
Interactive Oracle Proofs of Proximity to Algebraic Geometry

Codes

Sarah Bordage∗ Mathieu Lhotel † Jade Nardi ‡ Hugues Randriam§

February 14, 2022

Abstract

In this work, we initiate the study of proximity testing to Algebraic Geometry (AG) codes.
An AG code C = C(X ,P, D) is a vector space associated to evaluations on P of functions in
the Riemann-Roch space LX (D). The problem of testing proximity to an error-correcting code
C consists in distinguishing between the case where an input word, given as an oracle, belongs
to C and the one where it is far from every codeword of C. AG codes are good candidates to
construct short proof systems, but there exists no efficient proximity tests for them. We aim to
fill this gap.

We construct an Interactive Oracle Proof of Proximity (IOPP) for some families of AG codes
by generalizing an IOPP for Reed-Solomon codes, known as the FRI protocol [BBHR18a]. We
identify suitable requirements for designing efficient IOPP systems for AG codes. Our approach
relies on a neat decomposition of the Riemann-Roch space of any invariant divisor under a group
action on a curve into several explicit Riemann-Roch spaces on the quotient curve. We thus
provide a framework in which a proximity test to C can be reduced to one to a simpler code C ′.
Iterating this process thoroughly, we end up with a membership test to a code with significantly
smaller length. As concrete instantiations, we study AG codes on Kummer curves and curves
in the Hermitian tower. The latter can be defined over polylogarithmic-size alphabet. We
specialize the generic AG-IOPP construction to reach linear prover running time and logarithmic
verification on Kummer curves, and quasilinear prover time with polylogarithmic verification
on the Hermitian tower.

∗LIX, CNRS UMR 7161, Ecole Polytechnique, Institut Polytechnique de Paris & Inria, Palaiseau, France
sarah.bordage@lix.polytechnique.fr

†Laboratoire de Mathématiques de Besançon, UMR 6623 CNRS Université de Bourgogne Franche-Comté, France
mathieu.lhotel@univ-fcomte.fr

‡Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France
jade.nardi@univ-rennes1.fr

§ANSSI, Paris, France & Institut Polytechnique de Paris, Télécom Paris, Palaiseau, France
randriam@telecom-paris.fr

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 3 of Report No. 165 (2020)

sarah.bordage@lix.polytechnique.fr
mathieu.lhotel@univ-fcomte.fr
jade.nardi@univ-rennes1.fr
randriam@telecom-paris.fr

Contents

1 Introduction 3
1.1 Definition of an IOPP for a code C . 5
1.2 Our results . 5
1.3 More on the practicality of AG codes . 7
1.4 Related works . 8

2 Technical overview 9
2.1 The FRI protocol for RS proximity testing . 9
2.2 Our IOPP for AG proximity testing . 11

3 Preliminaries 12
3.1 Functions and divisors on algebraic curves . 13
3.2 Algebraic geometry codes . 13
3.3 Group and action . 14

4 Setting of AG codes compatible with proximity test 14
4.1 Sequence of curves . 14
4.2 Sequence of codes . 15
4.3 RS codes are foldable AG codes . 17
4.4 Splitting Riemann-Roch spaces according to a cyclic group of automorphisms 18

5 Foldable AG codes on Kummer curves 19
5.1 Preliminaries . 19
5.2 Decomposition of Riemman-Roch spaces . 20
5.3 Family of foldable codes . 21

6 Foldable AG codes along the Hermitian tower 22
6.1 Preliminaries . 22
6.2 Construction of foldable AG codes . 24

7 Folding operators for AG codes 27
7.1 Definition of folding operators . 27
7.2 Properties of folding operators . 28
7.3 IOPP for foldable AG codes . 32

8 Proximity tests for AG codes on Kummer curves and Hermitian towers 34
8.1 How to iterate the folding to reach a code of dimension 1 34
8.2 Properties of the AG-IOPP with Kummer curves . 35
8.3 Properties of the AG-IOPP with towers of Hermitian curves 36

Acknowledgments 39

A Proof of Proposition 7.6 43

B Properties of the genera of the curves in the Hermitian tower 44

2

1 Introduction

Let C ⊂ ΣS be an evaluation code with evaluation domain S of size n and alphabet Σ. For u ∈ ΣS ,
if ∆(u,C) > δ, we say that u is δ-far from C and δ-close otherwise. We address the problem of
proximity testing to a code C, i.e. given a code C and assuming a verifier has oracle access to a
function f : S → Σ, distinguish between the case where f ∈ C and f is δ-far from C. In this paper,
we focus on the case where C is an AG code. An algebraic geometry (AG) code C = C(X ,P, D) is a
vector space formed by evaluations on a set P ⊂ X of functions in the Riemann-Roch space LX (D).
We address this problem in the Interactive Oracle Proof model [BCS16], which has demonstrated
to be particularly promising for the design of proof systems in the past few years.

Context of this work. Under the generic term of arithmetization [LFKN90], algebraic tech-
niques for constructing proof systems using properties of low-degree polynomials have emerged
from the study of interactive proofs (IPs, [GMR85]). Arithmetization techniques have been en-
hanced and fruitfully applied to other broad families of proof systems since then, including prob-
abilistically checkable proofs (PCPs, [BFLS91, AS92, ALM+98]). To construct a proof system for
a non-deterministic relation R, arithmetization transforms any instance-witness pair (x,w) into
a word that belongs to a certain error-correcting code C if (x,w) ∈ R, and is very far from C
otherwise.

Since the seminal works of Kilian [Kil92] and Micali [Mic95], a lot of efforts have been put into
making PCPs efficient enough to obtain practical sublinear non-interactive arguments for delegating
computation. In search of reducing the work required to generate such probabilistic proofs, as well
as the communication complexity of succinct arguments based on them, Interactive Oracle Proofs
(IOPs, [BCS16, RRR16]) have been introduced as a generalization of both PCPs, IPs and IPCPs
[KR08]

Considering for the first time univariate polynomials instead of multivariate ones, [BS08, Din07]
constructed a PCP with quasilinear proof length and constant query complexity. Since then, ef-
ficient transparent and zero-knowledge non-interactive arguments have been designed by relying
on Reed-Solomon (RS) codes, including [AHIV17], [BBHR19], [BCR+19], [BCG+19], [KPV19],
[COS20] – to mention only the most recent ones. At some point, aforementioned sublinear argu-
ments require a proximity test to RS codes.

As a solution, one can use a prover-efficient Reed-Solomon IOP of Proximity, which is an inter-
active variant of PCP of Proximity introduced by [BCG+17]. In an IOPP for an error-correcting
code, a verifier distinguishes between the case where a function is a codeword and the one where
it is far from any codeword. The verifier only has an oracle access to the purported codeword and
interacts with a prover. We defer the formal definition of an IOPP to Section 1.1.

The FRI protocol is an IOP of Proximity (IOPP) for testing proximity to Reed-Solomon codes
evaluated over well-chosen evaluation points ([BBHR18a], further improved in [BKS18], [BGKS20],
[BCI+20]). It admits linear prover time, logarithmic verifier time and logarithmic query complexity.
While being sub-optimal for some parameters1, the FRI protocol is highly-efficient in practice and
is a crucial tool in systems deployed in the real-world.

The main drawback of RS codes is that they must have an alphabet larger than their length.
AG codes [Gop77], as evaluations of a set of functions at some designated rational points on
a given curve, extend the notion of Reed-Solomon codes and inherit many of their interesting
properties. Therefore, replacing RS codes with AG codes is not only natural but has also led to
improvements in the past. Examples of applications of AG codes include public key cryptography,

1For instance, [BCG+17, RR20] proposed IOPP constructions for RS codes with constant query complexity.

3

distributed storage, secret sharing and multi-party computation. A key feature for a family of codes
to be suitable for arithmetization is a multiplication property [Mei13], namely the component-wise
multiplication of two codewords results in codewords in a code whose minimum distance is still
good. This multiplication property actually emulates multiplication of low-degree polynomials.
AG codes not only feature this multiplication property but may also have arbitrary large length
given a fixed finite field F, unlike RS codes.

Limitations of Reed-Solomon codes. We identify two limitations of using RS codes in IOPs.
As mentioned earlier, RS codes are the simplest case of AG codes, but possess an inherent

limitation: the alphabet size must be larger than the block length of the code. Therefore, practical
IOP-based succinct arguments are designed over large fields.

The second limitation is related to the algebraic structure of the field. RS-IOPPs [BS08,
BBHR18a] require the set D ⊂ F of evaluation points to have a special structure. Concretely,
the field must contain a subgroup of large smooth order, typically a power of 2 which is larger
than the size of the non-deterministic computation to be verified. Depending on the applications
of succinct non-interactive arguments, a base field might already be imposed. This is for instance
the case for standard digital signature schemes. For computations whose size exceeds the order of
the largest smooth subgroup of the field, RS-IOPPs known to date can no longer be used.

We observe that lowering the size of field elements does not shorten the length of IOP-based
succinct non-interactive arguments (see [BCS16]). There are, however, other reasonable motivations
to replace RS codes with AG ones. We explain below how AG codes could circumvent the limitations
of RS codes.

Why can AG codes be useful? First, working over smaller fields lowers the cost of field
operations2. For concrete efficiency, complexity measures such as prover time and verifier time are
closely examined. Reducing significantly the size of the alphabet would have a direct impact on
the binary cost of arithmetic operations. Smaller fields could enhance efficiency of proof systems
since arithmetization of general circuits would be more efficient. Moreover, on the prover side, bit
complexity of encoding codewords might be smaller.

A popular belief is that encoding with AG codes is an heavy task. It is surely true in general,
but there are explicit families of AG codes for which there are quasilinear time encoding algorithms.
We discuss more about encoding in Section 1.3. On another note, putting forward applications of
AG codes can motivates the study of fast coding algorithms for AG codes, in particular in the
computer algebra community.

One may be concerned by the overhead of reducing the alphabet size when targeting a soundness
error less than 2−κ. Notice that it is possible to sample enough bits of randomness from an extension
field when needed, or to repeat only some parts of the protocol (see [Sta21, BBHR18b]). For
instance, soundness error of our IOPP is bounded from below by |F|−1. Reaching the targeting
soundness requires to repeat the interactive phase of the IOPP s times, inducing a factor s ' κ

log|F|
multiplicative overhead for the prover. A rough estimation of bit complexities does not show
evidence of a significant overhead. Overall, a proof system supporting small fields might be more
efficient: any part of the protocol which does not contribute to the soundness error could benefit
from cheaper field operations.

2Consider the application of checking the correct execution of a size n computation. Then an RS-based IOP for
this problem will work over a field of size Ω(n). This means that a single addition of two field elements will cost
Ω(logn) operations. If the IOP is instead based on a code with polylogarithmic-size alphabet, the cost of a single
addition is only Ω(log(polylog(n)).

4

In addition, AG codes offers more flexibility on the choice of the field. For computations of size
n, we propose AG codes for which the field is not required to admit an n-th root of unity (unlike
RS-IOPP on a prime field). Specifically, for AG codes over Kummer curves, the base field needs
only to have a N -th root of unity, where N divides n. For AG codes over curves in a Hermitian
tower (which admits a polylogarithmic-size alphabet), our IOPP does not involve any assumption
on the alphabet, except that it must be a degree-2 extension of a field Fq, where q is any prime power.

Finally, the question of whether there exist concretely efficient IOPPs for AG codes is motivated
by both a theoretical and practical perspective.

1.1 Definition of an IOPP for a code C

We are specifically interested in public-coin IOP of Proximity (IOPP) for a family of evaluation
codes C , thereby we specify our definition for this particular setting. An IOPP (P,V) for a code C
is a pair of randomized algorithms, where both P (the prover) and V (the verifier) receive as explicit
input the specification of a code C ⊆ ΣS . We define the input size to be n = |S|. Furthermore, a
purported codeword f : S → Σ is given as explicit input to P and as an oracle to V. The prover
and the verifier interact over at most r(n) rounds and during this conversation, P seeks to convince
V that the purported codeword f belongs to the code C.

At each round, the verifier sends a message chosen uniformly and independently at random,
and the prover answers with an oracle. Verifier’s queries to the prover’s messages are generated by
public randomness and performed after the end of the interaction with the prover. Thus, such an
IOPP is in particular a public-coin protocol (or Arthur-Merlin [Bab85]).

Let us denote 〈P↔ V〉 ∈ {accept, reject} the output of V after interacting with P. The notation
Vf means that f is given as an oracle input to V. We say that a pair of randomized algorithms
(P,V) is an IOPP system for the code C ⊆ ΣS with soundness error s : (0, 1] → [0, 1], if the
following conditions hold:

Perfect completeness: If f ∈ C, then Pr[〈P(C, f)↔ Vf (C)〉 = accept] = 1.

Soundness: For any function f ∈ ΣS such that δ := ∆(f, C) > 0 and any unbounded malicious
prover P∗, Pr[〈P∗ ↔ Vf (C)〉 = accept] ≤ s(δ).

The length of any prover message is expressed in number of symbols of an alphabet a(n). The
sum of lengths of prover’s messages define the proof length l(n) of the IOPP. The query complexity
q(n) is the total number of queries made by the verifier to both the purported codeword f and the
oracle sent by the prover during the interaction. The prover complexity tp(n) is the time needed
to generate prover messages during the interaction (which does not include the input function f).
The verifier complexity tv(n) is the time spent by the verifier to make her decision when queries
and query-answers are given as inputs.

1.2 Our results

In this subsection, we discuss the three contributions of this paper. In all this work, we state
complexities in field elements and field operations, where the field is the alphabet of the considered
code. Asymptotic complexities are relative to the length of the code.

• The first one is to give a clear criterion for constructing IOPPs for AG codes with linear
proof lenght and sublinear query complexity. Our hope with this result is to open up new

5

possibilities for designing efficient probabilistic proof systems based on constant rate AG
codes.

• The second contribution is a concrete instantiation for AG codes defined over Kummer-type
curves. This IOPP has strictly linear prover time and strictly logarithmic verification (counted
in field operations). Thus, we give a strict generalization of the FRI protocol for codes of length
n over alphabet of size roughly n2/3.

• The third one is a concrete instantiation for AG codes defined over a tower of Hermitian curves.
Considering recursive towers enables to construct an IOPP for AG codes with polylogarithmic-
size alphabet. For those codes, we give an IOPP with quasilinear prover time and polyloga-
rithmic verification (counted in field operations).

Efficiency of our two AG-IOPP instantiations leverages the fact that proximity testing for these
families of AG code can be reduced to a proximity test for a small RS code.

(1) Generic criterion for constructing AG-IOPPs. Let X0 be a curve defined over a finite
field F, D0 a divisor on the curve X0 and P0 ⊂ X (F). This defines an AG code C0 = C(X0,P0, D0).
We construct a sequence of curves

X0 X1 X2 · · · Xr,
π0 π1 π2 πr−1

so that Xi+1 arises as the quotient of the curve Xi by a cyclic group Z/piZ under the quotient map
πi. Such a sequence of curves exists if and only if a solvable group G acts on the curve X0.

Using these consecutive projection maps, we construct a sequence of AG codes Ci := C(Xi,Pi, Di)
of decreasing length to turn the proximity test of the function f (0) = f to C0 into a membership
test of a function f (r) in Cr. We show that such a procedure is possible if the group G is large
enough with respect to the length of the code C0 and under some hypotheses on the divisor D0

overviewed in Section 2.2 and detailed in Section 4. A code fulfilling all the required conditions is
called foldable.

Assuming that an AG code C(X0,P0, D0) of blocklength n is foldable, we show that there is
an O(log n)-rounds IOPP for it, with linear proof length, sublinear query complexity and constant
soundness (see Theorem 7.9).

In general, we observe that the larger is the group G acting on X0 compared to n, the smaller
are the query complexity and the verifier decision complexity of the protocol.

