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Abstract

In this work we ask the following basic question: assume the vertices of an

expander graph are labelled by 0, 1. What “test” functions f : {0, 1}t → {0, 1}
cannot distinguish t independent samples from those obtained by a random walk?

The expander hitting property [AKS87] is captured by the AND test function,

whereas the fundamental expander Chernoff bound [Gil98a, Hea08] is about test

functions indicating whether the weight is close to the mean. In fact, it is known

that all threshold functions are fooled by a random walk [KV86]. Recently, it

was shown that even the highly sensitive PARITY function is fooled by a random

walk [TS17].

We focus on balanced labels. Our first main result is proving that all symmetric

functions are fooled by a random walk. Put differently, we prove a central limit the-

orem (CLT) for expander random walks with respect to the total variation distance,

significantly strengthening the classic CLT for Markov Chains that is established

with respect to the Kolmogorov distance [KV86]. Our approach significantly devi-

ates from prior works. We first study how well a Fourier character χS is fooled by a

random walk as a function of S. Then, given a test function f , we expand f in the

Fourier basis and combine the above with known results on the Fourier spectrum

of f .

We also proceed further and consider general test functions - not necessarily

symmetric. As our approach is Fourier analytic, it is general enough to analyze

such versatile test functions. For our second result, we prove that random walks on

sufficiently good expander graphs fool tests functions computed by AC0 circuits,

read-once branching programs, and functions with bounded query complexity.
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1 Introduction

Expander graphs are among the most useful combinatorial objects in theoretical computer

science. They are pivotal to fundamental works in derandomization [INW94, Rei05],

complexity theory [Val76, AKS87, Din07] and coding theory [SS96, KMRZS17, TS17] to

name a few. Informally, expanders are sparse undirected graphs that have many desirable

pseudorandom properties. A formal definition can be given in several equivalent ways,1

and here we consider the algebraic definition. An undirected graph G = (V,E) is a λ-

spectral expander if the second largest eigenvalue of its normalized adjacency matrix is

bounded above by λ. For simplicity, we only consider d-regular graphs. In this case, M

is also the random walk matrix of G.

In their seminal works, [LPS88, Mar88] proved the existence of Ramanujan graphs,

i.e., an infinite family of d-regular λ-spectral expanders with number of vertices n go-

ing to infinity, and λ ≤ 2
√
d−1
d

. This relation between the degree d and λ is essentially

tight as follows by the Alon and Boppana bound (see [Alo86, Nil91]). Explicit con-

structions of expander graphs–Ramanujan or otherwise–attracted a significant attention,

e.g., [GG81, AGM87, Ajt94, BL06, RVW00, BATS11] and more recently [Coh16] (ex-

tending on [MSS15, MSS18]) and [MOP20]. Many works in the literature have studied

and utilized the pseudorandom properties of expanders, and we refer the reader to excel-

lent expositions on expander graphs [HLW06, Tre17] and to Chapter 4 of [Vad12]. See

also [Lub12] for applications to pure mathematics.

Expanders can be thought of as spectral sparsifiers of the clique. Specifically, let J be

the normalized adjacency matrix of the n-vertex complete graph (with self-loops). That

is, J is the n × n matrix with all entries equal to 1
n
. One can express the normalized

adjacency matrix M of G by M = (1−λ)J+λE for some operator E with spectral norm

at most 1. As such, one can hope to substitute a sample of two independent vertices

with the cheaper process of sampling an edge from an expander and using its two (highly

correlated) end-points. This is captured, e.g., by the expander mixing lemma [AC88].

This idea also appears in many derandomization results, e.g., [INW94, AEL95, RRV99,

Rei05, RV05, BCG20], to name a few.

A natural and useful generalization of the above idea is to consider not just an edge

but rather a length t − 1 random walk (where the length is measured in edges) on the

expander as a replacement to t independent samples of vertices. For concreteness, consider

a labelling val : V → {0, 1} of the vertices by 0 and 1 with mean µ = E [val(V )]. Indeed,

quite a lot is known:

• The basic hitting property of expanders [AKS87, Kah95] states that for every set

A ⊂ V , a length t−1 random walk is contained inA with probability at most (µ+λ)t.

For λ � µ, this bound is close to µt–the probability of the event with respect to

t independent samples. Note that the expander hitting property corresponds to

a random walk “fooling” the AND function, that is, for every λ-spectral expander

and every labelling val as above, the AND function cannot distinguish with good

1In certain regime of parameters, the equivalence breaks.
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probability labels obtained by t independent samples from labels obtained by taking

a length t− 1 random walk.

• To give another example, the fundamental expander Chernoff bound [AKS87, Gil98a,

Hea08] states that the number of vertices on a random walk residing in A is highly

concentrated around µ. Observe that the expander Chernoff bound corresponds to

fooling functions fτ : {0, 1}t → {0, 1} indicating whether the normalized Hamming

weight of the input is concentrated around µ, more precisely, fτ (x1, . . . , xt) = 1 if

and only if 1
t

∑t
i=1 xi ∈ [µ− τ, µ+ τ ].

• In fact, it is also known that all threshold functions are fooled by a random

walk [KV86, Lez01, Klo17] and we explain this in more detail later.

• It was shown that the highly sensitive PARITY function is fooled by a random walk

on expanders (this was noted by Alon in 1993, Wigderson and Rozenman in 2004

and [TS17] where the result appears).

However, it is clear that sometimes a long random walk is not a good replacement to

independent samples. To see this, suppose G is a λ-spectral expander for some constant

λ, that has a cut A ⊂ V with |A| = |V |
2

and |E(A,A)| ≥ µ|A| for µ ≥ 1
2

+ Ω̃(λ). Such

graphs exist, e.g., the graph constructed in [GK20, Section 7] is such. If we sample t

independent vertices (v1, . . . , vt) from the graph, we expect (vi, vi+1) to cross the cut

about half the time, and by the Chernoff bound the actual number of cut crossings is

highly concentrated around the mean. In contrast, when we take a random walk on the

graph we expect to cross the cut a µ-fraction of the time, and intuitively the number

of cut crossings should be concentrated around µ.2 Thus, the simple test function that

counts the number of times we cross the cut and apply a threshold at 1
2

+ τ for some

τ = Θ̃(λ) should distinguish with probability close to 1 between a random walk and

independent samples. This brings to the front a natural and fundamental question:

What test functions does a random walk on an expander fool?

1.1 Our contribution

To give a formal description of our contribution, we set some notation. First, we are

mainly concerned with balanced labelling functions val : V → {0, 1}, that is, µ =

E[val(V )] = 1
2
, or equivalently, with balanced cuts. The reason being is that we are

trying to focus our attention on the dependencies across the vertices of a random walk.

Setting µ = 0 (and working with regular graphs) allows us to do so as the label of ev-

ery vertex on a random walk is marginally unbiased. Of course, the case µ 6= 0 is very

interesting as well though we leave it for future research.

2To show such a concentration one needs to prove a Chernoff bound for a walk on the corresponding

directed line graph.
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We compare two distributions on the set {0, 1}t. The first “ideal” distribution is

obtained by sampling independently and uniformly at random t vertices v1, . . . , vt and

returning (val(v1), . . . , val(vt)). As we assume val is balanced, this is simply the uniform

distribution over {0, 1}t which we denote by Ut. The second distribution is obtained by

taking a length t − 1 random walk on the graph, namely, we sample v1 uniformly at

random from V , and then for i = 2, 3, . . . , t, we sample vi uniformly at random from the

set of neighbors of vi−1. We then return (val(v1), . . . , val(vt)). Denote

EG,val(f) = |E f(RWG,val)− E f(Ut)| .

Informally, EG,val(f) measures the distinguishability between these two distributions as

observed by the test function f on the graph G with respect to the labelling val.

We wish to have a result that holds uniformly on all λ-spectral expanders (on any

number of vertices) and for every balanced labelling. We denote by Eλ(f) the supremum

of EG,val(f) over all λ-spectral expanders G, on any number of vertices |V | = n, and all

balanced labelling functions val : V → {0, 1}. We say that a random walk on λ-spectral

expanders ε-fools f if Eλ(f) ≤ ε.

1.1.1 Random walks fool all symmetric functions

As discussed above, it is known that several symmetric functions are fooled by a random

walk, and each teaches us a different aspect of the pseudorandom nature of expander

graphs. For example, fτ is concerned with concentration around the mean whereas the

majority function focuses on the symmetry around the mean (recall, val is a balanced

labelling). The fact that PARITY is fooled by a random walk is somewhat surprising as

PARITY is as far as can be from being monotone, put differently, it is highly sensitive.

Our first main result states that all symmetric functions are fooled by a random walk.

Theorem 1.1. For every symmetric function f : {0, 1}t → {0, 1},

Eλ(f) = O(λ · log3/2(1/λ)).

We remark that the requirement that f is symmetric is important as we already saw

before that the test that counts the number of times we cross a cut distinguishes between

independent samples and the random walk samples. Indeed, the number of times we cross

a cut depends on the order of zeroes and ones in the sequence and is not a symmetric

function.

A different perspective one can take on Theorem 1.1 is that it establishes a central

limit theorem for random walks with respect to the total variation distance. We turn

to elaborate on this but first introduce a convenient notation, specialized to symmetric

test functions. When focusing on symmetric functions it is more natural to consider not

RWG,val and Ut as above, but rather the two distributions on {0, 1, . . . , t} obtained by

taking the weights of the two corresponding bit strings. More explicitly, we define ΣIndt
to be the distribution obtained by sampling t independent vertices v1, . . . , vt and returning
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val(v1)+· · ·+val(vt). The distribution ΣRWt is defined as the sum of val(v1)+· · ·+val(vt)

where (v1, . . . , vt) ∼ RWG,val. Note that we suppress the dependence on G, val from the

notation as they will be clear from context. Instead, we focus our attention on t.

What is known about ΣIndt? First, the Chernoff bound [Che52] tells us that ΣIndt is

highly concentrated around the mean, where the probability to be c standard deviations

away from the mean is about 2−Ω(c2) small. This implies that there is very low weight on

the tails, but does not tell us much about the center, where almost all of the probability

mass resides. In particular, the Chernoff bound does not rule out the possibility that all

the weight lies on the mean. Further, it gives no information about, say, how symmetric

is the distribution around its mean.

