough constant c > 0 implied by Equation (8), and assume
without loss of generality that δ ≤ δ̃. Fix x ∈ L. First, we observe that with probability at least
1− δ̃, all of the following events occur.

• The preprocessing step was successful (that is, the expander G′′ is good enough).

• There exists T ? ∈ T for which |LT ? | ≤ 4
ε . The latter follows from the fact that δ|T |2 ≤ δ̃, which

holds assuming q is at least a large enough constant.

• All 1-query calls of CMS were successful. The latter follows from a simple union bound,
recalling that δ1 = δ

3|Σ| , where δ1 is the failure probability of the large CMS instance as in
the beginning of Section 4.

We consider two cases.
17The choice of ε2.25 is for concreteness. In fact, one can replace it with ε2+γ for some carefully chosen γ = o(1).
18Here too, one can replace − 1

2.25
with − 1

2
− γ for a small γ.

39

1. x is such that f(x) ≤ ε
4‖f‖1. Notice that we only add x to L if we applied the update

procedure of CMS on x and the 1-query procedure of CMS declares x to be a heavy hitter.
As the 1-query procedure of CMS is successful, f̂(x) < ε‖f‖1 and we do not add it to our
output list.

2. x is such that f(x) ≥ ε‖f‖1. Setting σx = C(x)[T ?], we know that fT ?(σx) ≥ f(x) ≥ ε‖f‖1.
As ‖f‖1 = ‖fT ?‖1, by our promise on HHT ? , we get that σx ∈ LT ? . By the analysis above,
with probability at least 1− δ̃, our propagation step succeeds and we output x̂ = x. As CMS
succeeds, we add x to our output list.

The theorem follows from a union bound over at most 4
ε elements.

To reduce the failure probability to our arbitrary δ > 0, we duplicate our workspace P times,
repeat each update P times and perform the query procedure P times as well. Note that we do not
need to duplicate the CMS instance CMS, but just to reduce its failure probability by a negligible
multiplicative factor of 1

P . Having P output lists, we can choose the one with at most 4
ε elements

(conditioned on all CMS 1-query calls being successful). With probability at least 1− 2δ
3 , both the

CMS calls and the preprocessing step is successful, and by Equation (9) we reach our designated
success probability of 1− δ.

Having established correctness, plugging in q we can collect Lemmas 4.1 to 4.3 to the following
theorem.

Theorem 5.11. There exists a constant c > 0 such that the following holds for any positive integer N ,
δ > 0 and ε ≥ (logN)−0.4. Set P = max

{
1, c log(1/δ)

ε3 logN

}
. Then, there exists an algorithm that maintains

f ∈ RN in the strict turnstile model, after a preprocessing step which takes poly(logN) + log(1/δ) time,
and supports the following procedures using space O

(
P · log(N/δ)

ε

)
.

1. An update, which is done in time O
(
P · log N

δ

)
.

2. An ε-HH query, which is done in time

O

(
P · polylog(1/ε)

ε
· logN

)
with failure probability δ. More specifically, with probability at least 1−δ, the query procedure outputs
a list L ⊆ [N] such that |L| ≤ O(1/ε), and for all x ∈ U so that f(x) ≥ ε‖f‖1, x ∈ L.

In particular, choosing the parameter P , we have the following statements:

1. For δ = N−Θ(ε3), the space requirement is O
(

1
ε logN

)
, the update time is O(logN), and the query

time is O
(

polylog(1/ε)
ε logN

)
.

2. For δ = 1
poly(N) , the space requirement is O

(
1
ε4

logN
)
, the update time is O(1

ε3
logN), and the

query time is O
(

1
ε4

logN
)
.

40

6 Randomized List Recovery

Inspecting the proof in Section 5, we can extract a list recovery result for our (randomized) code
C that tolerates a small fraction of erasures. Our randomized encoding can handle input lists that
come from a union of codewords {C(x) : x ∈ L0} for some L0 ⊆ Fkq ; this is what we stated in
Theorem 1.2. Moreover, our algorithm can also handle some extra “distractor symbols,” provided
that those symbols are randomized and unlikely to collide with the symbols that come from L0.
In order to state this formally, we first give a definition that captures the sort of input lists that our
algorithm can handle.