However, we notice that the hypothesis on the size of G is not a necessary condition for con-
structing an IOPP with sublinear verification. For instance, if the curve Xr is isomorphic to the
projective line P1, we can continue to recurse in order to reduce even more the size of the proximity
testing problem. We propose two interesting families of AG codes for which it is the case.

(2) Concrete IOPP for AG codes on Kummer curves. When X is a Kummer curve of the
form yN = f(x), we show how to choose P and D to make the AG code C = C(X ,P, D) foldable.
We benefit from the action of the group Z/NZ on X that yields a quotient curve X/(Z/NZ)
isomorphic to the projective line. This enables us to define a sequence of codes (Ci)0≤i≤s such that
C0 = C and the code Cs is a Reed-Solomon code of dimension (degD)/N + 1.

Theorem 1.1 (Informal, see Theorem 8.1). Let C = C(X ,P, D) ⊂ FP be a foldable AG code
defined over a Kummer curve X of equation X : yN = f(x) such that deg f = N` − 1 for some
integer ` > 0 and N is a smooth integer, coprime with |F|. Assume F contains a primitive N -th

6

root of unity. The block length n := |P| is a multiple of N and satisfies n < `N2 |F|1/2. Let
f : P → F be a purported codeword. For every proximity parameter δ ∈ (0, 1) and soundness
ε ∈ (0, 1), there exists a public-coin IOPP system (P,V) for C with perfect completeness and the
following properties:

rounds r(n) < log n,
proof length l(n) = O(n),
query complexity q(n) = O(log n),
prover complexity tp(n) = O(n),
verifier decision complexity tv(n) = O(log n).

It is worth noting that the Hermitian curve defined over Fq2 by yq+1 = xq + x satisfies the
hypotheses of the previous theorem. It is well known to be maximal, i.e. it has the maximum
number of rational points with respect to its geometry. We recall that Hermitian codes over
alphabet Σ support block length up to |Σ|3/2, which is greater by a factor n1/3 than Reed-Solomon
codes.

(3) Concrete IOPP for AG codes on towers of Hermitian curves. We recall that a tower
of curves consists of an infinite sequence of curves

X0 ← X1 ← . . .← Xn ← . . .

such that the number of rational points of the nth curve tends to infinity as n tends to infinity.
Towers of curves play a prominent role in the history of AG codes as they define codes with
outstanding length and correction capacity [TVZ82, BBGS14].

The Hermitian tower is an example of the widely studied Artin-Scheier extensions [Lac92, Sti08].
In this case, the curve Xi arises as the quotient of the curve Xi+1 above modulo the action of a
cyclic group of order q over the finite field Fq2 , the first curve X0 being isomorphic to the projective
P1. Therefore, one can test proximity to an AG-code from one of the curves Xn by going down
along the tower and then testing proximity to a RS code, whose degree can be expressed explicitly
in terms of the initial AG code.

Beyond supporting polylogarithmic-size alphabet, AG codes over the Hermitian tower happen
to be more naturally “foldable”. In particular, no additional assumptions on the alphabet are
required.

We write polylog(n) for functions that are in O
(
logk(n)

)
for some k.

Theorem 1.2 (Informal, see Theorem 8.4). Let C = C(X ,P, D) ⊂ FP be a foldable AG code over
an alphabet F of size |F| = Ω(logk(n)) for some constant k. We denote n = |P|. Let f : P → F be a
purported codeword. For every proximity parameter δ ∈ (0, 1) and soundness ε ∈ (0, 1), there exists
a public-coin IOPP system (P,V) for C with perfect completeness and the following properties:

rounds r(n) < log n,
proof length l(n) = O(n),
query complexity q(n) = polylog(n),

prover complexity tp(n) = Õ(n),
verifier decision complexity tv(n) = polylog(n).

1.3 More on the practicality of AG codes

When constructing a proximity test for a code, it is assumed that the purported codeword is given
as input to the prover. Thus, the prover complexity is computed thereof. While we heavily rely

7

on the group of automorphisms of the curve for proving the existence of an efficient IOPP for
“foldable” AG codes, we emphasize that the work of the prover and the verifier during the protocol
is essentially to perform some univariate polynomial interpolation tasks, with very small degree. In
particular, neither the prover nor the verifier of the IOPP system need to run an encoding algorithm
for AG codes.

However, keeping applications to code-based IOP constructions in mind, the running time of the
IOP prover is bounded from below by the time needed to encode codewords during arithmetization.
Fast encoding algorithms for AG codes is not the most widely studied computational task, and is
often a concern when suggesting constructions based on AG codes3.

This is a reason why we focus our study on families of AG codes that are particularly likely
to lead to practical implementations, as we argue next. Specifically, our study includes the two
following subfamilies of one-point AG codes over small alphabets with constant rate and distance.

• The first family includes one-point AG codes over Kummer-type curves, and in particular
the notorious Hermitian curve. [BRS20] proposed an encoding algorithm with quasilinear
complexity Õ(n). Roughly speaking, [BRS20] method consists in translating the encoding
task into a bivariate polynomial multipoint-evaluation problem. Assuming that the evaluation
points are well-structured, they view a bivariate polynomial in F[X,Y] as a polynomial in
F[X][Y] in order to evaluate it thanks to two univariate multipoint evaluations. It is the same
idea than the one for computing m-dimensional FFT from m (univariate) FFTs.

• The second family of one-point AG codes arises from curves on the Hermitian tower and has
an alphabet size polylogarithmic in the block length of the code. It is very likely that those
codes could also be encoded in quasilinear time, by iteratively applying the encoding method
proposed by [BRS20].

We also point out that bases for Riemann-Roch spaces related to theses codes are explicitly
known.

1.4 Related works

We discuss works related to AG-based proximity testing. We emphasize that the motivation behind
existing works was only theoretical. In particular, the PCP techniques used are too complex to be
implemented for verifying meaningful computations.

In 2013, [BKK+13] constructed a PCP with linear proof length and sublinear query complexity
for boolean circuit satisfiability by relying on AG codes. More precisely, for any ε > 0 and instances
of size n, their PCP has length 2O(1/ε)n and query complexity nε. When aiming at optimal proof
length and query complexity as small as possible, this result remains the state-of-the-art PCP
construction. By using AG codes, the authors of [BKK+13] reduced the field size to a constant,
which avoids a logarithmic blowup in proof bit-length (occuring e.g. in [BS08] when using univariate
polynomials of degree m to encode binary strings of length m). In [BKK+13], the authors pointed
out that they are not able to apply proof composition [AS92] to reduce the query complexity of
their PCP because decision complexity of the PCP verifier is too large (polynomial in the query
complexity).

Improving on [BKK+13], [BCG+17] proposed an IOP for boolean circuit satisfiability with
linear proof length and constant query complexity. The IOP of [BCG+17] invoked the sumcheck

3In general, the asymptotic cost of the task of encoding an arbitrary linear code of length n is O(n2) (using a
generator matrix for the code).

8

protocol [LFKN90] on O(1)-wise tensor product of AG codes, which exponentially deteriorates the
rate of the base code. Then, they use Mie’s PCP of Proximity for non-deterministic languages
[Mie09] to test proximity to the tensored code. Both constructions benefit from the use of AG
codes to get constant size alphabet and linear proof bit-lengths.

A recent work of [RR20] constructed an IOPP for any deterministic language which can be
decided in time poly(n) and space no(1). In particular, [RR20, Corollary 3.6] can be applied to
test proximity to AG codes. This IOPP outperforms our construction on some parameters: it has
constant round and query complexities, and proof length is slightly less than n. However, it is
unlikely that [RR20]’s IOPP leads to a concrete implementation, which is a motivation for our
work. Indeed, prover running time is polynomial, and the inner IOPP used for achieving constant
query complexity via proof composition is the heavy PCPP of [Mie09]. Mie’s PCPP is a theoretical
and complex tool used to achieve constant query (e.g in [BCG+17, BCG+19, BCL20]), but it is
seen as impractical4.

By contrast, we exhibit explicit families of AG codes for which we are able to construct a prox-
imity test with linear prover running time and logarithmic verification, or quasilinear prover time
with polylogarithmic verification. The main point however, is that our construction is undoubt-
edly much simpler to implement: the most complex task of the prover and the verifier is simply
to perform univariate interpolations (with very small degrees). The technical difficulties are in
analyzing the conditions allowing the construction, but the protocol itself is very similar to the
FRI protocol. IOPP inspired by the FRI protocol have the inherent barrier of logarithmic query
complexity. However, in practice, it is still the most efficient proximity test for RS known to date.

2 Technical overview

Our IOPP construction relies on the generalization of the FRI protocol to AG codes. Let us
first recall some ideas behind the construction of FRI protocol (see e.g. [BKS18] for a detailed
presentation). Then we shall describe how we tailor these ideas and which difficulties arise to
construct our IOPP.

2.1 The FRI protocol for RS proximity testing

Let k be a positive integer and ρ ∈ (0, 1) such that ρ = 2−k. The FRI protocol allows to check
proximity to the Reed-Solomon code RS [F,P, ρ] :=

{
f ∈ FP | deg f < ρ · |P|

}
by testing proximity

to RS [F,P ′, ρ] with |P ′| < |P|. The FRI protocol considers a family of linear maps FP → FP ′ which
randomly “fold” any function in FP into a function in FP ′ . We present in a simplified way three
key ingredients that enable the FRI protocol to work.

(a) Splitting of polynomials. For any polynomial f of degree deg f < ρn, there exist two polyno-
mials g, h of degree < 1

2ρn such that

f(x) = g
(
x2
)

+ x · h
(
x2
)
. (1)

One may view such a decomposition as the result of the splitting of the space of polynomials
of degree less than ρn into two copies of the space of polynomials of degree less than ρn/2.

(b) Randomized folding. Choose P to be a multiplicative group of order 2r generated by ω ∈ F.
Then, define P ′ = 〈ω2〉 = {x2 | x ∈ P}. Set π : F → F to be the map defined by π(x) = x2,

4Proposing an alternative to [Mie09] which does not involve heavy PCP machinery would allow to narrow the gap
between the best constructions known in theory and the most efficient ones used in practice.

9

observe that π(P) = P ′. Moreover, |P ′| = |P| /2. The structure of the evaluation domain will
allow to reduce the problem of proximity to one of half the size at each round of interaction.

Based on the decomposition (1), define a folding operator Fold [·, z] : FP → FP ′ for any z ∈ F
as follows:

Fold [f, z] := g + zh.

If deg f < ρn, both functions g : P ′ → F and h : P ′ → F belong to RS [F,P ′, ρ]. Then for any
random challenge z ∈ Fq, the operator Fold [·, z] maps RS [F,P, ρ] into RS [F,P ′, ρ].

(c) Distance preservation after folding. Except with small probability over z, we have that if
∆(f,RS [F,P, ρ]) ≥ δ, then

∆
(
Fold [f, z] ,RS

[
F,P ′, ρ

])
≥ (1− o(1))δ.

The protocol then goes as follows: the verifier sends a random challenge z ∈ F and the prover
answers with an oracle function f ′ : P ′ → F, which is expected to be equal to Fold [f, z] : P ′ → F.
At the next round, f ′ becomes the function to be “folded”, and the process is repeated for r rounds.
Each round reduces the problem by half, eventually leading to a function f (r) evaluated over a small
enough evaluation domain. This induces a sequence of Reed-Solomon codes of strictly decreasing
length. The code rate remains unchanged, and so does the relative minimum distance. The final
test consists in testing that f (r) belongs to the last RS code.

Perfect completeness follows from Item (b). Prover and verifier efficiencies of the FRI protocol
come from the possibility of determining any value of Fold [f, z] at a point y ∈ P ′ with exactly two
values of f , namely on the set π−1({y}). Consequently, a single test of consistency between f and
f ′ requires only two queries to f and one query to f ′.

Soundness of the protocol relies notably on Item (c). It is proved using results about distance
preservation under random linear combinations, that could be roughly stated as follows: “Let
V ⊂ Fnq be a linear code and g, h ∈ Fnq . As long as δ is small enough, if we have ∆(g + zh, V) ≤ δ
for enough values z ∈ Fq, then both g and h are δ′-close to V , where δ′ = (1 − o(1))δ.” (see
[BBHR18a, BKS18, BGKS20, BCI+20]). Based on that, one can deduce that if Fold [f, z] = g+ zh
is δ-close to V for enough values of z, then both g and h are δ′-close from V . The idea of the proof
of Item (c) is to exhibit a codeword which is δ-close from f , based on the decomposition of Item
(a).

Remark 2.1. We point out that Item (c) holds because the functions g and h appearing in the
decomposition (1) have exactly the same degree. This arises from the crucial fact that the FRI
protocol considers only RS code of dimension a power of 2. This means that the RS code is defined
by polynomials of degree at most an odd bound.

Let us give glimpse of what happens when f is expected to have degree at most an even integer,
say 2d. The degrees of the functions g and h appearing in the decomposition (1) of f are respectively
deg g ≤ d and deg h ≤ d− 1. Therefore, if deg f ≤ 2d, then g + zh corresponds to a polynomial of
degree ≤ d. However, knowing that g+ zh is a polynomial of degree ≤ d with high probability on z
only tells us that both g and h are of degree ≤ d, which is not enough to deduce that f has degree
≤ 2d and not 2d+ 1. It is worth noting that words corresponding to a polynomial of degree 2d+ 1
are among the farthest words from the RS code of degree ≤ 2d. In the univariate case, one can
overcome this obstacle by supposing not only deg g,deg h ≤ d but also deg(νh) ≤ d for a degree-1
polynomial function ν. This implies that deg h < d, hence deg f ≤ 2d.

10

2.2 Our IOPP for AG proximity testing

Let X be a curve defined over a finite field F and C = C(X ,P, D) be an AG code. We aim to
adapt the three ingredients of the FRI protocol to the AG context.

Group actions and Riemann-Roch spaces. The splitting of the polynomial f into an even
and an odd part in Item (a) comes from the action of a multiplicative group of order 2 on the
evaluation set P. This observation is also true with the actual FRI protocol, which sets π to be an
affine subspace polynomial. This phenomenon is likely to occur in a more general framework.

As soon as a group Γ acts on the curve X , its action naturally extends on the functions on X .
Let us denote by π the canonical projection π : X → X/Γ. If we are able to write the Riemann-Roch
space associated to D as following

f =

p−1∑
j=0

µjfj ◦ π with fj ∈ LX/Γ(Ej), (?)

for some function µ on the curve X and some divisors Ej on the quotient curve that are explicitly
expressed in terms of the divisor D, then we can mimic the decomposition (1) used in the FRI
protocol and get a similiar IOPP.

Now assume that no point of P is fixed by Γ, i.e. for every P ∈ P and j ∈ {0, . . . ,m− 1},
γj · P 6= P . Set P ′ = π(P). Polynomial interpolation enables the determination of fj(P) for
any point P ∈ P ′ with exactly p values of f , namely on the set π−1({P}). This means that the
decomposition (?) can be written for any function in FP , not only for elements of LX (D).

Folding operators. From the decomposition (?) above, we want to define a family of folding op-
erators (Fold [·, z])z∈F from FP to FP ′ and a code C ′ = C(X/Γ,P ′, D′) such that Fold [·, z] (C) ⊆ C ′.

In a first approach, one could choose to define the folding operators similarly to the FRI protocol
by setting for z ∈ F, Fold [f, z] =

∑p−1
j=0 z

jfj where the functions fj come from the decomposition

(?) of f ∈ FP . With this definition, the code C ′ has to be associated to a divisor D′ on X/Γ such
that each Riemann-Roch space LX/Γ(Ej) can be embedded into LX/Γ(D′).

The best scenario is when the divisor D yields a decomposition of LX (D) as p “copies” of the
same Riemann-Roch space, as it is the case with Reed-Solomon codes of dimension a power of
2. Unfortunately, to the best of our knowledge, it is unlikely that all divisors Ej involved in the
decomposition (?) of f are the same (or even equivalent) if X is not the projective line. We are
then facing an issue analogous to the one described in Remark 2.1 on P1.

