
Lower Bounds for Monotone Arithmetic Circuits Via
Communication Complexity

Arkadev Chattopadhyay∗ Rajit Datta† Partha Mukhopadhyay‡

November 29, 2020

Abstract

Valiant [Val80] showed that general arithmetic circuits with negation can be exponen-
tially more powerful than monotone ones. We give the first qualitative improvement to
this classical result: we construct a family of polynomials Pn in n variables, each of its
monomials has positive coefficient, such that Pn can be computed by a polynomial-size
depth-three formula but every monotone circuit computing it has size 2Ω(n1/4/ log(n)).

The polynomial Pn embeds the SINK ◦ XOR function devised recently by Chattopad-
hyay, Mande and Sherif [CMS20] to refute the Log-Approximate-Rank Conjecture in
communication complexity. To prove our lower bound for Pn, we develop a general connec-
tion between corruption of combinatorial rectangles by any function f ◦XOR and corruption
of product polynomials by a certain polynomial P f that is an arithmetic embedding of f .
This connection should be of independent interest.

Using further ideas from communication complexity, we construct another family of set-
multilinear polynomials fn,m such that bothFn,m−ε·fn,m andFn,m+ε·fn,m have monotone
circuit complexity 2Ω(n/ log(n)) if ε ≥ 2−Ω(m) and Fn,m :=

∏n
i=1 (xi,1 + · · ·+ xi,m), with

m = O(n/ log n). The polynomials fn,m have 0/1 coefficients and are in VNP. Proving
such lower bounds for monotone circuits has been advocated recently by Hrubeš [Hru20] as
a first step towards proving lower bounds against general circuits via his new approach.

∗TIFR, Mumbai. Partially supported by a MATRICS grant of the Science and Engineering Research Board,
DST, India. arkadev.c@tifr.res.in
†CMI, Chennai. Partially supported by a TCS Fellowship. rajit@cmi.ac.in
‡CMI, Chennai. partham@cmi.ac.in

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 166 (2020)

1 Introduction
The arithmetic analog of Cook’s P vs. NP question is Valiant’s VP vs. VNP question. Despite the
latter being seemingly an easier question, progress on it has been frustratingly slow. One class
of natural but restricted circuits, in both the Boolean and arithmetic world, is that of monotone
circuits where a lot of progress has taken place. Exponential lower bounds on these circuits
have been known for long, first in the arithmetic world due to the work of Shamir and Snir
[SS77] and then the breakthrough work of Razborov [Raz85b] in Boolean complexity. A long
line of work has been carried out both in the arithmetic [SS77, SS80, Val80, JS82, GS12, RY11,
Yeh19, Sri19] and the Boolean world (see for example [Raz85b, Raz85a, Tar88, KW, RW92,
RM99, HR00, Ros15, COS17, PR17, GKRS19]) to further strengthen these bounds and make
progress. Despite these efforts, several problems remain open even for monotone complexity. In
this paper, we focus on two such problems.
The first problem concerns the understanding of the relative powers of monotone and non-
monotone computation. How much advantage do non-monotone circuits have, exploiting
cancellation, to compute a target function or polynomial that itself is monotone? This was first
answered in the arithmetic world by Valiant [Val80], forty years ago. Valiant showed that a
certain monotone polynomial can be computed efficiently by general circuits, but monotone
circuits need exponential size to compute it. In the Boolean world, Razborov [Raz85a] gave a
super-polynomial separation between monotone and non-monotone computations by showing
that the bipartite matching problem in P needs nΩ(logn)-size monotone circuits. Later, Tardos
[Tar88] proved an exponential separation using a different function. Raz and Wigderson [RW92]
showed that matching needs exponential size monotone formulas.
Several researchers have investigated the following natural question that arises from these
separation results: what is the weakest non-monotone model that can compute a monotone
function which is hard even for the most powerful monotone model? It is known that matching
can not only be computed in P, but it can also be computed efficiently, i.e. using polynomially
many processors, in fast parallel time or depth of O(log n)2 by randomized algorithms again
using cancellations. Yet, Razborov’s lower bound puts it outside monotone P. This was the best
known separation for long. Recently, Göös et. al. [GKRS19] improved this by finding another
function that has such an efficient and parallel deterministic algorithm and showed that it even
requires exponential size monotone circuits. Can one find hard functions for monotone circuits
in even shallower depths of general circuits? An important result of Ajtai and Gurevich [AG87]
showed that there are monotone functions that can be computed efficiently by constant-depth,
non-monotone circuits, and yet need super-polynomial size to be computed by constant-depth
monotone circuits. The recent work of Chen et.al. [COS17] significantly strengthens this by
exhibiting a monotone function having efficient constant-depth circuits with negations but that
still requires exponential size to be computed by monotone circuits of constant depth even
though they are allowed to use gates computing a powerful monotone function like Majority.
However, these developments still leave tantalizingly open the possibility of finding a monotone
function computable by small size constant-depth circuits with negation that require exponential
size to be computed by unrestricted-depth monotone circuits.
The arithmetic analog of this possibility remained unresolved as well. However, for non-
commutative circuits, it was answered in the positive by Hrubeš and Yehudayoff [HY13]
by exhibiting an exponential separation of constant-depth arithmetic formulas and monotone
circuits. We provide the first such separation in the more natural and commonly studied setting

1

of commutative arithmetic circuits that we describe next.
We consider set-multilinear monomials over sets of variables X1, X2, . . . , Xn where Xi :=
{xi,1, xi,2, . . . , xi,m}, i.e. multilinear monomials that depend precisely on just one of the m
variables from each of the n blocks1. In order to generate hard polynomials for monotone
arithmetic circuits, we will use an idea of embedding a Boolean function f that is known to
be hard in the 2-party setting of communication complexity. The general idea to do so, is to
associate with each multilinear monomial κ a unique m-bit Boolean string x. The coefficient of
κ in the polynomial would be just f(x) ∈ {0, 1}. Applying this general framework, for each
f : {0, 1}m → {0, 1} one derives a unique monotone polynomial P f with 0/1 coefficients.
However, we want our target polynomial to be also easy to be computed by constant-depth
arithmetic formulas, using the power of cancellations. This makes the design of associating
a Boolean string to a monomial and the choice of f delicate. In particular, we will have to
perturb a Boolean f at each point by a slight amount δ to create a real-valued f ′ that uniformly
approximates f . We will then be able to argue that P f ′ retains the monotone hardness of P f but
just becomes easy to be computed with cancellations. Creating hard polynomials for arithmetic
circuits in this way, as far as we know, was not done in any of the prior works.
More precisely, the set of such multilinear monomials can be identified with the set of all
mappings from [n] to [m], the latter denoted by Fn,m. For a mapping σ ∈ Fn,m (or a set-
multilinear monomial κ) we define a parity vector ~⊕(σ) ∈ {0, 1}m (or ~⊕(κ)) where the jth
entry is |σ−1(j)| (mod 2). The parity vector ~⊕(κ) of a monomial κ will be the unique m-bit
Boolean string we associate with it. Now we describe the hard Boolean function f that we will
be using: this will be the same function called SINK that was recently used in the refutation
of the Log-Approximate-Rank Conjecture (LARC) in [CMS20]. Set m =

(
k
2

)
, so that each

bit of a string x in {0, 1}m is viewed as the assignment to an edge of a complete graph on k
vertices {1, . . . , k}. If a bit of x, corresponding to an edge (u, v) in Kk is set to 0, then the
edge orients u ← v, otherwise the edge orients u → v, when u < v. An input string x, can
thus be interpreted as a tournament by orienting the edges of the complete graph Kk. A vertex
in a tournament is called a sink vertex if its out-degree is 0. SINK evaluates to 1 on x if the
tournament specified by x has a sink vertex. Otherwise, SINK evaluates to 0 on x.
Thus, a monomial κ is called a sink monomial if SINK(~⊕(κ)) = 1. Let PNon-Sink

n,m (P Sink
n,m) be

the polynomial that is supported completely on non-sink (sink) monomials. It can be shown
that each of PNon-Sink

n,m and P Sink
n,m is hard for monotone circuits, but we don’t know whether any

one of them is easy for general formulas. We thus look at a slight perturbation of PNon-Sink
n,m : A

polynomial Pn,m is called a δ-non-sink polynomial if the coefficient of every monomial κ in
Pn,m lies in the interval [0, δ] if κ is a sink, otherwise (i.e. κ is not a sink) it lies in the interval
[1− δ, 1]. We are ready to state our result now:

Theorem 1.1.

1. For every constant 0 < δ < 1, there exists a δ-non-sink polynomial Pδ,n,m that has a
depth-three arithmetic formula of size Oδ(nm

4).

2. There exists a sufficiently small constant δ < 1, such that every δ-non-sink polynomial
Qδ,n,m needs monotone circuits (with no depth restrictions) of size 2Ω(

√
m) to be computed,

when 4m lnm ≤ n.
1Many commonly studied polynomials like the Permanent and Determinant are set-multilinear.

2

Remark 1.1. Let us recall that Valiant [Val80], Jerrum and Snir [JS82] gave exponential
separations between VP and monotone VP. Applying modern depth reduction techniques [AV08,
Koi12, Tav15, GKKS16] to either of their polynomials would result in them being computed
by depth-3/depth-4 formulas of exponential size of 2O(

√
d logN), where the polynomials are N -

variate and degree d. More precisely, for Valiant’s family of polynomials the nth polynomial
Pn has number of variables N = O(n2) and degree d = O(n2). For Jerrum-Snir family of
polynomials, the nth polynomial Pn has number of variables N = O(n2) and degree d = O(n).