The central limit theorem (CLT) guarantees that ΣIndt converges to the normal dis-

tribution Nt (with the same mean t/2 and variance t/4). The convergence of the CLT

is with respect to the Kolmogorov distance (see Definition 3.5). That means that the

cumulative distribution function (CDF) of ΣIndt converges point-wise to the CDF of the

normal distribution. Equivalently, it means that every threshold test function cannot dis-

tinguish independent samples from the normal distribution. The Berry-Esseen Theorem

specifies the rate of convergence, and when, e.g., we sum random variables with bounded

first three moments (as in our case where the values are Boolean) the distance between

t independent samples and the normal distribution is in the order of t−1/2 with respect

to the Kolmogorov distance. To summarize, the Chernoff bound guarantees tails have

low-weight, the CLT tells us how the weight is distributed around the mean, and the

Berry-Esseen theorem bounds the rate of convergence.

We next ask what is known about ΣRWt? In particular, what can we say about

the weight of tails, and what can we say about the distribution around its mean. The

expander Chernoff bound [Gil98a] states that when the spectral gap 1− λ is non-trivial,

the probability to be c standard deviations away from the mean is still about 2−Ω(c2)

small. The proof was simplified in [Hea08]. Possibly less known by the CS community is

that the CLT and the Berry-Esseen Theorem were also shown to hold for random walks

on expanders. The CLT was first shown for expanders by Kipnis and Varadhan [KV86]

and their work was later vastly generalized (see, e.g., [Lez01, Klo17]). That work shows,

e.g., that:

Theorem 1.2. (Based on, e.g., [Klo17, Thm C]) Let G = (V,E) be a λ-spectral ex-

pander, and assume λ is bounded away from 1. Let val : V → {0, 1} with E[val(V )] = 1
2
.

Then,

‖ΣRWt − ΣIndt ‖KOL = O

(
1√
t

)
. (1.1)

We remark that by the Berry-Esseen theorem for independent random variables we

know that

‖ΣIndt −Nt ‖KOL = O

(
1√
t

)
,

where Nt is the normal distribution with the appropriate mean and variance (the mean

and variance depend on t). It therefore follows that Equation (1.1) is equivalent to

4



‖ΣRWt −Nt ‖KOL = O
(

1√
t

)
.

A natural question is whether the convergence can be strengthened to the stronger

total variation distance, and this question applies both to the possible convergence of

ΣIndt to Nt and of ΣRWt to ΣIndt.

The first question was heavily studied in Probability. A representative case is the

question on the rate of point-wise convergence of ΣIndt to Nt, i.e., how well the appro-

priate normal distribution Nt approximates the probability ΣIndt gets a specific outcome

m ∈ [t]. The bottom line is that when val is distributed over {0, 1} the rate of conver-

gence is o( 1√
t
) (see, e.g., [Tao15, Theorem 7]). The fact that the error is o( 1√

t
) rather

than O( 1√
t
) is crucial, and, in particular, implies convergence in the TVD with error o(1)

(because the probability mass outside [−c
√
t, c
√
t] is tiny 2−Ω(c2) and therefore almost all

of the action takes place on an interval of length O(
√
t)) .

The same question can be asked with respect to the random variables ΣRWt and

ΣIndt. The answer in this case is given by Theorem 1.1 that can be equivalently stated

as:

Theorem 1.3 (Theorem 1.1; equivalent statement). Let G = (V,E) be a λ-spectral

expander, and assume λ is bounded away from 1. Let val : V → {0, 1} with E[val(V )] = 1
2
.

Then,

‖ΣRWt − ΣIndt ‖TVD = O(λ · log3/2(1/λ)).

This is because the total variation distance between ΣRWt and ΣIndt is the same as

the best distinguishing probability a test on ΣRWt and ΣIndt can achieve, which amounts

to the best distinguishing probability a symmteric function can achieve on RWt and Indt.

Thus, while the Kolmogorov distance amounts to fooling all threshold functions, total

variation distance amounts to fooling all symmetric functions.

To conclude the section we remark that sometimes our results give better bounds even

for threshold functions. For example, from Theorem 1.2 one can infer than Eλ(MAJt) ≤
O
(

1√
t

)
with the constant factor independent of λ. However, in Theorem 4.6 we show a

similar result but with the constant going to zero together with λ, namely:

Theorem 1.4. For every λ ∈ [0, 1] and t ∈ N,

Eλ(MAJt) ≤ O

(
λ2

√
t

)
.

We do not know whether the bound should decay with t for general symmetric func-

tions and leave this as an open problem.

1.1.2 Beyond symmetric functions

We proceed even further and consider general test functions - not necessarily symmet-

ric. We take a complexity-oriented perspective and instead of analyzing specific test

functions, we consider natural complexity classes. In particular, we analyze tests that
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are computable by AC0 circuits, various types of read once branching programs, and

functions with bounded query complexity. As we discuss in Section 2, our approach for

proving Theorem 1.1 is Fourier-analytic. As such it is general enough to allow us to an-

alyze such versatile tests functions as well, deviating significantly from prior works both

in terms of techniques and results. Moreover, it allows us to utilize known results on the

Fourier spectrum of the above-mentioned classes [RSV13, Tal17, CHRT18]. Our second

main result is summarized in the following theorem.

Theorem 1.5. For every function f : {0, 1}t → {0, 1} the following holds.

1. If f is computable by a size-s depth-d circuit then Eλ(f) = O(
√
λ · (log s)2(d−1)).

2. If f is computable by (any order) width-w ROBP P , then Eλ(f) = O(
√
λ ·(log t)2w).

Moreover, if P is a permutation ROBP, Eλ(f) = O(
√
λ · w4).

3. Eλ(f) = O(
√
λ ·DT(f)2), where DT(f) denotes the decision tree complexity of f .

Theorem 1.5 implies that every test function in AC0 cannot distinguish t indepen-

dent labels from labels obtained by a random walk on a λ-spectral expander provided λ is

taken sufficiently small poly-logarithmic in t. This result can be thought of as an analog

of Braverman’s celebrated result [Bra10] (see also [Tal17]) that studies the pseudoran-

domness of k-wise independent distributions with respect to AC0 test functions. As an

example, the Tribes function is fooled by a random walk provided λ = O((log t)−8). It is

well-known that the decision tree complexity is polynomially-related to other complexity

measures such as the randomized and quantum decision tree measures, the certificate

query complexity, and the approximate real degree of a function (see, e.g., [BDW02]

for further details). Moreover, in a recent breakthrough, Huang resolved the sensitivity

conjecture to the affirmative, implying that the decision tree complexity is polynomially-

related to the sensitivity of the function [Hua19]. Thus, by Theorem 1.5, every test

function f with a bound b on any of these measures cannot distinguish independently

sampled labels from labels obtained by a random walk on a λ-spectral expander provided

that λ ≤ b−c, where c is some universal constant.

1.2 Related work

Very recently, Guruswami and Kumar [GK20], in an independent work, studied the fol-

lowing problem. We are given a distribution Y1, . . . , Yt, where Y1 is uniform over {0, 1},
and Yi+1 equals Yi with probability 1+λ

2
and equals 1 − Yi otherwise. They showed that

the number of times we see a 1 converge in total variation distance to the independent

case. They also showed this distribution can emerge from a random walk over some λ-

expander G = (V,E) and some balanced coloring of the vertices. A major open problem

they raise is whether the same is true for any random walk on a λ-expander, which is

answered in the affirmative in this paper.

The techniques Guruswami and Kumar use have a lot in common with our techniques.

They use the Krawchuck polynomials (that also appear in our study) and analyze the
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probability the walk hits the set exactly w times (which corresponds to the weight function

1w that we study in Section 4.4). The main difference between their work and ours is that

we study the problem for an arbitrary λ-spectral expander, rather than the specific λ-

sticky walk they analyze. Our approach for that is to use the Fourier representation, and

analyze the basis functions (i.e., characters, or equivalently, parities) using the analysis

of parity on random walks. This analysis was first done in the unpublished works by

Alon in 1993 and Wigderson and Rozenman in 2004, and later in [TS17]. We explain our

technique in Section 2.

We already mentioned that there has been a lot of work on CLT and Berry-Esseen on

Markov chains, see e.g., [KV86, Lez01, Klo17]. We also give in Section 6 a new analysis

for the CLT and Berry-Esseen theorem on expander graphs. This analysis build on the

techniques of [Gil98b, Hea08, Bec15] to analyze the characteristic function of ΣRWt, and

then uses the framework suggested in [Klo17] to finish the proof.

2 Proof overview

As mentioned, our approach for proving Theorem 1.1 and Theorem 1.5 is Fourier analytic.

That is, we first analyze Eλ on Fourier characters (namely, parity functions). Then, we

invoke known results on the Fourier expansion of the function under consideration. This

leads us to study a new Fourier tail we dub the Random Walk Fourier tail, or the λ-tail.

To this end, it is more convenient to discuss test functions of the form f : {±1}t → {±1}.
Parity functions are then given by χS(x) =

∏
i∈S xi for S ⊆ [t]. Before giving the formal

definition and results, in Section 2.1 we consider some examples to gain intuition. In

particular, we find it instructive to proceed by analyzing parities according to their degree.

2.1 Toy examples: the first few parities

Degree 1. To start with, consider degree 1, namely, a dictator function Dicti(x) = xi
for some i ∈ [t]. As we assume G is regular and val balanced, the marginal distribution

of the ith vertex on a random walk is uniform over V , and so Eλ(Dicti) = 0.

Degree 2. Consider a function that is the parity of two of its input bits f(x) = xi1xi2
for some i1 < i2. We already know that the ist1 vertex is uniformly distributed over V .

Intuitively, the larger the distance ∆ = i2 − i1 is, the less correlated is the ind
2 vertex

on the path to the ist1 vertex. Fully aligned with this intuition, it can be easily shown

that Eλ(xi1xi2) ≤ λ∆. Indeed, one can think of a length ∆ random walk on a λ-spectral

expander as picking a random edge (i.e., a random walk of length 1) on a λ∆-spectral

expander.

