
Direct Sum and Partitionability Testing over General Groups

Andrej Bogdanov∗ Gautam Prakriya†

Abstract

A function f(x1, . . . , xn) from a product domain D1 × · · · × Dn to an abelian group G is a
direct sum if it is of the form f1(x1) + · · ·+ fn(xn). We present a new 4-query direct sum test
with optimal (up to constant factors) soundness error. This generalizes a result of Dinur and
Golubev (RANDOM 2019) which is tailored to the target group G = Z2. As a special case, we
obtain an optimal affinity test for G-valued functions on domain {0, 1}n under product measure.
Our analysis relies on the hypercontractivity of the binary erasure channel.

We also study the testability of function partitionability over product domains into disjoint
components. A G-valued f(x1, . . . , xn) is k-direct sum partitionable if it can be written as a sum
of functions over k nonempty disjoint sets of inputs. A function f(x1, . . . , xn) with unstructured
product range Rk is direct product partitionable if its outputs depend on disjoint sets of inputs.

We show that direct sum partitionability and direct product partitionability are one-sided
error testable with O((n − k)(log n + 1/ε) + 1/ε) adaptive queries and O((n/ε) log2(n/ε)) non-
adaptive queries, respectively. Both bounds are tight up to the logarithmic factors for constant
ε even with respect to adaptive, two-sided error testers. We also give a non-adaptive one-sided
error tester for direct sum partitionability with query complexity O(kn2(log n)2/ε).

1 Introduction

In their seminal result, Blum, Luby and Rubinfeld [BLR90] gave a four query test to determine
whether a function f : Fn2 → F2 is affine. We consider a natural generalization of the notion of
affinity to functions f(x1, · · · , xn) from {0, 1}n to an arbitrary abelian group G: Is f of the form
x1 · g1 + · · · + xn · gn + g0 for some group elements g0, . . . , gn ∈ G? The analysis of Blum, Luby
and Rubinfeld does not apply unless the domain and range have the same group structure. In this
work we give an optimal four query affinity test for functions from {0, 1}n to an arbitrary abelian
group G.

More generally, our test can be used to determine if a function f(x1, . . . , xn) from a finite
product domain D1 × · · · × Dn to an abelian group G is a direct sum, i.e., whether f is of the form∑
fi(xi). This resolves a conjecture of Dinur and Golubev [DG19].
In contrast to the work of Blum, Luby, and Rubinfeld, which was primarily motivated by

applications to probabilistically checkable proofs, direct sum testing over general groups arises in
the context of testing function partionability: Can a multivariate function be decomposed into
independent or loosely related components? Bogdanov and Wang [BW20] discuss the relevance

∗andrejb@cse.cuhk.edu.hk. Department of Computer Science and Engineering and Institute of Theoretical
Computer Science and Communications, Chinese University of Hong Kong.
†gautamprakriya@gmail.com. Institute of Theoretical Computer Science and Communications, Chinese University

of Hong Kong.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 164 (2020)

of this question for real-valued functions to the problem of identifying control variables in high-
dimensional reinforcement learning.

In this work we consider the following two natural partitioning problems for discrete functions
over product domains D1 × · · · × Dn (endowed with a product distribution):

• A direct sum partition (⊕-partition) of f into k components is a representation of the form
f(x1, . . . , xn) = f1(xS1) + · · ·+ fk(xSk

), where S1, . . . , Sk are disjoint nonempty sets of vari-
ables. Here, the range of f is an abelian group (G,+).

• A direct product partition (⊗-partition) of f is a representation of the form f(x1, . . . , xn) =
(f1(xS1), . . . , fk(xSk

)), where S1, . . . , Sk are disjoint nonempty sets of variables. Here, the
range of f is a k-product set Rk.

We are interested in the query complexity of testing partitionability: Given oracle access to f
and parameters k, ε, how many queries does it take to tell whether f is partitionable or ε-far from
partitionable?

The related tasks of direct product testing and direct sum testing ask for the existence of such
representations under a known (fixed) partition of inputs. Motivated by applications to proba-
bilistically checkable proofs, Dinur and Steurer [DS14] and Dickstein and Dinur [DD19] analyze a
2-query direct product test of essentially optimal soundness.

The query complexity of direct sum testing for Z2-valued functions, that is of testing whether
a function f : D1× · · ·×Dn → Z2 is of the form f(x1, . . . , xn) = f1(x1) + · · ·+ fn(xn), was recently
resolved by Dinur and Golubev [DG19]. They proposed and analysed a 4-query test of optimal (up
to constant factors) soundness error. Their tester does not naturally extend to functions valued in
arbitrary abelian groups.

Bogdanov and Wang [BW20] proposed an agnostic learning algorithm for unknown direct sum
partitions. As a consequence of their analysis they concluded that ⊕-partitionability is testable
with O(kn3/ε) non-adaptive queries. They also showed that Ω(n− k+ 1) queries are necessary for
constant ε. To the best of our knowledge ⊗-partitionability has not been studied before.

Our Results

We analyze a new 4-query direct sum test for functions valued over arbitrary abelian groups.
The test is based on the following dual characterization: f : D1 × · · · × Dn → G is a direct sum
f1(x1)+ · · ·+fn(xn) if and only if Df (S, S;x, y) = 0 for all pairs of inputs x, y and partitions (S, S)
of [n], where

Df (S, S;x, y) = f(x)− f(ySx)− f(yTx) + f(y).

Here and in the rest of the manuscript, ySx is the string in D1× · · ·×Dn that matches y in the
S-coordinates and x in the other coordinates.

The tester accepts if Df (S, S;x, y) = 0 for random independent inputs x, y ∈ D1 × · · · × Dn
and a random partition (S, S) of [n]. Our main result is an optimal (up to constant factor) bound
on the soundness error ρ(f) = Pr[Df (S, S;x, y) 6= 0] of this test in terms of the distance δ(f) =
ming{Prx[f(x) 6= g(x)] : g is a direct sum}.

Theorem 1.1. There is an absolute constant c > 0 such that for every D1, . . . ,Dn, every abelian
group G, and every f : D1 × · · · × Dn → G, ρ(f) ≥ c · δ(f).

2

An important special case of the theorem concerns the Boolean domain D1 = · · · = Dn = {0, 1}
under the uniform distribution. The class of direct sums from {0, 1}n to G is then precisely the
class of affine functions f(x) = x1g1 + · · · + xngn + g0 for some group elements g0, g1, . . . , gn ∈ G
(see Claim 4.2).

Using Theorem 1.1, we obtain the following upper bound on the query complexity of ⊕-
partitionability.

Theorem 1.2. Direct sum partitionability over any abelian group is one-sided testable with O((n−
k)(log n+ 1/ε) + 1/ε)-queries.

We also prove an upper bound on the query complexity of ⊗-partitionability:

Theorem 1.3. Direct product partitionability is one-sided testable with O((n/ε) log2(n/ε)) non-
adaptive queries.

The testers in Theorem 1.2 and 1.3 are time-efficient.
By the lower bound of Bogdanov and Wang, the ⊕-partitionability tester is tight up to the log n

factor for constant ε. In the special case when k = n, direct sum partitionability reduces to direct
sum testing and the query complexity is the same as that of Theorem 1.1.

Our tester for ⊕-partitionability is adaptive. In Theorem 5.7 we also give a one-sided non-
adaptive tester of query complexity O(kn2(log n)2/ε). A non-adaptive lower bound of Ω((n −
k + 1) (log(n− k + 1)/εc) log(log(n − k + 1)/εc)) for any c > 1 follows from the work of Servedio
et al. [STW15] on junta testing (see our Section 5.2). As in the case of juntas, it follows that
adaptivity helps in testing ⊕-partitionability for some settings of parameters.

The ⊗-partitionability tester is also nearly tight: In Propositions 6.7 and 6.11 we show that
direct product partitionability requires Ω(n) queries for ε = 1/2 for adaptive testers, and Ω(n

ε log(1/ε))
queries for non-adaptive testers, for every k ≥ 2.

Ideas and Techniques

Direct sum testing over general groups The main ingredient of Dinur and Golubev’s direct
sum tester for Z2-valued functions is an implicit reduction from general product domains to the
Boolean domain {0, 1}n under the uniform distribution. We abstract and generalize their reduction
in Proposition 4.1. To complete their proof, Dinur and Golubev instantiate the reduction with the
Z2-affinity test of Blum, Luby, and Rubinfeld [BLR90].

Our main technical contribution is a tight analysis of the affinity test Df applied to functions
f : {0, 1}n → G valued in an arbitrary abelian group G. To give a sense why the test is sound, let
us argue that ρ(f) = Ω(δ(f)) under the additional assumption that f is close to a direct sum, say
if δ = δ(f) ≤ 1/27.

Let B be the set of measure at most 1/27 on which f differs from its closest direct sum. We
claim that conditioned on x ∈ B, the probability that any of the other test queries y, ySx, yTx
land in B is at most δ + 2δ1/3. By independence, the probability that y ∈ B conditioned on x ∈ B
is exactly δ. In contrast, ySx and yTx are not independent of x, but can be sampled by processing
x through a binary symmetric channel with crossover probability 1/4. The bound Pr[ySx ∈ B|x ∈
B] ≤ δ1/3 follows from the small-set expansion of this channel [AG76], which is equivalent to the
hypercontractivity of the corresponding Markov operator [Bon70]. Since the event “x ∈ B and
ySx 6∈ B and yTx 6∈ B and y 6∈ B” results in rejection, it follows that ρ(f) ≥ δ · (1 − δ − 2δ1/3),
which is at least 8

27δ by the closeness assumption on f .

3

Our proof strategy is to argue that f can be decoded to a direct sum function by making at
most O(ρ(f)) “changes” to the truth-table of f . The decoding algorithm we analyze in Lemma 2.3
is iterative plurality (i.e., iterative maximum likelihood). We show that the function

φ(x) = pluralityS,y f(ySx) + f(ySx)− f(y) (1)

is, on the one hand, 2δ(f)-close to f , and on the other hand, has substantially smaller rejection
probability of ρ(φ) ≤ ρ(f)/2. By iterating the decoding, we arrive at a function that is 4δ(f) close
to f and passes the test with probability one, thus must equal a direct product.

This argument is inspired by the linearity test analysis of Blum, Ruby, and Rubinfeld (BLR),
who also decode f to a function that is, on the one hand, close to f and, on the other hand, passes
their test with probability 1. However, unlike the BLR decoder which yields a linear function after
a single round of self-correction, ours inherently requires multiple iterations. For example, if f is a
direct sum corrupted on all inputs with relative Hamming weight 1/3, then φ(0) is unlikely to be
correctly decoded (as yS0 and yT 0 will typically be corrupted) and so will typically be inconsistent
with a direct sum.