Definition 6.1. Let C : Fkq → Σn′ be a randomized encoding, for Σ = Fbq. Consider a randomized function
of C ∼ C and a set of messages L0 ⊆ Fkq , that outputs lists L1, . . . ,Ln′ ⊆ Σ. We say that such a function is
(t, η)-nice w.r.t. C if the following holds for all L0 ⊆ Fkq (note that the lists Li can depend on L0):

1. For any i ∈ [n′],

• with probability at least 1− η, |Li| = O(|L0|), and,
• with probability 1, C(x)i ∈ Li for all x ∈ L0.

2. For any x ∈ L0 and i ∈ [n′], with probability at least 1 − η it holds that (C(x)i)j 6= σj for every
j ∈ [b] and σ ∈ Li \ {C(y)i : y ∈ L0}.

Furthermore, we require that the above properties should hold t-wise independently across the lists. Namely,
for any x ∈ L0, whether (1) and (2) hold for some i ∈ [n′] is independent of whether it holds for any t − 1
other values of i′ ∈ [n′].

To illustrate this definition, we give a few examples.

Example 6.2 (Lists from a union of codewords). The simplest example of a nice distribution is the
function that gives

Li = {C(x)i : x ∈ L0} .
That is, the listsLi are just given by the union of the codewords inL0. To see that this is (η = 0, t = n′)-nice,
observe that both (1) and (2) hold deterministically, with probability 1. Indeed, (1) holds by construction,
and (2) holds because there are no σ ∈ Li \ {C(y)i : y ∈ L0}, so the condition is trivial.

Example 6.3 (Lists with random distractor symbols). Another natural example of a nice distribution is
the example above, with some uniformly random extra “distractor” symbols. That is,

Li = {C(x)i : x ∈ L0} ∪ {σi,h : h ∈ [r]}

where r > 0 is some parameter and where σi,h are i.i.d. and uniform in Σ. Again, this satisfies item (1)
deterministically, provided that r = O(|L0|). For (2), we can compute the probability of a collision between
the distractor symbols {σi,j : j ∈ [r]} and a given codeword C(x) for x ∈ L0:

Pr
[
(C(x)i)j 6= σj ∀j ∈ [b], σ ∈ {σi,h : h ∈ [r]}

]
=

(
1− 1

q

)br
≤ exp(−br/q).

In particular, when q � br, this is 1 − O
(
br
q

)
. Thus, this distribution is (η, t)-nice where η = O(br/q)

and t = n.

41

Finally, we note that the distribution of distractor symbols that arises in our heavy hitters ap-
plication is also nice for the code C that we use. The first point of Item (1) holds because the lists
Li can only become too large if the inner InnerHH fails and includes items that are not ε/4-heavy
hitters. The second point of Item (1) holds because our instantiation of InnerHH has only one-sided
error. Item (2) holds even for any σ ∈ Li \ {C(x)i}, which follows from Lemma 5.4.

With this definition in place, we can now state our main theorem for list-recovery. Theorem 6.4
generalizes Theorem 1.2, because it allows for input lists with some extra “distractor” symbols, as
per Definition 6.1.

Theorem 6.4. There exist constants c > 1 and γ ∈ (0, 1) such that the following holds for any positive
integers k and ` ≤ kγ . There exists a randomized encoding C : Fkq → Σn′ , for q = poly(`), Σ = FO(1)

q and
n′ = Θ(k), and a randomized list recovery algorithmA running in time `c ·k, with the following guarantee.

For some constant η < 1, and an integer t = k
poly(`) , for any list of messages L0 ⊆ Fkq of size `, and

any distribution over input lists L1, . . . ,Ln′ to A which are randomized functions of C and L0 and are
(t, η)-nice w.r.t. C, the list recovery algorithm A, with probability 1 − `−Ω(k) (over the randomness of the
encoding and the lists), outputs L ⊆ Fkq of size O(`) such that L0 ⊆ L. Furthermore, the encoding time of
C is O(k log `), with a preprocessing step which takes poly(k) time.