More generally, the use of parity vectors of monomials as described above, gives us a concep-
tually simple but novel way of constructing set-multilinear polynomials by embedding hard
Boolean functions of the form f ◦XOR, where f : {0, 1}m → {0, 1}. These functions are called
XOR functions and we make more use of them, via parity vectors of monomials, to deal with a
different problem.
We consider the problem of making progress towards proving lower bounds for general arithmetic
circuits. Efforts in this direction have remained stuck for a long time. Very recently, Hrubeš
[Hru20] formulated a new interesting approach that reduces the task of proving lower bounds
on the size of general arithmetic circuits to that of proving lower bounds on the monotone
complexity of special classes of polynomials. A crucial aspect of the approach is that one, sort
of, plants a conjectured hard polynomial scaled by a vanishingly small number ε inside an
otherwise super-easy polynomial. One needs to prove that the new polynomial remains hard for
monotone circuits to conclude that the conjectured hardness of the original polynomial against
general circuits is true. There are no known monotone lower bounds against such polynomials
and Hrubeš argues that new techniques in monotone complexity need to be developed to take on
this challenge. Using our communication complexity based approach, we take a first step in this
direction.
More precisely, Hrubeš showed that if a polynomial fn is computed efficiently by a general
circuit of size s, then there exists an ε0 > 0, such that for every ε ≤ ε0, the function Fn + ε · f
has efficient monotone circuits, where Fn := (1 +

∑
i xi)

d is the polynomial that contains all
monomials of degree at most d. The difficulty in proving monotone lower bounds for such
polynomials is the following: for ε = 0, they become easy for monotone circuits and yet we
need to show that for a tiny non-zero ε, the function is hard. Most monotone lower bounds
in the literature are based on covering arguments, i.e. they are valid against all polynomials
which are supported on the same hard set of monomials, paying no regard to the specific set
of coefficients used in the target polynomial. Such arguments cannot obviously work against
the kind of polynomials suggested by Hrubeš. Recently, Yehudayoff [Yeh19] and Srinivasan
[Sri19] gave new arguments to prove monotone lower bounds that take into consideration the
distribution of coefficients. In fact, covering arguments would not be enough to even prove our
Theorem 1.1 as the support set of a δ-non-sink polynomial can be full and our argument does
make essential use of the distribution of the coefficients of monomials. Still, it is not clear how
to use any of these arguments in the context of Hrubeš’ question.
We give a new argument based on the discrepancy method from communication complexity to
make progress. To discuss this approach, let us consider the Boolean function MOD3 ◦ XOR,
where MOD3(x) = 0 if and only if

∑n
i=1 xi ≡ 0 mod 3. It can be shown that this problem has

small discrepancy w.r.t combinatorial rectangles and is therefore hard for Alice and Bob to solve
in Yao’s 2-party communication model. Our main insight is that embedding such a problem
in a set-multilinear polynomial via the parity vectors of the monomials results in a monotone
polynomial that is very hard for monotone circuits in the sense of Hrubeš’ Theorem. More

3

precisely, we define

PMOD3
n,m :=

∑
σ:[n]7→[m]

MOD3(~⊕(σ))=0

n∏
i=1

xi,σ(i).

Clearly this polynomial is in VNP. Let the full set-multilinear polynomial be defined as

Fn,m :=
n∏
i=1

(xi,1 + · · ·+ xi,m).

Our main result is the following:

Theorem 1.2. There exists a constant γ > 0 such that both the polynomials Fn,m − ε · PMOD3
n,m

and Fn,m + ε · PMOD3
n,m have monotone complexity 2Ω(m), provided 4m lnm ≤ n and ε ≥ 2−γm.

In summary, both Theorems 1.1 and 1.2 obtain monotone lower bounds of the kinds that were not
obtained before our work. They use two powerful techniques from communication complexity:
the corruption and the discrepancy method. That communication complexity methods and
arithmetic complexity lower bound techniques should be related is not a complete surprise. A
low cost communication protocol induces a decomposition of the communication matrix of the
target function into a non-negative sum of few rectangles. A small monotone circuit results in
the decomposition of the computed polynomial into a sum of non-negative product polynomials.
In fact, several researchers have used this similarity to draw intuition from communication
complexity to prove monotone lower bounds. However, there is an important difference (among
others) that, we feel, has prevented direct usage of measures like corruption bounds in past
work. In the arithmetic decomposition, the partition of the input variables used varies across
the product polynomials used. In standard version of communication complexity, this does not
happen. One chooses the most convenient possible partition to prove lower bounds. Raz and
Yehudayoff [RY11] used sophisticated exponential sum estimates of [BGK06] to overcome this
difficulty. We, on the other hand, use a simple but novel trick of using parity vectors to embed a
hard XOR function in our target polynomial. Our general Corruption Transfer Lemma 4.1 and
the proof of Theorem 1.2 are evidences of the broad applicability of this idea. We feel that this
would also be further useful in proving lower bounds for circuits that are less restricted than
monotone ones.

1.1 Our Ideas and Techniques
Separating General Depth-3 From Monotone Circuits

We are looking for polynomials (with positive coefficients) that are very hard for monotone
circuits, yet are not only easy with cancellations but even remain easy in constant-depth.
There are two important computations in which cancellations are known to help. First, is the
computation of the determinant. This is not a monotone polynomial but one can effectively
embed it into a such a polynomial. For example, Jerrum and Snir [JS82] used spanning tree
polynomial to separate VP from monotone VP and it can be expressed as a determinant of linear
forms [W70]. But determinant is unlikely to be easy for small depth-computations. Ben-Or
[SY10] showed that depth three is capable of interpolating which does make crucial use of

4

cancellations. This yields small-size depth-3 circuits for computing elementary symmetric
polynomials, making them a possible target for separating the power of constant-depth general
formulas and monotone unrestricted-depth circuits. However, it is well known that elementary
symmetric polynomials are actually easy for even monotone arithmetic branching programs
(ABPs).
This forces us to seek alternative powers of cancellations: depth-2 circuits cannot be more
powerful than their monotone counterparts. How do cancellations in random depth-three set-
multilinear circuits take place? Consider the following ΣΠΣ circuit:

1

N

N∑
i=1

n∏
j=1

(
bi1xj,1 + bi2xj,2 + · · ·+ bimxj,m

)
(1)

Here, b1, . . . , bN are randomly sampled points from {1,−1}m. To talk about cancellations,
let us consider the coefficient of a monomial κ :=

∏n
j=1 xj,σ(j), where σ : [n] → [m] is the

map defining κ. The coefficient of κ in the polynomial computed by the random circuit is
(1/N) ·

∑N
i=1

∏n
j=1 b

i
σ(j) which can be re-written as

1

N

N∑
i=1

m∏
`=1

(bi`)
|σ−1(`)| mod 2 (2)

Thus, the parity vector ~⊕(κ) := (|σ−1(1)| mod 2, . . . , |σ−1(m)| mod 2) of monomial κ deter-
mines its coefficient. All monomials that are even, i.e. their parity vectors are all zeroes, will
have coefficient exactly 1, i.e. there was no cancellation for them. For any odd monomial κ,
the expected value of the coefficient is 0, i.e. we expect a lot of cancellations associated with κ
taking place. To translate this phenomenon from random circuits to a fixed deterministic circuit,
we choose the points b1, . . . , bN to form an ε-biased space in {0, 1}m. Armed with this insight,
we want to craft a polynomial where the deterministic circuit is able to suppress the magnitude
of the coefficients of a select group of monomials while keeping the rest of the magnitudes
high. The group to be selected should be such that the polynomial becomes hard for monotone
circuits.
The basic weakness of a monotone circuit of size s computing a multilinear polynomial P is
well known i.e. such a P can be expressed as a sum of few balanced product polynomials. Each
such product polynomial has a structure resembling that of a combinatorial rectangle, an object
that appears commonly in the study of communication complexity. This similarity has been the
source of intuition in past works in arithmetic complexity in general and monotone complexity
in particular. But a direct correspondence had not been established, as far as we know, until
now. We do so in this work and crucially use this correspondence to prove our monotone lower
bounds.
Before we describe further details, we point out an interesting connection to the famous Log-
Rank Conjecture in communication complexity and our problem. Consider any set multilinear
polynomial P f and a partition {X1,X2} of the sets of its input variables. A natural matrix w.r.t
the partition is one where each row corresponds to a set-multilinear monomial in variables from
X1 and every column to one in variables from X2. Each entry of this matrix is the coefficient
in the target polynomial of the monomial formed by the product of the corresponding row and
column monomials. Observe that if P f is computed by a syntactic depth-3 set-multilinear circuit
of top fain-in s, then the matrix has rank at most s, as every product gate computes polynomial

5

whose corresponding matrix has rank 1. Let our polynomial P f be the embedding of the Boolean
function f by the parity vector scheme. This translates into saying that the communication
matrix of f ◦ XOR has rank at most s. To prove our lower bound on the monotone circuit
complexity of P f , current techniques end up proving lower bounds on the number of product
polynomials needed in any decomposition of P f . Each product polynomial appearing in the sum
comes with its own partition. But even if all these partitions were {X1,X2}, this would imply
proving a lower bound on the number of combinatorial rectangles needed to non-negatively sum
up to the communication matrix of f ◦XOR. A strong lower bound on the monotone complexity
of P f when s, the upper bound on the top fan-in of a depth-3 circuit computing P f , is just
polynomial in n,m would thus result in the refutation of the Log-Rank Conjecture (LRC) via the
function f ◦ XOR. No refutation of the LRC is known. Under these circumstances, we do the
next best possible thing: we take recourse to the recent refutation of the approximate/randomized
version of the LRC [CMS20], by embedding an approximate version of the f in our polynomial,
where f is the same function SINK used in the refutation.
The set of points at which SINK outputs 1 is a small union of mutually disjoint sub-cubes.
Roughly speaking, we observe that parity vectors in each sub-cube can be expressed by a single
ΣΠΣ circuit of the form in (1) by appropriately ’shifting’ the parity vector. Thus, we express S
by writing the polynomial as a sum of few (as many as the number of sub-cubes) such depth-3
circuits and then collapse the whole thing naturally to a single depth-3 circuit. The resulting
polynomial has negative coefficients. We turn it monotone by subtracting it from a slightly
scaled-up full product polynomial.
This polynomial is a δ-non-sink polynomial. As it has nearly full support, one needs to find
an argument that uses the distribution of its coefficients to prove its hardness against balanced
product polynomials. Our simple but key insight is to regard this polynomial’s coefficients as
the acceptance probabilities of the parity vectors of the respective monomials. In other words,
just as SINK ◦ XOR was shown by [CMS20] to be hard to be pointwise δ-approximated by a
small non-negative sum of combinatorial rectangles, we should in principle be able to say that
a small sum of non-negative product polynomials cannot compute any δ-non-sink polynomial.
Realizing this idea requires care. More interestingly in doing so, we develop a general transfer
theorem that relates rectangular corruption, a very useful measure in communication complexity,
under natural probability distributions on the input space of Boolean XOR functions to that
of an analogous corruption-like measure on the set-multilinear monomial space. This simple
but powerful correspondence is developed in Section 4. While our immediate use of this
correspondence is to establish the lower bound for δ-non-sink polynomials to prove Theorem 1.1,
we believe this to be of independent interest in monotone complexity.