Nevertheless, the high-level structure of our argument closely parallels the BLR analysis. First,
in Claim 3.4 we show that for all but an o(ρ)-fraction of inputs x, the plurality in (1) is a strong
majority consistent with 99% of the choices of (S, S) and y. Second, we use the algebraic structure
of our test (Claim 3.3) to show that if Dφ(S, S;x, y) 6= 0 then Df (U, V ;w, z) 6= 0 for a substan-
tially larger fraction of query sequences (w, zUw, zUw, z) that can be sampled by applying suitable
“noise” to (S, S;x, y). If we represent the partition (S, S) by a binary string σ ∈ {0, 1}n (with 1
and 0 indicating memberships in S and S, respectively), we show that the relevant noise can be
modeled by independent fixed-probability erasures applied to the symbols of σ, x, and y. Using
hypercontractivity bounds for the binary erasure channel [NW16], we conclude that φ fails the test
on a significantly smaller fraction of queries than f does.

In the special case when the target group is Z2, the soundness error of Df can be directly shown
to be within a constant factor of the soundness error of the Dinur-Golubev tester (even though the
two are different). The main motivating applications for function partitionability, however, concern
real-valued functions [BW20]. The analysis of our ⊕-partionability testers for such functions relies
on Theorem 1.1.

Testing partitionability The main ingredient in our ⊕-partitionability algorithms is the direct
2-sum test Df . The structure of this test allows us to efficiently detect a pair of variables xs, xt
that must fall in the same component of the partition in any far from ⊕-partitionable function,
effectively reducing the instance size by one variable.

Our ⊗-partitionability test looks for an input variable that is influential in at least two of the
output coordinates of f . The analysis of this test is based on Lemma 6.5, which states that such a
variable must exist in any far from partitionable function.

Organization

Section 2 outlines the proof of Theorem 1.1 in the case when the domain is the Boolean hypercube.
The analysis is based on the convergence of the iterative decoder (Lemma 2.3), which is proved in
Section 3. Section 4 analyzes the reduction from testing functions over arbitrary product domains
to testing functions on the hypercube and proves Theorem 1.1. Sections 5 and 6 describe and
analyze the partitionability testers for direct sum and direct product, respectively.

4

Definitions and Notation

Let D .
= D1 × . . .×Dn be a finite set. Let Ω

.
= Ω1 × . . .×Ωn be an arbitrary product distribution

over the strings in D.
Throughout this paper we consider functions from D to either a product set or an abelian

group. Distance between functions is measured by relative Hamming distance with respect to the
distribution Ω. For functions f, g : D → R, we say f and g are ε-close to each other if the relative
hamming distance between f and g with respect to Ω is less than ε, i.e., Prx∼Ω[f(x) 6= g(x)] < ε.
Similarly, we say f and g are ε-far from each other if Prx∼Ω[f(x) 6= g(x)] ≥ ε.

For strings x, y ∈ D and a set of indices S ⊆ [n], we write xS to refer to the projection of x
onto the coordinates in S. We write xSy to refer to the string in D that is equal to x on coorinates
in S and equal to y on coordinates [n] \ S. A partition (S, S) of [n] is sometimes identified with its
indicator vector σ ∈ {0, 1}n and xσ is used to represent xS .

For a function f : D → Rk and a subset T ⊆ [k] we write fT to refer to the function obtained
by projecting the output of f onto the coordinates in T . We often write xi instead of x{i} and fj
instead of f{j}.

We extend the definition of Df to pairs of disjoint sets (S, T) that do not necessarily partition
[n] as

Df (S, T ;x, y)
.
= f(x)− f(ySx)− f(yTx) + f(yS∪Tx).

In the special case when (S, S) is a partition, we sometimes write Df (σ;x, y), where σ is the string
that represents (S, S).

2 Direct Sum Test for Functions on the Boolean Hypercube

The following dual characterization of direct sums motivates our test.

Fact 2.1. A function f : {0, 1}n → G is a direct sum if and only if Df (π;x, y) = 0 for every choice
of x, y, π ∈ {0, 1}n.

Proof. The ’only if’ direction is immediate from the definition of a direct sum. We prove the ’if’
direction. Let f be such that Df (π;x, y) = 0 for every choice of x, y, π ∈ {0, 1}n. Fix y ∈ {0, 1}n.
For every x ∈ {0, 1}n we can write f(x) as

f(x) = f(x{1}y) + f(y{1}x)− f(y)

= f(x{1}y) + f(x{2}y) + f(y{1,2}x)− 2f(y)

...
...

= f(x{1}y) + f(x{2}y) . . .+ f(x{n}y)− (n− 1)f(y).

Therefore, f is a direct sum.

Algorithm 1: Direct sum test for functions over {0, 1}n

Oracle : f : {0, 1}n → G
1 Sample x, y, π ∈ {0, 1}n independently and uniformly at random.
2 If f(x) + f(y)− f(xπy)− f(yπx) = 0, accept.
3 Else, reject.

5

By Fact 2.1, the test accepts every direct sum with probability 1. The following proposition
establishes soundness of the test. Let ρ(f) denote the probability that Algorithm 1 rejects the
function f . That is, ρ(f)

.
= Prx,y,π[Df (π;x, y) 6= 0].

Proposition 2.2 (Soundness). There exist a universal constant η ∈ [0, 1] such that for every
function f : {0, 1}n → G,

ρ(f) ≥ min(δ/4, η),

where δ is the distance between f and the set of direct sums.

Lemma 2.3 (Iterative decoding). There exists a universal constant η ∈ [0, 1] such that for every
function f : {0, 1}n → G with ρ(f) < η, there exists a function φ : {0, 1}n → G such that:

(i) the function φ is 2ρ(f)-close to f , and

(ii) ρ(φ) ≤ ρ(f)/2.

Proof of Proposition 2.2. Iteratively applying Lemma 2.3 results in a sequence of functions f =
f0, f1, . . ., such that for all t ≥ 1, (i) the distance between ft and ft−1 is at most 2ρ(ft−1), and (ii)
ρ(ft) ≤ ρ(ft−1)/2. The probability that the test rejects a function is a discrete quantity. So, by
(ii), there must exist an integer t such that ρ(ft) = 0. That is, Dft(π;x, y) = 0 for every choice of
x, y, π ∈ {0, 1}n. By Fact 2.1 this means ft is a direct sum. The distance between f and the direct
sum ft at most

t−1∑
i=0

2ρ(fi) ≤ 2

t−1∑
i=0

ρ(f)/2i ≤ 4ρ(f).

3 Analysis of Iterative Decoding

We begin with a sketch of the proof of Lemma 2.3. As mentioned in the introduction, the
proof follows in the footsteps of the analysis of the BLR linearity test. We define φ(x) to be
pluralityy,π f(xπy) + f(yπx)− f(y). Markov’s inequality allows us to bound the distance between
φ and f by 2ρ(f).

To show that Test 1 rejects φ with probability at most ρ(f)/2, we first show that for all but a
o(ρ(f))-fraction of choices of x, φ(x) is defined by a strict majority that makes up at least 6/7-th
of the plurality vote (See Claim 3.4). The fraction of x’s that contribute to the plurality is at least
the probability of a collision, i.e., Pry,z,σ,π[f(xπy)+f(yπx)−f(y) = f(xσz)+f(zσx)−f(z)]. Using
the algebraic identity in Claim 3.2, we can express this probability as

Pr
y,z,π,σ

[Df (π;xπzπ, y)−Df (π; yπxπ, z) +Df (π ⊕ σ;xσzσ, zσxσ) = 0]. (2)

The analysis of the BLR test also uses an analogous algebraic identity to bound the collision proba-
bility. The difference is that the resulting expression in the BLR analysis is made up of evaluations
of the BLR test at points independent of x. This allows one to argue that the plurality vote is made
up of a strict majority at all points x. In our setting, the arguments of Df in the expression above
are correlated with x. However, we can view these arguments as the result of passing x through a
noisy binary erasure channel. This allows for the application of the hypercontractive inequality to
bound the fraction of x for which the collision probability is less than 6/7.

6

We then show that for all but o(ρ(f)) choices of x, y, π ∈ {0, 1}n there exist z, w, σ ∈ {0, 1}n
such that, (1) the value of Dφ(π;x, y) = φ(x) − φ(xπy) − φ(yπx) + φ(y) does not change after
the following substitutions, and (2) the resulting expression substitution evaluates to zero after
substitution.

φ(x)← f(xσz) + f(zσx)− f(z)

φ(xπy)← f((xπy)σ(zπw)) + f((zπw)σ(xπy))− f(zπw)

φ(yπx)← f((yπx)σ(wπz)) + f((wπz)σ(yπx))− f(wπz)

φ(y)← f(yσw) + f(wσy)− f(y).

It follows that the probability that φ is rejected by the test is o(ρ(f)).
By Claim 3.4, for all but o(ρ(f)) choices of x, y, π the substitutions do not change the value of

Dφ(π;x, y) with probability at least 4/7. For Part (2), we use the algebraic identity in Claim 3.3
to rewrite the expression after substitution as

Df (π ⊕ σ;xσz, yσw)−Df (π ⊕ σ;xσz, yσw) +Df (π; z, w).

Again we show that the arguments of the Df terms can be viewed as the result of passing x, y and π
through independent binary erasure channels. Using the hypercontractive inequality, we conclude
that for all but o(ρ(f)) choices of x, y and π the expression after substitution evaluates to zero for
most choices of z, w and σ. By a union bound we can ensure that (1) and (2) hold simultaneously
for the same z, w and σ.

The following technical lemma establishes the bounds we prove using the hypercontractivity of
the binary erasure channel. The proof is presented in the next section.

Let queries(π;x, y) denote the vector in ({0, 1}n)4 whose entries are the four queries that
Algorithm 1 makes when π, x, y is sampled. That is, queries(π;x, y) = (x, xπy, yπx, y).

Lemma 3.1. Let Bad ⊂ ({0, 1}n)4 be a set such that the probability that queries(π, x, y) lands in
Bad, when π, x, y are chosen independently and uniformly at random is ρ.

(i) µx(A1) ≤ 212ρ4/3, where

A1 = {x | Pr
π,y,z

[queries(π;xπzπ, y) ∈ Bad] ≥ 1/21}.

(ii) µx(A2) ≤ 212ρ4/3, where

A2 = {x | Pr
π,σ,z

[queries(π ⊕ σ;xσzσ, zσxσ) ∈ Bad] ≥ 1/21}.

(iii) µπ,x,y(A3) ≤ 72ρ2/(1+
√

2/3) ≤ 72ρ1.1, where

A3 = {(π, x, y) | Pr
σ,z,w

[queries(π ⊕ σ;xσz, yσw) ∈ Bad] ≥ 1/7}.