We stress that unlike in standard state-of-the-art efficient list recovery algorithms, here we have
a good dependence on `, namely q = poly(`) and |L| = O(`).

We hope that Theorem 6.4 will find more applications. As discussed in Section 1.3, there are
many algorithmic applications of list-recovery in the literature, and several previous applications
of list-recovery have ended up with sub-optimal parameters due to the unavailability of codes that
achieve Goal 1.1. It seems possible that Theorem 6.4 (or a further improvement on our techniques)
could lead to improved results in (non-uniform or “for-each”) group testing or compressed sens-
ing.

Acknowledgements

We would like to thank Jelani Nelson and Amnon Ta-Shma for helpful conversations. We thank
Mahdi Cheraghchi, Venkat Guruswami, and Badih Ghazi for pointing out relevant related work.
We also thank anonymous reviewers for helpful comments and for pointing out related works.

References

[ABN+92] Noga Alon, Jehoshua Bruck, Joseph Naor, Moni Naor, and Ron M. Roth. Construc-
tion of asymptotically good low-rate error-correcting codes through pseudo-random
graphs. IEEE Transactions on information theory, 38(2):509–516, 1992.

[AEL95] Noga Alon, Jeff Edmonds, and Michael Luby. Linear time erasure codes with nearly
optimal recovery. In 36th Annual Symposium on Foundations of Computer Science (FOCS
1995), pages 512–519. IEEE, 1995.

[BADTS20] Avraham Ben-Aroya, Dean Doron, and Amnon Ta-Shma. Near-optimal erasure list-
decodable codes. In 35th Computational Complexity Conference (CCC 2020). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

42

[BDH18] Gerandy Brito, Ioana Dumitriu, and Kameron Decker Harris. Spectral gap in random
bipartite biregular graphs and applications. arXiv preprint arXiv:1804.07808, 2018.

[BNS19] Mark Bun, Jelani Nelson, and Uri Stemmer. Heavy hitters and the structure of local
privacy. ACM Transactions on Algorithms (TALG), 15(4):1–40, 2019.

[CH10] Graham Cormode and Marios Hadjieleftheriou. Methods for finding frequent items
in data streams. The VLDB Journal, 19(1):3–20, 2010.

[CM05] Graham Cormode and Shan Muthukrishnan. An improved data stream summary:
the count-min sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005.

[CN20] Mahdi Cheraghchi and Vasileios Nakos. Combinatorial group testing and sparse
recovery schemes with near-optimal decoding time. In 61st Annual Symposium on
Foundations of Computer Science (FOCS 2020). IEEE, 2020. To appear.

[CS04] I. Csiszár and P. C. Shields. Information theory and statistics: A tutorial. Foundations
and Trends in Communications and Information Theory, 1(4):417–528, 2004.

[DD19] Yotam Dikstein and Irit Dinur. Agreement testing theorems on layered set systems. In
60th Annual Symposium on Foundations of Computer Science (FOCS 2019), pages 1495–
1524. IEEE, 2019.

[DDFH18] Yotam Dikstein, Irit Dinur, Yuval Filmus, and Prahladh Harsha. Boolean function
analysis on high-dimensional expanders. In Approximation, Randomization, and Com-
binatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018), volume
116, pages 38:1–38:20. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2018.

[DDHRZ20] Yotam Dikstein, Irit Dinur, Prahladh Harsha, and Noga Ron-Zewi. Locally testable
codes via high-dimensional expanders. arXiv preprint arXiv:2005.01045, 2020.

[DHK+19] Irit Dinur, Prahladh Harsha, Tali Kaufman, Inbal Livni Navon, and Amnon Ta-Shma.
List decoding with double samplers. In ACM-SIAM 38th Annual Symposium on Dis-
crete Algorithms (SODA 2019), pages 2134–2153. SIAM, 2019.

[DK17] Irit Dinur and Tali Kaufman. High dimensional expanders imply agreement ex-
panders. In 58th Annual Symposium on Foundations of Computer Science (FOCS 2017),
pages 974–985. IEEE, 2017.