ε-Sensitive Monotone Lower Bounds

Now we briefly explain the main ideas for proving Theorem 1.2. The crucial insight comes from
the fact that the boolean function MOD3 ◦ XOR has small discrepancy w.r.t the combinatorial
rectangles. The notion of discrepancy was defined by Babai, Nisan and Szegedy [BNS92]. To
exploit this, we define two measures W0 and W1 on the space of set-multilinear monomials as
follows: W0 puts uniform weights to the set of monomials κ such that the Hamming weight
(wt) of ~⊕(k) is a multiple of 3. The measure W1 acts similarly on the set of monomials κ such
that wt(~⊕(κ)) ≡ 1 (mod 3). Combining W0 and W1, we define the main measure W on any
polynomial P as W (P) = W1(P)−W0(P).

6

Using a (nearly)-equidistribution property of parity vectors, we show that the number of mono-
mials κ such that wt(~⊕κ) ≡ b (mod 3) are roughly same for b ∈ {1, 2, 3}. This immediately
shows that the contribution of the measure W for the polynomial P = Fn,m − ε · PMOD3

n,m

is approximately proportional to the contribution from PMOD3
n,m . In particular, this shows that

W (P) ≥ O(ε).
Further, the equidistribution property and a simple exponential sum estimate help us in proving
that the measure W (a · b) is exponentially small for any balanced product polynomial. Conceptu-
ally, this step is a transfer of small discrepancy of MOD3 ◦XOR function w.r.t the combinatorial
rectangles to the product polynomials. Since the measure of W (a · b) is exponentially small, the
sub-additive property of W shows that the number of product polynomials needed to account for
W (P) must be large (for a suitable range of values for ε). Finally, the lower bound follows from
the structure theorem of monotone circuits which says that if P is computable by a polynomial
size monotone circuit, then P can be written as a small sum of balanced product polynomials.

Organization
In Section 2, we recall basic facts about set-multilinear polynomials, monotone circuits, and
relevant notions of corruption and discrepancy from communication complexity. In Section 3,
we establish the key equidistribution property of parity vectors that makes possible the transfer
of ideas from communication complexity to the arithmetic setting. In Section 4, we establish a
general transfer theorem from rectangular corruption bounds to analogous bounds for product
polynomials. Then, in Section 5.1, we exhibit a δ-non-sink polynomial that is computed
efficiently by depth-3 circuits. We complement this in Section 5.2, applying the transfer theorem
from Section 4 , to show that every δ-non-sink polynomial has exponentially large monotone
complexity. Finally, in Section 6, we prove our ε-sensitive monotone lower bounds making
progress along Hrubeš’ approach.

2 Preliminaries
Notation.

Let [n] = {1, 2, . . . , n}. For a polynomial p ∈ R[X] and a monomial κ, let p[κ] be the coefficient
of κ in p. For polynomials p, q ∈ R[X], we write p ≤ q if for each κ, we have that p[κ] ≤ q[κ].
For a polynomial p, let var(p) denote the set of variables in p. For a vector u ∈ {0, 1}n, the
notation wt(u) is used for the Hamming weight of u.

Set-multilinear Polynomials.

LetX = ∪ni=1Xi be a set of variables whereXi = {xi,1, xi,2, . . . , xi,m}. A polynomial p ∈ R[X]
is set-multilinear if each monomial in p respects the partition given by the set of variables
X1, X2, . . . , Xn. In other words, each monomial κ in p is of the form x1,j1x2,j2 · · ·xn,jn . One
can naturally associate a function (mapping) σ : [n]→ [m] such that σ(i) = ji. This association
forms a bijection between the space of all functions from [n] to [m], denoted by Fn,m and the
space of all such set-multilinear monomials. The cardinality of each set is easily seen to be mn.
Often we shall abuse notation to identify the monomial κ with the function it represents.

7

Parity Vectors of Set-Multilinear Monomials.

For a set-multilinear monomial κ with the associated function σ we define the parity vector
~⊕(κ) ∈ {0, 1}m where the jth entry is ~⊕(κ)j = |σ−1(j)| (mod 2). For a set of parity vectors
S ⊆ {0, 1}m we shall denote

K(S) = {κ | ~⊕(κ) ∈ S}.

Ordered Polynomial.

For a monomial of the form κ = xi1,j1xi2,j2 · · ·xin,jn we define the set I(κ) = {i1, i2, . . . , in}.
If a polynomial p has the same set I(κ) for every monomial occurring in it with a non-zero
coefficient, then we say that the polynomial is ordered and we write I(p) = I(κ) for each κ.
Clearly, the set-multilinear polynomials are ordered polynomials with I(p) = {1, 2, . . . , n}.

Structure of Monotone Circuits.

The main structural result for monotone circuits that we use throughout, is the following theorem.

Theorem 2.1. [Yeh19, Lemma 1] Let n > 2 and p ∈ R[X] be an ordered monotone polynomial
with I(p) = [n]. Let C be a monotone circuit of size s that computes p. Then, we can write

p =
s∑
t=1

at · bt

where at and bt are monotone ordered polynomials with n
3
≤ |I(at)| ≤ 2n

3
and I(bt) = I(at)\[n].

Moreover, at · bt ≤ p for each 1 ≤ t ≤ s.

Such ordered product polynomials a · b with n
3
≤ |I(a)| ≤ 2n

3
and I(b) = [n] \ I(a) will be

called balanced product polynomials.

Rectangular Corruption.
We recall here the concept of corruption measure from communication complexity that we make
use of in this work. To do so, let us very briefly first recall the basic notions in the 2-party
communication model of Yao. The joint input space of Alice and Bob is {0, 1}m×{0, 1}m with
each player receiving an m-bit Boolean string, and they want to evaluate a Boolean function
F : {0, 1}m × {0, 1}m → {0, 1}. One defines a combinatorial rectangle R as a product set
A × B, for some A,B ⊆ {0, 1}m. Put another way, R is just a submatrix of the 2m × 2m

communication matrix MF of the function F , that Alice and Bob want to compute. The rows
of this matrix are indexed by possible inputs of Alice and the columns by the ones of Bob and
MF (x, y) = F (x, y). To define it, consider a probability distribution λ on {0, 1}m × {0, 1}m
that is almost balanced. Then, the intuition is that λ renders F hard, if rectangles (sub-matrices)
of F (MF) cannot even be approximately monochromatic unless they are small as measured by
λ. We will use the following notion of corruption to measure approximate monochromaticity.
This was implicitly defined by Razborov [Raz92].
Let z ∈ {0, 1}. Then, the ε, z-corruption of F w.r.t. λ is denoted by Corrzλ,ε(F), which is defined
as follows:

8

Corrzλ,ε(F) := min
R:λ(R∩F−1(z))≤ελ(R)

log
(1

λ(R)

)
.

The importance of the measure above lies by the fact that several lower bounds on the randomized
communication complexity of functions, beginning with the famous one for Set-Disjointness,
are proved by the simple relation: Rε(F) ≥ Ω(Corrzλ,ε(F)), for each z ∈ {0, 1}, where Rε(F)
is the ε-error randomized communication complexity of F .

Small Bias Spaces.
We recall the well-known notion of ε-biased spaces.

Definition 2.1 (ε-biased space). A multi-set B ⊆ {−1,+1}m of size N is called an ε-biased
space if for every subset S ⊆ [m] we have

| 1
N

∑
b∈B

∏
i∈S

bi| < ε.

Recently, a breakthrough work of Ta-Shma [Ta-17] gives near optimal size explicit construction
of ε-biased spaces.

Theorem 2.2 (Explicit construction of ε-bias spaces [Ta-17]). There is a deterministic algorithm
that for every ε > 0 constructs an ε-biased space Bm,ε of size O(m

ε2+o(1)
). The algorithm runs in

time poly(m, 1
ε
).

3 Equidistribution of Parity Vectors
In this section we record a few combinatorial results which will be used throughout the paper.
The omitted proofs are presented in Appendix A. We establish an approximate equidistribution
property of Fn,m which is the set of functions from [n] to [m]. For a function σ ∈ Fn,m we
define the parity vector ~⊕(σ) ∈ {0, 1}m where the jth entry is ~⊕(σ)j = |σ−1(j)| (mod 2). For
a vector v ∈ {0, 1}m we define

Fvn,m = {σ | σ ∈ Fn,m such that ~⊕(σ) = v }.