Degree 3. Moving on to degree 3, consider the test function f(x) = xi1xi2xi3 with

i1 < i2 < i3. Denote ∆1 = i2 − i1 and ∆2 = i3 − i2. Here one may root for one of

several (conflicting) intuitive arguments. First, one might argue that if one of ∆1,∆2
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is small then two of the bits are highly correlated. Being cautious regarding to how

correlations behave on a random walk, one might suspect that this results in an overall

high correlation. By that logic, Eλ(f) ≈ λmin(∆1,∆2). On the other hand, one might argue

that if one of ∆1,∆2 is large, regardless of the other, then the far away vertex gained

a “large amount of independence”, resulting in an overall low distinguishability. Thus,

Eλ(f) ≈ λmax(∆1,∆2).

Perhaps surprisingly, we show that Eλ(f) ≈ λ∆1+∆2 = λi3−i1 . That is to say, it is only

the “effective” path’s length–the distance between the first and last observed vertices on

the path–that is taken into account, independent of the location of the middle vertex.

To see why this is the case, recall that for a λ-spectral expander with a random walk

matrix M , it holds that M = (1 − λ)J + λE. Thus, one can intuitively think of a step

on a λ-spectral expander as follows: With probability 1− λ sample uniformly at random

a vertex, completely ignoring the current vertex we are at and the edge structure of the

graph, and with probability λ sample a vertex adversarially. We stress that this intuition

is not accurate as E is an operator that is not necessarily a random walk matrix of any

graph.

With this in mind, consider the random walk from the first to the second vertex. With

probability 1 − λ∆1 we completely decouple the first vertex from the second, and hence

from the entire remaining part of the path. As the first vertex is marginally uniform (recall

µ = 0), the parity of the three bits is unbiased. Similarly, with probability 1 − λ∆2 , the

third vertex is independent from the first two. As we think of these events as independent,

it is only with probability λ∆1+∆2 that (adversarial) correlations may appear.

Degree 4. Generalizing the above notation in the natural way, for a degree 4 parity

test function, our analysis shows that Eλ(f) ≤ λ∆1+∆3 . This might be somewhat counter-

intuitive. Indeed, one might expect that χ{1,2,3,4} will be harder to fool than χ{1,2,t−1,t}

as in the latter case, the first pair of vertices is “far away” from the second pair and so

the two pairs should be less correlated compared to the corresponding pairs in χ{1,2,3,4}.

This, however, is not how correlations on a random walk behave.

To intuitively see why Eλ(f) ≤ λ∆1+∆3 note, as in the previous example, that with

probability 1−λ∆1 the first vertex is “cut” from the remaining part of the path. Similarly,

with probability 1 − λ∆3 the fourth vertex is independent of the rest, and so it is only

with probability λ∆1+∆3 that the first and fourth vertices are not independent from the

other vertices. We turn to give a formal proof of this fact mainly served as a warm-up

for the proof of the general case (see Section 4.1).

Claim 2.1. Let S = {s1, s2, s3, s4} with s1 < s2 < s3 < s4. For i = 1, 2, 3, denote

∆i = si+1 − si. Then, Eλ (χS(x)) ≤ λ∆1+∆3 where χS(x) =
∏

i∈S xi.

Proof. Let 1 be the normalized length-n unit vector, that is, every entry of 1 equals to
1√
n
. Take G to be any regular λ-spectral expander, and val : V → {±1} balanced. We

slightly abuse notation and denote by G the random walk matrix for G. Let P be the
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V × V diagonal matrix with entry (v, v) equals to val(v). We first observe that

EG,val(χS) =
∣∣E[χS(RWG,val)]

∣∣
=
∣∣1T (PG∆3)(PG∆2)(PG∆1)P1

∣∣.
As mentioned, we can write G = (1−λ)J+λE for some bounded operator ‖E‖ ≤ 1. More

generally, for every i = 1, 2, 3 we have that G∆i = (1 − λ∆i)J + λ∆iEi with ‖Ei‖ ≤ 1.

Thus, we can express the right hand side of the above equation as a summation of 8

terms where in each term, we replace each of G∆i by either (1− λ∆i)J or λ∆iEi. Not all

8 summands contribute to the sum. Indeed, if we replace G∆1 by (1− λ∆1)J then

1T (PG∆3)(PG∆2)(P (1− λ∆1)J)P1 = 1T (PG∆3)(PG∆2)(P (1− λ∆1)11T )P1

= 1T (PG∆3)(PG∆2)P (1− λ∆1)1(1TP1),

which equals 0 as 1TP1 = E[val(V )] = 0. Similarly, to get a nonzero contribution we

must take λ∆3E3 for G∆3 . Thus, there are only two contributing summands correspond

to the sequences we denote by EJE and EEE. As for the first sequence,∣∣1T (Pλ∆3E3)(P (1− λ∆2)J)(Pλ∆1E1)P1
∣∣ ≤ ‖(Pλ∆3E3)(P (1− λ∆2)J)(Pλ∆1E1)P‖2

≤ (1− λ∆2)λ∆1+∆3 ,

where we used the fact that ‖P‖2 ≤ 1. Similarly, for the EEE sequence we get a bound of

λ∆1+∆2+∆3 . The proof follows by adding the bounds corresponding to the two summands.

For degrees higher than 4, another reason an E/J sequence does not contribute is the

existence of two consecutive J symbols. This is the main “saving” one capitalize on in

high degrees (see Section 4.1).

2.2 The general framework

The general framework that we develop for bounding Eλ(f) for a given function f (not

necessarily symmetric) is as follows. First, expand f in the Fourier basis and note that

EG,val(f) ≤
∣∣∣ ∑
S⊆[t]
S 6=∅

f̂(S) E[χS(RWG,val)]
∣∣∣.

We stress that we do not ignore the cancellations that may occur, namely, we work with

the absolute value of the sum rather than with the sum of absolute values. This is crucial

for our proof of Theorem 1.1 which, indeed, is very delicate. For each character χS we

follow the steps of Claim 2.1 and express E[χS(RWG,val)] algebraically. As in previous

works (e.g., [RVW00, RV05, TS17]), we replace a step G of the graph with (1−λ)J+λE,

and view E as low-order noise. In previous works one often argues about norms of

short sub-sequences, e.g., [RVW00, RV05] look at the norm of two steps while [TS17]

9



look at longer length (but still short) sub-sequences. Instead, here we expand the whole

product in full and take into account the structure of the set S in the parity χS under

consideration.

This is the gist of our general Fourier-analytic framework for analyzing expander

random walks. We turn to give some more details on the proof of Theorems 1.1 and 1.5

which falls into this framework.

2.3 Analyzing symmetric functions

For the proof of Theorem 1.1 we consider all weight-indicating test functions. For every

w ∈ {0, 1, . . . , t} let fw : {±1}t → {0, 1} be defined by fw(x) = 1 if and only if x is of

Hamming weight w. To analyze all symmetric functions, it suffices to analyze the weight-

indicating functions. In fact, note that one is only interested in w ∈ [ t
2
− c
√
t, t

2
+ c
√
t] for

some parameter c, as the remaining weights can be handled via the expander Chernoff

bound.

Fix w in this range. For the proof of Theorem 1.1, for each S ⊆ [t] we collect

the 2|S| summands obtained by expanding E[χS(RWG,val)], namely, the summands that

correspond to the E/J sequences. We then “switch perspective” and for every fixed such

E/J sequence calculate contributions to it from all sets S, taking into account the Fourier

spectrum of fw. The analysis is very delicate. Remarkably, all the pieces fall in place

and give the result. As a warm-up in Section 4.3 we prove that the MAJORITY function

is fooled by a random walk. Although this is a known result, our proof is based on

completely different techniques.

2.4 The λ-tail

For sets of size |S| ≥ 5, the bound on E[χS(RWG,val)] is getting more and more cum-

bersome. For symmetric functions, using a very delicate argument, we are able to work

with a very tight bound. However, for the non-symmetric functions under consideration,

it is possible and much cleaner to work with a looser bound that is more amendable for

analysis. In the following, for a set A, denote by
(
A
≥k

)
the set of all subsets of A of size

at least k.

Definition 2.2. For an integer t ≥ 1 define the map ∆ :
(

[t]
≥2

)
→ N as follows. Let

S ⊆ [t], of size k ≥ 2, and denote S = {s1, . . . , sk} where s1 < · · · < sk. For i ∈ [k − 1]

write ∆i = si+1− si. For k = 2 we define ∆(S) = ∆1, for k = 3 define ∆(S) = ∆1 + ∆2,

and for k ≥ 4,

∆(S) =
k−2∑
i=1

min(∆i,∆i+1). (2.1)

Using ideas similar to those in Claim 2.1, we prove.

Proposition 2.3. For every λ ∈ [0, 1], t ∈ N and S ⊆ [t] a subset of size |S| ≥ 2, it

holds that

Eλ (χS) ≤ 2|S| · λ∆(S)/2.
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We refer the reader to Proposition 4.2 for a stronger statement. Proposition 2.3

naturally leads us to the study of what we call the λ-tail.

Definition 2.4 (The λ-tail). Let f : {±1}t → {±1}. For λ ∈ [0, 1] and k ∈ {2, 3, . . . , t},
we define

Λλ,k(f) =
∑
S⊆[t]
|S|=k

|f̂(S)| · λ∆(S). (2.2)

The λ-tail of f is defined by Λλ(f) =
∑t

k=2 Λλ,k(f).

In Claim 5.2 we prove that Eλ(f) ≤ 4Λ2
√
λ(f), and so, to analyze how well random

walks fool a given function, it suffices to bound its λ-tail. In Claim 5.3 we bound the

λ-tail of functions with a decaying L1 tail. This then allows us to invoke [RSV13, Tal17,

CHRT18] and deduce Theorem 1.5.

2.5 Remarks and future work

We conclude this section with several remarks and open problems that follow from our

work.

1. It is an interesting problem that we leave for future work to consider also unbalanced

labelling. Namely, a labelling val : V → {±1} with E[val(V )] = µ 6= 0.

2. Can the poly log 1
λ

factor in Theorem 1.1 be improved?

3. Can one obtain a bound as in Theorem 1.4, namely decaying as t→∞ and λ→ 0,

for all threshold functions? For all symmetric functions?