(iv) µπ(A4) ≤ 72ρ4/3, where

A4 = {π | Pr
z,w

[queries(π; z, w) ∈ Bad] ≥ 1/7}.

7

We will aslo need the following algebraic identities.

Claim 3.2. Df (π;x, y)−Df (σ;x, z) = Df (π;xπzπ, y)−Df (π; yπxπ, z) +Df (π ⊕ σ;xσzσ, zσxσ).

Proof. The claim follows by adding the identities (3) and (4):

Df (π;x, y)−Df (π;x, z) = −f(xπyπ)− f(yπxπ) + f(y) + f(xπzπ) + f(zπxπ)− f(z)

= f(xπzπ) + f(y)− f(xπyπ)− f(yπzπ)

− f(yπxπ)− f(z) + f(yπzπ) + f(zπxπ)

= Df (π;xπzπ, y)−Df (π; yπxπ, z)

(3)

Df (π;x, z)−Df (σ;x, z) = −f(xπσxπσzπσzπσ)− f(zπσzπσxπσxπσ) + f(x) + f(z)

+ f(xπσzπσxπσzπσ) + f(zπσxπσzπσxπσ)− f(x)− f(z)

= Df (π ⊕ σ;xσzσ, zσxσ)

(4)

Claim 3.3 (16-point identity).

Df (σ;x, z)−Df (σ;xπy, wπz)−Df (σ; yπx, zπw) +Df (σ; y, w)

= Df (π;x, y)−Df (π ⊕ σ;xσz, yσw)−Df (π ⊕ σ;xσz, yσw) +Df (π; z, w).

Proof. We write xyzw to denote the string xπσyπσzπσwπσ. Using this notation we have

Df (σ;x, z) = f(xxxx) −f(xzxz) −f(zxzx) +f(zzzz)
+ + + + +

−Df (σ;xπy, wπz) = −f(xxyy) +f(xwyz) +f(wxzy) −f(wwzz)
+ + + + +

−Df (σ; yπx, zπw) = −f(yyxx) +f(yzxw) +f(zywx) −f(zzww)
+ + + + +

Df (σ; y, w) = f(yyyy) −f(ywyw) −f(wywy) +f(wwww)

= = = =
Df (π;x, y) −Df (π ⊕ σ;xσz, yσw) −Df (π ⊕ σ;xσz, yσw) +Df (π; z, w)

Proof of Lemma 2.3. Let φ be a function defined as

φ(x) = plurality
y,π

f(xπy) + f(yπx)− f(y),

that is, φ(x) is the most frequent value of f(xπy) + f(yπx) − f(y), where y, π ∈ {0, 1}n. Ties are
broken arbitrarily. We show that φ satisfies the hypothesis of the lemma.

(i) φ is 2ρ(f)-close to f : For x ∈ {0, 1}n, let ρx
.
= Pry,π[f(x) 6= f(xπy) + f(yπx)− f(y)]. Note

that Ex[ρx] = ρ(f), and that if ρx < 1/2 then f(x) = φ(x). Thus, by Markov’s inequality,

Pr
x

[f(x) 6= φ(x)] ≤ Pr
x

[ρx ≥ 1/2] ≤ 2ρ(f).

8

(ii) ρ(φ) ≤ ρ(f)/2: We begin by showing that with probability ρ(f)/12 over the choice of x, the
plurality that defines φ(x) is a majority made up of 6/7-th of the votes.

Let Dφ,f (π;x, y) denote the expression φ(x)− f(xπy)− f(yπx) + f(y). So, Prπ,y[Dφ,f (π;x, y) =
0] is the fraction of votes that constitute the plurality defining φ(x). Let Weak-Maj = {x |
Pry,π[Dφ,f (π;x, y) 6= 0] ≥ 1/7}. We have the following claim.

Claim 3.4 (Strong Majority). µx(Weak-Maj) ≤ ρ(f)/12.

Proof. Fix x ∈ {0, 1}n. The collision probability Pry,π,z,σ∈{0,1}n [Dφ,f (π;x, y) = Dφ,f (σ;x, z)] is
upper bounded by the fraction of votes that makes up the plurality Pry,π[Dφ,f (π;x, y) = 0]. This
is because

Pr
y,π,z,σ

[Dφ,f (π;x, y) = Dφ,f (σ;x, z)] =
∑
γ∈G

Pr
y,π

[Dφ,f (π;x, y) = γ]2

≤ max
γ∈G

Pr
y,π

[Dφ,f (π;x, y) = γ]

= Pr
y,π

[Dφ,f (π;x, y) = 0].

The final equality holds because φ(x) = arg maxβ∈G Pry,π[β − f(xπy)− f(yπx) + f(y) = 0].
We showed that

µx(Weak-Maj) ≤ µx{x | Pry,π,z,σ[Dφ,f (π;x, y) 6= Dφ,f (σ;x, z)] ≥ 1/7}.

We use Lemma 3.1 to bound the latter quantity. Let Badf ⊂ ({0, 1}n)4 be the set of queries on
which Df fails, namely

Badf = {queries(π;x, y) | Df (π;x, y) 6= 0}.

This is a set of measure µπ,x,y(Bad) = ρ(f). Since Dφ,f (π;x, y) − Dφ,f (π;x, z) = Df (π;x, y) −
Df (σ; y, z), by the algebraic identity in Claim 3.2 and a union bound, we have

µx(Weak-Maj) ≤ µx{x | Prπ,σ,y,z[Dφ,f (π;x, y)−Dφ,f (π;x, z) 6= 0] ≥ 1/7}
≤ µx{x | Prπ,y,z[Df (π;xπzπ, y) 6= 0] ≥ 1/21}

+ µx{x | Prπ,y,z[Df (π; yπxπ, z) 6= 0] ≥ 1/21}
+ µx{x | Prπ,σ,z[Df (π ⊕ σ;xσzσ, zσxσ) 6= 0] ≥ 1/21}

= µx(A1) + µx(A1) + µx(A2),

where A1 and A2 are the sets

A1 = {x | Pr
π,y,z

[queries(π;xπzπ, y) ∈ Badf] ≥ 1/21},

A2 = {x | Pr
π,σ,z

[queries(π ⊕ σ;xσzσ, zσxσ) ∈ Badf] ≥ 1/21}.

By Lemma 3.1 we get that µx(Weak-Maj) ≤ ρ(f)/12, for small enough η.

We are now ready to prove that ρ(φ) = Prπ,x,y[Dφ(π;x, y) 6= 0] ≤ ρ(f)/2. Consider the algebraic
identity in Claim 3.3. The identity continues to hold after replacing f(x), f(xπy), f(yπx) and f(y)
by φ(x), φ(xπy), φ(yπx) and φ(y), on both sides of the equals sign. After rearranging terms we get

Dφ(π;x, y) = Dφ,f (σ;x, z)−Dφ,f (σ;xπy, wπz)−Dφ,f (σ; yπx; zπw) +Dφ,f (σ; y, w)

+Df (π ⊕ σ;xσz, yσw) +Df (π ⊕ σ;xσz, yσw)−Df (π; z, w). (5)

9

We now bound Prπ,x,y[Dφ(π;x, y) 6= 0] by showing that for most choices of π, x and y, there exist
σ, z, w such that the right hand side of the identity above evaluates to zero. We now define the set
Badφ of triples (π, x, y) for which this may not hold.

Let A3 and A4 denote the sets

A3 = {(π, x, y) | Pr
σ,z,w

[queries(π ⊕ σ;xσz, yσw) ∈ Badf] ≥ 1/7},

A4 = {π | Pr
z,w

[queries(π; z, w) ∈ Badf] ≥ 1/7}

and Badφ be the set

{(π, x, y) | (One of x, y, xπy, yπx lies in Weak-Maj) or ((π, x, y) ∈ A3) or (π ∈ A4)} .

By Lemma 3.1, µπ,x,y(A3) ≤ ρ(f)/12, and µπ(A4) ≤ ρ(f)/12, for small enough η. As x, y, xπy, yπx
are all random, by a union bound we have

µπ,x,y(Badφ) ≤ 4µx(Weak-Maj) + µπ,x,y(A3) + µπ(A4) ≤ ρ(f)/2.

All that remains to show is that if (π, x, y) 6∈ Badφ, Dφ(π;x, y) = 0. Fix such a triple (π, x, y).
By identity (5) and a union bound,

Pr
σ,z,w

[Dφ(π;x, y) 6= 0] = Pr
σ,z,w

Dφ,f (σ;x, z) 6= 0

or Dφ,f (σ;xπy, wπz) 6= 0

or Dφ,f (σ; yπx; zπw) 6= 0

or Dφ,f (σ; y, w) 6= 0

or Df (π ⊕ σ;xσz, yσw) 6= 0

or Df (π ⊕ σ;xσz, yσw) 6= 0

or Df (π; z, w) 6= 0

< 4/7 + Pr

σ,z,w

 queries(π ⊕ σ;xσz, yσw) ∈ Badf

or queries(π ⊕ σ;xσz, yσw) ∈ Badf

or queries(π; z, w) ∈ Badf

< 4/7 + 3/7 = 1.

The first inequality holds because x, xπy, yπx, y 6∈ Weak-Maj, and the second inequality holds
because (π, x, y) 6∈ A3 and π 6∈ A4. Since the probability Prz,w,σ[Dφ(π;x, y) 6= 0] is either 0 or 1, it
must be the case that Dφ(π;x, y) = 0. Therefore,

ρ(φ) = Pr
π,x,y

[Dφ(π;x, y) 6= 0] ≤ µπ,x,y(Badφ) ≤ ρ(f)/2.

3.1 Proof of Lemma 3.1

We begin with some preliminaries on discrete channels and hypercontractivity. For a motivating
discussion on hypercontractivity and a proof of Fact 3.8 below see Chapter 9 of [O’D14].

Definition 3.5 (Discrete channels). A discrete channel is a triple (U , P,V), where U and V are
finite sets representing the input alphabet and output alphabet, and P is a U×V probability transition
matrix that describes the distribution of the output conditioned on the input. The composition of
two channels (U , P1,V) and (V, P2,W) is the channel (U , P1·P2,W), where · is matrix multiplication.

10

The binary erasure channel will play an important role in the proof of Lemma 3.1.

Definition 3.6 (Binary Erasure Channel). The binary erasure channel BEC(e) with erasure prob-
ability e has input alphabet {0, 1} and output alphabet {0, 1,⊥}, and probability transition matrix
P (x|x) = 1− e, P (⊥|x) = e (see Figure 1).

x

x

⊥

1− e

e

Figure 1: The binary erasure channel BEC(e).

For a real valued random variable U and p ≥ 1, we denote the p-norm of U by ‖U‖p
.
=

EU [|U |p]1/p.