Therefore, such a choice of the folding operators does not guarantee the soundness of our
protocol. We thus aim to adapt the idea at the end of Remark 2.1 to the AG setting. We introduce
some balancing functions νj such that, for every fj ∈ C ′, if the product νjfj also lies in C ′, then
the function fj belongs to the desired Riemann-Roch space LX/Γ(Ej). Defining such a balancing
function νj is tantamount to specify its pole order at the points supporting the divisor D′. The
existence of all the functions νj thus depends on the Weierstrass semigroup of these points (see
[HKT13, Section 6.6] for definition) and does not hold for any divisor D′. If such functions exist
for a divisor D′, we say that D′ is compatible with D. Finding a convenient divisor D′ compatible
with a given divisor D is definitely the trickiest part in defining the folding operators properly.

Once we have a divisor D′ that is D-compatible, we shall embed additional terms in the folding
operators to take account of the balancing functions. We shall use more randomness so as not to

11

double the degree in z to avoid a loss in soundness. For (z1, z2) ∈ F2, we set

Fold [f, (z1, z2)] =

p−1∑
j=0

zj1fj +

p−1∑
j=0

zj+1
2 νjfj .

We prove that Fold [·, (z1, z2)] (C) ⊆ C ′, the function Fold [f, (z1, z2)] ∈ FP ′ can be locally computed
from p values of f , and Fold [·, (z1, z2)] preserves the distance to the code.

Finding a decomposition (?). Such a decomposition exists for a cyclic group Γ = 〈γ〉 whose
order is coprime with the characteristic. A result of Kani [Kan86] states that, in this case, there
exists a function µ on X satisfying (?) such that γ · µ = ζµ where ζ is a primitive root of unity of
order |G|. Moreover, the divisor Ei,j can be explicitly written in terms of the divisor D and the
function µ.

Knowing a basis a LX (D), we may also be able to exhibit such a decomposition without invoking
Kani’s theorem for some cyclic group of order divisible by the characteristic. This is exactly the
strategy we use to design an IOPP for AG codes along the Hermitian tower.

Soundness preservation. The soundness of the protocol depends on the relative minimum
distance of the codes C and C ′. Ideally , we would like the rates of the codes C and C ′ to be
roughly equal to prevent the relative minimum distance from dropping. In other words, we need
LX/Γ(D′) to be not too large with respect to the components LX/Γ(Ej).

A natural idea would be to choose D′ as the divisor Ej with the largest Riemann-Roch space.
However, balancing functions only exists for some well-chosen divisors D′, whose degree can be
significantly larger than the degree of the divisor Ej in (?). Therefore, the divisors D and D′ has
to be carefully chosen to prevent the minimum distance from collapsing.

Sequence of “foldable” AG codes. With the goal of iterating the folding process in mind, we
assume that the base curve X is endowed with a suitable acting group G that we decompose into
smaller groups to fragment its action and create intermediary quotients

X0 X1 X2 · · · Xr,
π0 π1 π2 πr−1

where the morphism πi : Xi → Xi+1 is the quotient map by a cyclic group Γi ' Z/piZ. A condition
on the group G to have such a sequence is the solvability.

A code C = C(X ,P, D) is said to be a foldable AG code (Definition 4.5) if we are able to
construct a sequence of AG codes Ci := C(Xi,Pi, Di) that support a family of randomized folding
operators Fold [·, z] : FPi → FPi+1 with the desirable properties for our IOPP (i.e. Fold [·, z] (Ci) =
(Ci+1), local computability, distance preservation to the code). Moreover, to ensure that the last
code Cr has sufficiently small length and to obtain an IOPP with sublinear query complexity, we
require the size of G to be greater than |P|e for a certain e ∈ (0, 1). Details are provided in Section
4.

3 Preliminaries

We start with some reminders on important terms and notations related to the theory of AG codes.
We refer readers to [TVN07, Sti93] for further details on these notions. We will always use F to
denote a finite field.

12

3.1 Functions and divisors on algebraic curves

Let X be an algebraic curve defined over a field F. Let F be an algebraic closure of the field F. We
denote by X (F) the set of its F-rational points and Aut(X) its automorphism group.

A divisor D on X is a formal sum of points D =
∑
nPP . We say that the divisor D is effective

if nP ≥ 0 for every point P . The support of D Supp(D) is the set of points P for which the
coefficient nP is non zero. We will always consider rational divisors, whose support only consists
in Fq-rational points. We define the degree of D equals degD :=

∑
nP .

The set of divisors on the curve X forms an additive group, denoted by Div(X). It is endowed
with a partial order relation ≤ such that D ≤ D′ if D′−D is effective. An element f of the function
field F := F(X) of the curve X defines a divisor

divF (f) =
∑
P∈X

vP (f)P

where vP (f) is the valuation of the function f at the point P . The index F will be omitted when
the context is clear.

We denote by div0 (f) (respectively div∞ (f)) the positive (respectively negative) part of the
principal divisor div(f), i.e.

divF0 (f) =
∑
P∈X

vP (f)>0

vP (f)P and divF∞(f) =
∑
P∈X

vP (f)<0

vP (f)P

so that divF (f) = div0 (f)− div∞ (f). The divisors div0 (f) and div∞ (f) correspond to the loci of
zeroes and poles respectively.

Let φ : X → X ′ be a map between two algebraic curves. It induces a pull-back map φ∗ : F(X ′)→ F(X)
defined by φ∗f = f ◦ φ for f ∈ F(X ′). For D =

∑
P npP ∈ Div(X), the push-forward of D is the

divisor on X ′ defined by π∗(D) =
∑

P nPφ(P).
The Riemann-Roch space of a divisor D ∈ Div(X) is the F-vector space defined by

LX (D) = {f ∈ F(X) | divF (f) +D ≥ 0} ∪ {0}.

The subscript specifying the curve in LX (D) is omitted when it is clear from the context. If
D′ ≤ D′, then LX (D) ⊆ LX (D′).

As usual, given a real number α, bαc denotes the biggest integer less than or equal to α and
dαe the smallest integer bigger than or equal to α.

Definition 3.1. Let D =
∑
nPP ∈ Div(X). For any positive integer n, we denote by

⌊
1
nD
⌋
∈ Div(X)

the divisor defined by ⌊
1

n
D

⌋
:=
∑⌊nP

n

⌋
P.

3.2 Algebraic geometry codes

Throughout this paper, the term code will refer to a linear code, i.e. a linear subspace of Fn, where
n is the length of the code.

Take D ∈ Div(X) and P ⊂ X (F) of size n := |P| such that Supp(D) ∩ P = ∅. The Algebraic
Geometry (AG) code C = C(X ,P, D) is defined as the image under the evaluation map

ev : L(D)→ Fn.

13

The integer n is called the length of C. The dimension of C is defined as its dimension as F-vector
space. We denote by ∆(C) the relative minimum distance of C, i.e.

∆(C) = min
{

∆(c, c′) | c, c′ ∈ C and c 6= c′
}
.

In particular, AG codes on X = P1 correspond to Reed-Solomon codes. The AG code C is said
to be one-point if the support of D consists in a single point.

By the Riemann-Roch theorem, if degD ≥ 2g − 1 where g is the genus of the curve X , then
dimLX (D) = degD − g + 1. Moreover, if degD < n, the evaluation map is injective and the
Riemann-Roch theorem gives the dimension of the associated AG code. In this case, the minimum
distance is bounded from below by n− degD.

The divisor D will always be chosen so that the map ev is injective. Therefore, the elements of
Fn will be regarded as functions in FP and elements of C simply as functions in the Riemann-Roch
space L(D).

3.3 Group and action

A finite group G is said to be solvable if there exists a sequence of subgroups of G

G = G0 B G1 B · · · B Gr = 1,

such that Gi+1 is a normal subgroup of Gi and each factor group Gi/Gi+1 is a cyclic group. Such a
sequence is called a normal series. If G is solvable, its cardinality equals the product of the sizes of
the factor groups.

Let X be an algebraic curve. A group Γ is said to act on the curve X if Γ is a subgroup of the
automorphism group Aut(X). The stabilizer of a point P ∈ X is the subgroup

ΓP = {γ ∈ Γ | γ · P = P} ⊂ Γ.

A divisor D =
∑

P nPP ∈ Div(X) is said to be Γ-invariant is nP = nγ·P for all P ∈ X and γ ∈ Γ.
The action of Γ on X gives a projection π : X → X/Γ onto the quotient curve X/Γ. A point

Q ∈ X/Γ is called a ramification point if the number of preimages of Q by π is not equal to |Γ|.
Equivalently, Q is a ramification point if one of its preimages has a non trivial stabilizer.

4 Setting of AG codes compatible with proximity test

In this section, we display a workable setting for the construction of an IOPP system (P,V) to test
whether a given function f : P → F is close to the evaluation of a function in a given Riemann-Roch
space. As the idea is to iteratively reduce the problem of testing proximity to C(X ,P, D) to testing
proximity to a smaller AG code, we introduce a sequence of suitable AG codes of decreasing length.

4.1 Sequence of curves

Fix a curve X defined over F and a finite solvable group G ⊆ Aut(X). By solvability of G, there
exists a normal series, i.e. a sequence of subgroups of G

G = G0 B G1 B · · · B Gr = 1, (2)

such that Gi+1 is a normal subgroup of Gi and the factor group Γi := Gi/Gi+1 ' Z/piZ is a cyclic
group of order pi. Moreover the cardinality of G equals |G| =

∏r−1
i=0 pi. We say that r is the length

of the normal series of G.

14

A sequence like (2) may not be unique but if the pi are prime, another sequence of this type would
have the same length and the same set of factor groups (up to permutation) by the Jordan–Hölder
theorem.

The group Γ0 acts on X0 := X , as a quotient of G. We thus define the quotient curve
X1 := X0/Γ0. The group Γ1 is constant on the orbits under Γ0. Repeating the process for ev-
ery i ∈ {0, . . . , r − 1} defines a sequence of curves recursively as follows:

X0 := X and Xi+1 := Xi/Γi.

We set Fi := F(Xi) and we denote by πi : Xi → Xi+1 the canonical projection modulo the action of
Γi.

X0 X1 · · · Xi Xi+1 · · · Xr

Γ0

π0

Γ1

π1 πi

Γi

πi+1

Γi+1

πr−1
(3)

Even if the sequence of curves (3) depends on the composition series (2) of G, the last curve Xr is
always isomorphic to the quotient X/G.

Definition 4.1. A sequence of curves constructed as above will be called a (X ,G)-sequence.

4.2 Sequence of codes

Let (Xi) be a (X ,G)-sequence. For any i ∈ {0, . . . , r − 1}, the factor group Γi which acts on the
curve Xi is cyclic of order pi.

For i ∈ {0, . . . , r}, we aim to define an AG code Ci ⊂ FPi associated to a divisor Di ∈ Div(Xi)
on an evaluation set Pi. The rest of this subsection is dedicated to the choice of the sets Pi and
the divisors Di.

4.2.1 Evaluation points

From a set P0 ⊂ X (F), we want to define a sequence of set of points (Pi) ⊂ Xi(F) recursively by
Pi+1 = πi(Pi).

For our protocol, we need for each i ∈ {0, . . . , r − 1} that every point in Pi+1 admits exactly pi
preimages under πi. Since the last curve Xr is isomorphic to the quotient X/G, it is necessary and
sufficient that the first set P0 ⊂ X0 is a union of G-orbits of size |G|, i.e. that G acts freely on P0.

4.2.2 Divisors

Fix a divisor D0 ∈ Div(X0) that is globally Γ0-invariant. This way, the support of D0 does not
meet the set P0. For the sake of simplicity, we will assume that D0 is in fact supported by Γ0-fixed
points.

To make our protocol complete and sound, we need the sequence of divisors (Di) to have the
following properties:

• the divisor Di is supported by Γi-invariant points;

• for each divisor Di, its associated Riemann-Roch admits a nice decomposition like (4);

• at each step, a divisor Di+1 needs to be compatible with Di and the decomposition of LXi(Di)
in the sense of Definition 4.3.

15

Definition 4.2. Let i ∈ {0, . . . , r − 1}. Fix a divisor Di ∈ Div(Xi) and a function µi ∈ Fi . We
say that µi partitions LXi(Di) (with respect to the action of Γi) if

LXi(Di) =

pi−1⊕
j=0

µjiπ
∗
i LXi+1(Ei,j) (4)

with

Ei,j :=

⌊
1

pi
πi∗(Di + j divFi(µi))

⌋
∈ Div(Xi+1) for j ∈ {0, . . . , pi − 1} , (5)

where the floor function of a divisor is given in Definition 3.1.

Definition 4.3. Let i ∈ {0, . . . , r − 1}. Fix a divisor Di ∈ Div(Xi) and a function µi ∈ Fi such
that µi partitions LXi(Di). A divisor Di+1 ∈ Div(Xi+1) is said to be compatible with (Di, µi) if
both assertions hold.

1. for every j ∈ {0, . . . , pi − 1}, Ei,j ≤ Di+1,

2. for every j ∈ {0, . . . , pi − 1}, there exists a function νi+i,j ∈ F(Xi+1) such that

div∞ (νi+i,j) = Di+1 − Ei,j . (6)

The functions νi+i,j are called balancing functions.

Remark 4.4. A function µi provided by Theorem 4.8 would satisfy (4). However such decomposi-
tion may exist without the hypotheses of Theorem 4.8, for example if the characteristic of F divides
|G|.

The first requirement ensures that the support of Di+1 does not intersect with the set of evalu-
ation points Pi+1. The second one implies that L(Ei,j) ⊆ L(Di+1). The last condition means that
for every fj ∈ L(Ei,j), the function νi+1,jfj lies in L(Di+1).

We have now described all the key components to formally define the notion of foldable codes.

Definition 4.5 (Foldable AG codes). Let C = C(X ,P, D) be an AG-code. This code is said to be
foldable if the following conditions are satisfied.

• There exists a finite solvable group G ∈ Aut(X) that acts freely on P : a composition series
of G (2) provides a (X ,G)-sequence of curves (Xi);

• There exists e ∈ (0, 1) such that |G| > |P|e;

• There exist some sequences (µi) ∈ Fi and (Di) ∈ Div(Xi) such that D0 = D and for every
i ∈ {0, . . . , r − 1}, all the following properties hold:

– the divisors Di are supported by Γi-fixed points,

– the function µi partitions LXi(Di) (Definition 4.2),

– Di+1 is (Di, µi)-compatible (Definition 4.3).

Remark 4.6. The second requirement given in Definition 4.3 is definitely compelling and requires
some geometric knowledge about the curves Xi. Indeed, on a general curve, not every effective
divisor is the poles locus of a function and characterizing which effective divisors arise this way is
at the heart of the Weierstrass gaps theory. Nonetheless, the existence of the balancing functions

16

νi+1,j happens to be the main ingredient in Lemma 7.8, which takes a prominent role in the design
of our IOPP.

To prevent the relative minimum distance of the code Ci+1 from collapsing and thence ensure a
good soundness of the protocol designed in Section 7, one may be tempted to take Di+1 as one of
the divisors Ei,j (5) that appear in the decomposition (4) of LXi(D). However the Weierstrass gaps
theory indicates that balancing functions exist only when choosing a (Di, µi)-compatible divisor
Di+1 whose degree may be unexpectedly substantial (see Example 5.7). Therefore, to broaden the
spectrum of foldable codes, we do not make this additional hypothesis.

4.3 RS codes are foldable AG codes

RS codes are AG codes on the projective line P1. Moreover the Riemann-Roch space LP1(dP∞) on
P1 for P∞ = [0 : 1] is isomorphic to the set of polynomials of degree (less than or equal to) d.

In this case, the decomposition (4) is nothing but the splitting of a polynomial into an even
part and an odd part, which plays a crucial role in the FRI protocol.

To make both points of views coincide, let us consider the involution γ : [X0 : X1] 7→ [−X0 : X1].
It generates a group isomorphic to Z/2Z and the quotient of P1 by this group is obtained as the
image by π : [X0 : X1] 7→ [X2

0 : X2
1].