We will show that Fn,m is partitioned into approximately equal size classes Fvn,m (where
v ∈ {0, 1}m) in the sense of Corollary 3.1. The following fact is easy to verify using a symmetry
argument.

Fact 3.1. |Fvn,m| = |Fun,m| if wt(u) = wt(v).

The following results can be obtained via simple recurrences involving |Fvn,m|. The proofs are
presented in Appendix A.

Claim 3.1. |Fvn,m| ≥ |Fun,m| when wt(v) = wt(u)− 2.

When n is even we shall denote F (0,0,...,0,0)
n,m as EFn,m and call it the set of even functions. Next

we derive an upper bound on the number of even functions.

9

Lemma 3.1.

|EFn,m| ≤
1

2m−1

m−2
2∑
i=0

(
m

i

)
(m− 2i)n

 when m is even

≤ 1

2m−1

m−1
2∑
i=0

(
m

i

)
(m− 2i)n

 when m is odd.

From the above bounds we derive the main equidistribution property which will be used
repeatedly.

Corollary 3.1 (Key Equidistribution Property). Let n be even. If m lnm ≤ n, then for every
v ∈ {0, 1}m we have,

|Fvn,m| ≤
4mn

2m
.

Henceforth, in the rest of this paper, without loss of generality, we assume that n is even.

4 Corruption Transfer from Rectangles to Product Polyno-
mials

Let f : {0, 1}m 7→ {0, 1} be a boolean function and let F = f ◦ XOR be the boolean function
defined on {0, 1}2m as F (x, y) = f(x ⊕ y). Suppose F has high corruption with respect to
rectangles i.e. Corrzλ,ν(F) ≥ log

(
1
T

)
, or in other words:

if λ(R ∩ F−1(z)) ≤ νλ(R)

then λ(R) ≤ T
(3)

where λ is the distribution on {0, 1}2m defined as λ(x, y) = 1
2m
µ(x⊕ y) using a distribution µ

on {0, 1}m, and 0 ≤ ν ≤ 1 is some constant.
Using the distribution µ we define a measure on ordered polynomials. We first define W for an
ordered monomial κ and then we extend it linearly to all ordered polynomials:

W (κ) = µ(~⊕(κ)) · 2m

mn
.

Analogous to the boolean setting we define a concept of corruption for product polynomials.
Formally we define

MCorrzW,γ (f) := min
α·β : balanced
‖α‖∞,‖β‖∞≤1

W (α·β∩K(f−1(z)))≤γW (α·β)

log
(1

W (α · β)

)
.

Now we shall prove that the corruption of product polynomials is high.

Lemma 4.1 (Corruption Transfer).

MCorrzW, ν
3
(f) ≥ min{Corrzλ,ν(f ◦ XOR),m} − log2 48.

10

In other words if a balanced product polynomial H = α · β with ‖α‖∞ , ‖β‖∞ ≤ 1 satisfies

W (H ∩ K(f−1(z))) ≤ ν

3
W (H) (4)

then we have
W (H) ≤ 48 · 2−min{Corrzλ,ν(f◦XOR),m}.

Proof. Let H = α · β be a product polynomial whose coefficients are at most 1. We define
α̃, β̃ ∈ R2m as well by assigning for each u ∈ {0, 1}m

α̃[u] =
∑

κ | ~⊕(κ)=u

α[κ]

and
β̃[u] =

∑
κ | ~⊕(κ)=u

β[κ].

By definition of product polynomials we have

α · β =

 ∑
u∈{0,1}m

∑
κ | ~⊕(κ)=u

α[κ] · κ

 ·
 ∑
v∈{0,1}m

∑
κ′ | ~⊕(κ′)=v

β[κ′] · κ′


=

∑
x∈{0,1}m

 ∑
u∈{0,1}m

 ∑
κ : ~⊕(κ)=u

α[κ] · κ

 ·
 ∑
κ′ : ~⊕(κ′)=u⊕x

β[κ′] · κ′


 .

Now applying W on both sides using linearity we have

W (α · β) =
∑

x∈{0,1}m
W (x) ·

 ∑
u∈{0,1}m

 ∑
κ : ~⊕(κ)=u

α[κ]

 ·
 ∑
κ′ : ~⊕(κ′)=u⊕x

β[κ′]




=
∑

x∈{0,1}m
W (x) ·

 ∑
u∈{0,1}m

α̃[u] · β̃[u⊕ x]

 ,

where by abuse of notation we denoteW (x) = W (κ) where κ is some monomial with ~⊕(κ) = x.
For ease of writing we denote,

W̃ (α̃, β̃) :=
∑

x∈{0,1}m
W (x) ·

 ∑
u∈{0,1}m

α̃[u] · β̃[u⊕ x]

 = W (α · β).

Similarly we have,

W̃z(α̃, β̃) :=
∑

x∈{0,1}m
f(x)=z

W (x) ·

 ∑
u∈{0,1}m

α̃[u] · β̃[u⊕ x]

 = W (α · β ∩ K(f−1(z))).

11

Now we construct an optimization problem with γ = ν
3

Program A

Variables: α̃[v], β̃[v] : v ∈ {0, 1}m

Objective: max W̃ (α̃, β̃)

Constraints: 0 ≤ α̃[v] ≤ |FvI(α),m|

0 ≤ β̃[v] ≤ |FvI(β),m|

W̃z(α̃, β̃) ≤ γ · W̃ (α̃, β̃)

Let OPT1 be the optimum value of the optimization program A. Clearly, the Lemma will be
proved by establishing the required upper bound on OPT1. This is the aim of the remaining part
of the argument. First, we define a relaxation of the above optimization problem.

Program B

Variables: α̃[v], β̃[v] : v ∈ {0, 1}m

Objective: max W̃ (α̃, β̃)

Constraints: 0 ≤ α̃[v] ≤ 4m|I(α)|

2m

0 ≤ β̃[v] ≤ 4m|I(β)|

2m

W̃z(α̃, β̃) ≤ γ · W̃ (α̃, β̃)

Let OPT2 be the optimum value of the optimization program B. Since we have m lnm ≤ n
4
,

Corollary 3.1 tell us that the second optimization problem is indeed a relaxation of the first2,
and hence OPT1 ≤ OPT2. The goal in the next few steps is to extract a combinatorial rectangle
R from α̃ and β̃ such that OPT2 is upper bounded by O(λ(R)). Then, applying the corruption
bound on R we will get our desired bound on OPT2. To do this, it will be convenient to
understand a simple structure of an optimal solution to Program B.
Let (α̂, β̂) be an optimum solution to the optimization Program B. We obtain a linear program
on the variables α̃ from Program B by fixing the values β̃ = β̂. The constraints of this LP define
a polytope and let θ be a corner point. Then, θ has the property that for at most one coordinate
ũ, that we call exceptional, we have θ[ũ] 6∈ {0, 4m|I(α̃)|

2m
}. For every other coordinate u 6= ũ we

have θ[u] ∈ {0, 4m|I(α)|

2m
}. Hence, there exists an optimum solution at one of the corner points,

denoted by α∗. Clearly, W (α∗, β̂) = W (α̂, β̂). Again fixing α̃ = α∗ in Program B we get a
linear program on the variables β̃. We can get an optimum solution β∗ at a corner point of the
polytope defined by the constraints on the β variables. This gives us a corner point solution
(α∗, β∗) (with exceptional coordinates u∗, v∗) which achieves the optimum.
Now for such a product polynomial we define a rectangle R = A×B where

A = {u | α∗[u] 6= 0} \ {u∗}.

B = {v | β∗[v] 6= 0} \ {v∗}.
2This is the only place that we make use of the fact that H is a balanced product polynomial, i.e. n

3 ≤
|I(α)|, |I(β)| ≤ 2n

3 .

12

From the definition we have

W̃ (α∗, β∗) =
∑

x∈{0,1}m
W (x) ·

 ∑
u∈{0,1}m

α∗[u] · β∗[u⊕ x]

 .

Now interchanging the order of summation we have,

W̃ (α∗, β∗) =
∑

u∈A∪{u∗}

α∗[u]
∑

x∈{0,1}m
u⊕x∈B∪{v∗}

β∗[u⊕ x] ·W (x).

Renaming u⊕ x as v,

W̃ (α∗, β∗) ≤
∑

u∈A,v∈B

α∗[u] · β∗[v] ·W (u⊕ v) +
∑

v∈{0,1}m
α∗[u∗] · β∗[v] ·W (u∗ ⊕ v)

+
∑

u∈{0,1}m
α∗[u] · β∗[v∗] ·W (u⊕ v∗).

For ease of notation we define Ŵ (α∗, β∗) =
∑

u∈A,v∈B α
∗[u]·β∗[v]·W (u⊕v) andW ′(α∗, β∗) =

W̃ (α∗, β∗)− Ŵ (α∗, β∗).
We establish an upper bound on W̃ (α∗, β∗) in terms of λ(R) via parts 1 and 2 of the following
claims which gives upper bounds on Ŵ (α∗, β∗) and W ′(α∗, β∗).

Claim 4.1.

1. Ŵ (α∗, β∗) = 16λ(R).

2. W ′(α∗, β∗) ≤ 32
2m

.

3. W̃z(α
∗, β∗) ≥ 16λ(R ∩ F−1(z)).

First we complete the proof of Lemma 4.1 assuming the above claim. Combining parts 1 and 2
of Claim 4.1 we conclude that

W̃ (α∗, β∗) ≤ 16λ(R) + 32 · 2−m.

If λ(R) ≤ 2−m then W̃ (α∗, β∗) ≤ 48 · 2−m and then we are done. So we may assume
λ(R) > 2−m and hence we obtain the upper bound

W̃ (α∗, β∗) ≤ 16λ(R) + 32 · 2−m ≤ 16λ(R) + 32λ(R) = 48λ(R). (5)

Finally we have,

16λ(R ∩ F−1(z)) ≤
Claim 4.1Part 3

W̃z(α
∗ · β∗) ≤

constraint
γ · W̃ (α∗ · β∗) ≤

Equation 5
48γ · λ(R).