Definition 3.7 (Hypercontractivity). For 1 ≤ q ≤ p, A pair of random variables (U, V) is (p, q)-
hypercontractive if for every pair of real valued functions f, g,

E[f(U)g(V)] ≤ ‖f(U)‖p′‖‖g(V)‖q,

where p′ = p/(p− 1) is the Hölder conjugate of p.

Fact 3.8 (Tensorisation [Bon70]). If (U1, V1) and (U2, V2) are independent random variables that
are (p, q)-hypercontractive, then ((U1, U2), (V1, V2)) is (p, q) hypercontractive.

Theorem 3.9 (Hypercontractivity of BEC(e) [NW16]). Let U be distributed uniformly over
{0, 1} and let V ∈ {0, 1,⊥} denote the output of BEC(e) on input U . Then (U, V) is (p, q)-
hypercontractive for all 1 ≤ q ≤ p such that

q − 1

p− 1
≥ 1− e.

Fact 3.10 (Composition). Let (U , P1,V) and (V, P2,W) be two channels. Let U be a random
variable over U . Let V be the random variable that represents the output of the first channel on
input U , and W the random variable that represents the output of the second channel on input V .
If (U, V) is (p, q)-hypercontractive then so is (U,W).

Proof. Let f : U → R and g : W → R be arbitrary functions. Since U → V → W is a markov
chain, we have

EU,W [f(U)g(W)] = EU,V [f(U)EW [g(W) | V]] ≤ ‖f(U)‖p′‖EW [g(W) | V]‖q,

where the inequality holds because (U, V) is (p, q) hypercontractive.
Now, by Jensen’s inequality,

EV [EW [g(W) | V]q]1/q ≤ EV [EW [g(W)q | V]]1/q = EW [g(W)q]1/q = ‖g(W)‖q

Therefore, (U,W) is (p, q) hypercontractive.

11

The following claim captures the small-set expansion interpretation of hypercontractivity [AG76]
in the form used in the proof of Lemma 3.1.

Claim 3.11. Let U, V be random variables that take values in U and V respectively. Let B ⊂ V be
a set such that Pr[V ∈ B] = ρ. Let A ⊂ U denote the set {u | Pr[V ∈ B | U = u] ≥ θ}. If (U, V) is
(p, q) hypercontractive, then Pr[U ∈ A] ≤ ρp/q/θp.

Proof. Let 1A and 1B denote the indicator functions of the sets A and B. Since (U, V) are (p, q)
hypercontractive,

θ · Pr[U ∈ A] ≤ Pr[V ∈ B | U ∈ A] Pr[U ∈ A] = E[1A(U)1B(V)] ≤ ‖1A(U)‖p′‖1B(V)‖q,

where p′ = p/(p − 1). Note that ‖1B(V)‖ = ρ1/q, and ‖1A(U)‖p′ = Pr[U ∈ A]1/p
′
. Therefore,

Pr[U ∈ A]1/p ≤ ρ1/q/θ, that is, Pr[U ∈ A] ≤ ρp/q/θp.

Proof of Lemma 3.1. We need to bound the probabilities of four sets of the form

{u ∈ Σn|Pr[queries(ψ(u)) ∈ bad|U = u]} ≥ θ,

where ψ is some (randomized) function. All bounds θ−2ρ2/q will follow from Claim 3.11 by showing
that the channel U → queries(ψ(u)) is (2, q)-hypercontractive for a suitable choice of q (q = 3/2
for parts (i), (ii), (iv) and q = 1 +

√
2/3 for part (iii)).

The channel (Σn, Pn, {0, 1}n×4) that maps u ∈ Σn to queries(ψ(u)) ∈ {0, 1}n×4 acts indepen-
dently on the symbols u1, . . . , un. In all cases, the i-th bits of the four queries (q1, q2, q3, q4) are
obtained by applying the one-dimensional channel P1 to ui. Therefore, Pn tensorizes as Pn = P⊗n1 .
By Fact 3.8, it is sufficient to show that the channel P1 is hypercontractive. We may and will
therefore assume, without loss of generality, that n = 1.

We now demonstrate how each of the four channels of interest can be decomposed into a binary
erasure channel with constant erasure probability (e = 1/2 in parts (i), (ii), (iv) and e = 1−

√
2/3 in

part (iii)) and some other fixed channel. The Lemma then follows from Fact 3.10 and Theorem 3.9
with q = 2− e.

BEC(1/2)

x

x

⊥

1/
2

1/2

[x
x
y
y

]
[z
y
z
y

]
BEC(1/2)

x

x

⊥

1/
2

1/2

[
x
x
x
x

]
[
z
z
z
z

]
[
z
z
z
z

]1/
2

1/2

BEC(1/2)

0

1

0

⊥

1

1/
2

1/2

1/
2

1/2

[
z
z
z
z

]
[
z
z
z
z

]
[
z
z
z
z

]
Figure 2: Channels (i) x → queries(π, xπzπ, y); (ii) x → queries(π ⊕ σ, xσzσ, zσxσ); (iv) π →
queries(π, z, w). y and z are random bits.

12

(i): The channel x → queries(π;xπzπ, y) = (xπzπ, xπyπ, yπzπ, y) from Σ = {0, 1} to {0, 1}4 can
be decomposed in the following way: On input x the channel samples a random bit π and outputs
xxyy if π = 1, and zyzy if π = 0 for random y and z. This channel can be alternatively described
as BEC(1/2) composed with a second channel that outputs xxyy if there is no erasure and the
independent symbol zyzy otherwise. See Figure 2 (i).

(ii): The channel from Σ = {0, 1} to {0, 1}4 is of the form

x→ queries(π ⊕ σ, xσzσ, zσxσ) =

xπσzπσxπσzπσ
zπσzπσxπσxπσ
xπσxπσzπσzπσ
zπσxπσzπσxπσ

 =

xzxz, if πσ = 1,

zzxx, if πσ = 1,

xxzz, if πσ = 1,

zxzx, if πσ = 1,

where π, σ, z are random bits. We can alternatively describe it like this: If z = x, then output
xxxx. If z 6= x and π ⊕ σ = 1, then output zzzz. If z 6= x and π ⊕ σ = 0, then output zzzz.

This channel can be factored through BEC(1/2) as in Figure 2 (ii). If there is no erasure, the
second channel outputs xxxx. If there is an erasure, then the second channel outputs zzzz with
probability 1/2 and zzzz with probability 1/2.

(iii): The channel from Σ = {0, 1}3 to {0, 1}4 is of the form

πx
y

→ queries(π ⊕ σ;xσz, yσw) =

xπσzπσxπσzπσ
yπσzπσxπσwπσ
xπσwπσyπσzπσ
yπσwπσyπσwπσ

 =

xyxy, if πσ = 1,

zzww, if πσ = 1,

xxyy, if πσ = 1,

zwzw, if πσ = 1.

Consider the composition of the following two channels. The first channel views the symbol πxy as
three bits and independently applies BEC(1/4) to π and BEC(1−

√
2/3) to x and y. The second

channel is described in Figure 3.

• If π is erased, the second channel outputs zzzz, for a uniform bit z. This corresponds to the
event z = w and σ = 0.

• If π is not erased but one of x, y is erased, the second channel samples a uniform bit z ∈ {0, 1}
and outputs zzzz if π = 0 and zzzz if π = 1. This corresponds to the event z 6= w and σ = 0.

• If there are no erasures, then the second channel outputs xyxy if π = 1, and xxyy if π = 0.
This corresponds to the event σ = 1.

The first channel is BEC(3
4)⊗BEC(1−

√
2/3)⊗BEC(1−

√
2/3). Since 1−

√
2/3 ≤ 1/4, by

Fact 3.8 it has the same hypercontractivity parameters as BEC(1−
√

2/3).

(iv): The channel π → queries(π, z, w) from Σ = {0, 1} to {0, 1}4 outputs zzww if π = 1 and
zwzw if π = 0 for random bits z and w. Alternatively, the channel can be described as a uniform
choice between zzzz and zzzz when π = 1 and a uniform choice between zzzz and zzzz when
π = 0. This can be modeled as the composition of BEC(1/2) and a second channel that outputs
zzzz if there is an erasure, and either zzzz or zzzz depending on the value of πi otherwise. See
Figure 2 (iv).

13

BEC(3
4
)⊗BEC(1−

√
2/3)⊗BEC(1−

√
2/3)

[
0
x
y

]

[
1
x
y

]

[
0
x
y

]

[
1
x
y

]

[
⊥
?
?

]
[

0
⊥
?

]
or
[

0
?
⊥

]

[
1
⊥
?

]
or
[

1
?
⊥

]

1/
2

1/2

1/4

1/4

1/4

1/
4

[x
x
y
y

]
[
z
z
z
z

]
[
z
z
z
z

]
[
z
z
z
z

]
[x
y
x
y

]
Figure 3: (iii) Channel (π, x, y)→ queries(π⊕ σ, xσz, yσw). A ? represents any of {0, 1,⊥} and z
is a random bit.

4 From the Hypercube to Arbitrary Product Domains

In this section we prove Theorem 1.1. Recall that for a function f : D1 × . . . × Dn → G, δ(f) is
the distance between f and the set of direct sums, and ρ(f) is equal to Prx,y,S,T [Df (S, T ;x, y) 6=
0], where the probability is over random x, y and a uniformly random partition (S, T) of [n].
Theorem 1.1 follows directly from Proposition 2.2 and the following Proposition.

Proposition 4.1. If δ(f) = O(ρ(f)) for every f : {0, 1}n → G then δ(f) = O(ρ(f)) for every
f : D1 × · · · × Dn → G.

The proof of Proposition 4.1 uses the following equivalent description of direct products over
{0, 1}n.

Claim 4.2. f : {0, 1}n → G is a direct product if and only if f(u1, . . . , un) = u1g1 + · · ·+ungn + g0

for some g0, g1, . . . , gn ∈ G, where 0g = 0 ∈ G and 1g = g.

Proof. The if direction is immediate. For the only if direction, if f(u) = f1(u1)+ · · ·+fn(un), write
fi(ui) = ui(fi(1) − fi(0)) + fi(0) to obtain the desired representation with gi = fi(1) − fi(0) and
g0 = f1(0) + · · ·+ fn(0).

To prove Proposition 4.1 we first analyze the soundness of the following alternative test Tf .
The test Tf runs the test Dg on the Boolean function g defined as the restriction of f to the “slice”
{x1, y1} × · · · × {xn, yn}, where xi, yi are random samples from Di.

14

Algorithm 2: Direct sum test Tf

Oracle : f : D1 × · · · × Dn → G
1 Pick x, y at random from D1 × · · · × Dn.
2 Let g : {0, 1}n → G be the function g(τ ;x, y) = f(xτyτ).
3 Accept if Dg(·;x,y) = 0 on random inputs.