The divisor D := dP∞ is invariant under γ. Let us choose µ as the function x = X0
X1

. We have
div(x) = P0 − P∞ with P0 = [1 : 0]. Noticing that π∗(P∞) = P∞ and π∗(P0) = P0, we get⌊

1

2
π∗(D + (x))

⌋
=

⌊
1

2
((d− 1)P∞ + P0)

⌋
=

⌊
d− 1

2

⌋
P∞,

and the Riemman-Roch space LP1(dP∞) is split into two parts:

LP1(dP∞) = π∗LP1

(⌊
d

2

⌋
P∞

)
+ xπ∗LP1

(⌊
d− 1

2

⌋
P∞

)
.

We recover the decomposition of a polynomial of degree d into even and odd parts of respective
degrees

⌊
d
2

⌋
and

⌊
d−1

2

⌋
.

Remark 4.7. The function µ is not unique: any odd polynomial of x would make a suitable choice
for µ.

Now, let us remark that the RS code

V :=
{
f ∈ FP ; deg f ≤ d

}
= C(P1,P, dP∞)

is a foldable AG code, for any P ⊂ F of size |P| = 2r for a certain integer r and any degree bound
d. We shall then retrieve the construction of the RS proximity test of [BBHR18a].

Firstly, the finite solvable Z/2rZ of size |P| acts on P1 via [X0 : X1] 7→ [X0, ξX1], where ξ is a
primitive 2r-th root unity. It clearly fulfils the two first items of Definition 4.5. When considering
its composition series

Z/2rZ B Z/2r−1Z B · · · B 1 (7)

and the action of the corresponding factor group Γ = 〈γ〉 ' Z/2Z, we obtain a trivial sequence of
curves (Xi) with Xi = P1. Next, consider the sequence (µi) with µi = µ = x := X1

X0
, then γµ = −µ.

Set d0 := d, and for any i ∈ {0, . . . , r − 1}, di+1 :=
⌊
di
2

⌋
. Note that there exists r′ < r such that

dr′ , . . . , dr are all equal to 0. Setting Di =
⌊
di
2

⌋
P∞, we have Γi-invariant divisors fulfilling the

compatibility condition given in Definition 4.3, by letting νi+1,j to be the constant function equal

to 1 if
⌊
di
2

⌋
=
⌊
di−1

2

⌋
, and νi+1,j : x 7→ x otherwise.

17

4.4 Splitting Riemann-Roch spaces according to a cyclic group of automor-
phisms

The first requirement to make a sequence of codes foldable is the splitting the Riemann-Roch spaces
as in (4), which mimics the decomposition in odd and even parts of univariate polynomials. Under
some additional hypothesis, a decomposition like (4) always exists. Let us detail this framework.

Let X be a smooth irreducible curve over a field F and let Γ be a cyclic group of order m
generated by an element γ. Assume that m and the characteristic of F are coprime and consider
ζ ∈ F a primitive mth root of unity, lying in some algebraic closure F of F.

Set Y := X/Γ and π : X → Y be the canonical projection morphism.
Fix a Γ-invariant divisor D ∈ Div(X). We want to exhibit a relation between the Riemann-Roch

space LX (D) and some Riemann-Roch spaces on Y. The group Γ acts on the vector space LX (D)
via γ · f = f ◦ γ. By the representation theory,

LX (D) =
m−1⊕
j=0

LX (D)j ,

where LX (D)j := {g ∈ LX (D) | γ · g = ζjg}.
One of the key ingredients of this section is a theorem due to Kani [Kan86], which we reformulate

here in the case where Γ is cyclic.

Theorem 4.8 ([Kan86]). Assume that Γ = 〈γ〉 is cyclic of order m, coprime with |F|.

• There exists a function µ ∈ F(X) such that γ · µ = ζµ.

• For any Γ-invariant divisor D ∈ Div(X), when considering the Riemman-Roch spaces over
the algeraic closure F, we have

LX (D)j ⊗ F ' µjπ∗
(
LY

(⌊
1

m
π∗ (D + j div(µ))

⌋)
⊗ F

)
. (8)

Remark 4.9. If the function µ is defined over the base field F then the decomposition (8) is valid
when considering F-vector spaces:

LX (D)j ' µjπ∗
(
LY

(⌊
1

m
π∗ (D + j div(µ))

⌋))
.

In practical instantiations, we are always able to choose µ defined over F, even when ζ does not
belong to F. Such decomposition thus holds even if there is no mth primitive root in our base field
F. However, as the evaluation set P is formed of orbits of size G, such instantiations may require
this primitive root to belong to F, as it is the case for Kummer curves (see Section 5).

To handle the divisors that appears in the decomposition above, we need to get a better grasp
on the zeroes and the poles of the function µ, including the ramification points of π according to
the following lemma.

Lemma 4.10. Assume that Γ = 〈γ〉 is a cyclic group of order m. Let P be a point of X whose
stabilizer ΓP is non trivial. Then P ∈ Supp(µ).

Proof. By hypothesis, there exists j ∈ {1, . . . ,m− 1} such that γj ∈ ΓP . Then

(γj · µ)(P) = ζjµ(P) by definition of µ in Th. 4.8,

= µ(P) because γj ∈ ΓP .

Since ζj 6= 1, the point P is either a pole or a zero of µ.

18

5 Foldable AG codes on Kummer curves

5.1 Preliminaries

Let us consider a Kummer curve over a finite field F defined by an equation of the form

X : yN = f(x) =
m∏
`=1

(x− α`) (9)

where f is a degree-m separable polynomial of F[X] and gcd(N,m) = 1. Let us denote by P` the
point (α`, 0) and P∞ the unique point of X lying on the line at infinity.

Sequence of curves. Assume that gcd(N, |F|) = 1. The group Z/NZ acts on X via the morphism
(x, y) 7→ (x, ζy) where ζ is a primitive N th root of unity. We assume that ζ belongs to F.

The cyclic group Z/NZ is solvable: writing the prime decomposition of N =
∏r−1
i=0 pi gives the

following sequence of subgroups

Z/NZ B Z/N1Z B Z/N2Z B · · · B Z/Nr−1Z B 1, (10)

where

Ni :=
r−1∏
j=i

pj . (11)

The i-th factor group Γi is isomorphic to the cyclic group of prime order Z/piZ. It is spanned by
γi : (x, y) 7→ (x, ζiy) where ζi is a primitive pthi root of unity.

Set X0 := X . By Section 4.1, the composition series (10) gives a sequence of curves (Xi) in
which the ith curve is defined by

Xi : yNi = f(x) (12)

and has genus

gi =
(Ni − 1)(m− 1)

2
.

The last curve Xr has genus 0 and is isomorphic to the projective line P1. These successive quotients
provide a sequence of projections πi : Xi → Xi+1 defined by πi(x, y) = (x, ypi):

X0 . . . Xi Xi+1 . . . Xr ' P1.

γ0

π0 πi

γi

πi+1

γi+1

πr−1

Example 5.1. The Hermitian curve defined over Fq2 by

X0 : yq+1 = xq + x. (13)

is a well-studied particular case of Kummer type curve. In this case, every curve in a (X ,G)-sequence
is maximal over Fq2 [Lac87, Proposition 6], i.e.

∣∣Xi(Fq2)
∣∣ = q2 + 1 + 2giq.

Stabilized points. Let us denote P i∞ the unique point at infinity on the curve Xi. One can easily
check that

P i∞ :=

{
(1 : 0 : 0) if N > m
(0 : 1 : 0) otherwise.

The points of X0 whose stabilizer under Z/NZ is non trivial are in fact fixed by Z/NZ and
consist precisely in P1, . . . , Pm and P i∞.

19

5.2 Decomposition of Riemman-Roch spaces

The theory of Kummer extensions provides us a decomposition like (4) at each level, with µi = y
for every i ∈ {0, . . . , r − 1}.

Theorem 5.2. [Mah04, Theorem 2.2] Let D ∈ Div(Xi) that is Γi-invariant. Then

LXi(Di) =

pi−1⊕
j=0

LXi+1

(⌊
1

pi
(πi)∗(Di + j divFi(y))

⌋)
.

An example of a sequence of y-compatible divisors. In order to exhibit a sequence of
divisors (Di) such that Di+1 is (Di, y)-compatible for every i ≥ 0, we need to handle the divisor
associated to y and some other elementary functions on each curve Xi, described for instance in
[MQS15].

Lemma 5.3 ([MQS15]). On Xi for every i ∈ {0, . . . , r − 1}, we have

1. divFi(x− α`) = Ni(P` − P i∞),

2. divFi(y) = P1 + · · ·+ Pm −mP i∞.

We now give sufficient conditions on the curve X0 and the first divisor D0 to get a sequence of
compatible divisors.

Lemma 5.4. Set D0 =
m∑
`=1

a0,`P` + b0P
0
∞ ∈ Div(X0).

Assume that m ≡ −1 mod N and that the integers a0,1, . . . , a0,m, b0 are all divisible by N . For
every i ∈ {0, . . . , r − 1}, set Di+1 = Di

pi
. Then, the divisor Di+1 is (Di, y)-compatible.

Proof. For i ∈ {1, . . . , r}, let us set ai,` =
ai−1,`

pi−1
and bi = bi−1

pi−1
such that Di =

∑m
`=1 ai,`P` + biP

i
∞.

Fix i ∈ {0, . . . , r − 1}. The divisor Di is supported only by Γi-fixed points.
For any j ∈ {0, . . . , pi − 1}, we have

Ei,j =

⌊
1

pi
πi∗(Di + j divXi(y))

⌋
=

m∑
`=1

⌊
ai,` + j

pi

⌋
P` +

⌊
bi − jm
pi

⌋
P i+1
∞ .

Since Ni divides N , we have m ≡ −1 mod Ni. Write m = κiNi − 1 with κi ≥ 1. The hypothesis
on the integers a0,1, . . . , a0,m, b0 entails⌊

ai,` + j

pi

⌋
= ai+1,` +

⌊
j

pi

⌋
= ai+1,`⌊

bi − jm
pi

⌋
= bi+1 −

jκiNi

pi
+

⌊
j

pi

⌋
= bi+1 − jκiNi+1.

Then Ei,j = Di+1−jκiNi+1P
i+1
∞ . In particular, Di+1 = Ei,0 and Ei,j ≤ Di+1. Any νi+1,j := (x− α)κij

with α ∈ {α1, . . . , αm} gives the last condition on Di+1 for it to be (Di, y)-compatible by Definition
4.3, i.e. Di+1 − Ei,j = div∞ (νi+1,j).

20

5.3 Family of foldable codes

We have gathered all the components to exhibit a foldable code on a family of Kummer curves.

Proposition 5.5. Let X0 be a Kummer curve defined by (9) with m ≡ −1 mod N . Take an
evaluation set P0 ⊆ X0(F)\{P1, . . . , Pm, P

0
∞} formed by Z/NZ-orbits. Take D0 ∈ Div(X0) satisfying

hypothesis of Lemma 5.4. If N > ne for some e ∈ (0, 1), then the AG code C = C(X0,P0, D0) is
foldable.

The length of foldable codes over a Kummer curve as defined in (9) over Fq is bounded from
above by q + 1 + (N − 1)(κN − 2)

√
q − κN , using Hasse-Weil bound, write m = κN − 1.

Remark 5.6. 1. The primitive N th root ζ needs to belong to the base field F to ensure that
the set P0 is not empty.

2. The condition on the coefficients of D0 can be loosen while the previous statement still
holds. If a0,1, . . . , a0,m, b0 are divisible by

∏r−2
i=0 pi and not necessarily by pr−1, we choose

ar,` =
⌈
ar−1,`

pr−1

⌉
and br =

⌊
br−1

pr−1

⌋
for the coefficients of Dr. The last curve Xr being isomorphic

to P1, the existence of balacing functions is trivial, if the first requirement of Definition 4.3
holds.

What happens outside these hypotheses? Lemma 5.4 provides sufficient conditions to make
Ci+1 as small as possible compared to Ci by choosing Di+1 among the divisors Ei,j , as required
for a sequence of foldable codes by Definition 4.5. Let us have a look at what could happen when
dropping these conditions.

Example 5.7. Over F8, consider yN = xm + x where N = 9 and m = 5. Then m 6≡ −1 mod N
and N = p0p1 with p0 = p1 = 3. For D0 = 18P 0

∞, we have

E0,0 =

⌊
18

3

⌋
P 1
∞ = 6P 1

∞, E0,1 =

⌊
18− 5

3

⌋
P 1
∞ = 4P 1

∞, E0,2 =

⌊
18− 2× 5

3

⌋
P 1
∞ = 2P 1

∞.

Choosing D1 = E0,0 would satisfy the first and the second conditions of Definition 4.3 to be
(D0, y)-compatible but not the third one. One can reasonably ask the support of D1 to consist only
in π0(P 0

∞) = P 1
∞, as one-point codes are generally better understood. The Weierstrass gap theory

on Kummer curves (e.g. [MQS15, Theorem 3.2]) entails that if a function on X1 : y3 = x5 + x has
a pole locus of the form αP 1

∞, then α ∈ 3Z+ + 5Z+. Therefore the smallest divisor of the form
D1 = d1P

1
∞ that is (D0, y)-compatible is D1 = 12P 1

∞. With such a choice of divisors, the code C0

of dimension 15 is folded into the code C1 of dimension 12 whereas the length of C1 is the third of
the length of C0.

5.3.1 Explicit basis of the Riemman-Roch spaces

AG codes from the Kummer curve X associated to divisors as defined in Lemma 5.4 have been stud-
ied by Hu and Yang [HY18]. They provide a basis of the Riemman-Roch spaces in a combinatorial
form.

Theorem 5.8. [HY18, Theorem 5] Let j, j2, . . . , jm be integers. We define

Ej, j2,...,jm := yj
m∏
`=2

(x− α`)j` .

21

Consider D =
∑m

`=1 a`P` + bP∞. Set

Ωa1,...,am,b :=

{
(j, j2, . . . , jm) | j + a1 ≥ 0, j` =

⌈
−j − a`
N

⌉
for ` = 2, . . . ,m

and mj +N(j2 + · · ·+ jm) ≤ b
}
.

Then the elements Ej, j2,...,jm for (j, j2, . . . , jm) ∈ Ωa1,...,am,b form a basis of LX (D).

5.3.2 Parameters

To estimate the parameters of the code by using the Riemnann-Roch theorem, we shall rely on the
following result.

Lemma 5.9. Assume that 2(g0−1) < deg(D0) (resp. deg(D0) < n0). Then for every i ∈ {0, . . . , r},
2(gi − 1) < deg(Di) (resp. deg(Di) < ni).

Proof. It is enough to notice that for every i ∈ {0, . . . , r − 1},

degDi+1 =
degDi

pi
, ni+1 =

ni
pi
, and gi+1 ≤

gi
pi
.

In other words, if the degree of the first divisor is such that we can estimate the parameters of
C0 thanks to Riemann-Roch Theorem, then we handle the parameters of all the sequence of codes.

Proposition 5.10. If deg(D0) < n0, then for every i ∈ {0, . . . , r}, the code Ci has length ni
and minimum relative distance ∆(Ci) = 1 − degD0

n0
. In particular, the RS code Cr has length n0

N ,

dimension degD0

N + 1 and relative minimum distance 1− degD0

n0
.

Moreover, if 2(g0 − 1) < deg(D0), for every i ∈ {0, . . . , r}, the code Ci has dimension degDi −
gi + 1.

Proof. The length of Ci is ni by construction and its dimension is given by the Riemann-Roch
theorem. So let us prove the statement concerning the relative minimum distance.

First notice that ni = pini+1 and deg(Di) = pi deg(Di+1) so 1− degDi

ni
= 1− degD0

n0
.

For i = r, the code Cr is a Reed-Solomon code of degree 0 ≤ deg(Dr) < nr by Lemma 5.9 and
has the expected relative minimum distance.