[DMOZ20] Dean Doron, Dana Moshkovitz, Justin Oh, and David Zuckerman. Nearly optimal
pseudorandomness from hardness. In 61st Annual Symposium on Foundations of Com-
puter Science (FOCS 2020), pages 1057–1068. IEEE, 2020.

[GI04] Venkatesan Guruswami and Piotr Indyk. Linear-time list decoding in error-free set-
tings. In International Colloquium on Automata, Languages, and Programming (ICALP
2004), pages 695–707. Springer, 2004.

[GK16] Venkatesan Guruswami and Swastik Kopparty. Explicit subspace designs. Combina-
torica, 36(2):161–185, 2016.

43

[GLPS17] Anna C. Gilbert, Yi Li, Ely Porat, and Martin J. Strauss. For-all sparse recovery in
near-optimal time. ACM Transactions on Algorithms (TALG), 13(3):1–26, 2017.

[GNP+13] Anna C. Gilbert, Hung Q. Ngo, Ely Porat, Atri Rudra, and Martin J. Strauss. `2/`2-
foreach sparse recovery with low risk. In International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2013), pages 461–472. Springer, 2013.

[GR08] Venkatesan Guruswami and Atri Rudra. Explicit codes achieving list decoding ca-
pacity: Error-correction with optimal redundancy. IEEE Transactions on Information
Theory, 54(1):135–150, 2008.

[Gra11] Robert M. Gray. Entropy and Information Theory. Springer Publishing Company, In-
corporated, 2nd edition, 2011.

[GS98] Venkatesan Guruswami and Madhu Sudan. Improved decoding of Reed-Solomon
and algebraic-geometric codes. In 39th Annual Symposium on Foundations of Computer
Science (FOCS 1998), pages 28–37. IEEE, 1998.

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Unbalanced ex-
panders and randomness extractors from parvaresh–vardy codes. Journal of the ACM
(JACM), 56(4):1–34, 2009.

[GW13] Venkatesan Guruswami and Carol Wang. Linear-algebraic list decoding for vari-
ants of reed–solomon codes. IEEE Transactions on Information Theory, 59(6):3257–3268,
2013.

[GX12] Venkatesan Guruswami and Chaoping Xing. Folded codes from function field towers
and improved optimal rate list decoding. In 44th Annual Symposium on Theory of
Computing (STOC 2012), pages 339–350. ACM, 2012.

[GX13] Venkatesan Guruswami and Chaoping Xing. List decoding Reed-Solomon, algebraic-
geometric, and Gabidulin subcodes up to the Singleton bound. In 45th Annual Sym-
posium on Theory of Computing (STOC 2012), pages 843–852. ACM, 2013.

[HRZW19] Brett Hemenway, Noga Ron-Zewi, and Mary Wootters. Local list recovery of high-
rate tensor codes and applications. SIAM Journal on Computing, pages FOCS17–157,
2019.

[HW18] Brett Hemenway and Mary Wootters. Linear-time list recovery of high-rate expander
codes. Information and Computation, 261:202–218, 2018.

[IK10] Russell Impagliazzo and Valentine Kabanets. Constructive proofs of concentration
bounds. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques (APPROX/RANDOM 2010), pages 617–631. Springer, 2010.

[INR10] Piotr Indyk, Hung Q. Ngo, and Atri Rudra. Efficiently decodable non-adaptive group
testing. In ACM-SIAM 21st Annual Symposium on Discrete Algorithms (SODA 2010),
pages 1126–1142. SIAM, 2010.

44

[JST11] Hossein Jowhari, Mert Sağlam, and Gábor Tardos. Tight bounds for `p samplers, find-
ing duplicates in streams, and related problems. In ACM SIGMOD-SIGACT-SIGART
30th Annual Symposium on Principles of Database Systems, pages 49–58, 2011.

[KM17] Tali Kaufman and David Mass. High dimensional random walks and colorful expan-
sion. In 8th Innovations in Theoretical Computer Science Conference (ITCS 2017). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[KO20] Tali Kaufman and Izhar Oppenheim. High order random walks: Beyond spectral
gap. Combinatorica, pages 1–37, 2020.