The rejection probability of T has the following useful alternative characterization. Recall that
for arbitrary disjoint subsets U, V of [n], Df (U, V ;x, y) = f(x)− f(yUx)− f(yV x) + f(y(U∪V)x).

Fact 4.3. Let U, V be disjoint random subsets of [n] sampled by independently assigning each index
i ∈ [n] to U with probability 1/4, to V with probability 1/4 and to neither with probability 1/2. Then
the probability that the test Tf rejects is equal to PrU,V,x,y[Df (U, V ;x, y) 6= 0].

If Tf accepts with probability at least 1−ε, then by averaging there exists a y such that Dg(·;x,y)

accepts with probability at least 1 − ε. By the soundness of the test D for boolean functions
(Proposition 2.2), we conclude that for a random choice of x, f restricted to the slice defined by
x and y is O(ε)-close to a direct sum. In particular, there exist functions gi : Di → G such that
f(xτyτ) is O(ε)-close to τ1g1(x)+ · · ·+τngn(x)+g0(x). However, f could be close to different direct
sums on different slices. Intuitively, if f is close to a direct sum, then f(xτyτ) should not depend
on xτ . In Claim 4.5, we use a variant of the Dinur-Steurer direct product test [DS14] to show that
this is indeed the case. We show that the restriction f(xτyτ) is O(ε)-close to a function of the form∑n

i=1 τig̃i(xi) + g̃0. In Claim 4.7, we show that this implies f is O(ε)-close to a direct sum on the
entire domain. In other words, Tf is sound. To show soundness of the test Df on general domains,
we upper bound the rejection probability of Tf with that of Df (Claim 4.10).

We use the following variant of the Dinur-Steurer direct product test [DS14] (see also Section
2.2 in [DG19]): Given oracle access for a multivariate function G : D1× · · · ×Dn → Gn, choose two
random strings x and y and a random subset S of [n] by including each element independently with
probability 1/3 and accept if G(x) and G(ySx) match on all outputs outside S.

Let (S, T) be random disjoint subsets of [n] where each element is independently assigned to S
with probability 1/3 and to T with probability 1/2.

Claim 4.4. Let G(x) = (g1(x), . . . , gn(x)) and g0 be any function. If δ is the probability that G(x)
and G(zSx) differ on some output outside S, then

∑
i∈T gi(x) + g0(x) differs from

∑
i∈T gi(zSx) +

g0(zSx) with probability at least δ/4.

Proof. Assume G(x) and G(zSx) differ on some output t 6∈ S, namely gt(x) 6= gt(zSx). After fixing
membership in T for all elements except t, the sum

∑
i∈T∪{0} gi(x) − gi(zSx) is undetermined as

it can take one of the two values h or h + gt(x) − gt(zSx) for some h ∈ G, one of which must be
nonzero. This nonzero value is taken with probability at least min{Pr[t ∈ T |t 6∈ S],Pr[t 6∈ T |t 6∈
S]} = 1/4.

Claim 4.5. If for a fixed y, Prτ,x[g(τ ;x, y) 6= τ1g1(x) + · · ·+ τngn(x) + g0(x)] ≤ ε then there exist
g̃i : Di → G, for i ∈ [n], and g̃0 ∈ G, such that Prτ,x[f(xτyτ) 6=

∑n
i=1 τig̃i(xi) + g̃0] = O(ε).

15

For random variables A and B we use the notation A ≈ε B as a shorthand for Pr[A 6= B] ≤ ε.
In this notation the triangle inequality reads as

A ≈ε B,A ≈ε′ B′ −→ B ≈ε+ε′ B′.

Proof. We can write the assumption as

f(xτyτ) ≈ε τ1g1(x) + · · ·+ τngn(x) + g0(x). (6)

Let T = {i : τi = 1} and S be a random subset of T in which each entry is included independently
with probability 2/3. Then (S, T) are jointly distributed as in Claim 4.4. For z independent of x,

f((zSx)τyτ) ≈ε τ1g1(zSx) + · · ·+ τngn(zSx) + g0(zSx).

As S and T are disjoint, (zSx)τyτ = xτyτ , and by the triangle inequality, the right-hand sides of
the two expressions are 2ε close:∑

i∈T
gi(x) + g0(x) ≈2ε

∑
i∈T

gi(zSx) + g0(zSx). (7)

By Claim 4.4, G(x) and G(zSx) differ on some output outside S with probability at most 6ε. By
the soundness of the Dinur-Steurer test,

(g1(x), . . . , gn(x)) ≈O(ε) (g̃1(x1), . . . , g̃n(xn)) (8)

for some functions g̃1, . . . , g̃n. By the triangle inequality applied to (7) and (8),∑
i∈T

g̃i(xi) + g0(x) ≈O(ε)

∑
i∈T

g̃i((zSx)i) + g0(zSx).

Since (zSx)i only differs from xi when i ∈ S, and S and T are disjoint, after rearranging terms we
obtain

g0(x) ≈O(ε) g0(zSx). (9)

Let (S, S′, S′′) be a partition of [n] where each element is independently and randomly assigned
to one of the three sets. Since the pairs (x, zSx), (zSx, zS∪S′x), and (zS∪S′x, z) are identically
distributed, from (9) we also have

g0(zSx) ≈O(ε) g0(zS∪S′x)

g0(zS∪S′x) ≈O(ε) g0(z).

By the triangle inequality
g0(x) ≈O(ε) g0(z).

Fixing z we obtain that g0(x) is O(ε)-close to g̃0 = g0(z). Plugging this and (8) into (6) we obtain
the desired approximation of f(xτyτ).

Claim 4.6. Let (U, V, U ′, V ′) be a partition of [n]. Let S = U ∪ U ′ (and S = V ∪ V ′). Then:

Df (S, S;x, y) = Df (U, V ;x, y) +Df (U ′, V ; y, x) +Df (U, V ′; y, x) +Df (U ′, V ′;x, y)

16

Proof. By Claim 5.3 below and the fact that Df (S, S;x, y) = Df (S, S;x, y)

Df (S, S;x, y) = Df (U, S;x, y) +Df (U ′, S; y, x)

Applying Claim 5.3 again to Df (U, S;x, y) and Df (U ′, S;x, y), we get the required identity.

Let ρT (f) denote the probability that the test Tf rejects f .

Claim 4.7 (Soundness of Tf). If δ(f) = O(ρ(f)) for every f : {0, 1}n → G then δ(f) = O(ρT (f))
for every f : D1 × · · · × Dn → G.

To prove this claim, we argue that there exists a point y that satisfies the hypothesis of Claim 4.5
and

Pr
τ,x

[f(x) 6= f(xτyτ) + f(xτyτ)− f(y)] ≤ 12ρT (f).

Using the conclusion of Claim 4.5 we get that

f(x) ≈O(ρT (f))

n∑
i=1

g̃i(xi) + 2g̃0 − f(y).

Proof of Claim 4.7. Assume δ(f) = O(ρ(f)) for every f : {0, 1}n → G. Let ε = ρT (f). So,

Dg(·;x,y)(S, S;u, v) ≈ε 0.

By Markov’s inequality, a 2/3-rd fraction of y’s satisfy

Dg(·;x,y)(S, S;u, v) ≈3ε 0, (10)

Let U, V ⊆ [n] be disjoint random sets that are obtained by adding each element of [n] independently
to U with probability 1/4, V with probability 1/4, and neither with probability 1/2. By Fact 4.3,
the probability that the test Tf rejects f is equal to PrU,V,x,y[Df (U, V ;x, y) 6= 0]. Thus by Claim 4.6
and a union bound, PrT,x,y[Df (T, T ;x, y) 6= 0] ≤ 4 · ε, where the probability is over a uniformly
random bipartition τ = (T, T) of [n]. Again by Markov’s inequality, at least 2/3 of the y satisfy

Df (τ ;x, y) ≈12ε 0. (11)

Fix a y that satisfies both (10) and (11). From (10) and the soundness of Df over the Boolean
domain,

f(xτyτ) = g(τ ;x, y) ≈O(ε) τ1 · g1(x) + τ2 · g2(x) · · · τn · gn(x) + g0(x).

By Claim 4.5, f(xτyτ) has the approximate form

f(xτyτ) ≈O(ε)

∑
τig̃i(xi) + g̃0 (12)

for some g̃i and constant g̃0. By symmetry, we also have

f(xτyτ) ≈O(ε)

∑
τ ig̃i(xi) + g̃0 (13)

Finally, by (11),
f(x) ≈12ε f(xτyτ) + f(xτyτ)− f(y). (14)

Plugging (12) and (13) into (14) yields the desired direct sum approximation for f .

17

For a function f : D1 × · · · × Dn → G, and subset T ⊆ [n], let Inf(T ; f), denote the influence of
the set of variables T on f . That is, Inf(T ; f)

.
= Pru,v[f(u) 6= f(vTu)].

Fact 4.8 (Monotonicity of Influence). If S ⊆ S′ then Inf(S; f) ≤ Inf(S′; f).

For a pair of disjoint sets S, T ⊂ [n], let Df (S, T)
.
= Prx,y[Df (S, T ;x, y) 6= 0].

Claim 4.9 (Monotonicity of Df). For disjoint sets S, T ⊆ T ′, Df (S, T) ≤ Df (S, T ′).

Proof. We have

Df (S, T) = Pr
x,y

[Df (S, T ;x, y) 6= 0] = Pr
x,y

[f(x)− f(ySx) 6= f(xSyTx)− f(ySyTx)].

For each choice of (xS , yS) consider the function gxS ,yS :
∏
i 6∈S Di → G defined as gxS ,yS (u) =

f(xSu)− f(ySu). We can rewrite Df (S, T) as

Df (S, T) = ExS ,yS Pr
u,v

[f(xSu)− f(ySu) 6= f(xSvTu)− f(ySvTu)] = ExS ,yS Inf(T ; gxS ,yS)

Thus, by the monotonicity of influence

Df (S, T) = ExS ,yS Inf(T ; gxS ,yS) ≤ ExS ,yS Inf(T ′; gxS ,yS) = Df (S, T ′).

Claim 4.10. For every f : D1 × · · · × Dn → G, ρT (f) ≤ ρ(f).

Proof. Pick a uniformly random partition (U, V, U ′, V ′) of [n]. Let S = U ∪ U ′, so S = V ∪ V ′. By
the monotonicity of Df and the symmetry of its arguments,

ρT (f) = EU,V [Df (U, V)] ≤ ES,V [Df (S, V)] ≤ ES [Df (S, S)] = ρ(f).