Now assume that ∆(Ci+1) equals 1− degD0

n0
and let us prove that so does ∆(Ci).

On the one hand, the divisor Di+1 corresponds to Ei,0 then for every f ∈ Ci+1, f ◦ πi ∈ Ci.
In addition, the weight of f ◦ πi in Ci is pi times the weight of f in Ci+1. Since ni = pini+1, we
have ∆(Ci) ≤ ∆(Ci+1). On the other hand, as deg(Ci) < ni, we have ∆(Ci) ≥ 1 − degDi

ni
, which

concludes the proof.

6 Foldable AG codes along the Hermitian tower

6.1 Preliminaries

Sequence of curves. We consider the sequence of function fields F = (Fi)i≥0 over Fq2 that is
defined recursively by F0 = Fq2(x0) and Fi = Fi−1(xi) with equations

xqi + xi = xq+1
i−1 for i ≥ 1. (14)

22

Note that this tower of function field F corresponds to a tower of curves (Xi)i≥0 such that Fi =
Fq2(Xi). One can view the curve Xi embedded in an i-dimensional affine space with variables
(x1, . . . , xi) defined by the equations (14).

For i = 1, the field F1 is the function field of the Hermitian curve H := X1 over Fq2 .
Let gi := g(Xi) denote the genus of the curve Xi. An explicit formula was given by Pellikaan,

Shen and Wee [PzSJ91, Proposition 4]. We have g0 = 0 and for i ≥ 1,

gi =
1

2

[
(q2 − 1)

(
(q + 1)i − qi

)
+ 1− qi

]
=

1

2
·

(
i∑

k=1

qi+1 ·
(

1 +
1

q

)k−1

+ 1− (1 + q)i

)
. (15)

For every i ≥ 0, the number of Fq2–rational places in Fi is given by∣∣Xi(Fq2)
∣∣ = qi+2 + 1.

We have an infinite sequence of curves (Xi)i≥0 as follows.

. . . Xi Xi−1 . . . X0 ' P1.
πi+1

γi

πi

γi−1

πi−1 π1

Remark 6.1. In the context of recursive towers, it is classical to index the curves the other way
round compared to the notations used in Section 4.

This tower is a tower of Artin-Schreier extensions, which have been extensively studied (see for
example [Sti08]). Let us recall some classical results that will be useful to design foldable AG codes
along this tower.

Automorphisms and projection maps. Take α ∈ Fq2 such that αq + α = 0. For every i ≥ 0,
the automorphism γi that fixes x1, . . . , xi−1 and sends xi to xi +α has order q. Then 〈γi〉 = Z/qZ.
The quotient map πi : Xi → Xi−1 consists in the projection onto the first i coordinates.

For every i ≥ 0, we set Πi to be the composition of the first i quotient maps, i.e.

Πi := πi ◦ πi−1 ◦ · · · ◦ π0.

Behaviour of the point of infinity. In what follows, let us denote by P
(0)
∞ the unique pole of

the function x0 in F0, which corresponds to the point at infinity on the projective line X0 = P1.

Lemma 6.2. [Sti08, Proposition 3.7.8] Let i ≥ 1. The place P
(0)
∞ is totally ramified in Fi, which

means that the preimage Π−1
i

({
P

(0)
∞
})

consists in a unique place, denoted by P
(i)
∞ ∈ Xi. Moreover,

P
(0)
∞ is the unique place that is ramified in the tower F .

The peculiar behaviour of the points P
(i)
∞ in the tower encourages us to define a sequence of

codes associated with divisors Di ∈ Div(Xi) of the form

Di := diP
(i)
∞ for i ≥ 1.

Let us focus on the principal divisors divFi(xj) (0 ≤ j ≤ i) and their valuation at the point

P
(i)
∞ .

Their properties follow from the study of the basic function field F = Fq2(x, y) which is nothing
but the Hermitian function field. It is a special case of Artin-Schreier extension of Fq2(x) and is
well-known that we have

divF (y) = P (0) − P 0
∞.

23

Remark 6.3. The role of the variables x and y is reversed compared to the Kummer model of the
Hermitian curve, studied in the previous section.

Since each extension Fi/Fi−1 corresponds to the same Artin-Schreier extension, and that P
(0)
∞

is fully ramified in Fi/F0, we can deduce the form of the divisor divFi(xi), given in the next lemma.

The valuation of the function xj ∈ Fi−1 at P
(j)
∞ follows from the extension degrees [Fi−1 : Fj] =

qi−1−j .

Lemma 6.4. The following two assertions hold.

1. For i ≥ 1, we have

divFi(xi) = (q + 1)i
(
P (i) − P (i)

∞

)
,

where P (i) is the unique common zero of the functions x0, ..., xi;

2. Let i ≥ 1. Then for 0 ≤ j ≤ i− 1, the valuation of the function xj ∈ Fi−1 is given by

v
P

(i−1)
∞

(xj) = −qi−1−j(q + 1)j .

Basis of the Riemann-Roch spaces associated to the divisor diP
(i)
∞ . For a given i ≥ 0,

P
(i)
∞ is the unique pole of the functions x0, ..., xi, which gives an explicit basis of the Riemman-Roch

space associated to a multiple of P
(i)
∞ .

Lemma 6.5. For all i ≤ 1 and m ≤ 1, the Riemann-Roch LFi(mP
(i)
∞) is formed by linear combi-

nations of functions in the following set:xa00 · · ·x
ai
i | 0 ≤ a0 , 0 ≤ aj ≤ q − 1 and

i∑
j=0

ajq
i−j(q + 1)j ≤ m

 .

6.2 Construction of foldable AG codes

Let us fix i ≥ 0. We aim to define a sequence of AG codes on the tower of curves (Xi)i≥0 defined
by

C(Xi,Pi, Di) where Pi ⊆ Xi(Fq2) \ {P (i)
∞ } and Di = diP

(i)
∞ .

In order to obtain a sequence of foldable codes, we need to describe the Riemann-Roch spaces
on a certain step from Riemann-Roch spaces on lower curves. A priori Kani’s theorem does not
apply, so we will have to find a decomposition by hand. We deduce such a decomposition from the
explicit basis of the Riemman-Roch space given in Lemma 6.5.

Proposition 6.6. Let i ≥ 0. Set Di = diP
(i)
∞ for some integer di. Then

LXi(Di) =

q−1⊕
j=0

xjiπ
∗
i

(
LFi−1(Ei,j)

)
with

Ei,j :=

⌊
1

q
πi∗
(
Di − j · divFi(xi)

)⌋
for 0 ≤ j ≤ q − 1.

In other words, the function xi ∈ Fi partitions the divisor Di in the sense of Definition 4.2.

24

Proof. By Lemma 6.5, LFi(Di) is formed by linear combinations of xa00 · · ·x
ai
i with non negative

exponents such that 0 ≤ aj ≤ q−1 for j 6= 1 and
i∑

j=0
ajq

i−j(q+1)j ≤ m. As aj runs in {0, . . . , q−1},

the proof is concluded by noticing that the function xa00 · · ·x
ai−1

i−1 ∈ Fi lies in L(Di − j · divFi(xi))
which means that xa00 · · ·x

ai−1

i−1 ∈ Fi−1 belongs to L(Ei,j).

To make Di−1 compatible with (Di, xi) (Definition 4.3), we need the existence of q balancing
functions νi−1,j ∈ Fi−1 (for every 0 ≤ j ≤ q − 1) such that

Di−1 − Ei,j = (νi−1,j)∞. (16)

In our setup, we have

Ei,j =

⌊
di − j(q + 1)i

q

⌋
P (i−1)
∞ .

Thus, we need to “balance” the divisors

Di−1 − Ei,j =

(
di−1 −

⌊
di − j(q + 1)i

q

⌋)
P (i−1)
∞ .

We are led to study the Weierstrass semigroup of P
(i−1)
∞ , denoted byH

(
P

(i−1)
∞

)
. The generators

of this semigroup can be found using Lemma 6.4. In fact, P
(i−1)
∞ is the unique commun pole of the

functions x0, ..., xi−1 ∈ Fi−1 and we know their exact valuation. Thus we have

H
(
P (i−1)
∞

)
=
〈
qi−1−k(q + 1)k , 0 ≤ k ≤ i− 1

〉
N
.

Remark 6.7. In the spirit of the FRI protocol, one could be tempted to choose Di−1 as Ei,0. Such
a choice would be valid in the sense of Definition 4.3 if and only for every 0 ≤ j ≤ q − 1⌊

di
q

⌋
−
⌊
di − j(q + 1)i

q

⌋
∈ H

(
P (i−1)
∞

)
.

Unfortunately, when i increases, this condition is never satisfied.

To ensure that deg(Di−1 − Ei,j) is never a Weierstrass gap for P
(i−1)
∞ , we increase the degree

di−1 of Di−1.

Theorem 6.8. Let i ≥ 1. Set Di = diP
(i)
∞ for some integer di and Di−1 = di−1P

(i−1)
∞ where

di−1 :=

⌊
di
q

⌋
+ 2gi−1. (17)

Then Di−1 is compatible with (Di, xi) (Definition 4.3).

Proof. By [Sti08, Theorem 1.6.8], we know that

max
(
N \ H

(
P (i−1)
∞

))
≤ 2gi−1 − 1.

Then for every 0 ≤ j ≤ q − 1, the difference

mi,j := deg(Di−1 − Ei,j) =

(⌊
di
q

⌋
−
⌊
di − j(q + 1)i

q

⌋
+ 2gi−1

)
(18)

always belongs to the Weierstrass semigroup H
(
P

(i−1)
∞

)
.

25

About the balancing functions. Since we know a N-basis of the Weierstrass semigroup at

P
(i−1)
∞ , we are able to explicit the form of the functions νi−1,j . In particular, they can be chosen as

product of powers of the functions x0, ..., xi−1. More precisely, if ai,j := (ai,j(0), ..., ai,j(i− 1)) ∈ Ni
are integers such that

mi,j =
i−1∑
k=0

ai,j(k) · qi−1−k(q + 1)k, (19)

then mi,j ∈ H
(
P

(i−1)
∞

)
. The corresponding choice for the balancing function is then given by

νi−1,j =

i−1∏
k=0

x
ai,j(k)
k .

Note that finding a vector ai,j ∈ Ni satisfying (19) leads to the study of the diophantine equation

mi,j =

i−1∑
k=0

ak · qi−1−k(q + 1)k

with i unknowns ak ∈ N, for which we know there exists at least a solution (and we only need one).

6.2.1 A family of foldable codes

We denote by imax the level in the tower (Xi)i≥0, such that Ximax is the curve on which the code
we want to test proximity is defined.

Proposition 6.9. Fix an integer imax. Set P0 ⊆ P1(Fq2) \ {P 0
∞} and define Pimax as the preimage

of P0 under the morphism Πimax. Fix an integer dimax. Then the code C(Ximax ,Pimax , dimaxP
(i)
∞) is

foldable.

Proof. The group G ' Z/qimaxZ acts on Ximax and its action on Pimax is free, by definition of Pimax .
The cardinality of Pimax is equal to |P0| qimax , hence |G| > |Pimax |

e for some e ∈ (0, 1).
The third condition of Definition 4.5 follows from Theorem 6.8.

To control the dimension of foldable codes, we will focus on those of the form

C := C
(
Ximax ,Ximax(Fq2) \ {P (imax)

∞ , (2α+ 1)gimax)P (imax)
∞

)
(20)

for some α > 1/2. In this case, we have nimax = qimax+2. We can determine a sufficient condition
over imax and α to get constant rate.

Lemma 6.10. Let R ∈ (0, 1). Fix ε ∈ (0, 1). Set imax := qε and α := Rq1−ε.
The ratio of the dimension of the code C defined in (20) by its block length goes to R when q

tends to infinity.

If 2(qε − 1) < q, the relative minimum distance of C is bounded from below by 1−R
(

1 + 1
q

)
.

Proof. If α > 1
2 , the dimension of the code is equal to (2α+ 1)gimax − gimax + 1 = 2Rq1−εgimax + 1

by the Riemann-Roch Theorem. As R is fixed and q goes to infinity, we can assume that α > 1/2
to compute the rate as

lim
q→∞

2Rq1−εgimax

qimax+2

26

for imax = qε. Lemma B.2 in Appendix B clearly implies that this limit is equal to R.
Regarding the relative minimum distance, we use the Goppa bound: if (2α+ 1)gimax < qimax+2,

then the relative minimum distance of C satisfies ∆(C) ≥ 1 − (2α+1)gimax

qimax+2 . By Proposition B.1 in
Appendix B, we have

gimax

qimax+2
≤ imax

2q

(
1 +

imax

q

)
,

which gives the expected lowerbound for our choice of α and imax.

7 Folding operators for AG codes

Now that we have determined the needed properties of an AG-code to be foldable, we construct
the fundamental building block of our IOPP by generalizing the so-called algebraic hash function
of [BKS18] to the AG codes setting, and we refer to it as the folding operator. Next, we provide
a formal description of the IOPP system (P,V) and state the theorem capturing its efficiency
properties.

7.1 Definition of folding operators

Let C0 = C(X0,P0, D0) be a code satisfying Definition 4.5. We consider its associated (X ,G)-
sequence of curves (Xi) and its sequence of divisors (Di).

To test proximity of a function f (0) : P0 → F to C0, we aim to inductively reduce the problem
to a smaller one, consisting of testing proximity to the code Ci = C(Xi,Pi, Di). Broadly speaking,
our goal is to define from any function f (i) : Pi → F a function f (i+1) : Pi+1 → F such that the
relative distance ∆(f (i+1), Ci+1) is roughly equal to ∆(f (i), Ci).

Fix i ∈ {0, . . . , r − 1} and let f : Pi → F be an arbitrary function.

Notation 7.1 (Interpolation polynomial). For each P ∈ Pi+1, let us denote SP := π−1
i ({P}) the

set of pi distinct preimages of P and consider

If,P (X) :=

pi−1∑
j=0

Xjaj,P (21)

the univariate polynomial over F of degree less than pi which interpolates the set of points{
(µi(P̂), f(P̂)); P̂ ∈ SP

}
. Then for every j ∈ {0, . . . , pi − 1}, we define the function

fj :

{
Pi+1 → F,
P 7→ aj,P .

(22)

Given f : Pi → F, the idea is to define pi functions fj : Pi+1 → F, where |Pi+1| = |Pi|
pi

such
that f corresponds to the evaluation of a function in L(Di) if and only if each fj coincides with a
function in L(Ei,j) ⊂ L(Di+1). Instead of testing for each j ∈ {0, . . . , pi − 1} whether fj ∈ Ci+1,
we reduce those pi claims to a single one, by taking a random linear combination of the fj ’s, which
we referred to as a folding of f . By linearity of the codes, such a combination of the fj ’s belongs
to Ci+1 whenever f ∈ Ci (see Proposition 7.4 below). However, for soundness analysis, one needs
to ensure that no fj corresponds to a function lying in L(Di+1) \ L(Ei,j). Some safeguards are
embedded into the folding operation by introducing the balancing functions νi+1,j from Definition
4.3 in the second term of the sum in (23).

27

Definition 7.2 (Folding operator). For any z = (z1, z2) ∈ F2, we define the folding of f to be the
function Fold [f, z] : Pi+1 → F such that

Fold [f, z] :=

pi−1∑
j=0

zj1fj +

pi−1∑
j=0

zj+1
2 νi+1,jfj (23)

where the functions fj are defined in Equation (22) and the functions νi+j,j in Definition 4.3.

7.2 Properties of folding operators

Our aim is to prove that the folding operators satisfy three key properties: local computability,
completeness, and distance preservation. This will enable us to invoke [ABN21, Theorem 1] for the
completeness and soundness of our AG-IOPP.

Given the pi points ((µi(P̂), f(P̂)))
P̂∈SP

, one can determine the coefficients (aj,P)0≤j<p of If,P
defined in (21) by polynomial interpolation. Recalling that for each P ∈ Pi+1, we have fj(P) = aj,P ,
we get the following lemma. This lemma will allow to obtain fast prover time and verifier decision
complexity.