[Kop15] Swastik Kopparty. List-decoding multiplicity codes. Theory of Computing, 11(1):149–
182, 2015.

[KRZSW18] Swastik Kopparty, Noga Ron-Zewi, Shubhangi Saraf, and Mary Wootters. Improved
decoding of folded Reed-Solomon and multiplicity codes. In 59th Annual Symposium
on Foundations of Computer Science (FOCS 2018), pages 212–223. IEEE, 2018.

[KS64] William Kautz and Roy Singleton. Nonrandom binary superimposed codes. IEEE
Transactions on Information Theory, 10(4):363–377, 1964.

[KS12] Kazuki Kobayashi and Tomoharu Shibuya. Generalization of Lu’s linear time encod-
ing algorithm for LDPC codes. In 2012 International Symposium on Information Theory
and its Applications, pages 16–20. IEEE, 2012.

[LNNT16a] Kasper Green Larsen, Jelani Nelson, Huy L. Nguyễn, and Mikkel Thorup. Heavy
hitters via cluster-preserving clustering. In 57th Annual Symposium on Foundations of
Computer Science (FOCS 2016), pages 61–70. IEEE, 2016.

[LNNT16b] Kasper Green Larsen, Jelani Nelson, Huy L. Nguyễn, and Mikkel Thorup. Heavy
hitters via cluster-preserving clustering. arxiv:1604.01357 [cs.DS], 2016.

[LNW18] Yi Li, Vasileios Nakos, and David P. Woodruff. On low-risk heavy hitters and sparse
recovery schemes. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM 2018), volume 116, pages 19:1–19:13.
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2018.

[LSV05a] Alexander Lubotzky, Beth Samuels, and Uzi Vishne. Explicit constructions of ra-
manujan complexes of type Ãd. European Journal of Combinatorics, 26(6):965–993, 2005.

[LSV05b] Alexander Lubotzky, Beth Samuels, and Uzi Vishne. Ramanujan complexes of type
Ãd. Israel Journal of Mathematics, 149(1):267–299, 2005.

[MG82] Jayadev Misra and David Gries. Finding repeated elements. Science of computer pro-
gramming, 2(2):143–152, 1982.

[NNW14] Jelani Nelson, Huy L. Nguyễn, and David P. Woodruff. On deterministic sketching
and streaming for sparse recovery and norm estimation. Linear Algebra and its Appli-
cations, 441:152–167, 2014.

45

[NPR11] Hung Q. Ngo, Ely Porat, and Atri Rudra. Efficiently decodable error-correcting list
disjunct matrices and applications. In International Colloquium on Automata, Languages,
and Programming (ICALP 2011), pages 557–568. Springer, 2011.

[NPR12] Hung Q. Ngo, Ely Porat, and Atri Rudra. Efficiently decodable compressed sens-
ing by list-recoverable codes and recursion. In 29th Annual Symposium on Theoretical
Aspects of Computer Science (STACS 2012), volume 14, pages 230–241. LIPIcs, 2012.

[NPRR18] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. Worst-case optimal join
algorithms. Journal of the ACM (JACM), 65(3):1–40, 2018.

[PS97] Alessandro Panconesi and Aravind Srinivasan. Randomized distributed edge color-
ing via an extension of the Chernoff–Hoeffding bounds. SIAM Journal on Computing,
26(2):350–368, 1997.

[PS20] Eric Price and Jonathan Scarlett. A fast binary splitting approach to non-adaptive
group testing. In Approximation, Randomization, and Combinatorial Optimization. Algo-
rithms and Techniques (APPROX/RANDOM 2020). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2020.

[RR99] Ran Raz and Omer Reingold. On recycling the randomness of states in space
bounded computation. In 31st Annual Symposium on Theory of Computing (STOC 1999),
pages 159–168, 1999.

[SS96] Michael Sipser and Daniel A. Spielman. Expander codes. IEEE Transactions on Infor-
mation Theory, 42(6):1710–1722, 1996.

[SSS95] Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff–Hoeffding
bounds for applications with limited independence. SIAM Journal on Discrete Mathe-
matics, 8(2):223–250, 1995.