Proof of Proposition 4.1. Assume δ(f) = O(ρ(f)) for Boolean domain f . By the soundness of
Tf (Claim 4.7), δ(f) = O(ρT (f)) for every f over arbitrary product domain. By Claim 4.10,
ρT (f) = O(ρ(f)) from where Proposition 4.1 follows.

5 Testing ⊕-Partitionability

Let D = D1 × · · · × Dn be a finite product set.

Definition 5.1. We say a function f : D → G is a k-⊕-partitionable if there exists a k-partition
S1, . . . , Sk of [n], and functions f1, . . . , fk such that f(x) = f1(xS1) + . . .+ fk(xSk

), for all x ∈ D.

The following lemma is an immediate consequence of Theorem 1.1, and allows us to determine
whether a function f is ⊕-partitionable with respect to a fixed partition S1, . . . , Sk.

Claim 5.2. Let (S, S) be a random coarsening of the partition (S1, . . . , Sk). If f is ε-far from
⊕-partitionable with respect to S1, . . . , Sk, then Df (S, S;x, y) is nonzero with probability Ω(ε).

To determine whether there exists a k-partition with respect to which a function is⊕-partitionable,
our testers use the 4-point test Df to group together variables that cannot occur in different par-
tition components. If the tester finds fewer than k groups, it rejects, otherwise it accepts.

18

5.1 Adaptive Test for ⊕-Partitionability

Our test for k-⊕-partitionability (Algorithm 4) seeks to identify a pair of contractable variables s, t
that must fall in the same component of the partition. Variables s and t are then contracted and the
test is repeated until either fewer than k variables are left (giving a certificate of non-partionability)
or no contractable candidates can be found.

A sufficient condition for contractability is that Df ({s}, {t};x, y) is nonzero for some assignment
x, y. We start by splitting the variables into k components arbitrarily and zero-testing Df (S, T ;x, y)
for a random coarsening of the components into S, S̄. By Claim 5.2, the zero-test fails with proba-
bility at least Ω(ε), where ε is the distance between f and the set of k-⊕-partitionable functions.

Once such a biartition S, S̄ is identified, s and t can be identified via binary search using
Algorithm 3 below. The same idea was used by Blais [Bla09] to identify an influential variable in
his junta test. Our t is in fact the influential variable in the function g(x[n]\S) = f(x)− f(ySx) for
fixed xS , yS output by Blais’ test.

Algorithm 3: Violating pair adaptive search

Oracle : f : D → G
Input : (S, T ;x, y) such that Df (S, T ;x, y) 6= 0.
Output: ({s}, {t}) such that Df ({s}, {t};x′, y′) 6= 0 for some x′, y′.

1 If |S| = |T | = 1, output S, T .
2 If |T | = 1, swap S and T .
3 do
4 Split T into two subsets T ′ and T ′′ of (almost) equal size.
5 If Df (S, T ′;x, y) 6= 0, recursively run on input (S, T ′;x, y).
6 Otherwise, recursively run on input (S, T ′′; y, x).

The correctness of Algorithm 3 is based on the following identity.

Claim 5.3. Df (S, T ∪ T ′;x, y) = Df (S, T ;x, y) +Df (S, T ′; y, x) for disjoint sets S, T, T ′.

Proof. Without loss of generality take S = {1}, T = {2}, T ′ = {3} and assume there are no other
inputs (they are all fixed). By the definition of Df ,

Df ({1}, {2};x, y) = f(x1x2x3) + f(y1y2x3)− f(x1y2x3)− f(y1x2x3)

Df ({1}, {3}; y, x) = f(y1y2y3) + f(x1y2x3)− f(y1y2x3)− f(x1y2y3)

−Df ({1}, {2, 3};x, y) = −f(x1x2x3)− f(y1y2y3) + f(x1y2y3) + f(y1x2x3).

The terms on the right hand side cancel out.

Lemma 5.4. Algorithm 3 is correct and has query complexity at most 4(dlog |S|e+ dlog |T |e).

Proof. The correctness follows from Claim 5.3 and from the symmetry of Df in the S, T inputs. As
for the query complexity, the algorithm makes four queries (in fact at most two additional queries)
in each iteration, and each iteration shrinks one of the original inputs S, T by half.

In the following algorithm we let P(S1, . . . , Sk) be the distribution on disjoint pairs of sets (S, S̄)
from Claim 5.2.

19

Algorithm 4: Adaptive tester for k-⊕-paritionability.

Oracle : f : D → G
Input : Size k of partition

1 If f has fewer than k variables, output “not partitionable”.
2 Otherwise, partition variables arbitrarily into k sets S1, . . . , Sk.
3 repeat
4 Choose sets (S, S̄) at random from P(S1, . . . , Sk).
5 Choose random inputs x, y.

6 until Df (S, T ;x, y) 6= 0;
7 Run violating pair adaptive search on input (S, S̄;x, y) to obtain outputs {s}, {t}.
8 Contract variables s and t in the oracle and repeat.

Proof of Theorem 1.2. We analyze Algorithm 4. First assume f is k-partitionable. By the cor-
rectness of Lemma 5.4 f only contracts variables s, t that are not split by the partition (otherwise
Df ({s}, {t};x′, y′) always vanishes). Therefore f cannot be contracted down to k − 1 inputs and
the tester accepts with probability one.

Now assume f is ε-far from partitionable. We will argue that Algorithm 4 outputs “not parti-
tionable” after O((n−k+1)(log n+1/ε)) queries in expectation by induction on n. Assume n ≥ k.
By Claim 5.2, Loop 6 takes 1/ε iterations to complete in expectation, and each iteration costs four
queries to f . By Lemma 5.4, line 7 takes another O(log n) queries. After merging s and t the re-
sulting function on n− 1 inputs can only be farther from partitionable, so by inductive assumption
the expected query complexity Q(n) is at most Q(n − 1) + O(log n + 1/ε). This gives the desired
bound. By Markov’s inequality makes at most twice this number of queries with probability half.

The query complexity can be improved slightly to the stated bound O((n−k)(log n+1/ε)+1/ε)
by observing that the violating pair search in line 7 can be bypassed when n = k since a proof of
non-partitionability has already been discovered in line 6.

5.2 Non-adaptive Test for k-⊕-Partitionability

For a pair of disjoint subsets S, T of [n], let Df (S, T)
.
= Prx,y[Df (S, T ;x, y) 6= 0]. let Gf denote

the graph over the variable set [n], and edge set {(i, j) | Df ({i}, {j}) 6≡ 0}. Note that f is
k-partitionable into a sum if and only if Gf has k connected components. In order to determine
whether f is k-partitionable, our algorithm attempts to determine whether the number of connected
components in Gf is at least k.

In each iteration our non-adaptive tester for ⊕-partitionability queries all
(
n
2

)
pairs of variables,

i.e., for each pair i, j, the algorithm tests whether Df ({i}, {j};x, y) 6= 0 for a random pair of
inputs x, y ∈ D. This is similar to the non-adaptive test in Bogdanov and Wang [BW20], but
our analysis improves the number of iterations required. Whereas the tester in [BW20] required
O(nk/ε) iterations, we only need O(k/ε log2 n). Our savings come from two sources, first the bound
in Corollary 5.6 is a factor of k better than the corresponding bound in [BW20], and second we give
a tighter analysis for the number of iterations required to find a crossing edge for all k partitions.

Proposition 5.5 (Subadditivity). For disjoint S, T ′, T ′′, Df (S, T ′ ∪ T ′′) ≤ Df (S, T ′) +Df (S, T ′′).

Proof. By Claim 5.3 and a union bound, for a random choice of x and y

Pr[Df (S, T ′ ∪ T ′′;x, y) 6= 0] ≤ Pr[Df (S, T ′;x, y) 6= 0] + Pr[Df (S, T ′′; y, x) 6= 0].

20

The following corollary is an immediate from Claim 5.2 and the subadditivity of Df .

Corollary 5.6. There is a universal constant C such that if f is ε-far from a ⊕-partitionable
f1(xS1) + · · ·+ fk(xSk

) for a nontrivial partition (S1, . . . , Sk) of [n] then
∑

Pr[Df ({i}, {j};x, y) 6=
0] ≥ ε/C, where the sum is over pairs of indices {i, j} that belong to different parition components,
and x, y are chosen independently from Ω.

In the following algorithm, let C be the absolute constant in the statement of Corollary 5.6.

Algorithm 5: Non-adaptive tester for k-⊕-partitionability.

Oracle: f : D → G
Input : k, ε

1 Initialize G to be the empty graph over vertex set [n].
2 do dlog ne(4dC log(

(
n
k−1

)
)/εe) times

3 foreach pair of distinct inputs i, j ∈ [n] do
4 Sample a point (x, y) ∼ Ω× Ω.
5 if Df ({i}, {j};x, y) 6= 0 then
6 Add edge (i, j) to G.

7 Accept if G has at least k connected components.

Theorem 5.7. Algorithm 5 is an O(n2k log2(n)/ε)-query non-adaptive one-sided error tester for
k-⊕-partitionability.

We will need the following fact:

Fact 5.8. If p1, . . . , pm are probabilities such that
∑
pi ≥ ε, then (1−

∏
(1− pi)) ≥ ε− ε2/2.

Proof of Theorem 5.7. The query complexity follows because each iteration of the outer loop re-
quires O(n2) queries, and log

(
n
k−1

)
= Θ(k log n).

The tester has perfect completeness because the connected components of G are always con-
tained in the partition components of f .

Now, suppose f is ε-far from being k-partitionable. We view the algorithm as being made up
of dlog ne rounds, where each round is made up of 4dC log

(
n
k−1

)
/εe iterations of the outer loop.

For ` ∈ [dlog ne], let C` denote the set of connected components of G at the beginning of the `-th
round. We claim the the following invariant holds:

Claim 5.9. For each ` ∈ [dlog ne], |C` ∩ C`+1| ≤ k − 2 with probability at least (1− 1/n).

Assuming the claim for the moment, we prove soundness of the tester. By the claim, for each
`, |C`+1| ≤ (|C`| − (k− 2))/2 + (k− 2), with probability at least (1− 1/n). Thus, by a union bound,
|Clogn+1| ≤ k − 1 with probability at least (1− log n/n).

Proof of Claim 5.9. Fix `. Fix a k-partition, P induced by k − 1 elements of C`, i.e., k − 1 of the
partition components in P are elements of C`.

Consider an iteration within round `. The probability that the test at Line 5 evaluates to true
for some i, j ∈ [n] is Pr[Df ({i}, {j};x, y) 6= 0]. By of Corollary 5.6 and Fact 5.8, the probability that
an edge crossing the partition P is picked in this iteration is at least ε/2C. Thus, the probability

that an edge crossing P is picked in round ` is at least (1− e−2 log (n
k−1)).