Since γ ≤ ν
3
, we note that the rectangle R satisfies

λ(R ∩ F−1(z)) ≤ νλ(R).

13

Therefore we have,

OPT1 ≤ OPT2 ≤
Equation 5

48λ(R) ≤
Equation 3

48 · 2−min{Corrzλ,ν(F),m}.

This yields the bound for all balanced product polynomials satisfying Equation 4 and completes
the proof of Lemma 4.1.
All that remains is to prove Claim 4.1 which we do next.

Proof of Claim 4.1. For the first part we have,

Ŵ (α∗, β∗) =
∑

u∈A,v∈B

α∗[u] · β∗[v] ·W (u⊕ v)

=
∑

u∈A,v∈B

4m|I(α)|

2m
· 4m|I(β)|

2m
·W (u⊕ v)

=
∑

u∈A,v∈B

16mn

22m
· µ(u⊕ v) · 2m

mn

=
∑

u∈A,v∈B

16

2m
· µ(u⊕ v)

=
∑

u∈A,v∈B

16λ(u, v)

= 16λ(R).

(6)

For the second part we have,

W ′(α∗, β∗) ≤
∑

v∈{0,1}m
α∗[u∗] ·W (u∗ ⊕ v)β∗[v] ·+

∑
u∈{0,1}m

α∗[u] · β∗[v∗] ·W (u⊕ v∗)

≤
∑

v∈{0,1}m

4m|I(α)|

2m
· 4m|I(β)|

2m
·W (u∗ ⊕ v) +

∑
u∈{0,1}m

4m|I(α)|

2m
· 4m|I(β)|

2m
·W (u⊕ v∗)

=
∑

v∈{0,1}m
16

1

2m
µ(u∗ ⊕ v) +

∑
u∈{0,1}m

16
1

2m
µ(u⊕ v∗)

=
32

2m
.

In the last equality we have used the fact that µ is a probability measure on {0, 1}m.
For the third part we have,

W̃z(α
∗, β∗) ≥

∑
u∈A,v∈B
F (u⊕v)=z

α∗[u] · β∗[v] ·W (u⊕ v)

=
∑

u∈A,v∈B
F (u⊕v)=z

16λ(u, v)

= 16λ(R ∩ F−1(z)).

14

We give a simple reformulation of our corruption bound3 for product polynomials which will be
useful later.

Corollary 4.1. For every balanced product polynomial H = α · β with ‖α‖∞ , ‖β‖∞ ≤ 1 we
have for every z ∈ {0, 1}

W (α · β ∩ K(f−1(z))) ≥ ν

3
W (α · β)− 48 · 2−min{Corrzλ,ν(f◦XOR),m}. (7)

Proof. From Lemma 4.1 we know that if the product polynomial satisfies

W (α · β ∩ K(f−1(z)) ≤ ν

3
W (α · β).

then W (α · β) ≤ 48 · 2−min{Corrzλ,ν(F),m}, where F = f ◦ XOR and thus the right hand side of
Equation 7 would be negative and hence (7) would be true. Otherwise the product polynomial
satisfies

W (α · β ∩ K(f−1(z))) >
ν

3
W (α · β).

and hence (7) is again true.

5 Exponential Separation Between Depth-3 Formulas and
Monotone VP

In this section, we prove Theorem 1.1. We show the construction of a polynomial-size depth
three circuit for a δ-non-sink polynomial which embeds an approximation of the boolean function
SINK ◦XOR. Next, we use the corruption transfer result from Section 4 to show that δ-non-sink
polynomials are hard for monotone circuits.

5.1 The construction of depth-3 formula.
For the sake of the reader, we recall some concepts from the introduction. For a function
σ ∈ Fn,m when m =

(
k
2

)
, the parity vector ~⊕(σ) can be interpreted as a tournament by orienting

the edges of Kk according to ~⊕(σ). More precisely, we fix a bijection φ : [
(
k
2

)
] 7→ E(Kk) and

interpret ~⊕(σ)j giving an orientation to the edge φ(j) = (x, u) where x < u. If ~⊕(σ)j = 1 then
we give the orientation x → u otherwise we give the orientation u → x. Let T (~⊕(σ)) be the
tournament on k vertices obtained using the above process. A function is said to have a sink if
the tournament T (~⊕(σ)) has a sink. If T (~⊕(σ)) has a sink u then we have

~⊕(σ) = (∗, ∗, ∗, 1, 1, . . . , 1︸ ︷︷ ︸
φ(j)=(x,u)

with x<u

, 0, 0, . . . , 0︸ ︷︷ ︸
φ(j)=(u,x)

with x>u

, ∗, ∗, ∗)

where the coordinates marked by ∗ could be either 0 or 1. For a vertex u, we define sink(u) :=
{σ | ~⊕(σ) has a sink at u}.

3This form of the corruption bound appears in Razborov’s [Raz92] argument for Set-Disjointness.

15

Proof of Theorem 1.1 Part (1): Let Xi = {xi,j}mj=1 be a set of variables and let X = ∪ni=1Xi.
For a vertex u ∈ Kk, consider the vector

u = (∗, ∗, ∗, 1, 1, . . . , 1︸ ︷︷ ︸
φ(j)=(x,u)

with x<u

, 0, 0, . . . , 0︸ ︷︷ ︸
φ(j)=(u,x)

with x>u

, ∗, ∗, ∗).

For a vertex u ∈ Kk and a vector b(r) ∈ {+1,−1}m, we define a polynomial

Qu,r :=
∏

j|uj=1

b
(r)
j ·

n∏
i=1

(
∑
j|uj 6=∗

b
(r)
j xi,j +

∑
j|uj=∗

xi,j).

For 0 < ε < 1, let Bm, ε
k

be the ε/k-biased space obtained from Theorem 2.2 of size N =
O(m

(ε/k)2+o(1)
).

Using the ε
k
-biased space Bm, ε

k
= {b(1), b(2), . . . , b(N)}, we define the following polynomial Qu

Qu :=
1

N
·
N∑
r=1

Qu,r.

Any monomial in Qu,r has the form κ =
∏n

i=1 xi,σ(i) for some function σ : [n] 7→ [m] and
further,

Qu,r[κ] =
∏

j|uj=0

(b
(r)
j)|σ

−1(j)| ·
∏

j|uj=1

(b
(r)
j)|σ

−1(j)|+1.

Let us note that when ~⊕(κ) ∈ sink(u), we have Qu,r[κ] = 1 and for any other monomial its
coefficient depends on at least one coordinate of b(r). Since b(1), b(2), . . . , b(N) form an ε

k
-bias

space, we have |Qu[κ]| < ε
k

for any κ with ~⊕(κ) 6∈ sink(u). Now we define the polynomial

Qε,n,m :=
∑
u∈[k]

Qu.

Let us note that Qε,n,m[κ] ∈ (1− ε, 1 + ε) if ~⊕(κ) has a sink and |Qε,n,m[κ]| < ε otherwise. We
define another polynomial

Hε,n,m :=
1

1 + 2ε
[(1 + ε)QAll −Qε,n,m] ,

where QAll =
∏n

i=1(
∑m

j=1 xi,j). We observe that Hε,n,m[κ] ∈ (0, 2ε
1+2ε

) if ~⊕(κ) has a sink and
Hε,n,m[κ] ∈ (1

1+2ε
, 1) otherwise.

By definition, the polynomial Hε,n,m has a depth-three formula of size O(kNnm) which is
O(nm3.5+o(1)/ε2+o(1)). Finally, we define the following polynomial

Pδ,n,m := H δ
2(1−δ) ,n,m

.

Notice that Pδ,n,m[κ] ∈ (0, δ) if ~⊕(κ) has a sink, and Pδ,n,m[κ] ∈ (1− δ, 1) otherwise. Note that
Pδ,n,m is a δ-non-sink Polynomial.

16

5.2 The Lower Bound.
In this section, we establish the following theorem which is a restatement of part 2 of Theo-
rem 1.1.

Theorem 5.1 (Restatement of Theorem 1.1, part 2). There exists a sufficiently small constant
δ < 1 such that for every δ-non-sink polynomial Qδ,n,m , the monotone circuit complexity of
Qδ,n,m is 2Ω(

√
m) , when 4m lnm ≤ n.

Since in the previous section, we have given an example of a δ-non-sink polynomial that can be
computed by depth-3 general formula of small size, we get our required separation as claimed
by Theorem 1.1.
In order to prove our theorem, we will make use of a rectangular corruption bound established
by Chattopadhyay, Mande and Sherif [CMS20] for the Boolean function SINK ◦ XOR. More
precisely, consider the SINK function associated with the complete graph Kk, with m =

(
k
2

)
.

Define the following distribution µ on the space of inputs {0, 1}m to SINK: toss a fair coin b. If
b = 1, sample a vertex i ∈ [k] at random, and then sample at random x ∈ {0, 1}m from all inputs
that make i a sink. If b = 0, sample x at random from {0, 1}m. Let λ : {0, 1}m×{0, 1}m → [0, 1]
be the probability distribution given by λ(x, y) = 1

2m
· µ(x⊕ y). We collect some simple facts

together:

Fact 5.1.

1. ∀z ∈ SINK−1(0) : µ(z) = 1
2m+1 .

2.
∣∣∣SINK−1(1)

∣∣∣ = k2m−k+1 = O(
√
m2m−

√
m).

The main corruption bound that we use is as follows:

Theorem 5.2 (Lemma 6.2 in4 [CMS20]). Let 0 ≤ ν ≤ 1/2 be any constant. Then,

Corr1
λ,ν

(
SINK ◦ XOR

)
= Ω(

√
m).