4. Our results on non symmetric functions follow by applying known bounds on the

L1 Fourier tail of the function of interest together with Claim 5.3 that relates the

L1 decay to the λ-tail. Typically, bounds on the L1 (and L2) tails are obtained by

using random restrictions. An interesting problem is to prove stronger results than

those obtained in Theorem 1.5 by directly analyzing (perhaps suitable variants

of) random restrictions with respect to the λ-tail. Indeed, we note that the L1

tail and the λ-tail can behave very differently. To see this, consider any function

f : {±1}t → {±1} that is determined by xa, x2a, x3a, . . . for a parameter a� log t.

Then, Λλ,k(f) ≤
(
t
k

)
λak � 1

t
for a sufficiently small constant λ, and so Λλ(f)� 1.

On the other hand, a typical such function does not have a nontrivial decaying L1

Fourier tail.

3 Preliminaries

We let [n] denote the set {1, . . . , n}. We let 1 ∈ Rn denote the normalized all 1s vector,

i.e., 1 = 1√
n
· (1, . . . , 1)T ∈ Rn. We let J = 11T .Throughout the paper, we make use of

the following well known inequalities about binomial coefficients.
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Claim 3.1. Let 0 < λ < 1, and integers r ≥ 0, a ≥ b ≥ 1. Then,

1. (a
b
)b 6

(
a
b

)
6 ( ea

b
)b,

2.
∑∞

i=r

(
i
r

)
λi = λr

(1−λ)r+1 .

The first item is a well-known estimate. For completeness we prove the second item.

Proof of Claim 3.1, Item (2). Denote Sr =
∑∞

i=r

(
i
r

)
λi. Let h(x) =

∞∑
n=0

xn and H(x) =

1
1−x . Within the domain x ∈ (0, 1) it holds that H(x) = h(x). Notice that,

h(λ) =
∞∑
n=0

λn = S0.

Fix τ < 1. The series defining h(x), and all its derivatives, uniformly converges in [0, τ ].

Thus we can derive underneath the summation sign, i.e, for every k ∈ N, and every

x ∈ [0, τ ], h(k)(x) = H(k)(x). Furthermore,

h(k)(x) =
∞∑
n=0

(xn)(k) =
∞∑
n=k

k!

(
n

k

)
xn−k,

and H(k)(x) = k!(1− x)−(k+1). Together this gives

Sk =
λk

k!
h(k)(λ) =

λk

k!
H(k)(λ)

=
λk

k!
· k!

(1− λ)k+1
=

λk

(1− λ)k+1
.

3.1 Fourier analysis

Consider the space of functions f : {±1}t → R, along with the inner product 〈f, g〉 =

2−t
∑

x∈{±1}t
f(x)g(x). It is a well-known fact that the set {χS | S ⊆ [t]}, where χS =∏

i∈S
xi, forms an orthonormal basis with respect to this inner product, which is called

the Fourier basis. Thus every function f : {±1}t → R can be uniquely represented as

f(x) =
∑
S⊆[t]

f̂(S)χS(x), where f̂(S) ∈ R.

A technical tool that we use in our proof is the noise operator. The definitions and

following claims appear in [O’D14].

Definition 3.2. Let ρ ∈ [−1, 1]. For a fixed x ∈ {±1}t we write y ∼ Nρ(x) to denote

the random string y that is drawn as follows: for each i ∈ [t] independently,

yi =

{
xi with probability 1+ρ

2
,

−xi with probability 1−ρ
2
.
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Definition 3.3. Let ρ ∈ [−1, 1]. The noise operator Tρ is the linear operator on functions

{±1}t → R, defined as:

Tρf(x) = E
y∼Nρ(x)

f(y)

The fact that the operator is linear follows directly from the linearity of the expectation.

Notice that T1(f) = f whereas T0(f) in the constant function T0(f) = E f . We make

use of the following lemma.

Lemma 3.4. For every function f : {±1}t → R it holds that:

Tρf(x) =
∑
S∈[t]

f̂(S)ρ|S|χS(x).

3.2 Distances between probability distributions

Definition 3.5. Let P,Q be a pair of (not necessarily discrete) distributions over R. Let

B denote the class of Borel sets. We define

dTV(P,Q) = supA∈B (P (A)−Q(A)) ,

dKol(P,Q) = supx∈R,I=(−∞,x] (P (I)−Q(I)) .

We call dTV the total variation distance and dKol the Kolmogorov-Smirnov distance.

Definition 3.6. Let {Pn}n∈N , Q be distributions over R. Then,

• (Weak convergence) We write Pn ⇒ Q if for every x0 ∈ R, limn→∞ Pn(x0) = Q(x0).

• (Kolmogorov convergence) We write Pn ⇒Kol Q if limn→∞ dKol(Pn, Q) = 0.

• (TV convergence) We write Pn ⇒TV Q if limn→∞ dTV(Pn, Q) = 0.

We note that the TV convergence implies Kolmogorov convergence which, in turn,

implies weak convergence. In this language, the CLT and the Berry Esseen theorems

state the following.

Theorem 3.7 (CLT for independent distributions). Suppose Xi are i.i.d. and marginally

uniform on {±1}. Let Sn =
∑n

i=1Xi. Then, Sn√
n
⇒ N (0, 1). Furthermore, the Berry-

Esseen Theorem states that

dKol

(
Sn√
n
,N (0, 1)

)
≤ 3√

n
.
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4 Random walks fool all symmetric test functions

Let G = (V,E) be a regular λ-spectral expander, and let val : V → {±1} be a balanced

labelling of the vertices of G, that is, E[val(V )] = 0. Let t ≥ 1 be a natural number. We

recall from the introduction that we want to compare two distributions on {±1}t.

• Note that Ut–the uniform distribution over {±1}t–is the distribution obtained by

sampling t vertices v1, . . . , vt uniformly and independently at random from V and

outputting the ordered tuple (val(v1), . . . , val(vt)).

• RWG,val is the distribution obtained by sampling a random length t−1 path v1, . . . , vt
over G and outputting the ordered tuple (val(v1), . . . , val(vt)). Equivalently, sample

v1 uniformly at random from V . Then, for i = 2, 3, . . . , t, sample vi uniformly at

random from the neighbors of vi−1.

Let f : {±1}t → {±1} be any test function. Expand f in the Fourier basis,

f(x) =
∑
S⊆[t]

f̂(S)χS(x),

where χS(x) =
∏

i∈S xi. We have the following easy lemma.

Lemma 4.1. Let G = (V,E) be a regular λ-spectral expander, and let val : V → {±1} be

a balanced labelling of the vertices of G. Then, for every function f : {±1}t → R,

EG,val(f) ≤
∑
S⊆T
S 6=∅

|f̂(S)|EG,val(χS)

Proof. As E[f(Ut)] = f̂(∅),

EG,val(f) = |E f(RWG,val)− E f(Ut)|

=
∣∣∣∑
S⊆T
S 6=∅

f̂(S) E[χS(RWG,val)]
∣∣∣.

Since val is balanced, E[χS(Ut)] = 0, and so EG,val(χS) = |E[χS(RWG,val)]|. The proof

follows by the triangle inequality.

Lemma 4.1 motivates us to consider parity test functions. This is the content of the

following section.

4.1 Parities test functions

In this section we analyze to what extent expander random walks fool parity tests func-

tions. In particular, we prove Proposition 2.3. In fact, we prove a stronger statement.

We start by introducing some notation. For an integer k ≥ 2, we define the family Fk of
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subsets of [k − 1] that, informally, consists of all subsets for which at least one of every

two consecutive elements participate in the set. We also require the “end points” 1, k− 1

to participate in the set. Formally, we define

Fk = {I ⊆ [k − 1] | {1, k − 1} ⊆ I and ∀j ∈ [k − 2] {j, j + 1} ∩ I 6= ∅} . (4.1)

So, for example, F6 consists of the elements {1, 3, 5}, {1, 2, 4, 5} as well as of all subsets

of [5] that contain any one of these two elements, namely, {1, 2, 3, 5}, {1, 3, 4, 5} and

{1, 2, 3, 4, 5}. We extend the definition in the natural way to k = 0, 1 by setting F0 =

F1 = ∅.
Let S ⊆ [t] be a set of cardinality |S| = k ≥ 1. Write S = {s1, . . . , sk} with

s1 < s2 < · · · < sk. Set s0 = 0 and sk+1 = t + 1. For i = 0, 1, . . . , k, we denote by

∆i(S) = si+1 − si. When the set S is clear from context, we write ∆i for short. With

these notations, we prove.

Proposition 4.2. Let G = (V,E) be a regular λ-spectral expander, and let val : V →
{±1} be a balanced labelling of the vertices of G, that is, E[val(V )] = 0. Then, for every

integers 1 ≤ k ≤ t and every subset S ⊆ [t] of size k,

EG,val(χS) ≤
∑
I∈Fk

λ
∑
j∈I ∆j(S).

For example, for a set S of size |S| = 6,

EG,val(χS) ≤λ∆1+∆3+∆5 + λ∆1+∆2+∆4+∆5 + λ∆1+∆2+∆3+∆5+

λ∆1+∆3+∆4+∆5 + λ∆1+∆2+∆3+∆4+∆5 .

Before proving Proposition 4.2, we remark that for sets of size |S| = 1, the sum is taken

over the empty index set F1 and so, by the standard convention, the sum equals to 0.

We also observe that Proposition 2.3 follows by Proposition 4.2. To see this, note that

for every I ∈ Fk,

2
∑
i∈I

∆i ≥
k−2∑
i=1

min(∆i,∆i+1). (4.2)

Indeed, if we define δi to be the corresponding indicator for i ∈ I, namely, δi = 1 if i ∈ I
and δi = 0 otherwise, we see that

2
∑
i∈I

∆i ≥
k−2∑
i=1

δi∆i + δi+1∆i+1.

Equation (4.2) follows since δi∆i + δi+1∆i+1 ≥ min(∆i,∆i+1) as indeed, for every i ∈
[k − 2], at least one of i, i+ 1 is in I. Now, recall that in Equation (2.1), the right hand

side of Equation (4.2) was denoted by ∆(S). As |Fk| ≤ 2k−1, Proposition 2.3 follows

by Proposition 4.2. We turn to prove Proposition 4.2.
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Proof of Proposition 4.2. Consider any nonempty set S ⊆ [t] of size |S| = k. As E[χS(Ut)] =

0, we have that

EG,val(χS) = E[χS(RWG,val)].