There are at most
(
n
k−1

)
choices for the partition P. By a union bound, an edge crossing P is

picked, for every choice of P with probability at least (1− e− log (n
k−1)) ≥ (1− 1/n).

21

5.3 Non-adaptive Lower Bound for ⊕-Partitionability

In [Bla08], Blais showed that any non-adaptive algorithm for testing j-juntas requires Ω
(

j/ε
log j/ε

)
queries. Based on ideas of Chockler and Gutfreund [CG04], Blais constructed two distributions

Dyes and Dno over functions f : {0, 1}n → {0, 1} that are indistinguishable by any set of o
(

j/ε
log j/ε

)
non-adaptive queries such that functions in Dyes are always j-juntas and functions in Dno are
are ε-far from j-juntas with high probability. Servedio et al. [STW15] improved the analysis of
Blais and showed that any set of queries that distinguish between the distributions of Blais require

Ω
(

j log j
εc log log j/εc

)
queries, where c is an absolute constant less than 1.

Since any (n− k+ 1)-junta is k-partitionable into a sum, the lower bound of Servedio et al. for
j = n− k + 1, also gives a lower bound for k-partitionability, provided the elements in Dno for are
ε-far from k-partitionable with high probability. We show that this is indeed the case.

Dyes and Dno are defined as follows. Let j = (n−k+ 1). A sample f from Dyes is generated by
setting f(x) = g(x[j]), for a random function g : {0, 1}j → {0, 1}, such that for each x ∈ {0, 1}m,
g(x) is chosen independently at random with Pr[g(x) = 1] = ε. Dno is defined identically except
using a random function g with domain {0, 1}j+1.

Claim 5.10. For 20 log (n− k + 2)/2(n−k+2) ≤ ε ≤ 1/10, a random sample from Dno is ε/40 far
from ⊕-partitionable into sums with probability at least (1− 1/n− k + 1).

We use the following notation in the proof: We write δf ({i}, {j}) for the distance between f
and the closest function f ′ that can be written as f ′1 + f ′2, such that f ′1 doesn’t depend on {j} and
f ′2 doesn’t depend on {i}. We note that both f ′1, f

′
2 could depend on the remaining variables.

Proof. Let m = n − k + 2. Let g : {0, 1}m → {0, 1} be a random function such that for every
x ∈ {0, 1}m, g(x) is chosen independently at random with Pr[g(x) = 1] = ε. It is sufficient to show
that g is far from ⊕-partitionable into two or more components.

For i, j ∈ [m], let tij denote the number of strings x ∈ {0, 1}m such that g(x) + g(xi) + g(xj) +
g(xij) 6= 0, where xi is x with the i-th bit flipped, and xij is x with the i and j-th bits flipped. The
distance between g and the closest function f with δf ({i}, {j}) = 0 is tij/2

m−2.
The expected value of tij is at least 9ε2m−2/10. By Chernoff’s bound,

Pr[tij < ε2m−2/10] ≤ e−9ε2m−2/10·(1−1/9)2/2 ≤ e−(1/10)ε2m ≤ 1/m2.

Taking a union bound over the pairs (1, 2), (2, 3), . . . , (m− 1,m), we get that with probability
at least (1− 1/m), for every partition (S, S̄), g is ε/10-far from being partitionable with respect to
(S, S̄).

By the lower bound in [STW15], we get the following proposition.

Proposition 5.11. There exists an absolute c < 1 such that for 30 log (n− k + 2)/2(n−k+2) ≤ ε ≤
1/10, any ε-tester for k-⊕-partitionability must make Ω

(
(n−k+1) log (n−k+1)
εc log log (n−k+1)/εc

)
queries.

6 Testing ⊗-Partitionability

Definition 6.1 (k-⊗-partitionable). We say a function f : D → Rk is a k-⊗-partitionable if there
exists a k-partition S1, . . . , Sk of [n], such that f(x1, . . . , xn) is of the form (f1(xS1), . . . , fk(xSk

)),
for some f1, . . . , fk.

22

In this section we present a O((n/ε) log2(n/ε))-query non-adaptive one-sided error test for ⊗-
partitionability (see Theorem 1.3). We begin with an overview of the construction.

For simplicity, let k = 2. Note that f is a ⊗-partitionable if and only if every variable has non-
zero influence on at most one of the two coordinates of f . So, our task boils down to determining
whether there is a variable that is influential in both coordinates of the output of f . The key
observation that allows us to find such a coordinate with a small number of queries is that if f is
ε-far from ⊗-partitionable, then ∑

i∈[n]

min(Inf(i; f1), Inf(i; f2)) ≥ ε. (15)

Therefore, if f is ε-far from ⊗-partitionable, there must be a coordinate that has influence at least
ε/n in both coordinates. This immediately suggests an O(n2/ε) query test: for each variable use
O(n/ε) queries to determine whether it is influential in both coordinates.

We obtain an improvement in the query complexity by exploiting a trade-off between the number
of samples, i ∈ [n], required to find a variable that is influential in both coordinates, and the number
of samples required to certify that a variable is indeed influential in both coordinates.

We now move on to arbitrary k. Given subsets S1, . . . , Sk of [n], let ∆f (S1, . . . , Sk) be the
distance from f = (f1, . . . , fk) to the closest function g = (g1, . . . , gk) in which gj does not depend
on the inputs in Sj , and define the influence of (S1, . . . , Sk) on f as

Inf(S1, . . . , Sk; f) = Pr[fj(x) 6= fj(ySjx) for some j],

where x, y is an independent pair of inputs.

Proposition 6.2. Inf(S1, . . . , Sk; f) ≤
∑n

i=1 Inf(i; fJ(i)), where J(i) is the set of output coordinates
j ∈ [k] for which Sj contains i.

Proof. Let E be the event “fj(x) 6= fj(ySjx) for some j”. Let hi be the hybrid input in which
hit = yt for t ≤ i and xt for t > i. Then h0 = x and hn = y. If the event “fj(x) 6= fj(ySjx)”

occurs, then one of the events “fj(h
i−1
Sj
x) 6= fj(h

i
Sj
x)” must occur for some i between 1 and n. By

the union bound, Pr(E) ≤
∑n

i=1 Pr(Ei), where Ei is the event “fj(h
i−1
Sj
x) 6= fj(h

i
Sj
x) for some j.”

The inputs hi−1
Sj
x and hiSj

x are identical unless i ∈ Sj , in which case they differ only in the i-th
coordinate where they are independent. Therefore

Pr(Ei) = Pr[fj(x) 6= fj(x
i) for some j ∈ J(i)],

where xi is x with its i-th input resampled independently. The right hand side is precisely the
influence of i in fJ(i).

Claim 6.3. ∆f (S1, . . . , Sk) ≤ Inf(S1, . . . , Sk; f).

Proof. By averaging, there must exist an assignment a to y such that

Inf(S1, . . . , Sk; f) ≥ Pr[fj(x) 6= fj(aSjx) for some j].

Define gj(x) = fj(aSjx) (on all inputs). Then gj does not depend on the inputs in Sj , so

∆f (S1, . . . , Sk) ≤ Pr[fj(x) 6= gj(x) for some j] = Pr[fj(x) 6= fj(aSjx) for some j] ≤ Pr(E).

23

Claim 6.4. Let k ≥ 2 and f(xi) = (f1(xi), . . . , fk(xi)) be a possibly randomized univariate function.
Let d an the output coordinate that maximizes Inf(i; fd). There exists a partition (P, P) of the output
coordinates such that Inf(i; fP) and Inf(i; fP) are both at least Inf(i; f[n]\{d})/3.

Proof. Let Ij be the event fj(x) 6= fj(y) for random independent x and y. Then Inf(i; fT) =
Pr(∪j∈T Ij). Let δi = Pr(∪j 6=dIj). If Pr(Id) ≥ δi/3 then the partition ({d}, [n] \ {d}) satisfies the
conclusion. Otherwise, Pr(Ij) ≤ δi/3 for all j. Then some partition of type (I1∪· · ·∪Ij , Ij+1∪· · ·∪Ik)
works: If j is the first set for which Pr(I1 ∪ · · · ∪ Ij) exceeds δi/3, then

Pr(I1 ∪ · · · ∪ Ij) ≤ Pr(I1 ∪ · · · ∪ Ij−1) + Pr(Ij) ≤ 2δi/3.

Since
Pr(I1 ∪ · · · ∪ Ij) + Pr(Ij+1 ∪ · · · ∪ Ik) ≥ Pr(∪jIj) ≥ δi,

the event Ij+1 ∪ · · · ∪ Ik also has probability at least δi/3.

Lemma 6.5. If f is δ-far from ⊗-partitionable then there exist partitions (P (1), P (1)), . . . ,
(P (n), P (n)) of [k] such that

n∑
i=1

min
{

Inf(i; fP (i)), Inf(i; f
P (i)

)
}
≥ δ

3
.

Proof. Let j∗(i) be the maximizer of Inf(i; fj) (breaking ties arbitrarily), and Sj be the set of all
i such that j∗(i) 6= j. Then J(i) = {j : i ∈ Sj} = [n] \ {j∗(i)}. By Proposition 6.2 and Claim 6.3,
δ ≤ ∆f (S1, . . . , Sk) ≤

∑
Inf(i; f[n]\{j∗(i)}). By Claim 6.4 applied to f as a function of xi only

(randomized over the other inputs), Inf(i; f[n]\{j∗(i)})/3 ≤ min
{

Inf(i; fP (i)), Inf(i; f
P (i)

)
}

.

Algorithm 6: Non-adaptive tester for ⊗-partitionability.

Oracle: f : D → Rk
Input : Proximity parameter ε

1 foreach r ∈ {0, . . . , dlog(3n/ε)e} do

2 Let S ⊆ [n] be a set of 3 · d6n log(3n/ε)
2rε e indices sampled uniformly at random from [n].

3 foreach i ∈ S do
4 Sample 3 · 2r+1 independent pairs of inputs from Ω× Ω.
5 if ∃ samples (x, y), (x′, y′), and j 6= j′ ∈ [k] such that

fj(x) 6= fj(y{i}x) and fj′(x
′) 6= fj′(y

′
{i}x

′) then

6 Reject.

7 Accept.

Proof of Theorem 1.3. We show that Algorithm 6 satisfies the statement of the theorem. In each
iteration of the outer loop, O(n/ε log(n/ε)) queries are made to f . Thus, in total the algorithm
makes O((n/ε) log2(n/ε)) queries.

The test has perfect completeness because the condition on Line 5 is never triggered if f is a
direct product.

24

We now argue soundness. If f is ε-far from being a direct product, then by Lemma 6.5, for
every i ∈ [n] there exist partitions (P (i), P (i)) such that∑

i∈[n]

Mi ≥ ε/3, (16)

where Mi = min
{

Inf(i; fP (i)), Inf(i; f
P (i)

)
}
.