Now we prove Theorem 5.1.

Proof. Let Q by any δ-non-sink polynomial. Let C be a monotone circuit of size s computing
Q. Then by the structure Theorem 2.1, we may write Q as a sum of s many balanced product
polynomials

Q =
s∑
t=1

αt · βt.

The general idea of our argument is as follows: given the hard distribution µ on SINK considered
by [CMS20], we define a measure W on monomials as prescribed by the Transfer Lemma 4.1
established in the previous section. Combining Theorem 5.2 with the Corruption Transfer
Lemma, we immediately obtain that every product polynomial αt · βt either measures very little

4Please note that [CMS20] use the symbol m to represent the number of vertices in the complete graph whose
edges represent the variables to SINK. Their m corresponds to our k. Further, their ν corresponds to our λ, and
their value of 4 · ε corresponds to our ν.

17

w.r.t W or its contribution to the sink monomials, measured w.r.t W , is a significant fraction of
the total measure W (αt · βt). However, we show that the sink monomials of Q, weighted by
their coefficients, measure up to a tiny fraction of the total measure W (Q). These two opposing
facts can be reconciled only if the number of product polynomials, s, in the decomposition of Q
is exponentially large5.
Forthwith the details: set measure W on monomials according to our prescription, i.e. for any
monomial κ, W (κ) := µ(⊕ (κ)) · 2m

mn
, where µ is the hard probability distribution on the inputs

of SINK.
Transferring the rectangular corruption bound of Theorem 5.2 to W via Lemma 4.1 and then
using the bound of Corollary 4.1, we observe that

W (Q ∩ K(SINK−1(1))) =
s∑
t=1

W (αt · βt ∩ K(SINK−1(1)))

≥
s∑
t=1

ν

3
W (αt · βt)− 48 · s · 2−Corr1λ,ν(SINK◦XOR).

Hence,
48 · s · 2−Corr1λ,ν(SINK◦XOR) ≥ ν

3
W (Q)−W

(
Q ∩ K(SINK−1(1))

)
. (8)

Now we would like to prove a lower bound on the right hand side. In order to do so we first
prove two claims.

Claim 5.1.
W
(
Q ∩ K(SINK−1(1))

)
≤ 4δ.

Proof.

W
(
Q ∩ K(SINK−1(1))

)
≤ δ ·

∑
κ

SINK(~⊕(κ))=1

W (κ)

≤ δ ·
∑
κ

SINK(~⊕(κ))=1

µ(~⊕(κ)) · 2m

mn

= δ ·
∑

x∈{0,1}m
SINK(x)=1

∑
κ

~⊕(κ)=x

µ(~⊕(κ)) · 2m

mn

≤ δ ·
∑

x∈{0,1}m
SINK(x)=1

4mn

2m
· µ(x) · 2m

mn

≤ 4δ ·
∑

x∈{0,1}m
SINK(x)=1

µ(x)

≤ 4δ.

where the last inequality follows because µ is a probability measure on {0, 1}m.

5While this is the well-known idea behind the formulation of the notion of corruption in communication
complexity, we are not aware of its prior use in arithmetic complexity.

18

Claim 5.2.
W (Q) ≥ 1− δ

3
for large m.

Proof. Using the fact that the coefficient of every non-sink monomial in Q is in the interval
[1− δ, 1], and substituting f for SINK we get,

W (Q) ≥ (1− δ)W
(
Q ∩ K(SINK−1(0))

)
= (1− δ) ·

∑
κ

f(~⊕(κ))=0

W (κ)

= (1− δ) ·
∑

x∈{0,1}m
f(x)=0

∑
κ

~⊕(κ)=x

µ(~⊕(κ)) · 2m

mn

= (1− δ) ·
∑

x∈{0,1}m
f(x)=0

∑
κ

~⊕(κ)=x

1

2m+1
· 2m

mn

= (1− δ) · 1

2

|K(f−1(0))|
mn

= (1− δ) · 1

2

(
1− |K(f−1(1))|

mn

)
.

Now we may bound the total number of sink monomials, using Fact 5.1 and Corollary 3.1, as

|K(f−1(1))| ≤ c ·
√
m2m−

√
m · 4mn

2m
≤ c
√
m · 4mn

2
√
m
.

for some constant c. Thus we have(
1− |K(f−1(1))|

mn

)
≥ (1− 4c

√
m

2
√
m

) ≥ 2

3
,

for large m. Finally we conclude that

W (Q) ≥ (1− δ) · 1

2

(
1− |K(f−1(1))|

mn

)
≥ 1− δ

3
.

for large m.

Continuing from Equation 8 and applying Claims 5.1, 5.2 we have

48 · s · 2−Corr1λ,ν(SINK◦XOR) ≥ ν

3
W (Q)−W

(
Q ∩ K(SINK−1(1))

)
≥ ν

3

1− δ
3
− 4δ.

Now since δ is small enough we may write ν
3

1−δ
3
− 4δ ≥ δ and hence

s ≥ δ

48
· 2Corr1λ,ν(SINK◦XOR) ≥ 2Ω(

√
m).

19

6 ε-Sensitive Monotone Lower Bound for MOD3 ◦ MOD2
Polynomial

In this section, we prove Theorem 1.2. Consider the boolean function defined on {0, 1}m as
f(x) = 0 if wt(x) ≡ 0 (mod 3) and f(x) = 1 otherwise. This is often called the MOD3

Boolean function. We define a polynomial Pn,m that remarkably remains hard even when it
is added to the full set-multilinear polynomial after being multiplied by a tiny number ε. The
question of proving such lower bounds against monotone circuits was raised in the recent work
of Hrubeš[Hru20] where he gives an alternative approach for attacking general (non-monotone)
circuits. More precisely, Hrubeš shows that if one could prove strong lower bounds for arbitrary
small, but non-zero ε, then they imply comparable bounds for general circuits. Our lower bound
works as long as ε ≥ 2−γn/ logn for some constant γ.

Candidate polynomial.

First, define the following polynomial.

PMOD3
n,m :=

∑
σ:[n]7→[m]

MOD3(~⊕(σ))=0

n∏
i=1

xi,σ(i).

It is trivial to see that there is a polynomial time algorithm that given a monomial decides
whether the coefficient of the monomial is zero or one in PMOD3

n,m . Hence, by Valiant’s criterion
[Val79, Proposition 4], the polynomial PMOD3

n,m is in VNP. We show a monotone circuit lower
bound for

P = Fn,m − ε · PMOD3
n,m .

for some ε > 0, where we define the full polynomial as Fn,m =
∏n

i=1(
∑m

j=1 xi,j). The lower
bound proof for

P = Fn,m + ε · PMOD3
n,m .

is analogous. Since the polynomial Fn,m can be computed by a polynomial-size monotone
circuit, the lower bound result for P = Fn,m + ε · PMOD3

n,m also shows that the polynomial PMOD3
n,m

needs exponential-size monotone circuit.
Now we are ready to prove the main result under the condition 4m lnm ≤ n.

Proof of Theorem 1.2.
We define two measures W0 and W1. For a monomial κ of the form

∏n
i=1 xi,σ(i) we define

W0(κ) =
1

mn
if wt(~⊕(κ)) ≡ 0 (mod 3)

= 0 otherwise.

and similarly,

W1(κ) =
1

mn
if wt(~⊕(κ)) ≡ 1 (mod 3)

= 0 otherwise.

20

We linearly extend these measures to all polynomials and define our main measure

W (P) = W1(P)−W0(P).

Our main result will follow immediately from the following two claims: the main technical result
of this section will show that the measure W is exponentially small on product polynomials.

Lemma 6.1 (Measure is small for balanced product polynomials). Let a · b be a balanced
product polynomial whose coefficients are at most 1. Then

|W (a · b)| ≤ 64

3

(√
3

4

)m

,

when 4m lnm ≤ n.

However, the following claim shows that W (P) is large.

Claim 6.1. There exists a constant γ0 < 1, such that if ε ≥ 2−γ0·m, then

W (P) ≥ ε

5
,

when 4m lnm ≤ n.

Given these two results, the structure theorem readily yields the main result as shown by the
following short argument. Suppose that P has a monotone circuit of size s. Then by the structure
Theorem 2.1, we can write

P =
s∑
t=1

at · bt

where at, bt are balanced product polynomials.
Thus,

ε

5
≤

Claim 6.1
W (P) =

s∑
t=1

W (at · bt) ≤
Lemma 6.1

s · 64

3

(√
3

4

)m

.

Hence, s ≥ 3ε
320

(√
4
3

)m
. To get the required lower bound for s, we must have ε ≥ 2−γ1m for

some γ1 > 0. Claim 6.1 needs ε ≥ 2−γ0m. Hence, choose ε ≥ 2−min{γ0,γ1}m. The result now
immediately follows.
All that remains is to establish Lemma 6.1 and Claim 6.1. The latter follows by a short calculation
from the former and so we first prove it below.

Proof of Claim 6.1. Recall the following notation

Nb = |{κ | wt(~⊕(κ)) ≡ b (mod 3)}| ∀ b ∈ {0, 1, 2}

We explicitly compute the measure for our target polynomial using linearity.

W (P) = W (Fn,m)− ε ·W (Pn,m).

21

For the full polynomial one can easily compute W (Fn,m) = N1

mn
− N0

mn
and clearly W (Pn,m) =

−W0(Pn,m) = − N0

mn
. Thus, we have

W (P) =
N1

mn
− N0

mn
+ ε · N0

mn
.

and hence |W (P)| ≥ ε · | N0

mn
|−| N0

mn
− N1

mn
|. Since Fn,m is a product polynomial, using Lemma 6.1

we conclude that W (Fn,m) = | N1

mn
− N0

mn
| ≤ 64

3
·
(√

3
4

)m
.