[Tan81] R. Michael Tanner. A recursive approach to low complexity codes. IEEE Transactions
on information theory, 27(5):533–547, 1981.

[Tan84] R. Michael Tanner. Explicit concentrators from generalized n-gons. SIAM Journal on
Algebraic Discrete Methods, 5(3):287–293, 1984.

[Tre01] Luca Trevisan. Extractors and pseudorandom generators. Journal of the ACM (JACM),
48(4):860–879, 2001.

[TSZ04] Amnon Ta-Shma and David Zuckerman. Extractor codes. IEEE Transactions on Infor-
mation Theory, 50(12):3015–3025, 2004.

[VZGG13] Joachim Von Zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cambridge
University Press, USA, 3rd edition, 2013.

[Zém01] Gillés Zémor. On expander codes. IEEE Transactions on Information Theory, 47(2):835–
837, 2001.

46

A Deferred Proofs

A.1 Proof of Claim 2.10

Proof: It holds that

Pr[A|E]− Pr[A] =
Pr[A ∧ E](1− Pr[E])

Pr[E]
− Pr[A ∧ ¬E].

Thus, on the one hand,

Pr[A ∧ E](1− Pr[E])

Pr[E]
− Pr[A ∧ ¬E] ≤ Pr[A ∧ E](1− Pr[E])

Pr[E]
≤ 1− Pr[E] ≤ ε,

and on the other hand,

Pr[A ∧ E](1− Pr[E])

Pr[E]
− Pr[A ∧ ¬E] ≥ −Pr[A ∧ ¬E] ≥ −Pr[¬E] ≥ −ε.

A.2 Proof of Lemma 3.8

Proof: We denote by W : R → R the weight function defined on the edges of G. For brevity,
denote ρ = ρ(S). Let M : RL → RR denote the bipartite adjacency operator, and let D ∈ RN×N
denote the matrix corresponding to the two-step random walk operatorM †M . By our assumption,
λ2(D) ≤ λ. Let {(λi, vi)}i∈[N] be the orthonormal basis of D with respect to the inner-product
defined by DR. As DR is uniform, we will use the standard inner product.

Let χ be the characteristic vector of S. There exist α1, . . . , αN such that χ =
∑

i∈[N] αivi, for
αi = 〈χ, vi〉. Thus, χ†M †Mχ =

∑
i∈[N] α

2
iλi. We also know that λ1 = 1 and v1 = 1√

N
1 where

where 1 is the all-ones vector in RN . Thus, α1 = 〈χ, v1〉 = |S|√
N

=
√
Nρ. We can then write

χ†M †Mχ ≤ α2
1 + λ

N∑
i=2

α2
i = α2

1 + λ
(
〈χ, χ〉 − α2

1

)
= Nρ2 + λρN(1− ρ), (10)

observing that 〈χ, χ〉 = |S| = ρN .
We now bound χ†M †Mχ from below. The quantity χ†M †Mχ measures the weighted sum of

paths of length 2 on G that start and end in S. Namely,

χ†M †Mχ =
∑
x∈S

∑
v∈Γ(S)

∑
y∈S

M [v, x]M †[y, v].

Write dS(v) =
∑

x∈S Pr[DR = x | DL = v] and d†S(v) =
∑

x∈S Pr[DL = v | DR = x]. Thus,

χ†M †Mχ =
∑

v∈Γ(S)

dS(v) · d†S(v).

47

For sanity check, note that for G with all the edge weights being identical, dS(v) = |S∩Γ(v)|
D and

d†S(v) = |S∩Γ(v)|
d . By Cauchy-Schwarz,

χ†M †Mχ ≥ 1

|Γ(S)|

 ∑
v∈Γ(S)

√
dS(v) · d†S(v)

2

.

As both DR and DL are uniform, we can write

dS(v) · d†S(v) =
∑
x∈S

n ·W ((x, v))
∑
y∈S

N ·W ((y, v)) = nN

 ∑
x∈S∩Γ(v)

W ((x, v))

2

,

so

χ†M †Mχ ≥ 1

|Γ(S)|

 ∑
v∈Γ(S)

√
nN

∑
x∈S∩Γ(v)

W ((x, v))

2

=
nN

|Γ(S)|

∑
x∈S

∑
i∈[d]

W ((x,Γ(x, i)))

2

.