For r ∈ {0, . . . , dlog(3n/ε)e}, let Ar denote the set {i | Mi ∈ [1/2r, 1/2r+1)}. By (16) and an

averaging argument, we know that there exists an ` such that |A`| ≥ d 2`ε
6 log(3n/ε)e. For such an `,

we show that the probability that the algorithm rejects in the `-th iteration is at least 2/3.
Consider the `-th iteration of the outer loop. The probability that no index in A` is picked at

Line 2 is at most (1− |A`|
n)

3· n
|A`| ≤ 1/e3.

In an iteration of the inner loop corresponding to an index i ∈ A`, the probability that either
fP (i)(x) = fP (i)(y) for all sampled pairs (x, y), or f

P (i)
(x) = f

P (i)
(y) for all sampled pairs (x, y) is

at most 2 · (1− 1/2`+1)3·2`+1 ≤ 2/e3. This tells us that the probability that the algorithm rejects in
the `-th iteration of the outer loop conditioned on A` ∩S 6= ∅ is at least (1− 2/e3). Since A` ∩S is
empty with probability at most 1/e3, the probability that the algorithm rejects in the `-th iteration
is at least (1− 3/e3) ≥ 2/3.

6.1 Lower Bounds for Testing ⊗-partitionability

We show that any 1/2-tester for ⊗-partitionability requires at least Ω(n) queries, and that any

non-adaptive ε-tester for direct products requires at least O
(

n
ε log(1/ε)

)
queries.

Lower bound for adaptive testers: We obtain a lower bound for adaptive testers by a reduction
from set disjointness [BBM12]. In the set disjointness problem, Alice is given a set S ⊆ [n] and
Bob is given a set T ⊆ [n], and the goal is to determine whether S and T are disjoint. It is well
known that any bounded-error two-party communication protocol for set disjointness, in the shared
randomness model, requires at least Ω(n) bits of communication [SK87, Raz92]. Our query lower
bound is obtained by showing that if there is a q-query tester for ⊗-partitionability then there is a
protocol for set disjointness of complexity O(q).

Claim 6.6. Let S, T ⊆ [n] be sets with non-empty intersection. Then, the function f : {0, 1}n →
{0, 1}2 defined as f(x) = (⊕i∈Sxi,⊕j∈Txj) is 1/2-far from ⊗-partitionable.

Proof. Let (F,G) : {0, 1}n → {0, 1}2 be a ⊗-partitionable function. Without loss of generality,
assume the support of F differs from S. Then, F and ⊕i∈Sxi differ on half the inputs.

Proposition 6.7. Determining whether a function f : {0, 1}n → {0, 1}2 is a direct product, or 1/2-
far, with respect to the uniform distribution, from direct products, requires at least Ω(n) queries.

Proof. Let S ⊆ [n] be Alice’s input, and T ⊆ [n] be Bob’s input. Alice forms the function f
.
=

⊕i∈Sxi and Bob forms the function g
.
= ⊕i∈Txi. If S and T are disjoint, then (f, g) is a direct

product. By Claim 6.6, if S and T are not disjoint, (f, g) is at least 1/2-far from a direct product.
Alice and Bob can simulate any tester for direct products as follows: For each query x, Alice

determines f(x) and sends it to Bob, and Bob determines g(x) and sends it to Alice. Thus, both
Alice and Bob can determine the value of (f, g) on any query with just two bits of communication.
It follows that any tester for direct product requires Ω(n) queries.

25

Lower bound for non-adaptive testers: We describe two distributions Dyes and Dno over ⊗-
partitionable, and ε-far from⊗ paritionable functions, respectively, and argue that any non-adaptive

tester must make Ω
(

n
ε log 1/ε

)
queries to distinguish betweenDyes andDno with constant probability.

Our distributions are based on the distributions of Blais [Bla08] described in Section 5.3.
We say two strings x, y ∈ {0, 1}n are i-twins if they only differ at the i-th coordinate. For

x ∈ {0, 1}n, let xi denote the i-twin of x.

Let D
(i)
yes be the distribution over functions F = (F1, F2) : {0, 1}n → {0, 1}2, generated by

picking F1 : {0, 1}[n]\{i} → {0, 1} so that for every x ∈ {0, 1}[n]\{i}, F1(x) is set independently at
random with Pr[F1(x) = 1] = ε, and by fixing F2(x) to be xi. Let Dyes be the uniform mixture of

D
(1)
yes, . . . , D

(n)
yes.

Let D
(i)
no be the distribution over functions G = (G1, G2) : {0, 1}n → {0, 1}2, generated by

picking G1 : {0, 1}n → {0, 1} so that so that for every x ∈ {0, 1}n, G1(x) is set independently at
random with Pr[G1(x) = 1] = ε, and fixing G2(x) to be xi. Let Dno be the uniform mixture of

D
(1)
no , . . . , D

(n)
no .

Claim 6.8. For 100/2n ≤ ε ≤ 1/2, a random sample from Dno is ε/10-far from ⊗-partitionable
with probability at least 15/16.

Proof. It suffices to prove the statement for a function sampled from from D
(i)
no , for i ∈ [n].

Let G be a function sampled from D
(i)
no . Let (f1, f2) be ⊗-partitionable. If f2 does not depend

on xi, then G is 1/2-far from (f1, f2) because xi and f2 disagree on half the inputs.
In the case that f2 depends on xi, it suffices to show that G1 is ε/10-far from any function that

does not depend on xi. Let t denote the number of i-twins (x, xi) such that G1(x) 6= G1(xi). The
distance between G1 and the closest function that does not depend on xi is t/2n. The expected
value of t is ε(1− ε)2n ≥ (ε/2)2n. By Chernoff’s bound,

Pr[t < ε2n/10] ≤ e−ε2n−1(1−1/5)2/2 = e−ε2
n/25.

For a set of queries Q, let R
(i)
yes(Q) be the distribution of the values of a function sampled from

D
(i)
yes on Q, and let R

(i)
no(Q) be the distribution of values of a function sampled from D

(i)
no on Q.

For fixed i, the value of xi in the replies to the query set has no effect on the statistical distance

between the distributions R
(i)
yes(Q) and R

(i)
no(Q). Similar to Lemma 4.3 and in [Bla08], we have the

following fact.
Let dST (D1, D2) denote the statistical distance between distributions D1 and D2.

Claim 6.9. There exists a constant c > 0 such that for any set of queries Q with t i-twins,

dST (R(i)
yes(Q), R(i)

no(Q)) ≤ ctε.

By a triangle inequality we have that for any set of queries Q that contain at most t i-twins in all
coordinates dST (Ryes(Q), Rno(Q)) = O(tε), where Ryes, and Rno are the distributions of function
values on the query set Q, for functions sampled from Dyes and Dno respectively.

We now employ an edge isoperimetric inequality Servedio et al.:

Claim 6.10 ([STW15]). Any set Q ⊆ {0, 1}n that contains t i-twins for Ω(n) directions i must
have size at least Ω(tn/ log t)

26

Putting everything together and using Yao’s Minmax Principle we obtain the following lower
bound:

Proposition 6.11. For 100/2n ≤ ε ≤ 1/2, determining whether a function f : {0, 1}n → {0, 1}2

is ⊗-partitionable or ε-far from ⊗-partitionable requires Ω
(

n
ε log(1/ε)

)
non-adaptive queries.

Acknowledgement

We thank Chandra Nair and Yan Nan Wang for valuable discussions on the hypercontractivity of
information channels.

References

[AG76] Rudolf Ahlswede and Peter Gacs. Spreading of sets in product spaces and hypercontrac-
tion of the markov operator. Ann. Probab., 4(6):925–939, 12 1976.

[BBM12] Eric Blais, Joshua Brody, and Kevin Matulef. Property testing lower bounds via com-
munication complexity. Comput. Complex., 21(2):311–358, 2012.

[Bla08] Eric Blais. Improved bounds for testing juntas. In Ashish Goel, Klaus Jansen, José D. P.
Rolim, and Ronitt Rubinfeld, editors, Approximation, Randomization and Combinato-
rial Optimization. Algorithms and Techniques, page 317–330, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg.

[Bla09] Eric Blais. Testing juntas nearly optimally. In Proceedings of the 41st Annual ACM
Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June
2, 2009, pages 151–158, 2009.

[BLR90] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numer-
ical problems. In Proceedings of the Twenty-Second Annual ACM Symposium on Theory
of Computing, pages 73–83, New York, NY, USA, 1990. Association for Computing Ma-
chinery.

[Bon70] Aline Bonami. étude des coefficients de fourier des fonctions de lp(g). Annales de l’Institut
Fourier, 20(2):335–402, 1970.

[BW20] Andrej Bogdanov and Baoxiang Wang. Learning and testing variable partitions. In
Thomas Vidick, editor, 11th Innovations in Theoretical Computer Science Conference,
ITCS 2020, January 12-14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs, pages
37:1–37:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[CG04] Hana Chockler and Dan Gutfreund. A lower bound for testing juntas. Inf. Process. Lett.,
90(6):301–305, 2004.

[DD19] Yotam Dikstein and Irit Dinur. Agreement testing theorems on layered set systems. In
David Zuckerman, editor, 60th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 1495–
1524. IEEE Computer Society, 2019.

27

[DG19] Irit Dinur and Konstantin Golubev. Direct sum testing: The general case. In Approx-
imation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2019, September 20-22, 2019, Massachusetts Institute of Technol-
ogy, Cambridge, MA, USA, pages 40:1–40:11, 2019.

[DS14] Irit Dinur and David Steurer. Direct product testing. In IEEE 29th Conference on
Computational Complexity, CCC 2014, Vancouver, BC, Canada, June 11-13, 2014, pages
188–196. IEEE Computer Society, 2014.

[NW16] Chandra Nair and Yan Nan Wang. Evaluating hypercontractivity parameters using in-
formation measures. In 2016 IEEE International Symposium on Information Theory
(ISIT), pages 570–574, 2016.

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, USA,
2014.

[Raz92] Alexander A. Razborov. On the distributional complexity of disjointness. Theor. Comput.
Sci., 106(2):385–390, 1992.

[SK87] Georg Schnitger and Bala Kalyanasundaram. The probabilistic communication complex-
ity of set intersection. In Proceedings of the Second Annual Conference on Structure in
Complexity Theory, Cornell University, Ithaca, New York, USA, June 16-19, 1987. IEEE
Computer Society, 1987.

[STW15] Rocco A. Servedio, Li-Yang Tan, and John Wright. Adaptivity Helps for Testing Juntas.
In David Zuckerman, editor, 30th Conference on Computational Complexity (CCC 2015),
volume 33 of Leibniz International Proceedings in Informatics (LIPIcs), pages 264–279,
Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

28

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