We wish to express the right hand side algebraically. Let n = |V | and identify V with

[n] in an arbitrary way. Let P be a n × n diagonal matrix with val(v) on the diagonal

in row v. We slightly abuse notation and denote the random walk matrix (that is, the

normalized adjacency matrix) of G also by G. Define δi = 1 if i ∈ S and δi = 0 otherwise.

Observe that

E[χS(RWG,val)] = 1T

(
t∏
i=1

P δiG

)
1.

Indeed, informally, at the i’th step we take a random step using G and then, depending

on i being an element of I or not, we multiply by P or by I, respectively. Thus, we can

write

E[χS(RWG,val)] = 1T

(
k−1∏
i=1

PG∆i

)
P1, (4.3)

where we have used the regularity of G, namely, G1 = 1.

Next, we use the spectral decomposition of the expander graph G. As G is a λ-spectral

expander we know that G = J + λE where ‖E ‖ ≤ 1 3. Similarly, As G` is a λ`-spectral

expander we have that G` = J + λ`E` where ‖E` ‖ ≤ 1. Thus,

k−1∏
i=1

PG∆i =
∑

I⊆[k−1]

k−1∏
i=1

PBi(I), (4.4)

where

Bi(I) =

{
λ∆iE∆i

i ∈ I;

J otherwise.

For I ⊆ [k − 1] let

eI = 1T

(
k−1∏
i=1

PBi(I)

)
P1.

Equations (4.3) and (4.4) imply that

E[χS(RWG,val)] =
∑

I⊆[k−1]

eI . (4.5)

Not all subsets I ⊆ [k− 1] contribute non-zero values eI to the sum. Indeed, if k− 1 6∈ I
3Note that this is slightly different than the decomposition G = (1− λ)J + λE that was used in the

introduction.

16



then Bk−1(I) = J and so

eI = 1T

(
k−2∏
i=1

PBi(I)

)
(PJ)P1

= 1T

(
k−2∏
i=1

PBi(I)

)
(P11T )P1

= 1T

(
k−2∏
i=1

PBi(I)

)
P1(1TP1).

As 1TP1 = E[val(V )] = 0, we have that eI = 0. Similarly eI = 0 for I not containing 1.

Moreover, if j, j + 1 are both not contained in I for some j ∈ [k − 2] then

eI = 1T

(
j−1∏
i=1

PBi(I)

)
(PBj(I))(PBj+1(I))

(
k−2∏
i=j+2

PBi(I)

)
P1

= 1T

(
j−1∏
i=1

PBi(I)

)
(PJ)(PJ)

(
k−2∏
i=j+2

PBi(I)

)
P1.

However,

(PJ)(PJ) = (P11T )(P11T ) = P1(1Tp1)1T = 0.

Thus, any subset I ⊆ [k−1] that may contribute to the sum in Equation (4.5) is contained

in Fk as defined in Equation (4.1). Using that ‖P‖ ≤ 1 and the submultiplicativity of

the euclidean norm, for every I ∈ Fk we have that

eI = 1T

(
k−1∏
i=1

PBi(I)

)
P1

≤
k−1∏
i=1

‖PBi(I)‖

≤
∏
i∈I

‖Bi(I)‖.

Recall that for every i ∈ I, Bi(I) = λ∆iE∆i
and that ‖E∆i

‖ ≤ 1. Thus,∏
i∈I

‖Bi(I)‖ ≤
∏
i∈I

λ∆i ,

which concludes the proof.

4.2 Symmetric test functions

Given a symmetric function f : {±1}t → R and k ∈ [t] we slightly abuse notation and

denote by f̂(k) = |f̂([k])|. For analyzing the random walk with respect to symmetric test
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functions, we define for every integer k ∈ {0, 1, . . . , t},

βk =
∑
S⊆[t]
|S|=k

E[χS(RWG,val)]. (4.6)

Note that βk is independent of the choice of test function. However, for symmetric tests

functions, these quantities will appear in the analysis, and so we begin by analyzing them.

Indeed, a straightforward corollary of Lemma 4.1 is the following

Corollary 4.3. Let G = (V,E) be a regular λ-spectral expander, and let val : V →
{±1} be a balanced labelling of the vertices of G. Then, for every symmetric function

f : {±1}t → R,

EG,val(f) ≤
t∑

k=2

f̂(k)|βk|.

The main technical work in this section is proving the bound on |βk| as given by the

following lemma.

Lemma 4.4. Let G be a regular λ-spectral expander. Then, for every k ∈ {0, 1, . . . , t},
it holds that

|βk| ≤ 2k
(
t− 1

bk
2
c

)(
λ

1− λ

)d k
2
e

(4.7)

To prove Lemma 4.4, we first prove the following claim.

Claim 4.5. Let G be a regular λ-spectral expander. Then, for every k ∈ {0, 1, . . . , t}, it

holds that

|βk| ≤ 2k
t−b k

2
c∑

m=d k
2
e

(
m− 1

dk
2
e − 1

)(
t−m
k − dk

2
e

)
λm.

Proof of Claim 4.5. By Proposition 4.2, we have that

|βk| ≤
∑
S⊆[t]
|S|=k

∑
I∈Fk

λ
∑
j∈I ∆j(S)

=
∑
I∈Fk

∑
S⊆[t]
|S|=k

λ
∑
j∈I ∆j(S).

Note that for every S ⊆ [t] of size |S| = k and every j ∈ {0, 1, . . . , k}, ∆j(S) ≥ 1.

Moreover, for every such S,
∑k

j=0 ∆j(S) = t + 1. The encoding S 7→ (∆0, . . . ,∆k) is a

bijection between cardinality k subsets of [t] and partitions of {1, . . . , t+ 1} into k + 1

non-empty intervals. Fix I ∈ Fk and let βk(I) denote the contribution of I to the above

sum, that is, βk(I) =
∑

S⊆[t]:|S|=k λ
∑
j∈I ∆j(S). Every cardinality k subset S contributes λm
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to the sum, where m is the sum of lengths of the intervals indexed by I ∈ Fk. To bound

βk(I) we find for every m 6 t the number of cardinality k sets S that contribute λm.

Note that this is precisely the number of ways to choose positive integers m1, . . . ,m|I|
and n1, . . . , nk+1−|I| such that

∑
mj = m and

∑
nj = t −m + 1, which is

(
m−1
|I|−1

)(
t−m
k−|I|

)
.

Therefore,

βk(I) =
t∑

m=0

(
m− 1

|I| − 1

)(
t−m
k − |I|

)
λm.

Note that βk(I) depends only on the cardinality of I and not on I itself. Moreover,

βk(I) is monotonically decreasing in |I|. To see this, notice that when I ⊆ I ′ then for

every S ⊆ [t],
∑

j∈I ∆j(S) ≤
∑

j∈I′ ∆j(S), and therefore βk(I
′) ≤ βk(I) (because λ ≤ 1).

Thus, if I∗ is a minimal cardinality set Fk, then

|βk| ≤
∑
I∈Fk

βk(I) ≤
∑
I∈Fk

βk(I
∗)

≤ 2k
t∑

m=0

(
m− 1

|I∗| − 1

)(
t−m
k − |I∗|

)
λm

The lemma follows by noting that for every I ∈ Fk we have |I| ≥ dk
2
e.

We turn to prove Lemma 4.4.

Proof of Lemma 4.4. The case k = 1 readily follows as, by Proposition 4.2 and the remark

following it, β1 = 0. By Claim 4.5,

|βk| ≤ 2k
t−b k

2
c∑

m=d k
2
e

(
m− 1

dk
2
e − 1

)(
t−m
k − dk

2
e

)
λm

≤ 2k
(

t− 1

k − dk
2
e

)
· λ ·

t−b k
2
c∑

m=d k
2
e

(
m− 1

dk
2
e − 1

)
λm−1

≤ 2k
(

t− 1

k − dk
2
e

)
· λ ·

∞∑
i=d k

2
e−1

(
i

dk
2
e − 1

)
λi. (4.8)

By Claim 3.1,
∞∑

i=d k
2
e−1

(
i

dk
2
e − 1

)
λi =

λd
k
2
e−1

(1− λ)d
k
2
e
.

Substituting to Equation (4.8) concludes the proof.
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4.3 Warm-up: analyzing the majority function

As a warm-up for the proof of Theorem 1.1, in this section we use the machinery developed

in Section 4, namely, Proposition 4.2, Corollary 4.3, and Lemma 4.4, to prove that random

walks fool the majority function. Recall that MAJt : {±1}t → {±1} on input x =

(x1, . . . , xt) ∈ {±1}t is defined by MAJt(x) = 1 if
∑
xi ≥ 0 and MAJt(x) = −1 otherwise.

When t is clear from context, we omit it from the subscript. More generally, for w ∈ [t] we

define the w threshold function Thw : {±1}t → {±1} by Thw(x) = 1 if | {xi|xi = 1} | ≥ w

and Thw(x) = −1 otherwise.

Theorem 4.6. There exists a universal constant cMAJ such that for every 0 < λ < 1
4c2MAJ

and every t ∈ N

Eλ(MAJt) ≤ 2c3
MAJ

(
λ

1− λ

)2

· 1√
t
.

As explained in the introduction it is known [KV86, Lez01] that the distribution of

the sum when taking t independent distributions and when taking a random walk, is

O( 1√
t
) close in the Kolmogorov distance. This means that the two distributions look the

same when the test function can be an arbitrary threshold function. More formally:

Theorem 4.7 (follows, e.g., from [Klo17], Theorem C). For every t ∈ N and w ∈ [t],

Eλ(Thw) = O

(
1√
t

)
.

Theorem 4.7 from [KV86] is more general than Theorem 4.6 that we prove in this

section. However, the proof techniques are completely different. Theorem 4.7 holds only

against threshold tests, while the proof of Theorem 4.6 builds upon the behaviour of

the parity function that is far away from being threshold. We prove Theorem 4.6 as we

believe it is a good warm-up exercise towards the more delicate calculations of Section 4.4.

Indeed, in Section 4.4 we show this allows proving CLT convergence in the stronger total

variation distance, rather than in the weaker Kolmagorov distance as in Theorem 4.7.