By a similar calculation one can show that | N0

mn
− N2

mn
|, | N1

mn
− N2

mn
| ≤ 64 ·

(√
3
4

)m
and since

N0

mn
+ N1

mn
+ N2

mn
= 1 it must be the case that | N0

mn
− 1

3
| ≤ 2−Ω(m) and hence we may write N0

mn
≥ 1

4
.

Finally we have

|W (P)| ≥ ε · |N0

mn
| − |N0

mn
− N1

mn
| ≥ ε

5

which is true if the parameter ε satisfies the following condition

ε

20
≥ 64

3

(√
3

4

)m

.

Thus we can choose the parameter γ0 appropriately such that ε ≥ 2−γ0n/ logn.

All that remains to finish this section is to argue for the correctness of Lemma 6.1. We do so
by an argument that is inspired by discrepancy estimation techniques used in communication
complexity, especially of the kind that appeared in Ada et.al. [ACFN15].

Proof of Lemma 6.1. Given any product polynomial a · b, we define vectors A,B ∈ R2m below,
where v ∈ {0, 1}m is an arbitrary parity vector.

A[v] :=
|{κ|~⊕(κ) = v and a[κ] 6= 0}|

m|I(a)| .

B[v] :=
|{κ|~⊕(κ) = v and b[κ] 6= 0}|

m|I(b)|
.

We also define as

~⊕(a) := {~⊕(κ) | a[κ] 6= 0},
~⊕(b) := {~⊕(κ) | b[κ] 6= 0}.

For an arbitrary parity vector v ∈ {0, 1}m, we define two quantities related to A[v] and B[v]:

Ã[v] :=

∑
κ:~⊕(κ)=v

a[κ]

m|I(a)|

B̃[v] :=

∑
κ:~⊕(κ)=v

b[κ]

m|I(b)|
.

22

Further define vectors α, β ∈ R2m where α[v] := 2m · Ã[v] (similarly β[v] := 2m · B̃[v]). Note
that Ã[v] ≤ A[v] and B̃[v] ≤ B[v] since the coefficients of the target polynomial P are bounded
by 1 6. Assuming that n is even and using Corollary 3.1, we conclude that α[v], β[v] ≤ 4.
We write the measures for a product polynomial a · b as

W0(a · b) =
∑

u,v∈{0,1}m
Ã[u] · B̃[v] · 1

3
(1 + ω|u⊕v| + ω2|u⊕v|),

and
W1(a · b) =

∑
u,v∈{0,1}m

Ã[u] · B̃[v] · 1

3
(1 + ω|u⊕v|+2 + ω2|u⊕v|+1),

where |u⊕ v| = (
∑

i ui +
∑

i vi − 2
∑

i uivi), and ω is the complex third root of unity. Note
that we have made use of the fact that (1 + ω + ω2) = 0.
We write

3 · |W (a · b)| = |
∑

u,v∈{0,1}m
Ã[u] · B̃[v] · ω|u⊕v| +

∑
u,v∈{0,1}m

Ã[u] · B̃[v] · ω2|u⊕v|

−
∑

u,v∈{0,1}m
Ã[u] · B̃[v] · ω|u⊕v|+2 −

∑
u,v∈{0,1}m

Ã[u] · B̃[v] · ω2|u⊕v|+1|

≤ |
∑

u,v∈{0,1}m
Ã[u] · B̃[v] · ω|u⊕v||+ |

∑
u,v∈{0,1}m

Ã[u] · B̃[v] · ω2|u⊕v||

+ |
∑

u,v∈{0,1}m
Ã[u] · B̃[v] · ω|u⊕v||+ |

∑
u,v∈{0,1}m

Ã[u] · B̃[v] · ω2|u⊕v||.

Now we proceed to bound each of the four terms separately.

|
∑

u,v∈{0,1}m
Ã[u] · B̃[v] · ω|u⊕v||2 = |

∑
u,v∈{0,1}m

α[u]

2m
· β[v]

2m
· ω|u⊕v||2

= | E
u,v∈{0,1}m

α[u] · β[v] · ω|u⊕v||2.

Claim 6.2.
| E
u,v∈{0,1}m

α[u] · β[v] · ω|u⊕v||2 ≤ 256 ·
(

3

4

)m
.

Proof. We apply triangle inequality and then we remove α[u] using the fact that α[u] ≤ 4. Then
we apply the Cauchy-Schwarz inequality,

| E
u∈{0,1}m

α[u] ·
(

E
v∈{0,1}m

β[v] · ω|u⊕v|
)
|2 ≤

(
E

u∈{0,1}m
α[u] · | E

v∈{0,1}m
β[v] · ω|u⊕v||

)2

≤ 16 ·
(

E
u∈{0,1}m

| E
v∈{0,1}m

β[v] · ω|u⊕v||
)2

≤ 16 · E
u∈{0,1}m

| E
v∈{0,1}m

β[v] · ω|u⊕v||2.

6To see this more clearly, let T be the largest coefficient in a. So 1/T is the largest possible coefficient in b.
Now write a · b = a′ · b′ where a′ = a/T and b′ = b · T . Hence each coefficient in a′ and b′ are bounded by 1.

23

Next, we write |z|2 = z · z̄, rearrange terms and then apply triangle inequality,

E
u∈{0,1}m

| E
v∈{0,1}m

β[v] · ω|u⊕v||2 = E
u∈{0,1}m

(
E

v∈{0,1}m
β[v] · ω|u⊕v|

)
·
(

E
ṽ∈{0,1}m

β[ṽ] · ω−|u⊕ṽ|
)

= E
v∈{0,1}m

E
ṽ∈{0,1}m

β[v]β[ṽ] ·
(

E
u∈{0,1}m

ω|u⊕v|−|u⊕ṽ|
)

≤ E
v∈{0,1}m

E
ṽ∈{0,1}m

β[v]β[ṽ] · | E
u∈{0,1}m

ω|u⊕v|−|u⊕ṽ||.

Again we use β[v] ≤ 4,

E
v∈{0,1}m

E
ṽ∈{0,1}m

β[v]β[ṽ] · | E
u∈{0,1}m

ω|u⊕v|−|u⊕ṽ|| ≤ 16 · E
v∈{0,1}m

E
ṽ∈{0,1}m

| E
u∈{0,1}m

ω|u⊕v|−|u⊕ṽ||

= 16 · E
v,ṽ∈{0,1}m

| E
u∈{0,1}m

ω|v|−|ṽ|+2〈u,ṽ−v〉|

= 16 · E
v,ṽ∈{0,1}m

| E
u∈{0,1}m

ω2〈u,ṽ−v〉|

= 16 ·
m∑
k=0

∑
v̂∈{−1,0,1}m

number of zeros in v̂=k

2k

22m
·
∏
i

| E
ui∈{0,1}

ω2ui·v̂i|.

A simple calculation shows that | E
ui∈{0,1}

ω2ui·v̂i | = 1
2
, whenever v̂i ∈ {−1, 1}. Plugging this

back into the previous equation we get

m∑
k=0

∑
v̂∈{−1,0,1}m

number of zeros in v̂=k

2k

22m
·
∏
i

| E
ui∈{0,1}

ω2ui·v̂i| =
m∑
k=0

(
m

k

)
· 2m−k · 2k

22m
· 1

2m−k

=
1

4m

m∑
k=0

(
m

k

)
· 2k

=

(
3

4

)m
.

One can use a similar analysis to bound the other terms as well. Finally we conclude that

|W (a · b)| ≤ 64
3
·
(√

3
4

)m
.

References
[ACFN15] Anil Ada, Arkadev Chattopadhyay, Omar Fawzi, and Phuong Nguyen, The NOF

multiparty communication complexity of composed functions, Comput. Complex.
24 (2015), no. 3, 645–694.

[AG87] Miklós Ajtai and Yuri Gurevich, Monotone versus positive, J. ACM 34 (1987), no. 4,
1004–1015.

24

[AV08] Manindra Agrawal and V. Vinay, Arithmetic circuits: A chasm at depth four, 49th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, Octo-
ber 25-28, 2008, Philadelphia, PA, USA, IEEE Computer Society, 2008, pp. 67–75.

[BGK06] J. Bourgain, A. A. Glibichuk, and S. V. Konyagin, Estimates for the number of sums
and products and for exponential sums in fields of prime order, Journal of London
Mathematical Society 2 (2006), 380–398.

[BNS92] László Babai, Noam Nisan, and Mario Szegedy, Multiparty protocols, pseudoran-
dom generators for logspace, and time-space trade-offs, J. Comput. Syst. Sci. 45
(1992), no. 2, 204–232, Preliminary version appeared in STOC 1989.

[CMS20] Arkadev Chattopadhyay, Nikhil Mande, and Suhail Sherif, The log-approximate-
rank conjecture is false, J. ACM 67 (2020), no. 4, 23:1–23:28.

[COS17] Xi Chen, Igor Carboni Oliviera, and Rocco A. Servedio, Addition is exponentially
harder than counting for shallow monotone circuits, STOC, 2017, pp. 665–677.

[GKKS16] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi, Arithmetic
circuits: A chasm at depth 3, SIAM J. Comput. 45 (2016), no. 3, 1064–1079.

[GKRS19] Mika Göös, Pritish Kamath, Robert Robere, and Dmitry Sokolov, Adventures in
monotone complexity and TFNP, ITCS, 2019, pp. 38:1–38:19.

[GS12] S. B. Gashkov and I. S. Sergeev, A method for deriving lower bounds for the
complexity of monotone arithmetic circuits computing real polynomials, Sbornik.
Mathematics 203(10) (2012).