As DR is uniform, for each x ∈ S we have
∑

i∈[d]W ((x,Γ(x, i)) = 1
N . Thus,

χ†M †Mχ ≥ n|S|2

|Γ(S)|N
=
ρ2nN

|Γ(S)|
. (11)

Combining Equations (10) and (11), we get

|Γ(S)| ≥ ρ2nN

Nρ2 + λρN(1− ρ)
=

ρn

ρ+ λ(1− ρ)
=

1

C · (ρ+ λ(1− ρ))
· |S|.

B Strong Dispersers and Zero-Error List Recovery

For simplicity, we use a slightly different definition of list recovery, in which we bound the ex-
pected input lists size.

Definition B.1. We say that a code C ⊆ [M]D is (`, L) list-recoverable if if for every S1, . . . , SD ⊆ [M]
such that 1

D

∑
i∈[D] |Si| ≤ `, there are at most L codewords c ∈ C such that c ∈ S1 × . . .× Sn.

Definition B.2 (strong disperser). A function Disp : {0, 1}n × {0, 1}d → {0, 1}m is a strong (k, s)

disperser if for every (n, k) sourceX19 and an independent uniform Y ∼ {0, 1}d it holds that

|Supp (Y ◦ Disp(X,Y))| > 2s+d.

This object is sometimes referred to as a strong (k, ε) disperser for ε = 1− 2s−m.

19We model an (n, k) source X as a random variable distributed over {0, 1}n such that for any element x in its
support, Pr[X = x] ≤ 2−k. In particular, this implies that the support of X is of size larger than 2k.

48

Denote D = 2d and M = 2m. Given a function f : {0, 1}n × {0, 1}d → {0, 1}m, we denote by
Cf : {0, 1}n → [M]D the encoding

Cf (x) = (f(1), . . . , f(D)) ,

where we identify {0, 1}d with [D] and {0, 1}m with [M].

Claim B.3. Let Disp : {0, 1}n × {0, 1}d → {0, 1}m be some function such that CDisp ⊆ [M]D is (`, L)
list-recoverable. Then, Disp is a strong (k = logL, s = log `) disperser.

Proof: Assume towards a contradiction that Disp is not such a disperser, so there exists an (n, k)
sourceX for which the support of Y ◦ Disp(X,Y) is small. In particular,∑

i∈[D]

|Supp (Disp(X, i))| ≤ D · 2s = D · `.

Define Li = {Disp(x, i) : x ∈ Supp(X)}, so
∑

i∈[D] |Li| ≤ D · `. By definition, for every i ∈ [D] and
x ∈ Supp(X) we have that CDisp(x)i ∈ Li. By the list-recovery property it means that |Supp(X)| <
L = 2k, in contradiction.

Claim B.4. Let Disp : {0, 1}n × {0, 1}d → {0, 1}m be a strong (k, s) disperser. Then, CDisp : {0, 1}n →
[M]D is (` = 2s, L = 2k) list-recoverable.

Proof: Let L1, . . . ,LD ⊆ [M] be such that
∑

i∈[D] |Li| ≤ D · `. Let T ⊆ [M] × [D] be such that
(z, i) ∈ T if and only if z ∈ Li. Let

L = {u ∈ CDisp : ∀i ∈ [D], ui ∈ Li} ,

and assume towards a contradiction that |L| ≥ L. The set L is in one-to-one correspondence with
the set

A = {x ∈ {0, 1}n : ∀i ∈ [D],Disp(x, i) ∈ Li} .

Let Y be uniform over [D], and letA be uniform over A independently of Y . Thus,

Supp (Disp(A,Y) ◦ Y) ⊆ T,

and T ≤ D · `. This contradicts the disperser property,

|Supp (Disp(A,Y) ◦ Y)| > D · 2s = D · `,

observing thatA is an (n, logL) source.

49

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