Proof of Theorem 4.6. Let G = (V,E) be a regular λ-spectral expander, and let val :

V → {±1} be a balanced labelling of V . The Fourier coefficients of the MAJ functions

are well-known (see, e.g., [O’D14], Theorem 5.19). Let S ⊆ [t] with |S| = k. Then, for k

even M̂AJ(S) = 0; otherwise,

M̂AJ(S) = (−1)
k−1
2

( t−1
2

k−1
2

)
(
t−1
k−1

) 2

2t

(
t− 1
t−1

2

)
. (4.9)
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Using Lemma 4.4, Equation (4.9) and the standard estimates

2

2t

(
t− 1
t−1

2

)
≤ c1√

t
,( t−1

2
k−1

2

)
≤
(
e · t− 1

k − 1

) k−1
2

,(
t− 1

k − 1

)
≥
(
t− 1

k − 1

)k−1

,

where c1 is some absolute constant (see Claim 3.1) we get for every odd k ∈ [t],

|M̂AJ(k) · βk| ≤

( t−1
2

k−1
2

)
(
t−1
k−1

) 2

2t

(
t− 1
t−1

2

)
· 2k
(
t− 1
k−1

2

)(
λ

1− λ

) k+1
2

≤
(
e · t− 1

k − 1

) k−1
2

· c1√
t
·
(
k − 1

t− 1

)k−1

· 2k ·
(

2e
t− 1

k − 1

) k−1
2

·
(

λ

1− λ

) k+1
2

=
c1√
t
· ek−1 · 2k+ k−1

2 ·
(

λ

1− λ

) k+1
2

6
c2
k

√
t

(
λ

1− λ

) k+1
2

.

Corollary 4.3 then implies that

EG,val(MAJ) ≤
t∑

k=3
k odd

|M̂AJ(k) · βk|

≤
t∑

k=3
k odd

c2
k

√
t

(
λ

1− λ

) k+1
2

=
c3

2√
t

(
λ

1− λ

)2

·
∞∑
i=0

(
c2

2

λ

1− λ

)i
. (4.10)

Set cMAJ = max(c2, 1). As λ ≤ 1
4c2MAJ

we have that λ ≤ 1
4

and so

c2
2

λ

1− λ
≤ 4

3
· c2

2λ ≤
4

3
· c2

MAJλ ≤
1

3
.

Thus, the sum in Equation (4.10) is bounded by 3
2
, and we conclude that

EG,val(MAJ) ≤ 2c3
MAJ√
t

(
λ

1− λ

)2

.
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4.4 Weight indicator functions

For integers t and w ∈ {0, 1, . . . , t} let 1w : {±1}t → {0, 1} be the function indicating

whether the weight of the input is w. That is, 1w(x1, . . . , xt) = 1 if
∑

i xi = 1 and

1w(x1, . . . , xt) = 0 otherwise. In this section we prove

Theorem 4.8. There exists universal constants 0 < γ ≤ 1 ≤ c such that the following

holds. Let 1 6 σ0 ∈ R and 0 ≤ b ≤ σ0

√
t an integer. Set w = t+b

2
. Then, for any λ ≤ γ

σ2
0

it holds that

Eλ(1w) ≤ cλ

1− λ
· σ

2
0√
t
.

We analyze the weight indicator function in a similar way to the majority function,

except that we need to work harder to express the Fourier coefficients of the weight

function, and, more importantly, the analysis is more delicate as the weight indicator

function is not anti-symmetric and therefore has Fourier mass on even layers. This

section is organized as follows: in Section 4.4.1 we compute the Fourier coefficients of 1w
and in Section 4.4.2 we prove Theorem 4.8.

4.4.1 The Fourier coefficients of 1w

In this section we compute the Fourier coefficients of the weight indicator function. While

this calculation is certainly known, we could not find a reference and so we develop it

here.

Lemma 4.9.

1̂w(k) =


1
2t

( tw)
(tk)

b k2c∑
l=0

(−1)l
(
t−w
l

)(
2w−t
k−2l

)
w > t

2

1
2t

( tw)
(tk)

b k2c∑
l=0

(−1)k−l
(
w
l

)(
t−2w
k−2l

)
w 6 t

2

Proof. We compute the quantity Tρ1w(1, . . . , 1) in two ways. First, we apply Lemma 3.4

to 1w on input x0 = (1, . . . , 1), where we think of ρ as a formal symbol. Using the fact

that 1w is symmetric, we get that

(Tρ1w)(x0) =
∑
S⊆[t]

1̂w(S)ρ|S|χS(x0) =
t∑

k=0

(
t

k

)
1̂w(k)ρk. (4.11)

On the other hand, by direct computation

(Tρ1w)(x0) = E
yi∼Ber( 1+ρ

2
)
1w(y)

=
1

2t

(
t

w

)
(1 + ρ)w(1− ρ)t−w

=

{
1
2t

(
t
w

)
(1− ρ2)t−w(1 + ρ)2w−t w > t

2
1
2t

(
t
w

)
(1− ρ2)w(1− ρ)t−2w w 6 t

2
.

(4.12)

22



Equations (4.11) and (4.12) give two equal polynomial expressions in the formal symbol

ρ and so their corresponding coefficients are equal. Comparing the coefficient of ρk, we

learn that when w > t
2(

t

k

)
1̂w(k) =

1

2t

(
t

w

) b k2c∑
`=0

(−1)`
(
t− w
`

)(
2w − t
k − 2`

)
,

and for w < t
2 (

t

k

)
1̂w(k) =

1

2t

(
t

w

) b k2 c∑
`=0

(−1)k−`
(
w

`

)(
t− 2w

k − 2`

)
.

Using Lemma 4.9 we turn to bound the magnitude of the weight indicator Fourier

coefficients.

Claim 4.10. Let 1 6 σ0 ∈ R and 0 ≤ b ≤ σ0

√
t an integer. Then there is some constant

c2 > 0 such that for w = t+b
2

and w′ = t− w it holds that

|1̂w(k)|, |1̂w′(k)| ≤ k · (c2σ0)k√
t

(
k

t

)k/2
Proof. By symmetry, it is enough bound |1̂w(k)|. Denote σ = b√

t
, and note that σ ≤ σ0.

By Lemma 4.9,

|1̂w(k)| =

∣∣∣∣∣∣∣
1

2t

( t
t+σ
√
t

2

)(
t
k

) b k2c∑
`=0

(−1)`
( t−σ

√
t

2

`

)(
σ
√
t

k − 2`

)∣∣∣∣∣∣∣
≤ 1

2t

(
t
t
2

)(
t
k

) · b k2c∑
`=0

( t−σ
√
t

2

`

)(
σ
√
t

k − 2`

)

≤ c1k√
t

(
k

t

)k
·max

`

( t−σ
√
t

2

`

)(
σ
√
t

k − 2`

)
. (4.13)

However, ( t−σ
√
t

2

`

)(
σ
√
t

k − 2`

)
≤
(
t

`

)(
σ0

√
t

k − 2`

)
≤
(
et

`

)`(
eσ0

√
t

k − 2`

)k−2`

≤ ek−`tk/2
1

``
· ( σ0

k − 2`
)k−2`

≤ tk/2 (eσ0)k
1

``
1

(k − 2`)k−2`

≤ tk/2(eσ0)k · max
1<`< k

2

(
1

``
1

(k − 2`)k−2`

)
. (4.14)
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We have the following claim whose proof we defer.

Claim 4.11. Let 1 < ` < k
2
. Then

`` · (k − 2`)k−2` ≥ kk/2

3k
.

Claim 4.11 together with Equations (4.13) and (4.14) imply that

|1̂w(k)| ≤ c1k√
t

(
k

t

)k
tk/2(eσ0)k

3k

kk/2

≤ k√
t

(
k

t

)k/2
(3ec1σ0)k.

The proof follows by taking c2 = 3ec1.

We complete the proof of Claim 4.10 by proving Claim 4.11.

Proof of Claim 4.11. Define f(x) = xx · (k − 2x)k−2x = ex ln(x)+(k−2x) ln(k−2x). Note that

f(1) = (k − 2)k−2

f

(
k

2
− 1

)
= 22

(
k − 2

2

) k−2
2

≥ kk/2

3k
.

The extreme points of f(x) in the interior of the domain are the extreme points of

g(x) = ln(f(x)) = x ln(x) + (k − 2x) ln(k − 2x). If x is an extreme point in the interior

then g′(x) = 0. As,

g′(x) = ln(x) + 1− 2(ln(k − 2x) + 1) = lnx− 2 ln(k − 2x)− 1,

the point x can be an interior extreme point only if ln(x) − 2 ln(k − 2x) = 1, i.e., x =

e(k − 2x)2. The two solutions to the equation 4ex2 − (4ek + 1)x+ ek2 = 0 are given by

x1,2 =
4ek + 1±

√
(4ek + 1)2 − 16e2k2

8e

=
4ek + 1±

√
1 + 8ek

8e

=
k

2
+

1±
√

1 + 8ek

8e
.

The positive solution lays outside of the domain. Thus, the only possible extremum in

the interior is

x1 =
k

2
+

1−
√

1 + 8ek

8e
(4.15)
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Notice that x1 = e(k − 2x1)2. Denote by a = x1, b = (k − 2x1), thus k = 2a + b and

a = eb2. The candidate extremum is

g(x1) = a ln a+ b ln b

= a ln(eb2) + b ln b

= a(2 ln(b) + 1) + b ln b

= ln(b)(2a+ b) + a = k ln(b) + a.

And so f(x1) = eg(x1) = bk · ea ≥ bk. We therefore want to lower bound b = k − 2x1.

By Equation (4.15) we have that

x1 ≤
k

2
+

1−
√

8ek

8e
=
k

2
−
√

k

8e
+

1

8e
.

It follows that

b = k − 2x1 ≥
√

k

2e
− 1

4e
.

As k ≥ 1, we have that

b ≥
√
k

(
1√
2e
− 1

4e

)
≥
√
k

3
,

and so f(x1) ≥ bk = kk/2

3k
as desired.

4.4.2 Proof of Theorem 4.8

We are now ready to prove Theorem 4.8.

Proof of Theorem 4.8. Let G be a regular λ-spectral expander and let val : V → {±1}
be a balanced labelling. By Corollary 4.3,

EG,val(1w) ≤
t∑

k=2

|1̂w(k)βk|.