[HR00] Danny Harnik and Ran Raz, Higher lower bounds on monotone size, Proceedings of
the Thirty-Second Annual ACM Symposium on Theory of Computing, May 21-23,
2000, Portland, OR, USA, ACM, 2000, pp. 378–387.

[Hru20] Pavel Hrubeš, On ε-sensitive monotone computations, Computational Complexity
29 (2020), no. 2, 6.

[HY13] Pavel Hrubeš and Amir Yehudayoff, Formulas are exponentially stronger than mono-
tone circuits in non-commutative setting, Computational Complexity Conference,
2013, pp. 10–14.

[JS82] Mark Jerrum and Marc Snir, Some exact complexity results for straight-line compu-
tations over semirings, J. ACM 29 (1982), no. 3, 874–897.

[Koi12] Pascal Koiran, Arithmetic circuits: The chasm at depth four gets wider, Theor.
Comput. Sci. 448 (2012), 56–65.

[KW] Mauricio Karchmer and Avi Wigderson, Monotone circuits for connectivity require
superlogarithmic depth, SIAM J. Discrete Math.

[PR17] Toniann Pitassi and Robert Robere, Strongly exponential lower bounds for monotone
computation, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, ACM, 2017,
pp. 1246–1255.

25

[Raz85a] Alexander A. Razborov, A lower bound on the monotone network complexity of
the logical permanent, Mathematicheskie Garnetki 37 (1985), no. 6, 887–900,
Mathematical notes of the Academy of Sciences of the USSR, 37:6, 485–493.

[Raz85b] , Lower bounds for the monotone complexity of some boolean functions,
Dokl. Ak. Nauk. SSSR 281 (1985), 354–357, (in Russian) English translation in
Sov. Math. Dokl.

[Raz92] , On the distributional complexity of disjointness, Theor. Comput. Sci. 106
(1992), no. 2, 385–390, Preliminary version in ICALP 1990.

[RM99] Ran Raz and Pierre McKenzie, Separation of the monotone NC hierarchy, Combi-
natorica 19 (1999), no. 3, 403–435, Preliminary version in FOCS 1997.

[Ros15] Benjamin Rossman, Correlation bounds against monotone ncˆ1, 30th Conference
on Computational Complexity, CCC 2015, June 17-19, 2015, Portland, Oregon,
USA, LIPIcs, vol. 33, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015,
pp. 392–411.

[RW92] Ran Raz and Avi Wigderson, Monotone circuits for matching require linear depth,
J. ACM 39 (1992), no. 3, 736–744.

[RY11] Ran Raz and Amir Yehudayoff, Multilinear formulas, maximal-partition discrep-
ancy and mixed-sources extractors, J. Comput. Syst. Sci. 77 (2011), no. 1, 167–190.

[Sri19] Srikanth Srinivasan, Strongly exponential separation between monotone VP and
monotone VNP, Electron. Colloquium Comput. Complex. 26 (2019), 32.

[SS77] Eli Shamir and Marc Snir, Lower bounds on the number of multiplications and
additions in monotone computations, Tech. report, IBM, 1977.

[SS80] , On the depth complexity of formulas, Theory of Computing Systems 13
(1980), no. 1, 301–322.

[SY10] Amir Shpilka and Amir Yehudayoff, Arithmetic circuits: A survey of recent results
and open questions, Found. Trends Theor. Comput. Sci. 5 (2010), no. 3-4, 207–388.

[Ta-17] Amnon Ta-Shma, Explicit, almost optimal, epsilon-balanced codes, Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,
Montreal, QC, Canada, June 19-23, 2017 (Hamed Hatami, Pierre McKenzie, and
Valerie King, eds.), ACM, 2017, pp. 238–251.

[Tar88] Eva Tardos, The gap between monotone and non-monotone circuit complexity is
exponential, Combinatorica 8 (1988), 141–142.

[Tav15] Sébastien Tavenas, Improved bounds for reduction to depth 4 and depth 3, Inf.
Comput. 240 (2015), 2–11.

[Val79] Leslie G. Valiant, Completeness classes in algebra, Proceedings of the 11h Annual
ACM Symposium on Theory of Computing, April 30 - May 2, 1979, Atlanta,
Georgia, USA (Michael J. Fischer, Richard A. DeMillo, Nancy A. Lynch, Walter A.
Burkhard, and Alfred V. Aho, eds.), ACM, 1979, pp. 249–261.

26

[Val80] , Negation can be exponentially powerful, Theor. Comput. Sci. 12 (1980),
303–314, Preliminary version in STOC 1979.

[W70] Moon J W, Counting labelled trees, Canadian Mathematical Congress, Montreal
(1970).

[Yeh19] Amir Yehudayoff, Separating monotone VP and VNP, Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix,
AZ, USA, June 23-26, 2019 (Moses Charikar and Edith Cohen, eds.), ACM, 2019,
pp. 425–429.

A The Omitted Proofs From Section 3
In this section, we present the omitted proofs from Section 3. First, we write a recurrence for
|Fvn,m|. Using Fact 3.1, we may assume that the vector is of the form v = (0, 0, 0, . . . , 1, 1, 1).
Then we have,

|Fvn,m| =
n−wt(v)∑
k=0

k is even

(
n

k

)
|Fv−1

n−k,m−1| (9)

where v−1 is the vector obtained from v by deleting the first coordinate. If v = (1, 1, 1, . . . , 1, 1)
then the recurrence is

|Fvn,m| =
n−wt(v)∑
k=1
k is odd

(
n

k

)
|Fv−1

n−k,m−1|.

Claim A.1 (Re-statement of Claim 3.1). |Fvn,m| ≥ |Fun,m| when wt(v) = wt(u)− 2.

Proof. The proof is by induction on m with base case at m = 2. Notice that for m = 2,
v = (0, 0) and u = (1, 1). Hence

|Fvn,m| =
n−wt(v)∑
k=0

k is even

(
n

k

)
= 2n−1.

Similarly,
|Fun,m| = 2n−1.

Writing the recurrence for |Fvn,m| we have

|Fvn,m| =
n−wt(v)∑
k=0

k is even

(
n

k

)
|Fv−1

n−k,m−1|.

Applying the induction hypothesis for m − 1 on the vectors v−1 and u−1 we conclude that
|Fv−1

n−k,m−1| ≥ |F
u−1

n−k,m−1| which shows that,

27

|Fvn,m| =
n−wt(v)∑
k=0

k is even

(
n

k

)
|Fv−1

n−k,m−1|

≥
n−wt(u)∑
k=0

k is even

(
n

k

)
|Fu−1

n−k,m−1|+
(

n

n− wt(v)

)
|Fv−1

wt(v),m−1
|

≥
n−wt(u)∑
k=0

k is even

(
n

k

)
|Fu−1

n−k,m−1|

= |Fun,m|.

This completes the induction.

When n is even we shall denote F (0,0,...,0,0)
n,m as EFn,m and call it the set of even functions.

Lemma A.1 (Re-statement of Lemma 3.1).

|EFn,m| ≤
1

2m−1

m−2
2∑
i=0

(
m

i

)
(m− 2i)n

 when m is even

≤ 1

2m−1

m−1
2∑
i=0

(
m

i

)
(m− 2i)n

 when m is odd

Proof. The proof is by induction on m and the base case is m = 2. We have

EFn,2 =
n∑
k=0

k is even

(
n

k

)
= 2n−1.

and hence the base case is established. We do the induction step when m+ 1 is odd (the even
case when m+ 1 is even is similar). We write the recurrence and apply the induction hypothesis.

28

|EFn,m+1| =
n∑
k=0

k is even

(
n

k

)
|EFn−k,m|

≤
n∑
k=0

k is even

(
n

k

)
1

2m−1

m−2
2∑
i=0

(
m

i

)
(m− 2i)n−k



≤ 1

2m−1

m−2
2∑
i=0

(
m

i

) n∑
k=0

k is even

(
n

k

)
(m− 2i)n−k


≤ 1

2m

m−2
2∑
i=0

(
m

i

)
((m+ 1− 2i)n + (m− 1− 2i)n)


≤ 1

2m

m−2
2∑
i=0

(
m

i

)
((m+ 1− 2i)n + (m+ 1− 2(i+ 1))n)


≤ 1

2m

(m+ 1

0

)
(m+ 1)n +

m
2∑
i=1

[(
m

i− 1

)
+

(
m

i

)]
((m+ 1− 2i)n)


=

1

2m

(m+ 1

0

)
(m+ 1)n +

m
2∑
i=1

(
m+ 1

i

)
((m+ 1− 2i)n)

 .

This completes the induction.

Corollary A.1 (Re-statement of Corollary 3.1). Let n be even. If m lnm ≤ n, then for every
v ∈ {0, 1}m we have,

|Fvn,m| ≤
4mn

2m
.

Proof. We shall prove the bound for |EFn,m| and then by lemma A.1 the bound will hold for

29

|Fvn,m| for all v ∈ {0, 1}m. From Lemma A.1 we know that

|EFn,m| ≤
1

2m−1

m−2
2∑
i=0

(
m

i

)
(m− 2i)n


≤ mn

2m−1

m−2
2∑
i=0

(
m

i

)(
m− 2i

m

)n
≤ mn

2m−1

m−2
2∑
i=0

mi

(
1− 2i

m

)n
≤ mn

2m−1

m−2
2∑
i=0

mie
−2in
m


≤ mn

2m−1

m−2
2∑
i=0

(
m

e
2n
m

)i .

Now by the choice of n and m we have m

e
2n
m
≤ 1

m
and hence we may bound

m−2
2∑
i=0

(
m

e
2n
m

)i
≤

m−2
2∑
i=0

(
1

m

)i
≤ m

m− 1
≤ 2.

Thus we conclude that when m lnm ≤ n we have |EFn,m| ≤ 4mn

2m
.

30
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