Lemma 7.3 (Locality). Let z ∈ F2. For each P ∈ Pi+1, the value of Fold [f, z] (P) can be computed
with exactly pi queries to f , namely at the points π−1

i ({P}).

Proposition 7.4 (Completeness). Let z ∈ F2. If f ∈ Ci, then Fold [f, z] ∈ Ci+1.

Proof. Write z = (z1, z2). If f ∈ Ci, it coincides with a function of L(Di). By definition of the
divisors Ei,j and Theorem 4.8, there exist some functions f̃j ∈ L(Ei,j) such that

f =

pi−1∑
j=0

µji f̃j ◦ πi.

Let P ∈ Pi+1. For any P̂ ∈ SP ,

Fold
[
f, (µi(P̂), 0)

]
(P) = If,P (µi(P̂)) = f(P̂) =

pi−1∑
j=0

µi(P̂)j f̃j(P).

Moreover, for all P ∈ Pi+1, polynomials If,P (X),Fold [f, (X, 0)] (P) ∈ F[X] are of degree less

than pi and agree on
{
µi(P̂); P̂ ∈ SP

}
of size pi, therefore they are equal. In particular,

Fold
[
f, (µi(P̂), 0)

]
(P) =

pi−1∑
j=0

µi(P̂)jfj(P).

Thus, for all P ∈ Pi+1,
pi−1∑
j=0

µi(P̂)j(f̃j(P)− fj(P)) = 0

and the polynomial
pi−1∑
j=0

Xj(f̃j(P)− fj(P))

28

of degree less than pi is zero on at least
∣∣∣{µi(P̂);P ∈ Pi+1

}∣∣∣ = pi points. Hence, for every

j ∈ {0, . . . , pi − 1}, the function fj defined in Equation (22) coincides with f̃j and

Fold [f, z] :=

pi−1∑
j=0

zj1f̃j +

pi−1∑
j=0

zj+1
2 νi+1,j f̃j

where f̃j ∈ L(Ei,j) ⊆ L(Di+1) and νi+1,jfj ∈ L(Di+1), by definition of the divisors Ei,j , Di+1 and
the functions νi+1,j (see Definition 4.3). Thus each term of Fold [f, z] lies in the vector space Ci+1,
which concludes the proof.

We discuss the effect of the folding operation on a function which is far from the code. Roughly
speaking, we want to show that, if f is δ-far from Ci, then the folding Fold [f, z] of f is almost δ-far
from Ci+1 with high probability over z ∈ F2. We start with the notion of weighted agreement.

Definition 7.5 (Weighted agreement). For any function η ∈ [0, 1]P , we define the η-agreement of
two functions u, v ∈ FP by

ωη(u, v) :=
1

|P|
∑
P∈P

u(P)=v(P)

η(P).

Given a subspace V ⊂ FP and u ∈ FP , we set

ωη(u, V) := max
v∈V

ωη(u, v).

Notice that since η ∈ [0, 1]P , we have for any V ⊂ FP and any u ∈ FP ,

ωη(u, V) ≤ 1−∆(u, V). (24)

We now state a preliminary result concerning the weighted agreement on a low-degree parametrized
curve. Proof builds upon the one of [BKS18, Theorem 4.5] and is given in Appendix A.

Proposition 7.6. Let η ∈ [0, 1]P and ε, δ > 0 such that and δ < J lε(λ). Let u0, . . . , ul−1 ∈ FP such
that

Pr
z∈F

[
ωη

(
l−1∑
i=0

ziui, V

)
> 1− δ

]
≥ l − 1

|F|

(
2

ε

)l+1

, (25)

then there exists T ⊂ P , and v0, . . . , vl−1 ∈ V such that:

•
∑

P∈T η(P) ≥ (1− δ − ε)|P|

• for each i, ui T = vi T .

Here, for a function u ∈ FP , u T ∈ FT corresponds to the function obtained by restriction on
T ⊂ P.

As mentioned earlier, soundness analysis relies on the relation between the weighted agreement
of f to Ci and the weighted agreement of the folding of f to Ci+1, constrained by the next corollary.

Corollary 7.7. Fix i ∈ {0, . . . , r − 1}. For a function η : Pi → [0, 1], define θ : Pi+1 → [0, 1] by

∀P ∈ Pi+1, θ(P) :=
1

pi

∑
P̂∈SP

η(P̂).

29

Let λi be the minimal relative distance of Ci. Fix ε ∈ (0, 1[and δ < min
(
Jpiε (λi),

1
2

(
λi + ε

2

))
. For

any function f : Pi → F such that ωη(f, Ci) < 1− δ, we have

Pr
z∈F2

[ωθ(Fold [f, z] , Ci+1) > 1− δ + ε] ≤ 1

|F|

(
pi +

4

ε
− 1

)(
4

ε

)pi
.

Proving Corollary 7.7 requires the lemma stated next. We prove Corollary 7.7, then prove
Lemma 7.8.

Lemma 7.8. Let i ∈ {0, . . . , r − 1}, Di ∈ Div(Xi) and µi ∈ F(Xi) satisfying Definition (4.2).
Consider a divisor Di+1 ∈ Div(Xi+1) that is (Di, µi)-compatible in the sense of Definition 4.3.

Fix j ∈ {0, . . . , pi − 1}. Then a function g ∈ F(Xi+1) belongs to L(Ei,j) if and only if both
functions g and gνi+1,j belong to L(Di+1).

Proof of Corollary 7.7. Let f : Pi → F be an arbitrary function. According to Equation (22), there
exist pi function fj : Pi+1 → F such that for any z = (z1, z2) ∈ F2,

Fold [f, z] =

pi−1∑
j=0

zj1fj +

pi−1∑
j=0

zj+1
2 νi+1,jfj .

Rewrite Fold [f, z] as a polynomial function in z2, i.e. Fold [f, z] = fz1 +z2f
′
0 +z2

2f
′
1 + · · ·+zpi2 f

′
pi−1

where we set fz1 :=
∑pi−1

j=0 zj1fj and f ′j := νi+1,jfj . Finally, set

K0 :=
pi − 1

|F|

(
4

ε

)pi
and K1 :=

pi
|F|

(
4

ε

)pi+1

.

Let us prove the corollary by contrapositive: assume that

Pr
z∈F2

[ωθ(Fold [f, z] , Ci+1) > 1− δ + ε] > K0 +K1

or in other words that Pr
z1∈F

[
Pr
z2∈F

[ωθ(Fold [f, z] , Ci+1) > 1− δ + ε] > K0

]
> K1.

Fix z1 ∈ F such that Prz2∈F [ωθ(Fold [f, z] , Ci+1) > 1− δ + ε] > K0. By Proposition 7.6, there
exist vz1 , v

′
1, . . . , v

′
pi−1 ∈ Ci+1 and T ′ ⊂ P such that

–
∑

P∈T ′ θ(P) ≥ (1− δ + ε
2) |Pi+1|,

– vz1 T ′ = fz1 T ′ ,

– for each j ∈ {1, . . . , pi − 1}, v′j T ′ = f ′j T ′ .

In particular, ωθ(fz1 , Ci+1) ≥ ωθ(fz1 , vz1) =
1

|Pi+1|
∑
P∈T ′

θ(P) ≥ 1− δ +
ε

2
.

It means that

Pr
z1∈F

[
ωθ(fz1 , Ci+1) ≥ 1− δ +

ε

2

]
≥ Pr

z1∈F

[
Pr
z2∈F

[ωθ(Fold [f, z] , Ci+1) > 1− δ + ε] > K0

]
> K1.

The polynomial form of fz1 in z1 enables us to reapply Proposition 7.6: there exist v0, v1, . . . , vpi−1 ∈ Ci+1

and T ⊂ P such that

–
∑

P∈T θ(P) ≥ (1− δ) |Pi+1|,

30

– for each j ∈ {0, . . . , pi − 1}, vj T = fj T .

On T ′ ∩T , we thus have v′j T ′∩T = f ′j T ′∩T = (νi+1,jfj) T ′∩T = (νi+1,jvj) T ′∩T . The cardinality of
T ′ ∩ T satisfies

|T ′ ∩ T | = |T ′|+ |T | − |T ′ ∪ T | ≥
∑
P∈T ′

θ(P) +
∑
P∈T

θ(P)− |Pi+1| ≥ (1− 2δ +
ε

2
)|Pi+1|.

The assumption on δ ensures that 2δ − ε
2 < λi+1 where λi+1 is the minimal distance of Ci+1.

Hence, for every j ∈ {0, . . . , pi − 1}, the evaluations of v′j and νi+1,jvj on Pi+1 are equals. They
are codewords of Ci+1, thus this implies that both functions vj and νi+1,jvj belong to L(Di+1). By
Lemma 7.8, we get that the function vj lies in L(Ei,j).

Now let us define v : Pi → F by

∀Q ∈ Pi, v(Q) :=

pi−1∑
j=0

µji (Q)vj ◦ πi(Q).

By definition of the divisors Ei,j (5), the function v belong to L(Di). Now let us prove that it
agrees with f on ST :=

⊔
P∈T SP .

Let P ∈ T and P̂ ∈ SP .

f(P̂) = If,P (µi(P̂)) =

pi−1∑
j=0

µi(P̂)jfj(P) by definition of If,P ,

=

pi−1∑
j=0

µi(P̂)jvj ◦ πi(P̂) since fj T = vj T and P = πi(P̂),

= v(P̂).

As a result, since v ∈ Ci, we can conclude that

ωη(f, Ci) ≥ ωη(f, v) ≥ 1

|Pi|
∑
P∈T

∑
P̂∈SP

η(P̂) =
1

|Pi+1|
∑
P∈T

θ(P) ≥ 1− δ.

Proof of Lemma 7.8. Assume that g ∈ L(Ei,j). Then the second and third items of Definition 4.3
ensure that g and gνi+1,j lie in L(Di+1).

Conversely, assume that g and gνi+1,j belong to L(Di+1) and write Di+1 =
∑
nPP . The

hypotheses on g imply that g ∈ L(Di+1)∩L(Di+1− (νi+1,j)). By [MP93, Lemma 2.6], the function
g belongs to L(D′i+1), where the divisor D′i+1 is defined by

D′i+1 :=
∑
P

n′PP where n′P := min(nP , nP + vP (νi+1,j)).

Then D′i+1 = Di+1 − div∞ (νi+1,j) = Ei,j by the third item of Definition 4.3.

31

7.3 IOPP for foldable AG codes

Let C0 = C(X0,P0, D0) be a foldable AG code over an alphabet F. Given a family of folding
operators defined as per Definition 7.2, [ABN21] yields an IOPP for C0, which is abstracted from the
FRI protocol of [BBHR18a]. We informally describe the IOPP system (P,V) for testing proximity
of a function f (0) : P0 → F to C0, then give its properties. A formal description will be provided
in Section 8 for instantiations with concrete AG codes.

As in the FRI protocol, the IOPP is divided in two phases, referred to as COMMIT and QUERY.
Before any interaction, P and V agree on:

– a (X ,G)-sequence of curves (Xi), for which we denote the length of the composition serie of
G by r.

– a sequence of codes (Ci) where for each i ∈ {0, . . . , r}, Ci = (Xi,Pi, Di) and Xi,Pi and Di

are defined as per Section 4,
– a sequence of functions (µi) ∈ F(Xi) satisfying Definition 4.2,
– a sequence of balancing functions (νi+1)0≤i<r of pi-tuples of functions in F(Xi+1) such that
νi+1 = (νi+1,j)0<j<pi and νi+1,j satisfies (6).

We recall that the choice of a sequence (Xi) induces a sequence of projections πi : Xi → Xi+1.

• The COMMIT phase is an interaction over r rounds between P and V. For each round
i ∈ {0, . . . , r − 1}, the verifier samples a random challenge z(i) ∈ F2. As an answer, the
prover gives oracle access to function f (i+1) : Pi+1 → F, which is expected to be equal to
Fold

[
f (i), z(i)

]
. To compute the values of f (i+1) on Pi+1, an honest prover P exploits the

fact that the folding of f (i) is locally computable (Lemma 7.3). Namely, for each P ∈ Pi+1,
P computes the coefficients (aj,P)0≤j<p of If (i),P ∈ F[X] from f (i)

SP
, evaluates νi+1,j at P ,

and set

Fold
[
f (i), z(i)

]
(P) :=

pi−1∑
j=0

(
z

(i)
1

)j
aj,P +

pi−1∑
j=0

(
z

(i)
2

)j+1
νi+1,j(P)aj,P .

• During the QUERY phase, one of the two tasks of the verifier V is to check that each pair
of successive oracle functions (f (i), f (i+1)) is consistent. A standard idea is to check that the
equality

f (i+1) = Fold
[
f (i), z(i)

]
(26)

holds at a random point in Pi+1. By leveraging the local property of the folding operator, such
a test requires only pi queries to f (i) and 1 query to f (i+1). As in [BBHR18a], we call this step
of verification a round consistency test. The verifier begins by sampling at random Q0 ∈ P0

and once this is done, all the locations of the round consistency tests run inside the current
query test are determined. More specifically, for each round i, V defines Qi+1 := πi(Qi)
to be the random point where Equation (26) is checked. Through this process, the round
consistency tests are correlated to improve soundness. Such a query test can be seen as a
global consistency test, similar to the one of the FRI protocol. For the final test, V reads
f (r) : Pr → F in its entirety to test if f (r) ∈ Cr.

For any ε ∈ (0, 1], let Jε : [0, 1] → [0, 1] be the function such that Jε(λ) = 1 −
√

1− (1− ε)λ
and denote J lε = Jε ◦ · · · ◦ Jε︸ ︷︷ ︸

l times

.

32

Theorem 7.9. Let C0 = C(X0,P0, D0) be a foldable AG code of length n := |P0|. By defini-
tion, C0 admits a solvable group G ∈ Aut(X0) such that |G| > ne for a certain e ∈ (0, 1) and
induces a sequence of codes (Ci). Denote pmax the largest integer of the prime decomposition of
|G|, λ := mini ∆(Ci) and γ := min

(
Jpmax
ε (λ), 1

2(λ+ ε
2)
)
. There is an IOPP system (P,V) for C0

satisfying:

Perfect completeness: If f (0) ∈ C0 and f (1), . . . , f (r) are honestly generated by the prover, the
verifier outputs accept with probability 1.

Soundness: Assume f (0) is δ-far from C0 and let ε ∈ (0, 1). With probability at least 1−errcommit
over the randomness of the verifier during the COMMIT phase, where

errcommit ≤
log n

|F|

(
pmax +

4

ε
− 1

)(
4

ε

)pmax

and for any oracles f (1), . . . , f (r) adaptively chosen by a possibly dishonest prover P∗, the
probability that the verifier V outputs accept after a single query test is at most

errquery(δ) ≤ (1−min(δ, γ) + ε log n).

Overall, for any prover P∗, the soundness error err(δ) after t repetitions of the QUERY phase
satisfies

err(δ) ≤ errcommit + (errquery(δ))
t

<
log n

|F|

(
pmax +

4

ε
− 1

)(
4

ε

)pmax

+ (1−min(δ, γ) + ε log n)t.

Moreover, the IOPP system is public-coin, has round complexity r(n) < log n, proof length
l(n) < n and query complexity q(n) < tpmax log n+ n1−e.

Proof. Lemma 7.3, Proposition 7.4 and Corollary 7.7 satisfy the conditions of [ABN21, Theorem 1].
Completeness and soundness are given by [ABN21, Theorem 1]. Let us prove the rest of the theorem:

(Round complexity) We have that
r−1∏
i=0

pi =
n

nr
, where nr = |Pr| = n

|G| < n1−e. For every i ∈

{0, . . . , r − 1}, 2 ≤ pi ≤ pmax. Therefore r(n) ≤ log2 n− log2 nr < log2 n.