Using Claim 4.10 to upper bound |1̂wW | and Lemma 4.4 to bound |βk| we get,

EG,val(1w) ≤
t∑

k=2

|1̂w(k)| · |βk|

≤
t∑

k=2

k
(c2σ0)k√

t

(
k

t

)k/2
· 2k
(
t− 1

bk
2
c

)(
λ

1− λ

)d k
2
e

≤
t∑

k=2

k
(c2σ0)k√

t

(
k

t

)k/2
· 2k

(
2et

k

)k/2(
λ

1− λ

)d k
2
e

=
t∑

k=2

(3c2σ0)k√
t

(
λ

1− λ

)d k
2
e

≤ (3c2σ0)2

√
t
· λ

1− λ
·
∞∑
i=0

(
3c2σ0

√
λ

1− λ

)i

.
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The proof follows by taking 3c2σ0

√
λ

1−λ <
1
2
.

4.5 Proof of Theorem 1.3

For convenience we restate the theorem here.

Theorem (Theorem 1.3; restated). Let G = (V,E) be a λ-spectral expander. Let val :

V → {0, 1} with E[val(V )] = 1
2
. Then,

‖ΣRWt − ΣIndt ‖TVD = O(λ · log3/2(1/λ)).

Proof. Note that it suffices to prove the theorem only for λ < λ0, where λ0 < 1 is some

constant. Indeed, this can be incorporated to the hidden constant factor in the big-O

notation that appears in the bound. We have that,

‖ΣRWt − ΣIndt ‖TVD =
1

2

t∑
w=0

|Pr[ΣIndt = w]−Pr[ΣRWt = w]| .

Let σ0 ∈ R be a parameter to be chosen later. For the proof, we split the domain into

two different intervals, based on σ0. The central interval IC =
{
w | |w − t

2
| 6 σ0

2

√
t
}

and

the tails, IT =
{
w | |w − t

2
| > σ0

2

√
t
}

. First notice that both ΣRWt, ΣIndt have a very

small probability to enter the tails region. Indeed, by the Chernoff bound,

Pr[ΣIndt ∈ IT ] = Pr

[
ΣIndt >

(
1 +

σ0√
t

)
t

2

]
+ Pr

[
ΣIndt 6

(
1− σ0√

t

)
t

2

]
6 2 exp

(
−
(
σ0√
t

)2
t

6

)
= 2e−σ

2
0/6.

By the Chernoff bound for expander walks, and assuming λ0 ≤ 1
2
,

Pr[|ΣRWt ∈ IT ] = Pr

[∣∣∣∣ΣRWt −
t

2

∣∣∣∣ > σ0

2
√
t
· t
]

< 2 exp

(
−(1− λ)t

4

(
σ0

2
√
t

)2
)

= 2e−σ
2
0/32.

Combining those two results we get a bound on the total variation distance in the tails

region.∑
w∈IT

|Pr[ΣIndt = w]−Pr[ΣRWt = w]| 6
∑
w∈IT

Pr[ΣIndt = w] + Pr[ΣRWt = w]|

6 4e−σ
2
0/32. (4.16)
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In the central interval, we invoke Theorem 4.8 to obtain∑
w∈IC

|Pr[ΣIndt = w]−Pr[ΣRWt = w]| 6
∑
w∈IC

Eλ(1w) 6
∑
w∈IC

cλ
σ2

0√
t

= cλσ3
0, (4.17)

where c is the constant that appears in the statement of Theorem 4.8. Set σ0 =
√

32 ln 1
λ
.

Note that by choosing λ0 sufficiently small so that 32λ0 ln 1
λ0
≤ γ, where γ is the con-

stant from Theorem 4.8, this meets the requirement of Theorem 4.8. Thus, we obtain

that the bound in Equation (4.16) evaluates to 4λ and the bound in Equation (4.17) is

O(λ log3/2 1
λ
). Combining both bounds concludes the proof.

5 Beyond symmetric functions

Several natural computational classes such as AC0 circuits, read-once branching programs

of various forms and functions with bounded query complexity are known to have bounded

Fourier tails. In many cases, such tails are key to our understanding of these classes.

Definition 5.1. For an integer t ≥ 1 and b ≥ 1, we denote by Lt1(b) the family of

functions f : {±1}t → {±1} that satisfy

L1,k(f) ,
∑
S⊆[t]
|S|=k

|f̂(S)| ≤ bk.

When t is clear from context we omit it and write L1(b). Most works consider the

L2 norm. In the following we focus on the L1 norm as it is known that a bound on the

L2 norm implies a bound on the L1 norm [Tal17]. Thus, the class of functions with L1

bounded Fourier tails is richer. We turn to give some examples.

Bounded-depth circuits. The class of bounded-depth circuits has been widely stud-

ied. The seminal work by Linial, Mansour and Nisan [LMN93] gives a bound on the L2

Fourier tail for this class. Tal [Tal17] obtained an improved result by showing that a

function computed by a depth-d size-s circuit is contained in L1(b) for b = O(logd−1 s).

Read-once branching programs. The class of ROBP is of wide interest, motivated

mostly by the study of the BPL vs. L problem. Reingold, Steinke and Vadhan [RSV13]

proved that any function f : {±1}t → {±1} computed by a width-w permutation ROBP

is in L1(2w2). They further conjectured a bound for general ROBP. Their conjecture was

settled by Chattopadhyay et al. [CHRT18], who proved that any function f : {±1}t →
{±1} computed by a width-w ROBP is in L1(b) for b = O(logw n). Both results hold in

the more general setting where the bits can be read in any (predetermined) order.
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Query complexity measures. Denote by DT(f) the decision tree complexity of f .

It is easy to show that L1,k(f) ≤ DT(f)k and so the class of functions with decision

tree complexity d is in L1(d). As mentioned in the introduction, it is well-known that

the decision tree complexity is polynomially-related to other complexity measures such

as the randomized and quantum decision tree measures, the certificate query complexity

(namely, nondeterministic query complexity), the approximate real degree of a function,

and most recently also to the sensitivity of a function [Hua19]. Thus, every function with

a bound b on any one of these measures is in L1(bc) for some universal constant c ≥ 1.

In this section we prove Theorem 1.5. To start with, we prove

Claim 5.2. For every λ ∈ [0, 1] and function f : {±1}t → {±1},

Eλ(f) ≤ 4Λ2
√
λ(f).

Proof. Let G = (V,E) be a regular λ-spectral expander, and val : V → {±1} a balanced

function. As E f(Ut) = f̂(∅),

EG,val(f) = |E f(RWG,val)− E f(Ut)|

≤
∑
∅6=S⊆[t]

|f̂(S)||EχS(RWG,val)|

≤
∑
S⊆[t]
|S|≥2

|f̂(S)| · 2|S|λ∆(S)/2.

where the last inequality follows by Proposition 2.3. Now, ∆(S) ≥ |S| − 2 and so

EG,val(f) ≤ 4
∑
S⊆[t]
|S|≥2

|f̂(S)| · (2
√
λ)∆(S),

proving the corollary.

The proof of Theorem 1.5 readily follows by the above-mentioned results [RSV13,

Tal17, CHRT18] and the following claim.

Claim 5.3. There exists a universal constant c ≥ 1 such that the following holds. For

every function f : {±1}t → {±1} in L1(b) and ε > 0, it holds that Eλ(f) ≤ ε provided

λ ≤ ε2

cb4
.

Proof. Let G = (V,E) be a regular λ-spectral expander, and val : V → {±1} a balanced

function. By Claim 5.2,

EG,val(f) ≤ 4Λ2
√
λ(f)

= 4
∑
S⊆[t]
|S|≥2

|f̂(S)| · (2
√
λ)∆(S).
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Consider a set S of size |S| = k. Recall that for k = 2, 3 we have that ∆(S) ≥ k− 1, and

that for k ≥ 4, it holds that ∆(S) ≥ k − 2. Bounding the above sum according to the

set size, we get

EG,val(f) ≤ 4

(
(2
√
λ)b2 + (2

√
λ)2b3 +

t∑
k=4

(2
√
λ)k−2bk

)

≤ 8
√
λb2 + 16λb3 +

16λb4

1− 2
√
λb
.

It is straightforward to verify that the above is bounded by ε for a sufficiently large

constant c.

6 A CS proof for the expander CLT

In a chain of works the Berry-Esseen theorem was proved for very general stochastic

processes, including, as a very special case, random walks on graphs. We give another

proof, specalized to random walks on graphs, in this section.

We adopt the approach of Kloeckner [Klo17] and reduce the Berry-Esseen theorem

for ΣRWt to estimates on the distance between the characteristic functions of ΣRWt and

ΣIndt, and then use a lemma (e.g., from [Fel71]) that relates the Kolmogorov distance

to the distance between characteristic functions. Kloeckner [Klo17] prove the distance

between the characteristic functions in great generality. Instead, we do it specifically for

random walks on graphs. We adopt a variant of Gilman [Gil98b] (with the simplification

and notation suggested by Heally [Hea08] and Beck [Bec15]) to achieve this task.

The proof in this section reveals the similarity between the Expander Chernoff bound

that studies the negligible part of the distribution, and the Expander CLT that studies

the non-negligible part of the distribution, and put both proofs on the same ground,

using the same tools and philosophy. It also highlights the phenomenon that already

exist in the Chernoff bound and the CLT for independent processes, where the moment

generating function is used to bound the negligible part, and the related characteristic

function is used for studying the non-negligible part.

The result proved in this specific section is known in the mathematical community

and in more generality. Nevertheless we made the choice to include the proof in the

paper because we believe the new proof and our exposition make it more accessible (and

intuitive!) to the CS audience. We also believe that such a proof has a potential to

interact better with possible CS applications.

6.1 The reduction from Berry-Esseen to the characteristic func-

tion

The moment generating function of X is the function Mx : R → R defined by MX(t) =

E[etX ]. The characteristic function of X is the function ϕx : R → C defined by ϕX(t) =
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E[eitX ]. I.e., ϕX is the Fourier transform of the density function of X. Let G = (V,E)

be a λ-spectral expander, and val : V → {±1} a balanced labelling. We define three

distributions:

• N - the normal distribution with mean 0 and variance 1. The CDF is denoted by

Φ(x). The characteristic polynomial of N is γ(b) = e−b
2/2.