(Query complexity) Notice that for i ∈ {0, . . . , r − 2}, f (i+1)(Qi+1) is reused for the next round

consistency test. Hence, q(n) = t
(∑r−1

i=0 pi

)
+ n1−e ≤ trpmax + n1−e.

(Proof length) The total proof length l(n) is the sum of the lengths of all the oracles provided by
P during the COMMIT phase, counted in field elements. Denoting ti+1 :=

∏i
j=0 pj , we notice that

|Pi+1| = |Pi|
pi

= |P0|
ti+1

. Thus, we have

l(n) =

r∑
i=1

|Pi| =
r∑
i=1

|P0|
ti
≤ n

r∑
i=1

1

2i
= n

(
1− 1

2r

)
< n.

33

8 Proximity tests for AG codes on Kummer curves and Hermitian
towers

When we instantiate the AG-IOPP proposed in Section 7.3 for the setting of Kummer curves
(Section 5) and curves in the Hermitian tower (Section 6), we end up with a membership test to
a RS code. An RS code is itself a foldable AG code (see Section 4.3). In order to lower verifier
complexity, we can extend the AG-IOPP by replacing the final test by an IOPP for RS code. This
enhanced AG-IOPP is examined in this section.

8.1 How to iterate the folding to reach a code of dimension 1

We consider a sequence of foldable AG codes (Ci)0≤i≤s as provided by Section 5 (Kummer curves)
or Section 6 (tower of Hermitian curves). The code Cs = C(P1,Ps, Ds) corresponds to a Reed-
Solomon code RS [F,Ps, d] = {f : Ps → F; deg f ≤ d}, where the degree bound depends on the
parameters of the code C0. Taking this into consideration, we want to iterate the folding operation
until we get a RS code of dimension 1, as it is done in the FRI protocol [BBHR18a].

As in Example 4.3, we set d0 = d and define di+1 =
⌊
di
2

⌋
for any integer i. Set s′ the smallest

integer such that ds′ = 0. Then, we consider the sequence of codes (Cs+i)1≤i≤s′ when applying the
construction described in Section 4 to the initial code Cs. Letting r = s+ s′, we iteratively reduce
the proximity test to the code C0 to a membership test to the code Cr, which is a Reed-Solomon
code of dimension 1. If f (0) ∈ C0, then f (r) is expected to be a constant function, and this can
be tested in a trivial way. We can leverage the fact that Cr is a Reed-Solomon code to extend
the protocol described in Section 7.3. We obtain a r-rounds IOPP system (P,V) for C0, which is
described below.

The prover P and the verifier V are given as input the description of the code C0. The verifier
V is given oracle access to a function f (0) : P0 → F, which is also given as explicit input to the
prover P.

COMMIT phase:

1. For each round i from 0 to r − 1 :

(a) V picks uniformly at random z(i) in F2 and sends it to P,

(b) P computes f (i+1) = Fold
[
f (i), z(i)

]
,

(c) If i < r − 1: P gives oracle access to f (i+1) : Pi+1 → F.

(d) If i = r−1: P commits to β ∈ F (if f (0) ∈ C0, then f (r) is supposed to be constant equal
to β).

QUERY phase:

1. Repeat t times the following query test:

(a) Pick Q0 ∈ P0 uniformly at random.

(b) For i = 0 to r − 1, run the following round consistency test :

i. Define Qi+1 ∈ Pi+1 by Qi+1 = πi(Qi),

ii. Query f (i+1) to get f (i+1)(Qi+1) and query f (i) at points Q̂ ∈ SQi+1 ,

(if i = r − 1, set f (r)(Qr) = β)

34

iii. Compute the value Fold
[
f (i), z(i)

]
(Qi+1),

iv. If i < r − 1: return reject if and only if f (i+1)(Qi+1) 6= Fold
[
f (i), z(i)

]
(Qi+1)

v. If i = r − 1: return reject if and only if β 6= Fold
[
f (i), z(i)

]
(Qi+1)

2. Return acccept.

8.2 Properties of the AG-IOPP with Kummer curves

Assume C0 = C(X0,P0, D0) is a foldable AG code of blocklength n0 = |P0| on a Kummer curve X0

(cf. Proposition 5.5). This means that X0 is defined by an equation yN = f(x), where f ∈ F[X]
is a separable degree-m polynomial, m ≡ −1 mod N , N is coprime with |F|, |P0| = αN for some
integer α, and degD0 < αN . Assume α is a power of 2 and N is a η-smooth integer for a small
fixed parameter η ∈ N.

Proposition 5.10 states that the relative minimum distances of the codes Ci are all equal
to ∆(C0) = 1 − degD0

αN . Therefore, the ordering on the integers involved in the prime decom-

position
∏s−1
i=0 pi of N does not impact the parameters of the protocol. Moreover, the code

Cs = C(Xs,Ps, Ds) corresponds to a RS code

Cs = RS

[
F,Ps,

degD0

N

]
=

{
f : Ps → F; deg f ≤ degD0

N

}
of blocklength |Ps| = α, which is itself a foldable AG code (see Example 4.3).

Theorem 8.1 (Kummer case). Let C = (X0,P0, D0) be a foldable AG code on a Kummer curve
satisfying the hypotheses of Proposition 5.5 with N a η-smooth integer. Denote n = |P0|. The
IOPP (P,V) described in Section 8.1 has perfect completeness and soundness as stated in Theorem
7.9. Moreover, for t repetitions of the QUERY phase, we have:

rounds complexity r(n) < log n,
proof length l(n) < n,
query complexity q(n) ≤ tη log2 n+ 1,
prover complexity tp(n) = Oη(n),
verifier decision complexity tv(n) = Oη(t log n).

Proof. Noticing that the round complexity is now r(n) = s+ s′, straightforward calculations show
that complexity, query complexity and proof length computed in the proof 7.9 still hold. Com-
pleteness and soundness also follow from [ABN21]. We estimate prover complexity and verifier
complexity below.

(Prover complexity) Fix a round index i < r− 1. The balancing functions νi+1,j : Pi+1 → F can be
precomputed since they do not depend on f (i), z(i) (see Remark 8.2). To simplify notation, denote
f = f (i). For any z = (z1, z2) ∈ F2, computing the successive powers (zj1, z

j
2)0≤j<pi takes 2(pi − 2)

multiplications. For each P ∈ Pi+1, an honest prover must compute the coefficients (aj,P)0≤j,<P of

the polynomial If,P (X) of degree deg If,P < pi from the interpolation set
{

(µi(P̂), f(P̂)) | P̂ ∈ SP
}

of size pi. Notice that µi = y, so computing µi(P̂) for P̂ ∈ SP is done for free. Univariate
interpolation for a polynomial of degree < pi can be done in O(p2

i) by Lagrange interpolation.
Overall, one can honestly evaluate Fold [f, z] : Pi+1 → F with |Pi+1|O(p2

i) operations in F. We
showed previously that

∑r−1
i=1 |Pi| < n, thus when summing over r− 1 rounds, we get that the cost

of (honestly) generating the oracles f (1), . . . , f (r−1) is Oη(n).

35

(Verifier decision complexity) Verifier complexity is inferred from the previous discussion about
prover complexity. For each round, the verifier computes the successive powers of z1 and z2,
interpolates If,P for a point P ∈ Pi+1 in O(p2

i) operations, then computes Fold [f, z] (P) in a
number of operations which is independent of n. Hence, verifier complexity for repetition parameter
t is tv(n) = Oη(t log(n)).

Remark 8.2. We give the cost of precomputing the evaluation tables of the balancing functions.
Letting νi+1,j be as defined in proof of Lemma 5.4, the sequence of functions (νi+1,j)0<j<pi can be
evaluated at the same point P ∈ Pi+1 in time O(logm+pi) using exponentiation by squaring. Thus,
the evaluations of νi+1,1, . . . νi+1,pi−1 on Pi+1 are obtained with O((logm+ pi) |Pi+1|) operations.

We give an example of an AG code over a Kummer curve where pmax = 2.

Example 8.3. On Fq2 with q = 261 − 1 (9th Mersenne prime), we consider the curve

X0 : yN = x3 + x

where N = 2r with r = 16. It is maximal [TT14] of genus g = N − 1. We consider the code C0

associated to D0 = 217P 0
∞ on an evaluation set P0 ⊂ X0(Fq2) of size n = 220. Its dimension equals

dimC0 = 216 + 2 and its relative minimum distance λ is bounded from below by 1 − 2−3. Take
ε = 2−6.55. By Theorem 7.9,

errcommit ≤
log(n)∣∣Fq2∣∣

(
1 +

4

ε

)(
4

ε

)2

≈ 24.33+6+3·6.55−121 ≤ 2−91

errquery(δ) ≤ (1− δ + ε log(n))

where 1− δ = (1− λ+ ε)
1
3 ≤ 0, 51384. Hence

errquery(δ) ≤ 0, 51384 +
20

26.55
≈ 0, 72728.

By running the QUERY phase with repetition parameter t ≥ 199, we get (errquery)
t ≤ 2−91 and

err(δ) ≤ 2−90. The last code Cr is a small Reed-Solomon code of length nr = 24 and dimension 2.
The total number of rounds of the IOPP is thus r + 1.

8.3 Properties of the AG-IOPP with towers of Hermitian curves

Theorem 8.4. Let C = (X ,P, D) be a foldable AG code with alphabet F = Fq2 on a tower of
Hermitian curves satisfying the hypotheses of Proposition 6.9. Letting e be the index of the curve X
in the Hermitian tower (Xi)i≥0, the length n = |P| of C is at most qe+2. The IOPP (P,V) described
in Section 8.1 has perfect completeness, and soundness as stated in Theorem 7.9. Moreover, we
have:

rounds complexity r(n) < log n,
proof length l(n) < n,
query complexity q(n) ≤ tq log n+ 1,
prover complexity tp(n) = O(n ·M(q) log(q)),
verifier decision complexity tv(n) = O(log n ·M(q) log(q)).

36

Proof. The proof follows from proof of Theorem 8.1, replacing η by q. Prover and verifier com-
plexities are computed from the cost of computing the coefficients of a univariate polynomial of
degree less than q from its evaluation on points forming an arithmetic progression in Fq2 . This
interpolation task can be done in M(q) log q + O(M(q)) base field operations [BS05], where M(d)
denotes the cost of multiplying two degree-d univariate polynomials.

Given a foldable code as in Proposition 6.9, the IOPP constructs a sequence of codes as follow:

Ci := C(Ximax−i,Pimax−i, Dimax−i) where Pi−1 = πi(Pi) and Di = diP
(i)
∞

with the integers di defined recursively by

di−1 :=

⌊
di
q

⌋
+ 2g(Xi−1).

Unlike the Kummer case, we have to increase the degree of divisor by twice the genus of the curve
at each step to make sure the compatibility hypotheses of Definition 4.3 are valid. This has a
counterpart: the dimension of the codes Ci decreases much slowly than their block length. A
foldable code in the sense of Definition 4.5 may induce of a sequence of codes in which the last code
Cimax is trivial. In this case, the protocol would no longer be sound. We thus need to control the
dimension of the code Cimax . This is the purpose of the remaining of this section.

Remark 8.5. In light of the Kummer case in which the group Z/NZ is factored as much as
possible, if q is some prime power q = p`, we could split the group Z/qZ acting at each level to
make ` intermediary steps. The verifier and the prover would perform polynomial interpolations
of degree p, and the verifier would make only p queries at each step. However, for each of these
steps, we would have to make the new divisor grow to fulfill the compatibility conditions as above.
If the rate increases too much, the relative minimum distance drops and the total number queries
to target a designated soundness may be tremendous. The loss in terms of soundness error per
QUERY phase seem to be much more significant than the aforementioned advantages.

8.3.1 Bounding the rate of the underlying Reed-Solomon code

We aim to bound the dimension of the code Reed-Solomon code Cimax . Let us compute the degree
dimax of the divisor Dimax on P1.

Lemma 8.6. For 1 ≤ j ≤ imax, we have

dimax−j ≤
⌊
dimax

qj

⌋
+

j∑
k=1

⌊
2gimax−k
qj−k

⌋
+ (j − 1).

Proof. It follows from the definition of the degrees di given in (17) and by induction on j.

Using Lemma 8.6 which bounds the genera gi for i ≤ imax, we can get an upperbound on d0.

Corollary 8.7. Let us assume that 2(imax − 1) < q. The degree d0 of the divisor D0 on P1 is
bounded from above by

d0 ≤
⌊
dimax

qimax

⌋
+ (imax − 1)

(
1 +

imax

6
· (3q − 4 + 2imax)

)

37

Proof. By Lemma 8.6, we have the following bound over d0:

d0 ≤
⌊
dimax

qimax

⌋
+

imax−1∑
i=0

⌊
2gi
qi

⌋
+ imax − 1.

It is thus enough to estimate the sum
imax−1∑
k=0

⌊
2gk
qk

⌋
. By Proposition B.1,

imax−1∑
k=0

⌊
2gk
qk

⌋
≤

imax−1∑
k=0

(kq + k(k − 1))

= (q − 1) · imax(imax − 1)

2
+
imax(imax − 1)(2imax − 1)

6

=
imax(imax − 1)

2
·
(
q − 4

3
+

2imax

3

)
,

which gives the expected result.

Depending on the length of the code Cimax , we can determine a sufficient condition on imax that
ensures that the code C0 is not trivial. Let us denote by n0 the size of P0. It satisfies n0 ≤ q2. The

rate of C0 is equal to
d0 + 1

n0
. Also we have nimax := #Pimax = qimaxn0.

Corollary 8.8. Let us fix ρ ∈ (0, 1). If⌊
dimax

qimax

⌋
+ (imax − 1)

(
1 +

imax

6
· (3q − 4 + 2imax)

)
+ 1 < ρn0,

then the rate of the code C0 is less than ρ.

8.3.2 Foldable codes with constant rate which are endowed with an IOPP with de-
signed soundness

In this paragraph, we focus on foldable codes of the form

C = C0 = C
(
Ximax ,Ximax(Fq2) \ {P (imax)

∞ , (2α+ 1)gimax)P (imax)
∞

)
(20)

for some α > 1/2, as in Section 6.2.1. The evaluation set Pimax is the whole set of rational points

of Ximax minus the point of at infinity P
(imax)
∞ , i.e. nimax = qimax+2.

Proposition 8.9. Let us fix ρ ∈ (0, 1). The rate of the RS code Cimax below C0 is less than ρ if

2i3max + 3i2max(2α+ q − 1) + imax(6α(q − 1) + 7)− 6ρq2 < 0.

Proof. For q large enough, we can assume that 2imax − 1 < q. Using Proposition B.1, we get an
upperbound over dimax :

dimax ≤ (2α+ 1)
imax

2
qimax(q + (imax − 1)).

From Corollary 8.8, a sufficient condition for the underlying RS code to have a rate less than ρ is

(2α+ 1)
imax

2
(q + (imax − 1)) + (imax − 1)

(
1 +

imax

6
(3q − 4 + 2imax)

)
+ 1 < ρq2

Multiplying the inequality by 6, expanding and simplifying, we get our condition.

38

Now assume that imax = qε for ε ∈ (0, 1). In the constant rate regime described in Lemma 6.10,
we have αimax = Rq. The condition above becomes

2i3max + 3i2max(q − 1) + imax(6Rq + 7) < 6q2

(
ρ−R

(
1− 1

q

))
.

If R
(

1− 1
q

)
< ρ, the right handside is positive. Let us give a rough estimation of the largest ε

such that imax = qε satisfies this inequality. The left handside begin equivalent to 3q1+2ε, we have

ε ' 1
2(1 + logq

(
ρ−R

(
1− 1

q

))
.

Table 1 displays some examples of level imax and initial rate R of foldable codes for which the
AG-IOPP reduce the proximity test to testing RS codes of rate ρ. In terms of the soundness of the
protocol, it means that λ as defined in Theorem 7.9 is greater than 1− ρ.

q imax n R 1− ρ >
24 3 220

1/8 1/3
25 5 235

24 4 224

1/16

1/3

25 3 225 3/4

5 235 1/2

26

4 236 3/4

5 242 2/3

7 254 1/2

24 3 220 1/32 1/2

Table 1: Example of parameters of foldable codes of rate R along the Hermitian tower. Alphabet
is F2

q and block length is n. The last column gives a bound on the minimal distance of the RS code.

Acknowledgments

The third author thanks Marc Perret for his precious advices in the early days of this project. The
authors are grateful to Daniel Augot for suggesting to work on this project and for many valuable
discussions. They also thank Eli Ben-Sasson and Alessandro Chiesa for their helpful insights. The
first author benefits from the support of the Chair “Blockchain & B2B Platforms”, led by l’X –
École Polytechnique and the Fondation de l’École Polytechnique, sponsored by Capgemini. This
work was also funded in part by the grant ANR-21-CE39-0009 - BARRACUDA from the French
National Research Agency.

References

[ABN21] Daniel Augot, Sarah Bordage, and Jade Nardi. Efficient multivariate low-degree tests
via interactive oracle proofs of proximity for polynomial codes. Electron. Colloquium
Comput. Complex., page 118, 2021.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubrama-
niam. Ligero: Lightweight Sublinear Arguments Without a Trusted Setup. In Bha-

39

vani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, pages 2087–
2104. ACM, 2017.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof Verification and the Hardness of Approximation Problems. 45(3):501–555, 1998.
extended version of FOCS’92.

[AS92] Sanjeev Arora and Shmuel Safra. Probabilistic Checking of Proofs; A New Charac-
terization of NP. In 33rd Annual Symposium on Foundations of Computer Science,
Pittsburgh, Pennsylvania, USA, 24-27 October 1992, pages 2–13. IEEE Computer So-
ciety, 1992.

[Bab85] László Babai. Trading Group Theory for Randomness. In Robert Sedgewick, editor,
Proceedings of the 17th Annual ACM Symposium on Theory of Computing, May 6-8,
1985, Providence, Rhode Island, USA, pages 421–429. ACM, 1985.

[BBGS14] Alp Bassa, Peter Beelen, Arnaldo Garcia, and Henning Stichtenoth. An Improve-
ment of the Gilbert–Varshamov Bound Over Nonprime Fields. IEEE Transactions on
Information Theory, 60(7):3859–3861, 2014.

[BBHR18a] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast Reed-Solomon
Interactive Oracle Proofs of Proximity. In 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic,
pages 14:1–14:17, 2018.

[BBHR18b] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transpar-
ent, and post-quantum secure computational integrity. IACR Cryptol. ePrint Arch.,
page 46, 2018.

[BBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable Zero
Knowledge with No Trusted Setup. In Alexandra Boldyreva and Daniele Micciancio,
editors, Advances in Cryptology - CRYPTO 2019 - 39th Annual International Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part III,
volume 11694 of Lecture Notes in Computer Science, pages 701–732. Springer, 2019.

[BCG+17] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev, and Nicholas
Spooner. Interactive Oracle Proofs with Constant Rate and Query Complexity. In
44th International Colloquium on Automata, Languages, and Programming, ICALP
2017, July 10-14, 2017, Warsaw, Poland, pages 40:1–40:15, 2017.

[BCG+19] Eli Ben-Sasson, Alessandro Chiesa, Lior Goldberg, Tom Gur, Michael Riabzev, and
Nicholas Spooner. Linear-Size Constant-Query IOPs for Delegating Computation. In
Dennis Hofheinz and Alon Rosen, editors, Theory of Cryptography - 17th International
Conference, TCC 2019, Nuremberg, Germany, December 1-5, 2019, Proceedings, Part
II, volume 11892 of Lecture Notes in Computer Science, pages 494–521. Springer, 2019.

[BCI+20] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf.
Proximity Gaps for Reed-Solomon Codes. IACR Cryptol. ePrint Arch., 2020:654, 2020.

40

[BCL20] Jonathan Bootle, Alessandro Chiesa, and Siqi Liu. Zero-Knowledge Succinct Argu-
ments with a Linear-Time Prover. IACR Cryptol. ePrint Arch., page 1527, 2020.

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza,
and Nicholas P. Ward. Aurora: Transparent Succinct Arguments for R1CS. In Yuval
Ishai and Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT 2019 -
38th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part I, volume 11476
of Lecture Notes in Computer Science, pages 103–128. Springer, 2019.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive Oracle Proofs.
In Theory of Cryptography - 14th International Conference, TCC 2016-B, Beijing,
China, October 31 - November 3, 2016, Proceedings, Part II, pages 31–60, 2016.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking Compu-
tations in Polylogarithmic Time. In Proceedings of the 23rd Annual ACM Symposium
on Theory of Computing, May 5-8, 1991, New Orleans, Louisiana, USA, pages 21–31,
1991.

[BGKS20] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. DEEP-FRI:
Sampling Outside the Box Improves Soundness. In 11th Innovations in Theoretical
Computer Science Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington,
USA, pages 5:1–5:32, 2020.

[BKK+13] Eli Ben-Sasson, Yohay Kaplan, Swastik Kopparty, Or Meir, and Henning Stichtenoth.
Constant Rate PCPs for Circuit-SAT with Sublinear Query Complexity. In 54th An-
nual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 Oc-
tober, 2013, Berkeley, CA, USA, pages 320–329. IEEE Computer Society, 2013.

[BKS18] Eli Ben-Sasson, Swastik Kopparty, and Shubhangi Saraf. Worst-Case to Average Case
Reductions for the Distance to a Code. In 33rd Computational Complexity Conference,
CCC 2018, June 22-24, 2018, San Diego, CA, USA, pages 24:1–24:23, 2018.

[BRS20] Peter Beelen, Johan Rosenkilde, and Grigory Solomatov. Fast Encoding of AG Codes
over Cab Curves, 2020.

[BS05] Alin Bostan and Eric Schost. Polynomial evaluation and interpolation on special sets
of points. Journal of Complexity, 21(4):420–446, 2005.

[BS08] Eli Ben-Sasson and Madhu Sudan. Short PCPs with Polylog Query Complexity. SIAM
J. Comput., 38(2):551–607, 2008.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and
Transparent Recursive Proofs from Holography. In Anne Canteaut and Yuval Ishai,
editors, Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croa-
tia, May 10-14, 2020, Proceedings, Part I, volume 12105 of Lecture Notes in Computer
Science, pages 769–793. Springer, 2020.

[Din07] Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007.

41

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowledge Complexity of
Interactive Proof-Systems (Extended Abstract). In Robert Sedgewick, editor, Proceed-
ings of the 17th Annual ACM Symposium on Theory of Computing, May 6-8, 1985,
Providence, Rhode Island, USA, pages 291–304. ACM, 1985.

[Gop77] Valerii Denisovich Goppa. Codes associated with divisors. Problemy Peredachi Infor-
matsii, 13(1):33–39, 1977.

[HKT13] J. W. P. Hirschfeld, G. Korchmáros, and F. Torres. Algebraic Curves over a Finite
Field. Princeton University Press, Princeton, 25 Mar. 2013.

[HY18] Chuangqiang Hu and Shudi Yang. Multi-point codes over Kummer extensions. Designs,
Codes and Cryptography, 86:211–230, 2018.

[Kan86] Ernst Kani. The Galois-module structure of the space of holomorphic differentials of
a curve. Journal für die reine und angewandte Mathematik, 367:187–206, 1986.

[Kil92] Joe Kilian. A Note on Efficient Zero-Knowledge Proofs and Arguments (Extended
Abstract). In S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and John A. Ellis,
editors, Proceedings of the 24th Annual ACM Symposium on Theory of Computing,
May 4-6, 1992, Victoria, British Columbia, Canada, pages 723–732. ACM, 1992.

[KPV19] Assimakis Kattis, Konstantin Panarin, and Alexander Vlasov. RedShift: Transpar-
ent SNARKs from List Polynomial Commitment IOPs. IACR Cryptol. ePrint Arch.,
2019:1400, 2019.

[KR08] Yael Tauman Kalai and Ran Raz. Interactive PCP. In Luca Aceto, Ivan
Damg̊ard, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor
Walukiewicz, editors, Automata, Languages and Programming, 35th International Col-
loquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II - Track
B: Logic, Semantics, and Theory of Programming & Track C: Security and Cryptogra-
phy Foundations, volume 5126 of Lecture Notes in Computer Science, pages 536–547.
Springer, 2008.

[Lac87] Gilles Lachaud. Sommes d’Eisenstein et nombre de points de certaines courbes
algébriques sur les corps finis. C. R. Acad. Sci. Paris, 305, 01 1987.

[Lac92] Gilles Lachaud. Artin-Schreier curves, exponential sums, and coding theory. Theoret-
ical Computer Science, 94(2):295–310, 1992.

[LFKN90] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic Methods
for Interactive Proof Systems. In 31st Annual Symposium on Foundations of Computer
Science, St. Louis, Missouri, USA, October 22-24, 1990, Volume I, pages 2–10. IEEE
Computer Society, 1990.

[Mah04] Hiren Maharaj. Code Construction on Fiber Products of Kummer Covers. Information
Theory, IEEE Transactions on, 50:2169 – 2173, 10 2004.

[Mei13] Or Meir. IP = PSPACE Using Error-Correcting Codes. SIAM J. Comput., 42(1):380–
403, 2013.

42

[Mic95] Silvio Micali. Computationally-Sound Proofs. In Johann A. Makowsky and Elena V.
Ravve, editors, Proceedings of the Annual European Summer Meeting of the Asso-
ciation of Symbolic Logic, Logic Colloquium 1995, Haifa, Israel, August 9-18, 1995,
volume 11 of Lecture Notes in Logic, pages 214–268. Springer, 1995.

[Mie09] Thilo Mie. Short PCPPs Verifiable in Polylogarithmic Time with O(1) Queries. Annals
of Mathematics and Artificial Intelligence, 56(3–4):313–338, August 2009.

[MP93] Carlos Munuera and Ruud Pellikaan. Equality of geometric Goppa codes and equiva-
lence of divisors. Journal of Pure and Applied Algebra, 90(3):229 – 252, 1993.

[MQS15] Ariane M. Masuda, Luciane Quoos, and Alonso Sepúlveda. One- and Two-Point Codes
over Kummer Extensions. arXiv e-prints, page arXiv:1510.06425, October 2015.

[PzSJ91] Ruud Pellikaan, Ba zhong Shen, and Gerhard J. M. van Wee. Which linear codes are
algebraic-geometric? IEEE Trans. Inf. Theory, 37:583–602, 1991.

[RR20] Noga Ron-Zewi and Ron D. Rothblum. Local Proofs Approaching the Witness Length
[extended abstract]. In 61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 846–857.
IEEE, 2020.

[RRR16] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive
proofs for delegating computation. In Daniel Wichs and Yishay Mansour, editors,
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 49–62. ACM, 2016.

[Sta21] StarkWare. ethSTARK Documentation. IACR Cryptol. ePrint Arch., page 582, 2021.

[Sti93] Henning Stichtenoth. Algebraic function fields and codes. Universitext. Springer, 1993.

[Sti08] Henning Stichtenoth. Algebraic Function Fields and Codes. Springer Publishing Com-
pany, Incorporated, 2nd edition, 2008.

[TT14] Saeed Tafazolian and Fernando Torres. On the curve yn = xm + x over finite fields.
Journal of Number Theory, 145:51–66, 2014.

[TVN07] Michael Tsfasman, Serge Vladut, and Dmitry Nogin. Algebraic Geometric Codes:
Basic Notions. American Mathematical Society, USA, 2007.

[TVZ82] M. A. Tsfasman, S. G. Vlăduţ, and Th. Zink. Modular curves, Shimura curves, and
Goppa codes, better than Varshamov-Gilbert bound. Math. Nachr., 109:21–28, 1982.

A Proof of Proposition 7.6

Proposition 7.6 is a weighted version of [BKS18, Theorem 4.5]. We only highlight the changes to
be made in the proof of [BKS18, Theorem 4.5].

For z ∈ F and (v0, . . . , vl−1) ∈ V l, let us set vz :=
l−1∑
i=0

zivi. Rewriting the proof of Theorem 4.5

[BKS18] with setting
A = {z ∈ F | ωη (uz, V) > 1− δ}

43

provides v0, . . . , vl−1 ∈ V and a set

C := {z ∈ F | ωη (uz, vz) > 1− δ} ⊂ A

with cardinality |C| > l−1
ε . Let us set T := {P ∈ P | ui T = vi T for all i}. Therefore

1− δ < 1

|C|
∑
z∈C

ωη (uz, vz)

=
1

|C| × |P|
∑
z∈C

∑
P∈P

η(P)1uz(P)=vz(P)

=
1

|P|
∑
P∈P

η(P)
1

|C|
∑
z∈C

1uz(P)=vz(P)

Notice that if there exists i ∈ {0, . . . , l − 1} such that ui which does not coincide with vi, the
number of z ∈ F such that uz(P) = vz(P) is at most l − 1. Then

1− δ ≤ 1

|P|
∑
P∈T

η(P) +
1

|P|
∑

P∈C\T

η(P)
l − 1

|C|

≤ 1

|P|
∑
P∈T

η(P) + ε,

which gives the first item of the proposition.

B Properties of the genera of the curves in the Hermitian tower

To estimate the parameters of the foldable codes we define along the Hermitian tower, we need to
handle the genera of the curves in this tower. From the formulae (15), we deduce deduce a bound
over the genus of the curve Xi for small i (Proposition B.1) and the asymptotic behaviour of the
ratio of gi by qi+2 for i = qε when q goes to infinity (Lemma B.2).

Proposition B.1. For i ≥ 1, we have

gi ≤
qi+1

2

i∑
k=1

(
i

k

)
1

qk−1
≤ iqi+1

2

i∑
k=1

(
i

q

)k−1

≤ i

2
qi+1 +

i(i− 1)

2
qi,

the last inequality holding only if 2(i− 1) < q.

Proof. Starting from the second formula of (15), we can write

gi =
1

2
·

(
qi+1

i∑
k=1

(
1 +

1

q

)k−1

+ 1− (1 + q)i

)
≤ qi+1

2
· q · ((1 + 1/q)i − 1) =

qi+1

2
·

i∑
k=1

(
i

k

)
1

qk−1
,

using that the term outside the geometric sum is non positive. Note that if k ≥ 2, then we can
bound the binomials coefficients as follows(

i

k

)
=
i(i− 1) · · · (i− k + 1)

k(k − 1) · · · 2
≤ i(i− 1)k−1

2
,

44

as the denominator is greater than 2 and the factors i−1, i−2, ..., i−k+ 1 are all lesser than i−1.
Factoring and using this upperbound over the binomials coefficients, we get

gi ≤
qi+1

2
·

(
i+

i

2

i∑
k=2

(
i− 1

q

)k−1
)

=
iqi+1

2

(
1 +

1

2
·
(
i− 1

q

)
·

i∑
k=2

(
i− 1

q

)k−2
)
.

Assuming that 2(i − 1) < q, we can bound the sum
i∑

k=2

(
i− 1

q

)k−2

by 2, which concludes the

proof.

Lemma B.2. Fix ε ∈ (0, 1) and set i = qε. Then

gi
qi+2

∼
q→∞

1

2q1−ε .

Proof. From the first formula of (15), we get

2gimax

qimax+2
=

(
1− 1

q2

)[(
1 +

1

q

)qε
− 1

]
+

1

qimax+2
− 1

q2

Let us examine the asymptotic behaviour of
(

1 + 1
q

)qε
when q goes to infinity. Set h = q−1.

(
1 +

1

q

)qε
= exp

(
h1−ε · log(1 + h)

h

)
= exp

(
h1−ε

(
1− h

2
+ o(h)

))
= 1 + h1−ε + o(h1−ε)

Therefore, we have (
1 +

1

q

)qε
− 1 ∼ 1

q1−ε .

45
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