• Bt - the distribution obtained by taking t random samples Vi from V , letting Yi =

val(Vi) and Bt = 1√
t

∑t
i=1 Yi. We denote the characteristic polynomial by β(b). β(b)

is easy to describe:

β(b) = E
[
e
ib 1√

t

∑
Yi
]

=
∏
i

E
[
e
ib√
t
Yi
]

=
∏
i

e
ib√
t + e

−ib√
t

2
=

(
cos

(
b√
t

))t
.

• Rt - the distribution obtained by taking a length t−1 random walk over G, visiting

vertices (v1, . . . , vt) and letting Rt = 1√
t

∑t
j=1 val(vj). We denote the characteristic

function of Rt by ρ(b).

Our main technical claim is that the characteristic functions of Rt and Bt are close.

Specifically,

Lemma 6.1. Suppose λ ≤ 1
16

and b ∈ [−B,B] for B = π
3

√
t. Then,

|ρ(b)− β(b)| ≤ 16λ · b
2

t
· e−

b2

16 .

With that we claim:

Theorem 6.2. (Berry Esseen-for random walk on expander graphs)

‖Rt −N ‖Kol ≤ O

(
1√
t

)
.

Proof. We apply [Fel71, Lemma 2, Chapter XVI.3] to get:

‖Rt −N ‖Kol = ‖R− Φ ‖∞ ≤ 1

π

∫ B

−B

∣∣∣∣ρ(x)− γ(x)

x

∣∣∣∣ dx+
24√
2ππ

1

B

≤ Θ

(
1

B

)
+

∫ B

−B

∣∣∣∣ρ(x)− β(x)

x

∣∣∣∣ dx+

∫ B

−B

∣∣∣∣β(x)− γ(x)

x

∣∣∣∣ dx.
It is well known that

∫ B
−B

∣∣∣β(x)−γ(x)
x

∣∣∣ dx = O( 1
B

) because the binomial distribution con-

verges in CDF to the normal distribution (see [Fel71], page 543, in the proof of Theorem

1 in Section XVI.5). Also, from Lemma 6.1 we see:∫ B

−B

∣∣∣∣ρ(x)− β(x)

x

∣∣∣∣ dx ≤ 16λ

t

∫ B

0

xe−x
2/16dx ≤ 27λ

t
,

because
∫ B

0
xe−x

2/16 = (−8e−x
2/16)|B0 ≤ 8. The two bounds together conclude the proof.
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6.2 Flow

Our ultimate goal is to prove Lemma 6.1. We can define Pb to be a diagonal matrix with

Pb[v, v] = e
val(v)· b√

t
·i
.

Then, as in previous sections we can express

ρ(b) = E eibRt = 1t(PbG)t−1Pb1.

Pb and G are linear operators over RV . We let V =
{∑

v∈V αv · v | v ∈ V
}

. We

identify RV with V by associating f : V → R with the vector
∑

v∈V f(v) · v. We

decompose V = V0 ⊕ V1 where V0 = Span {1} is the “parallel” space and V1 = V⊥0
is the space perpendicular to it. Following Gillman, Heally and Beck, and using the

notation and claims of Beck, we want to measure the amount of “flow” from V0 to V1

in a linear operator T : V→ V. We therefore define:

Definition 6.3. (The flow matrix) Given T : V→ V let Ti,j : V→ V be

Ti,j = ΠiTΠj,

where Πk (k ∈ {0, 1}) is the projection operator on Vk. We define the flow matrix of T

to be the 2× 2 matrix T̃ defined by

T̃ [i, j] = ‖Ti,j ‖ .

T̃ measures the amount of flow from V0 (or V1) to V0 and V1.

It is a standard check that

G̃ ≤ew
(

1 0

0 λ

)
,

where all entries except for the right bottom are equality. Also,

Claim 6.4. P̃b ≤ew
(

cos θ sin θ

sin θ 1

)
.

Proof. For P̃b[0, 0],

1tPb1 =
1

t

∑
v

e
val(v)· b√

t
·i

=
1

2

(
e
b√
t
i
+ e

− b√
t
i
)

= cos

(
b√
t

)
= cos(θ).

As Pb is unitary,

P̃b[0, 0]2 + P̃b[0, 1]2 = ‖Π0(Pb1) ‖2 + ‖ (Π1Pb1) ‖2 = ‖Pb1 ‖ = ‖1 ‖ = 1,

which gives

P̃b[0, 1] = P̃b[1, 0] =

√
1− P̃b[0, 0]2.

Finally, clearly, P̃b[1, 1] ≤ ‖U ‖ = 1 as U is unitary. Notice that the entries except for

the right bottom are equalities.
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Furthermore, say M1 ≤ew M2, where M1,M2 are 2× 2 matrices over R, if M1[i, j] ≤
M2[i, j] for all i, j, where ≤eq stands for entry-wise inequality. Then,

Fact 6.5. Let A,B : V → V be arbitrary linear operators. ÃB ≤ew Ã · B̃, where the

product on the RHS is 2× 2 matrix multiplication.

Proof. We remind the reader that ÃB[i, j] = ‖ΠiABΠj ‖, where Π0 = 11t the projection

matrix on 1 and Π1 = I − Π0.

ÃB[i, j] = ‖ΠiABΠj ‖
= ‖ΠiA(Π0 + Π1)BΠj ‖
≤ ‖ΠiAΠ0BΠj ‖+ ‖ΠiAΠ1BΠj ‖
≤ ‖ΠiAΠ0 ‖ · ‖Π0BΠj ‖+ ‖ΠiAΠ1 ‖ · ‖Π1BΠj ‖
= Ã[i, 0] · B̃[0, j] + Ã[i, 1] · B̃[1, j]

= (Ã · B̃)[i, j].

With that we are ready to prove Lemma 6.1.

6.3 Approximating the characteristic function

Proof of Lemma 6.1. As before Pb is the diagonal matrix with Pb[v, v] = e
val(v)· b√

t
·i
. Let

θ = b√
t
, θ ∈ [−θ0, θ0] for θ0 = π

3
. Then,

ρ(b) = E eibY = 1t(PbG)t−1Pb1

β(b) = (cos θ)t

By the above discussion about flow matrices we have:

G̃Pb ≤ew G̃ · P̃b ≤ew
(

1 0

0 λ

)
·
(

cos θ sin θ

sin θ 1

)
=

(
cos θ sin θ

λ sin θ λ

)
.

Our main technical tool is:

Lemma 6.6. (The characteristic distance lemma) If A =

(
a b

c d

)
≥ew 0 and d < a

then

|At[0, 0]− (A[0, 0])t| ≤
(
a+

bc

a− d

)t−2
abc

a− d
.

We prove the lemma in Section 6.4. With that:
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|ρ(b)− β(b)| = |1t(GPb)t1− (cos θ)t|

= |(̃GPb)t[0, 0]− (G̃Pb[0, 0])t|

≤
(

cos θ +
λ sin2 θ

cos θ − λ

)t−2

· λ sin2 θ cos θ

cos θ − λ
≤ (cos θ + 4λ sin2 θ)t−2 · 4λ sin2 θ cos θ

≤ 16λθ2(cos θ + 4λ sin2 θ)t,

where we have used cos θ ≥ 1
2
, λ ≤ 1

4
and sin θ ≤ θ. Now,

cos θ + 4λ sin2 θ ≤ cos θ +
sin2 θ

4
=
√

1− sin2 θ +
sin2 θ

4

≤ 1− sin2 θ

2
+

sin2 θ

4
= 1− sin2 θ

4

≤ 1− 1

4
· (θ

2
)2 = 1− θ2

16

where we have used λ ≤ 1/16 and sinx ≥ x− x3

6
≥ x

2
for x ≤ 1. Altogether,

|ρ(b)− β(b)| ≤ 16λθ2(cos θ + 4λ sin2 θ)t

≤ 16λθ2

(
1− b2

16t

)t
≤ 16λ

t
b2e−

b2

16 .

6.4 The characteristic distance lemma

Lemma 6.7. If A =

(
a b

c d

)
≥ew 0 with a ≥ 1 and d < 1 then At[0, 0] ≤ (a+ bc

1−d)t.

Proof. By induction on t. The cases t = 0, 1 are clear. Assume for 1, . . . , t and let us

prove for t+ 1.

At[0, 0] = At−1[0, 0]A[0, 0] +
t−2∑
j=0

Aj[0, 0] · A[0, 1] · A[1, 0] · A[1, 1]t−j−2,

where j goes over the last time the path was at 0 (0 ≤ j ≤ t − 2). As A[i, j] ≥ 0 and

a = A[0, 0] ≥ 1 we see that At[0, 0] ≥ At−1[0, 0]. Hence,

At[0, 0] ≤ At−1[0, 0]a+
t−2∑
j=0

At−1[0, 0] · bc · dt−j−2

≤ At−1[0, 0]

(
a+ bc

∞∑
j=0

dj

)

≤ At−1[0, 0]

(
a+

bc

1− d

)
.
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Lemma 6.8. If A =

(
a b

c d

)
≥ew 0 with a ≥ 1 and d < 1 then

∣∣At[0, 0]− (A[0, 0])t
∣∣ ≤ (

a+
bc

1− d

)t
.

Proof. Notice that the only path from 0 to 0 that never leaves 0 gives the value at. Also,

all paths give non-negative contribution. Thus, to bound |At[0, 0]− (A[0, 0])t| we need to

sum over all paths that sometimes leave 0. Doing an analysis similar to Lemma 6.7 we

get:

|At[0, 0]− (A[0, 0])t| ≤
t−2∑
j=0

At−2[0, 0] · bc · dt−j−2

≤ At−2[0, 0]bc
∞∑
j=0

dj

≤
(
a+

bc

1− d

)t−2

· bc

1− d
.

We can extend the lemma to the case where A[0, 0] > 0 but not necessarily greater

than 1, and d < a, as follows:

Lemma 6.9. If A =

(
a b

c d

)
≥ew 0 and d < a then

∣∣At[0, 0]− (A[0, 0])t
∣∣ ≤ (

a+
bc

a− d

)t−2
abc

a− d
.

Proof. we have A = a ·
(

1 b
a

c
a

d
a

)
. Hence

|At[0, 0]− (A[0, 0])t| ≤ at

(
1 +

bc

a2
(
1− d

a

))t−2
bc

a2(1− d
a
)

= at
(

1 +
bc

a(a− d)

)t−2
bc

a(a− d)

=

(
a+

bc

a− d

)t−2
abc

a− d
.
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